WorldWideScience

Sample records for newly formed synthetic

  1. 'Synthetic lipase' production from a newly isolated Sporidiobolus pararoseus strain by submerged fermentation

    Directory of Open Access Journals (Sweden)

    Alessandra Smaniotto

    2012-12-01

    Full Text Available The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1, yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v of peptone, yeast extract, NaCl and olive oil, respectively, representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.

  2. Observation of the bone mineral density of newly formed bone using rabbits. Compared with newly formed bone around implants and cortical bone

    International Nuclear Information System (INIS)

    Nakada, Hiroshi; Numata, Yasuko; Sakae, Toshiro; Tamaki, Hiroyuki; Kato, Takao

    2009-01-01

    There have been many studies reporting that newly formed bone around implants is spongy bone. However, although the morphology is reported as being like spongy bone, it is difficult to discriminate whether the bone quality of newly formed bone appears similar to osteoid or cortical bone; therefore, evaluation of bone quality is required. The aims of this study were to measure the bone mineral density (BMD) values of newly formed bone around implants after 4, 8, 16, 24 and 48 weeks, to represent these values on three-dimensional color mapping (3Dmap), and to evaluate the change in bone quality associated with newly formed bone around implants. The animal experimental protocol of this study was approved by the Ethics Committee for Animal Experiments of our University. This experiment used 20 surface treatment implants (Ti-6Al-4V alloy: 3.1 mm in diameter and 30.0 mm in length) by grit-blasting. They were embedded into surgically created flaws in femurs of 20 New Zealand white rabbits (16 weeks old, male). The rabbits were sacrificed with an ear intravenous overdose of pentobarbital sodium under general anesthesia each period, and the femurs were resected. We measured BMD of newly formed bone around implants and cortical bone using Micro-CT, and the BMD distribution map of 3Dmap (TRI/3D Bon BMD, Ratoc System Engineering). The BMD of cortical bone was 1,026.3±44.3 mg/cm 3 at 4 weeks, 1,023.8±40.9 mg/cm 3 at 8 weeks, 1,048.2±45.6 mg/cm 3 at 16 weeks, 1,067.2±60.2 mg/cm 3 at 24 weeks, and 1,069.3±50.7 mg/cm 3 at 48 weeks after implantation, showing a non-significant increase each period. The BMD of newly formed bone around implants was 296.8±25.6 mg/cm 3 at 4 weeks, 525.0±72.4 mg/cm 3 at 8 weeks, 691.2±26.0 mg/cm 3 at 16 weeks, 776.9±27.7 mg/cm 3 at 24 weeks, and 845.2±23.1 mg/cm 3 at 48 weeks after implantation, showing a significant increase after each period. It was revealed that the color scale of newly formed bone was Low level at 4 weeks, and then it

  3. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials.

    Science.gov (United States)

    Schupp, Harald T; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-06-20

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life.

  4. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    Science.gov (United States)

    Schupp, Harald T.; Kirmse, Ursula; Schmälzle, Ralf; Flaisch, Tobias; Renner, Britta

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depicting a person either in an erotic pose or as a portrait. Afterwards, to activate newly-built memory traces, edited pictures were presented showing only the head region of the person. ERP recordings revealed the emotional regulation of attention by newly-formed memories. Specifically, edited pictures from the erotic compared to the portrait category elicited an early posterior negativity and late positive potential, similar to the findings observed for the original pictures. A control condition showed that the effect was dependent on newly-formed memory traces. Given the large number of new memories formed each day, they presumably make an important contribution to the regulation of attention in everyday life. PMID:27321471

  5. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  6. Newly-formed emotional memories guide selective attention processes: Evidence from event-related potentials

    OpenAIRE

    Harald T. Schupp; Ursula Kirmse; Ralf Schmälzle; Tobias Flaisch; Britta Renner

    2016-01-01

    Emotional cues can guide selective attention processes. However, emotional stimuli can both activate long-term memory representations reflecting general world knowledge and engage newly formed memory representations representing specific knowledge from the immediate past. Here, the self-completion feature of associative memory was utilized to assess the regulation of attention processes by newly-formed emotional memory. First, new memory representations were formed by presenting pictures depi...

  7. A Comparison of Traditional and Newly Emerging Forms of Cooperative Capitalization

    OpenAIRE

    Barton, David G.

    2004-01-01

    This paper compares the traditional forms of capitalization used by American co-ops to newly emerging forms. It is based on an in-depth review of several case co-ops. A broad framework is provided that may be beneficial in more extensive studies of capitalization practices of cooperatives and similar organizations. It is divided into three parts. Part One outlines the alternative capitalization forms being used by cooperatives and their antecedents, where conversions to other structures and f...

  8. A synthetic cannabinoid FDU-NNEI, two 2H-indazole isomers of synthetic cannabinoids AB-CHMINACA and NNEI indazole analog (MN-18), a phenethylamine derivative N-OH-EDMA, and a cathinone derivative dimethoxy-α-PHP, newly identified in illegal products.

    Science.gov (United States)

    Uchiyama, Nahoko; Shimokawa, Yoshihiko; Kikura-Hanajiri, Ruri; Demizu, Yosuke; Goda, Yukihiro; Hakamatsuka, Takashi

    Six new psychoactive substances were identified together with two other substances (compounds 1 - 8 ) in illegal products by our ongoing survey in Japan between January and July 2014. A new synthetic cannabinoid, FDU-NNEI [1-(4-fluorobenzyl)- N -(naphthalen-1-yl)-1 H -indole-3-carboxamide, 2 ], was detected with the newly distributed synthetic cannabinoid FDU-PB-22 ( 1 ). Two 2 H -indazole isomers of synthetic cannabinoids, AB-CHMINACA 2 H -indazole analog ( 3 ) and NNEI 2 H -indazole analog ( 4 ), were newly identified with 1 H -indazoles [AB-CHMINACA and NNEI indazole analog (MN-18)]. In addition, 2-methylpropyl N -(naphthalen-1-yl) carbamate ( 5 ) and isobutyl 1-pentyl-1 H -indazole-3-carboxylate ( 6 ) were detected in illegal products. Compound 6 is considered to be a by-product of the preparation of NNEI indazole analog from compound 5 and 1-pentyl-1 H -indazole. A phenethylamine derivative, N -OH-EDMA [ N -hydroxy-3,4-ethylenedioxy- N -methylamphetamine, 7 ], and a cathinone derivative, dimethoxy-α-PHP (dimethoxy-α-pyrrolidinohexanophenone, 8 ), were newly identified in illegal products. Among them, compounds 1 and 8 have been controlled as designated substances (Shitei-Yakubutsu) under the Pharmaceutical Affairs Law in Japan since August and November 2014, respectively.

  9. Newly formed skeletal muscle fibers are prone to false positive immunostaining by rabbit antibodies

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Kliem, Anette; Schrøder, Henrik Daa

    2011-01-01

    rely on controls that reveal non-specific binding by the secondary antibody and neglect that the primary rabbit antibody itself may cause false positive staining of the muscle. We suggest that reliable immuno-based protein detection in newly formed muscle fibers at least requires a nonsense rabbit......Reports on muscle biology and regeneration often implicate immuno(cyto/histo)chemical protein characterization using rabbit polyclonal antibodies. In this study we demonstrate that newly formed myofibers are especially prone to false positive staining by rabbit antibodies and this unwanted staining...

  10. Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hiroshi Nakada

    2012-01-01

    Full Text Available The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance.

  11. Synthetic polyploids of Tragopogon miscellus and T. mirus (Asteraceae): 60 Years after Ownbey's discovery.

    Science.gov (United States)

    Tate, Jennifer A; Symonds, V Vaughan; Doust, Andrew N; Buggs, Richard J A; Mavrodiev, Evgeny; Majure, Lucas C; Soltis, Pamela S; Soltis, Douglas E

    2009-05-01

    In plants, polyploidy has been a significant evolutionary force on both recent and ancient time scales. In 1950, Ownbey reported two newly formed Tragopogon allopolyploids in the northwestern United States. We have made the first synthetic lines of T. mirus and T. miscellus using T. dubius, T. porrifolius, and T. pratensis as parents and colchicine treatment of F(1) hybrids. We also produced allotetraploids between T. porrifolius and T. pratensis, which are not known from nature. We report on the crossability between the diploids, as well as the inflorescence morphology, pollen size, meiotic behavior, and fertility of the synthetic polyploids. Morphologically, the synthetics resemble the natural polyploids with short- and long-liguled forms of T. miscellus resulting when T. pratensis and T. dubius are reciprocally crossed. Synthetic T. mirus was also formed reciprocally, but without any obvious morphological differences resulting from the direction of the cross. Of the 27 original crosses that yielded 171 hybrid individuals, 18 of these lineages have persisted to produce 386 S(1) progeny; each of these lineages has produced S(2) seed that are viable. The successful generation of these synthetic polyploids offers the opportunity for detailed comparative studies of natural and synthetic polyploids within a nonmodel system.

  12. Protogalaxy interactions in newly formed clusters: Galaxy luminosities, colors, and intergalactic gas

    International Nuclear Information System (INIS)

    Silk, J.

    1978-01-01

    The role of protogalaxy interactions in galactic evolution is studied during the formation of galaxy clusters. In the early stages of the collapse, coalescent encounters of protogalaxies lead to the development of a galactic luminosity function. Once galaxies acquire appreciable random motions, mutual collisions between galaxies in rich clusters will trigger the collapse of interstellar clouds to form stars. This provides both a source for enriched intracluster gas and an interpretation of the correlation between luminosity and color for cluster elliptical galaxies. Other observational consequences that are considered include optical, X-ray, and diffuse nonthermal radio emission from newly formed clusters of galaxies

  13. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    International Nuclear Information System (INIS)

    Polatnick, J.; Wool, S.H.

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated [ 3 H] uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity. (Author)

  14. Localization of foot-and-mouth disease - RNA synthesis on newly formed cellular smooth membranous vacuoles

    Energy Technology Data Exchange (ETDEWEB)

    Polatnick, J.; Wool, S.H. (United States Department of Agriculture, Science and Education, Greenport, New York (USA). Agricultural Research, Plum Island Animal Disease Center)

    1982-01-01

    Viral RNA synthesis in foot-and-mouth disease infected bovine kidney cell cultures was associated throughout the infectious period with newly formed smooth membranous vacuoles. Membrane formation was measured by choline uptake. The site of RNA synthesis was determined by electron microscopic examination of autoradiograms of incorporated (/sup 3/H) uridine. Both membrane formation and RNA synthesis became signifcant at 2.5 hours postinfection, but membrane formation increased steadily to 4.5 hours while RNA synthesis peaked at 3.5 hours. Percent density distributions of developed silver grains on autoradiograms showed that almost all RNA synthesis was concentrated on the smooth vacuoles of infected cells. Histogram analysis of grain density distributions established that the site of RNA synthesis was the vacuolar membrane. The newly formed smooth membrane-bound vacuoles were not seen to coalesce into the large vacuolated areas typical of poliovirus cytopathogenicity.

  15. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    International Nuclear Information System (INIS)

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.; Congiu, E.; Chaabouni, H.; Vidali, G.; Chehrouri, M.; Fillion, J.-H.

    2012-01-01

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H 2 can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H 2 newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H 2 and D 2 formed on the surface of porous amorphous water ice held at 10 K. We report for the first time the OPR value for newly formed D 2 , consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H 2 formation on surfaces at low temperature.

  16. EXPERIMENTAL INVESTIGATION OF THE ORTHO/PARA RATIO OF NEWLY FORMED MOLECULAR HYDROGEN ON AMORPHOUS SOLID WATER

    Energy Technology Data Exchange (ETDEWEB)

    Gavilan, L.; Lemaire, J. L.; Dulieu, F.; Congiu, E.; Chaabouni, H. [LERMA, UMR 8112 du CNRS, de l' Observatoire de Paris et de l' Universite de Cergy Pontoise, 5 mail Gay Lussac, F-95000 Cergy Pontoise Cedex (France); Vidali, G. [Visiting Professor. Permanent address: Physics Department, Syracuse University, Syracuse, NY 13244-1320 (United States); Chehrouri, M. [Permanent address: LEPC Universite de Saida, BP138, ENSAR, 20002 Saida (Algeria); Fillion, J.-H., E-mail: lisseth.gavilan@obspm.fr [Permanent address: LPMAA, UMR 7092, Universite Pierre et Marie Curie, F-75252 Paris Cedex 05 (France)

    2012-11-20

    Several astronomical observations have shown that the ortho/para ratio (OPR) of H{sub 2} can differ from the expected statistical value of 3 or the local thermodynamic equilibrium (LTE) value at the gas or dust temperature. It is thus important to know the OPR of H{sub 2} newly formed on dust grain surfaces, in order to clarify the dependence of the observed OPR in space on the formation process. Using an experimental setup designed to mimic interstellar medium environments, we measured the OPR of H{sub 2} and D{sub 2} formed on the surface of porous amorphous water ice held at 10 K. We report for the first time the OPR value for newly formed D{sub 2}, consistent with the expected LTE value at the high-temperature limit found by previous theoretical and experimental works on the determination of the OPR upon H{sub 2} formation on surfaces at low temperature.

  17. Isocyanates useful for forming synthetic antigens receptive to radiolabelling

    International Nuclear Information System (INIS)

    Eisenhardt, W.A. Jr.; Hedaya, E.; Theodoropulos, S.

    1981-01-01

    This patent claim on behalf of Union Carbide Corporation, relates to synthesizing isocyantes useful for forming synthetic antigens receptive to radio labelling. The claim is for an isocyanate having the structural formula (R) 3 SiO-R' -N=C=O, wherein each R is independently selected from alkyl, alicyclic, aryl, alkaryl and aralkyl groups, each having no more than 10 carbon atoms and being optionally substituted by one or more halogen atoms, and R' is selected from -C 6 H 4 -CH 2 -CH 2 - and -C 6 H 4 -CH 2 -CH-COOCH 3 . (U.K.)

  18. The electric conductivity of some forms of sintered synthetic zeolites

    International Nuclear Information System (INIS)

    Susic, M.; Petrovic, V.; Ristic, M.; Petranovic, N.

    1978-01-01

    Some forms of synthetic zeolites were sintered and their electric conductivity was measured. The conductivity was observed in correlation with the conductivity of non-sintered pressed samples. Also the change in microstructural constituents in the course of the process of sintering was observed with an optical microscope. It has been found that there is a considerable change in conductivity due to sintering as well as a change in the activation energy for conduction. Also the porosity is noticeably changed. A marked affect of the nature of counter ions on the electric conductivity is shown

  19. Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study

    Science.gov (United States)

    Hossain, Mossaraf; Thomas, Renjith; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Vijayakumar, G.; Van Alsenoy, C.

    2018-04-01

    Two newly synthetized imidazole derivatives (1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (MPDIA) and 1-(4-bromophenyl)-4,5-dimethyl-1H-imidazole-2-yl acetate (BPDIA)) have been prepared by solvent-free synthesis pathway and their specific spectroscopic and reactive properties have been discussed based on combined experimental and computational approaches. Aside of synthesis, experimental part of this work included measurements of IR, FT-Raman and NMR spectra. All of the aforementioned spectra were also obtained computationally, within the framework of density functional theory (DFT) approach. Additionally, DFT calculations have been used in order to investigate local reactivity properties based on molecular orbital theory, molecular electrostatic potential (MEP), average local ionization energy (ALIE), Fukui functions and bond dissociation energy (BDE). Molecular dynamics (MD) simulations have been used in order to obtain radial distribution functions (RDF), which were used for identification of the atoms with pronounced interactions with water molecules. MEP showed negative regions are mainly localized over N28, O29, O35 atoms, it is represent with red colour in rainbow color scheme for MPDIA and BPDIA (which are most reactive sites for electrophilic attack). The first order hyperpolarizabilities of MPDIA and BPDIA are 20.15 and 6.10 times that of the standard NLO material urea. Potential interaction with antihypertensive protein hydrolase.

  20. Insights from Synthetic Star-forming Regions. I. Reliable Mock Observations from SPH Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P.; Biscani, Francesco [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through synthetic observations of a hydrodynamical simulation of an evolving star-forming region, we assess how the choice of observational techniques affects the measurements of properties that trace star formation. Testing and calibrating observational measurements requires synthetic observations that are as realistic as possible. In this part of the series (Paper I), we explore different techniques for mapping the distributions of densities and temperatures from the particle-based simulations onto a Voronoi mesh suitable for radiative transfer and consequently explore their accuracy. We further test different ways to set up the radiative transfer in order to produce realistic synthetic observations. We give a detailed description of all methods and ultimately recommend techniques. We have found that the flux around 20 μ m is strongly overestimated when blindly coupling the dust radiative transfer temperature with the hydrodynamical gas temperature. We find that when instead assuming a constant background dust temperature in addition to the radiative transfer heating, the recovered flux is consistent with actual observations. We present around 5800 realistic synthetic observations for Spitzer and Herschel bands, at different evolutionary time-steps, distances, and orientations. In the upcoming papers of this series (Papers II, III, and IV), we will test and calibrate measurements of the star formation rate, gas mass, and the star formation efficiency using our realistic synthetic observations.

  1. Tracking the emergence of synthetic biology.

    Science.gov (United States)

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  2. Synthetic ossicular replacements: Normal and abnormal CT appearance

    International Nuclear Information System (INIS)

    Swartz, J.D.; Zwillenberg, S.; Berger, A.S.; Granoff, D.W.; Popky, G.L.

    1986-01-01

    Numerous synthetic ossicular replacements are currently in use. The TORP conducts sound from the newly formed tympanic membrane to the oval window; the PORP is used when the stapes superstructure is maintained, being interposed between the tympanic membrane and the stapes capitulum. In 12 patients the surgical results of ossicular replacement procedures were good, which gave the author the opportunity to study the normal CT appearance. In an additional 10 patients CT was performed before surgical revision. Using CT, they have been able to diagnose subluxation and fibrous tissue fixation. In two patients the CT appearance was unremarkable, but at surgery lateralization of the graft was found, with a nonfunctioning interface

  3. OSCILLATION OF NEWLY FORMED LOOPS AFTER MAGNETIC RECONNECTION IN THE SOLAR CHROMOSPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Xiang, Yongyuan, E-mail: shuhongyang@nao.cas.cn [Fuxian Solar Observatory, Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)

    2016-03-10

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  4. Socket Preservation with d-PTFE Membrane: Histologic Analysis of the Newly Formed Matrix at Membrane Removal.

    Science.gov (United States)

    Laurito, Domenico; Cugnetto, Riccardo; Lollobrigida, Marco; Guerra, Fabrizio; Vestri, Annarita; Gianno, Francesca; Bosco, Sandro; Lamazza, Luca; De Biase, Alberto

    This study aimed to evaluate the efficacy of an exposed high-density polytetrafluoroethylene (d-PTFE) membrane in preventing epithelial migration in postextraction sockets. For this purpose, a histologic description of the newly formed soft tissue underlying the membrane is presented. The periodontal status of the adjacent teeth was also evaluated to assess the gingival response. Ten premolar extraction sockets were treated. After tooth extraction, the sockets were filled with nanocrystalline hydroxyapatite and covered with d-PTFE membranes. Subperiosteal pockets were created to ensure the stability of the membranes. Membranes were left intentionally exposed and were atraumatically removed after 28 days. At that time, a bioptic specimen of the newly formed soft tissue under the membranes was taken. All the histologic samples showed a dense connective tissue without epithelial cells and no signs of foreign body reaction. No significant variation of the periodontal indices was observed on the teeth adjacent to the extraction sites. The study results indicate that exposed d-PTFE membranes can prevent epithelial migration in healing sockets without consequences on the periodontal health.

  5. Conserved molecular superlattices in a series of homologous synthetic mycobacterial cell-wall lipids forming interdigitated bilayers

    DEFF Research Database (Denmark)

    Martin-Bertelsen, Birte; Yaghmur, Anan; Franzyk, Henrik

    2016-01-01

    Synthetic analogues of the cell-wall lipid monomycoloyl glycerol (MMG) are promising as next-generation vaccine adjuvants. In the present study, the thermotropic phase behaviour of an array of synthetic MMG analogues was examined using simultaneous small- and wide-angle X-ray scattering under...... excess water conditions. The MMG analogues differed in the alkyl chain lengths and in the stereochemistry of the polar glycerol headgroup or of the lipid tails (native-like versus alternative compounds). All MMG analogues formed poorly hydrated lamellar phases at low temperatures and inverse hexagonal (H...

  6. Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material

    International Nuclear Information System (INIS)

    Clauer, N.

    1979-01-01

    The 87 Sr/ 86 Sr ratios of recent montmorillonites and kaolinites newly formed in weathering profiles of western and central Africa and of Nosy Be and La Reunion islands near Madagascar are directly related to the composition and age of the parent rocks or minerals. They may, therefore, be used as a genetic tracer. The 87 Sr/ 86 Sr ratios are about 0.704 when these clays crystallise from recent basalts and they are higher than 0.715 when the parent rocks are of sialic composition and old in age. Kaolinites newly formed in situ from feldspars contain small amounts of Sr with abnormally high 87 Sr/ 86 Sr ratios: in this study they are higher than 1.094. When these minerals crystallize from biotites, their 87 Sr/ 86 Sr ratios are much lower and can be close to the value of the primary Sr trapped in the biotites during their crystallization. On the other hand, the 87 Sr/ 86 Sr of continental montmorillonites are less scattered: they range, in this study, between 0.704 and 0.722. These low values, as well as the high adsorption capacities of these minerals in the sedimentary environment, allow the assumption that they frequently have 87 Sr/ 86 Sr ratios close to that of marine Sr during sedimentation. Therefore, montmorillonites are able to form homogeneous authigenic minerals by synsedimentary alterations. (Auth.)

  7. Radiochemical and thermal studies of the copper(II)-exchanged form of synthetic zeolite linde sieve A

    International Nuclear Information System (INIS)

    Banerjee, S.P.

    1978-01-01

    Synthetic zeolite Linde Sieve A displays a double ion-sieve action. Only small cations can penetrate the single 6-rings into the beta cages. The radiochemical and thermal studies of copper(II)-exchanges form of 4A shows evidence of hydrated copper(II) ions in the zeolite structure. (author)

  8. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity.

    Science.gov (United States)

    Silva, Renata; Palmeira, Andreia; Carmo, Helena; Barbosa, Daniel José; Gameiro, Mariline; Gomes, Ana; Paiva, Ana Mafalda; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remião, Fernando

    2015-10-01

    The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.

  9. Robust synthetic biology design: stochastic game theory approach.

    Science.gov (United States)

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-07-15

    Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.

  10. Seizures beget seizures in temporal lobe epilepsies: the boomerang effects of newly formed aberrant kainatergic synapses.

    Science.gov (United States)

    Ben-Ari, Yehezkel; Crepel, Valérie; Represa, Alfonso

    2008-01-01

    Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule cells of the fascia dentate operate by means of kainate receptor-operated signals that are not present on naive granule cells. Therefore, genuine epileptic networks rely on signaling cascades that differentiate them from naive networks. Recurrent limbic seizures generated by the activation of kainate receptors and synapses in naive animals lead to the formation of novel synapses that facilitate the emergence of further seizures. This negative, vicious cycle illustrates the central role of reactive plasticity in neurological disorders.

  11. Radiochemical and thermal studies of the cation-exchanged forms of synthetic zeolite Linde sieve A

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S P [Saugar Univ. (India). Dept. of Chemistry

    1976-02-01

    The compositions of the cobalt and silver-exchanged forms of synthetic zeolite Sieve A have been determined by radiochemical and TGA studies and correspond to Co/sub 6/A.19.8H/sub 2/O and Ag/sub 12/..cap alpha... 20H/sub 2/O respectively (A=Al/sub 12/Si/sub 12/O/sub 48//sup 12/-). Heating of these zeolites inhibits their capacity for cation exchange and water absorption. No evidence of occluded NaAlO/sub 2/ has been found.

  12. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. The emergence of shared leadership in newly-formed teams with an initial structure of vertical leadership: A longitudinal analysis

    OpenAIRE

    Fransen, Katrien; Delvaux, Ellen; Mesquita, Batja; Van Puyenbroeck, Stef

    2018-01-01

    The importance of high-quality leadership for team effectiveness is widely recognized, with recent viewpoints arguing shared leadership to be a more powerful predictor than vertical leadership. To identify changes in leadership structures over time, we longitudinally tracked the leadership structure of 27 newly-formed teams (N = 195), all having an initial structure of vertical leadership. Our findings demonstrated that the average team leadership strengthened over the course of the 24-week p...

  14. Use of newly developed standardized form for interpretation of high-resolution CT in screening for pneumoconiosis

    International Nuclear Information System (INIS)

    Julien, P.J.; Sider, L.; Silverman, J.M.; Dahlgren, J.; Harber, P.; Bunn, W.

    1991-01-01

    This paper reports that although the International Labour Office (ILO) standard for interpretation of the posteroanterior chest radiograph has been available for 10 years, there has been no attempt to standardize the high-resolution CT (HRTC) readings for screening of pneumoconiosis. An integrated respirator surveillance program for 87 workers exposed to inorganic dust was conducted. This program consisted of a detailed occupational exposure history, physical symptoms and signs, spirometry, chest radiography, and HRCT. Two groups of workers with known exposure were studied with HRCT. Group 1 had normal spirometry results and chest radiographs, and group 2 had abnormalities at spirometry or on chest radiographs. The HRCT scans were read independently of the clinical findings and chest radiographs. The HRCT scans were interpreted by using an ILO-based standard form developed by the authors for this project. With the newly developed HRCT form, individual descriptive abnormality localized severity, and overall rating systems have been developed and compared for inter- and intraobserver consistency

  15. Exploring Synthetic and Systems Biology at the University of Edinburgh.

    Science.gov (United States)

    Fletcher, Liz; Rosser, Susan; Elfick, Alistair

    2016-06-15

    The Centre for Synthetic and Systems Biology ('SynthSys') was originally established in 2007 as the Centre for Integrative Systems Biology, funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC). Today, SynthSys embraces an extensive multidisciplinary community of more than 200 researchers from across the University with a common interest in synthetic and systems biology. Our research is broad and deep, addressing a diversity of scientific questions, with wide ranging impact. We bring together the power of synthetic biology and systems approaches to focus on three core thematic areas: industrial biotechnology, agriculture and the environment, and medicine and healthcare. In October 2015, we opened a newly refurbished building as a physical hub for our new U.K. Centre for Mammalian Synthetic Biology funded by the BBSRC/EPSRC/MRC as part of the U.K. Research Councils' Synthetic Biology for Growth programme. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Characterization of synthetic dyes by comprehensive two-dimensional liquid chromatography combining ion-exchange chromatography and fast ion-pair reversed-phase chromatography

    NARCIS (Netherlands)

    Pirok, B.W.J.; Knip, J.; van Bommel, M.R.; Schoenmakers, P.J.

    2016-01-01

    In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid

  17. Custom-Made Synthetic Scaffolds for Bone Reconstruction: A Retrospective, Multicenter Clinical Study on 15 Patients

    Directory of Open Access Journals (Sweden)

    Fabrizia Luongo

    2016-01-01

    Full Text Available Purpose. To present a computer-assisted-design/computer-assisted-manufacturing (CAD/CAM technique for the design, fabrication, and clinical application of custom-made synthetic scaffolds, for alveolar ridge augmentation. Methods. The CAD/CAM procedure consisted of (1 virtual planning/design of the custom-made scaffold; (2 milling of the scaffold into the exact size/shape from a preformed synthetic bone block; (3 reconstructive surgery. The main clinical/radiographic outcomes were vertical/horizontal bone gain, any biological complication, and implant survival. Results. Fifteen patients were selected who had been treated with a custom-made synthetic scaffold for ridge augmentation. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. A few patients experienced biological complications, such as pain/swelling (2/15: 13.3% and exposure of the scaffold (3/15: 20.0%; one of these had infection and complete graft loss. In all other patients, 8 months after reconstruction, a well-integrated newly formed bone was clinically available, and the radiographic evaluation revealed a mean vertical and horizontal bone gain of 2.1±0.9 mm and 3.0±1.0 mm, respectively. Fourteen implants were placed and restored with single crowns. The implant survival rate was 100%. Conclusions. Although positive outcomes have been found with custom-made synthetic scaffolds in alveolar ridge augmentation, further studies are needed to validate this technique.

  18. Similar patterns of rDNA evolution in synthetic and recently formed natural populations of Tragopogon (Asteraceae allotetraploids

    Directory of Open Access Journals (Sweden)

    Soltis Pamela S

    2010-09-01

    Full Text Available Abstract Background Tragopogon mirus and T. miscellus are allotetraploids (2n = 24 that formed repeatedly during the past 80 years in eastern Washington and adjacent Idaho (USA following the introduction of the diploids T. dubius, T. porrifolius, and T. pratensis (2n = 12 from Europe. In most natural populations of T. mirus and T. miscellus, there are far fewer 35S rRNA genes (rDNA of T. dubius than there are of the other diploid parent (T. porrifolius or T. pratensis. We studied the inheritance of parental rDNA loci in allotetraploids resynthesized from diploid accessions. We investigate the dynamics and directionality of these rDNA losses, as well as the contribution of gene copy number variation in the parental diploids to rDNA variation in the derived tetraploids. Results Using Southern blot hybridization and fluorescent in situ hybridization (FISH, we analyzed copy numbers and distribution of these highly reiterated genes in seven lines of synthetic T. mirus (110 individuals and four lines of synthetic T. miscellus (71 individuals. Variation among diploid parents accounted for most of the observed gene imbalances detected in F1 hybrids but cannot explain frequent deviations from repeat additivity seen in the allotetraploid lines. Polyploid lineages involving the same diploid parents differed in rDNA genotype, indicating that conditions immediately following genome doubling are crucial for rDNA changes. About 19% of the resynthesized allotetraploid individuals had equal rDNA contributions from the diploid parents, 74% were skewed towards either T. porrifolius or T. pratensis-type units, and only 7% had more rDNA copies of T. dubius-origin compared to the other two parents. Similar genotype frequencies were observed among natural populations. Despite directional reduction of units, the additivity of 35S rDNA locus number is maintained in 82% of the synthetic lines and in all natural allotetraploids. Conclusions Uniparental reductions of

  19. A spatially-supported forced-choice recognition test reveals children’s long-term memory for newly learned word forms

    Directory of Open Access Journals (Sweden)

    Katherine R. Gordon

    2014-03-01

    Full Text Available Children’s memories for the link between a newly trained word and its referent have been the focus of extensive past research. However, memory for the word form itself is rarely assessed among preschool-age children. When it is, children are typically asked to verbally recall the forms, and they generally perform at floor on such tests. To better measure children’s memory for word forms, we aimed to design a more sensitive test that required recognition rather than recall, provided spatial cues to off-set the phonological memory demands of the test, and allowed pointing rather than verbal responses. We taught 12 novel word-referent pairs via ostensive naming to sixteen 4-to-6-year-olds and measured their memory for the word forms after a week-long retention interval using the new spatially-supported form recognition test. We also measured their memory for the word-referent links and the generalization of the links to untrained referents with commonly used recognition tests. Children demonstrated memory for word forms at above chance levels; however, their memory for forms was poorer than their memory for trained or generalized word-referent links. When in error, children were no more likely to select a foil that was a close neighbor to the target form than a maximally different foil. Additionally, they more often selected correct forms that were among the first six than the last six to be trained. Overall, these findings suggest that children are able to remember word forms after a limited number of ostensive exposures and a long-term delay. However, word forms remain more difficult to learn than word-referent links and there is an upper limit on the number of forms that can be learned within a given period of time.

  20. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    Science.gov (United States)

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  1. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and

  2. Appearance of newly formed mRNA and rRNA as ribonucleoprotein-particles in the cytoplasmic subribosomal fraction of pea embryos

    International Nuclear Information System (INIS)

    Takahashi, Noribumi; Takaiwa, Fumio; Fukuei, Keisuke; Sakamaki, Tadashi; Tanifuji, Shigeyuki

    1977-01-01

    Incorporation studies with 3 H-uridine or 3 H-adenosine showed that germinating pea embryos synthesize all types of poly A(+) RNA, rRNA and 4-5S RNA at the early stage of germination. After the pulse labeling for 30 min, only heterodisperse RNA and 4-5S RNA appeared in the cytoplasm as labeled RNA species. At this time the radioactivity was associated with cytoplasmic structures heavier than 80S and RNP particles of 68-70S, 52-55S, 36-38S and 20-22S which are presumed to be free mRNP particles in plants. When the pulse-labeled embryos were incubated for a further 60 min in an isotope-free medium, the labeled 17S and 25S rRNA emerged in the cytoplasm, together with labeled heterodisperse and 4-5S RNAs. More radioactivity accumulated in the regions of the polysome, 62-65S and 38-42S particles. The results of analysis of RNAs extracted from the whole cytoplasm, polysome or subribosomal fractions indicated that small subunits of newly formed ribosomes appear more rapidly in the cytoplasm than new large subunits, which accumulate for a while as free particles in the cytoplasm than are incorporated into polysomes. The actinomycin treatment which caused preferential inhibition of rRNA synthesis reduced the accumulation of free, newly formed ribosome subunits and partially permitted detection of the presumed mRNP particles in the subribosomal region even after the chase treatment. (auth.)

  3. Evaluation of interim and final waste forms for the newly generated liquid low-level waste flowsheet

    International Nuclear Information System (INIS)

    Abotsi, G.M.K.; Bostick, D.T.; Beck, D.E.

    1996-05-01

    The purpose of this review is to evaluate the final forms that have been proposed for radioactive-containing solid wastes and to determine their application to the solid wastes that will result from the treatment of newly generated liquid low-level waste (NGLLLW) and Melton Valley Storage Tank (MVST) supernate at the Oak Ridge National Laboratory (ORNL). Since cesium and strontium are the predominant radionuclides in NGLLLW and MVST supernate, this review is focused on the stabilization and solidification of solid wastes containing these radionuclides in cement, glass, and polymeric materials-the principal waste forms that have been tested with these types of wastes. Several studies have shown that both cesium and strontium are leached by distilled water from solidified cement, although the leachabilities of cesium are generally higher than those of strontium under similar conditions. The situation is exacerbated by the presence of sulfates in the solution, as manifested by cracking of the grout. Additives such as bentonite, blast-furnace slag, fly ash, montmorillonite, pottery clay, silica, and zeolites generally decrease the cesium and strontium release rates. Longer cement curing times (>28 d) and high ionic strengths of the leachates, such as those that occur in seawater, also decrease the leach rates of these radionuclides. Lower cesium leach rates are observed from vitrified wastes than from grout waste forms. However, significant quantities of cesium are volatilized due to the elevated temperatures required to vitrify the waste. Hence, vitrification will generally require the use of cleanup systems for the off-gases to prevent their release into the atmosphere

  4. Activation of a remote (1-year old) emotional memory interferes with the retrieval of a newly formed hippocampus-dependent memory in rats.

    Science.gov (United States)

    Zoladz, Phillip R; Woodson, James C; Haynes, Vernon F; Diamond, David M

    2010-01-01

    The persistent intrusion of remote traumatic memories in people with post-traumatic stress disorder (PTSD) may contribute to the impairment of their ongoing hippocampal and prefrontal cortical functioning. In the current work, we have developed a rodent analogue of the intrusive memory phenomenon. We studied the influence of the activation of a remote traumatic memory in rats on their ability to retrieve a newly formed hippocampus-dependent memory. Adult male Sprague-Dawley rats were given inhibitory avoidance (IA) training, and then 24 h or 1, 6 or 12 months later, the same rats were trained to learn, and then remember across a 30-min delay period, the location of a hidden escape platform in the radial-arm water maze (RAWM). When IA-trained rats spent the 30-min delay period in the IA apparatus, they exhibited intact remote (1-year old) memory of the shock experience. More importantly, activation of the rats' memory of the shock experience profoundly impaired their ability to retrieve the newly formed spatial memory of the hidden platform location in the RAWM. Our finding that reactivation of a remote emotional memory exerted an intrusive effect on new spatial memory processing in rats provides a novel approach toward understanding how intrusive memories of traumatic experiences interfere with ongoing cognitive processing in people with PTSD.

  5. SYNTHETIC EDUCATIONAL ENVIRONMENT – A FOOTPACE TO NEW EDUCATION

    Directory of Open Access Journals (Sweden)

    Olga P. Pinchuk

    2017-09-01

    Full Text Available The article studies the problems of introducing a synthetic learning environment in the practice of education. The modern views on the essence of the learning environment and its new forms based on information and communication technologies are analyzed. Particular attention is paid to a range of issues that are united in the English-language publications as a "synthetic environment", which is considered in two aspects – artificial environment and synthetic as is formed due to the synthesis of the real physical world and the results of simulation and modeling. There are considered issues of trends in usage of game-based learning and modeling as cognitive technologies, as well as of social networks as a synthetic environment of social development. Conclusions are drawn: synthetic learning environment becomes an independent subject of learning through the expansion of its content and didactic power, transformation of the individual as a recipient of knowledge into the synthesizing element of the educational process in the metaverse.

  6. Biomechanical Skin Property Evaluation for Wounds Treated With Synthetic and Biosynthetic Wound Dressings and a Newly Developed Collagen Matrix During Healing of Superficial Skin Defects in a Rat Models.

