WorldWideScience

Sample records for newer imaging modalities

  1. Vulnerable Plaques, Inflammation and Newer Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Bhatia V

    2003-01-01

    Full Text Available Currently, inflammation is considered to be the central player in the pathogenesis of atherosclerosis. It leads to the formation of multiple plaques in the arterial beds including coronary vasculature. Recent studies using the latest imaging techniques have shown that in patients with acute coronary syndromes (ACS multiple plaques are ruptured and have thrombus formation on them. Various factors make these plaques unstable, these include structural components of plaque like thin fibrous cap, high lipid content of the plaque core and inflammation, both localized and generalized. It has been shown that most of the ACS are caused by plaques causing non-critical stenosis as seen on traditional X-ray angiography. Also, the phenomenon of remodelling makes angiography a poor technique for plaque visualization. Hence newer modalities are required to identify these 'vulnerable plaques'. Intravascular ultrasound (IVUS, thermography and Magnetic Resonance Imaging (MRI are a few such promising techniques. Here we review the invasive and non-invasive modalities that can be helpful in the identification of these plaques before they become unstable and cause ACS, and also the available therapies to stabilize these plaques.

  2. Pressure ulcers: Current understanding and newer modalities of treatment

    Science.gov (United States)

    Bhattacharya, Surajit; Mishra, R. K.

    2015-01-01

    This article reviews the mechanism, symptoms, causes, severity, diagnosis, prevention and present recommendations for surgical as well as non-surgical management of pressure ulcers. Particular focus has been placed on the current understandings and the newer modalities for the treatment of pressure ulcers. The paper also covers the role of nutrition and pressure-release devices such as cushions and mattresses as a part of the treatment algorithm for preventing and quick healing process of these wounds. Pressure ulcers develop primarily from pressure and shear; are progressive in nature and most frequently found in bedridden, chair bound or immobile people. They often develop in people who have been hospitalised for a long time generally for a different problem and increase the overall time as well as cost of hospitalisation that have detrimental effects on patient's quality of life. Loss of sensation compounds the problem manifold, and failure of reactive hyperaemia cycle of the pressure prone area remains the most important aetiopathology. Pressure ulcers are largely preventable in nature, and their management depends on their severity. The available literature about severity of pressure ulcers, their classification and medical care protocols have been described in this paper. The present treatment options include various approaches of cleaning the wound, debridement, optimised dressings, role of antibiotics and reconstructive surgery. The newer treatment options such as negative pressure wound therapy, hyperbaric oxygen therapy, cell therapy have been discussed, and the advantages and disadvantages of current and newer methods have also been described. PMID:25991879

  3. Pressure ulcers: Current understanding and newer modalities of treatment

    Directory of Open Access Journals (Sweden)

    Surajit Bhattacharya

    2015-01-01

    Full Text Available This article reviews the mechanism, symptoms, causes, severity, diagnosis, prevention and present recommendations for surgical as well as non-surgical management of pressure ulcers. Particular focus has been placed on the current understandings and the newer modalities for the treatment of pressure ulcers. The paper also covers the role of nutrition and pressure-release devices such as cushions and mattresses as a part of the treatment algorithm for preventing and quick healing process of these wounds. Pressure ulcers develop primarily from pressure and shear; are progressive in nature and most frequently found in bedridden, chair bound or immobile people. They often develop in people who have been hospitalised for a long time generally for a different problem and increase the overall time as well as cost of hospitalisation that have detrimental effects on patient′s quality of life. Loss of sensation compounds the problem manifold, and failure of reactive hyperaemia cycle of the pressure prone area remains the most important aetiopathology. Pressure ulcers are largely preventable in nature, and their management depends on their severity. The available literature about severity of pressure ulcers, their classification and medical care protocols have been described in this paper. The present treatment options include various approaches of cleaning the wound, debridement, optimised dressings, role of antibiotics and reconstructive surgery. The newer treatment options such as negative pressure wound therapy, hyperbaric oxygen therapy, cell therapy have been discussed, and the advantages and disadvantages of current and newer methods have also been described.

  4. The continuing challenge of evaluating diastolic function by echocardiography in children: developing concepts and newer modalities.

    Science.gov (United States)

    Mawad, Wadi; Friedberg, Mark K

    2017-01-01

    Assessment of diastolic function by echocardiography is challenging but important. Left ventricular filling has been more extensively studied than the right ventricle, and predominantly in adult populations. Although multiple parameters exist to assess diastolic function, they all have limitations, including load and heart rate dependency, which make assessment of diastolic function particularly challenging. The purpose of this article is to review evolving concepts and modalities for echo assessment of diastolic function in children. The paradigm whereby diastolic dysfunction severity progresses in a staged fashion from impaired relaxation to increasing ventricular stiffness, may not apply in children. In addition, previous adult guidelines are not readily applicable to children with cardiomyopathy and the applicability of the newly revised adult guidelines needs to be evaluated in children. It is unlikely that any one single echocardiographic diastolic parameter will adequately reflect diastolic function. Hence, parameters derived from atrioventricular valve inflow, pulmonary venous, and tissue Doppler need to be integrated. Newer modalities such as diastolic strain rate and rotation mechanics may be useful as more sensitive markers of early ventricular dysfunction but have important limitations and require more evaluation before routine use in practice. Assessment of systolic-diastolic coupling may enhance assessment of diastolic function. Diastolic function impacts outcomes and should be part of routine echocardiographic assessment of function. An integrative approach combining different parameters, possibly with contribution of newer modalities in the future, is required.

  5. Current and Future Lymphatic Imaging Modalities for Tumor Staging

    Directory of Open Access Journals (Sweden)

    Ghulam Murtaza

    2014-01-01

    Full Text Available Tumor progression is supported by the lymphatic system which should be scanned efficiently for tumor staging as well as the enhanced therapeutic outcomes. Poor resolution and low sensitivity is a limitation of traditional lymphatic imaging modalities; thus new noninvasive approaches like nanocarriers, magnetic resonance imaging, positron-emission tomography, and quantum dots are advantageous. Some newer modalities, which are under development, and their potential uses will also be discussed in this review.

  6. Established rheumatoid arthritis - new imaging modalities

    DEFF Research Database (Denmark)

    McQueen, Fiona M; Østergaard, Mikkel

    2007-01-01

    New imaging modalities are assuming an increasingly important role in the investigation and management of rheumatoid arthritis. It is now possible to obtain information about all tissues within the joint in three dimensions using tomographic techniques such as magnetic resonance imaging (MRI...

  7. Established rheumatoid arthritis - new imaging modalities

    DEFF Research Database (Denmark)

    McQueen, Fiona M; Østergaard, Mikkel

    2007-01-01

    New imaging modalities are assuming an increasingly important role in the investigation and management of rheumatoid arthritis. It is now possible to obtain information about all tissues within the joint in three dimensions using tomographic techniques such as magnetic resonance imaging (MRI...

  8. A review of imaging modalities in pulmonary hypertension

    Directory of Open Access Journals (Sweden)

    Mona Ascha

    2017-01-01

    Full Text Available Pulmonary hypertension (PH is defined as resting mean pulmonary artery pressure ≥25 mmHg measured by right heart catheterization. PH is a progressive, life-threatening disease with a variety of etiologies. Swift and accurate diagnosis of PH and appropriate classification in etiologic group will allow for earlier treatment and improved outcomes. A number of imaging tools are utilized in the evaluation of PH, such as chest X-ray, computed tomography (CT, ventilation/perfusion (V/Q scan, and cardiac magnetic resonance imaging. Newer imaging tools such as dual-energy CT and single-photon emission computed tomography/computed tomography V/Q scanning have also emerged; however, their place in the diagnostic evaluation of PH remains to be determined. In general, each imaging technique provides incremental information, with varying degrees of sensitivity and specificity, which helps suspect the presence and identify the etiology of PH. The present study aims to provide a comprehensive review of the utility, advantages, and shortcomings of the imaging modalities that may be used to evaluate patients with PH.

  9. Cerenkov imaging - a new modality for molecular imaging

    OpenAIRE

    Thorek, Daniel LJ; Robertson, Robbie; Bacchus, Wassifa A; Hahn, Jaeseung; Rothberg, Julie; Bradley J Beattie; Grimm, Jan

    2012-01-01

    Cerenkov luminescence imaging (CLI) is an emerging hybrid modality that utilizes the light emission from many commonly used medical isotopes. Cerenkov radiation (CR) is produced when charged particles travel through a dielectric medium faster than the speed of light in that medium. First described in detail nearly 100 years ago, CR has only recently applied for biomedical imaging purposes. The modality is of considerable interest as it enables the use of widespread luminescence imaging equipm...

  10. Tri-modality small animal imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, B.K.; Stolin, A.V.; Pole, J.; Baumgart, L.; Fontaine, M.; Wojcik, R.; Kross, B.; Zorn, C.; Majewski, S.; Williams, M.B.

    2006-02-01

    Our group is developing a scanner that combines x-ray, single gamma, and optical imaging on the same rotating gantry. Two functional modalities (SPECT and optical) are included because they have different strengths and weaknesses in terms of spatial and temporal decay lengths in the context of in vivo imaging, and because of the recent advent of multiple reporter gene constructs. The effect of attenuation by biological tissue on the detected intensity of the emitted signal was measured for both gamma and optical imaging. Attenuation by biological tissue was quantified for both the bioluminescent emission of luciferace and for the emission light of the near infrared fluorophore cyanine 5.5, using a fixed excitation light intensity. Experiments were performed to test the feasibility of using either single gamma or x-ray imaging to make depth-dependent corrections to the measured optical signal. Our results suggest that significant improvements in quantitation of optical emission are possible using straightforward correction techniques based on information from other modalities. Development of an integrated scanner in which data from each modality are obtained with the animal in a common configuration will greatly simplify this process.

  11. Imaging Breast Density: Established and Emerging Modalities

    Directory of Open Access Journals (Sweden)

    Jeon-Hor Chen

    2015-12-01

    Full Text Available Mammographic density has been proven as an independent risk factor for breast cancer. Women with dense breast tissue visible on a mammogram have a much higher cancer risk than women with little density. A great research effort has been devoted to incorporate breast density into risk prediction models to better estimate each individual’s cancer risk. In recent years, the passage of breast density notification legislation in many states in USA requires that every mammography report should provide information regarding the patient’s breast density. Accurate definition and measurement of breast density are thus important, which may allow all the potential clinical applications of breast density to be implemented. Because the two-dimensional mammography-based measurement is subject to tissue overlapping and thus not able to provide volumetric information, there is an urgent need to develop reliable quantitative measurements of breast density. Various new imaging technologies are being developed. Among these new modalities, volumetric mammographic density methods and three-dimensional magnetic resonance imaging are the most well studied. Besides, emerging modalities, including different x-ray–based, optical imaging, and ultrasound-based methods, have also been investigated. All these modalities may either overcome some fundamental problems related to mammographic density or provide additional density and/or compositional information. The present review article aimed to summarize the current established and emerging imaging techniques for the measurement of breast density and the evidence of the clinical use of these density methods from the literature.

  12. PACS storage requirements - influence of changes in imaging modalities

    NARCIS (Netherlands)

    van Ooijen, PMA; ten Bhomer, PJM; Oudkerk, M; Lemke, HU; Inamura, K; Doi, K; Vannier, MW; Farman, AG

    2005-01-01

    In current radiology departments, imaging modalities are changing rapidly. One reason for these changes is the continuous technical development providing new imaging modalities with higher spatial and temporal resolution and increased capabilities. Another important reason for change is the replacem

  13. Whole-body imaging modalities in oncology.

    Science.gov (United States)

    Carty, Fiona; Shortt, Conor P; Shelly, Martin J; Eustace, Stephen J; O'Connell, Martin J

    2010-03-01

    This article outlines the expanding approaches to whole-body imaging in oncology focusing on whole-body MRI and comparing it to emerging applications of whole-body CT, scintigraphy, and above all PET CT imaging. Whole-body MRI is widely available, non-ionizing and rapidly acquired, and inexpensive relative to PET CT. While it has many advantages, WBMRI is non-specific and, when compared to PET CT, is less sensitive. This article expands each of these issues comparing individual modalities as they refer to specific cancers.

  14. Bone metastases: assessment of therapeutic response through radiological and nuclear medicine imaging modalities.

    Science.gov (United States)

    Vassiliou, V; Andreopoulos, D; Frangos, S; Tselis, N; Giannopoulou, E; Lutz, S

    2011-11-01

    Radiological and nuclear medicine imaging modalities used for assessing bone metastases treatment response include plain and digitalised radiography (XR), skeletal scintigraphy (SS), dual-energy X-ray absorptiometry (DEXA), computed tomography (CT), magnetic resonance imaging (MRI), [(18)F] fluorodeoxyglucose positron emission tomography (FDG-PET) and PET/CT. Here we discuss the advantages and disadvantages of these assessment modalities as evident through different clinical trials. Additionally, we present the more established response criteria of the International Union Against Cancer and the World Health Organization and compare them with newer MD Anderson criteria. Even though serial XR and SS have been used to assess the therapeutic response for decades, several months are required before changes are evident. Newer techniques, such as MRI or PET, may allow an earlier evaluation of response that may be quantified through monitoring changes in signal intensity and standard uptake value, respectively. Moreover, the application of PET/CT, which can follow both morphological and metabolic changes, has yielded interesting and promising results that give a new insight into the natural history of metastatic bone disease. However, only a few studies have investigated the application of these newer techniques and further clinical trials are needed to corroborate their promising results and establish the most suitable imaging parameters and evaluation time points. Last, but not least, there is an absolute need to adopt uniform response criteria for bone metastases through an international consensus in order to better assess treatment response in terms of accuracy and objectivity.

  15. Modality-Invariant Image Classification Based on Modality Uniqueness and Dictionary Learning.

    Science.gov (United States)

    Kim, Seungryong; Cai, Rui; Park, Kihong; Kim, Sunok; Sohn, Kwanghoon

    2016-12-02

    We present a unified framework for image classification of image sets taken under varying modality conditions. Our method is motivated by a key observation that the image feature distribution is simultaneously influenced by the semantic-class and the modality category label, which limits the performance of conventional methods for that task. With this insight, we introduce modality uniqueness as a discriminative weight that divides each modality cluster from all other clusters. By leveraging the modality uniqueness, our framework is formulated as unsupervised modality clustering and classifier learning based on modality-invariant similarity kernel. Specifically, in the assignment step, each training image is first assigned to the most similar cluster according to its modality. In the update step, based on the current cluster hypothesis, the modality uniqueness and the sparse dictionary are updated. These two steps are formulated in an iterative manner. Based on the final clusters, a modalityinvariant marginalized kernel is then computed, where the similarities between the reconstructed features of each modality are aggregated across all clusters. Our framework enables the reliable inference of semantic-class category for an image, even across large photometric variations. Experimental results show that our method outperforms conventional methods on various benchmarks, such as landmark identification under severely varying weather conditions, domain-adapting image classification, and RGB and near-infrared (NIR) image classification.

  16. Multi-modality molecular imaging for gastric cancer research

    Science.gov (United States)

    Liang, Jimin; Chen, Xueli; Liu, Junting; Hu, Hao; Qu, Xiaochao; Wang, Fu; Nie, Yongzhan

    2011-12-01

    Because of the ability of integrating the strengths of different modalities and providing fully integrated information, multi-modality molecular imaging techniques provide an excellent solution to detecting and diagnosing earlier cancer, which remains difficult to achieve by using the existing techniques. In this paper, we present an overview of our research efforts on the development of the optical imaging-centric multi-modality molecular imaging platform, including the development of the imaging system, reconstruction algorithms and preclinical biomedical applications. Primary biomedical results show that the developed optical imaging-centric multi-modality molecular imaging platform may provide great potential in the preclinical biomedical applications and future clinical translation.

  17. Multi-modal image registration using structural features.

    Science.gov (United States)

    Kasiri, Keyvan; Clausi, David A; Fieguth, Paul

    2014-01-01

    Multi-modal image registration has been a challenging task in medical images because of the complex intensity relationship between images to be aligned. Registration methods often rely on the statistical intensity relationship between the images which suffers from problems such as statistical insufficiency. The proposed registration method works based on extracting structural features by utilizing the complex phase and gradient-based information. By employing structural relationships between different modalities instead of complex similarity measures, the multi-modal registration problem is converted into a mono-modal one. Therefore, conventional mono-modal similarity measures can be utilized to evaluate the registration results. This new registration paradigm has been tested on magnetic resonance (MR) brain images of different modes. The method has been evaluated based on target registration error (TRE) to determine alignment accuracy. Quantitative results demonstrate that the proposed method is capable of achieving comparable registration accuracy compared to the conventional mutual information.

  18. Multi-modality image registration using the decomposition model

    Science.gov (United States)

    Ibrahim, Mazlinda; Chen, Ke

    2017-04-01

    In medical image analysis, image registration is one of the crucial steps required to facilitate automatic segmentation, treatment planning and other application involving imaging machines. Image registration, also known as image matching, aims to align two or more images so that information obtained can be compared and combined. Different imaging modalities and their characteristics make the task more challenging. We propose a decomposition model combining parametric and non-parametric deformation for multi-modality image registration. Numerical results show that the normalised gradient field perform better than the mutual information with the decomposition model.

  19. Rex shunt preoperative imaging: diagnostic capability of imaging modalities.

    Directory of Open Access Journals (Sweden)

    Sharon W Kwan

    Full Text Available The purpose of this study was to evaluate the diagnostic capability of imaging modalities used for preoperative mesenteric-left portal bypass ("Rex shunt" planning. Twenty patients with extrahepatic portal vein thrombosis underwent 57 preoperative planning abdominal imaging studies. Two readers retrospectively reviewed these studies for an ability to confidently determine left portal vein (PV patency, superior mesenteric vein (SMV patency, and intrahepatic left and right PV contiguity. In this study, computed tomographic arterial portography allowed for confident characterization of left PV patency, SMV patency and left and right PV continuity in 100% of the examinations. Single phase contrast-enhanced CT, multi-phase contrast-enhanced CT, multiphase contrast-enhanced MRI, and transarterial portography answered all key diagnostic questions in 33%, 30%, 0% and 8% of the examinations, respectively. In conclusion, of the variety of imaging modalities that have been employed for Rex shunt preoperative planning, computed tomographic arterial portography most reliably allows for assessment of left PV patency, SMV patency, and left and right PV contiguity in a single study.

  20. Multi-modal registration for correlative microscopy using image analogies.

    Science.gov (United States)

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-08-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Modern Imaging Modalities in the Assessment of Acute Stroke

    Directory of Open Access Journals (Sweden)

    Zlatareva Dora K.

    2014-08-01

    Full Text Available The AIM of this review was to present the modern concepts of diagnostic imaging in acute stroke. Neuroimaging in acute stroke aims at diagnosing the condition as early as possible and assessing the extent of parenchymal perfusion and the intracranial vessels patency. A modern approach would involve a combination of various imaging modalities as multidetector computed tomography and high field magnetic resonance imaging. A non-enhanced computed tomography (CT is used to detect hemorrhage or to identify early signs of ischemic stroke. CT angiography finds evidence of intravascular thrombi or significant stenoses, and CT perfusion displays brain tissue at risk of irreversible alterations that can be salvaged therapeutically. Magnetic resonance imaging (MRI is a more sensitive modality than CT in diagnosing acute brain ischemia. MR diffusion-weighted imaging is more sensitive than conventional MR sequences in hyperacute stage. MR angiography as a non-invasive and non-ionizing imaging method is used as an alternative modality to CT angiography. To find brain tissue at risk diffusion- and perfusion-weighted magnetic resonance imaging modalities are used. The authors present briefly the modern neuroimaging modalities used in patients with transient ischemic attack, minor stroke and venous infarction. By combining different imaging techniques in a multimodal approach we can acquire the information necessary for therapeutic planning and differentiate patients who need thrombolysis.

  2. Recent advances in different modal imaging-guided photothermal therapy.

    Science.gov (United States)

    Chen, Qiwen; Wen, Jia; Li, Hongjuan; Xu, Yongqian; Liu, Fengyu; Sun, Shiguo

    2016-11-01

    Photothermal therapy (PTT) has recently attracted considerable attention owing to its controllable treatment process, high tumour eradication efficiency and minimal side effects on non-cancer cells. PTT can melt cancerous cells by localising tissue hyperthermia induced by internalised therapeutic agents with a high photothermal conversion efficiency under external laser irradiation. Numerous in vitro and in vivo studies have shown the significant potential of PTT to treat tumours in future practical applications. Unfortunately, the lack of visualisation towards agent delivery and internalisation, as well as imaging-guided comprehensive evaluation of therapeutic outcome, limits its further application. Developments in combined photothermal therapeutic nanoplatforms guided by different imaging modalities have compensated for the major drawback of PTT alone, proving PTT to be a promising technique in biomedical applications. In this review, we introduce recent developments in different imaging modalities including single-modal, dual-modal, triple-modal and even multi-modal imaging-guided PTT, together with imaging-guided multi-functional theranostic nanoplatforms.

  3. MULTI MODAL ONTOLOGY SEARCH FOR SEMANTIC IMAGE RETRIEVAL

    Directory of Open Access Journals (Sweden)

    R.I. Minu

    2012-08-01

    Full Text Available In this world of fast computing, automation plays an important role. In image retrieval technique automation is a great quest. Giving an image as a query and retrieving relevant images is a challenging research area. In this paper we are proposing a research of using Multi-Modality Ontology integration for image retrieval concept. The core strategy in multimodal information retrieval is the combination or fusion of different data modalities to expand and complement information. Here we use both visual and textual ontology contents to provide search functionalities. Both images and texts are complimentary information units as the human perspective will be different. So, the computational linguistic of images will lead to disambiguate text meaning when it is not quite clear in right sense of several words. That’s why the Multi-Modal information retrieval may lead to an improved operation of information retrieval system. If we go for automation we are in need of a fuzzy technique to predicate the result. So in this paper we using Support Vector Machine classifier to classify the image automatically by using the general feature such as color, texture and texton of an image , then by using this result we can create both feature and domain ontology for an particular image. Using this Multi-Modality Ontology we can refine our image searching system.

  4. Deep Transfer Learning for Modality Classification of Medical Images

    Directory of Open Access Journals (Sweden)

    Yuhai Yu

    2017-07-01

    Full Text Available Medical images are valuable for clinical diagnosis and decision making. Image modality is an important primary step, as it is capable of aiding clinicians to access required medical image in retrieval systems. Traditional methods of modality classification are dependent on the choice of hand-crafted features and demand a clear awareness of prior domain knowledge. The feature learning approach may detect efficiently visual characteristics of different modalities, but it is limited to the number of training datasets. To overcome the absence of labeled data, on the one hand, we take deep convolutional neural networks (VGGNet, ResNet with different depths pre-trained on ImageNet, fix most of the earlier layers to reserve generic features of natural images, and only train their higher-level portion on ImageCLEF to learn domain-specific features of medical figures. Then, we train from scratch deep CNNs with only six weight layers to capture more domain-specific features. On the other hand, we employ two data augmentation methods to help CNNs to give the full scope to their potential characterizing image modality features. The final prediction is given by our voting system based on the outputs of three CNNs. After evaluating our proposed model on the subfigure classification task in ImageCLEF2015 and ImageCLEF2016, we obtain new, state-of-the-art results—76.87% in ImageCLEF2015 and 87.37% in ImageCLEF2016—which imply that CNNs, based on our proposed transfer learning methods and data augmentation skills, can identify more efficiently modalities of medical images.

  5. Feature-based Alignment of Volumetric Multi-modal Images

    Science.gov (United States)

    Toews, Matthew; Zöllei, Lilla; Wells, William M.

    2014-01-01

    This paper proposes a method for aligning image volumes acquired from different imaging modalities (e.g. MR, CT) based on 3D scale-invariant image features. A novel method for encoding invariant feature geometry and appearance is developed, based on the assumption of locally linear intensity relationships, providing a solution to poor repeatability of feature detection in different image modalities. The encoding method is incorporated into a probabilistic feature-based model for multi-modal image alignment. The model parameters are estimated via a group-wise alignment algorithm, that iteratively alternates between estimating a feature-based model from feature data, then realigning feature data to the model, converging to a stable alignment solution with few pre-processing or pre-alignment requirements. The resulting model can be used to align multi-modal image data with the benefits of invariant feature correspondence: globally optimal solutions, high efficiency and low memory usage. The method is tested on the difficult RIRE data set of CT, T1, T2, PD and MP-RAGE brain images of subjects exhibiting significant inter-subject variability due to pathology. PMID:24683955

  6. Instrumentation challenges in multi-modality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Brasse, D., E-mail: david.brasse@iphc.cnrs.fr [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France); Boisson, F. [Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2016-02-11

    Based on different physical principles, imaging procedures currently used in both clinical and preclinical applications present different performance that allow researchers to achieve a large number of studies. However, the relevance of obtaining a maximum of information relating to the same subject is undeniable. The last two decades have thus seen the advent of a full-fledged research axis, the multimodal in vivo imaging. Whether from an instrumentation point of view, for medical research or the development of new probes, all these research works illustrate the growing interest of the scientific community for multimodal imaging, which can be approached with different backgrounds and perspectives from engineers to end-users point of views. In the present review, we discuss the multimodal imaging concept, which focuses not only on PET/CT and PET/MRI instrumentation but also on recent investigations of what could become a possible future in the field.

  7. Three-dimensional imaging modalities in endodontics

    OpenAIRE

    Mao, Teresa; NEELAKANTAN, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualize...

  8. Three-dimensional imaging modalities in endodontics

    OpenAIRE

    Mao, Teresa; Neelakantan, Prasanna

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualize...

  9. Modality

    DEFF Research Database (Denmark)

    Klinge, Alex; Müller, Henrik Høeg

    Modality: Studies in Form and Function reflects the diversity of theoretical frameworks and the heterogeneity of linguistic phenomena under the general heading of modality. Researchers in the fields of logic, philosophy and linguistics have for many years been pondering the elusive nature...

  10. Three-dimensional imaging modalities in endodontics

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)

    2014-09-15

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  11. Three-dimensional imaging modalities in endodontics.

    Science.gov (United States)

    Mao, Teresa; Neelakantan, Prasanna

    2014-09-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

  12. Optical cell sorting with multiple imaging modalities

    DEFF Research Database (Denmark)

    Banas, Andrew; Carrissemoux, Caro; Palima, Darwin

    2017-01-01

    techniques. Scattering forces from beams actuated via efficient phase-only efficient modulation has been adopted. This has lowered the required power for sorting cells to a tenth of our previous approach, and also makes the cell sorter safer for use in clinical settings. With the versatility of dynamically...... programmable phase spatial light modulators, a plurality of light shaping techniques, including hybrid approaches, can be utilized in cell sorting....... healthy cells. With the richness of visual information, a lot of microscopy techniques have been developed and have been crucial in biological studies. To utilize their complementary advantages we adopt both fluorescence and brightfield imaging in our optical cell sorter. Brightfield imaging has...

  13. Coercive Region-level Registration for Multi-modal Images

    CERN Document Server

    Chen, Yu-Hui; Newstadt, Gregory; Simmons, Jeffrey; hero, Alfred

    2015-01-01

    We propose a coercive approach to simultaneously register and segment multi-modal images which share similar spatial structure. Registration is done at the region level to facilitate data fusion while avoiding the need for interpolation. The algorithm performs alternating minimization of an objective function informed by statistical models for pixel values in different modalities. Hypothesis tests are developed to determine whether to refine segmentations by splitting regions. We demonstrate that our approach has significantly better performance than the state-of-the-art registration and segmentation methods on microscopy images.

  14. Implementation and applications of dual-modality imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, B.H. E-mail: bruceh@itsa.ucsf.edu; Barber, W.C.; Funk, Tobias; Hwang, A.B.; Taylor, Carmen; Sun Mingshan; Seo Youngho

    2004-06-01

    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  15. Implementation and applications of dual-modality imaging

    Science.gov (United States)

    Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho

    2004-06-01

    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  16. Comparison of image quality and radiation dose between an image-intensifier system and a newer-generation flat-panel detector system - technical phantom measurements and evaluation of clinical imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Meike; Hagelstein, Claudia; Diehm, Theo; Schoenberg, Stefan O.; Neff, K.W. [University Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, Mannheim (Germany)

    2016-02-15

    Many image-intensifier fluoroscopy systems have been replaced by flat-panel detectors in recent years. To compare the level of contrast, image resolution and radiation dose between an image-intensifier and a newer-generation flat-panel detector system in a pediatric radiology unit. We compared two systems - a conventional image intensifier and a newer-generation flat-panel system. We measured image quality and radiation dose using a technical phantom. Additionally, we retrospectively compared age-matched fluoroscopic pediatric voiding cystourethrography (n = 15) and upper gastrointestinal investigations (n = 25). In phantom studies image contrast was equal while image resolution was higher and mean radiation dose lower using the flat-panel system (P < 0.0001). In pediatric investigations, mean dose area product was significantly reduced on the flat-panel system for upper gastrointestinal investigation (45 ± 38 μGy*m{sup 2} vs. 11 ± 9 μGy*m{sup 2}; P < 0.0001) and for voiding cystourethrography (18 ± 20 μGy*m{sup 2} vs. 10 ± 12 μGy*m{sup 2}; P = 0.04). The newer flat-panel system performs at lower dose levels with equal to better image quality and therefore seems to be the more suitable technique for pediatric fluoroscopy in comparison to image-intensifier systems. (orig.)

  17. IMAGING MODALITIES O F MAXILLOFACIAL IMPL ANTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Prasanna

    2015-06-01

    Full Text Available A Dental implant is a device (usually root shaped precisely placed in the jaws to provide support for or retention of a dental restoration, fixed bridge or removable partial denture. There are several excellent type of imaging modalities that exist today can enhance the success of implant placement. Selec tion of projections should be made with consideration to the type and number of implants, location and surrounding anatomy individual to each patient.

  18. Radiological Evaluation of Ambiguous Genitalia with Various Imaging Modalities

    Science.gov (United States)

    Ravi, N.; Bindushree, Kadakola

    2012-07-01

    Disorders of sex development (DSDs) are congenital conditions in which the development of chromosomal, gonadal, or anatomic sex is atypical. These can be classified broadly into four categories on the basis of gonadal histologic features: female pseudohermaphroditism (46,XX with two ovaries); male pseudohermaphroditism (46,XY with two testes); true hermaphroditism (ovotesticular DSD) (both ovarian and testicular tissues); and gonadal dysgenesis, either mixed (a testis and a streak gonad) or pure (bilateral streak gonads). Imaging plays an important role in demonstrating the anatomy and associated anomalies. Ultrasonography is the primary modality for demonstrating internal organs and magnetic resonance imaging is used as an adjunct modality to assess for internal gonads and genitalia. Early and appropriate gender assignment is necessary for healthy physical and psychologic development of children with ambiguous genitalia. Gender assignment can be facilitated with a team approach that involves a pediatric endocrinologist, geneticist, urologist, psychiatrist, social worker, neonatologist, nurse, and radiologist, allowing timely diagnosis and proper management. We describe case series on ambiguous genitalia presented to our department who were evaluated with multiple imaging modalities.

  19. A dual-modal retinal imaging system with adaptive optics.

    Science.gov (United States)

    Meadway, Alexander; Girkin, Christopher A; Zhang, Yuhua

    2013-12-02

    An adaptive optics scanning laser ophthalmoscope (AO-SLO) is adapted to provide optical coherence tomography (OCT) imaging. The AO-SLO function is unchanged. The system uses the same light source, scanning optics, and adaptive optics in both imaging modes. The result is a dual-modal system that can acquire retinal images in both en face and cross-section planes at the single cell level. A new spectral shaping method is developed to reduce the large sidelobes in the coherence profile of the OCT imaging when a non-ideal source is used with a minimal introduction of noise. The technique uses a combination of two existing digital techniques. The thickness and position of the traditionally named inner segment/outer segment junction are measured from individual photoreceptors. In-vivo images of healthy and diseased human retinas are demonstrated.

  20. Cutaneous malignant melanoma: clinical aspects, imaging modalities and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ak, I.; Stokkel, M.P.M.; Pauwels, E.K.J. [Leiden University Medical Centre, Department of Radiology, Division of Nuclear Medicine, Leiden (Netherlands); Bergman, W. [Department of Dermatology, Leiden University Medical Centre, Leiden (Netherlands)

    2000-04-01

    Cutaneous melanoma is a highly malignant tumour of the melanocytes presenting characteristic metabolic and biological features. Early detection decreases mortality and morbidity and provides the best chance for optimal clinical management. Imaging techniques, including scintigraphy, have assumed an important role in detection strategies. As a functional modality, nuclear medicine offers a variety of possibilities to assist in the clinical management of malignant melanoma. This review discusses the clinical aspects and treatment of melanoma, and the imaging techniques used for its diagnosis, staging and follow-up. A survey of currently available techniques is presented. (orig.)

  1. Cortical vein thrombosis: the diagnostic value of different imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Linn, Jennifer; Michl, Stefan; Katja, Bochmann; Hartz, Sabine; Brueckmann, Hartmut [University Hospital Munich, Department of Neuroradiology, Munich (Germany); Pfefferkorn, Thomas; Dichgans, Martin [University Hospital Munich, Department of Neurology, Munich (Germany); Wiesmann, Martin [University Hospital Munich, Department of Neuroradiology, Munich (Germany); Helios Kliniken Schwerin, Department of Radiology and Neuroradiology, Schwerin (Germany)

    2010-10-15

    Cortical vein thrombosis (CVT) is a rare disorder, and its diagnosis is challenging. The aim of our study was to evaluate the value of different imaging modalities for the detection of CVT. Thirteen patients with CVT, either isolated (n = 3) or in combination with sinus thrombosis (n = 10), and 20 control patients without any venous pathologies were included in this study. The analysis was performed independently by three blinded readers who evaluated the following imaging modalities and sequences separately: non-enhanced computed tomography (NCCT); multi-detector row CT angiography (MDCTA); diffusion-weighted (DWI), T1-weighted (T1w), PD-weighted (PDw), T2*-weighted (T2*w), and fluid-attenuated inversion recovery-weighted (FLAIRw) magnetic resonance (MR) sequences; as well as venous MR angiography (vMRA). The sensitivity, specificity, positive (PPV) and negative predictive values, and interobserver agreement of the different modalities were calculated. T2*w showed the highest sensitivity for the detection of CVT (97.4%), followed by T1w (70%). FLAIRw and vMRA had a sensitivity of 50% and 41.7%, respectively, whereas the sensitivity of NCCT, MDCTA, DWI, and PDw was below 30%. The specificity and PPV of all modalities was 100%, with good to perfect interobserver agreement. T2*w was the superior MR imaging sequence for diagnosing CVT. Besides T2*w, only T1w reached a sensitivity of over 50% for CVT, followed by FLAIRw, and vMRA. On the contrary, our results suggest that NCCT but also MDCTA might not be suitable for diagnosing CVT. (orig.)

  2. Dual-Modality PET/Ultrasound imaging of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Moses, William W.; Pouliot, Jean; Hsu, I.C.

    2005-11-11

    Functional imaging with positron emission tomography (PET)will detect malignant tumors in the prostate and/or prostate bed, as well as possibly help determine tumor ''aggressiveness''. However, the relative uptake in a prostate tumor can be so great that few other anatomical landmarks are visible in a PET image. Ultrasound imaging with a transrectal probe provides anatomical detail in the prostate region that can be co-registered with the sensitive functional information from the PET imaging. Imaging the prostate with both PET and transrectal ultrasound (TRUS) will help determine the location of any cancer within the prostate region. This dual-modality imaging should help provide better detection and treatment of prostate cancer. LBNL has built a high performance positron emission tomograph optimized to image the prostate.Compared to a standard whole-body PET camera, our prostate-optimized PET camera has the same sensitivity and resolution, less backgrounds and lower cost. We plan to develop the hardware and software tools needed for a validated dual PET/TRUS prostate imaging system. We also plan to develop dual prostate imaging with PET and external transabdominal ultrasound, in case the TRUS system is too uncomfortable for some patients. We present the design and intended clinical uses for these dual imaging systems.

  3. New functional imaging modalities for chromaffin tumors, neuroblastomas and ganglioneuromas.

    Science.gov (United States)

    Ilias, Ioannis; Shulkin, Barry; Pacak, Karel

    2005-03-01

    Nuclear medicine modalities use radiolabeled ligands that either follow metabolic pathways or act on cellular receptors. Thus, they permit functional imaging of physiological processes and help to localize sites such as tumors that harbor pathological events. The application of positron emission tomography (PET) ligands to the specific pathways of synthesis, metabolism and inactivation of catecholamines found in chromaffin tumors, neuroblastomas and ganglioneuromas can be used to provide a more thorough localization of these types of tumor. Recent advances have been made in functional imaging to localize pheochromocytomas, paragangliomas, neuroblastomas and ganglioneuromas, including approaches based on PET with [(18)F]fluorodopamine, [(18)F]fluorohydroxyphenylalanine, [(11)C]epinephrine or [(11)C]hydroxyephedrine. Such functional imaging can complement computed tomography or magnetic resonance imaging and other scintigraphic techniques to localize these tumors before surgical or medical therapeutic approaches are considered.

  4. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    Science.gov (United States)

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  5. Diagnosis of pulmonary embolism with various imaging modalities.

    Science.gov (United States)

    Srivastava, Sunita D; Eagleton, Matthew J; Greenfield, Lazar J

    2004-06-01

    Pulmonary embolism (PE) is a major health concern that affects approximately 600,000 new patients annually. The diagnosis of PE can be difficult to make, and several imaging studies have been developed to aid in this process. Initial evaluation involves the acquisition of a chest radiograph. Findings on radiography, however, are often non-specific. The gold-standard study historically has been pulmonary angiography, with increasing diagnostic yield since the implementation of digital subtraction technology. This is an invasive procedure, however, but the incidence of major complications is low. Less invasive modalities have been developed and include ventilation-perfusion lung scans. These are used as one of the initial screening tests in evaluation of patients with suspected PE. The presence of a high-probability scan usually indicates the presence of a PE, although few patients have high probability scans. The test is significantly affected by underlying pulmonary disease or previous PE. Given this, ventilation-perfusion lung scans are limited as a primary diagnostic tool in the evaluation of suspected PE. Helical computed tomography (CT) is currently under much scrutiny as a diagnostic tool for PE. Currently a prospective, multicenter trial evaluating its efficacy (PIOPED II) has been initiated, but the results are pending. Preliminary reports suggest the helical CT and venous phase CT may become a first line study in patient evaluation. The diagnosis of PE is challenging and several imaging modalities are currently used to assist the clinician. Currently, multiple modalities are often required to make the diagnosis. With the advent of new technology and improved imaging techniques, the diagnosis of PE will become easier.

  6. Assessment of Cardiac Sarcoidosis with Advanced Imaging Modalities

    Science.gov (United States)

    Akasaka, Takashi

    2014-01-01

    Sarcoidosis is a chronic systemic disease of unknown etiology that is characterized by the presence of noncaseating epithelioid granulomas, usually in multiple organs. Several studies have shown that sarcoidosis might be the result of an exaggerated granulomatous reaction after exposure to unidentified antigens in genetically susceptible individuals. Cardiac involvement may occur and lead to an adverse outcome: the heart mechanics will be affected and that causes ventricular failure, and the cardiac electrical system will be disrupted and lead to third degree atrioventricular block, malignant ventricular tachycardia, and sudden cardiac death. Thus, early diagnosis and treatment of this potentially devastating disease is critically important. However, sensitive and accurate imaging modalities have not been established. Recent studies have demonstrated the promising potential of cardiac magnetic resonance imaging (MRI) and 18F-fluoro-2-deoxyglucose positron emission tomography (18F-FDG PET) in the diagnosis and assessment of cardiac sarcoidosis (CS). In this review, we discuss the epidemiology, etiology, histological findings, and clinical features of sarcoidosis. We also introduce advanced imaging including 18F-FDG PET and cardiac MRI as more reliable diagnostic modalities for CS. PMID:25250336

  7. Modality prediction of biomedical literature images using multimodal feature representation

    Directory of Open Access Journals (Sweden)

    Pelka, Obioma

    2016-08-01

    Full Text Available This paper presents the modelling approaches performed to automatically predict the modality of images found in biomedical literature. Various state-of-the-art visual features such as Bag-of-Keypoints computed with dense SIFT descriptors, texture features and Joint Composite Descriptors were used for visual image representation. Text representation was obtained by vector quantisation on a Bag-of-Words dictionary generated using attribute importance derived from a χ-test. Computing the principal components separately on each feature, dimension reduction as well as computational load reduction was achieved. Various multiple feature fusions were adopted to supplement visual image information with corresponding text information. The improvement obtained when using multimodal features vs. visual or text features was detected, analysed and evaluated. Random Forest models with 100 to 500 deep trees grown by resampling, a multi class linear kernel SVM with C=0.05 and a late fusion of the two classifiers were used for modality prediction. A Random Forest classifier achieved a higher accuracy and computed Bag-of-Keypoints with dense SIFT descriptors proved to be a better approach than with Lowe SIFT.

  8. Improved proton computed tomography by dual modality image reconstruction

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Bassler, Niels; Petersen, Jørgen B.B.;

    2014-01-01

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full...... nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully...

  9. Photoacoustic and ultrasound dual-modality imaging for inflammatory arthritis

    Science.gov (United States)

    Xu, Guan; Chamberland, David; Girish, Gandikota; Wang, Xueding

    2014-03-01

    Arthritis is a leading cause of disability, affecting 46 million of the population in the U.S. Rendering new optical contrast in articular tissues at high spatial and temporal resolution, emerging photoacoustic imaging (PAI) combined with more established ultrasound (US) imaging technologies provides unique opportunities for diagnosis and treatment monitoring of inflammatory arthritis. In addition to capturing peripheral bone and soft tissue images, PAI has the capability to quantify hemodynamic properties including regional blood oxygenation and blood volume, both abnormal in synovial tissues affected by arthritis. Therefore, PAI, especially when performed together with US, should be of considerable help for further understanding the pathophysiology of arthritis as well as assisting in therapeutic decisions, including assessing the efficacy of new pharmacological therapies. In this paper, we will review our recent work on the development of PAI for application to the diagnostic imaging and therapeutic monitoring of inflammatory arthritis. We will present the imaging results from a home-built imaging system and another one based on a commercial US. The performance of PAI in evaluating pharmacological therapy on animal model of arthritis will be shown. Moreover, our resent work on PAI and US dual-modality imaging of human peripheral joints in vivo will also be presented.

  10. A hybrid genetic algorithm for multi-modal image registration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper describes a new method for three-dimensional medical image registration. In the interactive image-guided HIFU (High Intensity Focused Ultrasound) therapy system, a fast and precise localization of the tumor is very important. An automatic system is developed for registering pre-operative MR images with intra-operative ultrasound images based on the vessels visible in both of the modalities. When the MR and the ultrasound images are aligned, the centerline points of the vessels in the MR image will align with bright intensities in the ultrasound image. The method applies an optimization strategy combining the genetic algorithm with the conjugated gradients algorithm to minimize the objective function. It provides a feasible way of determining the global solution and makes the method robust to local maximum and insensitive to initial position. Two experiments were designed to evaluate the method, and the results show that our method has better registration accuracy and convergence rate than the other two classic algorithms.

  11. Dual Modality Noncontact Photoacoustic and Spectral Domain OCT Imaging.

    Science.gov (United States)

    Leiss-Holzinger, Elisabeth; Bauer-Marschallinger, Johannes; Hochreiner, Armin; Hollinger, Philipp; Berer, Thomas

    2016-01-01

    We developed a multimodal imaging system, combining noncontact photoacoustic imaging and optical coherence tomography (OCT). Photoacoustic signals are recorded without contact to the specimens' surface by using an interferometric technique. The interferometer is realized within a fiber-optic network using a fiber laser at 1550 nm as source. The fiber-optic network allows the integration of a fiber-based OCT system operating at a wavelength region around 1310 nm. Light from the fiber laser and the OCT source are multiplexed into one fiber using wavelength-division multiplexing. The same focusing optics is used for both modalities. Back-reflected light from the sample is demultiplexed and guided to the respective imaging systems. As the same optical components are used for OCT and photoacoustic imaging, the obtained images are co-registered intrinsically in lateral direction. Three-dimensional imaging is implemented by hybrid galvanometer and mechanical scanning. To allow fast B-scan measurements, scanning of the interrogation beam along one dimension is executed by a galvanometer scanner. Slow-axis scanning, perpendicular to the fast axis, is performed utilizing a linear translational stage. We demonstrate two-dimensional and three-dimensional imaging on agarose phantoms.

  12. Imaging of radial wrist pain. I. Imaging modalities and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ryan Ka Lok; Griffith, James F.; Ng, Alex Wing Hung [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong, Shatin (China); Wong, Clara Wing Yee [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Shatin (China)

    2014-06-15

    Radial wrist pain is a common clinical complaint. The relatively complex anatomy in this region, combined with the small size of the anatomical structures and occasionally subtle imaging findings, can pose problems when trying to localize the exact cause of pain. To fully comprehend the underlying pathology, one needs a good understanding of both radial-sided wrist anatomy and the relative merits of the different imaging techniques used to assess these structures. In part I of this review, these aspects will be discussed. (orig.)

  13. Improved proton computed tomography by dual modality image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, David C., E-mail: dch@ki.au.dk; Bassler, Niels [Experimental Clinical Oncology, Aarhus University, 8000 Aarhus C (Denmark); Petersen, Jørgen Breede Baltzer [Medical Physics, Aarhus University Hospital, 8000 Aarhus C (Denmark); Sørensen, Thomas Sangild [Computer Science, Aarhus University, 8000 Aarhus C, Denmark and Clinical Medicine, Aarhus University, 8200 Aarhus N (Denmark)

    2014-03-15

    Purpose: Proton computed tomography (CT) is a promising image modality for improving the stopping power estimates and dose calculations for particle therapy. However, the finite range of about 33 cm of water of most commercial proton therapy systems limits the sites that can be scanned from a full 360° rotation. In this paper the authors propose a method to overcome the problem using a dual modality reconstruction (DMR) combining the proton data with a cone-beam x-ray prior. Methods: A Catphan 600 phantom was scanned using a cone beam x-ray CT scanner. A digital replica of the phantom was created in the Monte Carlo code Geant4 and a 360° proton CT scan was simulated, storing the entrance and exit position and momentum vector of every proton. Proton CT images were reconstructed using a varying number of angles from the scan. The proton CT images were reconstructed using a constrained nonlinear conjugate gradient algorithm, minimizing total variation and the x-ray CT prior while remaining consistent with the proton projection data. The proton histories were reconstructed along curved cubic-spline paths. Results: The spatial resolution of the cone beam CT prior was retained for the fully sampled case and the 90° interval case, with the MTF = 0.5 (modulation transfer function) ranging from 5.22 to 5.65 linepairs/cm. In the 45° interval case, the MTF = 0.5 dropped to 3.91 linepairs/cm For the fully sampled DMR, the maximal root mean square (RMS) error was 0.006 in units of relative stopping power. For the limited angle cases the maximal RMS error was 0.18, an almost five-fold improvement over the cone beam CT estimate. Conclusions: Dual modality reconstruction yields the high spatial resolution of cone beam x-ray CT while maintaining the improved stopping power estimation of proton CT. In the case of limited angles, the use of prior image proton CT greatly improves the resolution and stopping power estimate, but does not fully achieve the quality of a 360

  14. Cumulative phase delay imaging - A new contrast enhanced ultrasound modality

    Energy Technology Data Exchange (ETDEWEB)

    Demi, Libertario, E-mail: l.demi@tue.nl; Sloun, Ruud J. G. van; Mischi, Massimo [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Wijkstra, Hessel [Lab. of Biomedical Diagnostics, Dept. of Electrical Eng., Eindhoven University of Technology (Netherlands); Academic Medical Center, Urology Dept., University of Amsterdam (Netherlands)

    2015-10-28

    Recently, a new acoustic marker for ultrasound contrast agents (UCAs) has been introduced. A cumulative phase delay (CPD) between the second harmonic and fundamental pressure wave field components is in fact observable for ultrasound propagating through UCAs. This phenomenon is absent in the case of tissue nonlinearity and is dependent on insonating pressure and frequency, UCA concentration, and propagation path length through UCAs. In this paper, ultrasound images based on this marker are presented. The ULA-OP research platform, in combination with a LA332 linear array probe (Esaote, Firenze Italy), were used to image a gelatin phantom containing a PVC plate (used as a reflector) and a cylindrical cavity measuring 7 mm in diameter (placed in between the observation point and the PVC plate). The cavity contained a 240 µL/L SonoVueO{sup ®} UCA concentration. Two insonating frequencies (3 MHz and 2.5 MHz) were used to scan the gelatine phantom. A mechanical index MI = 0.07, measured in water at the cavity location with a HGL-0400 hydrophone (Onda, Sunnyvale, CA), was utilized. Processing the ultrasound signals backscattered from the plate, ultrasound images were generated in a tomographic fashion using the filtered back-projection method. As already observed in previous studies, significantly higher CPD values are measured when imaging at a frequency of 2.5 MHz, as compared to imaging at 3 MHz. In conclusion, these results confirm the applicability of the discussed CPD as a marker for contrast imaging. Comparison with standard contrast-enhanced ultrasound imaging modalities will be the focus of future work.

  15. Combining Different Modalities for 3D Imaging of Biological Objects

    CERN Document Server

    Tsyganov, E; Kulkarni, P; Mason, R; Parkey, R; Seliuonine, S; Shay, J; Soesbe, T; Zhezher, V; Zinchenko, A I

    2005-01-01

    A resolution enhanced NaI(Tl)-scintillator micro-SPECT device using pinhole collimator geometry has been built and tested with small animals. This device was constructed based on a depth-of-interaction measurement using a thick scintillator crystal and a position sensitive PMT to measure depth-dependent scintillator light profiles. Such a measurement eliminates the parallax error that degrades the high spatial resolution required for small animal imaging. This novel technique for 3D gamma-ray detection was incorporated into the micro-SPECT device and tested with a $^{57}$Co source and $^{98m}$Tc-MDP injected in mice body. To further enhance the investigating power of the tomographic imaging different imaging modalities can be combined. In particular, as proposed and shown in this paper, the optical imaging permits a 3D reconstruction of the animal's skin surface thus improving visualization and making possible depth-dependent corrections, necessary for bioluminescence 3D reconstruction in biological objects. ...

  16. Imaging by multiple modalities of patients with a carotidynia syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Nobuyuki; Uematsu, Hidemasa; Kimura, Hirohiko; Itoh, Harumi [University of Fukui, Department of Radiology, Faculty of Medical Sciences, Fukui (Japan); Sagoh, Tadashi; Noguchi, Masato [Fukui Red Cross Hospital, Department of Radiology, Fukui (Japan); Miyayama, Shiro [Fukuiken Saiseikai Hospital, Department of Diagnostic Radiology, Fukui (Japan)

    2007-09-15

    The purpose of this article is to familiarize readers with the clinical syndrome of carotidynia. In the past, the International Headache Society (IHS) described idiopathic carotidynia as a diagnostic entity consisting of a self-limiting neck pain syndrome and tenderness over the carotid bifurcation without structural abnormality and then recently removed it from its classification. Although the clinical criteria of carotidynia in the former classification of the IHS included the absence of structural abnormality, several publications have demonstrated associated radiological findings and have described the usefulness of radiological investigations in diagnosing this syndrome. In this paper, we report four additional cases with a carotidynia clinical syndrome (according to the former classification) and the presence of abnormal soft tissue infiltration surrounding the symptomatic carotid artery as demonstrated by multiple imaging modalities, without any other underlying cause for the carotid pain syndrome. Our findings support the hypothesis that carotidynia could be a distinct disease entity, possibly caused by inflammation. (orig.)

  17. Imaging Modalities to Identity Inflammation in an Atherosclerotic Plaque

    Directory of Open Access Journals (Sweden)

    Sunny Goel

    2015-01-01

    Full Text Available Atherosclerosis is a chronic, progressive, multifocal arterial wall disease caused by local and systemic inflammation responsible for major cardiovascular complications such as myocardial infarction and stroke. With the recent understanding that vulnerable plaque erosion and rupture, with subsequent thrombosis, rather than luminal stenosis, is the underlying cause of acute ischemic events, there has been a shift of focus to understand the mechanisms that make an atherosclerotic plaque unstable or vulnerable to rupture. The presence of inflammation in the atherosclerotic plaque has been considered as one of the initial events which convert a stable plaque into an unstable and vulnerable plaque. This paper systemically reviews the noninvasive and invasive imaging modalities that are currently available to detect this inflammatory process, at least in the intermediate stages, and discusses the ongoing studies that will help us to better understand and identify it at the molecular level.

  18. Using image synthesis for multi-channel registration of different image modalities

    Science.gov (United States)

    Chen, Min; Jog, Amod; Carass, Aaron; Prince, Jerry L.

    2015-01-01

    This paper presents a multi-channel approach for performing registration between magnetic resonance (MR) images with different modalities. In general, a multi-channel registration cannot be used when the moving and target images do not have analogous modalities. In this work, we address this limitation by using a random forest regression technique to synthesize the missing modalities from the available ones. This allows a single channel registration between two different modalities to be converted into a multi-channel registration with two mono-modal channels. To validate our approach, two openly available registration algorithms and five cost functions were used to compare the label transfer accuracy of the registration with (and without) our multi-channel synthesis approach. Our results show that the proposed method produced statistically significant improvements in registration accuracy (at an α level of 0.001) for both algorithms and all cost functions when compared to a standard multi-modal registration using the same algorithms with mutual information. PMID:26246653

  19. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles

    Science.gov (United States)

    Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie

    2016-07-01

    Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide

  20. Newer antithrombotic drugs

    Science.gov (United States)

    Sikka, Pranav; Bindra, V. K.

    2010-01-01

    Thromboembolic disorders are one of the disorders for which we are still on the look out for a safe and efficient drug. Despite the widespread use of antithrombotic drugs for the prevention and treatment of arterial and venous thrombosis, thromboembolic diseases continue to be a major cause of death and disability worldwide. This shows our inefficiency in searching efficacious and safe antithrombotic drugs. We have reached the basic mechanism of thrombus formation and by interrupting various steps of this mechanism, we can prevent as well as treat thromboembolic disorders. In continuation of Aspirin, now, we are using Clopidogrel, Ticlopidine and GpIIb/IIIa inhibitors (Abciximab, Tirofiban and Eptifibatide). Warfarin is an old antithrombotic drug which is still being used; but due to various side effects and drug interactions, we are bound to use newer drugs. Newer antiplatelet drugs include Prasugrel, Ticagrelor and Cangrelor, whereas newer thrombin inhibitors are Ximelgatran and Dabigatran. Apixaban is also a newer entry in this category as factor Xa inhibitor. Idrabiotaparinux is an indirect inhibitor of Xa as it accelerates the activity of antithrombin. Moreover, researches and trials for better and safe drugs are ongoing. PMID:21572750

  1. Wearable Brain Imaging with Multi-Modal Physiological Recording.

    Science.gov (United States)

    Strangman, Gary E; Ivkovic, Vladimir; Zhang, Quan

    2017-07-13

    The brain is a central component of cognitive and physical human performance. Measures including functional brain activation, cerebral perfusion, cerebral oxygenation, evoked electrical responses, and resting hemodynamic and electrical activity are all related to, or can predict health status or performance decrements. However, measuring brain physiology typically requires large, stationary machines that are not suitable for mobile or self-monitoring. Moreover, when individuals are ambulatory, systemic physiological fluctuations-e.g., in heart rate, blood pressure, skin perfusion and more-can interfere with non-invasive brain measurements. In efforts to address the physiological monitoring and performance assessment needs for astronauts during spaceflight, we have developed easy-to-use, wearable prototypes- NINscan, for near-infrared scanning-that can collect synchronized multi-modal physiology data, including hemodynamic deep-tissue imaging (including brain and muscles), electroencephalography, electrocardiography, electromyography, electrooculography, accelerometry, gyroscopy, pressure, respiration and temperature measurements. Given their self-contained and portable nature, these devices can be deployed in a much broader range of settings-including austere environments-thereby enabling a wider range of novel medical and research physiology applications. We review these, including high-altitude assessments, self-deployable multi-modal e.g., (polysomnographic) recordings in remote or low-resource environments, fluid shifts in variable-gravity or spaceflight analog environments, intra-cranial brain motion during high-impact sports, and long-duration monitoring for clinical symptom-capture in various clinical conditions. In addition to further enhancing sensitivity and miniaturization, advanced computational algorithms could help support real-time feedback and alerts regarding performance and health. Copyright © 2017, Journal of Applied Physiology.

  2. Pott's Spine: Diagnostic Imaging Modalities and Technology Advancements

    Science.gov (United States)

    Ansari, Sajid; Amanullah, Md. Farid; Ahmad, Kaleem; Rauniyar, Raj Kumar

    2013-01-01

    Spinal tuberculosis (TB) or Pott's spine is the commonest extrapulmonary manifestation of TB. It spreads through hematogenous route. Clinically, it presents with constitutional symptoms, back pain, tenderness, paraplegia or paraparesis, and kyphotic or scoliotic deformities. Pott's spine accounts for 2% of all cases of TB, 15% of extrapulmonary, and 50% of skeletal TB. The paradiscal, central, anterior subligamentous, and neural arch are the common vertebral lesions. Thoracic vertebrae are commonly affected followed by lumbar and cervical vertebrae. Plain radiographs are usually the initial investigation in spinal TB. For a radiolucent lesion to be apparent on a plain radiograph there should be 30% of bone mineral loss. Computed tomographic scanning provides much better bony detail of irregular lytic lesions, sclerosis, disc collapse, and disruption of bone circumference than plain radiograph. Magnetic resonance imaging (MRI) is the best diagnostic modality for Pott's spine and is more sensitive than other modalities. MRI frequently demonstrates disc collapse/destruction, cold abscess, vertebral wedging/collapse, marrow edema, and spinal deformities. Ultrasound and computed tomographic guided needle aspiration or biopsy is the technique for early histopathological diagnosis. Recently, the coexistence of human immunodeficiency virus infections and TB has been increased globally. In recent years, diffusion-weighted MRI (DW-MRI) and apparent diffusion coefficient values in combination with MRI are used to some extent in the diagnosis of spinal TB. We have reviewed related literature through internet. The terms searched on Google scholar and PubMed are TB, extrapulmonary TB, skeletal TB, spinal TB, Pott's spine, Pott's paraplegia, MRI, and computed tomography (CT). PMID:24020048

  3. Exogenous Molecular Probes for Targeted Imaging in Cancer: Focus on Multi-modal Imaging

    Directory of Open Access Journals (Sweden)

    Bishnu P. Joshi

    2010-06-01

    Full Text Available Cancer is one of the major causes of mortality and morbidity in our healthcare system. Molecular imaging is an emerging methodology for the early detection of cancer, guidance of therapy, and monitoring of response. The development of new instruments and exogenous molecular probes that can be labeled for multi-modality imaging is critical to this process. Today, molecular imaging is at a crossroad, and new targeted imaging agents are expected to broadly expand our ability to detect and manage cancer. This integrated imaging strategy will permit clinicians to not only localize lesions within the body but also to manage their therapy by visualizing the expression and activity of specific molecules. This information is expected to have a major impact on drug development and understanding of basic cancer biology. At this time, a number of molecular probes have been developed by conjugating various labels to affinity ligands for targeting in different imaging modalities. This review will describe the current status of exogenous molecular probes for optical, scintigraphic, MRI and ultrasound imaging platforms. Furthermore, we will also shed light on how these techniques can be used synergistically in multi-modal platforms and how these techniques are being employed in current research.

  4. Single-channel stereoscopic video imaging modality based on transparent rotating deflector.

    Science.gov (United States)

    Radfar, Edalat; Jang, Won Hyuk; Freidoony, Leila; Park, Jihoon; Kwon, Kichul; Jung, Byungjo

    2015-10-19

    In this study, we developed a single-channel stereoscopic video imaging modality based on a transparent rotating deflector (TRD). Sequential two-dimensional (2D) left and right images were obtained through the TRD synchronized with a camera, and the components of the imaging modality were controlled by a microcontroller unit. The imaging modality was characterized by evaluating the stereoscopic video image generation, rotation of the TRD, heat generation by the stepping motor, and image quality and its stability in terms of the structural similarity index. The degree of depth perception was estimated and subjective analysis was performed to evaluate the depth perception improvement. The results show that the single-channel stereoscopic video imaging modality may: 1) overcome some limitations of conventional stereoscopic video imaging modalities; 2) be a potential economical compact stereoscopic imaging modality if the system components can be miniaturized; 3) be easily integrated into current 2D optical imaging modalities to produce a stereoscopic image; and 4) be applied to various medical and industrial fields.

  5. Development of Convergence Nanoparticles for Multi-Modal Bio-Medical Imaging

    Science.gov (United States)

    2008-09-18

    Multi-Modal Bio- Medical Imaging Key researchers: Jinwoo Cheon Affiliation: Department of Chemistry, Yonsei University Address: 134 Shinchon...01-02-2008 4. TITLE AND SUBTITLE Development of Convergence Nanoparticles for Multi-Modal Bio- Medical Imaging 5a. CONTRACT NUMBER FA48690714016

  6. EVolution : an edge-based variational method for non-rigid multi-modal image registration

    NARCIS (Netherlands)

    Denis de Senneville, B; Zachiu, C; Ries, M; Moonen, C

    2016-01-01

    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography,

  7. Manifold-based feature point matching for multi-modal image registration.

    Science.gov (United States)

    Hu, Liang; Wang, Manning; Song, Zhijian

    2013-03-01

    Images captured using different modalities usually have significant variations in their intensities, which makes it difficult to reveal their internal structural similarities and achieve accurate registration. Most conventional feature-based image registration techniques are fast and efficient, but they cannot be used directly for the registration of multi-modal images because of these intensity variations. This paper introduces the theory of manifold learning to transform the original images into mono-modal modalities, which is a feature-based method that is applicable to multi-modal image registration. Subsequently, scale-invariant feature transform is used to detect highly distinctive local descriptors and matches between corresponding images, and a point-based registration is executed. The algorithm was tested with T1- and T2-weighted magnetic resonance (MR) images obtained from BrainWeb. Both qualitative and quantitative evaluations of the method were performed and the results compared with those produced previously. The experiments showed that feature point matching after manifold learning achieved more accurate results than did the similarity measure for multi-modal image registration. This study provides a new manifold-based feature point matching method for multi-modal medical image registration, especially for MR images. The proposed method performs better than do conventional intensity-based techniques in terms of its registration accuracy and is suitable for clinical procedures. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles.

    Science.gov (United States)

    Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie

    2016-08-14

    Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.

  9. Biomedical Imaging Modality Classification Using Combined Visual Features and Textual Terms

    Directory of Open Access Journals (Sweden)

    Xian-Hua Han

    2011-01-01

    extraction from medical images and fuses the different extracted visual features and textual feature for modality classification. To extract visual features from the images, we used histogram descriptor of edge, gray, or color intensity and block-based variation as global features and SIFT histogram as local feature. For textual feature of image representation, the binary histogram of some predefined vocabulary words from image captions is used. Then, we combine the different features using normalized kernel functions for SVM classification. Furthermore, for some easy misclassified modality pairs such as CT and MR or PET and NM modalities, a local classifier is used for distinguishing samples in the pair modality to improve performance. The proposed strategy is evaluated with the provided modality dataset by ImageCLEF 2010.

  10. Omni-tomography/Multi-tomography -- Integrating Multiple Modalities for Simultaneous Imaging

    CERN Document Server

    Wang, Ge; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Wang, Yue; Vannier, Michael

    2011-01-01

    Current tomographic imaging systems need major improvements, especially when multi-dimensional, multi-scale, multi-temporal and multi-parametric phenomena are under investigation. Both preclinical and clinical imaging now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities to define morphologic details, delineate interval changes due to disease or interventions, and study physiological functions that have interconnected aspects. Over the past decade, fusion of multimodality images has emerged with two different approaches: post-hoc image registration and combined acquisition on PET-CT, PET-MRI and other hybrid scanners. There are intrinsic limitations for both the post-hoc image analysis and dual/triple modality approaches defined by registration errors and physical constraints in the acquisition chain. We envision that tomography will evolve beyond current modality fusion and towards grand fusion, a large scale fusion of all or many imaging modalities, which may...

  11. How Can New Imaging Modalities Help in the Practice of Radiology?

    Science.gov (United States)

    Pirimoglu, Berhan; Sade, Recep; Ogul, Hayri; Kantarci, Mecit; Eren, Suat; Levent, Akın

    2016-01-01

    The purpose of this article was to provide an up-to-date review on the spectrum of new imaging applications in the practice of radiology. New imaging techniques have been developed with the objective of obtaining structural and functional analyses of different body systems. Recently, new imaging modalities have aroused the interest of many researchers who are studying the applicability of these modalities in the evaluation of different organs and diseases. In this review article, we present the efficiency and utilization of current imaging modalities in daily radiological practice. PMID:28149149

  12. EVolution: an edge-based variational method for non-rigid multi-modal image registration.

    Science.gov (United States)

    Denis de Senneville, B; Zachiu, C; Ries, M; Moonen, C

    2016-10-21

    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).

  13. EVolution: an edge-based variational method for non-rigid multi-modal image registration

    Science.gov (United States)

    de Senneville, B. Denis; Zachiu, C.; Ries, M.; Moonen, C.

    2016-10-01

    Image registration is part of a large variety of medical applications including diagnosis, monitoring disease progression and/or treatment effectiveness and, more recently, therapy guidance. Such applications usually involve several imaging modalities such as ultrasound, computed tomography, positron emission tomography, x-ray or magnetic resonance imaging, either separately or combined. In the current work, we propose a non-rigid multi-modal registration method (namely EVolution: an edge-based variational method for non-rigid multi-modal image registration) that aims at maximizing edge alignment between the images being registered. The proposed algorithm requires only contrasts between physiological tissues, preferably present in both image modalities, and assumes deformable/elastic tissues. Given both is shown to be well suitable for non-rigid co-registration across different image types/contrasts (T1/T2) as well as different modalities (CT/MRI). This is achieved using a variational scheme that provides a fast algorithm with a low number of control parameters. Results obtained on an annotated CT data set were comparable to the ones provided by state-of-the-art multi-modal image registration algorithms, for all tested experimental conditions (image pre-filtering, image intensity variation, noise perturbation). Moreover, we demonstrate that, compared to existing approaches, our method possesses increased robustness to transient structures (i.e. that are only present in some of the images).

  14. Radiation dose reduction and new image modalities development for interventional C-arm imaging system

    Science.gov (United States)

    Niu, Kai

    Cardiovascular disease and stroke are the leading health problems and causes of death in the US. Due to the minimally invasive nature of the evolution of image guided techniques, interventional radiological procedures are becoming more common and are preferred in treating many cardiovascular diseases and strokes. In addition, with the recent advances in hardware and device technology, the speed and efficacy of interventional treatment has significantly improved. This implies that more image modalities can be developed based on the current C-arm system and patients treated in interventional suites can potentially experience better health outcomes. However, during the treatment patients are irradiated with substantial amounts of ionizing radiation with a high dose rate (digital subtraction angiography (DSA) with 3muGy/frame and 3D cone beam CT image with 0.36muGy/frame for a Siemens Artis Zee biplane system) and/or a long irradiation time (a roadmapping image sequence can be as long as one hour during aneurysm embolization). As a result, the patient entrance dose is extremely high. Despite the fact that the radiation dose is already substantial, image quality is not always satisfactory. By default a temporal average is used in roadmapping images to overcome poor image quality, but this technique can result in motion blurred images. Therefore, reducing radiation dose while maintaining or even improving the image quality is an important area for continued research. This thesis is focused on improving the clinical applications of C-arm cone beam CT systems in two ways: (1) Improve the performance of current image modalities on the C-arm system. (2) Develop new image modalities based on the current system. To be more specific, the objectives are to reduce radiation dose for current modalities (e.g., DSA, fluoroscopy, roadmapping, and cone beam CT) and enable cone beam CT perfusion and time resolved cone beam CT angiography that can be used to diagnose and triage acute

  15. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    Directory of Open Access Journals (Sweden)

    Lu Guo

    Full Text Available To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors.A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT and tri-modality (MRI/CT/PET image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV, the average distance between surface and centroid (ADSC, and the local standard deviation (SDlocal. Analysis of COV was also performed to evaluate intra-observer volume variation.The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09 and 0.07(± 0.01 for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (p<0.05 with tri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm and patient 3 (from 0.42 cm to 0.36 cm with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00 with the tri-modality method as compared with using the dual-modality method.With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  16. A tri-modality image fusion method for target delineation of brain tumors in radiotherapy.

    Science.gov (United States)

    Guo, Lu; Shen, Shuming; Harris, Eleanor; Wang, Zheng; Jiang, Wei; Guo, Yu; Feng, Yuanming

    2014-01-01

    To develop a tri-modality image fusion method for better target delineation in image-guided radiotherapy for patients with brain tumors. A new method of tri-modality image fusion was developed, which can fuse and display all image sets in one panel and one operation. And a feasibility study in gross tumor volume (GTV) delineation using data from three patients with brain tumors was conducted, which included images of simulation CT, MRI, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) examinations before radiotherapy. Tri-modality image fusion was implemented after image registrations of CT+PET and CT+MRI, and the transparency weight of each modality could be adjusted and set by users. Three radiation oncologists delineated GTVs for all patients using dual-modality (MRI/CT) and tri-modality (MRI/CT/PET) image fusion respectively. Inter-observer variation was assessed by the coefficient of variation (COV), the average distance between surface and centroid (ADSC), and the local standard deviation (SDlocal). Analysis of COV was also performed to evaluate intra-observer volume variation. The inter-observer variation analysis showed that, the mean COV was 0.14(± 0.09) and 0.07(± 0.01) for dual-modality and tri-modality respectively; the standard deviation of ADSC was significantly reduced (ptri-modality; SDlocal averaged over median GTV surface was reduced in patient 2 (from 0.57 cm to 0.39 cm) and patient 3 (from 0.42 cm to 0.36 cm) with the new method. The intra-observer volume variation was also significantly reduced (p = 0.00) with the tri-modality method as compared with using the dual-modality method. With the new tri-modality image fusion method smaller inter- and intra-observer variation in GTV definition for the brain tumors can be achieved, which improves the consistency and accuracy for target delineation in individualized radiotherapy.

  17. Multi-Modal Curriculum Learning for Semi-Supervised Image Classification.

    Science.gov (United States)

    Gong, Chen; Tao, Dacheng; Maybank, Stephen J; Liu, Wei; Kang, Guoliang; Yang, Jie

    2016-07-01

    Semi-supervised image classification aims to classify a large quantity of unlabeled images by typically harnessing scarce labeled images. Existing semi-supervised methods often suffer from inadequate classification accuracy when encountering difficult yet critical images, such as outliers, because they treat all unlabeled images equally and conduct classifications in an imperfectly ordered sequence. In this paper, we employ the curriculum learning methodology by investigating the difficulty of classifying every unlabeled image. The reliability and the discriminability of these unlabeled images are particularly investigated for evaluating their difficulty. As a result, an optimized image sequence is generated during the iterative propagations, and the unlabeled images are logically classified from simple to difficult. Furthermore, since images are usually characterized by multiple visual feature descriptors, we associate each kind of features with a teacher, and design a multi-modal curriculum learning (MMCL) strategy to integrate the information from different feature modalities. In each propagation, each teacher analyzes the difficulties of the currently unlabeled images from its own modality viewpoint. A consensus is subsequently reached among all the teachers, determining the currently simplest images (i.e., a curriculum), which are to be reliably classified by the multi-modal learner. This well-organized propagation process leveraging multiple teachers and one learner enables our MMCL to outperform five state-of-the-art methods on eight popular image data sets.

  18. Hierarchical Multi-modal Image Registration by Learning Common Feature Representations.

    Science.gov (United States)

    Ge, Hongkun; Wu, Guorong; Wang, Li; Gao, Yaozong; Shen, Dinggang

    2015-10-05

    Mutual information (MI) has been widely used for registering images with different modalities. Since most inter-modality registration methods simply estimate deformations in a local scale, but optimizing MI from the entire image, the estimated deformations for certain structures could be dominated by the surrounding unrelated structures. Also, since there often exist multiple structures in each image, the intensity correlation between two images could be complex and highly nonlinear, which makes global MI unable to precisely guide local image deformation. To solve these issues, we propose a hierarchical inter-modality registration method by robust feature matching. Specifically, we first select a small set of key points at salient image locations to drive the entire image registration. Since the original image features computed from different modalities are often difficult for direct comparison, we propose to learn their common feature representations by projecting them from their native feature spaces to a common space, where the correlations between corresponding features are maximized. Due to the large heterogeneity between two high-dimension feature distributions, we employ Kernel CCA (Canonical Correlation Analysis) to reveal such non-linear feature mappings. Then, our registration method can take advantage of the learned common features to reliably establish correspondences for key points from different modality images by robust feature matching. As more and more key points take part in the registration, our hierarchical feature-based image registration method can efficiently estimate the deformation pathway between two inter-modality images in a global to local manner. We have applied our proposed registration method to prostate CT and MR images, as well as the infant MR brain images in the first year of life. Experimental results show that our method can achieve more accurate registration results, compared to other state-of-the-art image registration

  19. Fungal splenic abscesses in the immunosuppressed patient. Correlation of imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez, T.E.; Evans, D.G.; Schiffman, H.; Ashburn, W.L.

    1987-01-01

    A patient with fungal splenic abscesses is presented in whom multiple noninvasive diagnostic imaging modalities were available for correlation. Of the five imaging modalities, three (Gallium-67, ultrasound and computed tomography) were diagnostically useful, while two (liver-spleen scan and In-111 white blood cell scan) were not as useful. This case also stresses the use of repeated studies correlating with clinical impressions to obtain an accurate diagnosis in a potentially life-threatening condition such as splenic abscess.

  20. Large Margin Multi-Modal Multi-Task Feature Extraction for Image Classification.

    Science.gov (United States)

    Yong Luo; Yonggang Wen; Dacheng Tao; Jie Gui; Chao Xu

    2016-01-01

    The features used in many image analysis-based applications are frequently of very high dimension. Feature extraction offers several advantages in high-dimensional cases, and many recent studies have used multi-task feature extraction approaches, which often outperform single-task feature extraction approaches. However, most of these methods are limited in that they only consider data represented by a single type of feature, even though features usually represent images from multiple modalities. We, therefore, propose a novel large margin multi-modal multi-task feature extraction (LM3FE) framework for handling multi-modal features for image classification. In particular, LM3FE simultaneously learns the feature extraction matrix for each modality and the modality combination coefficients. In this way, LM3FE not only handles correlated and noisy features, but also utilizes the complementarity of different modalities to further help reduce feature redundancy in each modality. The large margin principle employed also helps to extract strongly predictive features, so that they are more suitable for prediction (e.g., classification). An alternating algorithm is developed for problem optimization, and each subproblem can be efficiently solved. Experiments on two challenging real-world image data sets demonstrate the effectiveness and superiority of the proposed method.

  1. Imaging modalities for the classification of gout: systematic literature review and meta-analysis

    NARCIS (Netherlands)

    Ogdie, A.; Taylor, W.J.; Weatherall, M.; Fransen, J.; Jansen, T.L.; Neogi, T.; Schumacher, H.R.; Dalbeth, N.

    2015-01-01

    BACKGROUND: Although there has been major progress in gout imaging, no gout classification criteria currently include advanced imaging techniques. OBJECTIVE: To examine the usefulness of imaging modalities in the classification of gout when compared to monosodium urate (MSU) crystal confirmation as

  2. MR Brain Real Images Segmentation Based Modalities Fusion and Estimation Et Maximization Approach

    Directory of Open Access Journals (Sweden)

    ASSAS Ouarda

    2016-01-01

    Full Text Available With the development of acquisition image techniques, more data coming from different sources of image become available. Multi-modality image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single modality. The main aim of this work is to improve cerebral IRM real images segmentation by fusion of modalities (T1, T2 and DP using estimation et maximizatio Approach (EM. The evaluation of adopted approaches was compared using four criteria which are: the standard deviation (STD, entropy of information (IE, the coefficient of correlation (CC and the space frequency (SF. The experimental results on MRI brain real images prove that the adopted scenarios of fusion approaches are more accurate and robust than the standard EM approach

  3. Current Imaging Modalities for assessing Ocular Blood Flow in Glaucoma

    OpenAIRE

    Mohindroo, Chirayu; Ichhpujani, Parul; Kumar, Suresh

    2016-01-01

    Glaucoma may be caused by an interplay of elevated intraocular pressure (IOP), vascular, genetic, anatomical, brain, and immune factors. The direct assessment of ocular hemodynam-ics offers promise for glaucoma detection, differentiation, and possibly new treatment modalities. All the methods currently in use to measure ocular blood flow have inherent limitations and measure different aspects of ocular blood flow. This review article attempts to provide detailed information on ocular perfu-si...

  4. A virtual imaging platform for multi-modality medical image simulation.

    Science.gov (United States)

    Glatard, Tristan; Lartizien, Carole; Gibaud, Bernard; da Silva, Rafael Ferreira; Forestier, Germain; Cervenansky, Frédéric; Alessandrini, Martino; Benoit-Cattin, Hugues; Bernard, Olivier; Camarasu-Pop, Sorina; Cerezo, Nadia; Clarysse, Patrick; Gaignard, Alban; Hugonnard, Patrick; Liebgott, Hervé; Marache, Simon; Marion, Adrien; Montagnat, Johan; Tabary, Joachim; Friboulet, Denis

    2013-01-01

    This paper presents the Virtual Imaging Platform (VIP), a platform accessible at http://vip.creatis.insa-lyon.fr to facilitate the sharing of object models and medical image simulators, and to provide access to distributed computing and storage resources. A complete overview is presented, describing the ontologies designed to share models in a common repository, the workflow template used to integrate simulators, and the tools and strategies used to exploit computing and storage resources. Simulation results obtained in four image modalities and with different models show that VIP is versatile and robust enough to support large simulations. The platform currently has 200 registered users who consumed 33 years of CPU time in 2011.