    Science.gov (United States)

    Held, Manuel; Engelke, Anne-Sophie; Tolzmann, Dascha Sophie; Rahmanian-Schwarz, Afshin; Schaller, Hans-Eberhard; Rothenberger, Jens

    2016-09-01

    There is a high prevalence of superficial wounds such as partial-thickness burns. Treatment of these wounds frequently includes temporary application of wound dressings. The aim of this study was to compare a newly developed collagen matrix with commonly used temporary skin dressings for treatment of partial-thickness skin defects. Through a skin dermatome, 42 standardized superficial skin defects were generated on the back of 28 adult male Lewis rats. The wounds were treated with a synthetic wound dressing (Suprathel, Polymedics Innovations Inc, Woodstock, GA) (n = 14), a biosynthetic skin dressing (Biobrane, Smith & Nephew, Hull, UK) (n = 14), or a newly developed bovine collagen matrix, Collagen Cell Carrier (Viscofan BioEngineering, Weinheim, Germany) (n = 14). Biomechanical properties of the skin were determined and compared every 10 days over a 3-month period of using the Cutometer MPA 580 (Courage + Khazaka Electronic GmbH, Cologne, Germany). As opposed to healthy skin, statistically significant differences were detected between days 10 and 30, and between days 60 and 80, for calculated elasticity (Ue), firmness of skin (R0), and overall elasticity (R8). After 3 months, no statistically significant differences in skin elasticity were detected between the different wound dressings. The presented results give an opportunity to compare the wound dressings used for treatment with respect to skin elasticity and reveal the potential of the bovine collagen matrix in the treatment of superficial skin defects; therefore the results facilitate further evaluation of collagen matrix in surgical applications and regenerative medicine.

  7. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    Science.gov (United States)

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  8. Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration.

    Science.gov (United States)

    Pereira, Luciana Xavier; Viana, Celso Tarso Rodrigues; Orellano, Laura Alejandra Ariza; Almeida, Simone Aparecida; Vasconcelos, Anilton Cesar; Goes, Alfredo de Miranda; Birbrair, Alexander; Andrade, Silvia Passos; Campos, Paula Peixoto

    2017-05-01

    Several alternative cellular approaches using biomaterials to host insulin-producing cells derived from stem cells have been developed to overcome the limitations of type 1 diabetes treatment (exogenous insulin injection). However, none seem to fulfill all requirements needed to induce pancreatic cells successful colonization of the scaffolds. Here, we report a polymeric platform adherent to the native mice pancreas filled with human adipose stem cells (hASCs) that was able to induce growth of pancreatic parenchyma. Synthetic polyether-polyurethane discs were placed adjacent to pancreas of normoglycemic and streptozotocin-induced diabetic mice. At day 4 post implantation, 1×10 6 hASCs were injected intra-implant in groups of normoglycemic and diabetic mice. Immunohistochemistry analysis of the implants was performed to identify insulin positive cells in the newly formed tissue. In addition, metabolic, inflammatory and angiogenic parameters were carried out in those mice. This study provides evidence of the ability of a biohybrid device to induce the growth of differentiated pancreas parenchyma in both normoglycemic and streptozotocin-induced diabetic mice as detected by histological analysis. Glucose metabolism and body weight of hyperglycemic mice bearing hASCs implants improved. The synthetic porous scaffold bearing hASC cells placed adjacent to the native animal pancreas exhibits the potential to be exploited in future cell-based type 1 diabetes therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Different selective pressures lead to different genomic outcomes as newly-formed hybrid yeasts evolve

    Directory of Open Access Journals (Sweden)

    Piotrowski Jeff S

    2012-04-01

    Full Text Available Abstract Background Interspecific hybridization occurs in every eukaryotic kingdom. While hybrid progeny are frequently at a selective disadvantage, in some instances their increased genome size and complexity may result in greater stress resistance than their ancestors, which can be adaptively advantageous at the edges of their ancestors' ranges. While this phenomenon has been repeatedly documented in the field, the response of hybrid populations to long-term selection has not often been explored in the lab. To fill this knowledge gap we crossed the two most distantly related members of the Saccharomyces sensu stricto group, S. cerevisiae and S. uvarum, and established a mixed population of homoploid and aneuploid hybrids to study how different types of selection impact hybrid genome structure. Results As temperature was raised incrementally from 31°C to 46.5°C over 500 generations of continuous culture, selection favored loss of the S. uvarum genome, although the kinetics of genome loss differed among independent replicates. Temperature-selected isolates exhibited greater inherent and induced thermal tolerance than parental species and founding hybrids, and also exhibited ethanol resistance. In contrast, as exogenous ethanol was increased from 0% to 14% over 500 generations of continuous culture, selection favored euploid S. cerevisiae x S. uvarum hybrids. Ethanol-selected isolates were more ethanol tolerant than S. uvarum and one of the founding hybrids, but did not exhibit resistance to temperature stress. Relative to parental and founding hybrids, temperature-selected strains showed heritable differences in cell wall structure in the forms of increased resistance to zymolyase digestion and Micafungin, which targets cell wall biosynthesis. Conclusions This is the first study to show experimentally that the genomic fate of newly-formed interspecific hybrids depends on the type of selection they encounter during the course of evolution

  10. Cubical version of combinatorial differential forms

    DEFF Research Database (Denmark)

    Kock, Anders

    2010-01-01

    The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.......The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry....

  11. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Content metamorphosis in synthetic holography

    International Nuclear Information System (INIS)

    Desbiens, Jacques

    2013-01-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  13. Fundamental Characteristics of the Newly Developed ATA™ Membrane Dialyzer.

    Science.gov (United States)

    Sunohara, Takashi; Masuda, Toshiaki

    2017-01-01

    Dialysis membranes are often made from synthetic polymers, such as polysulfone. However, membranes made from cellulose triacetate have superior biocompatibility and have been used since the 1980s. On-line hemodiafiltration treatment accompanied by massive fluid replacement is increasingly being used in Europe and Japan, but cellulose triacetate is not suitable for this treatment. Our newly developed asymmetric triacetate membrane, the ATA™ membrane, substantially improved the filtration properties and blood compatibility because of the asymmetric structure and smooth surface of this cellulose acetate membrane. Key Message: The ATA membrane maintains its high permeability even after massive filtration and shows less temporal variation in its permeation performance, lower protein adsorption, and superior biocompatibility compared with conventional membranes. © 2017 S. Karger AG, Basel.

  14. A systematic design method for robust synthetic biology to satisfy design specifications.

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chih-Hung

    2009-06-30

    Synthetic biology is foreseen to have important applications in biotechnology and medicine, and is expected to contribute significantly to a better understanding of the functioning of complex biological systems. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to intrinsic parameter uncertainties, external disturbances and functional variations of intra- and extra-cellular environments. The design method for a robust synthetic gene network that works properly in a host cell under these intrinsic parameter uncertainties and external disturbances is the most important topic in synthetic biology. In this study, we propose a stochastic model that includes parameter fluctuations and external disturbances to mimic the dynamic behaviors of a synthetic gene network in the host cell. Then, based on this stochastic model, four design specifications are introduced to guarantee that a synthetic gene network can achieve its desired steady state behavior in spite of parameter fluctuations, external disturbances and functional variations in the host cell. We propose a systematic method to select a set of appropriate design parameters for a synthetic gene network that will satisfy these design specifications so that the intrinsic parameter fluctuations can be tolerated, the external disturbances can be efficiently filtered, and most importantly, the desired steady states can be achieved. Thus the synthetic gene network can work properly in a host cell under intrinsic parameter uncertainties, external disturbances and functional variations. Finally, a design procedure for the robust synthetic gene network is developed and a design example is given in silico to confirm the performance of the proposed method. Based on four design specifications, a systematic design procedure is developed for designers to engineer a robust synthetic biology network that can achieve its desired steady state behavior

  15. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  16. Moessbauer Study of Discoloration of Synthetic Resin Covered Electric Switches

    International Nuclear Information System (INIS)

    Kuzmann, E.; Muzsay, I.; Homonnay, Z.; Vertes, A.

    2002-01-01

    57 Fe Moessbauer spectroscopy and X-ray diffractometry were used to investigate brown discoloration and sediments formed on the surface of synthetic resin product covered electronic switches. The Moessbauer measurement revealed that alloyed steels and iron-containing corrosion products are associated with the discolored layers. Iron, and iron corrosion products were shown by both MS and XRD in the sediments formed eventually during the finishing of the synthetic resin products after machining and washing with water solution.

  17. Insights from Synthetic Star-forming Regions. III. Calibration of Measurement and Techniques of Star Formation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    Through an extensive set of realistic synthetic observations (produced in Paper I), we assess in this part of the paper series (Paper III) how the choice of observational techniques affects the measurement of star formation rates (SFRs) in star-forming regions. We test the accuracy of commonly used techniques and construct new methods to extract the SFR, so that these findings can be applied to measure the SFR in real regions throughout the Milky Way. We investigate diffuse infrared SFR tracers such as those using 24 μ m, 70 μ m and total infrared emission, which have been previously calibrated for global galaxy scales. We set up a toy model of a galaxy and show that the infrared emission is consistent with the intrinsic SFR using extra-galactic calibrated laws (although the consistency does not prove their reliability). For local scales, we show that these techniques produce completely unreliable results for single star-forming regions, which are governed by different characteristic timescales. We show how calibration of these techniques can be improved for single star-forming regions by adjusting the characteristic timescale and the scaling factor and give suggestions of new calibrations of the diffuse star formation tracers. We show that star-forming regions that are dominated by high-mass stellar feedback experience a rapid drop in infrared emission once high-mass stellar feedback is turned on, which implies different characteristic timescales. Moreover, we explore the measured SFRs calculated directly from the observed young stellar population. We find that the measured point sources follow the evolutionary pace of star formation more directly than diffuse star formation tracers.

  18. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  19. Removal of pyridine from liquid and gas phase by copper forms of natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Rehakova, Maria; Fortunova, Lubica; Bastl, Zdenek; Nagyova, Stanislava; Dolinska, Silvia; Jorik, Vladimir; Jona, Eugen

    2011-01-01

    Zeoadsorbents on the basis of copper forms of synthetic zeolite ZSM5 and natural zeolite of the clinoptilolite type (CT) have been studied taking into account their environmental application in removing harmful pyridine (py) from liquid and gas phase. Sorption of pyridine by copper forms of zeolites (Cu-ZSM5 and Cu-CT) has been studied by CHN, X-ray photoelectron spectroscopy, X-ray powder diffractometry, FTIR spectroscopy, thermal analysis (TG, DTA and DTG) and analysis of the surface areas and the pore volumes by low-temperature adsorption of nitrogen. The results of thermal analyses of Cu-ZSM5, Cu-(py) x ZSM5, Cu-CT and Cu-(py) x CT zeolitic products with different composition (x depends on the experimental conditions of sorption of pyridine) clearly confirmed their different thermal properties as well as the sorption of pyridine. In the zeolitic pyridine containing samples the main part of the pyridine release process occurs at considerably higher temperatures than is the boiling point of pyridine, which proves strong bond and irreversibility of py-zeolite interaction. FTIR spectra of Cu-(py) x zeolite samples showed well resolved bands of pyridine. The results of thermal analysis and FTIR spectroscopy are in a good agreement with the results of other used methods.

  20. [Principles of nutrition in patients with newly appointed stoma].

    Science.gov (United States)

    Pachocka, Lucyna Małgorzata; Urbanik, Anna

    2016-01-01

    The treatment of intestinal stoma is often a difficult experience for patients and results in numerous problems in the physical, psychological and social aspects. Therefore, post-operative care of the patient with the newly appointed stoma should be taken by therapeutic team consisting of doctors, nurses, physiotherapists, dieticians, psychologists and social workers. Appropriate nutritional education of patients aims to improve their quality of life and to prevent from unpleasant ailments formed after the operation. The specific type of stoma may decide about certain dietary recommendations. The presented work provides a practical dietary recommendations for patients with newly appointed stoma.

  1. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  2. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    Science.gov (United States)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  3. Reactions of newly formed fission products in the gas phase

    International Nuclear Information System (INIS)

    Strickert, R.G.

    1976-01-01

    A dynamic gas-flow system was constructed which stopped fission products in the gas phase and rapidly separated (in less than 2 sec) volatile compounds from non-volatile ones. The filter assembly designed and used was shown to stop essentially all non-volatile fission products. Between 5 percent and 20 percent of tellurium fission-product isotopes reacted with several hydrocarbon gases to form volatile compounds, which passed through the filter. With carbon monoxide gas, volatile tellurium compound(s) (probably TeCO) were also formed with similar efficiencies. The upper limits for the yields of volatile compounds formed between CO and tin and antimony fission products were shown to be less than 0.3 percent, so tellurium nuclides, not their precursors, reacted with CO. It was found that CO reacted preferentially with independently produced tellurium atoms; the reaction efficiency of beta-produced atoms was only 27 +- 3 percent of that of the independently formed atoms. The selectivity, which was independent of the over-all reaction efficiency, was shown to be due to reaction of independently formed atoms in the gas phase. The gas phase reactions are believed to occur mainly at thermal energies because of the independence of the yield upon argon moderator mole-fraction (up to 80 percent). It was shown in some experiments that about one-half of the TeCO decomposed in passing through a filter and that an appreciable fraction (approximately 20 percent) of the tellurium atoms deposited on the filter reacted agin with CO. Other tellurium atoms on the filter surface (those formed by beta decay and those formed independently but not reacting in the gas phase) also reacted with CO, but probably somewhat less efficiently than atoms formed by TeCO decomposition. No evidence was found for formation of TeCO as a direct result of beta-decay

  4. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  6. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  7. Discrimination between Newly Formed and Aged Thrombi Using Empirical Mode Decomposition of Ultrasound B-Scan Image

    Directory of Open Access Journals (Sweden)

    Jui Fang

    2015-01-01

    Full Text Available Ultrasound imaging is a first-line diagnostic method for screening the thrombus. During thrombus aging, the proportion of red blood cells (RBCs in the thrombus decreases and therefore the signal intensity of B-scan can be used to detect the thrombus age. To avoid the effect of system gain on the measurements, this study proposed using the empirical mode decomposition (EMD of ultrasound image as a strategy to classify newly formed and aged thrombi. Porcine blood samples were used for the in vitro induction of fresh and aged thrombi (at hematocrits of 40%. Each thrombus was imaged using an ultrasound scanner at different gains (15, 20, and 30 dB. Then, EMD of ultrasound signals was performed to obtain the first and second intrinsic mode functions (IMFs, which were further used to calculate the IMF-based echogenicity ratio (IER. The results showed that the performance of using signal amplitude of B-scan to reflect the thrombus age depends on gain. However, the IER is less affected by the gain in discriminating between fresh and aged thrombi. In the future, ultrasound B-scan combined with the EMD may be used to identify the thrombus age for the establishment of thrombolytic treatment planning.

  8. The Role of Synthetic Biology in NASA's Missions

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  9. Being a team leader: newly registered nurses relate their experiences.

    Science.gov (United States)

    Ekström, Louise; Idvall, Ewa

    2015-01-01

    This paper presents a study that explores how newly qualified registered nurses experience their leadership role in the ward-based nursing care team. A nurse's clinical leadership affects the quality of care provided. Newly qualified nurses experience difficulties during the transition period from student to qualified professional and find it challenging to lead nursing care. Twelve nurses were interviewed and the transcribed texts analysed using qualitative content analysis to assess both manifest and latent content. Five themes were identified: feeling stranded; forming well-functioning teams; learning to lead; having the courage, strength, and desire to lead; and ensuring appropriate care. The findings indicate that many factors limit nurses' leadership but some circumstances are supportive. The leadership prerequisites for newly registered nurses need to improve, emphasizing different ways to create a supportive atmosphere that promotes professional development and job satisfaction. To increase nurse retention and promote quality of care, nurse managers need to clarify expectations and guide and support newly qualified nurses in a planned way. © 2013 John Wiley & Sons Ltd.

  10. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  11. ROLE OF NATURAL POLYMERS IN SUSTAINED RELEASE DRUG DELIVERY SYSTEM: APPLICATIONS AND RECENT APPROACHES

    OpenAIRE

    Prakash Pawan; Porwal Mayur; Saxena Ashwin

    2011-01-01

    In recent years there have been important developments in different dosage forms for existing and newly designed drugs and natural products, and semi-synthetic as well as synthetic excipients often need to be used for a variety of purposes. Gums and mucilages are widely used natural materials for conventional and novel dosage forms. These natural materials have advantages over synthetic ones since they are chemically inert, nontoxic, less expensive, biodegradable and widely available. They c...

  12. Synthetic salt cake standards for analytical laboratory quality control

    International Nuclear Information System (INIS)

    Schilling, A.E.; Miller, A.G.

    1980-01-01

    The validation of analytical results in the characterization of Hanford Nuclear Defense Waste requires the preparation of synthetic waste for standard reference materials. Two independent synthetic salt cake standards have been prepared to monitor laboratory quality control for the chemical characterization of high-level salt cake and sludge waste in support of Rockwell Hanford Operations' High-Level Waste Management Program. Each synthetic salt cake standard contains 15 characterized chemical species and was subjected to an extensive verification/characterization program in two phases. Phase I consisted of an initial verification of each analyte in salt cake form in order to determine the current analytical capability for chemical analysis. Phase II consisted of a final characterization of those chemical species in solution form where conflicting verification data were observed. The 95 percent confidence interval on the mean for the following analytes within each standard is provided: sodium, nitrate, nitrite, phosphate, carbonate, sulfate, hydroxide, chromate, chloride, fluoride, aluminum, plutonium-239/240, strontium-90, cesium-137, and water

  13. Natural and synthetic biomaterials for controlled drug delivery.

    Science.gov (United States)

    Kim, Jang Kyoung; Kim, Hyung Jin; Chung, Jee-Young; Lee, Jong-Hwan; Young, Seok-Beom; Kim, Yong-Hee

    2014-01-01

    A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.

  14. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Process for hardening synthetic resins by ionizing radiation

    International Nuclear Information System (INIS)

    Hesse, W.; Ritz, J.

    1975-01-01

    Synthetic resins containing hydroxy groups and polymerizable carbon-carbon bonds are reacted with diketenes to yield aceto ester derivatives, which when reacted with metal compounds to form chelates, and mixed with copolymerizable monomers, are capable of being hardened by unusually low radiation doses to form coatings and articles with superior properties. (E.C.B.)

  16. Performance polymeric concrete with synthetic fiber reinforcement against reflective cracking in rigid pavement overlay

    International Nuclear Information System (INIS)

    Khan, N.U.; Khan, B.

    2012-01-01

    Cement concrete pavements are used for heavy traffic loads throughout the world owing to its better and economical performance. Placing of a concrete overlay on the existing pavement is the most prevalent rehabilitating method for such pavements, however, the problem associated with the newly placed overlay is the occurrence of reflective cracking. This paper presents an assessment of the performance of polymeric concrete with synthetic fiber reinforcement against reflective cracking in an overlay system. The performance of polymeric concrete with synthetic fibers as an overlay material is measured in terms of the load-deflection, strain-deflection and load-strain behavior of beams of the polymeric concrete. For this purpose, five types of beams having different number of fiber wires and position are tested for flexure strength. Deflection/strains for each increment of load are recorded. In addition, cubes of plain concrete and of concrete with synthetic fiber needles were tested after 7 and 28 days for compressive strengths. Finite element models in ANSYS software for the beams have also been developed. Beams with greater number of longitudinal fiber wires displayed relatively better performance against deflection whilst beams with synthetic fiber needles showed better performance against strains. Thus, polymeric concrete overlay with fiber reinforcement will serve relatively better against occurrence of reflective cracking. (author)

  17. Flagellation of Pseudomonas aeruginosa in newly divided cells

    Science.gov (United States)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  18. Slurry growth and gas retention in synthetic Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-09-01

    This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N 2 , N 2 O, and H 2 . Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles

  19. Further obsrvations on a newly located prawn fishery off Saurashtra coast

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalan, U.K.

    The abundance of prawns in a newly located ground off Saurashtra has been described Catch omposition showed that Metapenaeus affinis formed the bulk of the catches Previously this species was thought to be of not much commercial importance...

  20. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  1. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  2. Hydrogen speciation in synthetic quartz

    Science.gov (United States)

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  3. Prediction of novel synthetic pathways for the production of desired chemicals

    Directory of Open Access Journals (Sweden)

    Park Jin

    2010-03-01

    Full Text Available Abstract Background There have been several methods developed for the prediction of synthetic metabolic pathways leading to the production of desired chemicals. In these approaches, novel pathways were predicted based on chemical structure changes, enzymatic information, and/or reaction mechanisms, but the approaches generating a huge number of predicted results are difficult to be applied to real experiments. Also, some of these methods focus on specific pathways, and thus are limited to expansion to the whole metabolism. Results In the present study, we propose a system framework employing a retrosynthesis model with a prioritization scoring algorithm. This new strategy allows deducing the novel promising pathways for the synthesis of a desired chemical together with information on enzymes involved based on structural changes and reaction mechanisms present in the system database. The prioritization scoring algorithm employing Tanimoto coefficient and group contribution method allows examination of structurally qualified pathways to recognize which pathway is more appropriate. In addition, new concepts of binding site covalence, estimation of pathway distance and organism specificity were taken into account to identify the best synthetic pathway. Parameters of these factors can be evolutionarily optimized when a newly proven synthetic pathway is registered. As the proofs of concept, the novel synthetic pathways for the production of isobutanol, 3-hydroxypropionate, and butyryl-CoA were predicted. The prediction shows a high reliability, in which experimentally verified synthetic pathways were listed within the top 0.089% of the identified pathway candidates. Conclusions It is expected that the system framework developed in this study would be useful for the in silico design of novel metabolic pathways to be employed for the efficient production of chemicals, fuels and materials.

  4. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  5. Forms of newly retained phosphorus in mineral soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1964-01-01

    Full Text Available The distribution of soluble phosphate in various fractions of soil phosphorus was studied by treating 1 g-samples of 180 mineral soils with 50 ml of a KH2PO4- solution containing P 5 mg/l for 24 hours, and carrying out the fractionation by the method of CHANG and JACKSON after the solution was removed and the moist samples had stood for 3 days at room temperature. The amount of retained phosphorus in the different fractions was computed by taking the difference between the treated and check samples. In the 70 samples of clay soils, the mean proportion of the retained phosphorus was 57 per cent of the 250 mg/kg applied, in the 62 samples of the sand and fine sand soils the corresponding part was 45 per cent, and in the 48 samples of loam and silt soils it was 44 per cent. The higher retention in the clay soils was mainly due to a higher retention in the alkali-soluble fraction. The net increase in the fluoride-soluble forms was of the same order in these three soil groups. On the average, more than 95 per cent of the sorbed phosphorus was found in the fluoride-soluble and alkali-soluble fractions. In one third of the samples a low net increase in the acid soluble fraction was detected, but this may be partly due to changes in the solubility of the native phosphorus in the treated samples. Owing to the fairly large variation, the tendency to somewhat higher mean values for the sorption in the subsoils compared with those of the topsoils was not statistically significant. The ratio between the sorbed amounts of fluoride-soluble and alkali soluble forms was higher in the sand and fine sand soils than in the clay soils. Only in 15 samples, most of them Litorina-soils, the net increase in the alkali-soluble forms was higher than in the fluoride-soluble fraction. Probably, because an equilibrium in the phosphorus conditions was not yet reached at the end of the treatment, the attempt failed to find any clear connection between the distribution of the

  6. Synthetic Biology: Applications in the Food Sector.

    Science.gov (United States)

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  7. UAV observation of newly formed volcanic island, Nishinoshima, Japan, from a ship

    Science.gov (United States)

    Ohminato, T.; Kaneko, T.; Takagi, A.

    2016-12-01

    We conducted an aerial observation at Nishinoshima island, south of Japan, from Jun 7 to Jun 9, 2016 by using an Unmanned Aerial Vehicle (UAV), a radio controlled small helicopter. Takeoff and landing of the UAV was conducted on a ship. Nishinoshima is a small island, 130km west of Chichijima in Ogasawara Islands, Japan. New eruption started in November 2013 in a shallow sea approximately 400 m southeast of the existing Nishinoshima Island. It started from a small islet and evolved with 1-5 × 105 m3/day discharge rate (Maeno et al, 2016). In late December 2013, the islet coalesced with the existing Nishinoshima. In 16 month, the lava field reached 2.6×106 m2and covered almost all of the existing Nishinoshima. Human landing upon the newly formed part of the island has still been prohibited due to the danger of sudden eruptions. Before our mission, some pumice or rock samples had been taken from the island but their amount was not enough to conduct detailed petrological analyses. The evolution of the lava field from the central cone has been well documented by using images taken from satellites and airplanes. However, due to the limited resolution of satellite images or photos taken from distant airplanes, there still be uncertainties in detailed morphological evolution of lava flows. The purpose of our observation includes, 1) sampling of pyroclasts near the central cone in order to investigate the condition of magma chamber and magma ascent process, and 2) taking high resolution 4K images in order to clarify the characteristic morphology of the lava flow covering the island. During the three days operation, we were successfully able to sample 250g of pyroclasts and to take 1.5TB of 4K movies. Conducting UAV's takeoff and landing on a ship was not an easy task. We used a marine research ship, Keifu-Maru, operated by Japan Meteorological Agency. The ship size is 1483 tons. On the ship deck, there are several structures which can interfere with the helicopter

  8. Adsorption and desorption of cadmium by synthetic and natural organo-clay complexes

    International Nuclear Information System (INIS)

    Levy, R.; Francis, C.W.; Oak Ridge National Lab., Tenn.

    1976-01-01

    Tracer levels of 109 Cd were used to study the adsorption and desorption of Cd by synthetic and natural organo-clay complexes. Synthetic organo-clay complexes were made by adsorbing humic acid extracted from soil to various forms of 3 ) 2 showed that Cd was adsorbed more tenaciously to the sesquioxides than organo-clay fractions

  9. Segmental intelligibility of synthetic speech produced by rule.

    Science.gov (United States)

    Logan, J S; Greene, B G; Pisoni, D B

    1989-08-01

    This paper reports the results of an investigation that employed the modified rhyme test (MRT) to measure the segmental intelligibility of synthetic speech generated automatically by rule. Synthetic speech produced by ten text-to-speech systems was studied and compared to natural speech. A variation of the standard MRT was also used to study the effects of response set size on perceptual confusions. Results indicated that the segmental intelligibility scores formed a continuum. Several systems displayed very high levels of performance that were close to or equal to scores obtained with natural speech; other systems displayed substantially worse performance compared to natural speech. The overall performance of the best system, DECtalk--Paul, was equivalent to the data obtained with natural speech for consonants in syllable-initial position. The findings from this study are discussed in terms of the use of a set of standardized procedures for measuring intelligibility of synthetic speech under controlled laboratory conditions. Recent work investigating the perception of synthetic speech under more severe conditions in which greater demands are made on the listener's processing resources is also considered. The wide range of intelligibility scores obtained in the present study demonstrates important differences in perception and suggests that not all synthetic speech is perceptually equivalent to the listener.

  10. Segmental intelligibility of synthetic speech produced by rule

    Science.gov (United States)

    Logan, John S.; Greene, Beth G.; Pisoni, David B.

    2012-01-01

    This paper reports the results of an investigation that employed the modified rhyme test (MRT) to measure the segmental intelligibility of synthetic speech generated automatically by rule. Synthetic speech produced by ten text-to-speech systems was studied and compared to natural speech. A variation of the standard MRT was also used to study the effects of response set size on perceptual confusions. Results indicated that the segmental intelligibility scores formed a continuum. Several systems displayed very high levels of performance that were close to or equal to scores obtained with natural speech; other systems displayed substantially worse performance compared to natural speech. The overall performance of the best system, DECtalk—Paul, was equivalent to the data obtained with natural speech for consonants in syllable-initial position. The findings from this study are discussed in terms of the use of a set of standardized procedures for measuring intelligibility of synthetic speech under controlled laboratory conditions. Recent work investigating the perception of synthetic speech under more severe conditions in which greater demands are made on the listener’s processing resources is also considered. The wide range of intelligibility scores obtained in the present study demonstrates important differences in perception and suggests that not all synthetic speech is perceptually equivalent to the listener. PMID:2527884

  11. Form Filling with Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2002-01-01

    This paper describes a newly started Ph.D. project with the aim of simulating the form filling ability of Self-Compacting Concrete (SCC) taking into account the form geometry, reinforcement configuration, casting technique, and the rheological properties of the concrete. Comparative studies...

  12. Synthetic biology in cell-based cancer immunotherapy.

    Science.gov (United States)

    Chakravarti, Deboki; Wong, Wilson W

    2015-08-01

    The adoptive transfer of genetically engineered T cells with cancer-targeting receptors has shown tremendous promise for eradicating tumors in clinical trials. This form of cellular immunotherapy presents a unique opportunity to incorporate advanced systems and synthetic biology approaches to create cancer therapeutics with novel functions. We first review the development of synthetic receptors, switches, and circuits to control the location, duration, and strength of T cell activity against tumors. In addition, we discuss the cellular engineering and genome editing of host cells (or the chassis) to improve the efficacy of cell-based cancer therapeutics, and to reduce the time and cost of manufacturing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Metallic nanomaterials formed by exerting large plastic strains

    International Nuclear Information System (INIS)

    Richert, M; Richert, J.; Zasadzinski, J.; Hawrylkiewicz, S.

    2002-01-01

    The investigations included pure Al and Cu single crystals, AlMg5 alloy and AlCuZr alloy have been presented. The materials were deformed by the cyclic extrusion compression method (CEC) within the range of true strains φ = 0.4-59.8 (1 to 67 deformation cycles by the CEC method). In all examined materials a strong tendency to form banded was observed. Within the range of very large plastic strains there was observed intensive rebuilding of the banded microstructure into subgrains, at first of rhombic shape, and next into equiaxial subgrains. A characteristic feature of the newly formed subgrains, not encountered in the range of conventional deformations, was the occurrence of large misorientation angles between the newly formed subgrains. The proportion of large misorientation angles in the microstructure varied, and it increased with increasing deformation. Reduction of the recovery process in AlMg5 and AlCuZr alloys preserved the growth of the newly formed nanograins, favoring the retaining of the nanomeric dimensions. This results show that there is the effective possibility of production of metallic nanomaterials by exerting of very large nonconventional plastic strains. (author)

  14. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  15. Time-frequency analysis of submerged synthetic jet

    Science.gov (United States)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  16. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements With Modified Blackbody Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect

  17. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements with Modified Blackbody Fitting

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E.

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; -13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ 2 values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; -7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.

  18. Impact of different synthetic bone fillers on healing of extraction sockets: an experimental study in dogs.

    Science.gov (United States)

    Hong, Ji-Youn; Lee, Jung-Seok; Pang, Eun-Kyoung; Jung, Ui-Won; Choi, Seong-Ho; Kim, Chong-Kwan

    2014-02-01

    The objective of this study was to elucidate the socket healing process and biodegradation of incorporating synthetic bone fillers followed by grafting of the fresh extraction socket. Third premolars in four quadrants of eight beagle dogs were extracted and randomly treated with either one of hydroxyapatite (HA), biphasic calcium phosphate (BCP), β-tricalcium phosphate (β-TCP), or no graft (C). Histologic observations and histomorphometric analysis at three zones (apical, middle, and coronal) of the socket were performed. Socket area (S) and the proportions of newly formed bone (%NB), residual biomaterials (%RB), and fibrovascular connective tissue (%FCT) at 2, 4, and 8 weeks were measured. The numbers of osteoclast-like multinucleated cells (No.OC) were also determined at the three zones. %NB was significantly higher in control group compared with the grafted groups at all healing periods. %NB of HA and BCP increased with time, whereas %RB showed different patterns that decreased in BCP, unlike the minimal change observed in HA. %NB of β-TCP showed smallest portion compared with other grafted groups at 2 and 4 weeks, however, significantly increased at 8 weeks. %RB of β-TCP was less than HA and BCP at all healing periods. Numbers of multinucleated cells were greater in BCP and β-TCP, followed by HA and smallest in control group. Within the limit of this study, bone formation of the extraction socket was delayed in the sockets grafted with synthetic bone fillers and showed different healing process according to the biodegradation patterns. © 2012 John Wiley & Sons A/S.

  19. Preparing Synthetic Biology for the World

    Directory of Open Access Journals (Sweden)

    Gerd H.G. Moe-Behrens

    2013-01-01

    Full Text Available Synthetic Biology promises low-cost, exponentially scalable products and global health solutions in the form of self-replicating organisms, or living devices. As these promises are realized, proof-of-concept systems will gradually migrate from tightly regulated laboratory or industrial environments into private spaces as, for instance, probiotic health products, food, and even do-it-yourself bioengineered systems. What additional steps, if any, should be taken before releasing engineered self-replicating organisms into a broader user space? In this review, we explain how studies of genetically modified organisms lay groundwork for the future landscape of biosafety. Early in the design process, biological engineers are anticipating potential hazards and developing innovative tools to mitigate risk. Here, we survey lessons learned, ongoing efforts to engineer intrinsic biocontainment, and how different stakeholders in synthetic biology can act to accomplish best practices for biosafety.

  20. Beyond Cost-Benefit Analysis in the Governance of Synthetic Biology.

    Science.gov (United States)

    Wallach, Wendell; Saner, Marc; Marchant, Gary

    2018-01-01

    For many innovations, oversight fits nicely within existing governance mechanisms; nevertheless, others pose unique public health, environmental, and ethical challenges. Synthetic artemisinin, for example, has many precursors in laboratory-developed drugs that emulate natural forms of the same drug. The policy challenges posed by synthetic artemisinin do not differ significantly in kind from other laboratory-formulated drugs. Synthetic biofuels and gene drives, however, fit less clearly into existing governance structures. How many of the new categories of products require new forms of regulatory oversight, or at least extensive forms of testing, remains unclear. Any effort to improve the governance of synthetic biology should start with a rich understanding of the different possible science-policy interfaces that could help to inform governance. CBA falls into a subset of the overall range of possibilities, and which interface is appropriate may turn out to depend on context, on the demands of the decision at hand. In what follows, we lay out a typology of interfaces. After that, we turn to the question of how to draw upon the range of possible interfaces and effectively address the factual and moral complexities of emerging technologies. We propose a governance model built around structures that we call "governance coordinating committees." GCCs are intended to be mechanisms for accommodating the complexities of innovations that have far-ranging societal impacts. The production of biofuels, for example, could contaminate water supplies and have a destructive environmental impact if not managed correctly. The introduction of a gene drive could have economic and environmental impacts that are not restricted to one nation. Forging appropriate means for determining and evaluating those societal impacts, to the best of a corporation's, industry's, or government's ability, is central to responsible research and innovation. Public policy must be shaped in a manner that

  1. Angular dependence of spin transfer torque on magnetic tunnel junctions with synthetic ferrimagnetic free layer

    International Nuclear Information System (INIS)

    Ichimura, M; Hamada, T; Imamura, H; Takahashi, S; Maekawa, S

    2010-01-01

    Based on a spin-polarized free-electron model, spin and charge transports are analyzed in magnetic tunnel junctions with synthetic ferrimagnetic layers in the ballistic regime, and the spin transfer torque is derived. We characterize the synthetic ferrimagnetic free layer by extending an arbitrary direction of magnetizations of the two free layers forming the synthetic ferrimagnetic free layer. The synthetic ferrimagnetic configuration exerts the approximately optimum torque for small magnetization angle of the first layer relative to that of the pinned layer. For approximately anti-parallel magnetization of the first layer to that of the pinned layer, the parallel magnetization of two magnetic layers is favorable for magnetization reversal rather than the synthetic ferrimagnetic configuration.

  2. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  3. Histological evaluation of tissue reactions to newly synthetized calcium silicate- and hydroxyapatite-based bioactive materials: in vivo study

    Directory of Open Access Journals (Sweden)

    Opačić-Galić Vanja

    2017-01-01

    Full Text Available Introduction/Objective. Development of materials which could be used as biological bone substitutes is one of the most valuable and active fields of biomaterial research. The goal of the study was to research the reaction of tissue on calcium silicate- (CS and hydroxyapatitebased (CS-HA newly synthesized nanomaterials, after being implanted into the subcutaneous tissue of a rats and direct pulp capping of rabbit teeth. Methods. The tested materials were implanted in 40 Wistar male rats, sacrificed after seven, 15, 30, and 60 days. The direct pulp capping was performed on the teeth of rabbits. Cavities were prepared on the vestibular surface of the incisors. The animals were sacrificed after 10 and 15 days. The control material was mineral trioxide aggregate (MTA. Histological analysis covered the tracking of inflammatory reaction cellular components, presence of gigantic cells, and necrosis of the tissue. Results. Seven days after the implantation, the strongest inflammatory response was given by the MTA (3.3 Ѓ} 0.48, while CS and CS-HA scored 3 ± 0.71. After 60 days, the rate of inflammatory reactions dropped, which was the least visible with CS-HA (0.2 ± 0.45. The least visible inflammatory reaction of the rabbits’ pulp tissue was spotted with the CS (1.83 ± 0.75, than with the MTA and CS-HA (2.67 ± 1.53, 3 ± 0.63. Conclusion. The newly synthesized materials caused a slight reaction of the subcutaneous tissue. CS-HA showed the best tissue tolerance. Nanostructural biomaterials caused a slight to moderate inflammatory reaction of the rabbits’ pulp tissue only in the immediate vicinity of the implanted material.

  4. Transuranium elements leaching from simulated HLW glasses in synthetic interstitial claywater

    International Nuclear Information System (INIS)

    Wang, L.