  5. A new region descriptor for multi-modal medical image registration and region detection.

    Science.gov (United States)

    Xiaonan Wan; Dongdong Yu; Feng Yang; Caiyun Yang; Chengcai Leng; Min Xu; Jie Tian

    2015-08-01

    Establishing accurate anatomical correspondences plays a critical role in multi-modal medical image registration and region detection. Although many features based registration methods have been proposed to detect these correspondences, they are mostly based on the point descriptor which leads to high memory cost and could not represent local region information. In this paper, we propose a new region descriptor which depicts the features in each region, instead of in each point, as a vector. First, feature attributes of each point are extracted by a Gabor filter bank combined with a gradient filter. Then, the region descriptor is defined as the covariance of feature attributes of each point inside the region, based on which a cost function is constructed for multi-modal image registration. Finally, our proposed region descriptor is applied to both multi-modal region detection and similarity metric measurement in multi-modal image registration. Experiments demonstrate the feasibility and effectiveness of our proposed region descriptor.

  6. Incontinence Treatment: Newer Treatment Options

    Science.gov (United States)

    ... Bowel Incontinence Signs & Symptoms Symptoms of Incontinence Diarrhea Treatment Lifestyle Changes Dietary Tips Medication Bowel Management Biofeedback Surgical Treatments Newer Treatment Options Tips on Finding a Doctor ...

  7. Analyse et traitement d'images multi modales en oncologie

    OpenAIRE

    Hatt, Mathieu

    2012-01-01

    With an initial formation in theoretical computer sciences with a focus on image processing and analysis, my current research activities deal with image and information processing and analysis for applications in medicine, namely oncology and radiotherapy. More specifically, my research interests are image automatic segmentation and classification for organs and tumors delineation, image denoising and deconvolution for qualitative and quantitative improvement, and more recently, multi observa...

  8. MineScan: non-image data monitoring and mining from imaging modalities

    Science.gov (United States)

    Zaidi, Shayan M.; Huff, Dov; Bhalodia, Pankit; Mongkolwat, Pattanasak; Channin, David S.

    2003-05-01

    This project is intended to capture and interactively display non-image information routinely generated by imaging modalities. This information relates to the device's performance of the individual procedures and is not necessarily available in other information streams such as DICOM headers. While originally intended for use in servicing the modalities, this information can also be presented to radiologists and administrators within the department for both micro- and macro-management purposes. This data can help hospital administrators and radiologists manage available resources and discover clues to indicate what modifications in hospital operations might significantly improve its ability to provide efficient patient care. Data is collected from a departmental CT scanner. The data consists of a running record of exams followed by a list of processing records logged over a 24-hour period. MineScan extracts information from these records and stores it into a database. A statistical program is run once a day to collect relevant metrics. MineScan can be accessed via a Web browser or through an advanced prototype PACS workstation. This information, if provided in real-time, can be used to manage operations in a busy department. Even when provided historically, the data can be used to assess current activity, analyze trends and plan future operations.

  9. Diagnostic sensitivity of imaging modalities for hepatocellular carcinoma smaller than 2 cm

    Institute of Scientific and Technical Information of China (English)

    Keiji; Mita; Soo; Ryang; Kim; Masatoshi; Kudo; Susumu; Imoto; Taisuke; Nakajima; Kenji; Ando; Katsumi; Fukuda; Toshiyuki; Matsuoka; Yoko; Maekawa; Yoshitake; Hayashi

    2010-01-01

    AIM:To compare the imaging results with histology and to evaluate the diagnostic sensitivity of imaging modalities for hepatocellular carcinoma(HCC)smaller than 2 cm.METHODS:Nodules smaller than 2 cm(n=34)revealed by ultrasonography(US)in 29 patients with liver cirrhosis were analyzed.Histological diagnosis of HCC was performed by ultrasonographic guidance:moderately-differentiated HCC(n=24);well-differentiated HCC(n=10).The patterns disclosed by the four imaging modalities defined the conclusive diagnosis ...

  10. Ultrasmall Biocompatible WO3- x Nanodots for Multi-Modality Imaging and Combined Therapy of Cancers.

    Science.gov (United States)

    Wen, Ling; Chen, Ling; Zheng, Shimin; Zeng, Jianfeng; Duan, Guangxin; Wang, Yong; Wang, Guanglin; Chai, Zhifang; Li, Zhen; Gao, Mingyuan

    2016-07-01

    Ultrasmall biocompatible WO3 - x nanodots with an outstanding X-ray radiation sensitization effect are prepared, and demonstrated to be applicable for multi-modality tumor imaging through computed tomography and photoacoustic imaging (PAI), and effective cancer treatment combining both photothermal therapy and radiation therapy.

  11. A comparison of noninvasive imaging modalities in the melanoma patient

    Energy Technology Data Exchange (ETDEWEB)

    Doiron, M.J.; Bernardino, M.E.

    1981-06-01

    The results of radionuclide (RN) liver scans, computed tomography (CT), and ultrasonography (US) were compared in 163 patients. Thirty-eight patients had all three studies, while ten were examined by CT and RN liver scans. One hundred fifteen patients had only US and RN studies. Radionuclide liver scanning demonstrated more false positive and negative studies than CT or US. Also, CT and US demonstrated more areas of metastasis during a single examination than RN liver scans. Ultrasonography displayed roughly the same accuracy of CT when a technically adequate examination was obtained. However, US was hampered by technically inadequate studies in 19% of 153 patients because of interfering intestinal gas. Computed tomography proved the most accurate and reliable modality in 48 patients.

  12. Programmable aperture microscopy: A computational method for multi-modal phase contrast and light field imaging

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Feng, Shijie; Zhang, Minliang; Chen, Qian

    2016-05-01

    We demonstrate a simple and cost-effective programmable aperture microscope to realize multi-modal computational imaging by integrating a programmable liquid crystal display (LCD) into a conventional wide-field microscope. The LCD selectively modulates the light distribution at the rear aperture of the microscope objective, allowing numerous imaging modalities, such as bright field, dark field, differential phase contrast, quantitative phase imaging, multi-perspective imaging, and full resolution light field imaging to be achieved and switched rapidly in the same setup, without requiring specialized hardwares and any moving parts. We experimentally demonstrate the success of our method by imaging unstained cheek cells, profiling microlens array, and changing perspective views of thick biological specimens. The post-exposure refocusing of a butterfly mouthpart and RFP-labeled dicot stem cross-section is also presented to demonstrate the full resolution light field imaging capability of our system for both translucent and fluorescent specimens.

  13. Fully integrated optical coherence tomography, ultrasound, and indocyanine green-based fluorescence tri-modality system for intravascular imaging.

    Science.gov (United States)

    Li, Yan; Jing, Joseph; Qu, Yueqiao; Miao, Yusi; Zhang, Buyun; Ma, Teng; Yu, Mingyue; Zhou, Qifa; Chen, Zhongping

    2017-02-01

    We present a tri-modality imaging system and fully integrated tri-modality probe for intravascular imaging. The tri-modality imaging system is able to simultaneously acquire optical coherence tomography (OCT), ultrasound (US), and fluorescence imaging. Moreover, for fluorescence imaging, we used the FDA-approved indocyanine green (ICG) dye as the contrast agent to target lipid-loaded macrophages. We conducted imaging from a male New Zealand white rabbit to evaluate the performance of the tri-modality system. In addition, tri-modality images of rabbit aortas were correlated with hematoxylin and eosin (H&E) histology to check the measurement accuracy. The fully integrated miniature tri-modality probe, together with the use of ICG dye suggest that the system is of great potential for providing a more accurate assessment of vulnerable plaques in clinical applications.

  14. Development of a Hybrid Nanoprobe for Triple-Modality MR/SPECT/Optical Fluorescence Imaging

    Science.gov (United States)

    Madru, Renata; Svenmarker, Pontus; Ingvar, Christian; Ståhlberg, Freddy; Engels, Stefan-Andersson; Knutsson, Linda; Strand, Sven-Erik

    2014-01-01

    Hybrid clinical imaging is an emerging technology, which improves disease diagnosis by combining already existing technologies. With the combination of high-resolution morphological imaging, i.e., MRI/CT, and high-sensitive molecular detection offered by SPECT/PET/Optical, physicians can detect disease progression at an early stage and design patient-specific treatments. To fully exploit the possibilities of hybrid imaging a hybrid probe compatible with each imaging technology is required. Here, we present a hybrid nanoprobe for triple modality MR/SPECT/Fluorescence imaging. Our imaging agent is comprised of superparamagnetic iron oxide nanoparticles (SPIONs), labeled with 99mTc and an Alexa fluorophore (AF), together forming 99mTc-AF-SPIONs. The agent was stable in human serum, and, after subcutaneous injection in the hind paw of Wistar rats, showed to be highly specific by accumulating in the sentinel lymph node. All three modalities clearly visualized the imaging agent. Our results show that a single imaging agent can be used for hybrid imaging. The use of a single hybrid contrast agent permits simultaneous hybrid imaging and, more conventionally, allow for single modality imaging at different time points. For example, a hybrid contrast agent enables pre-operative planning, intra-operative guidance, and post-operative evaluation with the same contrast agent. PMID:26852675

  15. Carbon-11 radiolabeling of iron-oxide nanoparticles for dual-modality PET/MR imaging

    Science.gov (United States)

    Sharma, Ramesh; Xu, Youwen; Kim, Sung Won; Schueller, Michael J.; Alexoff, David; Smith, S. David; Wang, Wei; Schlyer, David

    2013-07-01

    Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled SPIO NPs was demonstrated in an in vivo experiment.Dual-modality imaging, using Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) simultaneously, is a powerful tool to gain valuable information correlating structure with function in biomedicine. The advantage of this dual approach is that the strengths of one modality can balance the weaknesses of the other. However, success of this technique requires developing imaging probes suitable for both. Here, we report on the development of a nanoparticle labeling procedure via covalent bonding with carbon-11 PET isotope. Carbon-11 in the form of [11C]methyl iodide was used as a methylation agent to react with carboxylic acid (-COOH) and amine (-NH2) functional groups of ligands bound to the nanoparticles (NPs). The surface coating ligands present on superparamagnetic iron-oxide nanoparticles (SPIO NPs) were radiolabeled to achieve dual-modality PET/MR imaging capabilities. The proof-of-concept dual-modality PET/MR imaging using the radiolabeled

  16. Multi-modal imaging of the subscapularis muscle

    OpenAIRE

    Alilet, Mona; Behr, Julien; Nueffer, Jean-Philippe; Barbier-Brion, Benoit; Aubry, Sébastien

    2016-01-01

    Abstract The subscapularis (SSC) muscle is the most powerful of the rotator cuff muscles, and plays an important role in shoulder motion and stabilization. SSC tendon tear is quite uncommon, compared to the supraspinatus (SSP) tendon, and, most of the time, part of a large rupture of the rotator cuff. Various complementary imaging techniques can be used to obtain an accurate diagnosis of SSC tendon lesions, as well as their extension and muscular impact. Pre-operative diagnosis by imaging is ...

  17. Robotic 3D scanner as an alternative to standard modalities of medical imaging.

    Science.gov (United States)

    Chromy, Adam; Zalud, Ludek

    2014-01-01

    There are special medical cases, where standard medical imaging modalities are able to offer sufficient results, but not in the optimal way. It means, that desired results are produced with unnecessarily high expenses, with redundant informations or with needless demands on patient. This paper deals with one special case, where information useful for examination is the body surface only, inner sight into the body is needless. New specialized medical imaging device is developed for this situation. In the Introduction section, analysis of presently used medical imaging modalities is presented, which declares, that no available imaging device is best fitting for mentioned purposes. In the next section, development of the new specialized medical imaging device is presented, and its principles and functions are described. Then, the parameters of new device are compared with present ones. It brings significant advantages comparing to present imaging systems.

  18. Multiphoton microscopy as a diagnostic imaging modality for lung cancer

    Science.gov (United States)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Peters, Rachel M.; Weiss, Robert S.; Webb, Watt W.

    2010-02-01

    Lung cancer is the leading killer among all cancers for both men and women in the US, and is associated with one of the lowest 5-year survival rates. Current diagnostic techniques, such as histopathological assessment of tissue obtained by computed tomography guided biopsies, have limited accuracy, especially for small lesions. Early diagnosis of lung cancer can be improved by introducing a real-time, optical guidance method based on the in vivo application of multiphoton microscopy (MPM). In particular, we hypothesize that MPM imaging of living lung tissue based on twophoton excited intrinsic fluorescence and second harmonic generation can provide sufficient morphologic and spectroscopic information to distinguish between normal and diseased lung tissue. Here, we used an experimental approach based on MPM with multichannel fluorescence detection for initial discovery that MPM spectral imaging could differentiate between normal and neoplastic lung in ex vivo samples from a murine model of lung cancer. Current results indicate that MPM imaging can directly distinguish normal and neoplastic lung tissues based on their distinct morphologies and fluorescence emission properties in non-processed lung tissue. Moreover, we found initial indication that MPM imaging differentiates between normal alveolar tissue, inflammatory foci, and lung neoplasms. Our long-term goal is to apply results from ex vivo lung specimens to aid in the development of multiphoton endoscopy for in vivo imaging of lung abnormalities in various animal models, and ultimately for the diagnosis of human lung cancer.

  19. Spatio-temporal multi-modality ontology for indexing and retrieving satellite images

    OpenAIRE

    MESSOUDI, Wassim; FARAH, Imed Riadh; SAHEB ETTABAA, Karim; Ben Ghezala, Henda; SOLAIMAN, Basel

    2009-01-01

    International audience; This paper presents spatio-temporal multi-modality ontology for indexing and retrieving satellite images in the high level to improve the quality of the system retrieval and to perform semantic in the retrieval process.Our approach is based on three modules: (1) regions and features extraction, (2) ontological indexing and (3) semantic image retrieval. The first module allows extracting regions from the satellite image using the fuzzy c-means FCM) segmentation algorith...

  20. The Synthesis and Characterization of the Magnetic Iron Oxide Nanoparticles as PET/MRI Dual-modal Imaging Agent

    Institute of Scientific and Technical Information of China (English)

    SHI; Xu-dong; SHEN; Lang-tao

    2012-01-01

    <正>Positron emission tomography (PET) and magnetic resonance imaging (MRI) have been employed in the clinical diagnosis of the cancers. However, single modal imaging has its own strengths and weaknesses. The combination of two popular imaging modalities that integrates the advantages of different methods might offer the prospect of improved diagnostic abilities. Some companies have

  1. Percutaneous Ultrasonography as Imaging Modality and Sampling Guide for Pulmonologists

    NARCIS (Netherlands)

    Stigt, Jos A.; Groen, Harry J. M.

    2014-01-01

    Ultrasound (US) imaging is gradually progressing into common practice in contemporary pulmonology. Its main applications are to determine the presence and amount of pleural effusions and to guide subsequent treatment interventions. Guidelines recommend the use of US for these indications. Training

  2. Percutaneous Ultrasonography as Imaging Modality and Sampling Guide for Pulmonologists

    NARCIS (Netherlands)

    Stigt, Jos A.; Groen, Harry J. M.

    2014-01-01

    Ultrasound (US) imaging is gradually progressing into common practice in contemporary pulmonology. Its main applications are to determine the presence and amount of pleural effusions and to guide subsequent treatment interventions. Guidelines recommend the use of US for these indications. Training p

  3. Telepathology and imaging spectroscopy as a new modality in histopathology.

    Science.gov (United States)

    Vari, S G; Müller, G; Lerner, J M; Naber, R D

    1999-01-01

    Telemedicine started in the late 1950's by transmitting data on patients' pulse and heart rates. In the 1980's it expanded to radiology and orthopedics. The technology is now expanding to other specialties that can digitally gather patient data. Telepathology comprises the transmission of microscopic images via telecommunication network. Image compression and multiplexing technologies enabled high-resolution telepathology as well as real-time video consultations over international telephone lines. Organ transplantation has become a viable treatment and offers new life to an increasing number of patients suffering from chronic end stage diseases and from irreversible organ failure. Rejection is still a major problem in kidney, liver, and heart transplantation. To gain further insight into the complex interactions within the components of the immune system, it has become increasingly necessary to develop rapid and simple methods to monitor the status of the immune system in patients. Clinical signs suggest organ rejection and abnormal laboratory test results, but only histological signs on biopsy specimens are adequately specific. The financial cost of organ transplant makes it imperative to develop tools for the early identification and treatment of organ rejection. An increasingly sensitive and accurate way of localizing key structures and abnormalities is through spectroscopy of either H&E stained samples or with a fluorescent tag (fluorophore) or by relying on natural fluorescence. The system is based on a unique Prism and Mirror Imaging Spectroscopy System ("PARISS), spectrometer originally designed and implemented for remote Earth monitoring from space and aircraft and astronomical imaging spectroscopy. Compact and lightweight both the mirror and prism are presently constructed in inexpensive glass but can also be injection molded in plastic. Any number of vendors anywhere in the world can produce all parts of the assembly. This greatly enhances the chances of

  4. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  5. A MEDICAL MULTI-MODALITY IMAGE FUSION OF CT/PET WITH PCA, DWT METHODS

    Directory of Open Access Journals (Sweden)

    S. Guruprasad

    2013-11-01

    Full Text Available This paper gives a view on the fusion of different modality images like PET and CT (Positron Emission Tomography & Computed Tomography by two domain methods PCA and DWT methods. The spatial domain is PCA method, and another transformation domain method (DWT. In dwt decomposed coefficients of DWT (discrete wavelet transformation are applied with the IDWT to get fused image information. Before that, choose a detailed part of decomposed coefficients by maximum selection and averaging the approximated part of DWT coefficients. In applying the PCA using eigen values and eigen vector of larger values as principal components and after to reconstruct using addition to these to get the fussed image of two modalities CT & PET. So that adds complimentary features of both anatomic, physiological and metabolic information in one image, provides better visual information in single image of patients in medical field. The analytic parameters like, MSE, PSNR, ENTROPY results are better enough to prove the methods each other.

  6. Three-dimensional Intraoperative Imaging Modalities in Orthopaedic Surgery: A Narrative Review.

    Science.gov (United States)

    Qureshi, Sheeraz; Lu, Young; McAnany, Steven; Baird, Evan

    2014-12-01

    Intraoperative imaging and navigation systems have revolutionized orthopaedic surgery for the spine, joints, and orthopaedic trauma. Imaging modalities such as the isocentric C-arm, O-arm imaging, and intraoperative MRI or navigation systems allow the visualization of surgical instruments and implants relative to a three-dimensional CT image or MRI. Studies show that these technologies lower the rates of implant misplacement and inadequate fracture reduction, thereby improving surgical outcomes and reducing reoperation rates. An additional benefit is reduced radiation exposure compared with that for conventional fluoroscopy. Concerns surrounding adoption of these technologies include cost and increased operating times, but improvements in design and protocol may improve the integration of these imaging modalities into the operating room.

  7. Scalable Medical Image Understanding by Fusing Cross-Modal Object Recognition with Formal Domain Semantics

    Science.gov (United States)

    Möller, Manuel; Sintek, Michael; Buitelaar, Paul; Mukherjee, Saikat; Zhou, Xiang Sean; Freund, Jörg

    Recent advances in medical imaging technology have dramatically increased the amount of clinical image data. In contrast, techniques for efficiently exploiting the rich semantic information in medical images have evolved much slower. Despite the research outcomes in image understanding, current image databases are still indexed by manually assigned subjective keywords instead of the semantics of the images. Indeed, most current content-based image search applications index image features that do not generalize well and use inflexible queries. This slow progress is due to the lack of scalable and generic information representation systems which can abstract over the high dimensional nature of medical images as well as semantically model the results of object recognition techniques. We propose a system combining medical imaging information with ontological formalized semantic knowledge that provides a basis for building universal knowledge repositories and gives clinicians fully cross-lingual and cross-modal access to biomedical information.

  8. Multi-modal Color Medical Image Fusion Using Quaternion Discrete Fourier Transform

    Science.gov (United States)

    Nawaz, Qamar; Xiao, Bin; Hamid, Isma; Jiao, Du

    2016-12-01

    Multimodal image fusion is a process of combining multiple images, generated by identical or diverse imaging modalities, to get precise inside information about the same body organ. In recent years, various multimodal image fusion algorithms have been proposed to fuse medical image. However, most of them focus on fusing grayscale images. This paper proposes a novel algorithm for the fusion of multimodal color medical images. The proposed algorithm divides source images into blocks, converts each RGB block into quaternion representation and transforms them from special domain to frequency domain by applying quaternion discrete Fourier transform. The fused coefficients are obtained by calculating and comparing contrast values of corresponding coefficients in transformed blocks. The resultant fused image is reconstructed by merging all the blocks after applying inverse quaternion discrete Fourier transform on each block. Experimental evaluation demonstrates that the proposed algorithm qualitatively outperforms many existing state-of-the-art multimodal image fusion algorithms.

  9. FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION.

    Science.gov (United States)

    Nie, Dong; Wang, Li; Gao, Yaozong; Shen, Dinggang

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development. In the isointense phase (approximately 6-8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, resulting in extremely low tissue contrast and thus making the tissue segmentation very challenging. The existing methods for tissue segmentation in this isointense phase usually employ patch-based sparse labeling on single T1, T2 or fractional anisotropy (FA) modality or their simply-stacked combinations without fully exploring the multi-modality information. To address the challenge, in this paper, we propose to use fully convolutional networks (FCNs) for the segmentation of isointense phase brain MR images. Instead of simply stacking the three modalities, we train one network for each modality image, and then fuse their high-layer features together for final segmentation. Specifically, we conduct a convolution-pooling stream for multimodality information from T1, T2, and FA images separately, and then combine them in high-layer for finally generating the segmentation maps as the outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense phase brain images. Results showed that our proposed model significantly outperformed previous methods in terms of accuracy. In addition, our results also indicated a better way of integrating multi-modality images, which leads to performance improvement.

  10. Multi-modal image registration based on gradient orientations of minimal uncertainty.

    Science.gov (United States)

    De Nigris, Dante; Collins, D Louis; Arbel, Tal

    2012-12-01

    In this paper, we propose a new multi-scale technique for multi-modal image registration based on the alignment of selected gradient orientations of reduced uncertainty. We show how the registration robustness and accuracy can be improved by restricting the evaluation of gradient orientation alignment to locations where the uncertainty of fixed image gradient orientations is minimal, which we formally demonstrate correspond to locations of high gradient magnitude. We also embed a computationally efficient technique for estimating the gradient orientations of the transformed moving image (rather than resampling pixel intensities and recomputing image gradients). We have applied our method to different rigid multi-modal registration contexts. Our approach outperforms mutual information and other competing metrics in the context of rigid multi-modal brain registration, where we show sub-millimeter accuracy with cases obtained from the retrospective image registration evaluation project. Furthermore, our approach shows significant improvements over standard methods in the highly challenging clinical context of image guided neurosurgery, where we demonstrate misregistration of less than 2 mm with relation to expert selected landmarks for the registration of pre-operative brain magnetic resonance images to intra-operative ultrasound images.

  11. DEVELOPMENT OF A DUAL MODALITY TOMOGRAPHIC IMAGING SYSTEM FOR BIOLUMINESCENCE AND PET

    Energy Technology Data Exchange (ETDEWEB)

    CHATZIIOANNOU, ARION

    2011-12-21

    The goal of this proposal was to develop a new hybrid imaging modality capable to simultaneously image optical bioluminescence signals, as well as radionuclide emissions from the annihilation of positrons originating from molecular imaging probes in preclinical mouse models. This new technology enables the simultaneous in-vivo measurements of both emissions that could be produced from a single or a combination of two different biomarkers. It also facilitates establishing the physical limitations of bioluminescence imaging, its tomographic and spectral image reconstruction potential and the quantification of bioluminescence signals.

  12. IVUS-based imaging modalities for tissue characterization: similarities and differences

    NARCIS (Netherlands)

    H.M. Garcia-Garcia (Hector); B.D. Gogas (Bill); P.W.J.C. Serruys (Patrick); N. Bruining (Nico)

    2011-01-01

    textabstractGray-scale intravascular ultrasound (IVUS) is the modality that has been established as the golden standard for in vivo imaging of the vessel wall of the coronary arteries. The use of IVUS in clinical practice is an important diagnostic tool used for quantitative assessment of coronary a

  13. Multi-Modal Dictionary Learning for Image Separation With Application in Art Investigation

    Science.gov (United States)

    Deligiannis, Nikos; Mota, Joao F. C.; Cornelis, Bruno; Rodrigues, Miguel R. D.; Daubechies, Ingrid

    2017-02-01

    In support of art investigation, we propose a new source separation method that unmixes a single X-ray scan acquired from double-sided paintings. In this problem, the X-ray signals to be separated have similar morphological characteristics, which brings previous source separation methods to their limits. Our solution is to use photographs taken from the front and back-side of the panel to drive the separation process. The crux of our approach relies on the coupling of the two imaging modalities (photographs and X-rays) using a novel coupled dictionary learning framework able to capture both common and disparate features across the modalities using parsimonious representations; the common component models features shared by the multi-modal images, whereas the innovation component captures modality-specific information. As such, our model enables the formulation of appropriately regularized convex optimization procedures that lead to the accurate separation of the X-rays. Our dictionary learning framework can be tailored both to a single- and a multi-scale framework, with the latter leading to a significant performance improvement. Moreover, to improve further on the visual quality of the separated images, we propose to train coupled dictionaries that ignore certain parts of the painting corresponding to craquelure. Experimentation on synthetic and real data - taken from digital acquisition of the Ghent Altarpiece (1432) - confirms the superiority of our method against the state-of-the-art morphological component analysis technique that uses either fixed or trained dictionaries to perform image separation.

  14. Imaging modalities to assess oxygen status in glioblastoma

    Directory of Open Access Journals (Sweden)

    Aurélien eCorroyer-Dulmont

    2015-08-01

    Full Text Available Hypoxia, the result of an inadequacy between a disorganized and functionally impaired vasculature and the metabolic demand of tumor cells is a feature of glioblastoma. Hypoxia promotes the aggressiveness of these tumors and, equally, negatively correlates with a decrease in outcome. Tools to characterize oxygen status are essential for the therapeutic management of patients with glioblastoma: i to refine prognosis; ii to adapt the treatment regimen; iii and to assess the therapeutic efficacy. While methods that are focal and invasive in nature are of limited use, non-invasive imaging technologies have been developed. Each of these technologies is characterized by its singular advantages and limitations in terms of oxygenation status in glioblastoma. The aim of this short review is, first, to focus on the interest to characterize hypoxia for a better therapeutic management of patients and, second, to discuss recent and pertinent approaches for the assessment of oxygenation/hypoxia and their direct implication for patient care.

  15. Microbubbles loaded with nanoparticles: a route to multiple imaging modalities.

    Science.gov (United States)

    Park, Jai Il; Jagadeesan, Dinesh; Williams, Ross; Oakden, Wendy; Chung, Siyon; Stanisz, Greg J; Kumacheva, Eugenia

    2010-11-23

    We report a single-step approach to producing small and stable bubbles functionalized with nanoparticles. The strategy includes the following events occurring in sequence: (i) a microfluidic generation of bubbles from a mixture of CO(2) and a minute amount of gases with low solubility in water, in an aqueous solution of a protein, a polysaccharide, and anionic nanoparticles; (ii) rapid dissolution of CO(2) leading to the shrinkage of bubbles and an increase in acidity of the medium in the vicinity of the bubbles; and (iii) co-deposition of the biopolymers and nanoparticles at the bubble-liquid interface. The proposed approach yielded microbubbles with a narrow size distribution, long-term stability, and multiple functions originating from the attachment of metal oxide, metal, or semiconductor nanoparticles onto the bubble surface. We show the potential applications of these bubbles in ultrasound and magnetic resonance imaging.

  16. Multi-modality imaging of transient osteoporosis of the hip.

    Science.gov (United States)

    Gemmel, Filip; Van Der Veen, Hugo C; Van Schelven, Willem D; Collins, James M P; Vanneuville, Isabelle; Rijk, Paul C

    2012-10-01

    Transient osteoporosis of the hip (TOH), also referred to as bone marrow edema syndrome (BMES) of the femoral head and neck, is an uncommon and therefore underdiagnosed benign skeletal disorder, affecting primarily women, particularly in their last trimester of pregnancy, and middle-aged men. The disease is characterized by self-limiting hip pain and radiographically evident osteopenia, but these radiographic findings can sometimes be delayed. In the early phase, the main diagnostic dilemma lies in differentiating TOH from osteonecrosis of the femoral head (ONFH). Conventional radiographs, Tc-99m bone scans (multiphase, SPECT or SPECT/CT) and MRI scans from 10 male patients with 12 TOH episodes were retrospectively and independently reviewed by two nuclear medicine physicians and a musculoskeletal radiologist. The purpose was to identify a typical imaging pattern, and secondly, to reliably distinguish TOH from ONFH. In the early phase of TOH, conventional radiography of the hip could not sufficiently detect focal osteopenia. But in all 10 patients (mean age 45 years, range, 34-62), bone scans and MRI scans demonstrated a similar pattern of diffuse hyperaemia, bony uptake, and bone marrow edema in the femoral head and neck, extending to and ending with a sharp demarcation at the intertrochanteric region. Additionally, neither SPECT nor SPECT/CT nor MRI revealed any cold area or crescent-shaped subchondral defect in the femoral head, indicating ONFH. In some cases there was a joint effusion in varying degree. In 9 patients, an uneventful recovery was eventually observed. Scintigraphically diffuse hyperaemic and/or homogeneous osseous uptake in femoral head and neck extending to the intertrochanteric region, as well as the recently introduced term transient bone marrow edema syndrome (BMES) of the hip on MRI, are probably both expressions of the same pathophysiological mechanism, and pathognomonic for TOH. Hopefully, recognizing this highly specific imaging pattern

  17. Transperineal ultrasonography in perianal Crohn disease: A valuable imaging modality.

    Science.gov (United States)

    Wright, Emily K; Novak, Kerri L; Lu, Cathy; Panaccione, Remo; Ghosh, Subrata; Wilson, Stephanie R

    2015-01-01

    Aims of treatment for Crohn disease have moved beyond the resolution of clinical symptoms to objective end points including endoscopic and radiological normality. Regular re-evaluation of disease status to safely, readily and reliably detect the presence of inflammation and complications is paramount. Improvements in sonographic technology over recent years have facilitated a growing enthusiasm among radiologists and gastroenterologists in the use of ultrasound for the assessment of inflammatory bowel disease. Transabdominal intestinal ultrasound is accurate, affordable and safe for the assessment of luminal inflammation and complications in Crohn disease, and can be performed with or without the use of intravenous contrast enhancement. Perianal fistulizing disease is a common, complex and often treatment-refractory complication of Crohn disease, which requires regular radiological monitoring. Endoanal ultrasound is invasive, uncomfortable and yields limited assessment of the perineal region. Although magnetic resonance imaging of the pelvis is established, timely access may be a problem. Transperineal ultrasound has been described in small studies, and is an accurate, painless and cost-effective method for documenting perianal fluid collections, fistulas and sinus tracts. In the present article, the authors review the literature regarding perineal ultrasound for the assessment of perianal Crohn disease and use case examples to illustrate its clinical utility.

  18. Eigenanatomy: sparse dimensionality reduction for multi-modal medical image analysis.

    Science.gov (United States)

    Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B

    2015-02-01

    Rigorous statistical analysis of multimodal imaging datasets is challenging. Mass-univariate methods for extracting correlations between image voxels and outcome measurements are not ideal for multimodal datasets, as they do not account for interactions between the different modalities. The extremely high dimensionality of medical images necessitates dimensionality reduction, such as principal component analysis (PCA) or independent component analysis (ICA). These dimensionality reduction techniques, however, consist of contributions from every region in the brain and are therefore difficult to interpret. Recent advances in sparse dimensionality reduction have enabled construction of a set of image regions that explain the variance of the images while still maintaining anatomical interpretability. The projections of the original data on the sparse eigenvectors, however, are highly collinear and therefore difficult to incorporate into multi-modal image analysis pipelines. We propose here a method for clustering sparse eigenvectors and selecting a subset of the eigenvectors to make interpretable predictions from a multi-modal dataset. Evaluation on a publicly available dataset shows that the proposed method outperforms PCA and ICA-based regressions while still maintaining anatomical meaning. To facilitate reproducibility, the complete dataset used and all source code is publicly available. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: current status and perspectives.

    Science.gov (United States)

    Park, J Y; Chang, Y; Lee, G H

    2015-01-01

    Biomedical imaging is an essential tool for diagnosis and therapy of diseases such as cancers. It is likely true that medicine has developed with biomedical imaging methods. Sensitivity and resolution of biomedical imaging methods can be improved with imaging agents. Furthermore, it will be ideal if imaging agents could be also used as therapeutic agents. Therefore, one dose can be used for both diagnosis and therapy of diseases (i.e., theragnosis). This will simplify medical treatment of diseases, and will be also a benefit to patients. Mixed (Ln(1x)Ln(2y)O3, x + y = 2) or unmixed (Ln2O3) lanthanide (Ln) oxide nanoparticles (Ln = Eu, Gd, Dy, Tb, Ho, Er) are potential multi-modal imaging and cancer therapeutic agents. The lanthanides have a variety of magnetic and optical properties, useful for magnetic resonance imaging (MRI) and fluorescent imaging (FI), respectively. They also highly attenuate X-ray beam, useful for X-ray computed tomography (CT). In addition gadolinium-157 ((157)Gd) has the highest thermal neutron capture cross section among stable radionuclides, useful for gadolinium neutron capture therapy (GdNCT). Therefore, mixed or unmixed lanthanide oxide nanoparticles can be used for multi-modal imaging methods (i.e., MRI-FI, MRI-CT, CT-FI, and MRICT- FI) and cancer therapy (i.e., GdNCT). Since mixed or unmixed lanthanide oxide nanoparticles are single-phase and solid-state, they can be easily synthesized, and are compact and robust, which will be beneficial to biomedical applications. In this review physical properties of the lanthanides, synthesis, characterizations, multi-modal imagings, and cancer therapy of mixed and unmixed lanthanide oxide nanoparticles are discussed.

  20. Continuous monitoring of arthritis in animal models using optical imaging modalities

    Science.gov (United States)

    Son, Taeyoon; Yoon, Hyung-Ju; Lee, Saseong; Jang, Won Seuk; Jung, Byungjo; Kim, Wan-Uk

    2014-10-01

    Given the several difficulties associated with histology, including difficulty in continuous monitoring, this study aimed to investigate the feasibility of optical imaging modalities-cross-polarization color (CPC) imaging, erythema index (EI) imaging, and laser speckle contrast (LSC) imaging-for continuous evaluation and monitoring of arthritis in animal models. C57BL/6 mice, used for the evaluation of arthritis, were divided into three groups: arthritic mice group (AMG), positive control mice group (PCMG), and negative control mice group (NCMG). Complete Freund's adjuvant, mineral oil, and saline were injected into the footpad for AMG, PCMG, and NCMG, respectively. LSC and CPC images were acquired from 0 through 144 h after injection for all groups. EI images were calculated from CPC images. Variations in feet area, EI, and speckle index for each mice group over time were calculated for quantitative evaluation of arthritis. Histological examinations were performed, and the results were found to be consistent with those from optical imaging analysis. Thus, optical imaging modalities may be successfully applied for continuous evaluation and monitoring of arthritis in animal models.

  1. Neurosurgical confocal endomicroscopy: A review of contrast agents, confocal systems, and future imaging modalities

    Directory of Open Access Journals (Sweden)

    Aqib H Zehri

    2014-01-01

    Full Text Available Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM, two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery.

  2. Applications of Novel X-Ray Imaging Modalities in Food Science

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou

    In recent years, the interest for non-destructive imaging of the internal structures in food products has increased. First of all, the food industry shows an increased interest for automated quality inspection of food products. Secondly, food microstructure has become more important within food s...... studies were conducted on the microstructure of a dairy-like food emulsion as well as the structural changes in meat due to heat treatment.......In recent years, the interest for non-destructive imaging of the internal structures in food products has increased. First of all, the food industry shows an increased interest for automated quality inspection of food products. Secondly, food microstructure has become more important within food...... science for understanding and designing food products. In both of these aspects, X-ray imaging methods such as radiography and computed tomography provide a non-destructive solution. However, since the conventional attenuation-based modality suers from poor contrast in soft matter materials, modalities...

  3. Visual tracking for multi-modality computer-assisted image guidance

    Science.gov (United States)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  4. Current and future imaging modalities for multiple myeloma and its precursor states

    Science.gov (United States)

    TAN, ESTHER; WEISS, BRENDAN M.; MENA, ESTHER; KORDE, NEHA; CHOYKE, PETER L.; LANDGREN, OLA

    2012-01-01

    Traditionally, the skeletal survey has been the standard modality for the detection of osteolytic bone disease in multiple myeloma. In addition to its poor sensitivity for the detection of osteolytic lesions, this modality is not able to identify extramedullary lesions and focal bone marrow involvement, nor measure response to therapy. The application of novel imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and molecular imaging such as fluorine-18 fluorodeoxyglucose positron emission tomography CT (18F-FDG PET/CT) and fluorine-18 sodium fluoride positron emission tomography CT (18F-NaF PET/CT) has the potential to overcome these limitations as well as provide prognostic information in precursor states and multiple myeloma. Also promising is the use of dynamic contrast enhanced magnetic resonance imaging (DCE MRI) to measure vascular permeability, an important feature of myelomagenesis. This review summarizes the current status and possible future role of novel imaging modalities in multiple myeloma and its precursor states. PMID:21649546

  5. Image quality and dose distributions of three linac-based imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Dzierma, Yvonne; Ames, Evemarie; Nuesken, Frank; Palm, Jan; Licht, Norbert; Ruebe, Christian [Universitaetsklinikum des Saarlandes, Klinik fuer Strahlentherapie und Radioonkologie, Homburg/Saar (Germany)

    2015-04-01

    Linac-based patient imaging is possible with a variety of techniques using different photon energies. The purpose of this work is to compare three imaging systems operating at 6 MV, flattening free filter (FFF) 1 MV, and 121 kV. The dose distributions of all pretreatment set-up images (over 1,000) were retrospectively calculated on the planning computed tomography (CT) images for all patients with prostate and head-and-neck cancer treated at our institution in 2013. We analyzed the dose distribution and the dose to organs at risk. For head-and-neck cancer patients, the imaging dose from 6-MV cone beam CT (CBCT) reached maximum values at around 8 cGy. The 1-MV CBCT dose was about 63-79 % of the 6-MV CBCT dose for all organs at risk. Planar imaging reduced the imaging dose from CBCT to 30-40 % for both megavoltage modalities. The dose from the kilovoltage CBCT was 4-10 % of the 6-MV CBCT dose. For prostate cancer patients, the maximum dose from 6-MV CBCT reached 13-15 cGy, and was reduced to 66-73 % for 1 MV. Planar imaging reduces the MV CBCT dose to 10-20 %. The kV CBCT dose is 15-20 % of the 6-MV CBCT dose, slightly higher than the dose from MV axes. The dose distributions differ markedly in response to the different beam profiles and dose-depth characteristics. (orig.) [German] Linac-basierte Bildgebung zur Patientenlagerung ist mit einer Vielzahl von Techniken unterschiedlicher Photonenenergien moeglich. Ziel dieser Arbeit ist der Vergleich dreier Bildgebungssysteme mit 6 MV (Megavolt), FFF 1 MV, und 121 kV (Kilovolt). Fuer alle im Jahr 2013 an unserer Klinik behandelten Prostata- und HNO-Patienten wurden retrospektiv die Dosisverteilungen aller Verifikationsaufnahmen (ueber 1000 insgesamt) auf der Planungs-Computertomographie (CT) berechnet. Wir analysierten die Dosisverteilung und die Dosis an den Risikoorganen. Bei HNO-Patienten erreichte die Dosis von 6 MV ''Cone-beam''-CT (CBCT)Maximalwerte um 8 cGy. Mit 1 MV wird die Dosis auf 63

  6. Deep convolutional neural networks for multi-modality isointense infant brain image segmentation.

    Science.gov (United States)

    Zhang, Wenlu; Li, Rongjian; Deng, Houtao; Wang, Li; Lin, Weili; Ji, Shuiwang; Shen, Dinggang

    2015-03-01

    The segmentation of infant brain tissue images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) plays an important role in studying early brain development in health and disease. In the isointense stage (approximately 6-8 months of age), WM and GM exhibit similar levels of intensity in both T1 and T2 MR images, making the tissue segmentation very challenging. Only a small number of existing methods have been designed for tissue segmentation in this isointense stage; however, they only used a single T1 or T2 images, or the combination of T1 and T2 images. In this paper, we propose to use deep convolutional neural networks (CNNs) for segmenting isointense stage brain tissues using multi-modality MR images. CNNs are a type of deep models in which trainable filters and local neighborhood pooling operations are applied alternatingly on the raw input images, resulting in a hierarchy of increasingly complex features. Specifically, we used multi-modality information from T1, T2, and fractional anisotropy (FA) images as inputs and then generated the segmentation maps as outputs. The multiple intermediate layers applied convolution, pooling, normalization, and other operations to capture the highly nonlinear mappings between inputs and outputs. We compared the performance of our approach with that of the commonly used segmentation methods on a set of manually segmented isointense stage brain images. Results showed that our proposed model significantly outperformed prior methods on infant brain tissue segmentation. In addition, our results indicated that integration of multi-modality images led to significant performance improvement. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Photoacoustic and ultrasound dual-modality imaging of human peripheral joints

    Science.gov (United States)

    Xu, Guan; Rajian, Justin R.; Girish, Gandikota; Kaplan, Mariana J.; Fowlkes, J. Brian; Carson, Paul L.; Wang, Xueding

    2013-01-01

    A photoacoustic (PA) and ultrasound (US) dual modality system, for imaging human peripheral joints, is introduced. The system utilizes a commercial US unit for both US control imaging and PA signal acquisition. Preliminary in vivo evaluation of the system, on normal volunteers, revealed that this system can recover both the structural and functional information of intra- and extra-articular tissues. Confirmed by the control US images, the system, on the PA mode, can differentiate tendon from surrounding soft tissue based on the endogenous optical contrast. Presenting both morphological and pathological information in joint, this system holds promise for diagnosis and characterization of inflammatory joint diseases such as rheumatoid arthritis.