    1992-08-01

    The main objective of this Master Thesis is to measure the steady-state concentrations of Pu, Np, and Am upon the leaching of High-Level Waste Glass in two types of synthetic claywater: humic acid free and humic acid containing synthetic claywater. The synthetic claywater has a composition that is representative for the in-situ interstitial groundwater of the Boom clay formation, a potential geological repository of radioactive waste in Belgium. The steady-state concentrations of transuranium elements were measured by leaching experiments with a typical duration of 400 days. Five main conclusions are drawn from the experimental data. (1) The transuranium elements that are released from simulated High Level Waste Glass are dominantly present in the synthetic claywater solutions as colloids. These colloids are smaller than 2 nm in absence of humic acids. In the presence of humic acids however, the colloids interact with actinides (adsorb or coagulate) and form particles larger than 2 nm. Np and Am are associated with inorganic and organic colloids in the synthetic interstitial claywater solution whereas Pu forms only inorganic colloids. (2) The steady-state concentration of Pu is in good agreement with the solubility of the Pu compound PuO 2 .xH 2 O. It is therefore concluded that PuO 2 .xH 2 O is the solubility controlling phase. (3) The Pu(IV)-species are dominant in the leaching solutions. Carbonate and humic acid complexes are negligible. (4) The steady-state concentrations of Np and Am in leaching solutions were much lower than the values calculated on the basis of known thermodynamic data. This indicates that the solubility controlling phases for Np and Am were not correctly identified or that the measured Np and Am concentrations were not steady-state values. (5) Non-active glass leaching tests have indicated that no organic colloids were formed as a result of glass dissolution. (A.S.)

  5. Practicing on Newly Dead

    Directory of Open Access Journals (Sweden)

    Jewel Abraham

    2015-07-01

    Full Text Available A newly dead cadaver simulation is practiced on the physical remains of the dead before the onset of rigor mortis. This technique has potential benefits for providing real-life in-situ experience for novice providers in health care practices. Evolving ethical views in health care brings into question some of the ethical aspects associated with newly dead cadaver simulation in terms of justification for practice, autonomy, consent, and the need of disclosure. A clear statement of policies and procedures on newly dead cadaver simulation has yet to be implemented. Although there are benefits and disadvantages to an in-situ cadaver simulation, such practices should not be carried out in secrecy as there is no compelling evidence that suggests such training as imperative. Secrecy in these practices is a violation of honor code of nursing ethics. As health care providers, practitioners are obliged to be ethically honest and trustworthy to their patients. The author explores the ethical aspects of using newly dead cadaver simulation in training novice nursing providers to gain competency in various lifesaving skills, which otherwise cannot be practiced on a living individual. The author explores multiple views on cadaver simulation in relation to ethical theories and practices such as consent and disclosure to family.

  6. Forms of Knowledge Incorporated in Clinical Decision-making among Newly-Graduated Nurses: A Metasynthesis

    DEFF Research Database (Denmark)

    Voldbjerg, Siri; Elgaard Sørensen, Erik; Grønkjær, Mette

    2014-01-01

    Clinical-decision-making is of decisive importance to how evidence-based practice is put into practice. Schools of Nursing have a responsibility to teach and train nursing students to make clinical decisions within a frame of evidence-based practice. Clinical decision-making among nurses has been...... explored from numerous angles using a diversity of methodologies. Existing research has mainly focused on promoting and inhibiting factors for implementation of evidence-based practice and incorporation of research evidence in the clinical-decision. Little attention has been given to the nurses' behavior......, including the knowledge that actually informs the newly graduated nurses’ clinical decision. The aim of the study is to combine and synthesize results from qualitative research. Noblit and Hare’s meta-ethnographic approach is used to conduct a metasynthesis of qualitative research that has studied...

  7. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  8. Carbon monosulfide: a useful synthetic intermediate

    International Nuclear Information System (INIS)

    Kramer, M.P.

    1986-01-01

    The physical properties of carbon monosulfide, CS, are well documented. The molecule has been observed in interstellar space and is found to be a common intermediate in the thermal decomposition of carbon disulfide and other sulfur compounds. Interestingly enough, the chemistry of carbon monosulfide, a molecule that is isovalent with carbon monoxide, has received little attention. The explosive nature of the carbon monosulfide monomer, which hindered previous workers, was overcome by the development of special handling techniques. The ability to produce carbon monosulfide in gram quantities had lead to synthesis of novel compounds and to a more direct synthetic route for certain known compounds. Specifically, the following general reaction demonstrates the capabilities of carbon monosulfide on the synthetic scale. CS + RXY → RXC(S)Y;(X = N,S), (Y = H, Cl). Note: The initial product formed in the reaction can be an unstable intermediate

  9. Heat transfer and flow structure evaluation of a synthetic jet emanating from a planar heat sink

    International Nuclear Information System (INIS)

    Manning, Paul; Persoons, Tim; Murray, Darina

    2014-01-01

    Direct impinging synthetic jets are a proven method for heat transfer enhancement, and have been subject to extensive research. However, despite the vast amount of research into direct synthetic jet impingement, there has been little research investigating the effects of a synthetic jet emanating from a heated surface, this forms the basis of the current research investigation. Both single and multiple orifices are integrated into a planar heat sink forming a synthetic jet, thus allowing the heat transfer enhancement and flow structures to be assessed. The heat transfer analysis highlighted that the multiple orifice synthetic jet resulted in the greatest heat transfer enhancements. The flow structures responsible for these enhancements were identified using a combination of flow visualisation, thermal imaging and thermal boundary layer analysis. The flow structure analysis identified that the synthetic jets decreased the thermal boundary layer thickness resulting in a more effective convective heat transfer process. Flow visualisation revealed entrainment of local air adjacent to the heated surface; this occurred from vortex roll-up at the surface of the heat sink and from the highly sheared jet flow. Furthermore, a secondary entrainment was identified which created a surface impingement effect. It is proposed that all three flow features enhance the heat transfer characteristics of the system.

  10. Biologic and synthetic skin substitutes: An overview.

    Science.gov (United States)

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd Yussof, Shah Jumaat

    2010-09-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  11. Biologic and synthetic skin substitutes: An overview

    Directory of Open Access Journals (Sweden)

    Halim Ahmad

    2010-10-01

    Full Text Available The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  12. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  13. Maternal supplementation with natural or synthetic vitamin E and its levels in human colostrum.

    Science.gov (United States)

    Clemente, Heleni A; Ramalho, Heryka M M; Lima, Mayara S R; Grilo, Evellyn C; Dimenstein, Roberto

    2015-04-01

    Newborns are considered a high-risk group for vitamin E deficiency. Breast milk is a source of alpha-tocopherol (α-TOH), a form of vitamin E that prevents deficiency. The present study aimed to assess whether supplementation with a natural or synthetic form of α-TOH, in addition to maternal sources of vitamin E, would increase the concentration of α-TOH in colostrum. A total of 109 healthy lactating women were recruited from a Brazilian public maternity clinic and randomized into 3 groups: control without supplementation (n = 36), natural α-TOH supplementation (n = 40), and synthetic α-TOH supplementation (n = 33). Blood and colostrum samples were collected before and after supplementation to check the nutritional status of these women by high-performance liquid chromatography. The Kruskal-Wallis test was applied for independent samples, and Tukey test was used for 2-way analysis of the averages of the groups. The baseline nutritional status of vitamin E of all of the lactating women enrolled in the trial was considered adequate. Women who received supplementation had higher concentrations of α-TOH in colostrum than the control group, with 57% and 39% increases in women supplemented with the natural and synthetic forms of α-TOH, respectively. Supplementation with both forms of α-TOH increased vitamin E concentrations in colostrum; however, the natural form was more efficient in increasing the levels.

  14. Synthetic pulse radar including a microprocessor based controller

    International Nuclear Information System (INIS)

    Fowler, J.C.; Rubin, L.A.; Still, W.L.

    1980-01-01

    This invention relates to pulse radar detection of targets in extended media, including natural phenomena such as oil, coal and ore deposits within the earth. In particular, this invention relates to a pulse radar system employing a synthetic pulse formed from a fourier spectrum of frequencies generated and detected by a digitally controlled transmitter and receiver circuits

  15. Newly graduated nurses' use of knowledge sources

    DEFF Research Database (Denmark)

    Voldbjerg, Siri Lygum; Grønkjaer, Mette; Sørensen, Erik Elgaard

    2016-01-01

    AIM: To advance evidence on newly graduated nurses' use of knowledge sources. BACKGROUND: Clinical decisions need to be evidence-based and understanding the knowledge sources that newly graduated nurses use will inform both education and practice. Qualitative studies on newly graduated nurses' use...... underscoring progression in knowledge use and perception of competence and confidence among newly graduated nurses. CONCLUSION: The transition phase, feeling of confidence and ability to use critical thinking and reflection, has a great impact on knowledge sources incorporated in clinical decisions....... The synthesis accentuates that for use of newly graduated nurses' qualifications and skills in evidence-based practice, clinical practice needs to provide a supportive environment which nurtures critical thinking and questions and articulates use of multiple knowledge sources....

  16. A study of positron properties in quartz crystals and synthetic silica glass

    International Nuclear Information System (INIS)

    Anwand, W.; Brauer, G.; Hesegawa, M.; Dersch, O.; Rauch, F.

    2001-01-01

    The monoenergetic positron beamline 'SPONSOR' at Rossendorf has been used to investigate the positron behaviour in a naturally grown Brasilian quartz, two synthetic quartz crystals of different origin, and synthetic silica glass. The measurements allow us to obtain the positron diffusion length of free positrons and Bloch para-positronium, if formed, in these materials. In addition, hydrothermal treatment of a synthetic quartz has been used to introduce hydrogen into the crystal up to a certain depth. The presence of hydrogen is found to influence the formation of para-positronium. The depth distribution of hydrogen has been measured independently by the nuclear reaction analysis, and will be discussed in comparison with the results deduced from the positron studies. (author)

  17. ROLE OF NATURAL POLYMER IN SUSTAINED AND CONTROLLED RELEASE

    OpenAIRE

    Vaishali S. Kadam, G. R. Shendarkar

    2017-01-01

    Now a day there has been an important development in different dosage forms for existing and newly designed drugs and natural products, and synthetic as well as semi-synthetic excipients always need to be used for a variety of purposes. Gums and mucilages are widely used as natural materials for conventional and novel dosage forms. With the increasing interest in polymers of natural origin, the pharmaceutical world has compliance to use most of them in their formulations. Moreover, the tremen...

  18. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  19. Crust growth and gas retention in synthetic Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-03-01

    The focus of the work described here is to examine the principal contributing factors leading to slurry growth and gas retention within waste from a particular high-level waste tanks on the Hanford Site. Laboratory studies of aged synthetic waste have shown that the waste retains gases in the form of bubble attachment to solid particles. This attachment phenomenon is related to the presence of organic constituents (HEDTA, EDTA, and citrate) added to the waste matrix. The mechanism for bubble attachment is related to the hydrophobic surface produced by the organic complexant. The formation of a stable gas bubble/solid interaction is believed to be responsible for crust flotation and gas retention in the synthetic waste used here

  20. An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles

    Directory of Open Access Journals (Sweden)

    Marcus Baumann

    2013-10-01

    Full Text Available This review which is the second in this series summarises the most common synthetic routes as applied to the preparation of many modern pharmaceutical compounds categorised as containing a six-membered heterocyclic ring. The reported examples are based on the top retailing drug molecules combining synthetic information from both scientific journals and the wider patent literature. It is hoped that this compilation, in combination with the previously published review on five-membered rings, will form a comprehensive foundation and reference source for individuals interested in medicinal, synthetic and preparative chemistry.

  1. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  2. Commentary: Synthetic Anabolic-Androgenic Steroids: A Plea for Controlled Substance Status.

    Science.gov (United States)

    Taylor, William N.

    1987-01-01

    The widespread abuse of synthetic anabolic-androgenic steriods, their habit-forming properties, and their other adverse effects are good reasons for reclassification of steriods as controlled substances under federal law, a step which may combat their abuse. (Author/CB)

  3. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  4. Synthetic Strategies for High Dielectric Constant Silicone Elastomers

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt

    synthetic strategies were developed in this Ph.D. thesis, in order to create silicone elastomers with high dielectric constants and thereby higher energy densities. The work focused on maintaining important properties such as dielectric loss, electrical breakdown strength and elastic modulus....... The methodology therefore involved chemically grafting high dielectric constant chemical groups onto the elastomer network, as this would potentially provide a stable elastomer system upon continued activation of the material. The first synthetic strategy involved the synthesis of a new type of cross...... extender’ that allowed for chemical modifications such as Cu- AAC. This route was promising for one-pot elastomer preparation and as a high dielectric constant additive to commercial silicone systems. The second approach used the borane-catalysed Piers-Rubinsztajn reaction to form spatially well...

  5. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  6. INTERACTION OF ALBUMIN AND IMMUNOGLOBULIN G WITH SYNTHETIC HYDROXYAPATITE

    Directory of Open Access Journals (Sweden)

    E. Pylypchuk

    2012-12-01

    Full Text Available It was shown by X-ray phase analysis, IR spectra analysis and MALDI-ToF mass spectrometry methods that interaction of synthetic hydroxyapatite with a solution of immunoglobulin G leads to its partial dissolution due to leaching from the surface of calcium triphosphate which, in our opinion, forms complexes with immunoglobulin G.

  7. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  8. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  9. Los Alamos Plutonium Facility newly generated TRU waste certification

    International Nuclear Information System (INIS)

    Gruetzmacher, K.; Montoya, A.; Sinkule, B.; Maez, M.

    1997-01-01

    This paper presents an overview of the activities being planned and implemented to certify newly generated contact handled transuranic (TRU) waste produced by Los Alamos National Laboratory's (LANL's) Plutonium Facility. Certifying waste at the point of generation is the most important cost and labor saving step in the WIPP certification process. The pedigree of a waste item is best known by the originator of the waste and frees a site from expensive characterization activities such as those associated with legacy waste. Through a cooperative agreement with LANLs Waste Management Facility and under the umbrella of LANLs WIPP-related certification and quality assurance documents, the Plutonium Facility will be certifying its own newly generated waste. Some of the challenges faced by the Plutonium Facility in preparing to certify TRU waste include the modification and addition of procedures to meet WIPP requirements, standardizing packaging for TRU waste, collecting processing documentation from operations which produce TRU waste, and developing ways to modify waste streams which are not certifiable in their present form

  10. Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.

    Science.gov (United States)

    Enax, Joachim; Epple, Matthias

    Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.

  11. Synthetic Biology and Ethics: Past, Present, and Future.

    Science.gov (United States)

    Häyry, Matti

    2017-04-01

    This article explores the ethical issues that have been identified in emerging technologies, from early genetic engineering to synthetic biology. The scientific advances in the field form a continuum, and some ethical considerations can be raised time and again when new developments occur. An underlying concern is the cumulative effect of scientific advances and ensuing technological innovation that can change our understanding of life and humanity.

  12. Evaluation of synthetic linear motor-molecule actuation energetics

    OpenAIRE

    Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming

    2006-01-01

    By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of expe...

  13. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  14. TinkerCell: modular CAD tool for synthetic biology

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2009-01-01

    Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API). TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at . Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily

  15. TinkerCell: modular CAD tool for synthetic biology

    Directory of Open Access Journals (Sweden)

    Bergmann Frank T

    2009-10-01

    Full Text Available Abstract Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled

  16. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    International Nuclear Information System (INIS)

    Jin, L.

    2016-01-01

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmission zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.

  17. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  18. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  19. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  20. On Beyond Star Trek, the Role of Synthetic Biology in Nasa's Missions

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit the nascent field of synthetic biology in pursuit of its mission, including aeronautics, earth science, astrobiology and notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particularly space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement and the 2012 team has expanded the use of synthetic biology to estimate the potential for life in the clouds of other planets (http://2012.igem.org/Team:Stanford-Brown; http://www.calacademy.org/sciencetoday/igem-competition/). More recent projects from the Stanford-Brown team have expanded our ideas of how synthetic biology can aid NASA's missions from "Synthetic BioCommunication" (http://2013.igem.org/Team:Stanford-Brown) to a "Biodegradable UAS (drone)" in collaboration with Spelman College (http://2014.igem.org/Team:StanfordBrownSpelman#SBS%20iGEM) and most recently, "Self-Folding Origami" (http://2015.igem.org/Team:Stanford-Brown), the winner of the 2015 award for Manufacturing.

  1. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  2. Newly Homeless Youth Typically Return Home

    OpenAIRE

    Milburn, Norweeta G.; Rosenthal, Doreen; Rotheram-Borus, Mary Jane; Mallett, Shelley; Batterham, Philip; Rice, Eric; Solorio, Rosa

    2007-01-01

    165 newly homeless adolescents from Melbourne, Australia and 261 from Los Angeles, United States were surveyed and followed for two years. Most newly homeless adolescents returned home (70% U.S., 47% Australia) for significant amounts of time (39% U.S., 17% Australia more than 12 months) within two years of becoming homeless.

  3. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  4. New Polymorphic Forms of Pemetrexed Diacid and Their Use for the Preparation of Pharmaceutically Pure Amorphous and Hemipentahydrate Forms of Pemetrexed Disodium

    OpenAIRE

    Michalak, Olga; Łaszcz, Marta; Jatczak, Kamil; Witkowska, Anna; Bujak, Iwona; Groman, Aleksandra; Cybulski, Marcin

    2015-01-01

    The preparation of stable amorphous pemetrexed disodium of pharmaceutical purity as well as the process optimization for the preparation of the hemipentahydrate form of pemetrexed disodium are described. Analytical methods for the polymorphic and chemical purity studies of pemetrexed disodium and pemetrexed diacid forms were developed. The physicochemical properties of the amorphous and hydrate forms of pemetrexed disodium, as well as new forms of pemetrexed diacid (a key synthetic intermedia...

  5. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking: anchors modified polyanions interference with the HIV-1 fusion mediator.

    Science.gov (United States)

    Tsvetkov, Vladimir B; Serbin, Alexander V

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  6. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  7. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  8. New designer drugs (synthetic cannabinoids and synthetic cathinones): review of literature.

    Science.gov (United States)

    Cottencin, Olivier; Rolland, Benjamin; Karila, Laurent

    2014-01-01

    New designer drugs (synthetic cannabinoids and synthetic cathinones) are new "legal highs" that are sold online for recreational public or private use. Synthetic cannabinoids are psychoactive herbal and chemical products that mimic the effects of cannabis when used. These drugs are available on the Internet or in head shops as incense or air fresheners to circumvent the law. Cathinone is a naturally occurring beta-ketone amphetamine analog found in the leaves of the Catha edulis plant. Synthetic cathinones are phenylalkylamine derivatives that may possess amphetamine-like properties. These drugs are sold online as bath salts. Designer drugs are often labeled as "not for human consumption" to circumvent drug abuse legislation. The absence of legal risks, the ease of obtaining these drugs, the moderate cost, and the availability via the Internet are the main features that attract users, but the number of intoxicated people presenting with emergencies is increasing. There is evidence that negative health and social consequences may affect recreational and chronic users. The addictive potential of designer drugs is not negligible.

  9. Current status of synthetic epikeratoplasty.

    Science.gov (United States)

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  10. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  11. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  12. Misuse of Novel Synthetic Opioids: A Deadly New Trend

    Science.gov (United States)

    Prekupec, Matthew P.; Mansky, Peter A.; Baumann, Michael H.

    2017-01-01

    Novel synthetic opioids (NSOs) include various analogs of fentanyl and newly emerging non-fentanyl compounds. Together with illicitly manufactured fentanyl (IMF), these drugs have caused a recent spike in overdose deaths, whereas deaths from prescription opioids have stabilized. NSOs are used as stand-alone products, as adulterants in heroin, or as constituents of counterfeit prescription medications. During 2015 alone, there were 9580 deaths from synthetic opioids other than methadone. Most of these fatalities were associated with IMF rather than diverted pharmaceutical fentanyl. In opioid overdose cases, where the presence of fentanyl analogs was examined, analogs were implicated in 17% of fatalities. Recent data from law enforcement sources show increasing confiscation of acetylfentanyl, butyrylfentanyl, and furanylfentanyl, in addition to non-fentanyl compounds such as U-47700. Since 2013, deaths from NSOs in the United States were 52 for acetylfentanyl, 40 for butyrylfentanyl, 128 for furanylfentanyl, and 46 for U-47700. All of these substances induce a classic opioid toxidrome, which can be reversed with the competitive antagonist naloxone. However, due to the putative high potency of NSOs and their growing prevalence, it is recommended to forgo the 0.4 mg initial dose of naloxone and start with 2 mg. Because NSOs offer enormous profit potential, and there is strong demand for their use, these drugs are being trafficked by organized crime. NSOs present major challenges for medical professionals, law enforcement agencies, and policymakers. Resources must be distributed equitably to enhance harm reduction though public education, medication-assisted therapies, and improved access to naloxone. PMID:28590391

  13. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    Science.gov (United States)

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  14. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  15. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  16. Immunoparesis in newly diagnosed Multiple Myeloma patients

    DEFF Research Database (Denmark)

    Sorrig, Rasmus; Klausen, Tobias W.; Salomo, Morten

    2017-01-01

    Immunoparesis (hypogammaglobulinemia) is associated to an unfavorable prognosis in newly diagnosed Multiple myeloma (MM) patients. However, this finding has not been validated in an unselected population-based cohort. We analyzed 2558 newly diagnosed MM patients in the Danish Multiple Myeloma...

  17. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions

    Science.gov (United States)

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allister; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; Derose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.

  18. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  19. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  20. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  1. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  2. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    Science.gov (United States)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  3. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  4. Preclinical Evaluation of the Synthetic Adjuvant SQS-21 and its Constituent Isomeric Saponins

    Science.gov (United States)

    Ragupathi, Govind; Damani, Payal; Deng, Kai; Adams, Michelle M.; Hang, Jianfeng; George, Constantine; Livingston, Philip O.; Gin, David Y.

    2010-01-01

    The saponin fraction QS-21 from Quillaja saponaria has been demonstrated to be a potent immunological adjuvant when mixed with keyhole limpet hemocyanin conjugate vaccines, as well as with other classes of subunit antigen vaccines. QS-21 adjuvant is composed of two isomers that include the apiose and xylose forms in a ratio of 65:35, respectively. The chemical syntheses of these two isomers in pure form have recently been disclosed. Herein we describe detailed in vivo immunological evaluations of these synthetic QS-21 isomeric constituents, employing the GD3-KLH melanoma antigen. With this vaccine construct, high antibody titers against GD3 ganglioside and KLH were elicited when GD3-KLH was co-administered with adjuvant, either as the individual separate synthetic QS-21 isomers (SQS-21-Api or SQS-21-Xyl), or as its reconstituted 65:35 isomeric mixture (SQS-21). These antibody titer levels were comparable to that elicited by vaccinations employing naturally derived QS-21 (PQS-21). Moreover, toxicities of the synthetic saponin adjuvants were also found to be comparable to that of naturally derived PQS-21. These findings demonstrate unequivocally that the adjuvant activity of QS-21 resides in these two principal isomeric forms, and not in trace contaminants within the natural extracts. This lays the foundation for future exploration of structure-function correlations to enable the discovery of novel saponins with increased potency, enhanced stability, and attenuated toxicity. PMID:20450868

  5. Phase transitions of antibiotic clarithromycin forms I, IV and new form VII crystals.

    Science.gov (United States)

    Ito, Masataka; Shiba, Rika; Watanabe, Miteki; Iwao, Yasunori; Itai, Shigeru; Noguchi, Shuji

    2018-06-01

    Metastable crystal form I of the antibiotic clarithromycin has a pharmaceutically valuable characteristic that its crystalline phase transition can be applied for its sustained release from tablets. The phase transition of form I was investigated in detail by single crystal and powder X-ray analyses, dynamic vapor sorption analysis and thermal analysis. The single crystal structure of form I revealed that form I was not an anhydrate crystal but contained a partially occupied water molecule in the channel-like void space. Dynamic vapor sorption (DVS) analysis demonstrated that form I crystals reversibly sorbed water molecules in two steps when the relative humidity (RH) increased and finally transited to hydrate form IV at 95% RH. DVS analysis also showed that when the RH decreased form IV crystals lost water molecules at 40% RH and transited to the newly identified anhydrate crystal form VII. Form VII reversibly transited to form IV at lower RH than form I, suggesting that form I is more suitable for manufacturing a sustained-release tablet of CAM utilizing the crystalline phase transition. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A Canadian refiner's perspective of synthetic crudes

    International Nuclear Information System (INIS)

    Halford, T.L.; McIntosh, A.P.; Rasmussen

    1997-01-01

    Some of the factors affecting a refiner's choice of crude oil include refinery hardware, particularly gas oil crackers, products slate and product specifications, crude availability, relative crude price and crude quality. An overview of synthetic crude, the use of synthetic crude combined with other crudes and a comparison of synthetic crude with conventional crude oil was given. The two main users of synthetic crude are basically two groups of refiners, those large groups who use synthetic crude combined with other crudes, and a smaller group who run synthetic crude on specially designed units as a sole feed. The effects of changes in fuel legislation were reviewed. It was predicted that the changes will have a mixed impact on the value of synthetic crude, but low sulphur diesel regulations and gasoline sulphur regulations will make current synthetic crudes attractive. The big future change with a negative impact will be diesel cetane increases to reduce engine emissions. This will reduce synthetic crude attractiveness due to distillate yields and quality and high gas oil yields. Similarly, any legislation limiting aromatics in diesel fuel will also make synthetic crudes less attractive. Problems experienced by refiners with hardware dedicated to synthetic crude (salt, naphthenic acid, fouling, quality variations) were also reviewed. 3 tabs

  7. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  8. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  9. A Novel Application of Synthetic Biology and Directed Evolution to Engineer Phage-based Antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The emergence of multiple drug resistant bacteria poses threats to human health, agriculture and food safety. Annually over 100,000 deaths and up to $20 billion loss to the U.S. economy are attributed to multiple drug resistant bacteria. With only four new chemical antibiotics in the drug development pipeline, we are in dire need of new solutions to address the emerging threat of multiple drug resistance. We propose a paradigm-changing approach to address the multi-drug resistant bacteria problem by utilizing Synthetic Biology (SynBio) methodologies to create and evolve “designer” bacteriophages or phages – viruses that specifically infect bacteria – to infect and kill newly emerging pathogenic bacterial strains WITHOUT the need for chemical antibiotics. A major advantage of using phage to combat pathogenic bacteria is that phages can co-evolve with their bacterial host, and Sandia can be the first in the world to establish an industrial scale Synthetic Biology pipeline for phage directed evolution for safe, targeted, customizable solution to bacterial drug resistance. Since there is no existing phage directed evolution effort within or outside of Sandia, this proposal is suitable as a high-risk LDRD effort to create the first pipeline for such an endeavor. The high potential reward nature of this proposal will be the immediate impact in decontamination and restoration of surfaces and infrastructure, with longer term impact in human or animal therapeutics. The synthetic biology and screening approaches will lead to fundamental knowledge of phage/bacteria co-evolution, making Sandia a world leader in directed evolution of bacteriophages.

  10. On the Matching of Seen and Felt Shape by Newly Sighted Subjects

    Directory of Open Access Journals (Sweden)

    John Schwenkler

    2012-04-01

    Full Text Available How do we recognize identities between seen shapes and felt ones? Is this due to associative learning, or intrinsic connections these sensory modalities? We can address this question by testing the capacities of newly sighted subjects to match seen and felt shapes, but only if the subjects can see the objects well enough to form adequate visual representations of their shapes. In light of this, a recent study by R. Held and colleagues fails to demonstrate that their newly sighted subjects' inability to match seen and felt shape was due to a lack of intermodal connections rather than a purely visual deficit, as the subjects may not have been able visually to represent 3D shape in the perspective-invariant manner required for intermodal matching. However, the study could be modified in any of several ways to help avoid this problem.

  11. Synthetic murataite-3C, a complex form for long-term immobilization of nuclear waste. Crystal structure and its comparison with natural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomova, Anna S.; Krivovichev, Sergey V. [St. Petersburg State Univ. (Russian Federation). Dept. of Crystallography; Yudintsev, Sergey V. [Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, St. Petersburg (Russian Federation); Stefanovsky, Sergey V. [MosNPO Radon, Moscow (Russian Federation)

    2013-03-01

    The structure of synthetic murataite-3C intended for long-term immobilization of high-level radioactive waste has been solved using crystals prepared by melting in an electric furnace at 1500 C. The material is cubic, F- anti 43m, a = 14.676(15) A, V = 3161.31(57) A{sup 3}. The structure is based upon a three-dimensional framework consisting of {alpha}-Keggin [Al{sup [4]}Ti{sub 12}{sup [6]}O{sub 40}] clusters linked by sharing the O5 atoms. The Keggin-cluster-framework interpenetrates with the metal-oxide substructure that can be considered as a derivative of the fluorite structure. The crystal chemical formula of synthetic murataite-3C derived from the obtained structure model can be written as {sup [8]}Ca{sub 6}{sup [8]}Ca{sub 4}{sup [6]}Ti{sub 12}{sup [5]}Ti{sub 4}{sup [4]}AlO{sub 42}. Its comparison with the natural murataite shows that the synthetic material has a noticeably less number of vacancies in the cation substructure and contains five instead of four symmetrically independent cation positions. The presence of the additional site essentially increases the capacity of synthetic murataite with respect to large heavy cations such as actinides, rare earth and alkaline earth metals in comparison with the material of natural origin. (orig.)

  12. Pineapple Fruit Collapse: Newly Emerging Disease of Pineapple Fruit in Lampung, Indonesia

    OpenAIRE

    Joko Prasetyo; Titik Nur Aeny

    2014-01-01

    ABSTRACT Pineapple fruit collapse: newly emerging disease of pineapple fruit in Lampung, Indonesia Recently, a new disease on pineapple fruit has occurred in Lampung. Symptoms of the disease are complex. Fruits rotted and exuded copious liquid from the inter- fruitlet tissues accompanied by gas bubbles. Open spaces were formed inside the rotten fruit. Dissection of diseased fruit showed many cavities within its sceletal fibres and bad odour was exerted from the rotten tissues. A bacterial...

  13. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  14. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  15. Recent advances in the molecular design of synthetic vaccines

    Science.gov (United States)

    Jones, Lyn H.

    2015-12-01

    Vaccines have typically been prepared using whole organisms. These are normally either attenuated bacteria or viruses that are live but have been altered to reduce their virulence, or pathogens that have been inactivated and effectively killed through exposure to heat or formaldehyde. However, using whole organisms to elicit an immune response introduces the potential for infections arising from a reversion to a virulent form in live pathogens, unproductive reactions to vaccine components or batch-to-batch variability. Synthetic vaccines, in which a molecular antigen is conjugated to a carrier protein, offer the opportunity to circumvent these problems. This Perspective will highlight the progress that has been achieved in developing synthetic vaccines using a variety of molecular antigens. In particular, the different approaches used to develop conjugate vaccines using peptide/proteins, carbohydrates and other small molecule haptens as antigens are compared.

  16. Generational differences among newly licensed registered nurses.

    Science.gov (United States)

    Keepnews, David M; Brewer, Carol S; Kovner, Christine T; Shin, Juh Hyun

    2010-01-01

    Responses of 2369 newly licensed registered nurses from 3 generational cohorts-Baby Boomers, Generation X, and Generation Y-were studied to identify differences in their characteristics, work-related experiences, and attitudes. These responses revealed significant differences among generations in: job satisfaction, organizational commitment, work motivation, work-to-family conflict, family-to-work conflict, distributive justice, promotional opportunities, supervisory support, mentor support, procedural justice, and perceptions of local job opportunities. Health organizations and their leaders need to anticipate intergenerational differences among newly licensed nurses and should provide for supportive working environments that recognize those differences. Orientation and residency programs for newly licensed nurses should be tailored to the varying needs of different generations. Future research should focus on evaluating the effectiveness of orientation and residency programs with regard to different generations so that these programs can be tailored to meet the varying needs of newly licensed nurses at the start of their careers. Copyright 2010 Mosby, Inc. All rights reserved.

  17. Hope in newly diagnosed cancer patients.

    Science.gov (United States)

    Duggleby, Wendy; Ghosh, Sunita; Cooper, Dan; Dwernychuk, Lynne

    2013-11-01

    Hope is important to cancer patients as it helps them deal with their diagnosis. Little is known about hope in newly diagnosed cancer patients. Based on the Transcending Possibilities conceptual model of hope, the purpose of this study was to examine the relationship of hope with pain, energy, and psychological and demographic characteristics in newly diagnosed adult oncology outpatients. Data from 310 New Patient Assessment Forms from cancer outpatients' health records were collected. Health records from the first six months of 2009 were reviewed and data were collected on hope, energy, pain, depression, anxiety, feeling overwhelmed, and demographic variables. A generalized linear modeling approach was used to study the relationship of hope scores with these variables. Hypothesized variables and variables that were significant at the P = 0.01 level from the univariate analysis were entered into the multivariate model, with hope scores as the dependent variable. Hope scores were significantly negatively related to age (P = 0.02). More specifically, oncology patients who were 65 years of age or older had significantly less hope than those under the age of 65 years (P = 0.01). Gender (P = 0.009) also was a significant factor, with men having higher hope scores than women. No other variables were significant. Older adults comprise the majority of persons in Canada with cancer. The lower hope scores found in this age group compared with their younger counterparts underscore the importance of further research. This study provides a foundation for future research in this important area for oncology patients. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  18. TRAP-Positive Multinucleated Giant Cells Are Foreign Body Giant Cells Rather Than Osteoclasts: Results From a Split-Mouth Study in Humans.

    Science.gov (United States)

    Lorenz, Jonas; Kubesch, Alica; Korzinskas, Tadas; Barbeck, Mike; Landes, Constantin; Sader, Robert A; Kirkpatrick, Charles J; Ghanaati, Shahram

    2015-12-01

    This study compared the material-specific tissue response to the synthetic, hydroxyapatite-based bone substitute material NanoBone (NB) with that of the xenogeneic, bovine-based bone substitute material Bio-Oss (BO). The sinus cavities of 14 human patients were augmented with NB and BO in a split-mouth design. Six months after augmentation, bone biopsies were extracted for histological and histomorphometric investigation prior to dental implant insertion. The following were evaluated: the cellular inflammatory pattern, the induction of multinucleated giant cells, vascularization, the relative amounts of newly formed bone, connective tissue, and the remaining bone substitute material. NB granules were well integrated in the peri-implant tissue and were surrounded by newly formed bone tissue. Multinucleated giant cells were visible on the surfaces of the remaining granules. BO granules were integrated into the newly formed bone tissue, which originated from active osteoblasts on their surface. Histomorphometric analysis showed a significantly higher number of multinucleated giant cells and blood vessels in the NB group compared to the BO group. No statistical differences were observed in regard to connective tissue, remaining bone substitute, and newly formed bone. The results of this study highlight the different cellular reactions to synthetic and xenogeneic bone substitute materials. The significantly higher number of multinucleated giant cells within the NB implantation bed seems to have no effect on its biodegradation. Accordingly, the multinucleated giant cells observed within the NB implantation bed have characteristics more similar to those of foreign body giant cells than to those of osteoclasts.

  19. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  20. News: Synthetic biology leading to specialty chemicals ...

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate production pathways to a wide variety of chemicals generated by microorganisms. The selection and enhancement of microbiological strains through the practice of strain engineering enables targets of design, construction, and optimization. This news column aspires to cover recent literature relating to the development and understanding of clean technology.

  1. Microbial Extremophiles for Earth and Beyond: Pushing the Boundaries with Synthetic Biology

    Science.gov (United States)

    Rothschild, Lynn J.

    2017-01-01

    All organisms live in a multi-dimensional physical and chemical niche space. Discoveries in the 20th century enormously expanded the range of what was considered "habitable." However, the current diversity of life on Earth begs the question of what terrestrial life - or indeed, another life form - would be capable of. With the needs of both modern laboratory science and the burgeoning field of biotechnology, as well as our deeply held desire to answer the question "are we alone in the universe?, we are exploiting the tools of synthetic biology to probe the question of whether we can create "synthetic extremophiles" or, as our lab has dubbed them, "Hell Cells."

  2. Health-related quality of life of children with newly diagnosed specific learning disability.

    Science.gov (United States)

    Karande, Sunil; Bhosrekar, Kirankumar; Kulkarni, Madhuri; Thakker, Arpita

    2009-06-01

    The objective of this study was to measure health-related quality of life (HRQL) of children with newly diagnosed specific learning disability (SpLD) using the Child Health Questionnaire-Parent Form 50. We detected clinically significant deficits (effect size > or = -0.5) in 9 out of 12 domains: limitations in family activities, emotional impact on parents, social limitations as a result of emotional-behavioral problems, time impact on parents, general behavior, physical functioning, social limitations as a result of physical health, general health perceptions and mental health; and in both summary scores (psychosocial > physical). Multivariate analysis revealed having > or = 1 non-academic problem(s) (p or =1 non-academic problem(s) (p = 0.006) or first-born status (p = 0.035) predicted a poor physical summary score. HRQL is significantly compromised in children having newly diagnosed SpLD.

  3. Transport synthetic acceleration with opposing reflecting boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zika, M R; Adams, M L

    2000-02-01

    The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iterating on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.

  4. Fibrils from designed non-amyloid-related synthetic peptides induce AA-amyloidosis during inflammation in an animal model.

    Directory of Open Access Journals (Sweden)

    Per Westermark

    Full Text Available BACKGROUND: Mouse AA-amyloidosis is a transmissible disease by a prion-like mechanism where amyloid fibrils act by seeding. Synthetic peptides with no amyloid relationship can assemble into amyloid-like fibrils and these may have seeding capacity for amyloid proteins. PRINCIPAL FINDINGS: Several synthetic peptides, designed for nanotechnology, have been examined for their ability to produce fibrils with Congo red affinity and concomitant green birefringence, affinity for thioflavin S and to accelerate AA-amyloidosis in mice. It is shown that some amphiphilic fibril-forming peptides not only produced Congo red birefringence and showed affinity for thioflavin S, but they also shortened the lag phase for systemic AA-amyloidosis in mice when they were given intravenously at the time of inflammatory induction with silver nitride. Peptides, not forming amyloid-like fibrils, did not have such properties. CONCLUSIONS: These observations should caution researchers and those who work with synthetic peptides and their derivatives to be aware of the potential health concerns.

  5. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  6. Maintaining Professional Commitment as a Newly Credentialed Athletic Trainer in the Secondary School Setting.

    Science.gov (United States)

    Mazerolle, Stephanie M; Myers, Sarah L; Walker, Stacy E; Kirby, Jessica

    2018-03-01

      Professional commitment, or one's affinity and loyalty to a career, has become a topic of interest in athletic training. The expanding research on the topic, however, has omitted newly credentialed athletic trainers (ATs). For an impressionable group of practitioners, transitioning to clinical practice can be stressful.   To explore the professional commitment of newly credentialed ATs in the secondary school setting.   Secondary school.   Qualitative study.   A total of 31 newly credentialed ATs (6 men, 25 women; mean age = 24 ± 3 years) participated. Of these, 17 ATs (4 men, 13 women; mean age = 25 ± 4 years) were employed full time in the secondary school setting, and 14 ATs (2 men, 12 women; mean age = 23.0 ± 2.0 years) were graduate assistant students in the secondary school setting.   All participants completed semistructured interviews, which focused on their experiences in the secondary school setting and transitioning into the role and setting. Transcripts were analyzed using the phenomenologic approach. Creditability was established by peer review, member checks, and researcher triangulation.   Four main findings related to the professional commitment of newly credentialed ATs in the secondary school setting were identified. Work-life balance, professional relationships formed with the student-athletes, enjoyment gained from working in the secondary school setting, and professional responsibility emerged as factors facilitating commitment.   Affective commitment is a primary facilitator of professional commitment. Newly credentialed ATs who enjoy their jobs and have time to engage in nonwork roles are able to maintain a positive professional commitment. Our findings align with the previous literature and help strengthen our understanding that rejuvenation and passion are important to professional commitment.

  7. The Topographic Design of River Channels for Form-Process Linkages.

    Science.gov (United States)

    Brown, Rocko A; Pasternack, Gregory B; Lin, Tin

    2016-04-01

    Scientists and engineers design river topography for a wide variety of uses, such as experimentation, site remediation, dam mitigation, flood management, and river restoration. A recent advancement has been the notion of topographical design to yield specific fluvial mechanisms in conjunction with natural or environmental flow releases. For example, the flow convergence routing mechanism, whereby shear stress and spatially convergent flow migrate or jump from the topographic high (riffle) to the low point (pool) from low to high discharge, is thought to be a key process able to maintain undular relief in gravel bedded rivers. This paper develops an approach to creating riffle-pool topography with a form-process linkage to the flow convergence routing mechanism using an adjustable, quasi equilibrium synthetic channel model. The link from form to process is made through conceptualizing form-process relationships for riffle-pool couplets into geomorphic covariance structures (GCSs) that are then quantitatively embedded in a synthetic channel model. Herein, GCSs were used to parameterize a geometric model to create five straight, synthetic river channels with varying combinations of bed and width undulations. Shear stress and flow direction predictions from 2D hydrodynamic modeling were used to determine if scenarios recreated aspects of the flow convergence routing mechanism. Results show that the creation of riffle-pool couplets that experience flow convergence in straight channels requires GCSs with covarying bed and width undulations in their topography as supported in the literature. This shows that GCSs are a useful way to translate conceptualizations of form-process linkages into quantitative models of channel form.

  8. Michael Maier--nine newly discovered letters.

    Science.gov (United States)

    Lenke, Nils; Roudet, Nicolas; Tilton, Hereward

    2014-02-01

    The authors provide a transcription, translation, and evaluation of nine newly discovered letters from the alchemist Michael Maier (1568-1622) to Gebhardt Johann von Alvensleben (1576-1631), a noble landholder in the vicinity of Magdeburg. Stemming from the final year of his life, this correspondence casts new light on Maier's biography, detailing his efforts to secure patronage amid the financial crisis of the early Thirty Years' War. While his ill-fated quest to perfect potable gold continued to form the central focus of his patronage suits, Maier also offered his services in several arts that he had condemned in his printed works, namely astrology and "supernatural" magic. Remarks concerning his previously unknown acquaintance with Heinrich Khunrath call for a re-evaluation of Maier's negotiation of the discursive boundaries between Lutheran orthodoxy and Paracelsianism. The letters also reveal Maier's substantial contribution to a work previously ascribed solely to the English alchemist Francis Anthony.

  9. Establishment probability in newly founded populations

    Directory of Open Access Journals (Sweden)

    Gusset Markus

    2012-06-01

    Full Text Available Abstract Background Establishment success in newly founded populations relies on reaching the established phase, which is defined by characteristic fluctuations of the population’s state variables. Stochastic population models can be used to quantify the establishment probability of newly founded populations; however, so far no simple but robust method for doing so existed. To determine a critical initial number of individuals that need to be released to reach the established phase, we used a novel application of the “Wissel plot”, where –ln(1 – P0(t is plotted against time t. This plot is based on the equation P0t=1–c1e–ω1t, which relates the probability of extinction by time t, P0(t, to two constants: c1 describes the probability of a newly founded population to reach the established phase, whereas ω1 describes the population’s probability of extinction per short time interval once established. Results For illustration, we applied the method to a previously developed stochastic population model of the endangered African wild dog (Lycaon pictus. A newly founded population reaches the established phase if the intercept of the (extrapolated linear parts of the “Wissel plot” with the y-axis, which is –ln(c1, is negative. For wild dogs in our model, this is the case if a critical initial number of four packs, consisting of eight individuals each, are released. Conclusions The method we present to quantify the establishment probability of newly founded populations is generic and inferences thus are transferable to other systems across the field of conservation biology. In contrast to other methods, our approach disaggregates the components of a population’s viability by distinguishing establishment from persistence.

  10. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Science.gov (United States)

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  11. 21 CFR 73.1200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  12. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  13. 21 CFR 172.888 - Synthetic petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  14. Discovery of a diazo-forming enzyme in cremeomycin biosynthesis.

    Science.gov (United States)

    Waldman, Abraham J; Balskus, Emily P

    2018-05-17

    The molecular architectures and potent bioactivities of diazo-containing natural products have attracted the interest of synthetic and biological chemists. Despite this attention, the biosynthetic enzymes involved in diazo group construction have not been identified. Here, we show the ATP-dependent enzyme CreM installs the diazo group in cremeomycin via late-stage N-N bond formation using nitrite. This finding should inspire efforts to use diazo-forming enzymes in biocatalysis and synthetic biology and enable genome-based discovery of new diazo-containing metabolites.

  15. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  16. Synthetic mimetics of the endogenous gastrointestinal nanomineral: Silent constructs that trap macromolecules for intracellular delivery.

    Science.gov (United States)

    Pele, Laetitia C; Haas, Carolin T; Hewitt, Rachel E; Robertson, Jack; Skepper, Jeremy; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Faria, Nuno; Chappell, Helen; Powell, Jonathan J

    2017-02-01

    Amorphous magnesium-substituted calcium phosphate (AMCP) nanoparticles (75-150nm) form constitutively in large numbers in the mammalian gut. Collective evidence indicates that they trap and deliver luminal macromolecules to mucosal antigen presenting cells (APCs) and facilitate gut immune homeostasis. Here, we report on a synthetic mimetic of the endogenous AMCP and show that it has marked capacity to trap macromolecules during formation. Macromolecular capture into AMCP involved incorporation as shown by STEM tomography of the synthetic AMCP particle with 5nm ultra-fine iron (III) oxohydroxide. In vitro, organic cargo-loaded synthetic AMCP was taken up by APCs and tracked to lysosomal compartments. The AMCP itself did not regulate any gene, or modify any gene regulation by its cargo, based upon whole genome transcriptomic analyses. We conclude that synthetic AMCP can efficiently trap macromolecules and deliver them to APCs in a silent fashion, and may thus represent a new platform for antigen delivery. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  18. Word selection affects perceptions of synthetic biology

    Directory of Open Access Journals (Sweden)

    Tonidandel Scott

    2011-07-01

    Full Text Available Abstract Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008. Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  19. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    Energy Technology Data Exchange (ETDEWEB)

    Szilágyi, Petra Ágota, E-mail: p.a.szilagyi@greenwich.ac.uk [Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Chatham (United Kingdom); Serra-Crespo, Pablo [Department of Radiation Science and Technology, Delft University of Technology, Delft (Netherlands); Gascon, Jorge [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Geerlings, Hans [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Shell Technology Centre, Amsterdam (Netherlands); Dam, Bernard [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands)

    2016-03-29

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  20. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    International Nuclear Information System (INIS)

    Szilágyi, Petra Ágota; Serra-Crespo, Pablo; Gascon, Jorge; Geerlings, Hans; Dam, Bernard

    2016-01-01

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  1. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  2. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Self-Assembling Organic Nanopores as Synthetic Transmembrane Channels with Tunable Functions

    Science.gov (United States)

    Wei, Xiaoxi

    A long-standing goal in the area of supramolecular self-assembly involves the development of synthetic ion/water channels capable of mimicking the mass-transport characteristics of biological channels and pores. Few examples of artificial transmembrane channels with large lumen, high conductivity and selectivity are known. A review of pronounced biological transmembrane protein channels and some representative synthetic models have been provided in Chapter 1, followed by our discovery and initial investigation of shape-persistent oligoamide and phenylene ethynylene macrocycles as synthetic ion/water channels. In Chapter 2, the systematic structural modification of oligoamide macrocycles 1, the so-called first-generation of these shape-persistent macrocycles, has led to third-generation macrocycles 3. The third generation was found to exhibit unprecedented, strong intermolecular association in both the solid state and solution via multiple techniques including X-ray diffraction (XRD), SEM, and 1H NMR. Fluorescence spectroscopy paired with dynamic light scattering (DLS) revealed that macrocycles 3 can assemble into a singly dispersed nanotubular structure in solution. The resultant self-assembling pores consisting of 3 were examined by HPTS-LUVs assays and BLM studies (Chapter 3) and found to form cation-selective (PK+/PCl- = 69:1) transmembrane ion channels with large conductance (200 ˜ 2000 pS for alkali cations) and high stability with open times reaching to 103 seconds. Tuning the aggregation state of macrocycles by choosing an appropriate polar solvent mixture (i.e., 3:1, THF:DMF, v/v) and concentration led to the formation of ion channels with well-defined square top behavior. A parallel study using DLS to examine the size of aggregates was used in conjunction with channel activity assays (LUVs/BLM) to reveal the effects of the aggregation state on channel activity. Empirical evidence now clearly indicates that a preassembled state, perhaps that of a

  4. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  5. Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation

    DEFF Research Database (Denmark)

    Rønn, L C; Doherty, P; Holm, A

    2000-01-01

    identified a neuritogenic ligand, termed the C3 peptide, of the first immunoglobulin (lg) module of NCAM using a combinatorial library of synthetic peptides. Here we investigate whether stimulation of neurite outgrowth by this synthetic ligand of NCAM involves FGFRs. In primary cultures of cerebellar neurons...... from wild-type mice, the C3 peptide stimulated neurite outgrowth. This response was virtually absent in cultures of cerebellar neurons from transgenic mice expressing a dominant-negative form of the FGFR1. Likewise, in PC12E2 cells transiently expressing a dominant-negative form of the mouse FGFR1...

  6. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  7. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  8. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  9. Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos

    International Nuclear Information System (INIS)

    Gazzano, Elena; Foresti, Elisabetta; Lesci, Isidoro Giorgio; Tomatis, Maura; Riganti, Chiara; Fubini, Bice; Roveri, Norberto; Ghigo, Dario

    2005-01-01

    The carcinogenic potency of asbestos, including chrysotile, is well established. Several physico-chemical features of the fibers appear implied, such as fibrous habit, size, crystallinity, morphology, and surface active metal ions, where free radical generation may take place. In contrast to other asbestos forms, iron is not a stoichiometric component of chrysotile, but is only present together with other extraneous ions as a magnesium- and silicon-replacing contaminant. To determine the role played by contaminating ions and morphological features of the fibers, a stoichiometric chrysotile with constant structure and morphology was synthesized in hydrothermal conditions. Free radical generation and the effects of these fibers on human lung epithelial A549 cells have been compared to that elicited by a well known toxic natural chrysotile (UICC A, from Rhodesia). After a 24-h incubation, the natural, but not the synthetic, form exerted a cytotoxic effect, detected as leakage of lactate dehydrogenase. Homolytic rupture of a C-H bond and lipoperoxidation in A549 cells took place in the presence of the natural, but not of the synthetic, chrysotile. Antioxidant systems were also affected differently. The pentose phosphate pathway and its regulatory enzyme glucose 6-phosphate dehydrogenase were markedly inhibited only by the natural specimen, which also caused a depletion of intracellular reduced glutathione in A549 cells. These results suggest that metal ions, fiber size and state of the surface play a crucial role in the oxidative stress caused by chrysotile asbestos. Stoichiometric synthetic fibers may thus be proposed as a reference standard (negative control) for toxicological studies

  10. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified Southern hemisphere sister lineage

    Science.gov (United States)

    Gregory Bonito; Matthew E. Smith; Michael Nowak; Rosanne A. Healy; Gonzalo Guevara; Efren Cazares; Akihiko Kinoshita; Eduardo R. Nouhra; Laura S. Dominguez; Leho Tedersoo; Claude Murat; Yun Wang; Baldomero Arroyo Moreno; Donald H. Pfister; Kazuhide Nara; Alessandra Zambonelli; James M. Trappe; Rytas. Vilgalys

    2013-01-01

    In this study we reassessed the biogeography and origin of the Tuberaceae and their relatives using multiple loci and a global sampling of taxa. Multiple independent transitions from an aboveground to a belowground truffie fruiting body form have occurred in the Tuberaceae and in its newly recognized sister lineage...

  11. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  12. Synthetic biology, metaphors and responsibility.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  13. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: the Role of Defects

    Directory of Open Access Journals (Sweden)

    Petra Agota Szilagyi

    2016-03-01

    Full Text Available Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. Its vehicular application however will only be widespread if safe and high-capacity methane stores are developed. In this work report an over 33% increase in methane uptake on a post-synthetically modified metal-organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  14. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Superplastic forming and diffusion bonding: Progress and trends

    Directory of Open Access Journals (Sweden)

    Zhiqiang Li

    2015-01-01

    Full Text Available This paper summarized recent progress in metal superplasticity and the application of Superplastic Forming/Diffusion Bonding (SPF/DB or SPF/Welding in typical structures. Various aerospace components such as three dimensional lattice structures made by SPF/DB have been demonstrated. In addition, some newly developed technologies, such as melt droplet spreading/thermo-mechanical forming (MDS/TMF, were also included. Finally, the future potential of SPF/DB technology was predicted.

  16. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  17. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  18. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  19. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  20. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    KAUST Repository

    Norville, Julie E.

    2011-06-17

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.

  1. Synthetic Biology of Polyhydroxyalkanoates (PHA).

    Science.gov (United States)

    Meng, De-Chuan; Chen, Guo-Qiang

    Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

  2. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  3. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  4. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  5. Synthetic biology as red herring.

    Science.gov (United States)

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  7. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  8. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  9. The Ethics of Synthetic Biology

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    The dissertation analyses and discusses a number of ethical issues that have been raised in connection with the development of synthetic biology. Synthetic biology is a set of new techniques for DNA-level design and construction of living beings with useful properties. The dissertation especially...

  10. Antimicrobial efficacy of granulysin-derived synthetic peptides in acne vulgaris.

    Science.gov (United States)

    Lim, Hee-Sun; Chun, Seung-Min; Soung, Min-Gyu; Kim, Jenny; Kim, Seong-Jin

    2015-07-01

    Antimicrobial peptides are considered as a potential alternative to antibiotic treatment in acne vulgaris because the development of a resistant strain of Propionibacterium acnes is problematic. Granulysin can be regarded as an ideal substance with which to treat acne because it has antimicrobial and anti-inflammatory effects. This study was performed to explore the effectiveness of granulysin-derived peptides (GDPs) in killing P. acnes in vitro under a standard microbiologic assay and to evaluate their potential use in a topical agent for the treatment of acne vulgaris. Twenty different peptides based on the known sequence of a GDP were synthesized and tested in vitro for antimicrobial activity. Thirty patients with facial acne vulgaris were instructed to apply a topical formulation containing synthetic GDP to acne lesions twice per day for 12 weeks. A newly synthesized peptide in which aspartic acid was substituted with arginine, and methionine was substituted with cysteine, showed the highest antimicrobial activity against P. acnes. Moreover, it was effective against both Gram-positive and Gram-negative bacteria in vitro. After treatment with the topical formulation containing 50 ppm of synthetic peptide for 12 weeks, a significant reduction in the number of pustules was observed, regardless of the increase in the number of comedones. In addition, a significant reduction in the clinical grade of acne based on the Korean Acne Grading System (KAGS) was evident. Synthesized GDP shows strong antimicrobial activity against P. acnes in vitro. The clinical improvement observed suggests a topical formulation containing the GDP has therapeutic potential for the improvement of inflammatory-type acne vulgaris by its antimicrobial activity. © 2015 The International Society of Dermatology.

  11. Multiply-Imputed Synthetic Data: Advice to the Imputer

    Directory of Open Access Journals (Sweden)

    Loong Bronwyn

    2017-12-01

    Full Text Available Several statistical agencies have started to use multiply-imputed synthetic microdata to create public-use data in major surveys. The purpose of doing this is to protect the confidentiality of respondents’ identities and sensitive attributes, while allowing standard complete-data analyses of microdata. A key challenge, faced by advocates of synthetic data, is demonstrating that valid statistical inferences can be obtained from such synthetic data for non-confidential questions. Large discrepancies between observed-data and synthetic-data analytic results for such questions may arise because of uncongeniality; that is, differences in the types of inputs available to the imputer, who has access to the actual data, and to the analyst, who has access only to the synthetic data. Here, we discuss a simple, but possibly canonical, example of uncongeniality when using multiple imputation to create synthetic data, which specifically addresses the choices made by the imputer. An initial, unanticipated but not surprising, conclusion is that non-confidential design information used to impute synthetic data should be released with the confidential synthetic data to allow users of synthetic data to avoid possible grossly conservative inferences.

  12. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    Science.gov (United States)

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  13. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  14. Synthetic cannabis and acute ischemic stroke.

    Science.gov (United States)

    Bernson-Leung, Miya E; Leung, Lester Y; Kumar, Sandeep

    2014-01-01

    An association between marijuana use and stroke has been previously reported. However, the health risks of newer synthetic cannabinoid compounds are less well known. We describe 2 cases that introduce a previously unreported association between synthetic cannabis use and ischemic stroke in young adults. A 22-year-old woman presented with dysarthria, left hemiplegia, and left hemianesthesia within hours of first use of synthetic cannabis. She was healthy and without identified stroke risk factors other than oral contraceptive use and a patent foramen ovale without venous thromboses. A 26-year-old woman presented with nonfluent aphasia, left facial droop, and left hemianesthesia approximately 12 hours after first use of synthetic cannabis. Her other stroke risk factors included migraine with aura, oral contraceptive use, smoking, and a family history of superficial thrombophlebitis. Both women were found to have acute, large-territory infarctions of the right middle cerebral artery. Our 2 cases had risk factors for ischemic stroke but were otherwise young and healthy and the onset of their deficits occurred within hours after first-time exposure to synthetic cannabis. Synthetic cannabis use is an important consideration in the investigation of stroke in young adults. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Role of Pseudoisocytidine Tautomerization in Triplex-Forming Oligonucleotides

    DEFF Research Database (Denmark)

    Hartono, Yossa Dwi; Pabon-Martinez, Y. Vladimir; Uyar, Arzu

    2017-01-01

    Pseudoisocytidine (1C) is a synthetic cytidine analogue that can target DNA duplex to form parallel triplex at neutral pH. Pseudoisocytidine has mainly two tautomers, of which only one is favorable for triplex formation. In this study, we investigated the effect of sequence on ψC tautomerization ...

  16. Marine bioactive compounds: stereospecific anti-inflammatory activity of natural and synthetic cordiachromene A.

    Science.gov (United States)

    Benslimane, A F; Pouchus, Y F; Verbist, J F; Petit, J Y; Khettab, E N; Welin, L; Brion, J D

    1992-01-01

    A new synthesis is proposed for cordiachromene A (CCA), a bioactive component of the ascidian Aplidium antillense Gravier, using a method producing a racemic mixture. The anti-inflammatory activities of a natural extract and a chemically synthetic form of CCA were assessed in vivo by carrageenan-induced rat-paw edema. The activity of synthetic CCA was confirmed by a test on kaolin-induced granuloma in the rat. Strong activities were measured for both CCA, but comparison of results of the first test suggests that only the natural optically active isomer has an anti-inflammatory effect. CCA is similar to indomethacin in its effect on carrageenan-induced rat-paw edema and ten times as active as phenylbutazone.

  17. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  18. Radioimmunoassay of synthetic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Raynaud, J -P; Bucourt, R; Salmon, J

    1975-12-01

    The sensitivity of a radioimmunoassay depends on the intrinsic association constant of the interaction between ligand and antibody. Its specificity depends on the position of the chain which forms the link with the antigen. Thus, an antibody specific of estradiol has been obtained by coupling estradiol to albumin via a chain at position 7. For synthetic steroids the structure of which is sufficiency different from that of natural hormones, the requirements for a sensitive assay method not involving chromatography are simply maximum affinity and positioning of the couple at a site which does not undergo metabolic attack. These criteria were used to develop assays for R 2858 and R 2453 which obviate the need to administer radioactive product in clinical pharmacology. Cross-reaction with structural analogs may be used to assay competitors. Thus, R 2323 antibody, highly specific for endogenous steroids, may be used to assay other trienes such as R 1697 (trenbolone) and R 2010 (norgestrienone).

  19. [Treatment approaches for synthetic drug addiction].

    Science.gov (United States)

    Kobayashi, Ohji

    2015-09-01

    In Japan, synthetic drugs have emerged since late 2000s, and cases of emergency visits and fatal traffic accidents due to acute intoxication have rapidly increased. The synthetic drugs gained popularity mainly because they were cheap and thought to be "legal". The Japanese government restricted not only production and distribution, but also its possession and use in April 2014. As the synthetic drug dependent patients have better social profiles compared to methamphetamine abusers, this legal sanction may have triggered the decrease in the number of synthetic drug dependent patient visits observed at Kanagawa Psychiatric Center since July 2014. Treatment of the synthetic drug dependent patients should begin with empathic inquiry into the motives and positive psychological effects of the drug use. In the maintenance phase, training patients to trust others and express their hidden negative emotions through verbal communications is essential. The recovery is a process of understanding the relationship between psychological isolation and drug abuse, and gaining trust in others to cope with negative emotions that the patients inevitably would face in their subsequent lives.

  20. Factors Associated with Newly Diagnosed Children with Diabetic Ketoacidosis

    Directory of Open Access Journals (Sweden)

    Raheleh Mirsadraee

    2016-09-01

    Full Text Available Background Diabetes mellitus type 1 is one of the most prevalent endocrine diseases in pediatrics. Diabetic ketoacidosis is considered as one of the most threatening clinical pictures of DM1, especially if occurred as the first presentation of DM1 in children. Objectives The current study aimed to identify factors which may play a role in DKA onset in children. Methods This case-control study included all patients under 18 years old who referred to department of pediatrics endocrinology at Mashhad University Hospital (Imam Reza from January 2013 to December 2015 as newly diagnosed patients with DM1. Patients who fulfilled DKA criteria at diagnosis were considered as DKA group and those who referred with other presentations were considered as control group (non-DKA group. Data were analyzed by SPSS software ver. 16. Results During the study period, 97 (39.2% male newly diagnosed patients were included as DKA group. Accordingly 97 gender- and age-matched patients were added as non-DKA group. The most prevalent symptoms in both groups were polyuria (91.88% and polydipsia (88.66%. Fever and cold symptoms were significantly higher in the DKA group (P < 0.001 and P =0.005, respectively. Hemoglobin A1c level was significantly higher in the DKA group (P = 0.001, while body mass index was significantly lower in the DKA group (P = 0.045. Fever and father’s education level were the most important risk and protective factors in the DKA onset in newly diagnosed patients with DM1 (adjusted OR = 10.1, 95% CI = 2.9-35.3; P < 0.001 and adjusted OR = 0.5, 95% CI = 0.3 - 0.9 and P = 0.019, respectively. Conclusions In conclusion, a recent febrile illness was found as the strongest risk factor and father’s education level as the main protective factor in the DKA to diagnose children with DM1. The study findings suggested that DKA is a severe form of DM1 instead of a neglected or misdiagnosed disease.

  1. [Synthetic biology and rearrangements of microbial genetic material].

    Science.gov (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  2. Synthetic Biology and the Translational Imperative.

    Science.gov (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc

    2017-12-18

    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  3. Synthetic biology era: Improving antibiotic's world.

    Science.gov (United States)

    Guzmán-Trampe, Silvia; Ceapa, Corina D; Manzo-Ruiz, Monserrat; Sánchez, Sergio

    2017-06-15

    The emergence of antibiotic-resistant pathogen microorganisms is problematic in the context of the current spectrum of available medication. The poor specificity and the high toxicity of some available molecules have made imperative the search for new strategies to improve the specificity and to pursue the discovery of novel compounds with increased bioactivity. Using living cells as platforms, synthetic biology has counteracted this problem by offering novel pathways to create synthetic systems with improved and desired functions. Among many other biotechnological approaches, the advances in synthetic biology have made it possible to design and construct novel biological systems in order to look for new drugs with increased bioactivity. Advancements have also been made in the redesigning of RNA and DNA molecules in order to engineer antibiotic clusters for antibiotic overexpression. As for the production of these antibacterial compounds, yeasts and filamentous fungi as well as gene therapy are utilized to enhance protein solubility. Specific delivery is achieved by creating chimeras using plant genes into bacterial hosts. Some of these synthetic systems are currently in clinical trials, proving the proficiency of synthetic biology in terms of both pharmacological activities as well as an increase in the biosafety of treatments. It is possible that we may just be seeing the tip of the iceberg, and synthetic biology applications will overpass expectations beyond our present knowledge. Copyright © 2017. Published by Elsevier Inc.

  4. Synthetic and natural antioxidants: food quality protectors

    Directory of Open Access Journals (Sweden)

    Valenzuela, A.

    1996-06-01

    Full Text Available Oxidation of food lipid components, known as oxidative rancidity is one of the major deteriorative and quality-affecting reactions. Oxidative rancidity is initiated by oxygen free-radicals or by the reaction of molecular oxygen with pre-formed organic free-radicals from polyunsaturated fatty acids composing fats and oils. Oxidation may be prevented or delayed by antioxidants, these substances being organic molecules of either synthetic or natural origin which can scavenge the oxygen free-radicals involved in fatty acid oxidation. Synthetic antioxidants are the most popular and widely used antioxidants, however concerns about it safe to both human and animal health is encouraging research on substances from natural origin showing antioxidant properties. Few natural antioxidants have been proved to be effective when compared to synthetic products in the same experimental conditions. This work summarizes the main characteristics of the most important synthetic antioxidants, also discuss the principal characteristics of four natural antioxidants, comparing the advantages and disadvantages of using natural products compared to synthetic ones, and sight the future for natural products with antioxidant activity.

    La oxidación de los componentes lípidos de un alimento, conocida como rancidez oxidativa, es una de las reacciones que deteriora y afecta en forma más importante la calidad de un producto. La rancidez oxidativa es iniciada por radicales libres del oxígeno o por el ataque del oxígeno molecular a radicales libres pre-formados en los ácidos grasos poliinsaturados que forman las grasas y aceites. La oxidación puede ser prevenida o retrasada por los antioxidantes, sustancias orgánicas de origen sintético o natural que actúan como atrapadores de los radicales libres del oxígeno involucrados en la oxidación de los ácidos grasos. Los antioxidantes sintéticos son los más populares y ampliamente utilizados, sin embargo existe

  5. Synthetic bedding and wheeze in childhood.

    Science.gov (United States)

    Ponsonby, Anne-Louise; Dwyer, Terence; Kemp, Andrew; Cochrane, Jennifer; Couper, David; Carmichael, Allan

    2003-01-01

    The reasons for the increase in childhood asthma over time are unclear. The indoor environment is of particular concern. An adverse role for synthetic bedding on asthma development in childhood has been suggested by cross-sectional studies that have found an association between synthetic pillow use and childhood wheeze. Prospective data on infant bedding have not been available. Bedding data at 1 month of age were available from an infant survey for children who were participating in a 1995 follow-up study (N = 863; 78% traced). The 1995 follow-up was embedded in a larger cross-sectional survey involving 6,378 seven year olds in Tasmania (N = 92% of eligible). Outcome measures included respiratory symptoms as defined in the International Study of Asthma and Allergies in Childhood protocol. Frequent wheeze was defined as more than 12 wheeze episodes over the past year compared with no wheeze. Synthetic pillow use at 1 month of age was associated with frequent wheeze at age 7 (adjusted relative risk [aRR] = 2.5; 95% confidence interval [CI] = 1.2-5.5) independent of childhood exposure. Current synthetic pillow and quilt use was strongly associated with frequent wheeze (aRR = 5.2; CI = 1.3-20.6). Substantial trends were evident for an association of increasing number of synthetic bedding items with frequent wheeze and with increasing wheeze frequency. Among children with asthma, the age of onset of asthma occurred earlier if synthetic bedding was used in infancy. In this cohort, synthetic bedding was strongly and consistently associated with frequent childhood wheeze. The association did not appear to be attributable to bedding choice as part of an asthma management strategy.

  6. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  7. Synthetic Sling Failure - Evaluations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. S. [Washington River Protection Solutions, Richland, WA (United States); Mackey, Thomas C. [Washington River Protection Solutions, Richland, WA (United States)

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall

  8. Education through fiction: acquiring opinion-forming skills in the context of genomics

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; Severiens, S.E.; Klop, T.

    2009-01-01

    The present study examined the outcomes of a newly designed four-lesson science module on opinion-forming in the context of genomics in upper secondary education. The lesson plan aims to foster 16-year-old students’ opinion-forming skills in the context of genomics and to test the effect of the use

  9. Confidence in leadership among the newly qualified.

    Science.gov (United States)

    Bayliss-Pratt, Lisa; Morley, Mary; Bagley, Liz; Alderson, Steven

    2013-10-23

    The Francis report highlighted the importance of strong leadership from health professionals but it is unclear how prepared those who are newly qualified feel to take on a leadership role. We aimed to assess the confidence of newly qualified health professionals working in the West Midlands in the different competencies of the NHS Leadership Framework. Most respondents felt confident in their abilities to demonstrate personal qualities and work with others, but less so at managing or improving services or setting direction.

  10. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  11. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...... that goes beyond the scope of molecular biology and genetic engineering, respectively. With the emphasis on systems and interaction networks, the approaches explicitly engage in one of the oldest philosophical discussions on the relationship between parts and wholes, or between reductionism and holism...

  12. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  13. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  14. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Automated radiofrequency-based US measurement of common carotid intima-media thickness in RA patients treated with synthetic vs synthetic and biologic DMARDs.

    Science.gov (United States)

    Naredo, Esperanza; Möller, Ingrid; Corrales, Alfonso; Bong, David A; Cobo-Ibáñez, Tatiana; Corominas, Hector; Garcia-Vivar, Ma Luz; Macarrón, Pilar; Navio, Teresa; Richi, Patricia; Iagnocco, Annamaria; Garrido, Jesús; Martínez-Hernández, David

    2013-02-01

    To compare the carotid intima-media thickness (IMT) assessed with automated radiofrequency-based US in RA patients treated with synthetic vs synthetic and biologic DMARDs and controls. Ninety-four RA patients and 94 sex- and age-matched controls were prospectively recruited at seven centres. Cardiovascular (CV) risk factors and co-morbidities, RA characteristics and therapy were recorded. Common carotid artery (CCA)-IMT was assessed in RA patients and controls with automated radiofrequency-based US by the same investigator at each centre. Forty-five (47.9%) RA patients had been treated with synthetic DMARDs and 49 (52.1%) with synthetic and biologic DMARDs. There were no significant differences between the RA patients and controls in demographics, CV co-morbidities and CV disease. There were significantly more smokers among RA patients treated with synthetic and biologic DMARDs (P = 0.036). Disease duration and duration of CS and synthetic DMARD therapy was significantly longer in RA patients treated with synthetic and biologic DMARDs (P radiofrequency-based measurement of CCA-IMT can discriminate between RA patients treated with synthetic DMARDs vs RA patients treated with synthetic and biologic DMARDs.

  16. Heterogeneous reduction of nitric oxide on synthetic coal chars

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-12-01

    Model compounds, with a controlled heteroatoms content and well-defined functionalities, were used to study the release of nitrogen compounds from char combustion. In the present work, the mechanisms involved in NO-char heterogeneous reduction were studied with a synthetic coal (SC) char as carbon source. Another synthetic char (SN) without any nitrogen in its composition was also employed in these studies. Temperature programmed reduction (TPR) tests with a gas mixture of 400 ppm NO in argon and with isotopically labelled nitric oxide, {sup 15}NO (500 ppm {sup 15}NO in argon), were carried out. The gases produced were quantitatively determined by means of MS and FTIR analysers. Under the conditions of this work the main products of the NO-C reaction were found to be N{sub 2} and CO{sub 2}. The main path of reaction involves the formation of surface nitrogen compounds that afterwards react with nitrogen from the reactive gas to form N{sub 2}. It was observed that fuel-N also participates in the overall heterogeneous reduction reaction, although to a lesser extent.

  17. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Synthetic biology approaches in drug discovery and pharmaceutical biotechnology.

    Science.gov (United States)

    Neumann, Heinz; Neumann-Staubitz, Petra

    2010-06-01

    Synthetic biology is the attempt to apply the concepts of engineering to biological systems with the aim to create organisms with new emergent properties. These organisms might have desirable novel biosynthetic capabilities, act as biosensors or help us to understand the intricacies of living systems. This approach has the potential to assist the discovery and production of pharmaceutical compounds at various stages. New sources of bioactive compounds can be created in the form of genetically encoded small molecule libraries. The recombination of individual parts has been employed to design proteins that act as biosensors, which could be used to identify and quantify molecules of interest. New biosynthetic pathways may be designed by stitching together enzymes with desired activities, and genetic code expansion can be used to introduce new functionalities into peptides and proteins to increase their chemical scope and biological stability. This review aims to give an insight into recently developed individual components and modules that might serve as parts in a synthetic biology approach to pharmaceutical biotechnology.

  19. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    KAUST Repository

    Norville, Julie E.; Kelly, Deborah F.; Knight, Thomas F.; Belcher, Angela M.; Walz, Thomas

    2011-01-01

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally

  20. The Effects of Cannabinoids on Executive Functions: Evidence from Cannabis and Synthetic Cannabinoids—A Systematic Review

    Directory of Open Access Journals (Sweden)

    Koby Cohen

    2018-02-01

    Full Text Available Background—Cannabis is the most popular illicit drug in the Western world. Repeated cannabis use has been associated with short and long-term range of adverse effects. Recently, new types of designer-drugs containing synthetic cannabinoids have been widespread. These synthetic cannabinoid drugs are associated with undesired adverse effects similar to those seen with cannabis use, yet, in more severe and long-lasting forms. Method—A literature search was conducted using electronic bibliographic databases up to 31 December 2017. Specific search strategies were employed using multiple keywords (e.g., “synthetic cannabinoids AND cognition,” “cannabis AND cognition” and “cannabinoids AND cognition”. Results—The search has yielded 160 eligible studies including 37 preclinical studies (5 attention, 25 short-term memory, 7 cognitive flexibility and 44 human studies (16 attention, 15 working memory, 13 cognitive flexibility. Both pre-clinical and clinical studies demonstrated an association between synthetic cannabinoids and executive-function impairment either after acute or repeated consumptions. These deficits differ in severity depending on several factors including the type of drug, dose of use, quantity, age of onset and duration of use. Conclusions—Understanding the nature of the impaired executive function following consumption of synthetic cannabinoids is crucial in view of the increasing use of these drugs.

  1. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal

    2018-02-09

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  2. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal; Choudhry, Hani; Razvi, Syed Shoeb; Moselhy, Said Salama; Kumosani, Taha Abduallah; Zamzami, Mazin A.; Omran, Ziad; Halwani, Majed A.; Al-Babili, Salim; Abualnaja, Khalid Omer; Al-Malki, Abdulrahman Labeed; Alhosin, Mahmoud; Asami, Tadao

    2018-01-01

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  3. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  4. Problems faced by newly diagnosed diabetes mellitus patients at ...