  8. Novelty detection of foreign objects in food using multi-modal X-ray imaging

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur; Emerson, Monica Jane; Clemmensen, Line Katrine Harder

    2016-01-01

    In this paper we demonstrate a method for novelty detection of foreign objects in food products using grating-based multimodal X-ray imaging. With this imaging technique three modalities are available with pixel correspondence, enhancing organic materials such as wood chips, insects and soft...... plastics not detectable by conventional X-ray absorption radiography. We conduct experiments, where several food products are imaged with common foreign objects typically found in the food processing industry. To evaluate the benefit from using this multi-contrast X-ray technique over conventional X...

  9. An image based vibration sensor for soft tissue modal analysis in a Digital Image Elasto Tomography (DIET) system.

    Science.gov (United States)

    Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E

    2010-01-01

    Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.

  10. Review of newer contraceptive agents.

    Science.gov (United States)

    Qureshi, M; Attaran, M

    1999-06-01

    Advances in contraceptive technology have made birth control more effective, convenient, and safe. We review the newer products and some under development, including the latest oral contraceptives, injectable progesterone, subdermal progestin implants, progesterone-releasing IUDs, emergency contraception, and male contraception.

  11. MO-AB-BRA-02: A Novel Scatter Imaging Modality for Real-Time Image Guidance During Lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Redler, G; Bernard, D; Templeton, A; Chu, J [Rush University Medical Center, Chicago, IL (United States); Nair, C Kumaran [University of Chicago, Chicago, IL (United States); Turian, J [Rush University Medical Center, Chicago, IL (United States); Rush Radiosurgery LLC, Chicago, IL (United States)

    2015-06-15

    Purpose: A novel scatter imaging modality is developed and its feasibility for image-guided radiation therapy (IGRT) during stereotactic body radiation therapy (SBRT) for lung cancer patients is assessed using analytic and Monte Carlo models as well as experimental testing. Methods: During treatment, incident radiation interacts and scatters from within the patient. The presented methodology forms an image of patient anatomy from the scattered radiation for real-time localization of the treatment target. A radiographic flat panel-based pinhole camera provides spatial information regarding the origin of detected scattered radiation. An analytical model is developed, which provides a mathematical formalism for describing the scatter imaging system. Experimental scatter images are acquired by irradiating an object using a Varian TrueBeam accelerator. The differentiation between tissue types is investigated by imaging simple objects of known compositions (water, lung, and cortical bone equivalent). A lung tumor phantom, simulating materials and geometry encountered during lung SBRT treatments, is fabricated and imaged to investigate image quality for various quantities of delivered radiation. Monte Carlo N-Particle (MCNP) code is used for validation and testing by simulating scatter image formation using the experimental pinhole camera setup. Results: Analytical calculations, MCNP simulations, and experimental results when imaging the water, lung, and cortical bone equivalent objects show close agreement, thus validating the proposed models and demonstrating that scatter imaging differentiates these materials well. Lung tumor phantom images have sufficient contrast-to-noise ratio (CNR) to clearly distinguish tumor from surrounding lung tissue. CNR=4.1 and CNR=29.1 for 10MU and 5000MU images (equivalent to 0.5 and 250 second images), respectively. Conclusion: Lung SBRT provides favorable treatment outcomes, but depends on accurate target localization. A comprehensive

  12. Novel Strategy for Preparing Dual-Modality Optical/PET Imaging Probes via Photo-Click Chemistry.

    Science.gov (United States)

    Sun, Lingyi; Ding, Jiule; Xing, Wei; Gai, Yongkang; Sheng, Jing; Zeng, Dexing

    2016-05-18

    Preparation of small molecule based dual-modality probes remains a challenging task due to the complicated synthetic procedure. In this study, a novel concise and generic strategy for preparing dual-modality optical/PET imaging probes via photo-click chemistry was developed, in which the diazole photo-click linker functioned not only as a bridge between the targeting-ligand and the PET imaging moiety, but also as the fluorophore for optical imaging. A dual-modality AE105 peptidic probe was successfully generated via this strategy and subsequently applied in the fluorescent staining of U87MG cells and the (68)Ga based PET imaging of mice bearing U87MG xenograft. In addition, dual-modality monoclonal antibody cetuximab has also been generated via this strategy and labeled with (64)Cu for PET imaging studies, broadening the application of this strategy to include the preparation of macromolecule based imaging probes.

  13. Mobile, Multi-modal, Label-Free Imaging Probe Analysis of Choroidal Oximetry and Retinal Hypoxia

    Science.gov (United States)

    2016-10-01

    regions in injured eyes 4) Measure TRPM7 and cellular/apoptosis biomarkers in retinas 5) Measure neuronal death and cell-specific biomarker in retinas...modal label-free imaging system and calibrating our system to measure blood oxygen levels in the eye . The reported problems with our coherent anti...now ready to test human hemoglobin with our CARS system. 3) Detect and map hypoxic regions in injured eyes In Quarter 1-2: We optimized our

  14. Monitoring of Biological Changes in Electromechanical Reshaping of Cartilage Using Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Seok Jin Hong

    2016-01-01

    Full Text Available Electromechanical reshaping (EMR is a promising surgical technique used to reshape cartilage by direct current and mechanical deformation. It causes local stress relaxation and permanent alterations in the shape of cartilage. The major advantages of EMR are its minimally invasive nature and nonthermal electrochemical mechanism of action. The purpose of this study is to validate that EMR does not cause thermal damage and to observe structural changes in post-EMR cartilage using several imaging modalities. Three imaging modality metrics were used to validate the performance of EMR by identifying structural deformation during cartilage reshaping: infrared thermography was used to sense the temperature of the flat cartilages (16.7°C at 6 V, optical coherence tomography (OCT was used to examine the change in the cartilage by gauging deformation in the tissue matrix during EMR, and scanning electron microscopy (SEM was used to show that EMR-treated cartilage is irregularly arranged and the thickness of collagen fibers varies, which affects the change in shape of the cartilage. In conclusion, the three imaging modalities reveal the nonthermal and electromechanical mechanisms of EMR and demonstrate that use of an EMR device is feasible for reshaping cartilage in a minimally invasive manner.

  15. Siloxane Nanoprobes for Labeling and Dual Modality Functional Imaging of Neural Stem Cells.

    Science.gov (United States)

    Addington, Caroline P; Cusick, Alex; Shankar, Rohini Vidya; Agarwal, Shubhangi; Stabenfeldt, Sarah E; Kodibagkar, Vikram D

    2016-03-01

    Cell therapy represents a promising therapeutic for a myriad of medical conditions, including cancer, traumatic brain injury, and cardiovascular disease among others. A thorough understanding of the efficacy and cellular dynamics of these therapies necessitates the ability to non-invasively track cells in vivo. Magnetic resonance imaging (MRI) provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. We recently reported a new nanoprobe platform for cell labeling and imaging using fluorophore doped siloxane core nanoemulsions as dual modality ((1)H MRI/Fluorescence), dual-functional (oximetry/detection) nanoprobes. Here, we successfully demonstrate the labeling, dual-modality imaging, and oximetry of neural progenitor/stem cells (NPSCs) in vitro using this platform. Labeling at a concentration of 10 μL/10(4) cells with a 40%v/v polydimethylsiloxane core nanoemulsion, doped with rhodamine, had minimal effect on viability, no effect on migration, proliferation and differentiation of NPSCs and allowed for unambiguous visualization of labeled NPSCs by (1)H MR and fluorescence and local pO2 reporting by labeled NPSCs. This new approach for cell labeling with a positive contrast (1)H MR probe has the potential to improve mechanistic knowledge of current therapies, and guide the design of future cell therapies due to its clinical translatability.

  16. A new procedure of modal parameter estimation for high-speed digital image correlation

    Science.gov (United States)

    Huňady, Róbert; Hagara, Martin

    2017-09-01

    The paper deals with the use of 3D digital image correlation in determining modal parameters of mechanical systems. It is a non-contact optical method, which for the measurement of full-field spatial displacements and strains of bodies uses precise digital cameras with high image resolution. Most often this method is utilized for testing of components or determination of material properties of various specimens. In the case of using high-speed cameras for measurement, the correlation system is capable of capturing various dynamic behaviors, including vibration. This enables the potential use of the mentioned method in experimental modal analysis. For that purpose, the authors proposed a measuring chain for the correlation system Q-450 and developed a software application called DICMAN 3D, which allows the direct use of this system in the area of modal testing. The created application provides the post-processing of measured data and the estimation of modal parameters. It has its own graphical user interface, in which several algorithms for the determination of natural frequencies, mode shapes and damping of particular modes of vibration are implemented. The paper describes the basic principle of the new estimation procedure which is crucial in the light of post-processing. Since the FRF matrix resulting from the measurement is usually relatively large, the estimation of modal parameters directly from the FRF matrix may be time-consuming and may occupy a large part of computer memory. The procedure implemented in DICMAN 3D provides a significant reduction in memory requirements and computational time while achieving a high accuracy of modal parameters. Its computational efficiency is particularly evident when the FRF matrix consists of thousands of measurement DOFs. The functionality of the created software application is presented on a practical example in which the modal parameters of a composite plate excited by an impact hammer were determined. For the

  17. An optimized triple modality reporter for quantitative in vivo tumor imaging and therapy evaluation.

    Science.gov (United States)

    Levin, Rachel A; Felsen, Csilla N; Yang, Jin; Lin, John Y; Whitney, Michael A; Nguyen, Quyen T; Tsien, Roger Y

    2014-01-01

    We present an optimized triple modality reporter construct combining a far-red fluorescent protein (E2-Crimson), enhanced firefly luciferase enzyme (Luc2), and truncated wild type herpes simplex virus I thymidine kinase (wttk) that allows for sensitive, long-term tracking of tumor growth in vivo by fluorescence, bioluminescence, and positron emission tomography. Two human cancer cell lines (MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer) were successfully transduced to express this triple modality reporter. Fluorescence and bioluminescence imaging of the triple modality reporter were used to accurately quantify the therapeutic responses of MDA-MB-231 tumors to the chemotherapeutic agent monomethyl auristatin E in vivo in athymic nude mice. Positive correlation was observed between the fluorescence and bioluminescence signals, and these signals were also positively correlated with the ex vivo tumor weights. This is the first reported use of both fluorescence and bioluminescence signals from a multi-modality reporter construct to measure drug efficacy in vivo.

  18. An optimized triple modality reporter for quantitative in vivo tumor imaging and therapy evaluation.

    Directory of Open Access Journals (Sweden)

    Rachel A Levin

    Full Text Available We present an optimized triple modality reporter construct combining a far-red fluorescent protein (E2-Crimson, enhanced firefly luciferase enzyme (Luc2, and truncated wild type herpes simplex virus I thymidine kinase (wttk that allows for sensitive, long-term tracking of tumor growth in vivo by fluorescence, bioluminescence, and positron emission tomography. Two human cancer cell lines (MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer were successfully transduced to express this triple modality reporter. Fluorescence and bioluminescence imaging of the triple modality reporter were used to accurately quantify the therapeutic responses of MDA-MB-231 tumors to the chemotherapeutic agent monomethyl auristatin E in vivo in athymic nude mice. Positive correlation was observed between the fluorescence and bioluminescence signals, and these signals were also positively correlated with the ex vivo tumor weights. This is the first reported use of both fluorescence and bioluminescence signals from a multi-modality reporter construct to measure drug efficacy in vivo.

  19. Operational modal analysis via image based technique of very flexible space structures

    Science.gov (United States)

    Sabatini, Marco; Gasbarri, Paolo; Palmerini, Giovanni B.; Monti, Riccardo

    2013-08-01

    Vibrations represent one of the most important topics of the engineering design relevant to flexible structures. The importance of this problem increases when a very flexible system is considered, and this is often the case of space structures. In order to identify the modal characteristics, in terms of natural frequencies and relevant modal parameters, ground tests are performed. However, these parameters could vary due to the operative conditions of the system. In order to continuously monitor the modal characteristics during the satellite lifetime, an operational modal analysis is mandatory. This kind of analysis is usually performed by using classical accelerometers or strain gauges and by properly analyzing the acquired output. In this paper a different approach for the vibrations data acquisition will be performed via image-based technique. In order to simulate a flexible satellite, a free flying platform is used; the problem is furthermore complicated by the fact that the overall system, constituted by a highly rigid bus and very flexible panels, must necessarily be modeled as a multibody system. In the experimental campaign, the camera, placed on the bus, will be used to identify the eigenfrequencies of the vibrating structure; in this case aluminum thin plates simulate very flexible solar panels. The structure is excited by a hammer or studied during a fast attitude maneuver. The results of the experimental activity will be investigated and compared with respect to the numerical simulation obtained via a FEM-multibody software and the relevant results will be proposed and discussed.

  20. Multimodality Imaging in the Context of Transcatheter Mitral Valve Replacement: Establishing Consensus Among Modalities and Disciplines.

    Science.gov (United States)

    Blanke, Philipp; Naoum, Christopher; Webb, John; Dvir, Danny; Hahn, Rebecca T; Grayburn, Paul; Moss, Robert R; Reisman, Mark; Piazza, Nicolo; Leipsic, Jonathon

    2015-10-01

    Transcatheter mitral valve implantation (TMVI) represents a promising approach to treating mitral valve regurgitation in patients at increased risk of perioperative mortality. Similar to transcatheter aortic valve replacement (TAVR), TMVI relies on pre- and periprocedural noninvasive imaging. Although these imaging modalities, namely echocardiography, computed tomography, and fluoroscopy, are well established in TAVR, TMVI has entirely different requirements. Approaches and nomenclature need to be standardized given the multiple disciplines involved. Herein we provide an overview of anatomical principles and definitions, a methodology for anatomical quantification, and perioperative guidance.

  1. Dual-modality photothermal optical coherence tomography and magnetic-resonance imaging of carbon nanotubes.

    Science.gov (United States)

    Tucker-Schwartz, Jason M; Hong, Tu; Colvin, Daniel C; Xu, Yaqiong; Skala, Melissa C

    2012-03-01

    We demonstrate polyethylene-glycol-coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic-resonance imaging (MRI). Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude-modulated 750 nm pump beam using 10 mW of power, and T(2) MRI was achieved with a 4.7 T animal system. Photothermal OCT and T(2) MRI achieved sensitivities of nanomolar concentrations to CNTs dispersed in amine-terminated polyethylene glycol, thus establishing the potential for dual-modality molecular imaging with CNTs.

  2. Correlation of different imaging modalities in pre-surgical evaluation of pericardial metastasis of liposarcoma

    Institute of Scientific and Technical Information of China (English)

    Zeljko Z Markovic; Ana Mladenovic; Marko Banovic; Branislava Ivanovic

    2012-01-01

    A patient presented with a large pericardial tumor of uncertain etiology.Five years earlier,she had been treated for myxoid liposarcoma of the thigh.For pre-surgical evaluation,conventional radiography,positron emission tomography/computed tomography (PET/CT),magnetic resonance imaging (MRI),CT of the heart,transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) were performed.The final histopathologic diagnosis was metastatic liposarcoma.Each of the imaging modalities used had advantages and disadvantages,and their coordination was necessary for optimal evaluation.

  3. Imaging Neurodegeneration: Steps Toward Brain Network-Based Pathophysiology and Its Potential for Multi-modal Imaging Diagnostics.

    Science.gov (United States)

    Sorg, C; Göttler, J; Zimmer, C

    2015-10-01

    Multi-modal brain imaging provides different in vivo windows into the human brain and thereby different ways to characterize brain disorders. Particularly, resting-state functional magnetic resonance imaging facilitates the study of macroscopic intrinsic brain networks, which are critical for development and spread of neurodegenerative processes in different neurodegenerative diseases. The aim of the current study is to present and highlight some paradigmatic findings in intrinsic network-based pathophysiology of neurodegenerative diseases and its potential for new network-based multimodal tools in imaging diagnostics. Qualitative review of selected multi-modal imaging studies in neurodegenerative diseases particularly in Alzheimer's disease (AD). Functional connectivity of intrinsic brain networks is selectively and progressively impaired in AD, with changes likely starting before the onset of symptoms in fronto-parietal key networks such as default mode or attention networks. Patterns of distribution and development of both amyloid-β plaques and atrophy are linked with network connectivity changes, suggesting that start and spread of pathology interacts with network connectivity. Qualitatively similar findings have been observed in other neurodegenerative disorders, suggesting shared mechanisms of network-based pathophysiology across diseases. Spread of neurodegeneration is intimately linked with the functional connectivity of intrinsic brain networks. These pathophysiological insights pave the way for new multi-modal network-based tools to detect and characterize neurodegeneration in individual patients.

  4. Newer approaches to opioid detoxification

    Directory of Open Access Journals (Sweden)

    Siddharth Sarkar

    2012-01-01

    Full Text Available Opioid use disorders present with distressing withdrawal symptoms at the time of detoxification. The pharmacological agents and methods currently in use for detoxification mainly include buprenorphine, methadone, and clonidine. Many other pharmacological agents have been tried for opioid detoxification. This review takes a look at the newer pharmacological options, both opioid agonists and non-agonist medications that have been utilized for detoxification. Peer reviewed articles were identified using PubMed and PsychInfo databases. The keywords included for the search were a combination of ′opioid′ and ′detoxification′ and their synonyms. All the articles published in the last 10 years were screened for. Relevant data was extracted from identified studies. Many newer pharmacological agents have been tried in detoxification of opioids. However, the quest for a safe, efficacious, cost-effective pharmacological option which requires minimal monitoring still continues. The role of non-pharmacological measures and alternative medicine needs further evaluation.

  5. Interactive, multi-modality image registrations for combined MRI/MRSI-planned HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Galen Reed

    2011-03-01

    Full Text Available Purpose: This study presents the steps and criteria involved in the series of image registrations used clinically during the planning and dose delivery of focal high dose-rate (HDR brachytherapy of the prostate. Material and methods: Three imaging modalities – Magnetic Resonance Imaging (MRI, Magnetic Resonance Spectroscopic Imaging (MRSI, and Computed Tomography (CT – were used at different steps during the process. MRSI is used for identification of dominant intraprosatic lesions (DIL. A series of rigid and nonrigid transformations were applied to the data to correct for endorectal-coil-induced deformations and for alignment with the planning CT. Mutual information was calculated as a morphing metric. An inverse planning optimization algorithm was applied to boost dose to the DIL while providing protection to the urethra, penile bulb, rectum, and bladder. Six prostate cancer patients were treated using this protocol. Results: The morphing algorithm successfully modeled the probe-induced prostatic distortion. Mutual information calculated between the morphed images and images acquired without the endorectal probe showed a significant (p = 0.0071 increase to that calculated between the unmorphed images and images acquired without the endorectal probe. Both mutual information and visual inspection serve as effective diagnostics of image morphing. The entire procedure adds less than thirty minutes to the treatment planning. Conclusion: This work demonstrates the utility of image transformations and registrations to HDR brachytherapy of prostate cancer.

  6. Assessment of global longitudinal strain using standardized myocardial deformation imaging: a modality independent software approach.

    Science.gov (United States)

    Riffel, Johannes H; Keller, Marius G P; Aurich, Matthias; Sander, Yannick; Andre, Florian; Giusca, Sorin; Aus dem Siepen, Fabian; Seitz, Sebastian; Galuschky, Christian; Korosoglou, Grigorios; Mereles, Derliz; Katus, Hugo A; Buss, Sebastian J

    2015-07-01

    Myocardial deformation measurement is superior to left ventricular ejection fraction in identifying early changes in myocardial contractility and prediction of cardiovascular outcome. The lack of standardization hinders its clinical implementation. The aim of the study is to investigate a novel standardized deformation imaging approach based on the feature tracking algorithm for the assessment of global longitudinal (GLS) and global circumferential strain (GCS) in echocardiography and cardiac magnetic resonance imaging (CMR). 70 subjects undergoing CMR were consecutively investigated with echocardiography within a median time of 30 min. GLS and GCS were analyzed with a post-processing software incorporating the same standardized algorithm for both modalities. Global strain was defined as the relative shortening of the whole endocardial contour length and calculated according to the strain formula. Mean GLS values were -16.2 ± 5.3 and -17.3 ± 5.3 % for echocardiography and CMR, respectively. GLS did not differ significantly between the two imaging modalities, which showed strong correlation (r = 0.86), a small bias (-1.1 %) and narrow 95 % limits of agreement (LOA ± 5.4 %). Mean GCS values were -17.9 ± 6.3 and -24.4 ± 7.8 % for echocardiography and CMR, respectively. GCS was significantly underestimated by echocardiography (p windows in echocardiography. GCS assessment revealed only a strong correlation (r = 0.87) when echocardiographic image quality was good. No significant differences for GLS between two different echocardiographic vendors could be detected. Quantitative assessment of GLS using a standardized software algorithm allows the direct comparison of values acquired irrespective of the imaging modality. GLS may, therefore, serve as a reliable parameter for the assessment of global left ventricular function in clinical routine besides standard evaluation of the ejection fraction.

  7. Multi-modal contrast of tissue anatomy enables correlative biomarker imaging

    Science.gov (United States)

    Garsha, Karl; Ventura, Franklin; Pestano, Gary; Otter, Michael; Nagy, Dea; Nagle, Ray B.; Roberts, Esteban; Barnes, Michael

    2015-03-01

    Optical imaging techniques are being developed that promise to increase the information content related to specific molecular reporters. Such modalities do not produce contrast in the structural context of the surrounding tissue, making it difficult to reconcile molecular information with morphological context. We report a solution that enables visualization of the tissue morphology on formalin-fixed, paraffin embedded sections prepared for analytical biomarker imaging. Our approach combines modes of transmitted darkfield and fluorescence contrast and computer visualization to produce 2-component image data analogous to the classical hematoxylin and eosin histological stain. An interferometric hyperspectral image capture mode enables measurement of multiplexed biomarkers in annotated anatomic regions. The system enables practical correlative analysis of molecular changes within areas of anatomic pathology.

  8. A supramolecular material for dual-modal imaging and targeted cancer therapy.

    Science.gov (United States)

    Guan, Shanyue; Liang, Ruizheng; Li, Chunyang; Wei, Min

    2017-04-01

    Recently, how to design a formulation system with simultaneous diagnosis and therapy toward cancer has attracted tremendous attention. Herein, a supramolecular material was prepared via a facile method by the co-intercalation of folic acid (FA) and doxorubicin (DOX) into the gallery of Gd(3+)-doped layered double hydroxides (LDHs), followed by surface adsorption of fluorescein isothiocyanate (FITC). This supramolecular agent was proved to exhibit excellent magnetic resonance imaging (MRI) and fluorescence imaging (FI) behavior, as well as chemotherapy toward cancer (KB cell). The co-intercalated FA enables an efficient and selective drug delivery with good specificity. This work provides a facile approach for the fabrication of a drug formulation with dual-modal imaging and targeted therapy, which could be potentially used in the practical chemotherapy and medical imaging.

  9. Newer Diagnostic And Therapeutic Modalities For Autoimmune Rheumatic Diseases

    Directory of Open Access Journals (Sweden)

    Jog Antony

    2017-04-01

    Full Text Available There is refinement of classification criteria for various rheumatic diseases like Rheumatoid arthritis (RA Systemic Lupus Erythematosus (SLE, vasculitis, Sjogren's syndrome etc. in the last few years which help the clinician in establishing early diagnosis and therapy. In case of uncertainties in the diagnosis, clinicians need to carefully interpret the result of autoantibody tests in the background of the clinical context. A growing number of autoantibodies have specificity for particular clinical phenotypes. They can also offer prognostic information and sometimes diagnostic certainty. Early use of Disease Modifying Anti Rheumatic drugs (DMARDs and biological agents to attain no or low disease activity measured by primary complex indices markedly changed the outcome in most of the autoimmune rheumatic diseases.

  10. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets.

    Science.gov (United States)

    Antropova, Natalia; Huynh, Benjamin Q; Giger, Maryellen L

    2017-07-06

    Deep learning methods for radiomics/computer-aided diagnosis (CADx) are often prohibited by small datasets, long computation time, and the need for extensive image preprocessing. We aim to develop a breast CADx methodology that addresses the aforementioned issues by exploiting the efficiency of pre-trained convolutional neural networks (CNNs) and using pre-existing handcrafted CADx features. We present a methodology that extracts and pools low- to mid-level features using a pretrained CNN and fuses them with handcrafted radiomic features computed using conventional CADx methods. Our methodology is tested on three different clinical imaging modalities (dynamic contrast enhanced-MRI [690 cases], full-field digital mammography [245 cases], and ultrasound [1125 cases]). From ROC analysis, our fusion-based method demonstrates, on all three imaging modalities, statistically significant improvements in terms of AUC as compared to previous breast cancer CADx methods in the task of distinguishing between malignant and benign lesions. (DCE-MRI [AUC = 0.89 (se = 0.01)], FFDM [AUC = 0.86 (se = 0.01)], and ultrasound [AUC = 0.90 (se = 0.01)]). We proposed a novel breast CADx methodology that can be used to more effectively characterize breast lesions in comparison to existing methods. Furthermore, our proposed methodology is computationally efficient and circumvents the need for image preprocessing. © 2017 American Association of Physicists in Medicine.

  11. An arbitrary boundary triangle mesh generation method for multi-modality imaging

    Science.gov (United States)

    Zhang, Xuanxuan; Deng, Yong; Gong, Hui; Meng, Yuanzheng; Yang, Xiaoquan; Luo, Qingming

    2012-03-01

    Low-resolution and ill-posedness are the major challenges in diffuse optical tomography(DOT)/fluorescence molecular tomography(FMT). Recently, the multi-modality imaging technology that combines micro-computed tomography (micro-CT) with DOT/FMT is developed to improve resolution and ill-posedness. To take advantage of the fine priori anatomical maps obtained from micro-CT, we present an arbitrary boundary triangle mesh generation method for FMT/DOT/micro-CT multi-modality imaging. A planar straight line graph (PSLG) based on the image of micro-CT is obtained by an adaptive boundary sampling algorithm. The subregions of mesh are accurately matched with anatomical structures by a two-step solution, firstly, the triangles and nodes during mesh refinement are labeled respectively, and then a revising algorithm is used to modifying meshes of each subregion. The triangle meshes based on a regular model and a micro-CT image are generated respectively. The results show that the subregions of triangle meshes can match with anatomical structures accurately and triangle meshes have good quality. This provides an arbitrary boundaries triangle mesh generation method with the ability to incorporate the fine priori anatomical information into DOT/FMT reconstructions.

  12. Dual modality of non-contact photoacoustic tomography and fluorescence imaging using double cladding fiber

    Science.gov (United States)

    Eom, Jonghyun; Park, Seong Jun; Kim, Ju Wan; Park, Soongho; Lee, Byeong Ha

    2015-03-01

    We present a fiber-based dual-modal imaging system that combines non-contact photoacoustic tomography (NCPAT) and fluorescence imaging by using double cladding fiber (DCF). The NCPAT system utilizing an all-fiber heterodyne interferometer as an ultrasound detector measures the photoacoustic signal at the sample surface without physical contact. Fluorescence imaging system is composed of fiber-optics to deliver the excitation light and the emission light. For combined system the probe consists of a specially fabricated DCF coupler and a lensed fiber so that we can simultaneously acquire the signals of two systems with the same probe. The DCF has a core and two claddings, inner and outer, which allows two concentric light-guiding channels via the core and the inner cladding. The lensed fiber of the DCF probe is compactly fabricated to focus the interferometer light and the excitation light, and to efficiently collect the fluorescence signal. To demonstrate the feasibility of the proposed dual-modal system, we have conducted phantom experiments using tissue mimicking phantoms which contained a couple of tubes filled with fluorescein solution and black ink, respectively. The proposed imaging system is implanted with fiber-optic configurations so that it has the potential for minimally invasive and improved diagnosis and guided treatment of diseases.

  13. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    Science.gov (United States)

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the

  14. Lipid-coated iron oxide nanoparticles for dual-modal imaging of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Liang J

    2017-03-01

    Full Text Available Jinying Liang,1–3 Xinxin Zhang,2 Yunqiu Miao,2 Juan Li,1 Yong Gan2 1Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 2Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China; 3School of Pharmacy, Xinxiang Medical University, Xinxiang, People’s Republic of China Abstract: The development of noninvasive imaging techniques for the accurate diagnosis of progressive hepatocellular carcinoma (HCC is of great clinical significance and has always been desired. Herein, a hepatocellular carcinoma cell-targeting fluorescent magnetic nanoparticle (NP was obtained by conjugating near-infrared fluorescence to the surface of Fe3O4 (NIRF-Fe3O4 NPs, followed by coating the lipids consisting of tumoral hepatocytes-targeting polymer (Gal-P123. This magnetic NP (GPC@NIRF-Fe3O4 with superparamagnetic behavior showed high stability and safety in physiological conditions. In addition, GPC@NIRF-Fe3O4 achieved more specific uptake of human liver cancer cells than free Fe3O4 NPs. Importantly, with superparamagnetic iron oxide and strong NIR absorbance, GPC@NIRF-Fe3O4 NPs demonstrate prominent tumor-contrasted imaging performance both on fluorescent and T2-weighted magnetic resonance (MR imaging modalities in a living body. The relative MR signal enhancement of GPC@NIRF-Fe3O4 NPs achieved 5.4-fold improvement compared with NIR-Fe3O4 NPs. Therefore, GPC@NIRF-Fe3O4 NPs may be potentially used as a candidate for dual-modal imaging of tumors with information covalidated and directly compared by combining fluorescence and MR imaging. Keywords: dual-imaging, magnetic resonance imaging, hepatocellular carcinoma, tumor-targeting

  15. Hybrid Surgical Guidance: Does Hardware Integration of γ- and Fluorescence Imaging Modalities Make Sense?

    Science.gov (United States)

    KleinJan, Gijs H; Hellingman, Daan; van den Berg, Nynke S; van Oosterom, Matthias N; Hendricksen, Kees; Horenblas, Simon; Valdes Olmos, Renato A; van Leeuwen, Fijs Wb

    2017-04-01

    The clinically applied hybrid tracer indocyanine green-(99m)Tc-nanocolloid enables combined radio- and fluorescence image guidance during sentinel node (SN) biopsy procedures. To provide optimal surgical guidance, this tracer requires the presence of both γ- and fluorescence modalities in the operating room. We reasoned that the combination or integration of these modalities could further evolve the hybrid surgical guidance concept. To study this potential, we clinically applied 2 setups that included the combination of γ-detection modalities and an open surgery fluorescence camera. Methods: To attach the fluorescence camera (VITOM) to either a γ-ray detection probe (GP; VITOM-GP) or a portable γ-camera (GC; Vitom GC), clip-on brackets were designed and printed in 3-dimensional sterilizable RC31. Both combined modalities were evaluated in, respectively, 5 and 6 patients with penile cancer during an SN biopsy procedure using indocyanine green-(99m)Tc-nanocolloid. Intraoperatively, radio- and fluorescence-guided SN detection rates were scored at working distances of 0, 10, 20, and 30 cm for both combinations. Results: Using the VITOM-GP combination, we evaluated 9 SNs. γ-tracing rates were shown to be 100%, 88.9%, 55.6%, and 55.6% at a respective working distance of 0, 10, 20, and 30 cm. Detection rates for the fluorescence imaging-based detection were found to be 100%, 77.8%, and 77.8%, at respective working distances of 10, 20, and 30 cm. When the VITOM-GC setup was used, all 10 intraoperatively evaluated SNs could be visualized with the γ-camera independent of the working distance. Fluorescence detection rates were 90%, 80%, and 80% at 10-, 20-, and 30-cm working distances. The integrated detection modalities were shown to work synergistically; overall the, GC was most valuable for rough localization (10- to 30-cm range) of the SNs, the GP for providing convenient real-time acoustic feedback, whereas fluorescence guidance allowed detailed real-time SN

  16. Contemporary invasive imaging modalities that identify and risk-stratify coronary plaques at risk of rupture.

    Science.gov (United States)

    Brown, Adam J; Costopoulos, Charis; West, Nick Ej; Bennett, Martin R

    2015-01-01

    Atherosclerotic plaque rupture is responsible for the majority of myocardial infarctions, with ruptured plaques exhibiting specific morphological features, including large lipid cores, thinner overlying fibrous caps and micro-calcifications. Contemporary imaging modalities are increasingly able to characterize plaques, potentially leading to the identification of precursor lesions that are at high risk of rupture. Observational studies using invasive imaging consistently find that plaques responsible for an acute coronary event display these high-risk morphological features, and recent prospective imaging studies have now established links between baseline plaque characteristics and future cardiovascular events. Despite these promising advances, subsequent overall event rates remain too low for clinical utility. Novel technologies are now required to refine and improve our ability to identify and risk-stratify lesions at risk of rupture, if plaque-based risk evaluation is ever to become reality.

  17. Newer therapies for multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Alasdair Coles

    2015-01-01

    Full Text Available The newer immunotherapies for multiple sclerosis (fingolimod, natalizumab, dimethyl fumarate, teriflunomide, alemtuzumab offer advantages of efficacy or tolerability over the injectable therapies of the 1990s. But they also have greater risks. As further treatments emerge (daclizumab and ocrelizumab are likely to be licensed in the next two years, the physician needs to be able to place them within a complex landscape of drugs and a specific treatment strategy, which may be an "escalation" or "induction" approach. Whilst on treatment, neurologist and patient need to be vigilant to signs of disease breakthrough or adverse effects.

  18. MINC 2.0: A Flexible Format for Multi-Modal Images

    Science.gov (United States)

    Vincent, Robert D.; Neelin, Peter; Khalili-Mahani, Najmeh; Janke, Andrew L.; Fonov, Vladimir S.; Robbins, Steven M.; Baghdadi, Leila; Lerch, Jason; Sled, John G.; Adalat, Reza; MacDonald, David; Zijdenbos, Alex P.; Collins, D. Louis; Evans, Alan C.

    2016-01-01

    It is often useful that an imaging data format can afford rich metadata, be flexible, scale to very large file sizes, support multi-modal data, and have strong inbuilt mechanisms for data provenance. Beginning in 1992, MINC was developed as a system for flexible, self-documenting representation of neuroscientific imaging data with arbitrary orientation and dimensionality. The MINC system incorporates three broad components: a file format specification, a programming library, and a growing set of tools. In the early 2000's the MINC developers created MINC 2.0, which added support for 64-bit file sizes, internal compression, and a number of other modern features. Because of its extensible design, it has been easy to incorporate details of provenance in the header metadata, including an explicit processing history, unique identifiers, and vendor-specific scanner settings. This makes MINC ideal for use in large scale imaging studies and databases. It also makes it easy to adapt to new scanning sequences and modalities. PMID:27563289

  19. Multi-modal spectroscopic imaging with synchrotron light to study mechanisms of brain disease

    Science.gov (United States)

    Summers, Kelly L.; Fimognari, Nicholas; Hollings, Ashley; Kiernan, Mitchell; Lam, Virginie; Tidy, Rebecca J.; Takechi, Ryu; George, Graham N.; Pickering, Ingrid J.; Mamo, John C.; Harris, Hugh H.; Hackett, Mark J.

    2017-04-01

    The international health care costs associated with Alzheimer's disease (AD) and dementia have been predicted to reach $2 trillion USD by 2030. As such, there is urgent need to develop new treatments and diagnostic methods to stem an international health crisis. A major limitation to therapy and diagnostic development is the lack of complete understanding about the disease mechanisms. Spectroscopic methods at synchrotron light sources, such as FTIR, XRF, and XAS, offer a "multi-modal imaging platform" to reveal a wealth of important biochemical information in situ within ex vivo tissue sections, to increase our understanding of disease mechanisms.

  20. Multi-Modal Imaging with a Toolbox of Influenza A Reporter Viruses.

    Science.gov (United States)

    Tran, Vy; Poole, Daniel S; Jeffery, Justin J; Sheahan, Timothy P; Creech, Donald; Yevtodiyenko, Aleksey; Peat, Andrew J; Francis, Kevin P; You, Shihyun; Mehle, Andrew

    2015-10-13

    Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography-computed tomography (PET/CT) imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies.

  1. Multi-Modal Imaging with a Toolbox of Influenza AReporter Viruses

    Directory of Open Access Journals (Sweden)

    Vy Tran

    2015-10-01

    Full Text Available Reporter viruses are useful probes for studying multiple stages of the viral life cycle. Here we describe an expanded toolbox of fluorescent and bioluminescent influenza A reporter viruses. The enhanced utility of these tools enabled kinetic studies of viral attachment, infection, and co-infection. Multi-modal bioluminescence and positron emission tomography–computed tomography (PET/CT imaging of infected animals revealed that antiviral treatment reduced viral load, dissemination, and inflammation. These new technologies and applications will dramatically accelerate in vitro and in vivo influenza virus studies.

  2. Multi-modal inter-subject registration of mouse brain images

    Science.gov (United States)

    Li, Xia; Yankeelov, Thomas E.; Rosen, Glenn; Gore, John C.; Dawant, Benoit M.

    2006-03-01

    The importance of small animal imaging in fundamental and clinical research is growing rapidly. These studies typically involve micro PET, micro MR, and micro CT images as well as optical or fluorescence images. Histological images are also often used to complement and/or validate the in vivo data. As is the case for human studies, automatic registration of these imaging modalities is a critical component of the overall analysis process, but, the small size of the animals and thus the limited spatial resolution of the in vivo images present specific challenges. In this paper, we propose a series of methods and techniques that permit the inter-subject registration of micro MR and histological images. We then compare results obtained by registering directly MR volumes to each other using a non-rigid registration algorithm we have developed at our institution with results obtained by registering first the MR volumes to their corresponding histological volume, which we reconstruct from 2D cross-sections, and then registering histological volumes to each other. We show that the second approach is preferable.

  3. Medical students' knowledge of indications for imaging modalities and cost analysis of incorrect requests, shiraz, iran 2011-2012.

    Science.gov (United States)

    Islami Parkoohi, Parisa; Jalli, Reza; Danaei, Mina; Khajavian, Shiva; Askarian, Mehrdad

    2014-05-01

    Medical imaging has a remarkable role in the practice of clinical medicine. This study intends to evaluate the knowledge of indications of five common medical imaging modalities and estimation of the imposed cost of their non-indicated requests among medical students who attend Shiraz University of Medical Sciences, Shiraz, Iran. We conducted across-sectional survey using a self-administered questionnaire to assess the knowledge of indications of a number of medical imaging modalities among 270 medical students during their externship or internship periods. Knowledge scoring was performed according to a descriptive international grade conversion (fail to excellent) using Iranian academic grading (0 to 20). In addition, we estimated the cost for incorrect selection of those modalities according to public and private tariffs in US dollars. The participation and response rate was 200/270 (74%). The mean knowledge score was fair for all modalities. Similar scores were excellent for X-ray, acceptable for Doppler ultrasonography, and fair for ultrasonography, CT scan and MRI. The total cost for non-indicated requests of those modalities equaled $104303 (public tariff) and $205581 (private tariff). Medical students at Shiraz University of Medical Sciences lacked favorable knowledge about indications for common medical imaging modalities. The results of this study have shown a significant cost for non-indicated requests of medical imaging. Of note, the present radiology curriculum is in need of a major revision with regards to evidence-based radiology and health economy concerns.

  4. Medical Students’ Knowledge of Indications for Imaging Modalities and Cost Analysis of Incorrect Requests, Shiraz, Iran 2011-2012

    Directory of Open Access Journals (Sweden)

    Parisa Islami Parkoohi

    2015-05-01

    Full Text Available Medical imaging has a remarkable role in the practice of clinical medicine. This study intends to evaluate the knowledge of indications of five common medical imaging modalities and estimation of the imposed cost of their non-indicated requests among medical students who attend Shiraz University of Medical Sciences, Shiraz, Iran. We conducted across-sectional survey using a self-administered questionnaire to assess the knowledge of indications of a number of medical imaging modalities among 270 medical students during their externship or internship periods. Knowledge scoring was performed according to a descriptive international grade conversion (fail to excellent using Iranian academic grading (0 to 20. In addition, we estimated the cost for incorrect selection of those modalities according to public and private tariffs in US dollars. The participation and response rate was 200/270 (74%. The mean knowledge score was fair for all modalities. Similar scores were excellent for X-ray, acceptable for Doppler ultrasonography, and fair for ultrasonography, CT scan and MRI. The total cost for non-indicated requests of those modalities equaled $104303 (public tariff and $205581 (private tariff. Medical students at Shiraz University of Medical Sciences lacked favorable knowledge about indications for common medical imaging modalities. The results of this study have shown a significant cost for non-indicated requests of medical imaging. Of note, the present radiology curriculum is in need of a major revision with regards to evidence-based radiology and health economy concerns.

  5. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  6. Emerging Cardiac Imaging Modalities for the Early Detection of Cardiotoxicity Due to Anticancer Therapies.

    Science.gov (United States)

    López-Fernández, Teresa; Thavendiranathan, Paaladinesh

    2017-06-01

    The undeniable advances in the field of oncology have finally led to a decrease in overall cancer-related mortality. However, this population of long-term cancer survivors is now facing a shift toward a substantial increase in cardiovascular morbidity and mortality. Because the development of overt cardiotoxicity can be associated with poor outcomes, preclinical identification of cardiac toxicity is important. This will promote early instauration of treatments to prevent overt heart dysfunction and allow oncologists to continue cancer therapy in an uninterrupted manner. Surveillance strategies for the early detection of cardiac injury include cardiac imaging and biomarkers during treatment. In this review, we outline existing cardiac imaging modalities to detect myocardial changes in patients undergoing cancer treatment and in survivors, and their strengths and limitations. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  7. Multi-Modal Ultra-Widefield Imaging Features in Waardenburg Syndrome

    Science.gov (United States)

    Choudhry, Netan; Rao, Rajesh C.

    2015-01-01

    Background Waardenburg syndrome is characterized by a group of features including; telecanthus, a broad nasal root, synophrys of the eyebrows, piedbaldism, heterochromia irides, and deaf-mutism. Hypopigmentation of the choroid is a unique feature of this condition examined with multi-modal Ultra-Widefield Imaging in this report. Material/Methods Report of a single case. Results Bilateral symmetric choroidal hypopigmentation was observed with hypoautofluorescence in the region of hypopigmentation. Fluorescein angiography revealed a normal vasculature, however a thickened choroid was seen on Enhanced-Depth Imaging Spectral-Domain OCT (EDI SD-OCT). Conclusion(s) Choroidal hypopigmentation is a unique feature of Waardenburg syndrome, which can be visualized with ultra-widefield fundus autofluorescence. The choroid may also be thickened in this condition and its thickness measured with EDI SD-OCT. PMID:26114849

  8. Tumor Lysing Genetically Engineered T Cells Loaded with Multi-Modal Imaging Agents

    Science.gov (United States)

    Bhatnagar, Parijat; Alauddin, Mian; Bankson, James A.; Kirui, Dickson; Seifi, Payam; Huls, Helen; Lee, Dean A.; Babakhani, Aydin; Ferrari, Mauro; Li, King C.; Cooper, Laurence J. N.

    2014-03-01

    Genetically-modified T cells expressing chimeric antigen receptors (CAR) exert anti-tumor effect by identifying tumor-associated antigen (TAA), independent of major histocompatibility complex. For maximal efficacy and safety of adoptively transferred cells, imaging their biodistribution is critical. This will determine if cells home to the tumor and assist in moderating cell dose. Here, T cells are modified to express CAR. An efficient, non-toxic process with potential for cGMP compliance is developed for loading high cell number with multi-modal (PET-MRI) contrast agents (Super Paramagnetic Iron Oxide Nanoparticles - Copper-64; SPION-64Cu). This can now be potentially used for 64Cu-based whole-body PET to detect T cell accumulation region with high-sensitivity, followed by SPION-based MRI of these regions for high-resolution anatomically correlated images of T cells. CD19-specific-CAR+SPIONpos T cells effectively target in vitro CD19+ lymphoma.

  9. Pleomorphic adenoma: Choice of radiographic imaging modality - Computed tomography or magnetic resonance imaging? Illustration through a case report

    Directory of Open Access Journals (Sweden)

    Shalu Rai

    2013-01-01

    Full Text Available Introduction: Pleomorphic adenoma (PA is the most common benign neoplasm of the major salivary glands arising primarily from the parotid gland. Computed tomography (CT is one of the primary imaging modalities used to assess the tumors of salivary glands. However, magnetic resonance imaging (MRI may provide additional information over CT. Case Report: We report the case of a 60-year-old male with a slowly enlarging, well-defined, round, painless, non-fixated, rubber-like swelling over the left ramus region below the ear, measuring about 4 × 4.5 cm, covering the lower border of the mandible near the angle. A provisional diagnosis of PA was given and CT and MRI were used to study the lesion. Discussion: Through this case, which was suspected to have undergone malignant transformation because of indistinct margins and focal hypodense areas on CT but was later confirmed to be a benign salivary gland tumor on MRI, we illustrate the role of CT and MRI as diagnostic aids in PA and emphasize on what should be the choice of imaging modality for parotid tumors.

  10. Retapamulin: A newer topical antibiotic

    Directory of Open Access Journals (Sweden)

    D Dhingra

    2013-01-01

    Full Text Available Impetigo is a common childhood skin infection. There are reports of increasing drug resistance to the currently used topical antibiotics including fusidic acid and mupirocin. Retapamulin is a newer topical agent of pleuromutilin class approved by the Food and Drug Administration for treatment of impetigo in children and has been recently made available in the Indian market. It has been demonstrated to have low potential for the development of antibacterial resistance and a high degree of potency against poly drug resistant Gram-positive bacteria found in skin infections including Staphylococcus aureus strains. The drug is safe owing to low systemic absorption and has only minimal side-effect of local irritation at the site of application.

  11. Interactive Feature Space Explorer© for multi-modal magnetic resonance imaging.

    Science.gov (United States)

    Özcan, Alpay; Türkbey, Barış; Choyke, Peter L; Akin, Oguz; Aras, Ömer; Mun, Seong K

    2015-07-01

    Wider information content of multi-modal biomedical imaging is advantageous for detection, diagnosis and prognosis of various pathologies. However, the necessity to evaluate a large number images might hinder these advantages and reduce the efficiency. Herein, a new computer aided approach based on the utilization of feature space (FS) with reduced reliance on multiple image evaluations is proposed for research and routine clinical use. The method introduces the physician experience into the discovery process of FS biomarkers for addressing biological complexity, e.g., disease heterogeneity. This, in turn, elucidates relevant biophysical information which would not be available when automated algorithms are utilized. Accordingly, the prototype platform was designed and built for interactively investigating the features and their corresponding anatomic loci in order to identify pathologic FS regions. While the platform might be potentially beneficial in decision support generally and specifically for evaluating outlier cases, it is also potentially suitable for accurate ground truth determination in FS for algorithm development. Initial assessments conducted on two different pathologies from two different institutions provided valuable biophysical perspective. Investigations of the prostate magnetic resonance imaging data resulted in locating a potential aggressiveness biomarker in prostate cancer. Preliminary findings on renal cell carcinoma imaging data demonstrated potential for characterization of disease subtypes in the FS. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    Science.gov (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  13. Multi-modality image reconstruction for dual-head small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chang-Han; Chou, Cheng-Ying [National Taiwan University, Taipei, Taiwan (China)

    2015-05-18

    The hybrid positron emission tomography/computed tomography (PET/CT) or positron emission tomography/magnetic resonance imaging (PET/MRI) has become routine practice in clinics. The applications of multi-modality imaging can also benefit research advances. Consequently, dedicated small-imaging system like dual-head small-animal PET (DHAPET) that possesses the advantages of high detection sensitivity and high resolution can exploit the structural information from CT or MRI. It should be noted that the special detector arrangement in DHAPET leads to severe data truncation, thereby degrading the image quality. We proposed to take advantage of anatomical priors and total variation (TV) minimization methods to reconstruct PET activity distribution form incomplete measurement data. The objective is to solve the penalized least-squares function consisted of data fidelity term, TV norm and medium root priors. In this work, we employed the splitting-based fast iterative shrinkage/thresholding algorithm to split smooth and non-smooth functions in the convex optimization problems. Our simulations studies validated that the images reconstructed by use of the proposed method can outperform those obtained by use of conventional expectation maximization algorithms or that without considering the anatomical prior information. Additionally, the convergence rate is also accelerated.

  14. Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data.

    Science.gov (United States)

    Shinkareva, Svetlana V; Wang, Jing; Kim, Jongwan; Facciani, Matthew J; Baucom, Laura B; Wedell, Douglas H

    2014-07-01

    There is converging evidence that people rapidly and automatically encode affective dimensions of objects, events, and environments that they encounter in the normal course of their daily routines. An important research question is whether affective representations differ with sensory modality. This research examined the nature of the dependency of affect and sensory modality at a whole-brain level of analysis in an incidental affective processing paradigm. Participants were presented with picture and sound stimuli that differed in positive or negative valence in an event-related functional magnetic resonance imaging experiment. Global statistical tests, applied at a level of the individual, demonstrated significant sensitivity to valence within modality, but not valence across modalities. Modality-general and modality-specific valence hypotheses predict distinctly different multidimensional patterns of the stimulus conditions. Examination of lower dimensional representation of the data demonstrated separable dimensions for valence processing within each modality. These results provide support for modality-specific valence processing in an incidental affective processing paradigm at a whole-brain level of analysis. Future research should further investigate how stimulus-specific emotional decoding may be mediated by the physical properties of the stimuli.

  15. Multi-modal small-animal imaging : image processing challenges and applications

    NARCIS (Netherlands)

    Khmelinskii, Artem

    2013-01-01

    In pre-clinical research, whole-body small-animal imaging is widely used for in vivo visualization of functional and anatomical information to study cancer, neurological and cardiovascular diseases and help with a faster development of new drugs. Functional information is provided by imaging modalit

  16. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging.

    Science.gov (United States)

    Daoudi, K; van den Berg, P J; Rabot, O; Kohl, A; Tisserand, S; Brands, P; Steenbergen, W

    2014-10-20

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expensive systems, which limits their clinical application and makes the combination costly and impracticable. In this work we present and evaluate a compact and ergonomically designed handheld probe, connected to a portable ultrasound system for inexpensive, real-time dual-modality ultrasound/photoacoustic imaging. The probe integrates an ultrasound transducer array and a highly efficient diode stack laser emitting 130 ns pulses at 805 nm wavelength and a pulse energy of 0.56 mJ, with a high pulse repetition frequency of up to 10 kHz. The diodes are driven by a customized laser driver, which can be triggered externally with a high temporal stability necessary to synchronize the ultrasound detection and laser pulsing. The emitted beam is collimated with cylindrical micro-lenses and shaped using a diffractive optical element, delivering a homogenized rectangular light intensity distribution. The system performance was tested in vitro and in vivo by imaging a human finger joint.

  17. Nano-sensitizers for multi-modality optical diagnostic imaging and therapy of cancer

    Science.gov (United States)

    Olivo, Malini; Lucky, Sasidharan S.; Bhuvaneswari, Ramaswamy; Dendukuri, Nagamani

    2011-07-01

    We report novel bioconjugated nanosensitizers as optical and therapeutic probes for the detection, monitoring and treatment of cancer. These nanosensitisers, consisting of hypericin loaded bioconjugated gold nanoparticles, can act as tumor cell specific therapeutic photosensitizers for photodynamic therapy coupled with additional photothermal effects rendered by plasmonic heating effects of gold nanoparticles. In addition to the therapeutic effects, the nanosensitizer can be developed as optical probes for state-of-the-art multi-modality in-vivo optical imaging technology such as in-vivo 3D confocal fluorescence endomicroscopic imaging, optical coherence tomography (OCT) with improved optical contrast using nano-gold and Surface Enhanced Raman Scattering (SERS) based imaging and bio-sensing. These techniques can be used in tandem or independently as in-vivo optical biopsy techniques to specifically detect and monitor specific cancer cells in-vivo. Such novel nanosensitizer based optical biopsy imaging technique has the potential to provide an alternative to tissue biopsy and will enable clinicians to make real-time diagnosis, determine surgical margins during operative procedures and perform targeted treatment of cancers.

  18. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging

    Science.gov (United States)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-08-01

    Multimodal medical imaging is gaining increased popularity in the clinic. This stems from the fact that data acquired from different physical phenomena may provide complementary information resulting in a more comprehensive picture of the pathological state. In this context, nano-sized contrast agents may augment the potential sensitivity of each imaging modality and allow targeted visualization of physiological points of interest (e.g. tumours). In this study, 7 nm copper oxide nanoparticles (CuO NPs) were synthesized and characterized. Then, in vitro and phantom specimens containing CuO NPs ranging from 2.4 to 320 μg · mL-1 were scanned, using both 9.4 T MRI and through-transmission ultrasonic imaging. The results show that the CuO NPs induce shortening of the magnetic T1 relaxation time on the one hand, and increase the speed of sound and ultrasonic attenuation coefficient on the other. Moreover, these visible changes are NP concentration-dependent. The change in the physical properties resulted in a substantial increase in the contrast-to-noise ratio (3.4-6.8 in ultrasound and 1.2-19.3 in MRI). In conclusion, CuO NPs are excellent candidates for MRI-ultrasound dual imaging contrast agents. They offer radiation-free high spatial resolution scans by MRI, and cost-effective high temporal resolution scans by ultrasound.

  19. Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging.

    Science.gov (United States)

    Perlman, Or; Weitz, Iris S; Azhari, Haim

    2015-08-07

    Multimodal medical imaging is gaining increased popularity in the clinic. This stems from the fact that data acquired from different physical phenomena may provide complementary information resulting in a more comprehensive picture of the pathological state. In this context, nano-sized contrast agents may augment the potential sensitivity of each imaging modality and allow targeted visualization of physiological points of interest (e.g. tumours). In this study, 7 nm copper oxide nanoparticles (CuO NPs) were synthesized and characterized. Then, in vitro and phantom specimens containing CuO NPs ranging from 2.4 to 320 μg · mL(-1) were scanned, using both 9.4 T MRI and through-transmission ultrasonic imaging. The results show that the CuO NPs induce shortening of the magnetic T1 relaxation time on the one hand, and increase the speed of sound and ultrasonic attenuation coefficient on the other. Moreover, these visible changes are NP concentration-dependent. The change in the physical properties resulted in a substantial increase in the contrast-to-noise ratio (3.4-6.8 in ultrasound and 1.2-19.3 in MRI). In conclusion, CuO NPs are excellent candidates for MRI-ultrasound dual imaging contrast agents. They offer radiation-free high spatial resolution scans by MRI, and cost-effective high temporal resolution scans by ultrasound.

  20. A novel automated method for doing registration and 3D reconstruction from multi-modal RGB/IR image sequences

    Science.gov (United States)

    Kirby, Richard; Whitaker, Ross

    2016-09-01

    In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.

  1. Hopc: a Novel Similarity Metric Based on Geometric Structural Properties for Multi-Modal Remote Sensing Image Matching

    Science.gov (United States)

    Ye, Yuanxin; Shen, Li

    2016-06-01

    Automatic matching of multi-modal remote sensing images (e.g., optical, LiDAR, SAR and maps) remains a challenging task in remote sensing image analysis due to significant non-linear radiometric differences between these images. This paper addresses this problem and proposes a novel similarity metric for multi-modal matching using geometric structural properties of images. We first extend the phase congruency model with illumination and contrast invariance, and then use the extended model to build a dense descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures geometric structure or shape features of images. Finally, HOPC is integrated as the similarity metric to detect tie-points between images by designing a fast template matching scheme. This novel metric aims to represent geometric structural similarities between multi-modal remote sensing datasets and is robust against significant non-linear radiometric changes. HOPC has been evaluated with a variety of multi-modal images including optical, LiDAR, SAR and map data. Experimental results show its superiority to the recent state-of-the-art similarity metrics (e.g., NCC, MI, etc.), and demonstrate its improved matching performance.

  2. Biodegradable microparticles with surface dimples as a bi-modal imaging contrast agent.

    Science.gov (United States)

    Kim, Mi Ri; Lim, Yong Taik; Cho, Kuk Young

    2013-03-12

    Fabrication of physically engineered colloids and their application to the biological fields is emerging importance because of their potential to provide an enhanced performance without altering the chemical properties of biomaterials used. A facile approach is reported to fabricate sub-10-μm-sized PLGA microparticle with small dimples covering the surface by droplet imprinting. Optical and magnetic resonance bioimaging agents are easily co-encapsulated inside the microparticles to obtain a bi-modal imaging agent. Cell internalization efficacy of dimpled particles in DC 2.4 cell is enhanced compared with conventional smooth round-shaped colloids. Our result indicates that morphology-controlled microparticles show promise as a cell labeling with improved cell interaction.

  3. Detecting diseases of neglected seminal vesicles using imaging modalities: A review of current literature.

    Science.gov (United States)

    Dagur, Gautam; Warren, Kelly; Suh, Yiji; Singh, Navjot; Khan, Sardar A

    2016-05-01

    Seminal vesicles (SVs) are sex accessory organs and part of male genitourinary system. They play a critical role in male fertility. Diseases of the SVs, usually results in infertility. Diseases of the SVs are extremely rare and are infrequently reported in the literature. We address the current literature of SV pathologies, symptoms, diagnosis, and treatment options. We review the clinical importance of SVs from PubMed. The current imaging modalities and instrumentation that help diagnose SV diseases are reviewed. Common pathologies including, infection, cysts, tumors, and congenital diseases of the SVs are addressed. Many times symptoms of hematospermia, pain, irritative and obstructive lower urinary tract symptoms, and infertility are presented in patients with SV diseases.

  4. Newer treatments for fibromyalgia syndrome

    Directory of Open Access Journals (Sweden)

    Richard E Harris

    2008-12-01

    Full Text Available Richard E Harris, Daniel J ClauwDepartment of Anesthesiology, The University of Michigan, Ann Arbor, MI, USAAbstract: Fibromyalgia syndrome is a common chronic pain disorder of unknown etiology. The lack of understanding of the pathophysiology of fibromyalgia has made this condition frustrating for patients and clinicians alike. The most common symptoms of this disorder are chronic widespread pain, fatigue, sleep disturbances, difficulty with memory, and morning stiffness. Emerging evidence points towards augmented pain processing within the central nervous system (CNS as having a primary role in the pathophysiology of this disorder. Currently the two drugs that are approved by the United States Food and Drug Administration (FDA for the management of fibromyalgia are pregabalin and duloxetine. Newer data suggests that milnacipran, a dual norepinephrine and serotonin reuptake inhibitor, may be promising for the treatment of fibromyalgia. A double-blind, placebo-controlled trial of milnacipran in 125 fibromyalgia patients showed significant improvements relative to placebo. Milnacipran given either once or twice daily at doses up to 200 mg/day was generally well tolerated and yielded significant improvements relative to placebo on measures of pain, patient’s global impression of change in their disease state, physical function, and fatigue. Future studies are needed to validate the efficacy of milnacipran in fibromyalgia.Keywords: fibromyalgia, pain, pharmacological, treatment

  5. Classification of first-episode psychosis: a multi-modal multi-feature approach integrating structural and diffusion imaging.

    Science.gov (United States)

    Peruzzo, Denis; Castellani, Umberto; Perlini, Cinzia; Bellani, Marcella; Marinelli, Veronica; Rambaldelli, Gianluca; Lasalvia, Antonio; Tosato, Sarah; De Santi, Katia; Murino, Vittorio; Ruggeri, Mirella; Brambilla, Paolo

    2015-06-01

    Currently, most of the classification studies of psychosis focused on chronic patients and employed single machine learning approaches. To overcome these limitations, we here compare, to our best knowledge for the first time, different classification methods of first-episode psychosis (FEP) using multi-modal imaging data exploited on several cortical and subcortical structures and white matter fiber bundles. 23 FEP patients and 23 age-, gender-, and race-matched healthy participants were included in the study. An innovative multivariate approach based on multiple kernel learning (MKL) methods was implemented on structural MRI and diffusion tensor imaging. MKL provides the best classification performances in comparison with the more widely used support vector machine, enabling the definition of a reliable automatic decisional system based on the integration of multi-modal imaging information. Our results show a discrimination accuracy greater than 90 % between healthy subjects and patients with FEP. Regions with an accuracy greater than 70 % on different imaging sources and measures were middle and superior frontal gyrus, parahippocampal gyrus, uncinate fascicles, and cingulum. This study shows that multivariate machine learning approaches integrating multi-modal and multisource imaging data can classify FEP patients with high accuracy. Interestingly, specific grey matter structures and white matter bundles reach high classification reliability when using different imaging modalities and indices, potentially outlining a prefronto-limbic network impaired in FEP with particular regard to the right hemisphere.

  6. The sweet spot: FDG and other 2-carbon glucose analogs for multi-modal metabolic imaging of tumor metabolism.

    Science.gov (United States)

    Cox, Benjamin L; Mackie, Thomas R; Eliceiri, Kevin W

    2015-01-01

    Multi-modal imaging approaches of tumor metabolism that provide improved specificity, physiological relevance and spatial resolution would improve diagnosing of tumors and evaluation of tumor progression. Currently, the molecular probe FDG, glucose fluorinated with (18)F at the 2-carbon, is the primary metabolic approach for clinical diagnostics with PET imaging. However, PET lacks the resolution necessary to yield intratumoral distributions of deoxyglucose, on the cellular level. Multi-modal imaging could elucidate this problem, but requires the development of new glucose analogs that are better suited for other imaging modalities. Several such analogs have been created and are reviewed here. Also reviewed are several multi-modal imaging studies that have been performed that attempt to shed light on the cellular distribution of glucose analogs within tumors. Some of these studies are performed in vitro, while others are performed in vivo, in an animal model. The results from these studies introduce a visualization gap between the in vitro and in vivo studies that, if solved, could enable the early detection of tumors, the high resolution monitoring of tumors during treatment, and the greater accuracy in assessment of different imaging agents.

  7. Automatic 2D/3D Vessel Enhancement in Multiple Modality Images Using a Weighted Symmetry Filter.

    Science.gov (United States)

    Zhao, Yitian; Zhao, Yitian; Zheng, Yalin; Liu, Yonghuai; Zhao, Yifan; Luo, Lingling; Yang, Siyuan; Na, Tong; Wang, Yongtian; Liu, Jiang

    2017-09-25

    Automated detection of vascular structures is of great importance in understanding the mechanism, diagnosis and treatment of many vascular pathologies. However, automatic vascular detection continues to be an open issue because of difficulties posed by multiple factors such as poor contrast, inhomogeneous backgrounds, anatomical variations, and the presence of noise during image acquisition. In this paper, we propose a novel 2D/3D symmetry filter to tackle these challenging issues for enhancing vessels from different imaging modalities. The proposed filter not only considers local phase features by using a quadrature filter to distinguish between lines and edges, but also uses the weighted geometric mean of the blurred and shifted responses of the quadrature filter, which allows more tolerance of vessels with irregular appearance. As a result, this filter shows a strong response to the vascular features under typical imaging conditions. Results based on 8 publicly available datasets (six 2D datasets, one 3D dataset and one 3D synthetic dataset) demonstrate its superior performance to other state-ofthe- art methods.

  8. Multi-modal hard x-ray imaging with a laboratory source using selective reflection from a mirror.

    Science.gov (United States)

    Pelliccia, Daniele; Paganin, David M

    2014-04-01

    Multi-modal hard x-ray imaging sensitive to absorption, refraction, phase and scattering contrast is demonstrated using a simple setup implemented with a laboratory source. The method is based on selective reflection at the edge of a mirror, aligned to partially reflect a pencil x-ray beam after its interaction with a sample. Quantitative scattering contrast from a test sample is experimentally demonstrated using this method. Multi-modal imaging of a house fly (Musca domestica) is shown as proof of principle of the technique for biological samples.

  9. Dual-Modal Nanoprobes for Imaging of Mesenchymal Stem Cell Transplant by MRI and Fluorescence Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Chang Kyu; Hong, Kyung Ah; Lin, Shun Mei [Seoul Metropolitan Boramae Medical Center, Seoul (Korea, Republic of)] (and others)

    2009-12-15

    To determine the feasibility of labeling human mesenchymal stem cells (hMSCs) with bifunctional nanoparticles and assessing their potential as imaging probes in the monitoring of hMSC transplantation. The T1 and T2 relaxivities of the nanoparticles (MNP SiO{sub 2}[RITC]-PEG) were measured at 1.5T and 3T magnetic resonance scanner. Using hMSCs and the nanoparticles, labeling efficiency, toxicity, and proliferation were assessed. Confocal laser scanning microscopy and transmission electron microscopy were used to specify the intracellular localization of the endocytosed iron nanoparticles. We also observed in vitro and in vivo visualization of the labeled hMSCs with a 3T MR scanner and optical imaging. MNP SiO{sub 2}(RITC)-PEG showed both superparamagnetic and fluorescent properties. The r{sub 1} and r{sub 2} relaxivity values of the MNP SiO{sub 2}(RITC)-PEG were 0.33 and 398 mM{sup -1} s{sup -1} at 1.5T, respectively, and 0.29 and 453 mM{sup -1} s{sup -1} at 3T, respectively. The effective internalization of MNP SiO{sub 2}(RITC)-PEG into hMSCs was observed by confocal laser scanning fluorescence microscopy. The transmission electron microscopy images showed that MNP SiO{sub 2}(RITC)-PEG was internalized into the cells and mainly resided in the cytoplasm. The viability and proliferation of MNP SiO{sub 2}(RITC)-PEG-labeled hMSCs were not significantly different from the control cells. MNP SiO{sub 2}(RITC)-PEG-labeled hMSCs were observed in vitro and in vivo with optical and MR imaging. MNP SiO{sub 2}(RITC)-PEG can be a useful contrast agent for stem cell imaging, which is suitable for a bimodal detection by MRI and optical imaging.

  10. Multi-Modal and Targeted Imaging Improves Automated Mid-Brain Segmentation.

    Science.gov (United States)

    Plassard, Andrew J; D'Haese, Pierre F; Pallavaram, Srivatsan; Newton, Allen T; Claassen, Daniel O; Dawant, Benoit M; Landman, Bennett A

    2017-02-11

    The basal ganglia and limbic system, particularly the thalamus, putamen, internal and external globus pallidus, substantia nigra, and sub-thalamic nucleus, comprise a clinically relevant signal network for Parkinson's disease. In order to manually trace these structures, a combination of high-resolution and specialized sequences at 7T are used, but it is not feasible to scan clinical patients in those scanners. Targeted imaging sequences at 3T such as F-GATIR, and other optimized inversion recovery sequences, have been presented which enhance contrast in a select group of these structures. In this work, we show that a series of atlases generated at 7T can be used to accurately segment these structures at 3T using a combination of standard and optimized imaging sequences, though no one approach provided the best result across all structures. In the thalamus and putamen, a median Dice coefficient over 0.88 and a mean surface distance less than 1.0mm was achieved using a combination of T1 and an optimized inversion recovery imaging sequences. In the internal and external globus pallidus a Dice over 0.75 and a mean surface distance less than 1.2mm was achieved using a combination of T1 and F-GATIR imaging sequences. In the substantia nigra and sub-thalamic nucleus a Dice coefficient of over 0.6 and a mean surface distance of less than 1.0mm was achieved using the optimized inversion recovery imaging sequence. On average, using T1 and optimized inversion recovery together produced significantly improved segmentation results than any individual modality (p<0.05 wilcox sign-rank test).

  11. Newer insights in teledermatology practice

    Directory of Open Access Journals (Sweden)

    Garehatty Rudrappa Kanthraj

    2011-01-01

    Full Text Available The study and practice of dermatology care using interactive audio, visual, and data communications from a distance is called teledermatology. A teledermatology practice (TP provides teleconsultation as well tele-education. Initially, dermatologists used videoconference. Convenience, cost-effectiveness and easy application of the practice made "store and forward" to emerge as a basic teledermatology tool. The advent of newer technologies like third generation (3G and fourth generation (4G mobile teledermatology (MT and dermatologists′ interest to adopt tertiary TP to pool expert (second opinion to address difficult-to-manage cases (DMCs has resulted in a rapid change in TP. Online discussion groups (ODGs, author-based second opinion teledermatology (AST, or a combination of both are the types of tertiary TP. This article analyzes the feasibility studies and provides latest insight into TP with a revised classification to plan and allocate budget and apply appropriate technology. Using the acronym CAP-HAT, which represents five important factors like case, approach, purpose, health care professionals, and technology, one can frame a TP. Store-and-forward teledermatology (SAFT is used to address routine cases (spotters. Chronic cases need frequent follow-up care. Leg ulcer and localized vitiligo need MT while psoriasis and leprosy require SAFT. Pigmented skin lesions require MT for triage and combination of teledermoscopy, telepathology, and teledermatology for diagnosis. A self-practising dermatologist and national health care system dermatologist use SAFT for routine cases and a combination of ASTwith an ODG to address a DMC. A TP alone or in combination with face-to-face consultation delivers quality care.

  12. Real-time photoacoustic and ultrasound dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.

    Science.gov (United States)

    Yuan, Jie; Xu, Guan; Yu, Yao; Zhou, Yu; Carson, Paul L; Wang, Xueding; Liu, Xiaojun

    2013-08-01

    Photoacoustic tomography (PAT) offers structural and functional imaging of living biological tissue with highly sensitive optical absorption contrast and excellent spatial resolution comparable to medical ultrasound (US) imaging. We report the development of a fully integrated PAT and US dual-modality imaging system, which performs signal scanning, image reconstruction, and display for both photoacoustic (PA) and US imaging all in a truly real-time manner. The back-projection (BP) algorithm for PA image reconstruction is optimized to reduce the computational cost and facilitate parallel computation on a state of the art graphics processing unit (GPU) card. For the first time, PAT and US imaging of the same object can be conducted simultaneously and continuously, at a real-time frame rate, presently limited by the laser repetition rate of 10 Hz. Noninvasive PAT and US imaging of human peripheral joints in vivo were achieved, demonstrating the satisfactory image quality realized with this system. Another experiment, simultaneous PAT and US imaging of contrast agent flowing through an artificial vessel, was conducted to verify the performance of this system for imaging fast biological events. The GPU-based image reconstruction software code for this dual-modality system is open source and available for download from http://sourceforge.net/projects/patrealtime.

  13. Coronary atherosclerosis is already ongoing in pre-diabeticstatus: Insight from intravascular imaging modalities

    Institute of Scientific and Technical Information of China (English)

    Osamu Kurihara; Masamichi Takano; Yoshihiko Seino; Wataru Shimizu; Kyoichi Mizuno

    2015-01-01

    Diabetes mellitus is a powerful risk factor of coronaryartery disease (CAD), leading to death and disability.In recent years, given the accumulating evidence thatprediabetes is also related to increasing risk of CADincluding cardiovascular events, a new guideline hasbeen proposed for the treatment of blood cholesterolfor primary prevention of cardiovascular events. Thisguideline recommends aggressive lipid-lowering statintherapy for primary prevention in diabetes and otherpatients. The ultimate goal of patient managementis to inhibit progression of systemic atherosclerosisand prevent fatal cardiovascular events such as acutecoronary syndrome (ACS). Because disruption ofatherosclerotic coronary plaques is a trigger of ACS,the high-risk atheroma is called a vulnerable plaque.Several types of novel diagnostic imaging technologieshave been developed for identifying the characteristicsof coronary atherosclerosis before the onset of ACS,especially vulnerable plaques. According to coronaryangioscopic evaluation, atherosclerosis severity andplaque vulnerability were more advanced in prediabeticthan in nondiabetic patients and comparable to thatin diabetic patients. In addition, pharmacologicalintervention by statin therapy changed plaque color andcomplexity, and the dynamic changes in plaque featuresare considered plaque stabilization. In this article, wereview the findings of atherosclerosis in prediabetes,detected by intravascular imaging modalities, and thetherapeutic implications.

  14. FDG PET and other imaging modalities in the primary diagnosis of suspicious breast lesions

    Energy Technology Data Exchange (ETDEWEB)

    Scheidhauer, K.; Seemann, M.D. [Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Ismaninger Strasse 22, 81675, Munich (Germany); Walter, C. [Department of Diagnostic Radiology, Krankenhaus der Barmherzigen Brueder, Trier (Germany)

    2004-06-01

    Mammography is the primary imaging modality for screening of breast cancer and evaluation of breast lesions (T staging). Ultrasonography is an adjunctive tool for mammographically suspicious lesions, in patients with mastopathy and as guidance for reliable histological diagnosis with percutaneous biopsy. Dynamic enhanced magnetic resonance mammography (MRM) has a high sensitivity for the detection of breast cancer, but also a high false positive diagnosis rate. In the literature, MRM is reported to have a sensitivity of 86-96%, a specificity of 64-91%, an accuracy of 79-93%, a positive predictive value (PPV) of 77-92% and a negative predictive value (NPV) of 75-94%. In unclarified cases, metabolic imaging using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET) can be performed. In the literature, FDG PET is reported to have a sensitivity of 64-96%, a specificity of 73-100%, an accuracy of 70-97%, a PPV of 81-100% and an NPV of 52-89%. Furthermore, PET or PET/CT using FDG has an important role in the assessment of N and M staging of breast cancer, the prediction of tumour response in patients with locally advanced breast cancer receiving neoadjuvant chemotherapy, and the differentiation of scar and cancer recurrence. Other functional radionuclide-based diagnostic tools, such as scintimammography with sestamibi, peptide scintigraphy or immunoscintigraphy, have a lower accuracy than FDG PET and, therefore, are appropriate only for exceptional indications. (orig.)

  15. Modal analysis of a large-mode area photonic crystal fiber amplifier using spectral-resolved imaging

    DEFF Research Database (Denmark)

    Laurila, Marko; Alkeskjold, Thomas T.; Lægsgaard, Jesper

    2011-01-01

    We perform modal characterization on an ytterbium-doped large mode area photonic-crystal-fiber (PCF) amplifier using spatial and spectral (S 2) resolved imaging and compare results to conventional cutoff methods. We apply numerical simulations and step-index fiber experiments to calibrate our...

  16. A Dual-Modality System for Both Multi-Color Ultrasound-Switchable Fluorescence and Ultrasound Imaging

    Science.gov (United States)

    Kandukuri, Jayanth; Yu, Shuai; Cheng, Bingbing; Bandi, Venugopal; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Yuan, Baohong

    2017-01-01

    Simultaneous imaging of multiple targets (SIMT) in opaque biological tissues is an important goal for molecular imaging in the future. Multi-color fluorescence imaging in deep tissues is a promising technology to reach this goal. In this work, we developed a dual-modality imaging system by combining our recently developed ultrasound-switchable fluorescence (USF) imaging technology with the conventional ultrasound (US) B-mode imaging. This dual-modality system can simultaneously image tissue acoustic structure information and multi-color fluorophores in centimeter-deep tissue with comparable spatial resolutions. To conduct USF imaging on the same plane (i.e., x-z plane) as US imaging, we adopted two 90°-crossed ultrasound transducers with an overlapped focal region, while the US transducer (the third one) was positioned at the center of these two USF transducers. Thus, the axial resolution of USF is close to the lateral resolution, which allows a point-by-point USF scanning on the same plane as the US imaging. Both multi-color USF and ultrasound imaging of a tissue phantom were demonstrated. PMID:28165390

  17. Full-field modal analysis during base motion excitation using high-speed 3D digital image correlation

    Science.gov (United States)

    Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.

    2017-10-01

    In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.