    African Journals Online (AJOL)

    Diabetes mellitus can be a frightening experience for newly diagnosed patients. The aim of this study was to determine and describe the problems faced by newly diagnosed diabetes mellitus patients at primary healthcare facilities at Mopani district, Limpopo Province. A qualitative, descriptive and contextual research ...

  5. Mass Spectrometric Analysis of Synthetic Organic Pigments.

    Science.gov (United States)

    Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi

    2018-04-18

    Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.

  6. Newly graduated nurses' use of knowledge sources in clinical decision-making

    DEFF Research Database (Denmark)

    Voldbjerg, Siri Lygum; Grønkjaer, Mette; Wiechula, Rick

    2017-01-01

    AIMS AND OBJECTIVES: To explore which knowledge sources newly graduated nurses' use in clinical decision-making and why and how they are used. BACKGROUND: In spite of an increased educational focus on skills and competencies within evidence based practice newly graduated nurses' ability to use...... approaches to strengthen the knowledgebase used in clinical decision-making. DESIGN AND METHODS: Ethnographic study using participant-observation and individual semi-structured interviews of nine Danish newly graduated nurses in medical and surgical hospital settings. RESULTS: Newly graduates use...... in clinical decision-making. If newly graduates are to be supported in an articulate and reflective use of a variety of sources, they have to be allocated to experienced nurses who model a reflective, articulate and balanced use of knowledge sources. This article is protected by copyright. All rights reserved....

  7. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj

    2014-01-01

    and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses...... heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting...

  8. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  9. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  10. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  11. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  12. Towards a synthetic osteo-odonto-keratoprosthesis.

    Science.gov (United States)

    Viitala, Reeta; Franklin, Valerie; Green, David; Liu, Christopher; Lloyd, Andrew; Tighe, Brian

    2009-01-01

    Osteo-odonto-keratoprostheses (OOKP) is a unique form of keratoprosthesis involving surgical removal of a tooth root and surrounding bone from the patient which are then used to construct an osteo-odonto lamina into which an optical cylinder is cemented. The OOKP procedure is successful and capable of withstanding the very hostile ocular environments found in severe Stevens-Johnson syndrome, pemphigoid, chemical burns, trachoma and multiple corneal graft failure. The existing procedure is complex and time consuming in terms of operative time, and additionally involves sacrifice of the oral structures. This paper discusses the rational search for a "synthetic" analogue of the dental lamina, capable of mimicking those features of the natural system that are responsible for the success of OOKP. In this study the degradation of selected commercial and natural bioceramics was tested in vitro using a purpose-designed resorption assay. Degradation rate was compared with tooth and bone, which are currently used in OOKP lamina. At normal physiological pH the degradation of bioceramics was equivalent to tooth and bone; however, at pH 6.5-5.0, associated with infectious and inflamed tissues, the bioceramics degrade more rapidly. At lower pH the degradation rate decreased in the following order: calcium carbonate corals>biphasic calcium phosphates>hydroxyapatite. Porosity did not significantly influence these degradation rates. Such degradation is likely to compromise the stability and viability of the synthetic OOKP. Consequently more chemically stable materials are required that are optimized for the surrounding ocular environment.

  13. Nanocrystallography measurements of early stage synthetic malaria pigment

    International Nuclear Information System (INIS)

    Dilanian, Ruben A.; Coughlan, Hannah D.

    2017-01-01

    The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data. If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.

  14. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  15. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  16. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  17. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  19. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  20. A Newly Improved Modified Method Development and Validation of Bromofenac Sodium Sesquihydrate in Bulk Drug Manufacturing

    OpenAIRE

    Sunil Kumar Yelamanchi V; Useni Reddy Mallu; I. V Kasi Viswanath; D. Balasubramanyam; G. Narshima Murthy

    2016-01-01

    The main objective of this study was to develop a simple, efficient, specific, precise and accurate newly improved modified Reverse Phase High Performance Liquid Chromatographic Purity (or) Related substance method for bromofenac sodium sesquihydrate active pharmaceuticals ingredient dosage form. Validation of analytical method is the confirmation by examination and the provision of objective evidence that the particular requirements for a specific intended use are fulfilled as per ICH, USP...

  1. The construction of social identity in newly recruited nuclear engineering staff: A longitudinal study

    International Nuclear Information System (INIS)

    Nguyen, Lynda; Murphy, Glen; Chang, Artemis

    2014-01-01

    This study examines the process by which newly recruited nuclear engineering and technical staff came to understand, define, think, feel and behave within a distinct group that has a direct contribution to the organization's overall emphasis on a culture of reliability and system safety. In the field of organizational behavior the interactive model of social identity formation has been recently proposed to explain the process by which the internalization of shared norms and values occurs, an element critical in identity formation. Using this rich model of organizational behavior we analyzed multiple sources of data from nine new hires over a period of three years. This was done from the time they were employed to investigate the construction of social identity by new entrants entering into a complex organizational setting reflected in the context of a nuclear facility. Informed by our data analyses, we found support for the interactive model of social identity development and report the unexpected finding that a newly appointed member's age and level of experience appears to influence the manner in which they adapt, and assimilate into their surroundings. This study represents an important contribution to the safety and reliability literature as it provides a rich insight into the way newly recruited employees enact the process by which their identities are formed and hence act, particularly under conditions of duress or significant organizational disruption in complex organizational settings. - Highlights: • We examined how newly recruited nuclear engineer staff develop their social identity. • The study empirically examined the interactive model of social identity formation. • Innovative research strategies were used to capture rich primary data for all case studies. • Age and experience moderated internalization route and the social identity formation process

  2. Synthetic Sediments and Stochastic Groundwater Hydrology

    Science.gov (United States)

    Wilson, J. L.

    2002-12-01

    For over twenty years the groundwater community has pursued the somewhat elusive goal of describing the effects of aquifer heterogeneity on subsurface flow and chemical transport. While small perturbation stochastic moment methods have significantly advanced theoretical understanding, why is it that stochastic applications use instead simulations of flow and transport through multiple realizations of synthetic geology? Allan Gutjahr was a principle proponent of the Fast Fourier Transform method for the synthetic generation of aquifer properties and recently explored new, more geologically sound, synthetic methods based on multi-scale Markov random fields. Focusing on sedimentary aquifers, how has the state-of-the-art of synthetic generation changed and what new developments can be expected, for example, to deal with issues like conceptual model uncertainty, the differences between measurement and modeling scales, and subgrid scale variability? What will it take to get stochastic methods, whether based on moments, multiple realizations, or some other approach, into widespread application?

  3. Parameter Optimization of Multi-Element Synthetic Aperture Imaging Systems

    Directory of Open Access Journals (Sweden)

    Vera Behar

    2007-03-01

    Full Text Available In conventional ultrasound imaging systems with phased arrays, the further improvement of lateral resolution requires enlarging of the number of array elements that in turn increases both, the complexity and the cost, of imaging systems. Multi-element synthetic aperture focusing (MSAF systems are a very good alternative to conventional systems with phased arrays. The benefit of the synthetic aperture is in reduction of the system complexity, cost and acquisition time. In a MSAF system considered in the paper, a group of elements transmit and receive signals simultaneously, and the transmit beam is defocused to emulate a single element response. The echo received at each element of a receive sub-aperture is recorded in the computer memory. The process of transmission/reception is repeated for all positions of a transmit sub-aperture. All the data recordings associated with each corresponding pair "transmit-receive sub-aperture" are then focused synthetically producing a low-resolution image. The final high-resolution image is formed by summing of the all low-resolution images associated with transmit/receive sub-apertures. A problem of parameter optimization of a MSAF system is considered in this paper. The quality of imaging (lateral resolution and contrast is expressed in terms of the beam characteristics - beam width and side lobe level. The comparison between the MSAF system described in the paper and an equivalent conventional phased array system shows that the MSAF system acquires images of equivalent quality much faster using only a small part of the power per image.

  4. Hepatic protein synthetic activity in vivo after ethanol administration

    International Nuclear Information System (INIS)

    Donohue, T.M. Jr.; Sorrell, M.F.; Tuma, D.J.

    1987-01-01

    Hepatic protein synthetic activity in vivo was measured by the incorporation of [ 3 H]puromycin into elongating nascent polypeptides of rat liver to form peptidyl-[ 3 H]puromycin. Our initial experiments showed that saturating doses of [ 3 H]puromycin were achieved at 3-6 mumol/100 g body weight, and that maximum labeling of nascent polypeptides was obtained 30 min after injection of the labeled precursor. Labeled puromycin was found to be suitable for measuring changes in the status of protein synthesis, since the formation of the peptidyl-[ 3 H]puromycin was decreased in fasted animals and was increased in rats pretreated with L-tryptophan. [ 3 H]Puromycin incorporation into polypeptides was then measured after acute ethanol administration as well as after prolonged consumption of ethanol which was administered as part of a liquid diet for 31 days. Acute alcohol treatment caused no significant change in [ 3 H]puromycin incorporation into liver polypeptides. In rats exposed to chronic ethanol feeding, peptidyl-[3H]puromycin formation, when expressed per mg of protein, was slightly lower compared to pair-fed controls, but was unchanged compared to chow-fed animals. When the data were expressed per mg of DNA or per 100 g body wt, no differences in protein synthetic activity were observed among the three groups. These findings indicate that neither acute nor chronic alcohol administration significantly affects protein synthetic activity in rat liver. They further suggest that accumulation of protein in the liver, usually seen after prolonged ethanol consumption, is apparently not reflected by an alteration of hepatic protein synthesis

  5. [Progress in synthetic biology of "973 Funding Program" in China].

    Science.gov (United States)

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  6. Newly Generated Liquid Waste Processing Alternatives Study, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Landman, William Henry; Bates, Steven Odum; Bonnema, Bruce Edward; Palmer, Stanley Leland; Podgorney, Anna Kristine; Walsh, Stephanie

    2002-09-01

    This report identifies and evaluates three options for treating newly generated liquid waste at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory. The three options are: (a) treat the waste using processing facilities designed for treating sodium-bearing waste, (b) treat the waste using subcontractor-supplied mobile systems, or (c) treat the waste using a special facility designed and constructed for that purpose. In studying these options, engineers concluded that the best approach is to store the newly generated liquid waste until a sodium-bearing waste treatment facility is available and then to co-process the stored inventory of the newly generated waste with the sodium-bearing waste. After the sodium-bearing waste facility completes its mission, two paths are available. The newly generated liquid waste could be treated using the subcontractor-supplied system or the sodium-bearing waste facility or a portion of it. The final decision depends on the design of the sodium-bearing waste treatment facility, which will be completed in coming years.

  7. Scientific iconoclasm and active imagination: synthetic cells as techno-scientific mandalas.

    Science.gov (United States)

    Zwart, Hub

    2018-05-14

    Metaphors allow us to come to terms with abstract and complex information, by comparing it to something which is structured, familiar and concrete. Although modern science is "iconoclastic", as Gaston Bachelard phrases it (i.e. bent on replacing living entities by symbolic data: e.g. biochemical and mathematical symbols and codes), scientists are at the same time prolific producers of metaphoric images themselves. Synthetic biology is an outstanding example of a technoscientific discourse replete with metaphors, including textual metaphors such as the "Morse code" of life, the "barcode" of life and the "book" of life. This paper focuses on a different type of metaphor, however, namely on the archetypal metaphor of the mandala as a symbol of restored unity and wholeness. Notably, mandala images emerge in textual materials (papers, posters, PowerPoints, etc.) related to one of the new "frontiers" of contemporary technoscience, namely the building of a synthetic cell: a laboratory artefact that functions like a cell and is even able to replicate itself. The mandala symbol suggests that, after living systems have been successfully reduced to the elementary building blocks and barcodes of life, the time has now come to put these fragments together again. We can only claim to understand life, synthetic cell experts argue, if we are able to technically reproduce a fully functioning cell. This holistic turn towards the cell as a meaningful whole (a total work of techno-art) also requires convergence at the "subject pole": the building of a synthetic cell as a practice of the self, representing a turn towards integration, of multiple perspectives and various forms of expertise.

  8. Synthetic nat- or ent-steroids in as few as five chemical steps from epichlorohydrin

    Science.gov (United States)

    Kim, Wan Shin; Du, Kang; Eastman, Alan; Hughes, Russell P.; Micalizio, Glenn C.

    2018-01-01

    Today, more than 100 Food and Drug Administration-approved steroidal agents are prescribed daily for indications including heart failure, inflammation, pain and cancer. While triumphs in organic chemistry have enabled the establishment and sustained growth of the steroid pharmaceutical industry, the production of highly functionalized synthetic steroids of varying substitution and stereochemistry remains challenging, despite the numerous reports of elegant strategies for their de novo synthesis. Here, we describe an advance in chemical synthesis that has established an enantiospecific means to access novel steroids with unprecedented facility and flexibility through the sequential use of two powerful ring-forming reactions: a modern metallacycle-mediated annulative cross-coupling and a new acid-catalysed vinylcyclopropane rearrangement cascade. In addition to accessing synthetic steroids of either enantiomeric series, these steroidal products have been selectively functionalized within each of the four carbocyclic rings, a synthetic ent-steroid has been prepared on a multigram scale, the enantiomer of a selective oestrogen has been synthesized, and a novel ent-steroid with growth inhibitory properties in three cancer cell lines has been discovered.

  9. Sky View Factors from Synthetic Fisheye Photos for Thermal Comfort Routing—A Case Study in Phoenix, Arizona

    Directory of Open Access Journals (Sweden)

    Ariane Middel

    2017-03-01

    Full Text Available The Sky View Factor (SVF is a dimension-reduced representation of urban form and one of the major variables in radiation models that estimate outdoor thermal comfort. Common ways of retrieving SVFs in urban environments include capturing fisheye photographs or creating a digital 3D city or elevation model of the environment. Such techniques have previously been limited due to a lack of imagery or lack of full scale detailed models of urban areas. We developed a web based tool that automatically generates synthetic hemispherical fisheye views from Google Earth at arbitrary spatial resolution and calculates the corresponding SVFs through equiangular projection. SVF results were validated using Google Maps Street View and compared to results from other SVF calculation tools. We generated 5-meter resolution SVF maps for two neighborhoods in Phoenix, Arizona to illustrate fine-scale variations of intra-urban horizon limitations due to urban form and vegetation. To demonstrate the utility of our synthetic fisheye approach for heat stress applications, we automated a radiation model to generate outdoor thermal comfort maps for Arizona State University’s Tempe campus for a hot summer day using synthetic fisheye photos and on-site meteorological data. Model output was tested against mobile transect measurements of the six-directional radiant flux density. Based on the thermal comfort maps, we implemented a pedestrian routing algorithm that is optimized for distance and thermal comfort preferences. Our synthetic fisheye approach can help planners assess urban design and tree planting strategies to maximize thermal comfort outcomes and can support heat hazard mitigation in urban areas.

  10. Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library

    Directory of Open Access Journals (Sweden)

    Goldman Ellen R

    2007-11-01

    Full Text Available Abstract Background Shark heavy chain antibody, also called new antigen receptor (NAR, consists of one single Variable domain (VH, containing only two complementarity-determining regions (CDRs. The antigen binding affinity and specificity are mainly determined by these two CDRs. The good solubility, excellent thermal stability and complex sequence variation of small single domain antibodies (sdAbs make them attractive alternatives to conventional antibodies. In this report, we construct and characterize a diversity enhanced semi-synthetic NAR V display library based on naturally occurring NAR V sequences. Results A semi-synthetic shark sdAb display library with a complexity close to 1e9 was constructed. This was achieved by introducing size and sequence variations in CDR3 using randomized CDR3 primers of three different lengths. Binders against three toxins, staphylococcal enterotoxin B (SEB, ricin, and botulinum toxin A (BoNT/A complex toxoid, were isolated from panning the display library. Soluble sdAbs from selected binders were purified and evaluated using direct binding and thermal stability assays on the Luminex 100. In addition, sandwich assays using sdAb as the reporter element were developed to demonstrate their utility for future sensor applications. Conclusion We demonstrated the utility of a newly created hyper diversified shark NAR displayed library to serve as a source of thermal stable sdAbs against a variety of toxins.

  11. A Parvovirus B19 synthetic genome: sequence features and functional competence.

    Science.gov (United States)

    Manaresi, Elisabetta; Conti, Ilaria; Bua, Gloria; Bonvicini, Francesca; Gallinella, Giorgio

    2017-08-01

    Central to genetic studies for Parvovirus B19 (B19V) is the availability of genomic clones that may possess functional competence and ability to generate infectious virus. In our study, we established a new model genetic system for Parvovirus B19. A synthetic approach was followed, by design of a reference genome sequence, by generation of a corresponding artificial construct and its molecular cloning in a complete and functional form, and by setup of an efficient strategy to generate infectious virus, via transfection in UT7/EpoS1 cells and amplification in erythroid progenitor cells. The synthetic genome was able to generate virus with biological properties paralleling those of native virus, its infectious activity being dependent on the preservation of self-complementarity and sequence heterogeneity within the terminal regions. A virus of defined genome sequence, obtained from controlled cell culture conditions, can constitute a reference tool for investigation of the structural and functional characteristics of the virus. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Reasons for Synthetic THC Use among College Students

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Burbage, Michelle L.

    2013-01-01

    Synthetic THC, also known as fake marijuana, is used by college students in the United States. The present study examined reasons for recent synthetic THC use among college students (N = 339). Students completed a 3-page survey during regularly scheduled class times. Results indicated students reported using synthetic THC for curiosity, to get…

  13. Defining the Synthetic Biology Supply Chain

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.; Diggans, James; Bartholomew, Rachel A.; Gehrig, Lindsey; Greaves, Mark

    2017-08-01

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and means to interdict, detect, or deter suspicious activity.

  14. Synthetic biology regulation and governance: Lessons from TAPIC for the United States, European Union, and Singapore.

    Science.gov (United States)

    Trump, Benjamin D

    2017-11-01

    Synthetic biology is an emerging technology with potential benefits to various fields, yet also contains potential risks to human and environmental health. The field remains in an emerging state with limited quantitative guidance and a small but growing population of international researchers that conduct work within this field. Given the uncertain nature of this technology, an adaptive and anticipatory governance framework may be necessary to balance the potential benefits that may accrue from the technology's continued research alongside a desire to reduce or eliminate potential risks that may arise. However, such developments must account for the unique political and institutional factors that form a government's risk culture - something that can facilitate or impede the development of adaptive synthetic biology governance moving forward. The TAPIC framework helps illustrate those factors that are essential to develop good governance for emerging technologies like synthetic biology. Specifically, an application of TAPIC to synthetic biology governance indicates that the factors of accountability, participation, and integrity must be bolstered to improve technology governance in governments like with the United States, European Union, and Singapore. Copyright © 2017. Published by Elsevier B.V.

  15. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. [How to be prudent with synthetic biology. Synthetic Biology and the precautionary principle].

    Science.gov (United States)

    Rodríguez López, Blanca

    2014-01-01

    Synthetic biology is a new discipline that is twofold: firstly it offers the promise to pay benefits that can alleviate some of the ills that plague mankind; On the other hand, like all technologies, holds risks. Given these, the most critical and concerned about the risks, invoke the application of the precautionary principle, common in cases where an activity or new technology creates risks to the environment and/or human health, but far from universally accepted happens to be currently one of the most controversial principles. In this paper the question of the risks and benefits of synthetic biology and the relevance of applying the precautionary principle are analyzed. To do this we proceed as follows. The first part focuses on synthetic biology. At first, this discipline is characterized, with special attention to what is novel compared to the known as "genetic engineering". In the second stage both the benefits and the risks associated with it are discussed. The first part concludes with a review of the efforts currently being made to control or minimize the risks. The second part aims to analyze the precautionary principle and its possible relevance to the case of Synthetic Biology. At first, the different versions and interpretations of the principle and the various criticisms of which has been the subject are reviewed. Finally, after discarding the Precautionary Principle as an useful tool, it is seen as more appropriate some recent proposals to treat technologies that take into account not only risks but also their benefits.

  17. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  18. Playing God in Frankenstein's Footsteps: Synthetic Biology and the Meaning of Life.

    Science.gov (United States)

    van den Belt, Henk

    2009-12-01

    The emergent new science of synthetic biology is challenging entrenched distinctions between, amongst others, life and non-life, the natural and the artificial, the evolved and the designed, and even the material and the informational. Whenever such culturally sanctioned boundaries are breached, researchers are inevitably accused of playing God or treading in Frankenstein's footsteps. Bioethicists, theologians and editors of scientific journals feel obliged to provide an authoritative answer to the ambiguous question of the 'meaning' of life, both as a scientific definition and as an explication with wider existential connotations. This article analyses the arguments mooted in the emerging societal debates on synthetic biology and the way its practitioners respond to criticism, mostly by assuming a defiant posture or professing humility. It explores the relationship between the 'playing God' theme and the Frankenstein motif and examines the doctrinal status of the 'playing God' argument. One particularly interesting finding is that liberal theologians generally deny the religious character of the 'playing God' argument-a response which fits in with the curious fact that this argument is used mainly by secular organizations. Synthetic biology, it is therefore maintained, does not offend so much the God of the Bible as a deified Nature. While syntheses of artificial life forms cause some vague uneasiness that life may lose its special meaning, most concerns turn out to be narrowly anthropocentric. As long as synthetic biology creates only new microbial life and does not directly affect human life, it will in all likelihood be considered acceptable.

  19. Generation of synthetic time histories compatible with multiple-damping design response spectra

    International Nuclear Information System (INIS)

    Lilhanand, K.; Tseng, W.S.

    1987-01-01

    Seismic design of nuclear power plants as currently practiced requires time history analyses be performed to generate floor response spectra for seismic qualification of piping, equipment, and components. Since design response spectra are normally prescribed in the form of smooth spectra, the generation of synthetic time histories whose response spectra closely match the ''target'' design spectra of multiple damping values, is often required for the seismic time history analysis purpose. Various methods of generation of synthetic time histories compatible with target response spectra have been proposed in the literature. Since the mathematical problem of determining a time history from a given set of response spectral values is not unique, an exact solution is not possible, and all the proposed methods resort to some forms of approximate solutions. In this paper, a new iteration scheme, is described which effectively removes the difficulties encountered by the existing methods. This new iteration scheme can not only improve the accuracy of spectrum matching for a single-damping target spectrum, but also automate the spectrum matching for multiple-damping target spectra. The applicability and limitations as well as the method adopted to improve the numerical stability of this new iteration scheme are presented. The effectiveness of this new iteration scheme is illustrated by two example applications

  20. Effect of micellized natural (D-α-tocopherol) vs. synthetic (DL-α-tocopheryl acetate) vitamin E supplementation given to turkeys on oxidative status and breast meat quality characteristics.

    Science.gov (United States)

    Rey, A I; Segura, J; Olivares, A; Cerisuelo, A; Piñeiro, C; López-Bote, C J

    2015-06-01

    This study evaluates the effect of vitamin E supplementation source (micellized natural vs. the synthetic form) and dosage (40, 80, or 120 mg/kg) on α-tocopherol concentration in plasma and muscle, antioxidant capacity, and breast meat quality in turkeys. Three hundred female turkeys were randomly selected at an average live weight 63.2 g±0.5 and distributed into 7 groups. One group (control) was fed a standard diet without vitamin E supplementation and the other 6 were given mixed diets supplemented with the natural (d-α-tocopherol) or synthetic (dl-α-tocopheryl acetate) form of vitamin E in 3 dosages (40, 80, or 120 mg/kg). Following 11 wk feeding, results showed that performance parameters were not modified either by source or dosage of vitamin E supplementation to the turkeys. Plasma and muscle α-tocopherol at d 9 of refrigerated storage were higher when turkeys were supplemented with the natural form at higher doses. Losses in the concentration of α-tocopherol in meat between the beginning and the end of the 9 d refrigerated storage were greater in the groups supplemented with the synthetic form of vitamin E compared to those receiving the natural supplementation. The relationship between plasma α-tocopherol and the Trolox equivalent antioxidant capacity followed a different trend depending on the vitamin E source. Intramuscular fat was not significantly affected by the vitamin E source supplementation; however the slope of the linear regression equation was lower for the natural form than for the synthetic form. Turkeys given the natural form had higher C18:1n-9 but lower C15:1, C17:1, C20:5n-3, and C22:6n-3 in breast muscle. Meat samples from turkeys supplemented with natural vitamin E had higher deoxymyoglobin at d 3, 6, and 9 and lower metmyoglobin at d 9 of refrigerated storage than those receiving the synthetic form. Dietary supplementation with medium doses (80 mg/kg) micellized d-α-tocopherol is an interesting feeding strategy for

  1. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  2. High resolution spectroscopy over 8500-8750 Å for GAIA library of synthetic spectra for T_eff <= 7500 K

    Science.gov (United States)

    Munari, U.; Castelli, F.

    2000-01-01

    We present a library of synthetic spectra characterized by -2.5 7500 K will be given later on in this series. The 254 synthetic spectra presented here are based on Kurucz's codes and line data and have been computed over a more extended wavelength interval (7650-8750 Ä) than that currently baselined for implementation on GAIA, i.e. the 8500-8750 Ä. This last range is dominated by the near-IR Ca II triplet and the head of the Paschen series. The more extended wavelength range allows us to investigate the behaviour of other strong near-IR spectral features (severely contaminated by telluric absorptions in ground-based observed spectra) as the K I doublet (7664, 7699 Ä), the Na I doublet (8183, 8194 Ä) and the lines of Fe I multiplet N.60 at 8327 and 8388 Ä. The synthetic spectra support our previous conclusions about the superior performance of the Paschen/Ca II 8500-8750 Ä region in meeting the GAIA requirements when compared to other near-IR intervals of similar bigtriangleup lambda = 250 Ä. Table 2 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html Figures 5-93 are only available in electronic form at the http://www.edpsciences.org The spectra are also available in electronic form at the CDS or via the personal HomePage http://ulisse.pd.astro.it/Astro/Atlases/

  3. Remunicipalisation and Foundation of Municipal Utilities in the German Energy Sector: Details about Newly Established Enterprises

    Directory of Open Access Journals (Sweden)

    Oliver Wagner

    2017-09-01

    Full Text Available Since the majority of network concession contracts in Germany were set to expire some time between 2005 and 2016, a window of opportunity arose in which to rebuild and remunicipalise the local energy supply. As a result, 72 new local power companies were established in Germany within the space of just seven years (between early 2005 and late 2012. This paper provides an introduction to the topic of establishing municipal utilities in Germany. The findings were identified on the basis of the comprehensive screening of all newly established municipal utilities in Germany. Our analysis provides information about regional concentration, the size of municipalities, the legal forms of the newly founded municipal public utilities and the role of strategic partnerships. The key findings are that remunicipalisation is not a question of size and that knowledge gaps may be closed by entering into close strategic partnerships.

  4. Comparison of outcome expectancies for synthetic cannabinoids and botanical marijuana.

    Science.gov (United States)

    Lauritsen, Kirstin J; Rosenberg, Harold

    2016-07-01

    Although initially developed for medical purposes, synthetic cannabinoids have also been consumed for recreational purposes. To evaluate whether agreement with positive and negative outcome expectancies differed for synthetic cannabinoids versus botanical marijuana, and assess reported reasons for using synthetic cannabinoids. Using a web-based recruitment and data collection procedure, 186 adults who had used both synthetic cannabinoids and botanical marijuana and 181 adults who had used botanical marijuana but not synthetic cannabinoids, completed measures of outcome expectancies and other relevant questionnaires. A significant interaction revealed that participants who had used both synthetic cannabinoids and botanical marijuana indicated lower agreement with positive expectancies for synthetic cannabinoids, and higher agreement with positive expectancies for botanical marijuana, than did those participants who used only botanical marijuana. There was no interaction between type of drug and use history on agreement with negative expectancies, and participants agreed more strongly with negative outcome expectancies for synthetic cannabinoids than for botanical marijuana whether they had used one or both types of these drugs. The most frequently provided reasons for using synthetic cannabinoids included availability, perceived legality, cost, curiosity, and social interaction. Given growing public acceptance of recreational and medical marijuana, coupled with negative perceptions and increasing regulation of synthetic cannabinoid compounds, botanical marijuana is likely to remain more available and more popular than synthetic cannabinoids.

  5. Health Risk Behaviors With Synthetic Cannabinoids Versus Marijuana.

    Science.gov (United States)

    Clayton, Heather B; Lowry, Richard; Ashley, Carmen; Wolkin, Amy; Grant, Althea M

    2017-04-01

    Data are limited on the behavioral risk correlates of synthetic cannabinoid use. The purpose of this study was to compare the behavioral risk correlates of synthetic cannabinoid use with those among marijuana users. Data from the 2015 Youth Risk Behavior Survey, a cross-sectional survey conducted in a nationally representative sample of students in grades 9 through 12 ( N = 15 624), were used to examine the association between self-reported type of marijuana use (ie, never use of marijuana and synthetic cannabinoids, ever use of marijuana only, and ever use of synthetic cannabinoids) and self-report of 36 risk behaviors across 4 domains: substance use, injury/violence, mental health, and sexual health. Multivariable models were used to calculate adjusted prevalence ratios. Students who ever used synthetic cannabinoids had a significantly greater likelihood of engaging in each of the behaviors in the substance use and sexual risk domains compared with students who ever used marijuana only. Students who ever used synthetic cannabinoids were more likely than students who ever used marijuana only to have used marijuana before age 13 years, to have used marijuana ≥1 times during the past 30 days, and to have used marijuana ≥20 times during the past 30 days. Several injury/violence behaviors were more prevalent among students who ever used synthetic cannabinoids compared with students who ever used marijuana only. Health professionals and school-based substance use prevention programs should include strategies focused on the prevention of both synthetic cannabinoids and marijuana. Copyright © 2017 by the American Academy of Pediatrics.

  6. The practical skills of newly qualified nurses.

    Science.gov (United States)

    Danbjørg, Dorthe Boe; Birkelund, Regner

    2011-02-01

    This paper reports the findings from a study of newly qualified nurses and which subjects the nurses regarded as the most important in order to be able to live up to the requirements of clinical practice, and how they experience their potential for developing practical and moral skills, after the decrease in practical training. A qualitative approach guided the research process and the analysis of the data. The data was collected by participant observation and qualitative interviews with four nurses as informants. The conclusions made in this study are based on the statements and the observations of the newly qualified nurses. Our findings are discussed in relation to the Aristotelian concept and other relevant literature. The main message is that the newly qualified nurses did not feel equipped when they finished their training. This could be interpreted as a direct consequence of the decrease in practical training. Our study also underlines that the way nursing theory is perceived and taught is problematic. The interviews revealed that the nurses think that nursing theories should be applied directly in practice. This misunderstanding is probably also applicable to the teachers of the theories. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Newly graduated nurses' use of knowledge sources: a meta-ethnography.

    Science.gov (United States)

    Voldbjerg, Siri Lygum; Grønkjaer, Mette; Sørensen, Erik Elgaard; Hall, Elisabeth O C

    2016-08-01

    To advance evidence on newly graduated nurses' use of knowledge sources. Clinical decisions need to be evidence-based and understanding the knowledge sources that newly graduated nurses use will inform both education and practice. Qualitative studies on newly graduated nurses' use of knowledge sources are increasing though generated from scattered healthcare contexts. Therefore, a metasynthesis of qualitative research on what knowledge sources new graduates use in decision-making was conducted. Meta-ethnography. Nineteen reports, representing 17 studies, published from 2000-2014 were identified from iterative searches in relevant databases from May 2013-May 2014. Included reports were appraised for quality and Noblit and Hare's meta-ethnography guided the interpretation and synthesis of data. Newly graduated nurses' use of knowledge sources during their first 2-year postgraduation were interpreted in the main theme 'self and others as knowledge sources,' with two subthemes 'doing and following' and 'knowing and doing,' each with several elucidating categories. The metasynthesis revealed a line of argument among the report findings underscoring progression in knowledge use and perception of competence and confidence among newly graduated nurses. The transition phase, feeling of confidence and ability to use critical thinking and reflection, has a great impact on knowledge sources incorporated in clinical decisions. The synthesis accentuates that for use of newly graduated nurses' qualifications and skills in evidence-based practice, clinical practice needs to provide a supportive environment which nurtures critical thinking and questions and articulates use of multiple knowledge sources. © 2016 John Wiley & Sons Ltd.

  8. Autonomy and Fear of Synthetic Biology: How Can Patients' Autonomy Be Enhanced in the Field of Synthetic Biology? A Qualitative Study with Stable Patients.

    Science.gov (United States)

    Rakic, Milenko; Wienand, Isabelle; Shaw, David; Nast, Rebecca; Elger, Bernice S

    2017-04-01

    We analyzed stable patients' views regarding synthetic biology in general, the medical application of synthetic biology, and their potential participation in trials of synthetic biology in particular. The aim of the study was to find out whether patients' views and preferences change after receiving more detailed information about synthetic biology and its clinical applications. The qualitative study was carried out with a purposive sample of 36 stable patients, who suffered from diabetes or gout. Interviews were transcribed verbatim, translated and fully anonymized. Thematic analysis was applied in order to examine stable patients' attitudes towards synthetic biology, its medical application, and their participation in trials. When patients were asked about synthetic biology in general, most of them were anxious that something uncontrollable could be created. After a concrete example of possible future treatment options, patients started to see synthetic biology in a more positive way. Our study constitutes an important first empirical insight into stable patients' views on synthetic biology and into the kind of fears triggered by the term "synthetic biology." Our results show that clear and concrete information can change patients' initial negative feelings towards synthetic biology. Information should thus be transmitted with great accuracy and transparency in order to reduce irrational fears of patients and to minimize the risk that researchers present facts too positively for the purposes of persuading patients to participate in clinical trials. Potential participants need to be adequately informed in order to be able to autonomously decide whether to participate in human subject research involving synthetic biology.

  9. Revealing the glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1, serotype Ogawa with the BSA protein carrier using LC-ESI-QqTOF-MS/MS

    Science.gov (United States)

    Jahouh, Farid; Saksena, Rina; Kováč, Pavol; Banoub, Joseph

    2012-01-01

    In this manuscript, we present the determination of glycation sites in synthetic neoglycoconjugates formed by conjugation of the antigenic monosaccharide hapten of Vibrio cholerae O1 serotype Ogawa to BSA using nano- liquid chromatography electrospray ionization quadrupole time-of-flight tandem mass spectroscopy (LC-ESI-QqTOF-MS/MS). The matrix-assisted laser desorption/ionization-TOF/TOF-MS/MS analyses of the tryptic digests of the glycoconjugates having a hapten:BSA ratio of 4.3:1, 6.6:1 and 13.2:1 revealed only three glycation sites, on the following lysine residues: Lys 235, Lys 437 and Lys 455. Digestion of the neoglycoconjugates with the proteases trypsin and GluC V8 gave complementary structural information and was shown to maximize the number of recognized glycation sites. Here, we report identification of 20, 27 and 33 glycation sites using LC-ESI-QqTOF-MS/MS analysis of a series of synthetic neoglycoconjugates with a hapten:BSA ratio of, respectively, 4.3:1, 6.6:1 and 13.2:1. We also tentatively propose that all the glycated lysine residues are located mainly near the outer surface of the protein. PMID:22791257

  10. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Science.gov (United States)

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  11. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    OpenAIRE

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  12. Synthetic cannabinoid: prevalence, mechanisms of addiction development, mental disorders associated with the use of synthetic cannabinoid

    Directory of Open Access Journals (Sweden)

    Antsyborov A.V.

    2017-04-01

    Full Text Available according to the authors among the new psychoactive substances, the number of which is growing every year, despite the measures aimed at the obstacles to their dissemination there discovered the most frequent violations of psychotic conditions associated with use of synthetic cannabinoid in clinical practice. On the black market, they are distributed through online shops, under the guise of herbal mixtures for Smoking. When ingested, this group of drugs at the peak of intoxication raises a number of mental (different according to the depth of impaired consciousness, auditory and visual hallucinations, panic attacks, acute psychotic paranoid disorders, catatonic stupor, polar affective disorders, acute polythematic delusional symptoms and somatic disorders (disorders of heart rhythm and conduction, acute ischemic disorders, hypertension, depression of respiratory activity, violation of thermoregulation, development of acute renal failure, vomiting, expressed cephalgia, clinic of hypokalemia. In the reviewed literature and authors own observations there have been discovered some cases of mental addiction development to synthetic cannabinoids. The analysis of new literature data and own clinical observations helped the authors to compare the psychotropic effects caused by this group of drugs, relative to other known surfactants. The toxic effects of CSC on the body greatly exceeds the use of plant cannabinoids, and it has almost the same effects as the synthetic cathinone’s. The speed of formation of psychological dependence is lower compared to synthetic cathinone. Developing current strategies for diagnosis, treatment, and rehabilitation of patients who use synthetic cannabinoids remains an important task for practical healthcare.

  13. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  14. Layered double hydroxides as the next generation inorganic anion exchangers: Synthetic methods versus applicability.

    Science.gov (United States)

    Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir

    2017-07-01

    This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are

  15. The impact of organisational culture on the adaptation of newly ...

    African Journals Online (AJOL)

    Usually newly employed nurses find adjusting to a work setting a challenging experience. Their successful adaptation to their work situation is greatly influenced by the socialisation process inherent in the organisational culture. The newly employed nurse often finds that the norms are unclear, confusing and restrictive.