  18. Application prospective of nanoprobes with MRI and FI dual-modality imaging on breast cancer stem cells in tumor.

    Science.gov (United States)

    Chen, Hetao; Wang, Yu; Wang, Tong; Shi, Dongxing; Sun, Zengrong; Xia, Chunhui; Wang, Baiqi

    2016-06-23

    Breast cancer (BC) is a serious disease to threat lives of women. Numerous studies have proved that BC originates from cancer stem cells (CSCs). But at present, no one approach can quickly and simply identify breast cancer stem cells (BCSCs) in solid tumor. Nanotechnology is probably able to realize this goal. But in study process, scientists find it seems that nanomaterials with one modality, such as magnetic resonance imaging (MRI) or fluorescence imaging (FI), have their own advantages and drawbacks. They cannot meet practical requirements in clinic. The nanoprobe combined MRI with FI modality is a promising tool to accurately detect desired cells with low amount in tissue. In this work, we briefly describe the MRI and FI development history, analyze advantages and disadvantages of nanomaterials with single modality in cancer cell detection. Then the application development of nanomaterials with dual-modality in cancer field is discussed. Finally, the obstacles and prospective of dual-modal nanoparticles in detection field of BCSCs are also pointed out in order to speed up clinical applications of nanoprobes.

  19. Hyperpolarized {sup 129}Xe MRI: A viable functional lung imaging modality?

    Energy Technology Data Exchange (ETDEWEB)

    Patz, Samuel [Center for Pulmonary Functional Imaging, Brigham and Women' s Hospital, 221 Longwood Avenue, Boston, MA 02115 (United States); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States)], E-mail: patz@bwh.harvard.edu; Hersman, F. William [Department of Physics, University of New Hampshire, 131 Main Street, Nesmith Hall, Durham, NH 03824 (United States); Muradian, Iga [Center for Pulmonary Functional Imaging, Brigham and Women' s Hospital, 221 Longwood Avenue, Boston, MA 02115 (United States); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Hrovat, Mirko I. [Mirtech, Inc., 452 Ash Street, Brockton, MA 02301 (United States); Ruset, Iulian C.; Ketel, Stephen [Department of Physics, University of New Hampshire, 131 Main Street, Nesmith Hall, Durham, NH 03824 (United States); Jacobson, Francine [Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Topulos, George P. [Department of Anesthesiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Hatabu, Hiroto [Center for Pulmonary Functional Imaging, Brigham and Women' s Hospital, 221 Longwood Avenue, Boston, MA 02115 (United States); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, Boston, MA 02115 (United States); Butler, James P. [Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115 (United States)

    2007-12-15

    The majority of researchers investigating hyperpolarized gas MRI as a candidate functional lung imaging modality have used {sup 3}He as their imaging agent of choice rather than {sup 129}Xe. This preference has been predominantly due to, {sup 3}He providing stronger signals due to higher levels of polarization and higher gyromagnetic ratio, as well as its being easily available to more researchers due to availability of polarizers (USA) or ease of gas transport (Europe). Most researchers agree, however, that hyperpolarized {sup 129}Xe will ultimately emerge as the imaging agent of choice due to its unlimited supply in nature and its falling cost. Our recent polarizer technology delivers vast improvements in hyperpolarized {sup 129}Xe output. Using this polarizer, we have demonstrated the unique property of xenon to measure alveolar surface area noninvasively. In this article, we describe our human protocols and their safety, and our results for the measurement of the partial pressure of pulmonary oxygen (pO{sub 2}) by observation of {sup 129}Xe signal decay. We note that the measurement of pO{sub 2} by observation of {sup 129}Xe signal decay is more complex than that for {sup 3}He because of an additional signal loss mechanism due to interphase diffusion of {sup 129}Xe from alveolar gas spaces to septal tissue. This results in measurements of an equivalent pO{sub 2} that accounts for both traditional T{sub 1} decay from pO{sub 2} and that from interphase diffusion. We also provide an update on new technological advancements that form the foundation for an improved compact design polarizer as well as improvements that provide another order-of-magnitude scale-up in xenon polarizer output.

  20. A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization.

    Science.gov (United States)

    Park, Jesung; Jo, Javier A; Shrestha, Sebina; Pande, Paritosh; Wan, Qiujie; Applegate, Brian E

    2010-07-16

    Most pathological conditions elicit changes in the tissue optical response that may be interrogated by one or more optical imaging modalities. Any single modality typically only furnishes an incomplete picture of the tissue optical response, hence an approach that integrates complementary optical imaging modalities is needed for a more comprehensive non-destructive and minimally-invasive tissue characterization. We have developed a dual-modality system, incorporating optical coherence tomography (OCT) and fluorescence lifetime imaging microscopy (FLIM), that is capable of simultaneously characterizing the 3-D tissue morphology and its biochemical composition. The Fourier domain OCT subsystem, at an 830 nm center wavelength, provided high-resolution morphological volumetric tissue images with an axial and lateral resolution of 7.3 and 13.4 µm, respectively. The multispectral FLIM subsystem, based on a direct pulse-recording approach (upon 355 nm laser excitation), provided two-dimensional superficial maps of the tissue autofluorescence intensity and lifetime at three customizable emission bands with 100 µm lateral resolution. Both subsystems share the same excitation/illumination optical path and are simultaneously raster scanned on the sample to generate coregistered OCT volumes and FLIM images. The developed OCT/FLIM system was capable of a maximum A-line rate of 59 KHz for OCT and a pixel rate of up to 30 KHz for FLIM. The dual-modality system was validated with standard fluorophore solutions and subsequently applied to the characterization of two biological tissue types: postmortem human coronary atherosclerotic plaques, and in vivo normal and cancerous hamster cheek pouch epithelial tissue.

  1. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    Science.gov (United States)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  2. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging.

    Science.gov (United States)

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-12-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  3. Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging

    Science.gov (United States)

    Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang

    2016-02-01

    Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.

  4. Facile synthesis of CdTe@GdS fluorescent-magnetic nanoparticles for tumor-targeted dual-modal imaging.

    Science.gov (United States)

    Zhang, Fei; Kong, Xiu-Qi; Li, Qiong; Sun, Ting-Ting; Chai, Chao; Shen, Wen; Hong, Zhang-Yong; He, Xi-Wen; Li, Wen-You; Zhang, Yu-Kui

    2016-01-01

    Multimodal imaging has made great contribution for diagnosis and therapy of disease since it can provide more effective and complementary information in comparison to any single imaging modality. The design and fabrication of fluorescent-magnetic nanoparticles for multimodal imaging has rapidly developed over the years. Herein, we demonstrate the facile synthesis of GdS coated CdTe nanoparticles (CdTe@GdS NPs) as multimodal agents for fluorescence (FL) and T1-weighted magnetic resonance (MR) imaging. These nanoparticles obtain both prominent fluorescent and paramagnetic properties by coating the GdS shell on the surface of CdTe core via a simple room-temperature route in aqueous solution directly. It is shown that the as-prepared CdTe@GdS NPs have high quantum yield (QY) value of 12% and outstanding longitudinal relaxation rate (r1) of 11.25 mM s(-1), which allow them to be employed as FL/MR dual-modal imaging contrast agents. They also exhibit small particle size of 5 nm, excellent colloidal stability and low cellular toxicity for concentrations up to 750 μg mL(-1). In addition, with the conjugation of folic acid, the nanoparticles were successfully used for tumor-targeted FL/MR dual-modal imaging in vitro and in vivo.

  5. Diagnostic ability of differential diagnosis in ameloblastoma and odontogenic keratocyst by imaging modalities and observers

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Tae In; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Kim, Jeong Hwa; Moon, Je Woon; Choi, Soon Chul [Seoul National Univ. School of Dentistry, Seoul (Korea, Republic of)

    2006-12-15

    To evaluate the diagnostic ability in differentiating between ameloblastoma and odontogenic keratocyst according to the imaging modalities and observes. We evaluated thirty-six cases of ameloblastomas and forty-seven cases of odontogenic keratocysts all histologically confirmed. Six oral and maxillofacial radiologists diagnosed the lesions by 3 methods: using panoramic radiograph, using computed tomograph (CT), and using panoramic radiograph and CT. The observers were classified by 3 groups: group 1 had experienced over 10 years in oral and mazilofacial radiologic field, group 2 had experienced for 3-4 years, and group 3 was in the process of residentship. After over 2 weeks, the observers diagnosed them by the same methods. The ROC curve areas except for group 3 were the highest with interpretation using panoramic radiograph and CT, followed by interpretation using CT only, and the lowest with interpretation using panoramic radiograph only. The overall difference was not found in diagnostic ability among groups in using panoramic radiograph only, but there was difference in diagnostic ability of group 1 and 2 vs 3 in using CT only, and combination panoramic radiograph and CT. To differentiate between ameloblastoma and odontogenic keratocyst more accurately, the experienced oral and maxillofacial radiologist should diagnose with combination of panoramic radiograph and CT.

  6. Three Different Imaging Modalities of a Patient with the Aortic Coarctation

    Directory of Open Access Journals (Sweden)

    Ramin Khameneh Bagheri

    2017-03-01

    Full Text Available The patient was a 19 year-old woman with the diagnosis of resistant hypertension, although she was under treatment of three classes of anti-hypertensive drugs (beta blocker, angiotensin receptor blocker, diuretic for more than one year. In physical examination there was only a significant difference between the systolic blood pressure of upper and lower extremities (200 vs. 120 mmHg, without any other remarkable finding. Three different imaging modalities (echocardiography (Figure 1, CT angiography (Figure 2, conventional aortography (Figure 3 confirmed the aortic coarctation at 30 mm after left subclavian artery origin, with the 3.5-4 mm diameter of the narrowest segment. She underwent implantation of a self-expanding aortic stent and therefore the systolic pressure gradient decreased from 90 to 15 mmHg. After three months, her blood pressure was stable on 110/80 mmHg, while she received only metoprolol 25 mg twice daily and follow-up echocardiography showed 15-20 mmHg pressure gradient through the stent.

  7. Role of new magnetic resonance imaging modalities in diagnosis of orbital masses: A clinicopathologic correlation

    Directory of Open Access Journals (Sweden)

    Roshdy Nader

    2010-01-01

    Full Text Available Purpose: To evaluate the role of diffusion-weighted magnetic resonance imaging (MRI and proton magnetic resonance spectroscopy (MRS in the diagnosis of different orbital masses and their advantages over conventional MRI. Materials and Methods: The study included 20 patients presenting with proptosis. Every patient was subjected to thorough clinical examination, conventional MRI "T1 weighted, T2 weighted, and postcontrast T1 weighted if needed," diffusion-weighted MRI, and proton MRS. Orbitotomy was performed, the orbital mass was excised, and histopathological examination was performed. Results: Diffusion-weighted MRI could differentiate between benign lesions and malignant tumors in 70% of cases; however, overlap occurred in 30% of cases with benign tumors showing restricted diffusion whereas proton MRS could differentiate between benign and malignant tumors in 90% of cases. Conclusion: Diffusion-weighted MRI and proton MRS can potentially increase the accuracy of diagnosis of orbital masses through in vivo tissue characterization. Magnetic resonance spectroscopy seems to be the more accurate modality.

  8. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    Science.gov (United States)

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  9. Broad-spectrum multi-modality image registration: from PET, CT, and MRI to autoradiography, microscopy, and beyond.

    Science.gov (United States)

    Zanzonico, P B

    2006-01-01

    Image registration and fusion are increasingly important components of both clinical and small-animal imaging and have lead to the development of a variety of pertinent hardware and software tools, including multi-modality, e.g. PET-CT, devices. At the same time, advances in microscopic imaging, including phosphor-plate digital autoradiography and immunohistochemistry, now allow ultra-high (sub-100 microm)-resolution molecular characterization of tissue sections. To date, however, in vivo imaging of intact subjects and ex vivo imaging of harvested tissues sections have remained separate and distinct, making it difficult to reliably inter-compare the former and the latter. The Department of Medical Physics and the Radiation Biophysics Laboratory at Memorial Sloan-Kettering Cancer Center, under the direction of Dr. Clifton Ling, has now designed, fabricated, and tested a stereotactic imaging system for so-called "broad-spectrum" image registration, from coarser-resolution in vivo imaging modalities such as PET, CT, and MRI to ultra-high-resolution ex vivo imaging techniques such as histology, autoradiography, and immunohistochemistry.

  10. Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging.

    Science.gov (United States)

    Jeon, Mansik; Song, Wentao; Huynh, Elizabeth; Kim, Jungho; Kim, Jeesu; Helfield, Brandon L; Leung, Ben Y C; Goertz, David E; Zheng, Gang; Oh, Jungtaek; Lovell, Jonathan F; Kim, Chulhong

    2014-01-01

    Ultrasound and photoacoustic imaging are highly complementary modalities since both use ultrasonic detection for operation. Increasingly, photoacoustic and ultrasound have been integrated in terms of hardware instrumentation. To generate a broadly accessible dual-modality contrast agent, we generated microbubbles (a standard ultrasound contrast agent) in a solution of methylene blue (a standard photoacoustic dye). This MB2 solution was formed effectively and was optimized as a dual-modality contrast solution. As microbubble concentration increased (with methylene blue concentration constant), photoacoustic signal was attenuated in the MB2 solution. When methylene blue concentration increased (with microbubble concentration held constant), no ultrasonic interference was observed. Using an MB2 solution that strongly attenuated all photoacoustic signal, high powered ultrasound could be used to burst the microbubbles and dramatically enhance photoacoustic contrast (>800-fold increase), providing a new method for spatiotemporal control of photoacoustic signal generation.

  11. Articulated dual modality photoacoustic and optical coherence tomography probe for preclinical and clinical imaging (Conference Presentation)

    Science.gov (United States)

    Liu, Mengyang; Zabihian, Behrooz; Weingast, Jessika; Hermann, Boris; Chen, Zhe; Zhang, Edward Z.; Beard, Paul C.; Pehamberger, Hubert; Drexler, Wolfgang

    2016-03-01

    The combination of photoacoustic tomography (PAT) with optical coherence tomography (OCT) has seen steady progress over the past few years. With the benchtop and semi-benchtop configurations, preclinical and clinical results have been demonstrated, paving the way for wider applications using dual modality PAT/OCT systems. However, as for the most updated semi-benchtop PAT/OCT system which employs a Fabry-Perot polymer film sensor, it is restricted to only human palm imaging due to the limited flexibility of the probe. The passband limit of the polymer film sensor further restricts the OCT source selection and reduces the sensitivity of the combined OCT system. To tackle these issues, we developed an articulated PAT/OCT probe for both preclinical and clinical applications. In the probe design, the sample arm of OCT sub-system and the interrogation part of the PAT sub-system are integrated into one compact unit. The polymer film sensor has a quick release function so that before each OCT scan, the sensor can be taken off to avoid the sensitivity drop and artefacts in OCT. The holding mechanism of the sensor is also more compact compared to previous designs, permitting access to uneven surfaces of the subjects. With the help of the articulated probe and a patient chair, we are able to perform co-registered imaging on human subjects on both upper and lower extremities while they are at rest positions. An increase in performance characteristics is also achieved. Patients with skin diseases are currently being recruited to test its clinical feasibility.

  12. SPECT/NIRF Dual Modality Imaging for Detection of Intraperitoneal Colon Tumor with an Avidin/Biotin Pretargeting System.

    Science.gov (United States)

    Dong, Chengyan; Yang, Sujuan; Shi, Jiyun; Zhao, Huiyun; Zhong, Lijun; Liu, Zhaofei; Jia, Bing; Wang, Fan

    2016-01-06

    We describe herein dual-modality imaging of intraperitoneal colon tumor using an avidin/biotin pretargeting system. A novel dual-modality probe, (99m)Tc-HYNIC-lys(Cy5.5)-PEG4-biotin, was designed, synthesized and characterized. Single-photon emission computed tomography/ computed tomography (SPECT/CT) imaging and near infrared fluorescence (NIRF) imaging were developed using intraperitoneal LS180 human colon adenocarcinoma xenografts. Following avidin preinjection for 4 hours, (99m)Tc-HYNIC-lys(Cy5.5)-PEG4-biotin could successfully detect colon tumors of different sizes inside the abdominal region using both modalities, and the imaging results showed no differences. Biodistribution studies demonstrated that the tumors had a very high uptake of the probe (99m)Tc-HYNIC-lys(Cy5.5)-PEG4-biotin (12.74 ± 1.89% ID/g at 2 h p.i.), and the clearance from blood and other normal tissues occured very fast. The low tumor uptake in the non-pretargeted mice (1.63 ± 0.50% ID/g at 2 h p.i.) and tumor cell staining results showed excellent tumor binding specificity of the pretargeting system. The ability of the novel probe to show excellent imaging quality with high tumor-to-background contrast, a high degree of binding specificity with tumors and excellent in vivo biodistribution pharmacokinetics should prove that the avidin/biotin based dual-modality pretargeting probe is a promising imaging tool during the entire period of tumor diagnosis and treatment.

  13. A comparative study of different imaging modalities for successful percutaneous left atrial appendage closure.

    Science.gov (United States)

    Chow, Danny Hf; Bieliauskas, Gintautas; Sawaya, Fadi J; Millan-Iturbe, Oscar; Kofoed, Klaus F; Søndergaard, Lars; De Backer, Ole

    2017-01-01

    Accurate sizing of the left atrial appendage (LAA) is essential when performing percutaneous LAA closure. This study aimed to compare different LAA imaging modalities and sizing methods in order to obtain successful LAA closure. Percutaneous LAA closure is an increasingly used treatment strategy to prevent stroke in patients with atrial fibrillation. LAA sizing has typically been done by 2D-transoesophageal echocardiography (TEE). Patients who had a preprocedural TEE and preprocedural and postprocedural multislice CT (MSCT) were identified. Preprocedural measurements of LAA ostia and landing zones by 2D-TEE, MSCT and angiography were collected and analysed for those patients with successful LAA closure - i.e. with no contrast leakage at 3-month follow-up MSCT. The study population (n=67) had a mean CHA2DS2-VASc score of 3.0 and HAS-BLED score of 2.7. Fifty-eight patients (87%) were identified to have successful LAA closure. Based on MSCT, 48 LAA sizings (83%) resulted in a correct LAA closure device size selection, whereas with 2D-TEE sizing, only 33 measurements (57%) would have resulted in a correct device size selection (pAmulet, WatchmanFLX), whereas the maximal diameter was the best parameter for the ‘open-end’ Watchman device. Preprocedural MSCT-based LAA closure device size selection proves to be a more accurate method than conventional 2D-TEE-based sizing. Depending on the LAA closure device design, perimeter-derived mean diameter or maximal diameter could be the better sizing method.

  14. Evaluation of multiple image-based modalities for image-guided radiation therapy (IGRT) of prostate carcinoma: A prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Mayyas, Essa; Chetty, Indrin J.; Chetvertkov, Mikhail; Wen, Ning; Neicu, Toni; Nurushev, Teamor; Ren Lei; Pradhan, Deepak; Movsas, Benjamin; Elshaikh, Mohamed A. [Department of Radiation Oncology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit, Michigan 48202 (United States); Lu Mei [Department of Public Health Sciences, Henry Ford Health System, 2799 West Grand Boulevard, Detroit Michigan 48202 (United States); Stricker, Hans [Department of Urology, Henry Ford Health System, 2799 West Grand Boulevard, Detroit Michigan 48202 (United States)

    2013-04-15

    Purpose: Setup errors and prostate intrafraction motion are main sources of localization uncertainty in prostate cancer radiation therapy. This study evaluates four different imaging modalities 3D ultrasound (US), kV planar images, cone-beam computed tomography (CBCT), and implanted electromagnetic transponders (Calypso/Varian) to assess inter- and intrafraction localization errors during intensity-modulated radiation therapy based treatment of prostate cancer. Methods: Twenty-seven prostate cancer patients were enrolled in a prospective IRB-approved study and treated to a total dose of 75.6 Gy (1.8 Gy/fraction). Overall, 1100 fractions were evaluated. For each fraction, treatment targets were localized using US, kV planar images, and CBCT in a sequence defined to determine setup offsets relative to the patient skin tattoos, intermodality differences, and residual errors for each patient and patient cohort. Planning margins, following van Herk's formalism, were estimated based on error distributions. Calypso-based localization was not available for the first eight patients, therefore centroid positions of implanted gold-seed markers imaged prior to and immediately following treatment were used as a motion surrogate during treatment. For the remaining 19 patients, Calypso transponders were used to assess prostate intrafraction motion. Results: The means ({mu}), and standard deviations (SD) of the systematic ({Sigma}) and random errors ({sigma}) of interfraction prostate shifts (relative to initial skin tattoo positioning), as evaluated using CBCT, kV, and US, averaged over all patients and fractions, were: [{mu}{sub CBCT}= (-1.2, 0.2, 1.1) mm, {Sigma}{sub CBCT}= (3.0, 1.4, 2.4) mm, {sigma}{sub CBCT}= (3.2, 2.2, 2.5) mm], [{mu}{sub kV}= (-2.9, -0.4, 0.5) mm, {Sigma}{sub kV}= (3.4, 3.1, 2.6) mm, {sigma}{sub kV}= (2.9, 2.0, 2.4) mm], and [{mu}{sub US}= (-3.6, -1.4, 0.0) mm, {Sigma}{sub US}= (3.3, 3.5, 2.8) mm, {sigma}{sub US}= (4.1, 3.8, 3.6) mm], in the anterior

  15. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    CERN Document Server

    Wilby, Michael J; Snik, Frans; Korkiakoski, Visa; Pietrow, Alexander G M

    2016-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental non-common path errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This pupil-plane optic combines the apodizing phase plate coronagraph with a holographic modal wavefront sensor, to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing using the science point spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor successfully recovers diffraction-limited coronagraph performance over an effective dynamic range of +/...

  16. One-pot aqueous synthesis of gadolinium doped CdTe quantum dots with dual imaging modalities.

    Science.gov (United States)

    Jiang, Chunli; Shen, Zhitao; Luo, Chunhua; Lin, Hechun; Huang, Rong; Wang, Yiting; Peng, Hui

    2016-08-01

    A facile one-pot strategy has been developed for the aqueous synthesis of Gd doped CdTe (Gd:CdTe) QDs as fluorescence and magnetic resonance imaging dual-modal agent. The prepared Gd:CdTe QDs showed narrow size distribution and the average size was less than 5nm. The amount of Gd(3+) dopant in Gd:CdTe QDs significantly affected the optical properties of obtained QDs. The highest PL QY for the prepared Gd:CdTe QDs was up to 42.5%. The QDs showed the weak toxicity and significant enhancement in MRI signal. The specific relaxivity value (r1) was determined to be 4.22mM(-1)s(-1). These properties make the prepared Gd:CdTe QDs be an effective dual-modal imaging agent and have great potential applications in biomedical field.

  17. Development of a Multi-modal Tissue Diagnostic System Combining High Frequency Ultrasound and Photoacoustic Imaging with Lifetime Fluorescence Spectroscopy

    Science.gov (United States)

    Sun, Yang; Stephens, Douglas N.; Park, Jesung; Sun, Yinghua; Marcu, Laura; Cannata, Jonathan M.; Shung, K. Kirk

    2010-01-01

    We report the development and validate a multi-modal tissue diagnostic technology, which combines three complementary techniques into one system including ultrasound backscatter microscopy (UBM), photoacoustic imaging (PAI), and time-resolved laser-induced fluorescence spectroscopy (TR-LIFS). UBM enables the reconstruction of the tissue microanatomy. PAI maps the optical absorption heterogeneity of the tissue associated with structure information and has the potential to provide functional imaging of the tissue. Examination of the UBM and PAI images allows for localization of regions of interest for TR-LIFS evaluation of the tissue composition. The hybrid probe consists of a single element ring transducer with concentric fiber optics for multi-modal data acquisition. Validation and characterization of the multi-modal system and ultrasonic, photoacoustic, and spectroscopic data coregistration were conducted in a physical phantom with properties of ultrasound scattering, optical absorption, and fluorescence. The UBM system with the 41 MHz ring transducer can reach the axial and lateral resolution of 30 and 65 μm, respectively. The PAI system with 532 nm excitation light from a Nd:YAG laser shows great contrast for the distribution of optical absorbers. The TR-LIFS system records the fluorescence decay with the time resolution of ~300 ps and a high sensitivity of nM concentration range. Biological phantom constructed with different types of tissues (tendon and fat) was used to demonstrate the complementary information provided by the three modalities. Fluorescence spectra and lifetimes were compared to differentiate chemical composition of tissues at the regions of interest determined by the coregistered high resolution UBM and PAI image. Current results demonstrate that the fusion of these techniques enables sequentially detection of functional, morphological, and compositional features of biological tissue, suggesting potential applications in diagnosis of tumors

  18. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging

    Science.gov (United States)

    Chew, Avenell L.; Lamey, Tina; McLaren, Terri; De Roach, John

    2016-01-01

    Purpose To present en face optical coherence tomography (OCT) images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities. Methods En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory) and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering)) were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO) and microperimetry. Results Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE) pathology due to segmentation error at the level of Bruch’s membrane (BM). Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities. Conclusions Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis. PMID:27959968

  19. MO-DE-210-03: Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Ding, K. [Johns Hopkins University: Development of Intra-Fraction Soft Tissue Monitoring with Ultrasound Imaging (United States)

    2015-06-15

    Ultrasound imaging is an attractive method for image guided radiation treatment (IGRT), by itself or to complement other imaging modalities. It is inexpensive, portable and provides good soft tissue contrast. For challenging soft tissue targets such as pancreatic cancer, ultrasound imaging can be used in combination with pre-treatment MRI and/or CT to transfer important anatomical features for target localization at time of treatment. The non-invasive and non-ionizing nature of ultrasound imaging is particularly powerful for intra-fraction localization and monitoring. Recognizing these advantages, efforts are being made to incorporate novel robotic approaches to position and manipulate the ultrasound probe during irradiation. These recent enabling developments hold potential to bring ultrasound imaging to a new level of IGRT applications. However, many challenges, not limited to image registration, robotic deployment, probe interference and image acquisition rate, need to be addressed to realize the full potential of IGRT with ultrasound imaging. Learning Objectives: Understand the benefits and limitations in using ultrasound to augment MRI and/or CT for motion monitoring during radiation therapy delivery. Understanding passive and active robotic approaches to implement ultrasound imaging for intra-fraction monitoring. Understand issues of probe interference with radiotherapy treatment. Understand the critical clinical workflow for effective and reproducible IGRT using ultrasound guidance. The work of X.L. is supported in part by Elekta; J.W. and K.D. is supported in part by a NIH grant R01 CA161613 and by Elekta; D.H. is support in part by a NIH grant R41 CA174089.

  20. Night-time ground hyperspectral imaging for urban-scale remote sensing of ambient PM--modal concentrations retrieval.

    Science.gov (United States)

    Etzion, Yael; Kolatt, Tsafrir; Shoshany, Maxim; Broday, David M

    2014-01-01

    Retrieval of aerosol loading in vertical atmospheric columns is a common product of satellite and ground instruments that measure spectral extinction of solar radiation throughout the entire atmosphere. Here we study ground hyperspectral imaging of artificial light sources as a complementary method for retrieving fine aerosol concentrations along quazi-horizontal ambient open paths. Previously, we reported hyperspectral measurements of the aerosol optical thickness in the 500-900 nm range over urban-scale distances (180 m to 4 km), measuring the extinction of radiation emitted from a halogen source. Here we confirm in a laboratory-setup the basic premise that different accumulation-size aerosols generate distinct hyperspectral signatures in this spectral range. Measured hyperspectral attenuation signatures of fine aerosols were comparable to calculated Mie scattering signatures, suggesting that modal aerosol concentrations can be retrieved. A genetic algorithm was adapted to estimate the aerosol modal concentrations from its hyperspectral extinction signature. Retrievals of aerosol concentrations from measured and synthetic hyperspectral signatures indicated a robust algorithm, with an expected retrieval error of 0.2-22% for typical ambient concentrations along an urban-scale open path. The retrieval accuracy was found to depend on the relative aerosol modal concentrations, especially when there is a substantial overlap between the modal spectral signatures.

  1. Newer methods of cardiac output monitoring

    Institute of Scientific and Technical Information of China (English)

    Yatin; Mehta; Dheeraj; Arora

    2014-01-01

    Cardiac output(CO) is the volume of blood ejected by each ventricle per minute and is the product of stroke volume and heart rate. CO can thus be manipulated by alteration in heart rate or rhythm, preload, contractility and afterload. Moreover it gives important information about tissue perfusion and oxygen delivery. CO can be measured by various methods and thermodilution method using pulmonary artery catheter(PAC) is till date considered as gold standard method. Complications associated with PAC led to development of newer methods which are minimally or non-invasive. Newer methods fulfil other properties like continuous and reproducible reading, cost effective, reliable during various physiological states and have fast response time. These methods are validated against the gold standard with good level agreement. In this review we have discussed various newer methods of CO monitoring and their effectiveness in clinical use.

  2. Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi; Zheng, Wei; Huang, Zhiwei, E-mail: biehzw@nus.edu.sg [Optical Bioimaging Laboratory, Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576 (Singapore); Stephen Hsu, Chin-Ying [Department of Dentistry, Faculty of Dentistry, National University of Singapore and National University Health System, Singapore 119083 (Singapore)

    2015-01-19

    We present an epi-detected quadruple-modal nonlinear optical microscopic imaging technique (i.e., coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), third-harmonic generation (THG), and two-photon excited fluorescence (TPEF)) based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of the tooth. We demonstrate that high contrast ps-CARS images covering both the fingerprint (500–1800 cm{sup −1}) and high-wavenumber (2500–3800 cm{sup −1}) regions can be acquired to uncover the distributions of mineral and organic biomaterials in the tooth, while high quality TPEF, SHG, and THG images of the tooth can also be acquired under ps laser excitation without damaging the samples. The quadruple-modal nonlinear microscopic images (CARS/SHG/THG/TPEF) acquired provide better understanding of morphological structures and biochemical/biomolecular distributions in the dentin, enamel, and the dentin-enamel junction of the tooth without labeling, facilitating optical diagnosis and characterization of the tooth in dentistry.

  3. Multi-Modal Imaging Including Optical Coherence Tomography Angiography in Patients With Posterior Multifocal Placoid Pigment Epitheliopathy.

    Science.gov (United States)

    Werner, Jens Ulrich; Enders, Christian; Lang, Gerhard Klaus; Lang, Gabriele Elisabeth

    2017-09-01

    New imaging methods provide novel insights into the pathogenesis of acute posterior multifocal placoid pigment epitheliopathy (APMPPE). Four patients (eight eyes) in acute, subacute, and late phases of the disease were analyzed with multi-modal imaging methods including optical coherence tomography angiography (OCTA), structural OCT, fundus photography, and fundus autofluorescence. One patient was observed during the entire disease course. In acute and subacute phases of the disease, an early blockage in fluorescein angiography was found. OCTA showed perfusion defects in choriocapillaris and choroid slabs. During the course of disease, perfusion deficits observed in OCTA imaging resolved first in the choroid and then in the choriocapillaris slab. Multi-modal imaging including OCTA supports the thesis that the underlying pathology of APMPPE is an inflammatory impairment of the choroidal circulation with secondary damage to the outer retina. OCTA might be able to replace fluorescein and indocyanine angiography in the diagnostic work-up of APMPPE. [Ophthalmic Surg Lasers Imaging Retina. 2017;48:727-733.]. Copyright 2017, SLACK Incorporated.

  4. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Qingyang [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wang, Shi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Ma, Tianyu, E-mail: maty@tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China)

    2015-06-21

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance.

  5. Pulmonary edema of environmental origin--newer concepts

    Energy Technology Data Exchange (ETDEWEB)

    Cordasco, E.M.; Demeter, S.R.; Kester, L.; Cordasco, M.A.; Lammert, G.; Beerel, F.

    1986-06-01

    Pulmonary edema of non-cardiac origin is usually an urgent clinical problem, which has recently increased in frequency throughout the world in the past few years. This is partly due to sociological factors and to pre-eminent advances in industrial technology. Recent severe massive toxic gas explosions have had national and worldwide implications. Therefore, urgent and appropriate therapy is of utmost importance in most of these patients. The use of high flow oxygen with Constant Positive Pressure Breathing are the main inhalational therapeutic approaches. Newer modalities of treatment include: (1) earlier Fiberoptic bronchoscopy in those individuals afflicted with aspiration problems and (2) certain specific chemical blocking agents for the management of phosgene intoxication and hydrogen sulfide toxicity. Preventive environmental measures are also important.

  6. WE-D-9A-04: Improving Multi-Modality Image Registration Using Edge-Based Transformations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Tyagi, N; Veeraraghavan, H; Deasy, J [Medical Physics Department, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: Multi-modality deformable image registration (DIR) for head and neck (HN) radiotherapy is difficult, particularly when matching computed tomography (CT) scans with magnetic resonance imaging (MRI) scans. We hypothesized that the ‘shared information’ between images of different modalities was to be found in some form of edge-based transformation, and that novel edge-based DIR methods might outperform standard DIR methods. Methods: We propose a novel method that combines gray-scale edge-based morphology and mutual information (MI) in two stages. In the first step, we applied a modification of a previously published mathematical morphology method as an efficient gray scale edge estimator, with denoising function. The results were fed into a MI-based solver (plastimatch). The method was tested on 5 HN patients with pretreatment CT and MR datasets and associated follow-up weekly MR scans. The followup MRs showed significant regression in tumor and normal structure volumes as compared to the pretreatment MRs. The MR images used in this study were obtained using fast spin echo based T2w images with a 1 mm isotropic resolution and FOV matching the CT scan. Results: In all cases, the novel edge-based registration method provided better registration quality than MI-based DIR using the original CT and MRI images. For example, the mismatch in carotid arteries was reduced from 3–5 mm to within 2 mm. The novel edge-based method with different registration regulation parameters did not show any distorted deformations as compared to the non-realistic deformations resulting from MI on the original images. Processing time was 1.3 to 2 times shorter (edge vs. non-edge). In general, we observed quality improvement and significant calculation time reduction with the new method. Conclusion: Transforming images to an ‘edge-space,’ if designed appropriately, greatly increases the speed and accuracy of DIR.

  7. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    Science.gov (United States)

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  8. Graduating 4th year radiology residents' perception of optimal imaging modalities for neoplasm and trauma: a pilot study from four U.S. universities

    Energy Technology Data Exchange (ETDEWEB)

    Elias Junior, Jorge [University of Sao Paulo (USP), Ribeirao Preto, SP (Brazil). School of Medicine; Semelka, Richard C.; Altun, Ersan; Thomas, Sarah L., E-mail: richsem@med.unc.ed [University of North Carolina at Chapel Hill, NC (United States). Dept. of Radiology; Balci, N. Cem [Saint Louis University, MO (United States). Dept. of Radiology; Hussain, Shahid M. [University of Nebraska Medical Center, Omaha, NE (United States). Dept. of Radiology; Martin, Diego R. [Emory University School of Medicine, Atlanta, GA (United States)

    2011-09-15

    Our purpose was to assess 4th year radiology residents' perception of the optimal imaging modality to investigate neoplasm and trauma. Materials and methods: twenty-seven 4th year radiology residents from four residency programs were surveyed. They were asked about the best imaging modality to evaluate the brain and spine, lungs, abdomen, and the musculoskeletal system. Imaging modalities available were MRI, CT, ultrasound, PET, and Xray. All findings were compared to the ACR appropriateness criteria. Results: MRI was chosen as the best imaging modality to evaluate brain, spine, abdominal, and musculoskeletal neoplasm in 96.3%, 100%, 70.4%, and 63% of residents, respectively. CT was chosen by 88.9% to evaluate neoplasm of the lung. Optimal imaging modality to evaluate trauma was CT for brain injuries (100%), spine (92.6%), lung (96.3%), abdomen (92.6%), and major musculoskeletal trauma (74.1%); MRI was chosen for sports injury (96.3%). There was agreement with ACR appropriateness criteria. Conclusion: residents' perception of the best imaging modalities for neoplasm and trauma concurred with the appropriateness criteria by the ACR. (author)

  9. Graduating 4th year radiology residents' perception of optimal imaging modalities for neoplasm and trauma: a pilot study from four U.S. universities

    Directory of Open Access Journals (Sweden)

    Jorge Elias Junior

    2011-10-01

    Full Text Available OBJECTIVE: Our purpose was to assess 4th year radiology residents' perception of the optimal imaging modality to investigate neoplasm and trauma. MATERIALS AND METHODS: Twenty-seven 4th year radiology residents from four residency programs were surveyed. They were asked about the best imaging modality to evaluate the brain and spine, lungs, abdomen, and the musculoskeletal system. Imaging modalities available were MRI, CT, ultrasound, PET, and X-ray. All findings were compared to the ACR appropriateness criteria. RESULTS: MRI was chosen as the best imaging modality to evaluate brain, spine, abdominal, and musculoskeletal neoplasm in 96.3%, 100%, 70.4%, and 63% of residents, respectively. CT was chosen by 88.9% to evaluate neoplasm of the lung. Optimal imaging modality to evaluate trauma was CT for brain injuries (100%, spine (92.6%, lung (96.3%, abdomen (92.6%, and major musculoskeletal trauma (74.1%; MRI was chosen for sports injury (96.3%. There was agreement with ACR appropriateness criteria. CONCLUSION: Residents' perception of the best imaging modalities for neoplasm and trauma concurred with the appropriateness criteria by the ACR.

  10. Rational chemical design of the next generation of molecular imaging probes based on physics and biology: mixing modalities, colors and signals.

    Science.gov (United States)

    Kobayashi, Hisataka; Longmire, Michelle R; Ogawa, Mikako; Choyke, Peter L

    2011-09-01

    In recent years, numerous in vivo molecular imaging probes have been developed. As a consequence, much has been published on the design and synthesis of molecular imaging probes focusing on each modality, each type of material, or each target disease. More recently, second generation molecular imaging probes with unique, multi-functional, or multiplexed characteristics have been designed. This critical review focuses on (i) molecular imaging using combinations of modalities and signals that employ the full range of the electromagnetic spectra, (ii) optimized chemical design of molecular imaging probes for in vivo kinetics based on biology and physiology across a range of physical sizes, (iii) practical examples of second generation molecular imaging probes designed to extract complementary data from targets using multiple modalities, color, and comprehensive signals (277 references).

  11. Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer.

    Science.gov (United States)

    Ke, Hengte; Yue, Xiuli; Wang, Jinrui; Xing, Sen; Zhang, Qian; Dai, Zhifei; Tian, Jie; Wang, Shumin; Jin, Yushen

    2014-03-26

    The integration of multimodal contrast-enhanced diagnostic imaging and therapeutic capabilities could utilize imaging guided therapy to plan the treatment strategy based on the diagnostic results and to guide/monitor the therapeutic procedures. Herein, gold nanoshelled perfluorooctylbromide (PFOB) nanocapsules with PEGylation (PGsP NCs) are constructed by oil-in-water emulsion method to form polymeric PFOB nanocapsules, followed by the formation of PEGylated gold nanoshell on the surface. PGsP NCs could not only provide excellent contrast enhancement for dual modal ultrasound and CT imaging in vitro and in vivo, but also serve as efficient photoabsorbers for photothermal ablation of tumors on xenografted nude mouse model. To our best knowledge, this is the first report of gold nanoshell serving as both CT contrast agents and photoabsorbers for photothermal therapy. The novel multifunctional nanomedicine would be of great value to offer more comprehensive diagnostic information to guide more accurate and effective cancer therapy.