  16. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  18. Brain imaging with synthetic MR in children: clinical quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Aaron M.; Serai, Suraj [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Leach, James L.; Jones, Blaise V. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2016-10-15

    Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging has been described in adult populations. However, use of synthetic MR imaging has not been previously reported in children. The purpose of this study is to report our assessment of diagnostic image quality using synthetic MR imaging in children. Synthetic MR acquisition was obtained in a sample of children undergoing brain MR imaging. Image quality assessments were performed on conventional and synthetic T1-weighted, T2-weighted, and FLAIR images. Standardized linear measurements were performed on conventional and synthetic T2 images. Estimates of patient age based upon myelination patterns were also performed. Conventional and synthetic MR images were evaluated on 30 children. Using a 4-point assessment scale, conventional imaging performed better than synthetic imaging for T1-weighted, T2-weighted, and FLAIR images. When the assessment was simplified to a dichotomized scale, the conventional and synthetic T1-weighted and T2-weighted images performed similarly. However, the superiority of conventional FLAIR images persisted in the dichotomized assessment. There were no statistically significant differences between linear measurements made on T2-weighted images. Estimates of patient age based upon pattern of myelination were also similar between conventional and synthetic techniques. Synthetic MR imaging may be acceptable for clinical use in children. However, users should be aware of current limitations that could impact clinical utility in the software version used in this study. (orig.)

  19. GABA regulates synaptic integration of newly generated neurons in the adult brain

    Science.gov (United States)

    Ge, Shaoyu; Goh, Eyleen L. K.; Sailor, Kurt A.; Kitabatake, Yasuji; Ming, Guo-Li; Song, Hongjun

    2006-02-01

    Adult neurogenesis, the birth and integration of new neurons from adult neural stem cells, is a striking form of structural plasticity and highlights the regenerative capacity of the adult mammalian brain. Accumulating evidence suggests that neuronal activity regulates adult neurogenesis and that new neurons contribute to specific brain functions. The mechanism that regulates the integration of newly generated neurons into the pre-existing functional circuitry in the adult brain is unknown. Here we show that newborn granule cells in the dentate gyrus of the adult hippocampus are tonically activated by ambient GABA (γ-aminobutyric acid) before being sequentially innervated by GABA- and glutamate-mediated synaptic inputs. GABA, the major inhibitory neurotransmitter in the adult brain, initially exerts an excitatory action on newborn neurons owing to their high cytoplasmic chloride ion content. Conversion of GABA-induced depolarization (excitation) into hyperpolarization (inhibition) in newborn neurons leads to marked defects in their synapse formation and dendritic development in vivo. Our study identifies an essential role for GABA in the synaptic integration of newly generated neurons in the adult brain, and suggests an unexpected mechanism for activity-dependent regulation of adult neurogenesis, in which newborn neurons may sense neuronal network activity through tonic and phasic GABA activation.

  20. Direct measurement of newly synthesized ATP dissociation kinetics in sarcoplasmic reticulum ATPase

    International Nuclear Information System (INIS)

    Teruel-Puche, J.; Kurzmack, M.; Inesi, G.

    1987-01-01

    Incubation of SR vesicles with Ca 2+ and ( 32 P)acetylphosphate, yields steady state levels of ( 32 P)phosphorylated enzyme (ATPase) intermediate and high concentrations of Ca 2+ in the lumen of the vesicles. At this time, addition of ADP (and EGTA to lower the Ca 2+ concentration in the medium outside the vesicles) results in single cycle formation of (γ- 32 P)ATP by transfer of ( 32 P)phosphate from the enzyme intermediate to ADP. The phosphoenzyme decay and ATP formation exhibit a fast component within the first 20 msec following addition of ADP, and a slower component reaching an asymptote in approximately 100 msec. They have now measured by a rapid filtration method the fraction of newly synthesized ATP which is bound to the enzyme, as opposed to the fraction dissociated into the medium. They find that nearly all the ATP formed during the initial burst is still bound to the enzyme within the initial 20 msec of reaction. Dissociation of newly synthesized ATP occurs then with approximately 13 sec -1 rate constant, permitting reequilibration of the system and further formation of ATP. The rate limiting effect of ATP dissociation and other partial reactions on the slow component of single cycle ATP synthesis is evaluated by appropriate kinetic simulations

  1. [Smart therapeutics based on synthetic gene circuits].

    Science.gov (United States)

    Peng, Shuguang; Xie, Zhen

    2017-03-25

    Synthetic biology has an important impact on biology research since its birth. Applying the thought and methods that reference from electrical engineering, synthetic biology uncovers many regulatory mechanisms of life systems, transforms and expands a series of biological components. Therefore, it brings a wide range of biomedical applications, including providing new ideas for disease diagnosis and treatment. This review describes the latest advances in the field of disease diagnosis and therapy based on mammalian cell or bacterial synthetic gene circuits, and provides new ideas for future smart therapy design.

  2. Artificial intelligence: Collective behaviors of synthetic micromachines

    Science.gov (United States)

    Duan, Wentao

    Synthetic nano- and micromotors function through the conversion of chemical free energy or forms of energy into mechanical motion. Ever since the first reports, such motors have been the subject of growing interest. In addition to motility in response to gradients, these motors interact with each other, resulting in emergent collective behavior like schooling, exclusion, and predator-prey. However, most of these systems only exhibit a single type of collective behavior in response to a certain stimuli. The research projects in the disseratation aim at designing synthetic micromotors that can exhibit transition between various collective behaviors in response to different stimuli, as well as quantitative understanding on the pairwise interaction and propulsion mechanism of such motors. Chapter 1 offers an overview on development of synthetic micromachines. Interactions and collective behaviors of micromotors are also summarized and included. Chapter 2 presents a silver orthophosphate microparticle system that exhibits collective behaviors. Transition between two collective patterns, clustering and dispersion, can be triggered by shift in chemical equilibrium upon the addition or removal of ammonia, in response to UV light, or under two orthogonal stimuli (UV and acoustic field) and powering mechanisms. The transitions can be explained by the self-diffusiophoresis mechanism resulting from either ionic or neutral solute gradients. Potential applications of the reported system in logic gates, microscale pumping, and hierarchical assembly have been demonstrated. Chapter 3 introduces a self-powered oscillatory micromotor system in which active colloids form clusters whose size changes periodically. The system consists of an aqueous suspension of silver orthophosphate particles under UV radiation, in the presence of a mixture of glucose and hydrogen peroxide. The colloid particles first attract with each other to form clusters. After a lag time of around 5min, chemical

  3. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  4. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  5. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Moustafa Elsheshtawy

    2016-01-01

    Full Text Available Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  6. Application of the Organic Synthetic Designs to Astrobiology

    Science.gov (United States)

    Kolb, V. M.

    2009-12-01

    In this paper we propose a synthesis of the heterocyclic compounds and the insoluble materials on the meteorites. Our synthetic scheme involves the reaction of sugars and amino acids, the so-called Maillard reaction. We have developed this scheme based on the combined analysis of the regular and retrosynthetic organic synthetic principles. The merits of these synthetic methods for the prebiotic design are addressed.

  7. Synthetic neurosteroids on brain protection

    Directory of Open Access Journals (Sweden)

    Mariana Rey

    2015-01-01

    Full Text Available Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABA A receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions.

  8. Paper-based synthetic gene networks.

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A; Ferrante, Tom; Cameron, D Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J

    2014-11-06

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

  9. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  10. Assessment for markers of nephropathy in newly diagnosed type 2 ...

    African Journals Online (AJOL)

    Objective: To assess for markers of nephropathy in newly diagnosed type 2 diabetics, using blood pressure levels, endogenous creatinine clearance and urinary protein excretion as markers of renal disease. Study design: Ninety newly diagnosed type 2 diabetics were studied within 6 weeks of diagnosis. They were in ...

  11. Engineering of synthetic, stress-responsive yeast promoters

    DEFF Research Database (Denmark)

    Rajkumar, Arun Stephen; Liu, Guodong; Bergenholm, David

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducibleby specific endogenous or environmental conditions...

  12. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  13. [Research progress of mammalian synthetic biology in biomedical field].

    Science.gov (United States)

    Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng

    2017-03-25

    Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.

  14. Manipulating novel quantum phenomena using synthetic gauge fields

    Science.gov (United States)

    Zhang, Shao-Liang; Zhou, Qi

    2017-11-01

    The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. This topical review surveys recent developments in using synthetic gauge fields to manipulate novel quantum phenomena that are not easy to access in other systems. We first summarize current experimental methods of creating synthetic gauge fields, including the use of Raman schemes, shaken lattices, and Raman-dressed lattices. We then discuss how synthetic gauge fields bring new physics to non-interacting systems, including degenerate single-particle ground states, quartic dispersions, topological band structures in lattices, and synthetic dimensions. As for interacting systems, we focus on novel quantum many-body states and quantum macroscopic phenomena induced by interactions in the presence of unconventional single-particle dispersions. For bosons, we discuss how a quartic dispersion leads to non-condensed bosonic states at low temperatures and at the ground state. For fermions, we discuss chiral superfluids in the presence of attractive s-wave interaction, where high partial-wave interactions are not required. Finally, we discuss the challenges in current experiments, and conclude with an outlook for what new exciting developments synthetic gauge fields may bring us in the near future.

  15. Study of seed for synthetical quartz

    International Nuclear Information System (INIS)

    Suzuki, C.K.; Torikai, D.

    1988-01-01

    Natural quartz blocks for seed (synthetic quartz technology) were studied by using various characterization techniques, such as X-ray topography, optical micrography, inspectoscopy, polariscopy and conoscopy, and etching. One of the most commonly found defect is the electrical or Dauphine twin. In The present research, we have developed a methodology to obtain a highly perfect seed for the synthetic quartz industries. (author) [pt

  16. 75 FR 52752 - Request for Comments on Synthetic Biology

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Request for Comments on Synthetic Biology AGENCY... Bioethical Issues is requesting public comment on the emerging science of synthetic biology, including its... Commission has begun an inquiry into the emerging science of synthetic biology. The President asked the...

  17. 14 CFR 26.39 - Newly produced airplanes: Fuel tank flammability.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Newly produced airplanes: Fuel tank... Tank Flammability § 26.39 Newly produced airplanes: Fuel tank flammability. (a) Applicability: This... Series 767 Series (b) Any fuel tank meeting all of the criteria stated in paragraphs (b)(1), (b)(2) and...

  18. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  19. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  20. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.

    Science.gov (United States)

    Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th

    2006-02-01

    A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.

  1. 21 CFR 172.275 - Synthetic paraffin and succinic derivatives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic paraffin and succinic derivatives. 172... FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.275 Synthetic paraffin and succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely...

  2. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  3. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    Management for the bollworm complex in Uganda is largely synthetic chemical use with little or no biopesticide use which reduces natural enemies population and resistance development to continuous use of a single synthetic pesticide product. Therefore this study aimed at determining the efficacy of bio and synthetic ...

  4. Metal immobilization in soils using synthetic zeolites

    NARCIS (Netherlands)

    Osté, L.A.; Lexmond, T.M.; Riemsdijk, van W.H.

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type,

  5. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  6. Stereoscopy in cinematographic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  7. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  8. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  9. Chrysosplenium japonicum (Saxifragaceae, Newly Recorded from Taiwan

    Directory of Open Access Journals (Sweden)

    Tian-Chuan Hsu

    2011-11-01

    Full Text Available Chrysosplenium japonicum (Maxim. Makino (Saxifragaceae is newly recorded from northeastern Taiwan. Description, color photos and a key to the Chrysosplenium species in Taiwan are provided.

  10. The Pharmacologic and Clinical Effects of Illicit Synthetic Cannabinoids.

    Science.gov (United States)

    White, C Michael

    2017-03-01

    This article presents information on illicitly used synthetic cannabinoids. Synthetic cannabinoids are structurally heterogeneous and commonly used drugs of abuse that act as full agonists of the cannabinoid type-1 receptor but have a variety of additional pharmacologic effects. There are numerous cases of patient harm and death in the United States, Europe, and Australia with many psychological, neurological, cardiovascular, pulmonary, and renal adverse events. Although most users prefer using cannabis, there are convenience, legal, and cost reasons driving the utilization of synthetic cannabinoids. Clinicians should be aware of pharmacologic and clinical similarities and differences between synthetic cannabinoid and cannabis use, the limited ability to detect synthetic cannabinoids in the urine or serum, and guidance to treat adverse events. © 2016, The American College of Clinical Pharmacology.

  11. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  12. Cfd modeling of a synthetic jet actuator

    International Nuclear Information System (INIS)

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  13. Synthetic Pot: Not Your Grandfather's Marijuana.

    Science.gov (United States)

    Ford, Benjamin M; Tai, Sherrica; Fantegrossi, William E; Prather, Paul L

    2017-03-01

    In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB 1 cannabinoid receptors, similar to those of Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ 9 -THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology

    Science.gov (United States)

    Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.

    2014-08-01

    The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.

  15. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    DEFF Research Database (Denmark)

    Verseux, Cyprien; G Acevedo-Rocha, Carlos; Chizzolini, Fabio

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part...... in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely...... disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using...

  16. Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells

    International Nuclear Information System (INIS)

    El-Sherbiny, Ibrahim M.; Salih, Ehab; Yassin, Abdelrahman M.; Hafez, Elsayed E.

    2016-01-01

    The present study reports the biosafety assessment, the exact molecular effects, and apoptosis induction of newly developed chitosan-silver hybrid nanoparticles (Cs–Ag NPs) in HepG2 cells. The investigated hybrid NPs were green synthesized using Cs/grape leaves aqueous extract (Cs/GLE) or Cs/GLE NPs as reducing and stabilizing agents. The successful formation of Cs/GLE NPs and Cs–Ag hybrid NPs has been confirmed by UV–Vis spectrophotometry, FTIR spectroscopy, XRD, and HRTEM. From the TEM analysis, the prepared Cs/GLE NPs are uniform and spherical with an average size of 150 nm, and the AgNPs (5–10 nm) were formed mainly on their surface. The UV–Vis spectra of Cs–Ag NPs showed a surface plasmon resonance (SPR) peak at about 450 nm confirming their formation. The synthesized Cs–Ag NPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220), and (311) planes. The cytotoxicity patterns, the antiproliferative activities, and the possible mechanisms of anticancer activity at molecular level of the newly developed Cs–Ag hybrid NPs were investigated. Cytotoxicity patterns of all the preparations demonstrated that the nontoxic treatment concentrations are ranged from 0.39 to 50 %, and many of the newly prepared Cs–Ag hybrid NPs showed high anticancer activities against HpG2 cells, and induced cellular apoptosis by downregulating BCL2 gene and upregulating P53.Graphical Abstract

  17. Newly developed chitosan-silver hybrid nanoparticles: biosafety and apoptosis induction in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    El-Sherbiny, Ibrahim M., E-mail: ielsherbiny@Zewailcity.edu.eg; Salih, Ehab [Zewail City of Science and Technology, Center for Materials Science (Egypt); Yassin, Abdelrahman M. [Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Biopharmaceutical Product Research Department (Egypt); Hafez, Elsayed E. [City of Scientific Research and Technology Applications, Plant Protection and Biomolecular Diagnosis Department (Egypt)

    2016-07-15

    The present study reports the biosafety assessment, the exact molecular effects, and apoptosis induction of newly developed chitosan-silver hybrid nanoparticles (Cs–Ag NPs) in HepG2 cells. The investigated hybrid NPs were green synthesized using Cs/grape leaves aqueous extract (Cs/GLE) or Cs/GLE NPs as reducing and stabilizing agents. The successful formation of Cs/GLE NPs and Cs–Ag hybrid NPs has been confirmed by UV–Vis spectrophotometry, FTIR spectroscopy, XRD, and HRTEM. From the TEM analysis, the prepared Cs/GLE NPs are uniform and spherical with an average size of 150 nm, and the AgNPs (5–10 nm) were formed mainly on their surface. The UV–Vis spectra of Cs–Ag NPs showed a surface plasmon resonance (SPR) peak at about 450 nm confirming their formation. The synthesized Cs–Ag NPs were found to be crystalline as shown by XRD patterns with fcc phase oriented along the (111), (200), (220), and (311) planes. The cytotoxicity patterns, the antiproliferative activities, and the possible mechanisms of anticancer activity at molecular level of the newly developed Cs–Ag hybrid NPs were investigated. Cytotoxicity patterns of all the preparations demonstrated that the nontoxic treatment concentrations are ranged from 0.39 to 50 %, and many of the newly prepared Cs–Ag hybrid NPs showed high anticancer activities against HpG2 cells, and induced cellular apoptosis by downregulating BCL2 gene and upregulating P53.Graphical Abstract.

  18. Manipulation of Turbulent Boundary Layers Using Synthetic Jets

    Science.gov (United States)

    Berger, Zachary; Gomit, Guillaume; Lavoie, Philippe; Ganapathisubramani, Bharath

    2015-11-01

    This work focuses on the application of active flow control, in the form of synthetic jet actuators, of turbulent boundary layers. An array of 2 synthetic jets are oriented in the spanwise direction and located approximately 2.7 meters downstream from the leading edge of a flat plate. Actuation is applied perpendicular to the surface of the flat plate with varying blowing ratios and reduced frequencies (open-loop). Two-component large window particle image velocimetry (PIV) was performed at the University of Southampton, in the streamwise-wall-normal plane. Complementary stereo PIV measurements were performed at the University of Toronto Institute for Aerospace Studies (UTIAS), in the spanwise-wall-normal plane. The freestream Reynolds number is 3x104, based on the boundary layer thickness. The skin friction Reynolds number is 1,200 based on the skin friction velocity. The experiments at Southampton allow for the observation of the control effects as the flow propagates downstream. The experiments at UTIAS allow for the observation of the streamwise vorticity induced from the actuation. Overall the two experiments provide a 3D representation of the flow field with respect to actuation effects. The current work focuses on the comparison of the two experiments, as well as the effects of varying blowing ratios and reduced frequencies on the turbulent boundary layer. Funded Supported by Airbus.

  19. Synthetic and Empirical Capsicum Annuum Image Dataset

    NARCIS (Netherlands)

    Barth, R.

    2016-01-01

    This dataset consists of per-pixel annotated synthetic (10500) and empirical images (50) of Capsicum annuum, also known as sweet or bell pepper, situated in a commercial greenhouse. Furthermore, the source models to generate the synthetic images are included. The aim of the datasets are to

  20. Estimating the impact of newly arrived foreign-born persons on tuberculosis in the United States.

    Directory of Open Access Journals (Sweden)

    Yecai Liu

    Full Text Available Among approximately 163.5 million foreign-born persons admitted to the United States annually, only 500,000 immigrants and refugees are required to undergo overseas tuberculosis (TB screening. It is unclear what extent of the unscreened nonimmigrant visitors contributes to the burden of foreign-born TB in the United States.We defined foreign-born persons within 1 year after arrival in the United States as "newly arrived", and utilized data from U.S. Department of Homeland Security, U.S. Centers for Disease Control and Prevention, and World Health Organization to estimate the incidence of TB among newly arrived foreign-born persons in the United States. During 2001 through 2008, 11,500 TB incident cases, including 291 multidrug-resistant TB incident cases, were estimated to occur among 20,989,738 person-years for the 1,479,542,654 newly arrived foreign-born persons in the United States. Of the 11,500 estimated TB incident cases, 41.6% (4,783 occurred among immigrants and refugees, 36.6% (4,211 among students/exchange visitors and temporary workers, 13.8% (1,589 among tourists and business travelers, and 7.3% (834 among Canadian and Mexican nonimmigrant visitors without an I-94 form (e.g., arrival-departure record. The top 3 newly arrived foreign-born populations with the largest estimated TB incident cases per 100,000 admissions were immigrants and refugees from high-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of ≥100 cases/100,000 population/year; 235.8 cases/100,000 admissions, 95% confidence interval [CI], 228.3 to 243.3, students/exchange visitors and temporary workers from high-incidence countries (60.9 cases/100,000 admissions, 95% CI, 58.5 to 63.3, and immigrants and refugees from medium-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of 15-99 cases/100,000 population/year; 55.2 cases/100,000 admissions, 95% CI, 51.6 to 58.8.Newly arrived nonimmigrant visitors contribute substantially to the burden of

  1. Estimating the impact of newly arrived foreign-born persons on tuberculosis in the United States.

    Science.gov (United States)

    Liu, Yecai; Painter, John A; Posey, Drew L; Cain, Kevin P; Weinberg, Michelle S; Maloney, Susan A; Ortega, Luis S; Cetron, Martin S

    2012-01-01

    Among approximately 163.5 million foreign-born persons admitted to the United States annually, only 500,000 immigrants and refugees are required to undergo overseas tuberculosis (TB) screening. It is unclear what extent of the unscreened nonimmigrant visitors contributes to the burden of foreign-born TB in the United States. We defined foreign-born persons within 1 year after arrival in the United States as "newly arrived", and utilized data from U.S. Department of Homeland Security, U.S. Centers for Disease Control and Prevention, and World Health Organization to estimate the incidence of TB among newly arrived foreign-born persons in the United States. During 2001 through 2008, 11,500 TB incident cases, including 291 multidrug-resistant TB incident cases, were estimated to occur among 20,989,738 person-years for the 1,479,542,654 newly arrived foreign-born persons in the United States. Of the 11,500 estimated TB incident cases, 41.6% (4,783) occurred among immigrants and refugees, 36.6% (4,211) among students/exchange visitors and temporary workers, 13.8% (1,589) among tourists and business travelers, and 7.3% (834) among Canadian and Mexican nonimmigrant visitors without an I-94 form (e.g., arrival-departure record). The top 3 newly arrived foreign-born populations with the largest estimated TB incident cases per 100,000 admissions were immigrants and refugees from high-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of ≥100 cases/100,000 population/year; 235.8 cases/100,000 admissions, 95% confidence interval [CI], 228.3 to 243.3), students/exchange visitors and temporary workers from high-incidence countries (60.9 cases/100,000 admissions, 95% CI, 58.5 to 63.3), and immigrants and refugees from medium-incidence countries (e.g., 2008 WHO-estimated TB incidence rate of 15-99 cases/100,000 population/year; 55.2 cases/100,000 admissions, 95% CI, 51.6 to 58.8). Newly arrived nonimmigrant visitors contribute substantially to the burden of foreign

  2. Synthetic biology between technoscience and thing knowledge.

    Science.gov (United States)

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. People newly in love are more responsive to positive feedback.

    Science.gov (United States)

    Brown, Cassandra L; Beninger, Richard J

    2012-06-01

    Passionate love is associated with increased activity in dopamine-rich regions of the brain. Increased dopamine in these regions is associated with a greater tendency to learn from reward in trial-and-error learning tasks. This study examined the prediction that individuals who were newly in love would be better at responding to reward (positive feedback). In test trials, people who were newly in love selected positive outcomes significantly more often than their single (not in love) counterparts but were no better at the task overall. This suggests that people who are newly in love show a bias toward responding to positive feedback, which may reflect a general bias towards reward-seeking.

  4. Data-driven approach for creating synthetic electronic medical records

    Directory of Open Access Journals (Sweden)

    Moniz Linda

    2010-10-01

    Full Text Available Abstract Background New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed. Methods This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia and for background records. The method developed has three major steps: 1 synthetic patient identity and basic information generation; 2 identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3 adaptation of these care patterns to the synthetic patient population. Results We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified. Conclusions A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders. The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious

  5. Data-driven approach for creating synthetic electronic medical records.

    Science.gov (United States)

    Buczak, Anna L; Babin, Steven; Moniz, Linda

    2010-10-14

    New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs) that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed. This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia) and for background records. The method developed has three major steps: 1) synthetic patient identity and basic information generation; 2) identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3) adaptation of these care patterns to the synthetic patient population. We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified. A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders). The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious diseases. The pilot synthetic background records were in the 4

  6. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from......Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...

  7. Rational design of fiber forming supramolecular structures

    Science.gov (United States)

    Wang, Benjamin K; Kanahara, Satoko M

    2016-01-01

    Recent strides in the development of multifunctional synthetic biomimetic materials through the self-assembly of multi-domain peptides and proteins over the past decade have been realized. Such engineered systems have wide-ranging application in bioengineering and medicine. This review focuses on fundamental fiber forming α-helical coiled-coil peptides, peptide amphiphiles, and amyloid-based self-assembling peptides; followed by higher order collagen- and elastin-mimetic peptides with an emphasis on chemical / biological characterization and biomimicry. PMID:27022140

  8. Nuclear Energy and Synthetic Liquid Transportation Fuels

    Science.gov (United States)

    McDonald, Richard

    2012-10-01

    This talk will propose a plan to combine nuclear reactors with the Fischer-Tropsch (F-T) process to produce synthetic carbon-neutral liquid transportation fuels from sea water. These fuels can be formed from the hydrogen and carbon dioxide in sea water and will burn to water and carbon dioxide in a cycle powered by nuclear reactors. The F-T process was developed nearly 100 years ago as a method of synthesizing liquid fuels from coal. This process presently provides commercial liquid fuels in South Africa, Malaysia, and Qatar, mainly using natural gas as a feedstock. Nuclear energy can be used to separate water into hydrogen and oxygen as well as to extract carbon dioxide from sea water using ion exchange technology. The carbon dioxide and hydrogen react to form synthesis gas, the mixture needed at the beginning of the F-T process. Following further refining, the products, typically diesel and Jet-A, can use existing infrastructure and can power conventional engines with little or no modification. We can then use these carbon-neutral liquid fuels conveniently long into the future with few adverse environmental impacts.

  9. Stabilities of nuclear waste forms and their geochemical interactions in repositories

    International Nuclear Information System (INIS)

    White, W.B.

    1980-01-01

    The stabilities of high-level nuclear waste forms in a repository environment are briefly discussed. The advantages and disadvantages of such waste forms as borosilicate glass, supercalcine ceramics, and synthetic minerals are presented in context with the different rock types which have been proposed as possible host rocks for repositories. It is concluded that the growing geochemical evidence favors the use of a silicate rock repository because of the effectiveness of aluminosilicate rocks as chemical barriers for most radionuclides

  10. Fentanyl and Other Synthetic Opioids Drug Overdose Deaths

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  11. Workplace Violence and Job Outcomes of Newly Licensed Nurses

    OpenAIRE

    Chang, Hyoung Eun; Cho, Sung-Hyun

    2016-01-01

    Purpose: The purpose of this study was to examine the prevalence of workplace violence toward newly licensed nurses and the relationship between workplace violence and job outcomes. Methods: An online survey was conducted of newly licensed registered nurses who had obtained their license in 2012 or 2013 in South Korea and had been working for 5–12 months after first being employed. The sample consisted of 312 nurses working in hospitals or clinics. The Copenhagen Psychosocial Questionnaire...

  12. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  13. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  14. An Experimental Study on Active Flow Control Using Synthetic Jet Actuators over S809 Airfoil

    International Nuclear Information System (INIS)

    Gul, M; Uzol, O; Akmandor, I S

    2014-01-01

    This study investigates the effect of periodic excitation from individually controlled synthetic jet actuators on the dynamics of the flow within the separation and re-attachment regions of the boundary layer over the suction surface of a 2D model wing that has S809 airfoil profile. Experiments are performed in METUWIND's C3 open-loop suction type wind tunnel that has a 1 m × 1 m cross-section test section. The synthetic jet array on the wing consists of three individually controlled actuators driven by piezoelectric diaphragms located at 28% chord location near the mid-span of the wing. In the first part of the study, surface pressure, Constant Temperature Anemometry (CTA) and Particle Image Velocimetry (PIV) measurements are performed over the suction surface of the airfoil to determine the size and characteristics of the separated shear layer and the re-attachment region, i.e. the laminar separation bubble, at 2.3x10 5 Reynolds number at zero angle of attack and with no flow control as a baseline case. For the controlled case, CTA measurements are carried out under the same inlet conditions at various streamwise locations along the suction surface of the airfoil to investigate the effect of the synthetic jet on the boundary layer properties. During the controlled case experiments, the synthetic jet actuators are driven with a sinusoidal frequency of 1.45 kHz and 300Vp-p. Results of this study show that periodic excitation from the synthetic jet actuators eliminates the laminar separation bubble formed over the suction surface of the airfoil at 2.3x10 5 Reynolds number at zero angle of attack

  15. Clinical validation of synthetic brain MRI in children: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    West, Hollie; Leach, James L.; Jones, Blaise V.; Care, Marguerite; Radhakrishnan, Rupa; Merrow, Arnold C.; Alvarado, Enrique; Serai, Suraj D. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2017-01-15

    The purpose of this study was to determine the diagnostic accuracy of synthetic MR sequences generated through post-acquisition processing of a single sequence measuring inherent R1, R2, and PD tissue properties compared with sequences acquired conventionally as part of a routine clinical pediatric brain MR exam. Thirty-two patients underwent routine clinical brain MRI with conventional and synthetic sequences acquired (22 abnormal). Synthetic axial T1, T2, and T2 fluid attenuation inversion recovery or proton density-weighted sequences were made to match the comparable clinical sequences. Two exams for each patient were de-identified. Four blinded reviewers reviewed eight patients and were asked to generate clinical reports on each exam (synthetic or conventional) at two different time points separated by a mean of 33 days. Exams were rated for overall and specific finding agreement (synthetic/conventional and compared to gold standard consensus review by two senior reviewers with knowledge of clinical report), quality, and diagnostic confidence. Overall agreement between conventional and synthetic exams was 97%. Agreement with consensus readings was 84% (conventional) and 81% (synthetic), p = 0.61. There were no significant differences in sensitivity, specificity, or accuracy for specific imaging findings involving the ventricles, CSF, brain parenchyma, or vasculature between synthetic or conventional exams (p > 0.05). No significant difference in exam quality, diagnostic confidence, or noise/artifacts was noted comparing studies with synthetic or conventional sequences. Diagnostic accuracy and quality of synthetically generated sequences are comparable to conventionally acquired sequences as part of a standard pediatric brain exam. Further confirmation in a larger study is warranted. (orig.)

  16. Clinical validation of synthetic brain MRI in children: initial experience

    International Nuclear Information System (INIS)

    West, Hollie; Leach, James L.; Jones, Blaise V.; Care, Marguerite; Radhakrishnan, Rupa; Merrow, Arnold C.; Alvarado, Enrique; Serai, Suraj D.

    2017-01-01

    The purpose of this study was to determine the diagnostic accuracy of synthetic MR sequences generated through post-acquisition processing of a single sequence measuring inherent R1, R2, and PD tissue properties compared with sequences acquired conventionally as part of a routine clinical pediatric brain MR exam. Thirty-two patients underwent routine clinical brain MRI with conventional and synthetic sequences acquired (22 abnormal). Synthetic axial T1, T2, and T2 fluid attenuation inversion recovery or proton density-weighted sequences were made to match the comparable clinical sequences. Two exams for each patient were de-identified. Four blinded reviewers reviewed eight patients and were asked to generate clinical reports on each exam (synthetic or conventional) at two different time points separated by a mean of 33 days. Exams were rated for overall and specific finding agreement (synthetic/conventional and compared to gold standard consensus review by two senior reviewers with knowledge of clinical report), quality, and diagnostic confidence. Overall agreement between conventional and synthetic exams was 97%. Agreement with consensus readings was 84% (conventional) and 81% (synthetic), p = 0.61. There were no significant differences in sensitivity, specificity, or accuracy for specific imaging findings involving the ventricles, CSF, brain parenchyma, or vasculature between synthetic or conventional exams (p > 0.05). No significant difference in exam quality, diagnostic confidence, or noise/artifacts was noted comparing studies with synthetic or conventional sequences. Diagnostic accuracy and quality of synthetically generated sequences are comparable to conventionally acquired sequences as part of a standard pediatric brain exam. Further confirmation in a larger study is warranted. (orig.)

  17. Modular design of synthetic protein mimics. Characterization of the helical conformation of a 13-residue peptide in crystals

    International Nuclear Information System (INIS)

    Karle, I.L.; Flippen-Anderson, J.L.; Uma, K.; Balaram, P.

    1989-01-01

    The incorporation of α-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib) 3 -OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven α-type hydrogen bonds in the middle and 3 10 -type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH hor-ellipsis OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in α-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration

  18. SCScore: Synthetic Complexity Learned from a Reaction Corpus.

    Science.gov (United States)

    Coley, Connor W; Rogers, Luke; Green, William H; Jensen, Klavs F

    2018-02-26

    Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

  19. Synthetic attractants for Anastrepha fruit flies in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Simuta, Y; Flores-Breceda, S; Lppez-Munoz, L [Subdireccion de Desarrollo de Metodos, Programa Moscamed, Tapachula, Chiapas (Mexico)

    2007-10-15

    The efficacy of synthetic attractants in the capture of Anastrepha fruit flies (Anastrepha ludens, A. obliqua and A. serpentina) was tested in three commercial orchards of known fruit fly hosts: mango (Mangifera indica L.), mammy (Calocarpum mammosum L.) and Mexican plum (Spondias purpurea L.) in Chiapas, Mexico. Among the synthetic attractants tested, we found that Ammonium Acetate (AA) plus Putrescine (PT) in a liquid trap was often the best combination for attracting flies. Interestingly, the reduction of release rate of AA increases the capture of fruit flies. We also found that Ammonium Bicarbonate (AB) plus PT in a wet trap was effective in a Mexican plum orchard in comparison with the other combinations of synthetic attractants. However, the synthetic attractants in dry traps were not effective and always presented the lowest Captures. (author)

  20. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium.

    Directory of Open Access Journals (Sweden)

    Katie Brenner

    Full Text Available Microbial consortia constitute a majority of the earth's biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it self-organizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles.

  1. Thermal transformation of synthetic borax, Na2[B4O5(OH)4]x8H2O

    International Nuclear Information System (INIS)

    Abdullaev, G.K.

    1981-01-01

    Using the methods of high temperature roentgenography and derivatography thermal transformation of synthetic borax is studied. It is established that borax dehydration proceeds in four stages (50-80, 80-100, 100-150 and 150-500 deg C) with the formation of three intermediate crystalline hydrate forms (one stable and two unstable) and one final stable crystalline phase. The stable crystalline phases correspond to synthetic tincalconite Na 2 [B 4 O 5 (OH) 4 ]x3H 2 O and sodium tetraborate Na 2 B 4 O 7 . Thermal transformation of borax into tincalconite and sodium tetraborate is explained on the basis of their crystal structures [ru

  2. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  3. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    International Nuclear Information System (INIS)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D.; Moore, Anna; Steidel, Charles C.; Trainor, Ryan

    2016-01-01

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10"1"2 M _⊙ halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  4. A NEWLY FORMING COLD FLOW PROTOGALACTIC DISK, A SIGNATURE OF COLD ACCRETION FROM THE COSMIC WEB

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D. Christopher; Matuszewski, Mateusz; Morrissey, Patrick; Neill, James D. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 278-17, Pasadena, California 91125 (United States); Moore, Anna [Caltech Optical Observatories, Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 11-17, Pasadena, California 91125 (United States); Steidel, Charles C. [Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Mail Code 249-17, Pasadena, California 91125 (United States); Trainor, Ryan, E-mail: cmartin@srl.caltech.edu [Department of Astronomy, University of California, Berkeley, 501 15 Campbell Hall, Berkeley, CA 94720 (United States)

    2016-06-10

    How galaxies form from, and are fueled by, gas from the intergalactic medium (IGM) remains one of the major unsolved problems in galaxy formation. While the classical Cold Dark Matter paradigm posits galaxies forming from cooling virialized gas, recent theory and numerical simulations have highlighted the importance of cold accretion flows—relatively cool ( T ∼ few × 104 K) unshocked gas streaming along filaments into dark matter halos, including hot, massive, high-redshift halos. These flows are thought to deposit gas and angular momentum into the circumgalactic medium resulting in disk- or ring-like structures, eventually coalescing into galaxies forming at filamentary intersections. We earlier reported a bright, Ly α emitting filament near the QSO HS1549+19 at redshift z = 2.843 discovered with the Palomar Cosmic Web Imager. We now report that the bright part of this filament is an enormous ( R > 100 kpc) rotating structure of hydrogen gas with a disk-like velocity profile consistent with a 4 × 10{sup 12} M {sub ⊙} halo. The orbital time of the outer part of the what we term a “protodisk” is comparable to the virialization time and the age of the universe at this redshift. We propose that this protodisk can only have recently formed from cold gas flowing directly from the cosmic web.

  5. Exercise recommendations in patients with newly diagnosed fibromyalgia.

    Science.gov (United States)

    Wilson, Brad; Spencer, Horace; Kortebein, Patrick

    2012-04-01

    To evaluate exercise recommendations in patients newly diagnosed with fibromyalgia. A retrospective chart review. A public university rheumatology clinic. Patients newly diagnosed with fibromyalgia (N = 122). Frequency and type of exercise recommendations. The mean (standard deviation) age of these patients with fibromyalgia was 45 ± 12 years; 91% were women. Exercise was recommended as part of the documented treatment plan in 47% of these patients (57/122); only 3 patients had a documented contraindication for exercise. Aquatic exercise was most frequently recommended (56% [32/57]), followed by combined aquatic-aerobic exercise (26% [15/57]), and, infrequently, aerobic exercise only (5% [3/57]); only 7% of these patients (4/57) were referred for physical therapy. The primary method of communication was verbal discussion (94% [54/57]). Although there is well-documented evidence that exercise is beneficial for patients with fibromyalgia, we found that less than half of patients with newly diagnosed fibromyalgia in our study were provided recommendations to initiate an exercise program as part of their treatment plan. Further investigation of these findings are warranted, including evaluation of other university and community rheumatology practices as well as that of other physicians caring for patients with fibromyalgia. However, our findings indicate that there appears to be an opportunity to provide more specific and practical education regarding the implementation of an exercise regimen for patients with newly diagnosed fibromyalgia. Physiatrists may be particularly well suited to manage the exercise component of patients with fibromyalgia because of their specialized training in exercise prescription. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  6. Ultrastructural studies of synthetic apatite crystals.

    Science.gov (United States)

    Arends, J; Jongebloed, W L

    1979-03-01

    In this paper a survey is given of some ultrastructural properties of synthetic hydroxyapatite. The preparation method by which single crystals with a length in the range of 0.1-3.0mm and a defined purity and stoïchiometry can be produced is given. Two groups of materials are considered in detail: carbonate-rich (greater than 0.1% CO3) and low-carbonate hydroxyapatites. The experiments on carbonate-rich material, being the most interesting from a biological point of view, show that acids attack at an active site in the hexagonal basal-plane of the crystals. Later on the crystals dissolve in the center of the crystal parallel to the c-axis forming tube-like structures. The active site can be protected from dissolution if the crystals are pretreated by EHDP or MFP. A comparison with lattice defect theory shows that most likely dislocations of the "hollow-core" type are responsible for the preferential dissolution.

  7. Synthetic social support: Theorizing lay health worker interventions.

    Science.gov (United States)

    Gale, Nicola K; Kenyon, Sara; MacArthur, Christine; Jolly, Kate; Hope, Lucy

    2018-01-01

    Levels of social support are strongly associated with health outcomes and inequalities. The use of lay health workers (LHWs) has been suggested by policy makers across the world as an intervention to identify risks to health and to promote health, particularly in disadvantaged communities. However, there have been few attempts to theorize the work undertaken by LHWs to understand how interventions work. In this article, the authors present the concept of 'synthetic socialsupport' and distinguish it from the work of health professionals or the spontaneous social support received from friends and family. The authors provide new empirical data to illustrate the concept based on qualitative, observational research, using a novel shadowing method involving clinical and non-clinical researchers, on the everyday work of 'pregnancy outreach workers' (POWs) in Birmingham, UK. The service was being evaluated as part of a randomized controlled trial. These LHWs provided instrumental, informational, emotional and appraisal support to the women they worked with, which are all key components of social support. The social support was 'synthetic' because it was distinct from the support embedded in spontaneous social networks: it was non-reciprocal; it was offered on a strictly time-limited basis; the LHWs were accountable for the relationship, and the social networks produced were targeted rather than spontaneous. The latter two qualities of this synthetic form of social support may have benefits over spontaneous networks by improving the opportunities for the cultivation of new relationships (both strong and weak ties) outside the women's existing spontaneous networks that can have a positive impact on them and by offering a reliable source of health information and support in a chaotic environment. The concept of SSS can help inform policy makers about how deploying lay workers may enable them to achieve desired outcomes, specify their programme theories and evaluate

  8. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  9. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  10. Fourier transform Raman spectroscopy of synthetic and biological calcium phosphates.

    Science.gov (United States)

    Sauer, G R; Zunic, W B; Durig, J R; Wuthier, R E

    1994-05-01

    Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm-1 that arises from the symmetric stretching mode (v1) of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 (v3), 590 (v4), and 435 cm-1 (v2). Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate v1 band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators

    Science.gov (United States)

    Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis

    Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.

  13. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  14. Equipment and methods for synthetic aperture anatomic and flow imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Misaridis, Thanassis

    2002-01-01

    Conventional ultrasound imaging is done by sequentially probing in each image direction. The frame rate is, thus, limited by the speed of sound and the number of lines necessary to form an image. This is especially limiting in flow imaging, since multiple lines are used for flow estimation. Another...... problem is that each receiving transducer element must be connected to a receiver, which makes the expansion of the number of receive channels expensive. Synthetic aperture (SA) imaging is a radical change from the sequential image formation. Here ultrasound is emitted in all directions and the image...... is formed in all directions simultaneously over a number of acquisitions. SA images can therefore be perfectly focused in both transmit and receive for all depths, thus significantly improving image quality. A further advantage is that very fast imaging can be done, since only a few emissions are needed...

  15. High resolution spectroscopy over 8500-8750 Å for GAIA library of synthetic spectra for 7750 <= Teff

    Science.gov (United States)

    Castelli, F.; Munari, U.

    2001-02-01

    In this paper we complete the library of synthetic spectra for the range 7650-8750 Å, which includes the 8500-8750 Å interval currently base-lined for the spectroscopic observations by GAIA, candidate ESA Cornerstone 5 mission. As for Paper II, the spectra are based on Kurucz's codes and line data. The explored metallicity, gravity and temperature ranges are -2.5HomePage http://ulisse.pd.astro.it/Astro/Atlases/ The spectra are available in electronic form at the CDS. Figures 5-224 are only available in electronic form at http://www.edpsciences.org

  16. Image quality at synthetic brain magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cho, Seung Hyun; Kim, Won Hwa; Kim, Hye Jung [Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Choi, Young Hun; Cheon, Jung-Eun; Kim, In-One [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun-Hae [Ewha Womans University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun-Kyoung [Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of); Park, Sook-Hyun [Kyungpook National University Hospital, Department of Pediatrics, Daegu (Korea, Republic of); Hwang, Moon Jung [GE Healthcare, MR Applications and Workflow, Seoul (Korea, Republic of)

    2017-11-15

    The clinical application of the multi-echo, multi-delay technique of synthetic magnetic resonance imaging (MRI) generates multiple sequences in a single acquisition but has mainly been used in adults. To evaluate the image quality of synthetic brain MR in children compared with that of conventional images. Twenty-nine children (median age: 6 years, range: 0-16 years) underwent synthetic and conventional imaging. Synthetic (T2-weighted, T1-weighted and fluid-attenuated inversion recovery [FLAIR]) images with settings matching those of the conventional images were generated. The overall image quality, gray/white matter differentiation, lesion conspicuity and image degradations were rated on a 5-point scale. The relative contrasts were assessed quantitatively and acquisition times for the two imaging techniques were compared. Synthetic images were inferior due to more pronounced image degradations; however, there were no significant differences for T1- and T2-weighted images in children <2 years old. The quality of T1- and T2-weighted images were within the diagnostically acceptable range. FLAIR images showed greatly reduced quality. Gray/white matter differentiation was comparable or better in synthetic T1- and T2-weighted images, but poorer in FLAIR images. There was no effect on lesion conspicuity. Synthetic images had equal or greater relative contrast. Acquisition time was approximately two-thirds of that for conventional sequences. Synthetic T1- and T2-weighted images were diagnostically acceptable, but synthetic FLAIR images were not. Lesion conspicuity and gray/white matter differentiation were comparable to conventional MRI. (orig.)

  17. Varieties of noise: analogical reasoning in synthetic biology.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2014-12-01

    The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by drawing analogies between the different fields of inquiry. We will study analogical reasoning in synthetic biology through the emergence of the functional meaning of noise, which marks an important shift in how engineering concepts are employed in this field. The notion of noise serves also to highlight the differences between the two branches of synthetic biology: the basic science-oriented branch and the engineering-oriented branch, which differ from each other in the way they draw analogies to various other fields of study. Moreover, we show that fixing the mapping between a source domain and the target domain seems not to be the goal of analogical reasoning in actual scientific practice.

  18. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  19. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia

    DEFF Research Database (Denmark)

    Saglio, Giuseppe; Kim, Dong-Wook; Issaragrisil, Surapol

    2010-01-01

    Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase.......Nilotinib has been shown to be a more potent inhibitor of BCR-ABL than imatinib. We evaluated the efficacy and safety of nilotinib, as compared with imatinib, in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia (CML) in the chronic phase....

  20. Transformation of organic N newly added to red soil treated with different cultural practices

    Institute of Scientific and Technical Information of China (English)

    ZhangQin-Zheng; YeQing-Fu; 等

    1998-01-01

    By using 15N tracer method,transformation of organic N,which wqas newly added to red soil treated with different cultural practices,was studied under thelaboratory incubation condition.The experimental results showed that the transformation of N from newly added organic matter and soil native pool during incubation was influenced by cultural practice treatment beforeincubation.Fallow was favorable to the mineralization of newly added organic N and soil N compared with the planting wheat treatment.Planting wheat greatly increased the loss of soil N.Application of fertilizers stimulated the mineralization of newly added organic N and application of organic matter reduced the mineralization,but stimulated microbialtransformation of newly adde4d organic N.

  1. Teaching Synthetic Biology, Bioinformatics and Engineering to Undergraduates: The Interdisciplinary Build-a-Genome Course

    Science.gov (United States)

    Dymond, Jessica S.; Scheifele, Lisa Z.; Richardson, Sarah; Lee, Pablo; Chandrasegaran, Srinivasan; Bader, Joel S.; Boeke, Jef D.

    2009-01-01

    A major challenge in undergraduate life science curricula is the continual evaluation and development of courses that reflect the constantly shifting face of contemporary biological research. Synthetic biology offers an excellent framework within which students may participate in cutting-edge interdisciplinary research and is therefore an attractive addition to the undergraduate biology curriculum. This new discipline offers the promise of a deeper understanding of gene function, gene order, and chromosome structure through the de novo synthesis of genetic information, much as synthetic approaches informed organic chemistry. While considerable progress has been achieved in the synthesis of entire viral and prokaryotic genomes, fabrication of eukaryotic genomes requires synthesis on a scale that is orders of magnitude higher. These high-throughput but labor-intensive projects serve as an ideal way to introduce undergraduates to hands-on synthetic biology research. We are pursuing synthesis of Saccharomyces cerevisiae chromosomes in an undergraduate laboratory setting, the Build-a-Genome course, thereby exposing students to the engineering of biology on a genomewide scale while focusing on a limited region of the genome. A synthetic chromosome III sequence was designed, ordered from commercial suppliers in the form of oligonucleotides, and subsequently assembled by students into ∼750-bp fragments. Once trained in assembly of such DNA “building blocks” by PCR, the students accomplish high-yield gene synthesis, becoming not only technically proficient but also constructively critical and capable of adapting their protocols as independent researchers. Regular “lab meeting” sessions help prepare them for future roles in laboratory science. PMID:19015540

  2. Synthetic aperture radar imaging simulator for pulse envelope evaluation

    Science.gov (United States)

    Balster, Eric J.; Scarpino, Frank A.; Kordik, Andrew M.; Hill, Kerry L.

    2017-10-01

    A simulator for spotlight synthetic aperture radar (SAR) image formation is presented. The simulator produces radar returns from a virtual radar positioned at an arbitrary distance and altitude. The radar returns are produced from a source image, where the return is a weighted summation of linear frequency-modulated (LFM) pulse signals delayed by the distance of each pixel in the image to the radar. The imagery is resampled into polar format to ensure consistent range profiles to the position of the radar. The SAR simulator provides a capability enabling the objective analysis of formed SAR imagery, comparing it to an original source image. This capability allows for analysis of various SAR signal processing techniques previously determined by impulse response function (IPF) analysis. The results suggest that IPF analysis provides results that may not be directly related to formed SAR image quality. Instead, the SAR simulator uses image quality metrics, such as peak signal-to-noise ratio (PSNR) and structured similarity index (SSIM), for formed SAR image quality analysis. To showcase the capability of the SAR simulator, it is used to investigate the performance of various envelopes applied to LFM pulses. A power-raised cosine window with a power p=0.35 and roll-off factor of β=0.15 is shown to maximize the quality of the formed SAR images by improving PSNR by 0.84 dB and SSIM by 0.06 from images formed utilizing a rectangular pulse, on average.

  3. Rewiring protein synthesis: From natural to synthetic amino acids.

    Science.gov (United States)

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synthetic cathinones: a new public health problem.

    Science.gov (United States)

    Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

    2015-01-01

    New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: "new psychoactive substances", "synthetic cathinones", "substituted cathinones", "mephedrone", "methylone", "MDPV", "4-MEC", "addiction", and "substance use disorder".

  5. Savannah River Certification Plan for newly generated, contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Wierzbicki, K.S.

    1986-01-01

    This Certification Plan document describes the necessary processes and methods for certifying unclassified, newly generated, contact-handled solid transuranic (TRU) waste at the Savannah River Plant and Laboratory (SRP, SRL) to comply with the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). Section 2 contains the organizational structure as related to waste certification including a summary of functional responsibilities, levels of authority, and lines of communication of the various organizations involved in certification activities. Section 3 describes general plant operations and TRU waste generation. Included is a description of the TRU Waste classification system. Section 4 contains the SR site TRU Waste Quality Assurance Program Plan. Section 5 describes waste container procurement, inspection, and certification prior to being loaded with TRU waste. Certification of waste packages, after package closure in the waste generating areas, is described in Section 6. The packaging and certification of individual waste forms is described in Attachments 1-5. Included in each attachment is a description of controls used to ensure that waste packages meet all applicable waste form compliance requirements for shipment to the WIPP. 3 figs., 3 tabs

  6. Characterization of high speed synthetic jet actuators

    Science.gov (United States)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets

  7. Chemical communication between synthetic and natural cells: a possible experimental design.

    Directory of Open Access Journals (Sweden)

    Livia Leoni

    2013-09-01

    Full Text Available The bottom-up construction of synthetic cells is one of the most intriguing and interesting research arenas in synthetic biology. Synthetic cells are built by encapsulating biomolecules inside lipid vesicles (liposomes, allowing the synthesis of one or more functional proteins. Thanks to the in situ synthesized proteins, synthetic cells become able to perform several biomolecular functions, which can be exploited for a large variety of applications. This paves the way to several advanced uses of synthetic cells in basic science and biotechnology, thanks to their versatility, modularity, biocompatibility, and programmability. In the previous WIVACE (2012 we presented the state-of-the-art of semi-synthetic minimal cell (SSMC technology and introduced, for the first time, the idea of chemical communication between synthetic cells and natural cells. The development of a proper synthetic communication protocol should be seen as a tool for the nascent field of bio/chemical-based Information and Communication Technologies (bio-chem-ICTs and ultimately aimed at building soft-wet-micro-robots. In this contribution (WIVACE, 2013 we present a blueprint for realizing this project, and show some preliminary experimental results. We firstly discuss how our research goal (based on the natural capabilities of biological systems to manipulate chemical signals finds a proper place in the current scientific and technological contexts. Then, we shortly comment on the experimental approaches from the viewpoints of (i synthetic cell construction, and (ii bioengineering of microorganisms, providing up-to-date results from our laboratory. Finally, we shortly discuss how autopoiesis can be used as a theoretical framework for defining synthetic minimal life, minimal cognition, and as bridge between synthetic biology and artificial intelligence.

  8. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  9. Synthetic lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  10. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkaki metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g Na/sub 2/SO/sub 3/.7H/sub 2/O per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  11. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkali metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g, Na/sub 2/SO/sub 3/.7H/sub 2/0 per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3 g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  12. Synthetic model for Doppler broadening of neutron absorption resonances in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Alejandro J., E-mail: villanueva@cab.cnea.gov.a [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Granada, J.R. [Comision Nacional de Energia Atomica, Centro Atomico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche (RN) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina)

    2010-08-15

    A general and systematic approach expressed in modern language, accounting for molecular motion effects on Doppler Broadening of Neutron Absorption Resonances (DBNAR) is given the form of a new model. It relies on well validated hypothesis: The separability of atomic from nuclear degrees of freedom, the use of the Van Hove scattering formalism and the fact that a conceptually identical approach produced experimentally proved predictions when applied to DBNAR in solid systems. We treat the molecular internal degrees of freedom approximately as harmonic oscillators. As a second contribution of this work, a synthetic model is presented in order to make the more complete model mentioned above suitable for neutron calculation codes. This second synthetic model reduces to the exact expressions of the complete model in the low and high neutron energy regimes and provides a plausible transition in between. Numerical results are presented for a general hypothetical case to show its strengths and limitations. Also, both models are applied to a real case of the {sup 238}U 6.674 eV resonant effective broadened absorption cross-section in UF6 (uranium hexafluoride). A direct experimental validation of our models is still necessary for which a special high resolution neutron transmission experiment ought to be devised at low temperatures and pressures on a gaseous system. It is showed how the synthetic model can be used to make thermometric predictions in an improved fashion in comparison to the effective temperature gas model at low temperatures.

  13. Detection of Overreported Psychopathology with the MMPI-2 RF Form Validity Scales

    Science.gov (United States)

    Sellbom, Martin; Bagby, R. Michael

    2010-01-01

    We examined the utility of the validity scales on the recently released Minnesota Multiphasic Personality Inventory-2 Restructured Form (MMPI-2 RF; Ben-Porath & Tellegen, 2008) to detect overreported psychopathology. This set of validity scales includes a newly developed scale and revised versions of the original MMPI-2 validity scales. We…

  14. Computational optimization of synthetic water channels.

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, David Michael; Rempe, Susan L. B.

    2012-12-01

    Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic

  15. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  16. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    International Nuclear Information System (INIS)

    Arnold, John

    2015-01-01

    The uranyl cation (UO 2 2+ ) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  17. An Overview on the Field of Micro- and Nanotechnologies for Synthetic Peptide-Based Vaccines

    Directory of Open Access Journals (Sweden)

    Aiala Salvador

    2011-01-01

    Full Text Available The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.

  18. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    Science.gov (United States)

    Verseux, Cyprien; Acevedo-Rocha, Carlos G.; Chizzolini, Fabio; Rothschild, Lynn J.

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using the term "GMOs" (genetically modified organisms) rather than the term "genetic engineering" led to very different reactions. Stimulating debates also happened with participants having unanticipated points of view, for instance biocentrist ethicists who argued that engineered microbes should not be used for human purposes. Another communication challenge emerged from the connotations and inaccuracies surrounding the word "life", which impaired constructive debates, thus leading to misconceptions about the abilities of scientists to engineer or even create living organisms. Finally, it appeared that synthetic biologists tend to overestimate the knowledge of non-biologists, further affecting communication. The motivation and ability of synthetic biologists to communicate their work outside their research field needs to be fostered, notably towards policymakers who need a more accurate and technical understanding of the field to make informed decisions. Interdisciplinary events gathering scholars working in and around synthetic biology are an effective tool in addressing those

  19. Innovative IPV from attenuated Sabin poliovirus or newly designed alternative seed strains.

    Science.gov (United States)

    Hamidi, Ahd; Bakker, Wilfried A M

    2012-11-01

    This article gives an overview of the patent literature related to innovative inactivated polio vaccine (i-IPV) based on using Sabin poliovirus strains and newly developed alternative recombinant poliovirus strains. This innovative approach for IPV manufacturing is considered to attribute to the requirement for affordable IPV in the post-polio-eradication era, which is on the horizon. Although IPV is a well-established vaccine, the number of patent applications in this field was seen to have significantly increased in the past decade. Currently, regular IPV appears to be too expensive for universal use. Future affordability may be achieved by using alternative cell lines, alternative virus seed strains, improved and optimized processes, dose sparing, or the use of adjuvants. A relatively short-term option to achieve cost-price reduction is to work on regular IPV, using wild-type poliovirus strains, or on Sabin-IPV, based on using attenuated poliovirus strains. This price reduction can be achieved by introducing efficiency in processing. There are also multiple opportunities to work on dose sparing, for example, by using adjuvants or fractional doses. Renewed interest in this field was clearly reflected in the number and diversity of patent applications. In a later stage, several innovative approaches may become even more attractive, for example the use of recombinant virus strains or even a totally synthetic vaccine. Currently, such work is mainly carried out by research institutes and universities and therefore clinical data are not available.

  20. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  1. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  2. Bioinspired Chemical Communication between Synthetic Nanomotors.

    Science.gov (United States)

    Chen, Chuanrui; Chang, Xiaocong; Teymourian, Hazhir; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Lu, Xiaolong; Li, Jinxing; He, Sha; Fang, Chengcheng; Liang, Yuyan; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph

    2018-01-02

    While chemical communication plays a key role in diverse natural processes, the intelligent chemical communication between synthetic nanomotors remains unexplored. The design and operation of bioinspired synthetic nanomotors is presented. Chemical communication between nanomotors is possible and has an influence on propulsion behavior. A chemical "message" is sent from a moving activator motor to a nearby activated (receiver) motor by release of Ag + ions from a Janus polystyrene/Ni/Au/Ag activator motor to the activated Janus SiO 2 /Pt nanomotor. The transmitted silver signal is translated rapidly into a dramatic speed change associated with the enhanced catalytic activity of activated motors. Selective and successive activation of multiple nanomotors is achieved by sequential localized chemical communications. The concept of establishing chemical communication between different synthetic nanomotors paves the way to intelligent nanoscale robotic systems that are capable of cooperating with each other. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Validation of an Adapted French Form of the Career Adapt-Abilities Scale in Four Francophone Countries

    Science.gov (United States)

    Johnston, Claire S.; Broonen, Jean-Paul; Stauffer, Sarah D.; Hamtiaux, Armanda; Pouyaud, Jacques; Zecca, Gregory; Houssemand, Claude; Rossier, Jerome

    2013-01-01

    This study presents the validation of a French version of the Career Adapt-Abilities Scale in four Francophone countries. The aim was to re-analyze the item selection and then compare this newly developed French-language form with the international form 2.0. Exploratory factor analysis was used as a tool for item selection, and confirmatory factor…

  4. Supersonic Shear Imaging Elastography in Skeletal Muscles: Relationship Between In Vivo and Synthetic Fiber Angles and Shear Modulus.

    Science.gov (United States)

    Lima, Kelly; Rouffaud, Remi; Pereira, Wagner; Oliveira, Liliam F

    2018-04-30

    To verify a relationship between the pennation angle of synthetic fibers and muscle fibers with the shear modulus (μ) generated by Supersonic shear imaging (SSI) elastography and to compare the anisotropy of synthetic and in vivo pennate muscle fibers in the x 2 -x 3 plane (probe perpendicular to water surface or skin). First, the probe of Aixplorer ultrasound scanner (v.9, Supersonic Imagine, Aix-en-Provence, France) was placed in 2 positions (parallel [aligned] and transverse to the fibers) to test the anisotropy in the x 2 -x 3 plane. Subsequently, it was inclined (x 1 -x 3 plane) in relation to the fibers, forming 3 angles (18.25 °, 21.55 °, 36.86 °) for synthetic fibers and one (approximately 0 °) for muscle fibers. On the x 2 -x 3 plane, μ values of the synthetic and vastus lateralis fibers were significantly lower (P < .0001) at the transverse probe position than the longitudinal one. In the x 1 -x 3 plane, the μ values were significantly reduced (P < .0001) with the probe angle increasing, only for the synthetic fibers (approximately 0.90 kPa for each degree of pennation angle). The pennation angle was not related to the μ values generated by SSI elastography for the in vivo lateral head of the gastrocnemius and vastus lateralis muscles. However, a μ reduction with an angle increase in the synthetic fibers was observed. These findings contribute to increasing the applicability of SSI in distinct muscle architecture at normal or pathologic conditions. © 2018 by the American Institute of Ultrasound in Medicine.

  5. Direct and synthetic testing of switchgear in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Haenisch, R

    1963-12-13

    Details are given of a high power testing station for switchgear and dielectric testing, incorporating an impulse generator of 2.4 MV (ultimately 3.6 MV), installed in a parabolic shaped hall with copper roof forming a Faraday cage with a maximum height of 82 ft and floor area of 137 ft x 118 ft. This design has the purpose of avoiding influences of external fields entering the hall and of containing within the hall radiations set up by test procedures. The surge generator has a terminal short-circuit capacity of 4,300 MVA and allows for synthetic testing at 25,000-MVA breaking capacities at 500-kV rating (ultamately 750 kV). Details of generator construction are given and particular attention is directed at safety features and future expansion of rating facilities.

  6. Possible origin of Saturn's newly discovered outer ring

    International Nuclear Information System (INIS)

    Moehlmann, D.

    1986-01-01

    Within a planetogonic model the self-gravitationally caused formation of pre-planetary and pre-satellite rings from an earlier thin disk is reported. The theoretically derived orbital radii of these rings are compared with the orbital levels in the planetary system and the satellite systems of Jupiter, Saturn and Uranus. From this comparison it is concluded that at the radial position of Saturn's newly discovered outer ring an early pre-satellite ring of more or less evolved satellites could have existed. These satellites should have been disturbed in their evolution by the gravitation of the neighbouring massive satellite Titan. The comparison also may indicate similarities between the asteroidal belt and the newly discovered outer ring of Saturn

  7. Oral Cancer Knowledge Assessment: Newly Graduated versus Senior Dental Clinicians

    Science.gov (United States)

    Salgado de Souza, Ricardo; Gallego Arias Pecorari, Vanessa; Lauria Dib, Luciano

    2018-01-01

    The present study assessed the level of dentists' knowledge regarding oral cancer in the city of São Paulo, Brazil. A questionnaire was used to compare the level of knowledge among newly graduated and senior clinicians. A total of 20,154 e-mails were correctly delivered to the dentists registered in the database of the Regional Dentistry Council of São Paulo, and 477 (2.36%) responses were received. This sample consisted of 84 newly graduated clinicians and 105 senior clinicians. For the statistical analysis, the chi-square test and the logistic regression analysis were performed with α = 0.05, and the results were described herein. According to their knowledge level, the results were statistically different between the groups, since 19% of the newly graduated clinicians were evaluated with knowledge grade A (excellent) in comparison to 6.7% of the senior clinicians. In spite of the results indicated that newly graduated clinicians' knowledge regarding oral cancer was 2.1 times higher, 34.5% of the professionals in this group had regular or poor knowledge on the subject, and several questions relating to clinical characteristics and risk factors indicated that there still exist some knowledge gaps, demonstrating that there is a need for further studies and information activities addressing oral cancer. PMID:29666649

  8. Characterization of growth sectors in synthetic quartz grown from cylindrical seeds parallel to [0001] direction

    Directory of Open Access Journals (Sweden)

    Pedro Luiz Guzzo

    2004-06-01

    Full Text Available In the present study, the morphology and the impurity distribution were investigated in growth sectors formed around the [0001] axis of synthetic quartz crystals. Plates containing cylindrical holes and cylindrical bars parallel to [0001] were prepared by ultrasonic machining and further used as seed-crystals. The hydrothermal growth of synthetic quartz was carried out in a commercial autoclave under NaOH solution during 50 days. The morphologies of crystals grown from cylindrical seeds were characterized by X-ray diffraction topography. For both types of crystals, +X- and X- growth sectors were distinctly observed. Infrared spectroscopy and ionizing radiation were adopted to reveal the distribution of point defects related to Si-Al substitution and OH-species. It was found a different distribution of Al-related centers in relation to the crystals grown from conventional Y-bar and Z-plate seeds.

  9. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  10. Synthetic multicellular oscillatory systems: controlling protein dynamics with genetic circuits

    International Nuclear Information System (INIS)

    Koseska, Aneta; Volkov, Evgenii; Kurths, Juergen

    2011-01-01

    Synthetic biology is a relatively new research discipline that combines standard biology approaches with the constructive nature of engineering. Thus, recent efforts in the field of synthetic biology have given a perspective to consider cells as 'programmable matter'. Here, we address the possibility of using synthetic circuits to control protein dynamics. In particular, we show how intercellular communication and stochasticity can be used to manipulate the dynamical behavior of a population of coupled synthetic units and, in this manner, finely tune the expression of specific proteins of interest, e.g. in large bioreactors.

  11. Technical Assessment: Synthetic Biology

    Science.gov (United States)

    2015-01-01

    Pfizer, Bausch & Lomb, Coca - Cola , and other Fortune 500 companies 8 Data estimated by the... financial prize for ideas to drive forward the production of a sensor relying on synthetic organisms that can detect exposure to 500 specific chemicals

  12. Career Motivation in Newly Licensed Registered Nurses: What Makes Them Remain

    Science.gov (United States)

    Banks, Zarata Mann; Bailey, Jessica H.

    2010-01-01

    Despite vast research on newly licensed registered nurses (RNs), we don't know why some newly licensed registered nurses remain in their current jobs and others leave the nursing profession early in their career. Job satisfaction, the most significant factor emerging from the literature, plays a significant role in nurses' decisions to remain in…

  13. Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karagöz, Pınar; Karakashev, Dimitar Borisov

    2013-01-01

    from the liquid fraction of pretreated rapeseed straw, without any dilution or need for additives. However, when the hydrolysate was used undiluted the ethanol yield was only 37% compared to yield of the control, in which pure sugars in synthetic medium were used. The decrease of ethanol yield...... showed that the two strains together could achieve up to 85% of the theoretical ethanol yield based on the sugar composition of the rapeseed straw, which was 14% and 50% higher compared to the yield with the yeast or the bacteria alone, respectively. Biotechnol. Bioeng. © 2012 Wiley Periodicals, Inc.......The newly isolated extreme thermophile Thermoanaerobacter pentosaceus was used for ethanol production from alkaline-peroxide pretreated rapeseed straw (PRS). Both the liquid and solid fractions of PRS were used. T. pentosaceus was able to metabolize the typical process inhibitors present...

  14. Synthetic Genetic Targeting of Genome Instability in Cancer

    International Nuclear Information System (INIS)

    Sajesh, Babu V.; Guppy, Brent J.; McManus, Kirk J.

    2013-01-01

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets

  15. On isomorphous substitution of calcium by sodium and lanthanum in synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Get'man, E.I.; Kanyuka, Yu.V.; Loboda, S.N.

    1998-01-01

    Isomorphous substitution of calcium by sodium and lanthanum in synthetic hydroxyapatite Ca 5-2x La x (PO 4 ) 3 OH by x=0-2.5 within the temperature range 1100-800 deg C is studied through the roentgenophase analysis and IR-spectroscopy methods. It is established that singlephase solid solutions are formed in the area of x≥0.4 by a≤0.4 there exist phases with LaPO 4 , LaNa 6 (PO 4 ) 3 structures and unknown phase along with solid solution of the apatite structure

  16. Bacterial microcompartments as metabolic modules for plant synthetic biology.

    Science.gov (United States)

    Gonzalez-Esquer, C Raul; Newnham, Sarah E; Kerfeld, Cheryl A

    2016-07-01

    Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  17. Meeting and activating the newly unemployed

    DEFF Research Database (Denmark)

    Rotger, Gabriel Pons

    -demanding activity. As intensive activation is usually accompanied by intensive search monitoring, it is important to disentangling the contribution of the costly activation programs from that of caseworker meetings. Using Danish data for the period 2010-13, the paper shows that requiring newly unemployed intensive...... activation, contrary to job search meetings, reduces employment and increases sickness benefit claims....

  18. Evaluation of injectable silica-embedded nanohydroxyapatite bone substitute in a rat tibia defect model

    Directory of Open Access Journals (Sweden)

    Xu W

    2011-08-01

    Full Text Available Weiguo Xu1, Cornelia Ganz2, Ulf Weber2, Martin Adam2, Gerd Holzhüter2, Daniel Wolter3, Bernhard Frerich3, Brigitte Vollmar1, Thomas Gerber21Institute for Experimental Surgery, 2Institute of Physics, 3Department of Oral, Maxillofacial and Plastic Surgery, University of Rostock, Rostock, GermanyAbstract: In clinical practice, vertebral compression fractures occur after trauma and osteoporosis. Kyphoplasty is a minimally invasive procedure using bone filler material for the treatment of such fractures. A full synthetic injectable bone substitute (SIBS was manufactured by means of spray drying. The aim of this study was to characterize the SIBS and to analyze the remodelling process during degradation of the biomaterial and new bone formation after implantation. SIBS is an aqueous suspension of donut-like microparticles. These microparticles consist of nanocrystallites of synthetic hydroxyapatite embedded in amorphous silica gel. After implantation of SIBS in a proximal tibial diaphyseal defect in 52 rats, grafts were harvested for subsequent analysis on different days. Newly formed bone originating from endosteum was observed on day 6. Hematomas in the medullary space and cortical wounds disappeared on day 12. The wound region was completely replaced by a composite of newly formed cancellous bone, extracellular matrix, and SIBS. At day 63 the cortical defect was fully healed by bone, while newly formed bone in the medullary space almost disappeared and was replaced with bone marrow. In conclusion, SIBS demonstrated a unique structure with osteoinductive and bioresorbable properties, which induced fast bone regeneration. Therefore, a clinical application of SIBS for kyphoplasty is promising.Keywords: bone remodelling, electron microscopy, histomorphometry, nanotechnology, tissue engineering

  19. Stabilization/solidification of synthetic Nigerian drill cuttings | Opete ...

    African Journals Online (AJOL)

    Stabilization/solidification of synthetic Nigerian drill cuttings. SEO Opete, IA Mangibo, ET Iyagba. Abstract. In the Nigerian oil and gas industry, large quantities of oily and synthetic drill cuttings are produced annually. These drill cuttings are heterogeneous wastes which comprises of hydrocarbons, heavy metals and ...

  20. The Next Generation of Synthetic Biology Chassis: Moving Synthetic Biology from the Laboratory to the Field.

    Science.gov (United States)

    Adams, Bryn L

    2016-12-16

    Escherichia coli (E. coli) has played a pivotal role in the development of genetics and molecular biology as scientific fields. It is therefore not surprising that synthetic biology (SB) was built upon E. coli and continues to dominate the field. However, scientific capabilities have advanced from simple gene mutations to the insertion of rationally designed, complex synthetic circuits and creation of entirely synthetic genomes. The point is rapidly approaching where E. coli is no longer an adequate host for the increasingly sophisticated genetic designs of SB. It is time to develop the next generation of SB chassis; robust organisms that can provide the advanced physiology novel synthetic circuits will require to move SB from the laboratory into fieldable technologies. This can be accomplished by developing chassis-specific genetic toolkits that are as extensive as those for E. coli. However, the holy grail of SB would be the development of a universal toolkit that can be ported into any chassis. This viewpoint article underscores the need for new bacterial chassis, as well as discusses some of the important considerations in their selection. It also highlights a few examples of robust, tractable bacterial species that can meet the demands of tomorrow's state-of-the-art in SB. Significant advances have been made in the first 15 years since this field has emerged. However, the advances over the next 15 years will occur not in laboratory organisms, but in fieldable species where the potential of SB can be fully realized in game changing technology.

  1. Tracing the transcriptomic changes in synthetic Trigenomic allohexaploids of Brassica using an RNA-Seq approach.

    Directory of Open Access Journals (Sweden)

    Qin Zhao

    Full Text Available Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassicarapa, Brassicacarinata, and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B. rapa, were involved in the biosynthesis of secondary metabolites, plant-pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B. carinata, several played roles in plant-pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  2. Tracing the Transcriptomic Changes in Synthetic Trigenomic allohexaploids of Brassica Using an RNA-Seq Approach

    Science.gov (United States)

    Zhao, Qin; Zou, Jun; Meng, Jinling; Mei, Shiyong; Wang, Jianbo

    2013-01-01

    Polyploidization has played an important role in plant evolution and speciation, and newly formed allopolyploids have experienced rapid transcriptomic changes. Here, we compared the transcriptomic differences between a synthetic Brassica allohexaploid and its parents using a high-throughput RNA-Seq method. A total of 35,644,409 sequence reads were generated, and 32,642 genes were aligned from the data. Totals of 29,260, 29,060, and 29,697 genes were identified in Brassica rapa , Brassica carinata , and Brassica allohexaploid, respectively. We compared 7,397 differentially expressed genes (DEGs) between Brassica hexaploid and its parents, as well as 2,545 nonadditive genes of Brassica hexaploid. We hypothesized that the higher ploidy level as well as secondary polyploidy might have influenced these changes. The majority of the 3,184 DEGs between Brassica hexaploid and its paternal parent, B . rapa , were involved in the biosynthesis of secondary metabolites, plant–pathogen interactions, photosynthesis, and circadian rhythm. Among the 2,233 DEGs between Brassica hexaploid and its maternal parent, B . carinata , several played roles in plant–pathogen interactions, plant hormone signal transduction, ribosomes, limonene and pinene degradation, photosynthesis, and biosynthesis of secondary metabolites. There were more significant differences in gene expression between the allohexaploid and its paternal parent than between it and its maternal parent, possibly partly because of cytoplasmic and maternal effects. Specific functional categories were enriched among the 2,545 nonadditive genes of Brassica hexaploid compared with the additive genes; the categories included response to stimulus, immune system process, cellular process, metabolic process, rhythmic process, and pigmentation. Many transcription factor genes, methyltransferases, and methylation genes showed differential expression between Brassica hexaploid and its parents. Our results demonstrate that the

  3. Biosynthesis of therapeutic natural products using synthetic biology.

    Science.gov (United States)

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Development, evaluation, and laboratory validation of immunoassays for the diagnosis of equine infectious anemia (EIA) using recombinant protein produced from a synthetic p26 gene of EIA virus.