  12. Manganese (II) Chelate Functionalized Copper Sulfide Nanoparticles for Efficient Magnetic Resonance/Photoacoustic Dual-Modal Imaging Guided Photothermal Therapy.

    Science.gov (United States)

    Liu, Renfa; Jing, Lijia; Peng, Dong; Li, Yong; Tian, Jie; Dai, Zhifei

    2015-01-01

    The integration of diagnostic and therapeutic functionalities into one nanoplatform shows great promise in cancer therapy. In this research, manganese (II) chelate functionalized copper sulfide nanoparticles were successfully prepared using a facile hydrothermal method. The obtained ultrasmall nanoparticles exhibit excellent photothermal effect and photoaoustic activity. Besides, the high loading content of Mn(II) chelates makes the nanoparticles attractive T1 contrast agent in magnetic resonance imaging (MRI). In vivo photoacoustic imaging (PAI) results showed that the nanoparticles could be efficiently accumulated in tumor site in 24 h after systematic administration, which was further validated by MRI tests. The subsequent photothermal therapy of cancer in vivo was achieved without inducing any observed side effects. Therefore, the copper sulfide nanoparticles functionalized with Mn(II) chelate hold great promise as a theranostic nanomedicine for MR/PA dual-modal imaging guided photothermal therapy of cancer.

  13. Feasibility of magnetic resonance angiography (MRA) follow-up as the primary imaging modality after coiling of intracranial aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Nicolaas A.; Metzemaekers, Jan D. M.; Dijk, J. Marc C. van; Mooij, Jan Jakob A.; Groen, Rob J. M. (Dept. of Neurosurgery, Univ. Medical Center Groningen, Univ. of Groningen, Groningen (Netherlands)), e-mail: r.j.m.groen@nchir.umcg.nl; Westerlaan, Henriette E.; Eshghi, Omid S. (Dept. of Radiology, Univ. Medical Center Groningen, Univ. of Groningen, Groningen (Netherlands))

    2010-03-15

    Background: Digital subtraction angiography (DSA) is still regarded as the gold standard for detecting residual flow in treated aneurysms. Recent reports have also shown excellent results from magnetic resonance angiography (MRA) imaging. This is an important observation, since DSA is associated with a risk of medical complications, is time consuming, and is more expensive. Purpose: To determine whether MRA could replace conventional DSA and serve as the primary postinterventional imaging modality in patients with coiled intracranial aneurysms. Material and Methods: We studied a prospectively enrolled cohort of 190 patients treated endovascularly for a first-ruptured and/or unruptured intracranial aneurysm between January 2004 and December 2008. The imaging protocol included a 1.5T time-of-flight (TOF) MRA and a DSA at 3 months (on the same day) and, depending on comparability, a 1.5T TOF-MRA or DSA 1 year after treatment. All images were evaluated by a multidisciplinary panel. Results: In 141/190 patients, both an MRA and DSA were performed after 3-month follow-up. In 2/141 patients (1.4%), (small) neck remnants gave false-negative MRA results. In one patient (0.7%), this led to additional neurosurgical clipping of the aneurysm. In 25/141 patients, future follow-up (>3 months) consisted of DSA because of various reasons. In 24/25 of these patients, primary MRA images alone would invariably have led to additional DSA imaging. Conclusion: The present study shows that 1.5T TOF-MRA is a feasible primary follow-up modality after coiling of intracranial aneurysms. Given our data, we now suggest that, in every patient with a coiled intracranial aneurysm, the first follow-up, 3 months after coiling, should be an MRA study. Only when this MRA is inconclusive (e.g., because of coil artifacts), or in the case of suspicion of recanalization, should DSA be performed additionally

  14. An efficient nano-based theranostic system for multi-modal imaging-guided photothermal sterilization in gastrointestinal tract.

    Science.gov (United States)

    Liu, Zhen; Liu, Jianhua; Wang, Rui; Du, Yingda; Ren, Jinsong; Qu, Xiaogang

    2015-07-01

    Since understanding the healthy status of gastrointestinal tract (GI tract) is of vital importance, clinical implementation for GI tract-related disease have attracted much more attention along with the rapid development of modern medicine. Here, a multifunctional theranostic system combining X-rays/CT/photothermal/photoacoustic mapping of GI tract and imaging-guided photothermal anti-bacterial treatment is designed and constructed. PEGylated W18O49 nanosheets (PEG-W18O49) are created via a facile solvothermal method and an in situ probe-sonication approach. In terms of excellent colloidal stability, low cytotoxicity, and neglectable hemolysis of PEG-W18O49, we demonstrate the first example of high-performance four-modal imaging of GI tract by using these nanosheets as contrast agents. More importantly, due to their intrinsic absorption of NIR light, glutaraldehyde-modified PEG-W18O49 are successfully applied as fault-free targeted photothermal agents for imaging-guided killing of bacteria on a mouse infection model. Critical to pre-clinical and clinical prospects, long-term toxicity is further investigated after oral administration of these theranostic agents. These kinds of tungsten-based nanomaterials exhibit great potential as multi-modal contrast agents for directed visualization of GI tract and anti-bacterial agents for phothothermal sterilization.

  15. A connectivity-based test-retest dataset of multi-modal magnetic resonance imaging in young healthy adults.

    Science.gov (United States)

    Lin, Qixiang; Dai, Zhengjia; Xia, Mingrui; Han, Zaizhu; Huang, Ruiwang; Gong, Gaolang; Liu, Chao; Bi, Yanchao; He, Yong

    2015-01-01

    Recently, magnetic resonance imaging (MRI) has been widely used to investigate the structures and functions of the human brain in health and disease in vivo. However, there are growing concerns about the test-retest reliability of structural and functional measurements derived from MRI data. Here, we present a test-retest dataset of multi-modal MRI including structural MRI (S-MRI), diffusion MRI (D-MRI) and resting-state functional MRI (R-fMRI). Fifty-seven healthy young adults (age range: 19-30 years) were recruited and completed two multi-modal MRI scan sessions at an interval of approximately 6 weeks. Each scan session included R-fMRI, S-MRI and D-MRI data. Additionally, there were two separated R-fMRI scans at the beginning and at the end of the first session (approximately 20 min apart). This multi-modal MRI dataset not only provides excellent opportunities to investigate the short- and long-term test-retest reliability of the brain's structural and functional measurements at the regional, connectional and network levels, but also allows probing the test-retest reliability of structural-functional couplings in the human brain.

  16. Differences in Multi-Modal Ultrasound Imaging between Triple Negative and Non-Triple Negative Breast Cancer.

    Science.gov (United States)

    Li, Ziyao; Tian, Jiawei; Wang, Xiaowei; Wang, Ying; Wang, Zhenzhen; Zhang, Lei; Jing, Hui; Wu, Tong

    2016-04-01

    The objective of this study was to identify multi-modal ultrasound imaging parameters that could potentially help to differentiate between triple negative breast cancer (TNBC) and non-TNBC. Conventional ultrasonography, ultrasound strain elastography and 3-D ultrasound (3-D-US) findings from 50 TNBC and 179 non-TNBC patients were retrospectively reviewed. Immunohistochemical examination was used as the reference gold standard for cancer subtyping. Different ultrasound modalities were initially analyzed to define TNBC-related features. Subsequently, logistic regression analysis was applied to TNBC-related features to establish models for predicting TNBC. TNBCs often presented as micro-lobulated, markedly hypo-echoic masses with an abrupt interface (p = 0.015, 0.0015 and 0.004, compared with non-TNBCs, respectively) on conventional ultrasound, and showed a diminished retraction pattern phenomenon in the coronal plane (p = 0.035) on 3-D-US. Our findings suggest that B-mode ultrasound and 3-D-US in multi-modality ultrasonography could be a useful non-invasive technique for differentiating TNBCs from non-TNBCs.

  17. Cross-modal priming facilitates production of low imageability word strings in a case of deep-phonological dysphasia

    Directory of Open Access Journals (Sweden)

    Laura Mary Mccarthy

    2014-04-01

    Full Text Available Introduction. Characteristics of repetition in deep-phonological dysphasia include an inability to repeat nonwords, semantic errors in single word repetition (deep dysphasia and in multiple word repetition (phonological dysphasia and better repetition of highly imageable words (Wilshire & Fisher, 2004; Ablinger et al., 2008. Additionally, visual processing of words is often more accurate than auditory processing of words (Howard & Franklin, 1988. We report a case study of LT who incurred a LCVA on 10/3/2009. She initially presented with deep dysphasia and near normal word reading. When enrolled in this study, approximately 24 months post-onset, she presented with phonological dysphasia. We investigated the hypothesis that (1 reproduction of a word string would be more accurate when preceded by a visual presentation of the word string compared to two auditory presentations of the word string, and (2 that this facilitative boost would be observed only for strings of low image words, consistent with the imageability effect in repetition. Method. Three-word strings were created in four conditions which varied the frequency (F and imageability (I of words within a string: HiF-HiI, LoF-HiI, HiF-LoI, LoF-LoI. All strings were balanced for total syllable length and were unrelated semantically and phonologically. The dependent variable was as accuracy of repetition of each word within a string. We created six modality prime conditions each with 24 strings drawn equally from the four frequency-imageability types, randomized within modality condition: Auditory Once (AudOnce – string presented auditorily one time; Auditory Twice (AudAud – string presented auditorily two consecutive times; Visual Once (VisOnce – string presented visually one time; Visual Twice (VisVis – string presented visually two consecutive times; Auditory then Visual (AudVis – string presented once auditorily, then a second time visually; Visual then Auditory (VisAud

  18. Feasibility of endoscopic laser speckle imaging modality in the evaluation of auditory disorder: study in bone-tissue phantom

    Science.gov (United States)

    Yu, Sungkon; Jang, Seulki; Lee, Sangyeob; Park, Jihoon; Ha, Myungjin; Radfar, Edalat; Jung, Byungjo

    2016-03-01

    This study investigates the feasibility of an endoscopic laser speckle imaging modality (ELSIM) in the measurement of perfusion of flowing fluid in optical bone tissue phantom(OBTP). Many studies suggested that the change of cochlear blood flow was correlated with auditory disorder. Cochlear microcirculation occurs under the 200μm thickness bone which is the part of the internal structure of the temporal bone. Concern has been raised regarding of getting correct optical signal from hard tissue. In order to determine the possibility of the measurement of cochlear blood flow under bone tissue using the ELSIM, optical tissue phantom (OTP) mimicking optical properties of temporal bone was applied.

  19. What Modals Are: Modal Verbs, Modal Words, and Auxiliary Modals

    Directory of Open Access Journals (Sweden)

    Fazira A. Kakzhanova

    2013-01-01

    Full Text Available The modals are a complicated grammatical phenomenon. As of today, the status of modals is still not precisely defined in the linguistics literature, and they are described under different names: modal verbs, modal words, auxiliary modals, or defective verbs. Modals express the result of the conversion of thought processes (deep structure about the realization of actions into surface structure. As articles determine the status of nouns as indefinite or definite things, modals determine the relation of a person to actions or the quality of an action as realizable or unrealizable. Modals cannot truly be ‘modal verbs’, because they lack the morphological characteristics of verbs (aspect, voice, mood, and tense, and the term ‘defective verb’ is flawed for the same reason. Furthermore, they cannot be ‘auxiliary modals’, because they don’t neutralize their main meanings when they become auxiliary. Thus, I propose to refer to these elements only as modals or modal words.

  20. Newer and upcoming therapies for melasma

    Directory of Open Access Journals (Sweden)

    Rashmi Sarkar

    2012-01-01

    Full Text Available Melasma is one of the most common and distressing pigmentary disorders presenting to dermatology clinics. The precise cause of melasma remains unknown; however, there are many possible contributing factors. It is notably difficult to treat and has a tendency to relapse. The existing and most tried topical therapy is hydroquinone and the triple combination with tretinoin and corticosteroids, which is considered the gold standard for melasma. Besides that, azelaic acid, kojic acid, arbutin, ascorbic acid, glycolic acid and salicylic peels have also been tried with limited success. However, multiple novel topical agents are being investigated for their potential as hypopigmenting agents with unique mode of action. But, further trials are required to study their efficacy and safety before they can be further recommended. The article highlights these newer formulations and also briefly mentions about the newer chemical peels and the much hyped lasers in treating this difficult and frustrating condition.

  1. Multi-modal image fusion based on ROI and Laplacian Pyramid

    Science.gov (United States)

    Gao, Xiong; Zhang, Hong; Chen, Hao; Li, Jiafeng

    2015-03-01

    In this paper, we propose a region of interest-based (ROI-adaptive) fusion algorithm of infrared and visible images by using the Laplacian Pyramid method. Firstly, we estimate the saliency map of infrared images, and then divide the infrared image into two parts: the regions of interest (RoI) and the regions of non-interest (nRoI), by normalizing the saliency map. Visible images are also segmented into two parts by using the Gauss High-pass filter: the regions of high frequency (RoH) and the regions of low frequency (RoL). Secondly, we down-sampled both the nRoI of infrared image and the RoL of visible image as the input of next level processing. Finally, we use normalized saliency map of infrared images as the weighted coefficient to get the basic image on the top level and choose max gray value of the RoI of infrared image and the RoH of visible image to get the detail image. In this way, our method can keep target feature of infrared image and texture detail information of visual image at the same time. Experiment results show that such fusion scheme performs better than the other fusion algorithms both on human visual system and quantitative metrics.

  2. Newer trends in laser tattoo removal

    Directory of Open Access Journals (Sweden)

    Swapnil D Shah

    2015-01-01

    Full Text Available Q switched lasers are the current gold standard for laser tattoo removal. Though these systems are generally quite effective in clearing tattoos & have an established safety record, certain limitations exist while following the standard protocol. To overcome these limitation newer techniques such as multipass method, combination treatments with chemical agent and other laser have been introduced. These methods help in faster, less painful and complication free tattoo removal.

  3. Desogestrel, norgestimate, and gestodene: the newer progestins.

    Science.gov (United States)

    Kaplan, B

    1995-01-01

    The objective was to review and compare the chemistry, pharmacokinetics, efficacy, and tolerability of the newer progestins desogestrel, norgestimate, and gestodene. Data sources were primary literature on desogestrel, norgestimate, and gestodene identified from a comprehensive MEDLINE English-literature search from 1984 through 1994, with additional studies selected by review of the references. Only human clinical and pharmacokinetic trials performed in Europe, Canada, and the US were included. All available data from human studies were reviewed; both comparative and noncomparative studies were included. The newer progestins were designed to minimize the adverse effects (e.g., acne, hirsutism, nausea, blood pressure elevation, carbohydrate and lipid metabolism changes, hemostatic changes) observed with older oral contraceptives (OCs) while maintaining efficacy and good menstrual cycle control. Desogestrel, norgestimate, and gestodene have minimal amounts of androgenicity and antiestrogenic potential. All of these agents are highly bioavailable when administered orally, hepatically metabolized, and obtain steady-state concentrations after 8-10 days of continuous administration. These agents have similar Pearl Indexes and slightly better cycle control than older agents. They appear to cause fewer adverse effects such as acne and hirsutism, and similar rates of weight gain, blood pressure changes, and lipid and carbohydrate metabolism changes. Desogestrel, norgestimate, and gestodene appear to offer clinical advantages because of their decreased androgenicity; however, available data are based on relatively small studies of short duration. Women whose cycles are currently well controlled with other OCs should not be switched to a newer progestin. However, any of the combination OC products that contain these progestins may be prescribed for women intolerant of older agents or to first-time users of OCs because of their apparent efficacy, improved cycle control

  4. Newer antipsychotics and the rabbit syndrome

    Directory of Open Access Journals (Sweden)

    Masalehdan Azadeh

    2007-06-01

    Full Text Available Abstract Background Rabbit syndrome is a movement disorder that is associated with long-term exposure to neuroleptic medications. Of particular interest and importance is the risk of rabbit syndrome with exposure to the newer atypical antipsychotics. Our recent experience with such a case brought to light the importance of exploring this risk. Methods MEDLINE and PubMed (1972–2006 databases were searched for English language articles using the keywords rabbit syndrome, tardive dyskinesia, antipsychotic, extrapyramidal symptoms and side effects. A recent case study is used to expand upon the literature available on newer antipsychotics and rabbit syndrome. Results We reviewed papers that addressed the following aspects of rabbit syndrome 1 the clinical manifestations 2 prevalence and risk factors, 3 etiopathogenesis 4 older antipsychotics and rabbit syndrome 5 newer antipsychotics, 6 treatment options. Moreover, we report a case of RS in a 50 year old white female, diagnosed with bipolar I disorder, that, after the discontinuation of risperidone, developed involuntary movements of the mouth that were fine, rhythmic and rapid, along the vertical axis, and without involvement of the tongue. After the re-introduction of risperidone, the symptoms decreased in a few hours and disappeared after 3 days. Conclusion Eleven cases of rabbit syndrome have been documented since the implementation of newer antipsychotics. Future research is needed to better understand the etiopathogenesis of rabbit syndrome in psychiatric populations treated with the atypical antipsychotics. Understanding the differences and similarities of rabbit syndrome and tardive dyskinesia is crucial to the creation of a successful treatment paradigm.

  5. Handheld probe integrating laser diode and ultrasound transducer array for ultrasound/photoacoustic dual modality imaging

    NARCIS (Netherlands)

    Daoudi, K.; Berg, van den P.J.; Rabot, O.; Kohl, A.; Tisserand, S.; Brands, P.J.; Steenbergen, W.

    2014-01-01

    Ultrasound and photoacoustics can be utilized as complementary imaging techniques to improve clinical diagnoses. Photoacoustics provides optical contrast and functional information while ultrasound provides structural and anatomical information. As of yet, photoacoustic imaging uses large and expens

  6. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer.

    Science.gov (United States)

    Hu, Dehong; Sheng, Zonghai; Gao, Guanhui; Siu, Fungming; Liu, Chengbo; Wan, Qian; Gong, Ping; Zheng, Hairong; Ma, Yifan; Cai, Lintao

    2016-07-01

    Photodynamic therapy (PDT) is a noninvasive and effective approach for cancer treatment. The main bottlenecks of clinical PDT are poor selectivity of photosensitizer and inadequate oxygen supply resulting in serious side effects and low therapeutic efficiency. Herein, a thermal-modulated reactive oxygen species (ROS) strategy using activatable human serum albumin-chlorin e6 nanoassemblies (HSA-Ce6 NAs) for promoting PDT against cancer is developed. Through intermolecular disulfide bond crosslinking and hydrophobic interaction, Ce6 photosensitizer is effectively loaded into the HSA NAs, and the obtained HSA-Ce6 NAs exhibit excellent reduction response, as well as enhanced tumor accumulation and retention. By the precision control of the overall body temperature instead of local tumor temperature increasing from 37 °C to 43 °C, the photosensitization reaction rate of HSA-Ce6 NAs increases 20%, and the oxygen saturation of tumor tissue raise 52%, significantly enhancing the generation of ROS for promoting PDT. Meanwhile, the intrinsic fluorescence and photoacoustic properties, and the chelating characteristic of porphyrin ring can endow the HSA-Ce6 NAs with fluorescence, photoacoustic and magnetic resonance triple-modal imaging functions. Upon irradiation of low-energy near-infrared laser, the tumors are completely suppressed without tumor recurrence and therapy-induced side effects. The robust thermal-modulated ROS strategy combined with albumin-based activatable nanophotosensitizer is highly potential for multi-modal imaging-guided PDT and clinical translation.

  7. Smartphone-Based Dual-Modality Imaging System for Quantitative Detection of Color or Fluorescent Lateral Flow Immunochromatographic Strips

    Science.gov (United States)

    Hou, Yafei; Wang, Kan; Xiao, Kun; Qin, Weijian; Lu, Wenting; Tao, Wei; Cui, Daxiang

    2017-04-01

    Nowadays, lateral flow immunochromatographic assays are increasingly popular as a diagnostic tool for point-of-care (POC) test based on their simplicity, specificity, and sensitivity. Hence, quantitative detection and pluralistic popular application are urgently needed in medical examination. In this study, a smartphone-based dual-modality imaging system was developed for quantitative detection of color or fluorescent lateral flow test strips, which can be operated anywhere at any time. In this system, the white and ultra-violet (UV) light of optical device was designed, which was tunable with different strips, and the Sobel operator algorithm was used in the software, which could enhance the identification ability to recognize the test area from the background boundary information. Moreover, this technology based on extraction of the components from RGB format (red, green, and blue) of color strips or only red format of the fluorescent strips can obviously improve the high-signal intensity and sensitivity. Fifty samples were used to evaluate the accuracy of this system, and the ideal detection limit was calculated separately from detection of human chorionic gonadotropin (HCG) and carcinoembryonic antigen (CEA). The results indicated that smartphone-controlled dual-modality imaging system could provide various POC diagnoses, which becomes a potential technology for developing the next-generation of portable system in the near future.

  8. A review of functional pelvic floor imaging modalities and their effectiveness.

    Science.gov (United States)

    Ahmad, Aminah N; Hainsworth, Alison; Williams, Andrew B; Schizas, Alexis M P

    2015-01-01

    The anatomy of the pelvic floor is complex and clinical examination alone is often insufficient to diagnose and assess pathology. With a greater understanding of pelvic floor dysfunction and treatment options, imaging is becoming increasingly common. This review compares three imaging techniques. Ultrasound has the potential for dynamic assessment of the entire pelvic floor. Magnetic resonance imaging is able to rapidly image the entire pelvic floor but it is expensive and tends to underestimate pathology. Dynamic defaecating proctography or cystocolpoproctography is the current gold standard for posterior compartment imaging but requires opacification of the bladder to provide a global view.

  9. Iodinated silica/porphyrin hybrid nanoparticles for X-ray computed tomography/fluorescence dual-modal imaging of tumors

    Directory of Open Access Journals (Sweden)

    Koichiro Hayashi

    2014-12-01

    Full Text Available Silica nanoparticles containing covalently linked iodine and a near-infrared (NIR fluorescence dye, namely porphyrin, have been synthesized through a one-pot sol–gel reaction. These particles are called iodinated silica/porphyrin hybrid nanoparticles (ISP HNPs. The ISP HNPs have both high X-ray absorption coefficient and NIR fluorescence. The ISP HNPs modified with folic acid (FA and polyethylene glycol (PEG, denoted as FA-PEG-ISP HNPs, enabled the successful visualization of tumors in mice by both X-ray computed tomography (CT and fluorescence imaging (FI. Thus, the FA-PEG-ISP HNPs are useful as contrast agents or probes for CT/FI dual-modal imaging.

  10. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    KAUST Repository

    Marquet, P.

    2016-05-03

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  11. Quantitative phase-digital holographic microscopy: a new imaging modality to identify original cellular biomarkers of diseases

    Science.gov (United States)

    Marquet, P.; Rothenfusser, K.; Rappaz, B.; Depeursinge, C.; Jourdain, P.; Magistretti, P. J.

    2016-03-01

    Quantitative phase microscopy (QPM) has recently emerged as a powerful label-free technique in the field of living cell imaging allowing to non-invasively measure with a nanometric axial sensitivity cell structure and dynamics. Since the phase retardation of a light wave when transmitted through the observed cells, namely the quantitative phase signal (QPS), is sensitive to both cellular thickness and intracellular refractive index related to the cellular content, its accurate analysis allows to derive various cell parameters and monitor specific cell processes, which are very likely to identify new cell biomarkers. Specifically, quantitative phase-digital holographic microscopy (QP-DHM), thanks to its numerical flexibility facilitating parallelization and automation processes, represents an appealing imaging modality to both identify original cellular biomarkers of diseases as well to explore the underlying pathophysiological processes.

  12. High near-infrared absorbing Cu5FeS4 nanoparticles for dual-modal imaging and photothermal therapy

    Science.gov (United States)

    Zhao, Qi; Yi, Xuan; Li, Meifang; Zhong, Xiaoyan; Shi, Quanliang; Yang, Kai

    2016-07-01

    Multifunctional nanomaterials have shown excellent and promising properties for cancer diagnosis and treatment. Herein, we have developed iron doped copper sulfide (Cu5FeS4) nanoparticles with a non-covalent polyethylene glycol (PEG) coating (Cu5FeS4-PEG) for tumor dual-modal imaging and photothermal therapy (PTT). The obtained Cu5FeS4-PEG nanoparticles with high near-infrared absorbance could be used for phototoacoustic (PA) imaging and PTT, whereas Fe3+ doping offer the nanoparticles the additional property for magnetic resonance (MR) imaging. As shown by PA imaging, Cu5FeS4-PEG exhibit a high tumor uptake (~10% ID g-1) after intravenous injection. In vitro and in vivo cancer treatment further confirm that Cu5FeS4-PEG could act as a novel therapeutic agent for PTT of cancer cells. Our study further promotes the potential applications of multifunctional nanomaterials in a range of tumor diagnoses and treatments.Multifunctional nanomaterials have shown excellent and promising properties for cancer diagnosis and treatment. Herein, we have developed iron doped copper sulfide (Cu5FeS4) nanoparticles with a non-covalent polyethylene glycol (PEG) coating (Cu5FeS4-PEG) for tumor dual-modal imaging and photothermal therapy (PTT). The obtained Cu5FeS4-PEG nanoparticles with high near-infrared absorbance could be used for phototoacoustic (PA) imaging and PTT, whereas Fe3+ doping offer the nanoparticles the additional property for magnetic resonance (MR) imaging. As shown by PA imaging, Cu5FeS4-PEG exhibit a high tumor uptake (~10% ID g-1) after intravenous injection. In vitro and in vivo cancer treatment further confirm that Cu5FeS4-PEG could act as a novel therapeutic agent for PTT of cancer cells. Our study further promotes the potential applications of multifunctional nanomaterials in a range of tumor diagnoses and treatments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr04444a

  13. Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Li K

    2013-07-01

    Full Text Available Kangan Li,1,4,5,* Shihui Wen,2,* Andrew C Larson,4,5 Mingwu Shen,2 Zhuoli Zhang,4,5 Qian Chen,3 Xiangyang Shi,2,3 Guixiang Zhang1 1Department of Radiology, Shanghai First People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China; 2College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 3State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, People’s Republic of China; 4Departments of Radiology and Biomedical Engineering, Northwestern University, Chicago, IL, USA; 5Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA *These authors contributed equally to this work Abstract: Development of dual-mode or multi-mode imaging contrast agents is important for accurate and self-confirmatory diagnosis of cancer. We report a new multifunctional, dendrimer-based gold nanoparticle (AuNP as a dual-modality contrast agent for magnetic resonance (MR/computed tomography (CT imaging of breast cancer cells in vitro and in vivo. In this study, amine-terminated generation 5 poly(amidoamine dendrimers modified with gadolinium chelate (DOTA-NHS and polyethylene glycol monomethyl ether were used as templates to synthesize AuNPs, followed by Gd(III chelation and acetylation of the remaining dendrimer terminal amine groups; multifunctional dendrimer-entrapped AuNPs (Gd-Au DENPs were formed. The formed Gd-Au DENPs were used for both in vitro and in vivo MR/CT imaging of human MCF-7 cancer cells. Both MR and CT images demonstrate that MCF-7 cells and the xenograft tumor model can be effectively imaged. The Gd-Au DENPs uptake, mainly in the cell cytoplasm, was confirmed by transmission electron microscopy. The cell cytotoxicity assay, cell morphology observation, and flow cytometry show that the developed Gd-Au DENPs have good biocompatibility in the given concentration range. Our results

  14. A dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection: preliminary clinical results

    Science.gov (United States)

    Erpelding, Todd N.; Garcia-Uribe, Alejandro; Krumholz, Arie; Ke, Haixin; Maslov, Konstantin; Appleton, Catherine; Margenthaler, Julie; Wang, Lihong V.

    2014-03-01

    Sentinel lymph node biopsy (SLNB) has emerged as an accurate, less invasive alternative to axillary lymph node dissection, and it has rapidly become the standard of care for patients with clinically node-negative breast cancer. The sentinel lymph node (SLN) hypothesis states that the pathological status of the axilla can be accurately predicted by determining the status of the first (i.e., sentinel) lymph nodes that drain from the primary tumor. Physicians use radio-labeled sulfur colloid and/or methylene blue dye to identify the SLN, which is most likely to contain metastatic cancer cells. However, the surgical procedure causes morbidity and associated expenses. To overcome these limitations, we developed a dual-modality photoacoustic and ultrasound imaging system to noninvasively detect SLNs based on the accumulation of methylene blue dye. Ultimately, we aim to guide percutaneous needle biopsies and provide a minimally invasive method for axillary staging of breast cancer. The system consists of a tunable dye laser pumped by a Nd:YAG laser, a commercial ultrasound imaging system (Philips iU22), and a multichannel data acquisition system which displays co-registered photoacoustic and ultrasound images in real-time. Our clinical results demonstrate that real-time photoacoustic imaging can provide sensitive and specific detection of methylene blue dye in vivo. While preliminary studies have shown that in vivo detection of SLNs by using co-registered photoacoustic and ultrasound imaging is feasible, further investigation is needed to demonstrate robust SLN detection.

  15. Imaging of Tissue Micro-Structures using a Multi-Modal Microscope Design

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Lieber, C A; Lin, B; Ramsamooj, R

    2005-08-12

    We investigate a microscope design that offers high signal sensitivity and hyperspectral imaging capabilities and allows for implementation of various optical imaging approaches while its operational complexity is minimized. This system utilizes long working distance microscope objectives that enable for off-axis illumination of the tissue thereby allowing for excitation at any optical wavelength and nearly eliminating spectral noise from the optical elements. Preliminary studies using human and animal tissues demonstrate the feasibility of this approach for real-time imaging of intact tissue microstructures using autofluorescence and light scattering imaging methods.

  16. Imaging of Tissue Micro-Structures using a Multi-Modal Microscope Design

    Energy Technology Data Exchange (ETDEWEB)

    Demos, S G; Lieber, C A; Lin, B; Ramsamooj, R

    2005-08-12

    We investigate a microscope design that offers high signal sensitivity and hyperspectral imaging capabilities and allows for implementation of various optical imaging approaches while its operational complexity is minimized. This system utilizes long working distance microscope objectives that enable for off-axis illumination of the tissue thereby allowing for excitation at any optical wavelength and nearly eliminating spectral noise from the optical elements. Preliminary studies using human and animal tissues demonstrate the feasibility of this approach for real-time imaging of intact tissue microstructures using autofluorescence and light scattering imaging methods.

  17. Uni-modal versus joint segmentation for region-based image fusion

    NARCIS (Netherlands)

    Lewis, J.J.; Nikolov, S.G.; Canagarajah, C.N.; Bull, D.R.; Toet, A.

    2006-01-01

    A number of segmentation techniques are compared with regard to their usefulness for region-based image and video fusion. In order to achieve this, a new multi-sensor data set is introduced containing a variety of infra-red, visible and pixel fused images together with manually produced 'ground

  18. Extending and applying active appearance models for automated, high precision segmentation in different image modalities

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Fisker, Rune; Ersbøll, Bjarne Kjær

    2001-01-01

    , an initialization scheme is designed thus making the usage of AAMs fully automated. Using these extensions it is demonstrated that AAMs can segment bone structures in radiographs, pork chops in perspective images and the left ventricle in cardiovascular magnetic resonance images in a robust, fast and accurate...

  19. Uni-modal versus joint segmentation for region-based image fusion

    NARCIS (Netherlands)

    Lewis, J.J.; Nikolov, S.G.; Canagarajah, C.N.; Bull, D.R.; Toet, A.

    2006-01-01

    A number of segmentation techniques are compared with regard to their usefulness for region-based image and video fusion. In order to achieve this, a new multi-sensor data set is introduced containing a variety of infra-red, visible and pixel fused images together with manually produced 'ground trut

  20. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography

    Science.gov (United States)

    Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.

    2014-10-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using

  1. Detection of abnormalities in dyspneic patients using a new lung imaging modality

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Xiong Yingxia

    2014-01-01

    Background Although chest radiography is a useful examination tool,it has limitations.Because not all chest conditions can be detected on a radiograph,radiography cannot necessarily rule out all irregularities in the chest.Therefore,further imaging studies may be required to clarify the results of a chest radiograph,or to identify abnormalities that are not readily visible.The aim of this study was to compare traditional chest radiography with acoustic-based imaging (vibration response imaging) for the detection of lung abnormalities in patients with acute dyspnea.Methods The current investigation was a pilot study.Respiratory sounds throughout the respiratory cycle were captured using an acoustic-based imaging technique.Consecutive patients who presented to the emergency department with acute dyspnea and a normal chest radiograph on admission were enrolled and underwent imaging at the time of presentation.Dynamic and static images of vibration (breath sounds) and a dynamic image score were generated,and assessments were made using an evaluation form.Results In healthy volunteer controls (n=61),the mean dynamic image score was 6.3±1.9.In dyspneic patients with normal chest radiographs (n=51) and abnormal chest radiographs (n=48),the dynamic image scores were 4.7±2.7 and 5.1±2.5,respectively (P <0.05).The final assessment of the vibration images indicated abnormal findings in 15%,86% and 90% of the participants in the above groups,respectively (P <0.05).Conclusions In patients with acute dyspnea who present with normal chest radiographs,respiratory sound analyses often showed abnormal values.Hence,the ability of acoustic-based recordings to offer objective and noninvasive measurements of abnormal sound transmission may be useful in the clinical setting for patients presenting with acute dyspnea.

  2. SU-E-I-84: Accuracy Comparison of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using In-Air Micro-CT Image Volume

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: Tumor volume is considered as a better predictor for therapy response monitoring and tumor staging over Response Evaluation Criteria In Solid Tumors (RECIST) or World Health Organization (WHO) criteria. In this study, the accuracy of subcutaneous rodent tumor volumes using preclinical magnetic resonance imaging (MRI), micro-computed tomography (micro-CT) and ultrasound (US) equipment and with an external caliper was compared using in-air micro-CT image volume of excised tumors determined as reference tumor volume in our prior study. Methods: MR, US and micro-CT images of subcutaneous SCC4 head and neck tumor xenografts were acquired 4, 6, 9, 11 and 13 days after tumor cell inoculation. Before MR and US scans, caliper measurements were made. After tumors were excised, in-air micro-CT imaging and ex vivo caliper measurements were performed. Tumor volumes were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three image modalities and caliper, and compared with reference tumor volume by linear regression analysis as well as Bland-Altman plots. A one-way Analysis of Variance (ANOVA) test was also performed to compare volumes among caliper measurements. Results: The correlation coefficients (R2) of the regression lines for tumor volumes measured by the three imaging modalities and caliper were 0.9939, 0.9669, 0.9806, 0.9274, 0.9619 and 0.9819 for MRI, US and micro-CT, caliperbeforeMRI, caliperbeforeUS and ex vivo caliper respectively. In Bland-Altman plots, the average of tumor volume difference from reference tumor volume (bias) was significant for caliper and micro- CT, but not for MRI and US. Comparison of caliper measurements showed a significant difference (p < 0.05). Conclusion: Using the in-air micro-CT image volume, tumor volume measured by MRI was the most accurate among the three imaging modalities. In vivo caliper volume measurements showed unreliability while ex

  3. Multi-modality imaging of tumor phenotype and response to therapy

    Science.gov (United States)

    Nyflot, Matthew J.

    2011-12-01

    Imaging and radiation oncology have historically been closely linked. However, the vast majority of techniques used in the clinic involve anatomical imaging. Biological imaging offers the potential for innovation in the areas of cancer diagnosis and staging, radiotherapy target definition, and treatment response assessment. Some relevant imaging techniques are FDG PET (for imaging cellular metabolism), FLT PET (proliferation), CuATSM PET (hypoxia), and contrast-enhanced CT (vasculature and perfusion). Here, a technique for quantitative spatial correlation of tumor phenotype is presented for FDG PET, FLT PET, and CuATSM PET images. Additionally, multimodality imaging of treatment response with FLT PET, CuATSM, and dynamic contrast-enhanced CT is presented, in a trial of patients receiving an antiangiogenic agent (Avastin) combined with cisplatin and radiotherapy. Results are also presented for translational applications in animal models, including quantitative assessment of proliferative response to cetuximab with FLT PET and quantification of vascular volume with a blood-pool contrast agent (Fenestra). These techniques have clear applications to radiobiological research and optimized treatment strategies, and may eventually be used for personalized therapy for patients.

  4. Newer methods of extraction of teeth

    Directory of Open Access Journals (Sweden)

    MHendra Chandha

    2016-06-01

    Full Text Available Atraumatic extraction methods are deemed to be important to minimize alveolar bone loss after tooth extraction. With the advent of such techniques, exodontia is no more a dreaded procedure in anxious patients. Newer system and techniques for extraction of teeth have evolved in the recent few decades. This article reviews and discusses new techniques to make simple and complex exodontias more efficient with improved patient outcomes. This includes physics forceps, powered periotome, piezosurgery, benex extractor, sonic instrument for bone surgery, lasers.

  5. Evaluation of localized bacterial infection using radioisotope-labeled nucleosides imaging modality

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Su Jin; Kang, Joo Hyun; Lee, Yong Jin; Lee, Tae Sup; Kim, Kwang Il; Lee, Kyo Chul; An, Gwang II; Cheon, Gi Jeong; Lim, Sang Moo [KIRAMS, Seoul (Korea, Republic of); Lim, Sang Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Conventional diagnostic methods for infections are difficult to distinguish localized bacterial infections from sites of sterile inflammation. For this reason, the importance of developing methods to image bacterial infections is widely recognized. In this study to acquire bacterial infection imaging with radiolabeled nucleosides, in vitro bacterial thymidine kinase (tk) activities of Salmonella typhimurium with [{sup 18}F]FLT and [{sup 125}I]IVDU were measured and localized infections model in BALB/c mice was imaged with [{sup 18}F]FLT or [{sup 125}I]FIAU

  6. Dual Modality Photothermal Optical Coherence Tomography and Magnetic Resonance Imaging of Carbon Nanotubes

    OpenAIRE

    Tucker – Schwartz, Jason M.; Hong, Tu; Colvin, Daniel C.; Xu, Yaqiong; Skala, Melissa C.

    2012-01-01

    We demonstrate polyethylene glycol coated single-walled carbon nanotubes (CNTs) as contrast agents for both photothermal optical coherence tomography (OCT) and magnetic resonance imaging. Photothermal OCT was accomplished with a spectral domain OCT system with an amplitude modulated 750 nm pump beam using 10 mW of power, and T2 MR imaging was achieved with a 4.7 T animal system. Photothermal OCT and T2 MR imaging achieved sensitivities of nM concentrations to CNTs dispersed in amine terminate...

  7. Rare-Earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging.

    Science.gov (United States)

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-10-09

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities.

  8. Terahertz Imaging Modalities of Ancient Egyptian Mummified Objects and of a Naturally Mummified Rat

    National Research Council Canada - National Science Library

    Öhrström, Lena; Fischer, Bernd M; Bitzer, Andreas; Wallauer, Jan; Walther, Markus; Rühli, Frank

    2015-01-01

    ...)—it remains a novel, emerging technique whose potential still needs to be fully evaluated. Here, ancient Egyptian mummified objects as well as a naturally mummified rat have been investigated by two different THz imaging systems...