    Science.gov (United States)

    Singha, Harisankar; Goyal, Sachin K; Malik, Praveen; Khurana, Sandip K; Singh, Raj K

    2013-12-01

    Equine infectious anemia (EIA)-a retroviral disease caused by equine infectious anemia virus (EIAV)-is a chronic, debilitating disease of horses, mules, and donkeys. EIAV infection has been reported worldwide and is recognized as pathogen of significant economic importance to the horse industry. This disease falls under regulatory control program in many countries including India. Control of EIA is based on identification of inapparent carriers by detection of antibodies to EIAV in serologic tests and "Stamping Out" policy. The current internationally accepted test for diagnosis of EIA is the agar gel immune-diffusion test (AGID), which detects antibodies to the major gag gene (p26) product. The objective of this study was to develop recombinant p26 based in-house immunoassays [enzyme linked immunosorbent assays (ELISA), and AGID] for EIA diagnosis. The synthetic p26 gene of EIAV was expressed in Escherichia coli and diagnostic potential of recombinant p26 protein were evaluated in ELISA and AGID on 7,150 and 1,200 equine serum samples, respectively, and compared with commercial standard AGID kit. The relative sensitivity and specificity of the newly developed ELISA were 100 and 98.6 %, respectively. Whereas, relative sensitivity and specificity of the newly developed AGID were in complete agreement in respect to commercial AGID kit. Here, we have reported the validation of an ELISA and AGID on large number of equine serum samples using recombinant p26 protein produced from synthetic gene which does not require handling of pathogenic EIAV. Since the indigenously developed reagents would be economical than commercial diagnostic kit, the rp26 based-immunoassays could be adopted for the sero-diagnosis and control of EIA in India.

  5. Aspects of the political economy of development and synthetic biology.

    Science.gov (United States)

    Wellhausen, Rachel; Mukunda, Gautam

    2009-12-01

    What implications might synthetic biology's potential as a wholly new method of production have for the world economy, particularly developing countries? Theories of political economy predict that synthetic biology can shift terms of trade and displace producers in developing countries. Governments, however, retain the ability to mitigate negative changes through social safety nets and to foster adaptation to some changes through research, education and investment. We consider the effects the synthetic production of otherwise naturally derived molecules are likely to have on trade and investment, particularly in developing countries. Both rubber in Malaysia and indigo dyes in India provide historical examples of natural molecules that faced market dislocations from synthetic competitors. Natural rubber was able to maintain significant market share, while natural indigo vanished from world markets. These cases demonstrate the two extremes of the impact synthetic biology might have on naturally derived products. If developing countries can cushion the pain of technological changes by providing producers support as they retool or exit, the harmful effects of synthetic biology can be mitigated while its benefits can still be captured.

  6. Competence of newly qualified registered nurses from a nursing college

    Directory of Open Access Journals (Sweden)

    BG Morolong

    2005-09-01

    Full Text Available The South African education and training system, through its policy of outcomesbased education and training, has made competency a national priority. In compliance to this national requirement of producing competent learners, the South African Nursing Council ( 1999 B require that the beginner professional nurse practitioners and midwives have the necessary knowledge, skills, attitudes and values which will enable them to render efficient professional service. The health care system also demands competent nurse practitioners to ensure quality in health care. In the light of competency being a national priority and a statutory demand, the research question that emerges is, how competent are the newly qualified registered nurses from a specific nursing college in clinical nursing education? A quantitative, non-experimental contextual design was used to evaluate the competence of newly qualified registered nurses from a specific nursing college. The study was conducted in two phases. The first phase dealt with the development of an instrument together with its manual through the conceptualisation process. The second phase focused on the evaluation of the competency of newly qualified nurses using the instrument based on the steps of the nursing process. A pilot study was conducted to test the feasibility of the items of the instrument. During the evaluation phase, a sample of twenty-six newly qualified nurses was selected by simple random sampling from a target population of thirty-six newly qualified registered nurses. However, six participants withdrew from the study. Data was collected in two general hospitals where the newly qualified registered nurses were working. Observation and questioning were used as data collection techniques in accordance with the developed instrument. Measures were taken to ensure internal validity and reliability of the results. To protect the rights of the participants, the researcher adhered to DENOSA’S (1998

  7. Clinical heterogeneity in newly diagnosed Parkinson's disease

    NARCIS (Netherlands)

    Post, Bart; Speelman, Johannes D.; de Haan, Rob J.

    2008-01-01

    OBJECTIVE: To determine clinical heterogeneity in newly diagnosed Parkinson's disease using cluster analysis and to describe the subgroups in terms of impairment, disability, perceived quality of life, and use of dopaminergic therapy. METHODS: We conducted a k-means cluster analysis in a prospective

  8. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  9. Comprehension of synthetic speech and digitized natural speech by adults with aphasia.

    Science.gov (United States)

    Hux, Karen; Knollman-Porter, Kelly; Brown, Jessica; Wallace, Sarah E

    2017-09-01

    Using text-to-speech technology to provide simultaneous written and auditory content presentation may help compensate for chronic reading challenges if people with aphasia can understand synthetic speech output; however, inherent auditory comprehension challenges experienced by people with aphasia may make understanding synthetic speech difficult. This study's purpose was to compare the preferences and auditory comprehension accuracy of people with aphasia when listening to sentences generated with digitized natural speech, Alex synthetic speech (i.e., Macintosh platform), or David synthetic speech (i.e., Windows platform). The methodology required each of 20 participants with aphasia to select one of four images corresponding in meaning to each of 60 sentences comprising three stimulus sets. Results revealed significantly better accuracy given digitized natural speech than either synthetic speech option; however, individual participant performance analyses revealed three patterns: (a) comparable accuracy regardless of speech condition for 30% of participants, (b) comparable accuracy between digitized natural speech and one, but not both, synthetic speech option for 45% of participants, and (c) greater accuracy with digitized natural speech than with either synthetic speech option for remaining participants. Ranking and Likert-scale rating data revealed a preference for digitized natural speech and David synthetic speech over Alex synthetic speech. Results suggest many individuals with aphasia can comprehend synthetic speech options available on popular operating systems. Further examination of synthetic speech use to support reading comprehension through text-to-speech technology is thus warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Design Automation in Synthetic Biology.

    Science.gov (United States)

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Synthetic greenhouse gases under control

    International Nuclear Information System (INIS)

    Horisberger, B.; Karlaganis, G.

    2003-01-01

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  12. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    Science.gov (United States)

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  14. Response of sesame to population densities and nitrogen fertilization on newly reclaimed sandy soils

    International Nuclear Information System (INIS)

    Noorka, I.R.; Hafiz, S.I.

    2011-01-01

    Two field experiments were conducted at the Experimental Farm of Faculty of Agriculture, Suez Canal University at Ismailia during 2008 and 2009 seasons to study the effect of nitrogen fertilization and planting density on growth , yield, its attributes as well as seed quality of new sesame variety (Taka 2 cv.). On newly reclaimed sandy soils of Ismailia Governorate, Egypt, experimental design in split plots form with four replications was used. Four levels of nitrogen fertilization 55, 105, 155 and 205 Kg/ha were arranged randomly in the main plots and three planting distances between hills (10, 15 and 20 cm, respectively) were distributed at random in the sub plots. Increasing N fertilizer level up to 205 Kg/ha significantly increased plant height, fruiting zone length, height of the first fruiting branch, number of branches and capsules/plant, 1000-seed weight, seed weight/plant, seed oil content (%) and seed and oil yields /ha. Decreasing planting distance from 20 to 15 and 10 cm consistently and significantly increased plant height, height of the first fruiting branch and seed and oil yields /ha. The reverse was true regarding the yield components. These results were expected, since experiment soil was newly reclaimed sandy soil and very poor in the nutrients and organic matter. (author)

  15. Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.

    Science.gov (United States)

    Ong, Zhan Yuin; Cheng, Junchi; Huang, Yuan; Xu, Kaijin; Ji, Zhongkang; Fan, Weimin; Yang, Yi Yan

    2014-01-01

    In the face of mounting global antibiotics resistance, the identification and development of membrane-active antimicrobial peptides (AMPs) as an alternative class of antimicrobial agent have gained significant attention. The physical perturbation and disruption of microbial membranes by the AMPs have been proposed to be an effective means to overcome conventional mechanisms of drug resistance. Recently, we have reported the design of a series of short synthetic β-sheet folding peptide amphiphiles comprised of recurring (X1Y1X2Y2)n-NH2 sequences where X: hydrophobic amino acids, Y: cationic amino acids and n: number of repeat units. In efforts to investigate the effects of key parameters including stereochemistry, chain length and sequence pattern on antimicrobial effects, systematic d-amino acid substitutions of the lead peptides (IRIK)2-NH2 (IK8-all L) and (IRVK)3-NH2 (IK12-all L) were performed. It was found that the corresponding D-enantiomers exhibited stronger antimicrobial activities with minimal or no change in hemolytic activities, hence translating very high selectivity indices of 407.0 and >9.8 for IK8-all D and IK12-all D respectively. IK8-all D was also demonstrated to be stable to degradation by broad spectrum proteases trypsin and proteinase K. The membrane disrupting bactericidal properties of IK8-all D effectively prevented drug resistance development and inhibited the growth of various clinically isolated MRSA, VRE, Acinetobacter baumanni, Pseudomonas aeruginosa, Cryptococcus. neoformans and Mycobacterium tuberculosis. Significant reduction in intracellular bacteria counts was also observed following treatment with IK8-all D in the Staphylococcus. aureus infected mouse macrophage cell line RAW264.7 (P < 0.01). These results suggest that the d-amino acids substituted β-sheet forming peptide IK8-all D with its enhanced antimicrobial activities and improved protease stability, is a promising therapeutic candidate with potential to combat

  16. Synthetic Textile Red Dye Removal From Aqueous Solution by Adsorption onto Pomegranate Peel

    Directory of Open Access Journals (Sweden)

    Sundus Saleh Nehaba

    2017-07-01

    Full Text Available This study is conducted to evaluate the ability of using pomegranate peel as low cost material for adsorption one of synthetic textile dye (C.I.Direct Red 89 dye. The removal of dye from aqueous solution is done by using pomegranate peel with two forms, as raw pomegranate peel (RPP and activated carbon prepared from pomegranate peel(ACPP. Some operational factors like contact time, pH, adsorbent dosage , and temperature were investigated in experimental work. Also the thermodynamic parameters ΔH, ΔG, and ΔS were calculated, the result shows that the adsorption process of dye onto two forms of adsorbents was spontaneous and endothermic in nature. Finally, the adsorption isotherm of experimental data we refitted for the Langmuir, and Freundlich equations

  17. Development of synthetic analysis program concerning on the safety of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. H.; Choi, S. S.; Cheong, Y. H.; Ahn, S. H.; Chang, W. J. [Atomic Creative Technology, Daejeon (Korea, Republic of)

    2007-03-15

    Methodology development of synthetic analysis of energy resources: build system methodology of synthetic analysis of energy resources. Development of web-based enquete program, develop web-based enquete program to support synthetic analysis of energy resources. Aggregation Software development, develop AHP algorithm and aggregation software for the synthetic analysis of energy resources.

  18. Structural rearrangements detected in newly-formed hexaploid ...

    Indian Academy of Sciences (India)

    signals were observed on the Epifluorescence microscope ... Images were cap- ... the chromosome pairs 1B and 6B in durum wheat (figure. 1e). The number and physical location ... 6B chromosome probably experienced an inverted pericen-.

  19. Structural rearrangements detected in newly-formed hexaploid

    Indian Academy of Sciences (India)

    Institute of Biotechnology and Bioengineering (IBB), Centre of Genomics and Biotechnology (CGB), University of Tras-os-Montes and Alto Douro (UTAD), P.O. Box 1013, 5001-801 VilaReal, Portugal; Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, 14080 ...

  20. Chromatin regulation at the frontier of synthetic biology

    Science.gov (United States)

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  1. Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response.

    Science.gov (United States)

    Nasir, Mehmet Nail; Lins, Laurence; Crowet, Jean-Marc; Ongena, Marc; Dorey, Stephan; Dhondt-Cordelier, Sandrine; Clément, Christophe; Bouquillon, Sandrine; Haudrechy, Arnaud; Sarazin, Catherine; Fauconnier, Marie-Laure; Nott, Katherine; Deleu, Magali

    2017-09-26

    Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.

  2. Transuranic waste management program waste form development

    International Nuclear Information System (INIS)

    Bennett, W.S.; Crisler, L.R.

    1981-01-01

    To ensure that all technology necessary for long term management of transuranic (TRU) wastes is available, the Department of Energy has established the Transuranic Waste Management Program. A principal focus of the program is development of waste forms that can accommodate the very diverse TRU waste inventory and meet geologic isolation criteria. The TRU Program is following two approaches. First, decontamination processes are being developed to allow removal of sufficient surface contamination to permit management of some of the waste as low level waste. The other approach is to develop processes which will allow immobilization by encapsulation of the solids or incorporate head end processes which will make the solids compatible with more typical waste form processes. The assessment of available data indicates that dewatered concretes, synthetic basalts, and borosilicate glass waste forms appear to be viable candidates for immobilization of large fractions of the TRU waste inventory in a geologic repository

  3. Two Newly Discovered Plants in Taiwan

    OpenAIRE

    Tian-Chuan Hsu; Jia-Jung Lin; Shih-Wen Chung

    2009-01-01

    Two herbs are newly discovered in Taiwan. Limnophila fragrans (G. Forst.) Seem. (Scrophulariaceae), native in SE Asia, is recognized from southern lowlands. Anagallis minima (L.) E. H. L. Krause (Primulaceae), native in N America and Europe, was found from northern mountainous region at low altitudes. In this study, descriptions, line drawings, color photos and a distribution map of the two species are provided.

  4. Cosmo Cassette: A Microfluidic Microgravity Microbial System For Synthetic Biology Unit Tests and Satellite Missions

    Science.gov (United States)

    Berliner, Aaron J.

    2013-01-01

    Although methods in the design-build-test life cycle of the synthetic biology field have grown rapidly, the expansion has been non-uniform. The design and build stages in development have seen innovations in the form of biological CAD and more efficient means for building DNA, RNA, and other biological constructs. The testing phase of the cycle remains in need of innovation. Presented will be both a theoretical abstraction of biological measurement and a practical demonstration of a microfluidics-based platform for characterizing synthetic biological phenomena. Such a platform demonstrates a design of additive manufacturing (3D printing) for construction of a microbial fuel cell (MFC) to be used in experiments carried out in space. First, the biocompatibility of the polypropylene chassis will be demonstrated. The novel MFCs will be cheaper, and faster to make and iterate through designs. The novel design will contain a manifold switchingdistribution system and an integrated in-chip set of reagent reservoirs fabricated via 3D printing. The automated nature of the 3D printing yields itself to higher resolution switching valves and leads to smaller sized payloads, lower cost, reduced power and a standardized platform for synthetic biology unit tests on Earth and in space. It will be demonstrated that the application of unit testing in synthetic biology will lead to the automatic construction and validation of desired constructs. Unit testing methodologies offer benefits of preemptive problem identification, change of facility, simplicity of integration, ease of documentation, and separation of interface from implementation, and automated design.

  5. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and over ... abuse, authorities have made it illegal to sell, buy, or possess some of ... use is that standard drug tests cannot easily detect many of the chemicals ...

  6. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms

    International Nuclear Information System (INIS)

    Guo Huaming; Li Yuan; Zhao Kai; Ren Yan; Wei Chao

    2011-01-01

    Synthetic siderite has been used as adsorbent for As(III) removal in this study. Effects of contact time, temperature, pH, co-existing anions on As(III) adsorption were intensively investigated. Adsorption mechanisms were also studied using the X-ray absorption technique. Results show that the maximum adsorption capacity is up to 9.98 mg g -1 at 25 deg, C at a siderite dosage of 2 g L -1 . Adsorption kinetics agrees with the Lagergren pseudo-second order model. Arsenic(III) adsorption can be better described by Langmuir isotherm model for As(III) adsorption at 55 deg. C, indicating that the coverage of the adsorption sites is in the form of monolayer, although Freundlich isotherm yields a better fit to the experimental data at 25, 35 and 45 deg. C. Thermodynamic study indicates that As(III) adsorption on the synthetic siderite is spontaneous and endothermic in nature. The adsorption capacity is enhanced with the increase in reaction temperature. The adsorption is independent on solution pH between 3.0 and 9.6. The presence of NO 3 - , SO 4 2- , PO 4 3- or SiO 3 2- with element concentrations less than 20 mg L -1 does not have adverse effect on As(III) adsorption. XANES spectra indicate that As mainly occurs as As(V) in the As adsorbed-materials, and the fraction of oxidized As(III) increases with the decrease in As(III) concentration. The formation of Fe hydroxide minerals (such as lepidocrocite and goethite) followed by As(III) oxidiation and adsorption is shown to be the main mechanism of As(III) removal by the synthetic siderite.

  7. Synthetic Teammates as Team Players: Coordination of Human and Synthetic Teammates

    Science.gov (United States)

    2016-05-31

    teammate interactions with human teammates reveal about human-automation coordination needs? 15. SUBJECT TERMS synthetic teammate, human- autonomy teaming...interacting with autonomy - not autonomous vehicles, but autonomous teammates. These experiments have led to a number of discoveries including: 1...given the preponderance of text-based communications in our society and its adoption in time critical military and civilian contexts, the

  8. Life by design: Philosophical perspectives on synthetic biology

    Directory of Open Access Journals (Sweden)

    Bensaude Vincent Bernadette

    2015-01-01

    This paper outlines a number of distinctive features of this emerging field in the constellation of bionanotechnologies. It then insists on the variety of research agendas and strategies gathered under the umbrella “synthetic biology”. While redesigning life is the central goal, synthetic biologists do not develop a uniform view of living organisms.

  9. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  10. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  11. Yeast synthetic biology for high-value metabolites.

    Science.gov (United States)

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Pollen parameters estimates of genetic variability among newly ...

    African Journals Online (AJOL)

    Pollen parameters estimates of genetic variability among newly selected Nigerian roselle (Hibiscus sabdariffa L.) genotypes. ... Estimates of some pollen parameters where used to assess the genetic diversity among ... HOW TO USE AJOL.

  13. Tricks of the trade: time management tips for newly qualified doctors.

    Science.gov (United States)

    Offiah, Gozie; Doherty, Eva

    2018-03-01

    The transition from medical student to doctor is an important milestone. The discovery that their time is no longer their own and that the demands of their job are greater than the time they have available is extremely challenging. At a recent surgical boot camp training programme, 60 first-year surgical trainees who had just completed their internship were invited to reflect on the lessons learnt regarding effective time management and to recommend tips for their newly qualified colleagues. They were asked to identify clinical duties that were considered urgent and important using the time management matrix and the common time traps encountered by newly qualified doctors. The surgical trainees identified several practical tips that ranged from writing a priority list to working on relationships within the team. These tips are generic and so applicable to all newly qualified medial doctors. We hope that awareness of these tips from the outset as against learning them through experience will greatly assist newly qualified doctors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  15. Challenges and opportunities in synthetic biology for chemical engineers.

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.

  16. The effect of patient age on bone formation using a fully synthetic nanocrystalline bone augmentation material in maxillary sinus grafting.

    Science.gov (United States)

    Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner

    2014-01-01

    Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of

  17. Chest Radiographic Findings in Newly Diagnosed Pulmonary ...

    African Journals Online (AJOL)

    Five hundred newly diagnosed cases of Pulmonary Tuberculosis were treated with directly observed short-course treatment and 100 of them had chest radiographic examination done. The various chest radiographic patterns in the 100 subjects were studied and included: Fluffy exudative changes 80(80%), fibrosis 70(70%) ...

  18. A systematic investigation of production of synthetic prions from recombinant prion protein.

    Science.gov (United States)

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. © 2015 The Authors.

  19. Bottom-up synthetic biology: modular design for making artificial platelets

    Science.gov (United States)

    Majumder, Sagardip; Liu, Allen P.

    2018-01-01

    Engineering artificial cells to mimic one or multiple fundamental cell biological functions is an emerging area of synthetic biology. Reconstituting functional modules from biological components in vitro is a challenging yet an important essence of bottom-up synthetic biology. Here we describe the concept of building artificial platelets using bottom-up synthetic biology and the four functional modules that together could enable such an ambitious effort.

  20. Synthetic biology in the UK - An outline of plans and progress.

    Science.gov (United States)

    Clarke, L J; Kitney, R I

    2016-12-01

    Synthetic biology is capable of delivering new solutions to key challenges spanning the bioeconomy, both nationally and internationally. Recognising this significant potential and the associated need to facilitate its translation and commercialisation the UK government commissioned the production of a national Synthetic Biology Roadmap in 2011, and subsequently provided crucial support to assist its implementation. Critical infrastructural investments have been made, and important strides made towards the development of an effectively connected community of practitioners and interest groups. A number of Synthetic Biology Research Centres, DNA Synthesis Foundries, a Centre for Doctoral Training, and an Innovation Knowledge Centre have been established, creating a nationally distributed and integrated network of complementary facilities and expertise. The UK Synthetic Biology Leadership Council published a UK Synthetic Biology Strategic Plan in 2016, increasing focus on the processes of translation and commercialisation. Over 50 start-ups, SMEs and larger companies are actively engaged in synthetic biology in the UK, and inward investments are starting to flow. Together these initiatives provide an important foundation for stimulating innovation, actively contributing to international research and development partnerships, and helping deliver useful benefits from synthetic biology in response to local and global needs and challenges.

  1. Newly graduated nurses' empowerment regarding professional competence and other work-related factors.

    Science.gov (United States)

    Kuokkanen, Liisa; Leino-Kilpi, Helena; Numminen, Olivia; Isoaho, Hannu; Flinkman, Mervi; Meretoja, Riitta

    2016-01-01

    Although both nurse empowerment and competence are fundamental concepts of describing newly graduated nurses' professional development and job satisfaction, only few studies exist on the relationship between these concepts. Therefore, the purpose of this study was to determine how newly graduated nurses assess their empowerment and to clarify professional competence compared to other work-related factors. A descriptive, cross-sectional and correlational design was applied. The sample comprised newly graduated nurses (n = 318) in Finland. Empowerment was measured using the 19-item Qualities of an Empowered Nurse scale and the Nurse Competence Scale measured nurses' self-assessed generic competence. In addition to demographic data, the background data included employment sector (public/private), job satisfaction, intent to change/leave job, work schedule (shifts/business hours) and assessments of the quality of care in the workplace. The data were analysed statistically by using Spearman's correlation coefficient as well as the One-Way and Multivariate Analysis of Variance. Cronbach's alpha coefficient was used to estimate the internal consistency. Newly graduated nurses perceived their level of empowerment and competence fairly high. The association between nurse empowerment and professional competence was statistically significant. Other variables correlating positively to empowerment included employment sector, age, job satisfaction, intent to change job, work schedule, and satisfaction with the quality of care in the work unit. The study indicates competence had the strongest effect on newly graduated nurses' empowerment. New graduates need support and career opportunities. In the future, nurses' further education and nurse managers' resources for supporting and empowering nurses should respond to the newly graduated nurses' requisites for attractive and meaningful work.

  2. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism

    Directory of Open Access Journals (Sweden)

    Grandl Gerald

    2011-05-01

    Full Text Available Abstract Background FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2. Results We have developed a synthetic metabolic pathway in E. coli that links FeFe-hydrogenase activity to the production of the essential amino acid cysteine. Our design includes a complementary host strain whose endogenous redox pool is insulated from the synthetic metabolic pathway. Host viability on a selective medium requires hydrogenase expression, and moderate O2 levels eliminate growth. This pathway forms the basis for a genetic selection for O2 tolerance. Genetically selected hydrogenases did not show improved stability in O2 and in many cases had lost H2 production activity. The isolated mutations cluster significantly on charged surface residues, suggesting the evolution of binding surfaces that may accelerate hydrogenase electron transfer. Conclusions Rational design can optimize a fully heterologous three-component pathway to provide an essential metabolic flux while remaining insulated from the endogenous redox pool. We have developed a number of convenient in vivo assays to aid in the engineering of synthetic H2 metabolism. Our results also indicate a H2-independent redox activity in three different FeFe-hydrogenases, with implications for the future directed evolution of H2-activating catalysts.

  3. COMPARISON OF REACTIVITY OF SYNTHETIC AND BOVINE HYDROXYAPATITE IN VITRO UNDER DYNAMIC CONDITIONS

    Directory of Open Access Journals (Sweden)

    DIANA HORKAVCOVÁ

    2014-03-01

    Full Text Available Hydroxyapatite materials prepared by two methods: synthetic (HA–S and bovine (HA-B granules were exposed to a longterm in vitro test under dynamic conditions. Testing cells, filled up to one fourth (¼V of their volume with the tested material, were exposed to continuous flow of simulated body fluid (SBF for 56 days. The objective of the experiment was to determine whether reactivity of the biomaterials (hydroxyapatites, prepared by different methods but identical in terms of their chemical and phase composition, in SBF were comparable. Analyses of the solutions proved that both materials were highly reactive from the very beginning of interaction with SBF (significant decrease of Ca2+ and (PO43- concentrations in the leachate. SEM/EDS images have shown that the surface of bovine HA-B was covered with a new hydroxyapatite (HAp phase in the first two weeks of the test while synthetic HA–S was covered after two weeks of the immersion in SBF. At the end of the test, day 56, both materials were completely covered with well developed porous HAp phase in form of nano-plates. A calculation of the rate of HAp formation from the concentration of (PO43- ions in SBF leachates confirmed that all removed ions were consumed for the formation of the HAp phase throughout the entire testing time for bovine HA–B and only during the second half of the testing time for synthetic HA–S.

  4. Synthetic cannabinoid and marijuana exposures reported to poison centers.

    Science.gov (United States)

    Forrester, M B; Kleinschmidt, K; Schwarz, E; Young, A

    2012-10-01

    Synthetic cannabinoids have recently gained popularity as a recreational drug because they are believed to result in a marijuana-like high. This investigation compared synthetic cannabinoids and marijuana exposures reported to a large statewide poison center system. Synthetic cannabinoid and marijuana exposures reported to Texas poison centers during 2010 were identified. The distribution of exposures to the two agents with respect to various demographic and clinical factors were compared by calculating the rate ratio (RR) of the synthetic cannabinoid and marijuana percentages for each subgroup and 95% confidence interval (CI). The proportion of synthetic cannabinoid and marijuana exposures, respectively, were 87.3% and 46.5% via inhalation (RR 1.88, 95% CI 1.38-2.61), 74.9% and 65.7% in male (RR 1.14, 95% CI 0.87-1.51), 40.2% and 56.6% age ≤ 19 years (RR 0.71, 95% CI 0.52-0.98), 79.2% and 58.6% occurring at a residence (RR 1.35, 95% CI 1.02-1.82), 8.4% and 16.2% managed on-site (RR 0.52. 95% CI 0.28-1.00), and 59.3% and 41.4% with serious medical outcomes (RR 1.43, 95% CI 1.03-2.05). Compared to marijuana, synthetic cannabinoid exposures were more likely to be used through inhalation, to involve adults, to be used at a residence, and to result in serious outcomes.

  5. Review of high-level waste form properties

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1980-12-01

    This report is a review of waste form options for the immobilization of high-level-liquid wastes from the nuclear fuel cycle. This review covers the status of international research and development on waste forms as of May 1979. Although the emphasis in this report is on waste form properties, process parameters are discussed where they may affect final waste form properties. A summary table is provided listing properties of various nuclear waste form options. It is concluded that proposed waste forms have properties falling within a relatively narrow range. In regard to crystalline versus glass waste forms, the conclusion is that either glass of crystalline materials can be shown to have some advantage when a single property is considered; however, at this date no single waste form offers optimum properties over the entire range of characteristics investigated. A long-term effort has been applied to the development of glass and calcine waste forms. Several additional waste forms have enough promise to warrant continued research and development to bring their state of development up to that of glass and calcine. Synthetic minerals, the multibarrier approach with coated particles in a metal matrix, and high pressure-high temperature ceramics offer potential advantages and need further study. Although this report discusses waste form properties, the total waste management system should be considered in the final selection of a waste form option. Canister design, canister materials, overpacks, engineered barriers, and repository characteristics, as well as the waste form, affect the overall performance of a waste management system. These parameters were not considered in this comparison

  6. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    Science.gov (United States)

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  7. Role playing with synthetic cultures: the evasive rules of the game

    NARCIS (Netherlands)

    Hofstede, G.J.

    2005-01-01

    This article sums up ten years of experience with over 1400 participants of simulation games using synthetic cultures. Synthetic cultures are scripts for role players. They are derived from the five dimensions of culture in Hofstede¿s model. Playing the synthetic cultures leads to dynamics that

  8. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  9. Synchronous long-term oscillations in a synthetic gene circuit.

    Science.gov (United States)

    Potvin-Trottier, Laurent; Lord, Nathan D; Vinnicombe, Glenn; Paulsson, Johan

    2016-10-27

    Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results suggest that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.

  10. An Ultra-high Resolution Synthetic Precipitation Data for Ungauged Sites

    Science.gov (United States)

    Kim, Hong-Joong; Choi, Kyung-Min; Oh, Jai-Ho

    2018-05-01

    Despite the enormous damage caused by record heavy rainfall, the amount of precipitation in areas without observation points cannot be known precisely. One way to overcome these difficulties is to estimate meteorological data at ungauged sites. In this study, we have used observation data over Seoul city to calculate high-resolution (250-meter resolution) synthetic precipitation over a 10-year (2005-2014) period. Furthermore, three cases are analyzed by evaluating the rainfall intensity and performing statistical analysis over the 10-year period. In the case where the typhoon "Meari" passed to the west coast during 28-30 June 2011, the Pearson correlation coefficient was 0.93 for seven validation points, which implies that the temporal correlation between the observed precipitation and synthetic precipitation was very good. It can be confirmed that the time series of observation and synthetic precipitation in the period almost completely matches the observed rainfall. On June 28-29, 2011, the estimation of 10 to 30 mm h-1 of continuous strong precipitation was correct. In addition, it is shown that the synthetic precipitation closely follows the observed precipitation for all three cases. Statistical analysis of 10 years of data reveals a very high correlation coefficient between synthetic precipitation and observed rainfall (0.86). Thus, synthetic precipitation data show good agreement with the observations. Therefore, the 250-m resolution synthetic precipitation amount calculated in this study is useful as basic data in weather applications, such as urban flood detection.

  11. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  12. Study of different coupling agents in the conjugation of a V3-based synthetic MAP to carrier proteins.

    Science.gov (United States)

    Cruz, L J; Iglesias, E; Aguilar, J C; Quintana, D; Garay, H E; Duarte, C; Reyes, O

    2001-09-01

    The conjugation of synthetic peptides to carrier proteins is a widely used method for immunological studies. Different coupling agents have been described to form the conjugate with carrier proteins. In this paper, we demonstrate that the antibody response toward V3-based synthetic MAPs derived from HIV-1, JY1 isolate, conjugated to two different carrier proteins using either m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) or beta-maleimidopropionic acid N-hydroxysuccinimide ester (MPS), or succinic anhydride (SA) show different behaviors. An excellent anti-JY1 response without a strong response to the coupling agent is observed in the case of succinic anhydride spacer. In contrast, MBS produces total abrogation of the antibody response with a high response toward the coupling agent.

  13. Two Newly Discovered Plants in Taiwan

    Directory of Open Access Journals (Sweden)

    Tian-Chuan Hsu

    2009-11-01

    Full Text Available Two herbs are newly discovered in Taiwan. Limnophila fragrans (G. Forst. Seem. (Scrophulariaceae, native in SE Asia, is recognized from southern lowlands. Anagallis minima (L. E. H. L. Krause (Primulaceae, native in N America and Europe, was found from northern mountainous region at low altitudes. In this study, descriptions, line drawings, color photos and a distribution map of the two species are provided.

  14. TSH Response to the Intravenous Administration of Synthetic TRH in Various Thyroid Diseases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Jae; Kim, Kwang Won; Lee, Mun Ho [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1980-03-15

    Serum TSH levels were ,measured by radioimmunoassay before and after intravenous administration of synthetic thyrotropin-releasing hormone(TRH) to 15 normal subjects and 55 patients with primary thyroid disease (14 patients with euthyroidism, 24 patients with thyrotoxicosis and 17 patients with hypothyroidism) to evaluate pituitary TSH reserve and its diagnostic availability. The observed results were as follows. 1) In normal subjects, serum TSH responses to synthetic TRH were 3.2+-1.0 at 0 min (baseline TSH level), 8.0+-4.0 at 10 min, 11.7+-5.0 at 20 min, 13.7+-7.1 at 80 min, 9.7+-5.0 at 60 min., 5.2+-2.0 at 120 min. and 3.6+-0.4 muU/ml at 180 min. Serum TSH peaked at 20-30 minutes and returned nearly to baseline at 180 minutes. 2) In euthyroid group, serum TSH responses to synthetic TRH were 3.3+-1.6 at 0 min, 8.6+-8.0 at 10 min, 10.9+-8. 5 at 20 min, 12.5+-8.4 at 30 min, 9.0+-5.9 at 60 min, 5.6+-2.6 at 120 min and 3.5+-1.3 muU/ml at 180 min. No significant difference revealed between euthyroid group and normal subjects(p>0.05). 3) In hyperthyroid group, serum TSH responses to synthetic TRH were 1.5+-0.6 at 0 min, 2.2+-0.8 at 10 min., 2.3+-1.0 at 20 min., 2.4+-1.5 at 30 min., 2.1+-1.1 at 60 min,, 1.9+-0.2 at 120 min, and 1. 5+-0.8 muU/ml, at 180 min., No response to TRH showed. 4) In hypothyroid group, mean values of serum TSH response to synthetic TRH were 42.0 at 0 min., 60.6 at 10 min., 124.8 at 20 min., 123.0 at 30 min. 101.6 at 60 min., 64.3 at 120 min. and 15.5 muU/ml at 180 min., Patients with primary hypothyroidism showed an exaggerated TSH response to synthetic TRH despite their high basal TSH. 5) Side effects attending synthetic TRH administration were transient nausea (59.0%), desire to micturate (59.0%), feeling of flushing (19.7%), dizziness (45.9%), metallic taste (9.8%) and headache (19.7%). Any side effect didn't show in 16.4%. These symptoms began almost immediately after TRH intravenous injection and lasted several minutes, and not related

  15. Challenges and opportunities in synthetic biology for chemical engineers

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  16. CRISPR and the Rebirth of Synthetic Biology.

    Science.gov (United States)

    Heidari, Raheleh; Shaw, David Martin; Elger, Bernice Simone

    2017-04-01

    Emergence of novel genome engineering technologies such as clustered regularly interspaced short palindromic repeat (CRISPR) has refocused attention on unresolved ethical complications of synthetic biology. Biosecurity concerns, deontological issues and human right aspects of genome editing have been the subject of in-depth debate; however, a lack of transparent regulatory guidelines, outdated governance codes, inefficient time-consuming clinical trial pathways and frequent misunderstanding of the scientific potential of cutting-edge technologies have created substantial obstacles to translational research in this area. While a precautionary principle should be applied at all stages of genome engineering research, the stigma of germline editing, synthesis of new life forms and unrealistic presentation of current technologies should not arrest the transition of new therapeutic, diagnostic or preventive tools from research to clinic. We provide a brief review on the present regulation of CRISPR and discuss the translational aspect of genome engineering research and patient autonomy with respect to the "right to try" potential novel non-germline gene therapies.

  17. Quand l’analytique se fait synthétique : les formes verbales périphrastiques dans le texto

    Directory of Open Access Journals (Sweden)

    Emmanuelle Labeau

    2014-12-01

    Full Text Available The influence of text messaging on language has been hotly debated especially in relation to spelling and the lexicon, but the impact of SMS on syntax has received less attention. This article focuses on manipulations within the verb al domain, as language evolution points towards a consistent trend going from synthetic to analytical forms (Bybee et al. 1994, which goes against the need for concision in texting. Based on an authentic corpus of about 500 SMS (Fairon et al. 2006b, the present study shows condensation strategies that are similar to those already described, yet reveals specific features such as the absence of aphaeresis and the scarcity of apocope, as well as the overuse of synthetic forms. It can thus be concluded that while SMS writing displays oral characteristics, it cannot obviously be assimilated to speech; in addition, it may well slow down language evolution and support the conservation of short standard forms.

  18. Ships as salient objects in synthetic aperture radar imaginary

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available The widespread access to Synthetic Aperture Radar data has created a need for more precise ship extraction, specifically in low-to-medium resolution imagery. While Synthetic Aperture Radar pixel resolution is improving for a large swaths...

  19. Diabetes education and self-management for ongoing and newly diagnosed (DESMOND)

    DEFF Research Database (Denmark)

    Skinner, T. Chas; Carey, Marian E.; Cradock, Sue

    2006-01-01

    diagnosed with Type 2 diabetes changes key illness beliefs and that these changes predict quality of life and metabolic control at 3-month follow-up. Practice implications: Newly diagnosed individuals are open to attending self-management programs and, if the program is theoretically driven, can......Objective: To determine the effects of a structured education program on illness beliefs, quality of life and physical activity in people newly diagnosed with Type 2 diabetes. Methods: Individuals attending a diabetes education and self-management for ongoing and newly diagnosed (DESMOND) program...... in 12 Primary Care Trusts completed questionnaire booklets assessing illness beliefs and quality of life at baseline and 3-month follow-up, metabolic control being assessed through assay of HbA1c. Results: Two hundred and thirty-six individuals attended the structured self-management education sessions...

  20. Scientific Opinion on Risk Assessment of Synthetic Biology.

    Science.gov (United States)

    Epstein, Michelle M; Vermeire, Theo

    2016-08-01

    In 2013, three Scientific Committees of the European Commission (EC) drafted Scientific Opinions on synthetic biology that provide an operational definition and address risk assessment methodology, safety aspects, environmental risks, knowledge gaps, and research priorities. These Opinions contribute to the international discussions on the risk governance for synthetic biology developments. Copyright © 2016 Elsevier Ltd. All rights reserved.