  9. Selective imaging modalities after first pyelonephritis failed to identify significant urological anomalies, despite normal antenatal ultrasounds

    DEFF Research Database (Denmark)

    Mola, Gylli; Wenger, Therese Ramstad; Salomonsson, Petra

    2017-01-01

    AIM: We investigated the consequences of applying different imaging guidelines for urological anomalies after first pyelonephritis in children with normal routine antenatal ultrasounds. METHODS: The cohort comprised 472 children treated for their first culture-positive pyelonephritis...... identified all patients initially treated with surgery and avoided 65 scintigraphies. CONCLUSION: Dilated VUR was the dominant anomaly in a cohort with first time pyelonephritis and normal antenatal ultrasound. The optimal imaging strategy after pyelonephritis must be identified....

  10. Breast molecular imaging: a retrospective review of one institutions experience with this modality and analysis of its potential role in breast imaging decision making.

    Science.gov (United States)

    Siegal, Emily; Angelakis, Elizabeth; Morris, Patricia; Pinkus, Edward

    2012-01-01

    Breast Molecular Imaging (or Breast-Specific Gamma Imaging) has been previously shown to be both sensitive and specific for the detection of breast cancer. The purpose of our study was to retrospectively review all cases of Breast Molecular Imaging (BMI) performed at our institution to determine BMI's potential role in Breast Imaging decision making. A total of 416 cases of BMI from January 2007 to November 2009 were analyzed and the following data were collected: indication for examination, BIRADS assignment after BMI, biopsy outcomes, sensitivity and specificity of the modality and patient follow-up. Fifty-six percent of cases were ordered for an indeterminate asymmetry or focal asymmetry, 14% for evaluation of calcifications, and less than 10% each for the remainder of the indications including palpable lumps with negative imaging, evaluation of extent of disease in patients with known breast cancer and screening of high risk patients who could not undergo MRI. BMI was also shown to be helpful in evaluation of lesions that were difficult to biopsy or for patients that desired further testing rather than biopsy or short term follow-up of abnormalities. Seventy percent of BMI cases performed completed the diagnostic evaluation with BIRADS 1 or BIRADS 2 designations. Only 14% of cases ultimately resulted in biopsy. Contra-lateral findings were discovered in 10% of patients, more than half of which were occult malignancies or high-risk lesions. Of the lesions for which biopsy was recommended, 43% were malignant and 15% were high-risk lesions. Sensitivity of the test at our institution was 93% and specificity 78.9%. Our results show that BMI is both a sensitive and specific test which is useful as an adjunct to standard breast imaging modalities for problem solving in indeterminate cases.

  11. Newer agents in antiplatelet therapy: a review

    Directory of Open Access Journals (Sweden)

    Yeung J

    2012-06-01

    Full Text Available Jennifer Yeung, Michael HolinstatCardeza Foundation for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, USAAbstract: Antiplatelet therapy remains the mainstay in preventing aberrant platelet activation in pathophysiological conditions such as myocardial infarction, ischemia, and stroke. Although there has been significant advancement in antiplatelet therapeutic approaches, aspirin still remains the gold standard treatment in the clinical setting. Limitations in safety, efficacy, and tolerability have precluded many of the antiplatelet inhibitors from use in patients. Unforeseen incidences of increased bleeding risk and recurrent arterial thrombosis observed in patients have hampered the development of superior next generation antiplatelet therapies. The pharmacokinetic and pharmacodynamic profiles have also limited the effectiveness of a number of antiplatelet inhibitors currently in use due to variability in metabolism, time to onset, and reversibility. A focused effort in the development of newer antiplatelet therapies to address some of these shortcomings has resulted in a significant number of potential antiplatelet drugs which target enzymes (phosphodiesterase, cyclooxygenase, receptors (purinergic, prostaglandins, protease-activated receptors, thromboxane, and glycoproteins (αIIbß3, GPVI, vWF, GPIb in the platelet. The validation and search for newer antiplatelet therapeutic approaches proven to be superior to aspirin is still ongoing and should yield a better pharmacodynamic profile with fewer untoward side-effects to what is currently in use today.Keywords: platelet aggregation inhibitors, blood platelets, purinergic P2Y receptor antagonists, receptor, PAR-1, platelet glycoprotein GPIIb-IIIa, thrombosis

  12. Evaluating the tolerability of the newer antidepressants.

    Science.gov (United States)

    Dewan, M J; Anand, V S

    1999-02-01

    Given their equal efficacy, the choice of a specific antidepressant is largely influenced by side effect (SE) profiles. A number of new agents have recently become available. However, data directly comparing the side effects of these agents are scarce. As suggested by AHCPR guidelines, we used the 1998 Physicians' Desk Reference (PDR) to construct a comparison table using treatment emergent, placebo-adjusted incidence rates for the major (gastrointestinal, central nervous system, and sexual) side effects caused by nine antidepressants (fluoxetine, paroxetine, sertraline, fluvoxamine, nefazodone, bupropion SR, mirtazapine, venlafaxine XR, and citalopram). The results were tabulated to show the relative propensity of each drug to cause a particular side effect. Bupropion SR had the most favorable overall side-effect profile, and fluvoxamine the least favorable. However, there are several limitations in using the PDR to compare the newer antidepressants. Clinical studies directly comparing SEs of newer antidepressants are needed. Sexual SEs substantially affected total SE liability. A simplified summary table, with its advantages and some limitations, is not simple to construct. Pitfalls in this process are discussed.

  13. Changing modalities

    NARCIS (Netherlands)

    Renardel de Lavalette, Gerard R.

    2004-01-01

    The dynamic modal logic DML is presented, featuring actions that change the interpretation of a propositional variable or a modality. The semantics is defined both in terms of modal structures and of labelled transition systems (Kripke models). The extension µDML with recursively defined actions aim

  14. Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features

    Science.gov (United States)

    Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.

    2016-01-01

    Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.

  15. Long-term outcomes of myopic choroidal neovascularisation treated with combined ranibizumab and dexamethasone characterised by multi-modal imaging.

    Science.gov (United States)

    Tan, Anna C S; Teo, Kelvin; Guan, Ong Sze; Koh, Adrian

    2016-10-01

    To characterise the long-term outcomes of myopic choroidal neovascularisation (mCNV) treated with combined ranibizumab and dexamethasone, with the use of multi-modal imaging. A retrospective study of 20 eyes with mCNV treated with intra-vitreal ranibizumab and dexamethasone on a treat-as-needed basis were followed up for a mean period of 47 months (range 19-81 months). The mean age was 55 ± 16 years, with mean refractive error of -9.0 diopters. Subfoveal mCNV was seen in 11 eyes (52 %) and the others were juxtafoveal. At the final visit, 13 patients (65 %) had improvement, while four patients (20 %) had worsening in vision. The average number of ranibizumab and dexamethasone injections required was 3 ± 1.7. There was a significant improvement in the mean visual acuity, reduction of the central retinal thickness, and an enlargement of the area of chorioretinal atrophy. The mean rate of increase in chorioretinal atrophy area was 0.05 ± 0.09 mm(2)/month. Disruption of the photoreceptor layer, fragmentation of the retinal pigment epithelium, and breaks in the Bruch's membrane with a hyper-reflective lesion causing separation of the outer retinal layers were changes associated with active mCNV seen on optical coherence tomography (OCT). Visual outcomes of mCNV treated with ranibizumab and dexamethasone on a treat-as-needed basis have favourable visual acuity outcomes. Using multi-modal imaging to monitor treatment response, chorioretinal atrophy, which may be related to visual function, should be used as an additional outcome measure to study the effect of combination treatment versus monotherapy.

  16. The registration of dual-modality ship target images based on edge extraction

    Science.gov (United States)

    Zhang, Weimin; Wang, Risheng; Zhou, Fugen

    2014-11-01

    In this paper, we study the problem of visible and IR(infrared) ship target image registration with scale changes. We mainly focus on the infrared and visible image feature extraction and matching method. A method based on Force Field Transformation is used to determine the ship target contour area. Canny edge detection method is applied to obtain the edge features. During the process of image registration, we take the cross-correlation as the similarity measure and propose an improved Powell algorithm based on multi-scale searching to optimize the registration parameters. Through the edge fusion results, we can see the corresponding edges are almost overlapped, indicating that the method could achieve satisfying results. Also the average error distance of match is less than one pixel.

  17. Malposition and revision rates of different imaging modalities for percutaneous iliosacral screw fixation following pelvic fractures

    DEFF Research Database (Denmark)

    Zwingmann, Jörn; Hauschild, Oliver; Bode, Gerrit;

    2013-01-01

    INTRODUCTION: Percutaneous iliosacral screw placement following pelvic trauma is associated with high rates of revisions, screw malpositioning, the risk of neurological damage and inefficient stability. The correct entry point and the small target corridor may be difficult to visualize using only...... an image intensifier. Therefore, 2D and 3D image-based navigation and reconstruction techniques could be helpful tools. The aim of this systematic review and meta-analysis was to evaluate the best available evidence regarding the rate of malpositioning and revisions using different techniques for screw...... implantation, i.e., conventional, 2D and 3D image-based navigation and reconstruction techniques, CT navigation. METHODS: A systematic review and meta-analysis were performed using the data available on Ovid Medline. 430 studies published between 1/1948 and 2/2011 were identified by two independent...

  18. Design, Synthesis and Evaluation of Dual-Modality Glyco-Nanoparticles for Tumor Imaging

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    2013-05-01

    Full Text Available d-Glucosamine (DG was conjugated to a core-cross linked polymeric micelle (CCPM system equipped with both a near-infrared fluorophore (NIRF and a gamma emitter (111In. The resultant nano-scale tumor-targeting imaging tracer, 111In-DG-NIRF-CCPM, selectively accumulated in a human epithelial carcinoma A-431 xenograft model in mice. At 24 hrs post injection, the tumor uptake was 2.62 ± 0.80 % of the injected dose per gram of tissue (%ID/g. Tumors were clearly delineated in both single-photon emission computed tomography (SPECT and optical imaging. The results suggest that the prepared imaging tracer is a promising agent for tumor diagnosis.

  19. Imaging findings in a case of Gorlin-Goltz syndrome: a survey using advanced modalities

    Energy Technology Data Exchange (ETDEWEB)

    Bronooh, Pegah [Dental School, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shakibafar, Ali Reza [TABA Medical Imaging Center, Shiraz (Iran, Islamic Republic of); Houshyar, Maneli; Nafarzade, Shima [Oral Pathology Department, Babol Dental School, Babol (Iran, Islamic Republic of)

    2011-12-15

    Gorlin-Goltz syndrome is an infrequent multi-systemic disease which is characterized by multiple keratocysts in the jaws, calcification of falx cerebri, and basal cell carcinomas. We report a case of Gorlin-Goltz syndrome in a 23-year-old man with emphasis on image findings of keratocyctic odontogenic tumors (KCOTs) on panoramic radiograph, computed tomography, magnetic resonance (MR) imaging, and Ultrasonography (US). In this case, pericoronal lesions were mostly orthokeratinized odontogenic cyst (OOC) concerning the MR and US study, which tended to recur less. The aim of this report was to clarify the characteristic imaging features of the syndrome-related keratocysts that can be used to differentiate KCOT from OOC. Also, our findings suggested that the recurrence rate of KCOTs might be predicted based on their association to teeth.

  20. Imaging findings in a case of Gorlin-Goltz syndrome: a survey using advanced modalities.

    Science.gov (United States)

    Bronoosh, Pegah; Shakibafar, Ali Reza; Houshyar, Maneli; Nafarzade, Shima

    2011-12-01

    Gorlin-Goltz syndrome is an infrequent multi-systemic disease which is characterized by multiple keratocysts in the jaws, calcification of falx cerebri, and basal cell carcinomas. We report a case of Gorlin-Goltz syndrome in a 23-year-old man with emphasis on image findings of keratocyctic odontogenic tumors (KCOTs) on panoramic radiograph, computed tomography, magnetic resonance (MR) imaging, and Ultrasonography (US). In this case, pericoronal lesions were mostly orthokeratinized odontogenic cyst (OOC) concerning the MR and US study, which tended to recur less. The aim of this report was to clarify the characteristic imaging features of the syndrome-related keratocysts that can be used to differentiate KCOT from OOC. Also, our findings suggested that the recurrence rate of KCOTs might be predicted based on their association to teeth.

  1. Performance comparison of breast imaging modalities using a 4AFC human observer study

    Science.gov (United States)

    Elangovan, Premkumar; Rashidnasab, Alaleh; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Segars, William P.; Wells, Kevin

    2015-03-01

    This work compares the visibility of spheres and simulated masses in 2D-mammography and tomosynthesis systems using human observer studies. Performing comparison studies between breast imaging systems poses a number of practical challenges within a clinical environment. We therefore adopted a simulation approach which included synthetic breast blocks, a validated lesion simulation model and a set of validated image modelling tools as a viable alternative to clinical trials. A series of 4-alternative forced choice (4AFC) human observer experiments has been conducted for signal detection tasks using masses and spheres as targets. Five physicists participated in the study viewing images with a 5mm target at a range of contrast levels and 60 trials per experimental condition. The results showed that tomosynthesis has a lower threshold contrast than 2D-mammography for masses and spheres, and that detection studies using spheres may produce overly-optimistic threshold contrast values.

  2. Cancer Cell Membrane-Biomimetic Nanoparticles for Homologous-Targeting Dual-Modal Imaging and Photothermal Therapy.

    Science.gov (United States)

    Chen, Ze; Zhao, Pengfei; Luo, Zhenyu; Zheng, Mingbin; Tian, Hao; Gong, Ping; Gao, Guanhui; Pan, Hong; Liu, Lanlan; Ma, Aiqing; Cui, Haodong; Ma, Yifan; Cai, Lintao

    2016-11-22

    An active cell membrane-camouflaged nanoparticle, owning to membrane antigens and membrane structure, can achieve special properties such as specific recognition, long blood circulation, and immune escaping. Herein, we reported a cancer cell membrane-cloaked nanoparticle system as a theranostic nanoplatform. The biomimetic nanoparticles (indocyanine green (ICG)-loaded and cancer cell membrane-coated nanoparticles, ICNPs) exhibit a core-shell nanostructure consisting of an ICG-polymeric core and cancer cell membrane shell. ICNPs demonstrated specific homologous targeting to cancer cells with good monodispersity, preferable photothermal response, and excellent fluorescence/photoacoustic (FL/PA) imaging properties. Benefited from the functionalization of the homologous binding adhesion molecules from cancer cell membranes, ICNPs significantly promoted cell endocytosis and homologous-targeting tumor accumulation in vivo. Moreover, ICNPs were also good at disguising as cells to decrease interception by the liver and kidney. Through near-infrared (NIR)-FL/PA dual-modal imaging, ICNPs could realize real-time monitored in vivo dynamic distribution with high spatial resolution and deep penetration. Under NIR laser irradiation, ICNPs exhibited highly efficient photothermal therapy to eradicate xenografted tumor. The robust ICNPs with homologous properties of cancer cell membranes can serve as a bionic nanoplatform for cancer-targeted imaging and phototherapy.

  3. The effect of radiographic imaging modalities and the observer's experience on postoperative maxillary cyst assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Tae In; Huh, Kyung Hoe; Yi, Won Jin; Lee, Sam Sun; Heo, Min Suk; Choi, Soon Chul [Dept. of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2014-12-15

    The purpose of this study was to compare the accuracy of postoperative maxillary cyst (POMC) diagnosis by panoramic radiographs versus computed tomography (CT) and by oral and maxillofacial radiologists versus non-specialists. Sixty-five maxillary sinuses with POMCs and 63 without any lesion were assessed using panoramic radiographs and CT images by five oral and maxillofacial radiologists and five non-specialists on a five-point scale. The areas under receiver operating characteristic (ROC) curves were analyzed to determine the differences in diagnostic accuracy between the two imaging modalities and between the two groups of observers. The intra-observer agreement was determined, too. The diagnostic accuracy of CT images was higher than that of panoramic radiographs in both groups of observers (p<0.05). The diagnostic accuracy of oral and maxillofacial radiologists for each method was higher than that of non-specialists (p<0.05). The use of CT improves the diagnosis of POMC, and radiological training and experience leads to more accurate evaluation.

  4. Prototypes of Lanthanide(III) Agents Responsive to Enzymatic Activities in Three Complementary Imaging Modalities: Visible/Near-Infrared Luminescence, PARACEST-, and T1-MRI.

    Science.gov (United States)

    He, Jiefang; Bonnet, Célia S; Eliseeva, Svetlana V; Lacerda, Sara; Chauvin, Thomas; Retailleau, Pascal; Szeremeta, Frederic; Badet, Bernard; Petoud, Stéphane; Tóth, Éva; Durand, Philippe

    2016-03-09

    We report first prototypes of responsive lanthanide(III) complexes that can be monitored independently in three complementary imaging modalities. Through the appropriate choice of lanthanide(III) cations, the same reactive ligand can be used to form complexes providing detection by (i) visible (Tb(3+)) and near-infrared (Yb(3+)) luminescence, (ii) PARACEST- (Tb(3+), Yb(3+)), or (iii) T1-weighted (Gd(3+)) MRI. The use of lanthanide(III) ions of different natures for these imaging modalities induces only a minor change in the structure of complexes that are therefore expected to have a single biodistribution and cytotoxicity.

  5. Imaging of the optic disk in caring for patients with glaucoma: ophthalmoscopy and photography remain the gold standard.

    Science.gov (United States)

    Spaeth, George L; Reddy, Swathi C

    2014-01-01

    Optic disk imaging is integral to the diagnosis and treatment of patients with glaucoma. We discuss the various forms of imaging the optic nerve, including ophthalmoscopy, photography, and newer imaging modalities, including optical coherence tomography (OCT), confocal scanning laser ophthalmoscopy (HRT), and scanning laser polarimetry (GDx), specifically highlighting their benefits and disadvantages. We argue that ophthalmoscopy and photography remain the gold standard of imaging due to portability, ease of interpretation, and the presence of a large database of images for comparison.

  6. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics

    Science.gov (United States)

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; Anitha, J; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation. PMID:26225116

  7. Fluorescent magnetic Fe3 O4 /rare Earth colloidal nanoparticles for dual-modality imaging.

    Science.gov (United States)

    Zhu, Haie; Shang, Yalei; Wang, Wenhao; Zhou, Yingjie; Li, Penghui; Yan, Kai; Wu, Shuilin; Yeung, Kelvin W K; Xu, Zushun; Xu, Haibo; Chu, Paul K

    2013-09-09

    Fluorescent magnetic colloidal nanoparticles (FMCNPs) are produced by a two-step, seed emulsifier-free emulsion polymerization in the presence of oleic acid and sodium undecylenate-modified Fe3 O4 nanoparticles (NPs). The Fe3 O4 /poly(St-co-GMA) nanoparticles are first synthesized as the seed and Eu(AA)3 Phen is copolymerized with the remaining St and GMA to form the fluorescent polymer shell in the second step. The uniform core-shell structured FMCNPs with a mean diameter of 120 nm exhibit superparamagnetism with saturation magnetization of 1.92 emu/g. Red luminescence from the FMCNPs is confirmed by the salient fluorescence emission peaks of europium ions at 594 and 619 nm as well as 2-photon confocal scanning laser microscopy. The in vitro cytotoxicity test conducted using the MTT assay shows good cytocompatibility and the T2 relaxivity of the FMCNPs is 353.86 mM(-1) S(-1) suggesting its potential in magnetic resonance imaging (MRI). In vivo MRI studies based on a rat model show significantly enhanced T2 -weighted images of the liver after administration and prussian blue staining of the liver tissue slice reveals accumulation of FMCNPs in the organ. The cytocompatibility, superparamagnetism, and excellent fluorescent properties of FMCNPs make them suitable for biological imaging probes in MRI and optical imaging.

  8. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics

    OpenAIRE

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; J. Anitha; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation.

  9. Cone Beam Computed Tomography-Dawn of A New Imaging Modality in Orthodontics.

    Science.gov (United States)

    Mamatha, J; Chaitra, K R; Paul, Renji K; George, Merin; Anitha, J; Khanna, Bharti

    2015-01-01

    Today, we are in a world of innovations, and there are various diagnostics aids that help to take a decision regarding treatment in a well-planned way. Cone beam computed tomography (CBCT) has been a vital tool for imaging diagnostic tool in orthodontics. This article reviews case reports during orthodontic treatment and importance of CBCT during the treatment evaluation.

  10. Multiphoton microscopy as a diagnostic imaging modality for pancreatic neoplasms without hematoxylin and eosin stains

    Science.gov (United States)

    Chen, Youting; Chen, Jing; Chen, Hong; Hong, Zhipeng; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Yanling; Chen, Jianxin

    2014-09-01

    Hematoxylin and eosin (H&E) staining of tissue samples is the standard approach in histopathology for imaging and diagnosing cancer. Recent reports have shown that multiphoton microscopy (MPM) provides better sample interface with single-cell resolution, which enhances traditional H&E staining and offers a powerful diagnostic tool with potential applications in oncology. The purpose of this study was to further expand the versatility of MPM by establishing the optical parameters required for imaging unstained histological sections of pancreatic neoplasms, thereby providing an efficient and environmentally sustainable alternative to H&E staining while improving the accuracy of pancreatic cancer diagnoses. We found that the high-resolution MPM images clearly distinguish between the structure of normal pancreatic tissues compared with pancreatic neoplasms in unstained histological sections, and discernable differences in tissue architecture and cell morphology between normal versus tumorigenic cells led to enhanced optical diagnosis of cancerous tissue. Moreover, quantitative assessment of the cytomorphological features visualized from MPM images showed significant differences in the nuclear-cytoplasmic ratios of pancreatic neoplasms compared with normal pancreas, as well as further distinguished pancreatic malignant tumors from benign tumors. These results indicate that the MPM could potentially serve as an optical tool for the diagnosis of pancreatic neoplasms in unstained histological sections.

  11. The choice of the correct imaging modality in breast cancer management

    Energy Technology Data Exchange (ETDEWEB)

    Bombardieri, Emilio [Division of Nuclear Medicine, PET Centre, Istituto Nazionale per lo Studio e la Cura dei Tumori, Via Venezian 1, 20133, Milan (Italy); Gianni, Luca [Division of Medical Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan (Italy)

    2004-06-01

    This brief overview discusses which of the diagnostic options are more reliable and effective for breast cancer imaging with a view to avoiding the unjustified use of techniques that are suboptimal. The technological development of diagnostic imaging has been very impressive, and both radiological (mammography, ultrasonography, computed tomography, magnetic resonance imaging) and nuclear medicine tools (bone scan, planar and SPECT scintigraphy, sentinel node biopsy, positron emission tomography) have helped to overcome past limitations in the detection of small lesions. Furthermore, new approaches have been developed that permit successful differential diagnosis of doubtful lesions and rapid identification of systemic metastases, and allow non-invasive characterisation of the biology of cancer tissue. There is evidence that these advances may have helped in optimising therapeutic strategies. Importantly, the metabolic information provided by nuclear medicine procedures may be combined with the anatomical data supplied by radiological techniques in order to assist in predicting tumour response, planning radiotherapy and monitoring patient outcome. It is difficult to formulate conclusive diagnostic guidelines for application in the work-up of breast cancer, because while the role of some examinations, such as mammography and ultrasonography, is well established, that of others, such as magnetic resonance imaging and positron emission tomography, is still a matter of debate. There is a need for further prospective evaluations with appropriate clinical trials designed to evaluate the impact of these approaches in improving survival and quality of life. (orig.)

  12. High-frequency 3D echodentographic imaging modality for early assessment of periodontal diseases: in vitro study

    Science.gov (United States)

    Mahmoud, Ahmed M.; Ngan, Peter; Crout, Richard; Mukdadi, Osama M.

    2009-02-01

    The use of ultrasound in dentistry is still an open growing area of research. Currently, there is a lack of imaging modalities to accurately predict minute structures and defects in the jawbone. In particular, the inability of 2D radiographic images to detect bony periodontal defects resulted from infection of the periodontium. This study investigates the feasibility of high frequency ultrasound to reconstruct high resolution 3D surface images of human jawbone. Methods: A dentate and non-dentate mandibles were used in this study. The system employs high frequency single-element ultrasound focused transducers (15-30 MHz) for scanning. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high precision two-dimensional stage positioning system of +/-1 μm resolution for acquiring accurate and quantitative measurements of the mandible in vitro. Radio frequency (RF) signals are acquired laterally 44-45.5 μm apart for each frame. Different frames are reconstructed 500 μm apart for the 3D reconstruction. Signal processing algorithms are applied on the received ultrasound signals for filtering, focusing, and envelope detection before frame reconstruction. Furthermore, an edge detection technique is adopted to detect the bone surface in each frame. Finally, all edges are combined together in order to render a 3D surface image of the jawbone. Major anatomical landmarks on the resultant images were confirmed with the anatomical structures on the mandibles to show the efficacy of the system. Comparison were also made with conventional 2D radiographs to show the superiority of the ultrasound imaging system in diagnosing small defects in the lateral, axial and elevation planes of space. Results: The landmarks on all ultrasound images matched with those on the mandible, indicating the efficacy of the system in detecting small structures in human jaw bones. Comparison with conventional 2D radiographic images of the same mandible showed superiority of

  13. Multi-Modal Image Registration and Matching for Localization of a Balloon on Titan

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    A solution was developed that matches visible/IR imagery aboard a balloon in Saturn's moon Titan's atmosphere to SAR (synthetic aperture radar) and visible/IR data acquired from orbit. A balloon in Titan's atmosphere must be able to localize itself autonomously both globally and with respect to local terrain. The orbital data is used to provide the balloon imagery with global context. The work is novel in applying mutual information (MI) to orbital vs. aerial data. There are unique challenges in this setting. Image offsets are much higher than in medical imaging, there is local distortion due to 3D terrain relief, and the fields of regard from orbit and from the air are quite different.

  14. Extended feature-fusion guidelines to improve image-based multi-modal biometrics

    CSIR Research Space (South Africa)

    Brown, Dane

    2016-09-01

    Full Text Available and rotation invariant tex- ture classification compared with Eigen and Fisher [2]. Training the advanced histogram model is also signifi- cantly faster than the former two methods. Furthermore, the training time is independent of the image resolution... at the feature-level compared to the matching score-level. Other face, fingerprint and palmprint studies include [13] and [23], which both use a Curvelet transform followed by SVM classification. However, these studies were tested using datasets...

  15. Development of an Automated Modality-Independent Elastographic Image Analysis System for Tumor Screening

    Science.gov (United States)

    2007-02-01

    quantity of polymer solution with an imaging contrast agent. Before the phantom fully polymerizes through freezing, a hypodermic needle is used to create...approximation in favor of one compatible with large deformations. The difference in solutions between small and large deformation theory can be...difference in the linear model among Fig. 2a and 2b, 2b is the reverse of 2a (this is a characteristic of linear theory ). However, the lack of this

  16. Multi-modality Imaging: Bird's eye view from the 2015 American Heart Association Scientific Sessions.

    Science.gov (United States)

    Einstein, Andrew J; Lloyd, Steven G; Chaudhry, Farooq A; AlJaroudi, Wael A; Hage, Fadi G

    2016-04-01

    Multiple novel studies were presented at the 2015 American Heart Association Scientific Sessions which was considered a successful conference at many levels. In this review, we will summarize key studies in nuclear cardiology, cardiac magnetic resonance, echocardiography, and cardiac computed tomography that were presented at the Sessions. We hope that this bird's eye view will keep readers updated on the newest imaging studies presented at the meeting whether or not they were able to attend the meeting.

  17. Multi-modality imaging review of congenital abnormalities of kidney and upper urinary tract

    Institute of Scientific and Technical Information of China (English)

    Subramaniyan Ramanathan; Devendra Kumar; Maneesh Khanna; Mahmoud Al Heidous; Adnan Sheikh; Vivek Virmani; Yegu Palaniappan

    2016-01-01

    Congenital abnormalities of the kidney and urinary tract(CAKUT) include a wide range of abnormalities ranging from asymptomatic ectopic kidneys to life threatening renal agenesis(bilateral). Many of them are detected in the antenatal or immediate postnatal with a significant proportion identified in the adult population with varying degree of severity. CAKUT can be classified on embryological basis in to abnormalities in the renal parenchymal development, aberrant embryonic migration and abnormalities of the collecting system. Renal parenchymal abnormalities include multi cystic dysplastic kidneys, renal hypoplasia, number(agenesis or supernumerary), shape and cystic renal diseases. Aberrant embryonic migration encompasses abnormal location and fusion anomalies. Collecting system abnormalities include duplex kidneys and Pelvi ureteric junction obstruction. Ultrasonography(US) is typically the first imaging performed as it is easily available, noninvasive and radiation free used both antenatally and postnatally. Computed tomography(CT) and magnetic resonance imaging(MRI) are useful to confirm the ultrasound detected abnormality, detection of complex malformations, demonstration of collecting system and vascular anatomy and more importantly for early detection of complications like renal calculi, infection and malignancies. As CAKUT are one of the leading causes of end stage renal disease, it is important for the radiologists to be familiar with the varying imaging appearances of CAKUT on US, CT and MRI, thereby helping in prompt diagnosis and optimal management.

  18. Iron homeostasis: new players, newer insights.

    Science.gov (United States)

    Edison, Eunice S; Bajel, Ashish; Chandy, Mammen

    2008-12-01

    Although iron is a relatively abundant element in the universe, it is estimated that more than 2 billion people worldwide suffer from iron deficiency anemia. Iron deficiency results in impaired production of iron-containing proteins, the most prominent of which is hemoglobin. Cellular iron deficiency inhibits cell growth and subsequently leads to cell death. Hemochromatosis, an inherited disorder results in disproportionate absorption of iron and the extra iron builds up in tissues resulting in organ damage. As both iron deficiency and iron overload have adverse effects, cellular and systemic iron homeostasis is critically important. Recent advances in the field of iron metabolism have led to newer understanding of the pathways involved in iron homeostasis and the diseases which arise from alteration in the regulators. Although insight into this complex regulation of the proteins involved in iron homeostasis has been obtained mainly through animal studies, it is most likely that this knowledge can be directly extrapolated to humans.

  19. Newer treatments for inflammatory bowel disease.

    Science.gov (United States)

    Stotland, B R; Lichtenstein, G R

    1998-02-01

    Inflammatory bowel disease represents chronic idiopathic disorders which involve either the colon exclusively (ulcerative colitis) of any part of the gastrointestinal tract (Crohn's disease). The course of these entities is typified by periods of symptomatic exacerbation interspersed with clinical remissions. Management is based upon regimens which decrease mucosal inflammation. Colonic disease distal to the splenic flexure may be treated with topical therapy, but other regions generally necessitate oral therapy. Currently used medications include the aminosalicylates, glucocorticoids, antibiotics and immunomodulators. The immunomodulator class of medications includes azathioprine, 6-mercaptopurine, cyclosporine A and methotrexate. Newer agents include short-chain fatty acids, omega-3 fatty acids and antibodies directed to tumor necrosis factor. Medical management also occasionally involves optimizing nutritional status with the addition of elemental diets or total parenteral nutrition. Management of specific clinical presentations is discussed.

  20. Ocular preservatives: associated risks and newer options.

    Science.gov (United States)

    Kaur, Indu Pal; Lal, Shruti; Rana, Cheena; Kakkar, Shilpa; Singh, Harinder

    2009-01-01

    Presence of a preservative in an ocular medication has often been considered a culprit in damaging the epithelium. However, the inclusion of a preservative is equally necessary, especially in multiple-dose containers, in order to protect against dangerous organisms accidentally gaining access during instillation. Benzalkonium chloride (BAK), chlorobutanol, chlorhexidine acetate (CHA), and phenylmercuric nitrate or acetate are some commonly used preservatives in eye preparations. New preservatives with a wide range of activity and good safety profiles have been introduced in the market, such as stabilized oxychloro complex (SOC), sofZia, and sodium perborate. In the present review, we discuss various conventional and newly proposed and patented preservative molecules for ocular use. Reasons for discontinuing traditional preservatives and the need for less-toxic molecules are discussed at length, along with newer options coming up in this area.

  1. Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system.

    Science.gov (United States)

    Sigal, Iliya; Koletar, Margaret M; Ringuette, Dene; Gad, Raanan; Jeffrey, Melanie; Carlen, Peter L; Stefanovic, Bojana; Levi, Ofer

    2016-09-01

    We report on a miniature label-free imaging system for monitoring brain blood flow and blood oxygenation changes in awake, freely behaving rats. The device, weighing 15 grams, enables imaging in a ∼ 2 × 2 mm field of view with 4.4 μm lateral resolution and 1 - 8 Hz temporal sampling rate. The imaging is performed through a chronically-implanted cranial window that remains optically clear between 2 to > 6 weeks after the craniotomy. This imaging method is well suited for longitudinal studies of chronic models of brain diseases and disorders. In this work, it is applied to monitoring neurovascular coupling during drug-induced absence-like seizures 6 weeks following the craniotomy.

  2. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    Science.gov (United States)

    Wilby, M. J.; Keller, C. U.; Snik, F.; Korkiakoski, V.; Pietrow, A. G. M.

    2017-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental Non-Common Path Errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This combines the Apodizing Phase Plate (APP) coronagraph with a holographic modal wavefront sensor to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing with the science point-spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor is able to successfully recover diffraction-limited coronagraph performance over an effective dynamic range of ±2.5 radians root-mean-square (rms) wavefront error within 2-10 iterations, with performance independent of the specific choice of mode basis. We then present the results of initial on-sky testing at the William Herschel Telescope, which demonstrate that the sensor is capable of NCPE sensing under realistic seeing conditions via the recovery of known static aberrations to an accuracy of 10 nm (0.1 radians) rms error in the presence of a dominant atmospheric speckle foreground. We also find that the sensor is capable of real-time measurement of broadband atmospheric wavefront variance (50% bandwidth, 158 nm rms wavefront error) at a cadence of 50 Hz over an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of

  3. Assessing the need for nuclear cardiology and other advanced cardiac imaging modalities in the developing world.

    Science.gov (United States)

    Vitola, João V; Shaw, Leslee J; Allam, Adel H; Orellana, Pilar; Peix, Amalia; Ellmann, Annare; Allman, Kevin C; Lee, B N; Siritara, Chanika; Keng, Felix Y J; Sambuceti, Gianmario; Kiess, Marla C; Giubbini, Raffaele; Bouyoucef, Salaheddine E; He, Zuo-Xiang; Thomas, Gregory S; Mut, Fernando; Dondi, Maurizio

    2009-01-01

    In 2005, 80% of cardiovascular disease (CVD) deaths occurred in low- to middle-income countries (i.e., developing nations). Cardiovascular imaging, such as myocardial perfusion SPECT, is one method that may be applied to detect and foster improved detection of at-risk patients. This document will review the availability and utilization for nuclear cardiology procedures worldwide and propose strategies to devise regional centers of excellence to achieve quality imaging around the world. As a means to establish the current state of nuclear cardiology, International Atomic Energy Agency member and non-member states were queried as to annual utilization of nuclear cardiology procedures. Other sources for imaging statistics included data from medical societies (American Society of Nuclear Cardiology, European Society of Cardiology, and the European Association of Nuclear Medicine) and nuclear cardiology working groups within several nations. Utilization was calculated by dividing annual procedural volume by 2007 population statistics (/100,000) and categorized as high (>1,000/100,000), moderate-high (250-999/100,000), moderate (100-249/100,000), low-moderate (50-99/100,000) and low (Algeria and Egypt); perhaps the result of accessible high-quality training programs. Worldwide utilization patterns for nuclear cardiology vary substantially and may be influenced by physician access to training and education programs. Development of regional training centers of excellence can guide utilization of nuclear cardiology through the application of guideline- and appropriateness-driven testing, training, continuing education, and quality assurance programs aiding developing nations to confront the epidemics of CVD.

  4. Optical scatter imaging: a microscopic modality for the rapid morphological assay of living cells

    Science.gov (United States)

    Boustany, Nada N.

    2007-02-01

    Tumors derived from epithelial cells comprise the majority of human tumors and their growth results from the accumulation of multiple mutations affecting cellular processes critical for tissue homeostasis, including cell proliferation and cell death. To understand these processes and address the complexity of cancer cell function, multiple cellular responses to different experimental conditions and specific genetic mutations must be analyzed. Fundamental to this endeavor is the development of rapid cellular assays in genetically defined cells, and in particular, the development of optical imaging methods that allow dynamic observation and real-time monitoring of cellular processes. In this context, we are developing an optical scatter imaging technology that is intended to bridge the gap between light and electron microscopy by rapidly providing morphometric information about the relative size and shape of non-spherical organelles, with sub-wavelength resolution. Our goal is to complement current microscopy techniques used to study cells in-vitro, especially in long-term time-lapse studies of living cells, where exogenous labels can be toxic, and electron microscopy will destroy the sample. The optical measurements are based on Fourier spatial filtering in a standard microscope, and could ultimately be incorporated into existing high-throughput diagnostic platforms for cancer cell research and histopathology of neoplastic tissue arrays. Using an engineered epithelial cell model of tumor formation, we are currently studying how organelle structure and function are altered by defined genetic mutations affecting the propensity for cell death and oncogenic potential, and by environmental conditions promoting tumor growth. This talk will describe our optical scatter imaging technology and present results from our studies on apoptosis, and the function of BCL-2 family proteins.

  5. Diagnostic imaging modalities and surgical anatomy of the temporomandibular joint in rabbits.

    Science.gov (United States)

    Kyllar, Michal; Putnová, Barbora; Jekl, Vladimír; Stehlík, Ladislav; Buchtová, Marcela; Štembírek, Jan

    2017-01-01

    The temporomandibular joint (TMJ) is a condylar synovial joint that, together with the masticatory muscles, controls mandibular movement during mastication. The rabbit is often used as a model species for studying the mechanisms of TMJ diseases, and in regenerative research. However, there are significant differences between rabbit and human TMJs that should be taken into account before using this model for experimental research. Here, we use several analytical approaches (radiography, computed tomography and magnetic resonance imaging) to enable a detailed description and analysis of the rabbit TMJ morphology. Moreover, possible surgical approaches have been introduced with a focus on available access into the rabbit TMJ cavity, which relate our findings to clinical usage.

  6. Dual-Modality Activity-Based Probes as Molecular Imaging Agents for Vascular Inflammation.

    Science.gov (United States)

    Withana, Nimali P; Saito, Toshinobu; Ma, Xiaowei; Garland, Megan; Liu, Changhao; Kosuge, Hisanori; Amsallem, Myriam; Verdoes, Martijn; Ofori, Leslie O; Fischbein, Michael; Arakawa, Mamoru; Cheng, Zhen; McConnell, Michael V; Bogyo, Matthew

    2016-10-01

    Macrophages are cellular mediators of vascular inflammation and are involved in the formation of atherosclerotic plaques. These immune cells secrete proteases such as matrix metalloproteinases and cathepsins that contribute to disease formation and progression. Here, we demonstrate that activity-based probes (ABPs) targeting cysteine cathepsins can be used in murine models of atherosclerosis to noninvasively image activated macrophage populations using both optical and PET/CT methods. The probes can also be used to topically label human carotid plaques demonstrating similar specific labeling of activated macrophage populations.

  7. Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT.

    Science.gov (United States)

    Mou, Juan; Lin, Tianquan; Huang, Fuqiang; Chen, Hangrong; Shi, Jianlin

    2016-04-01

    Substantially different from traditional combinatorial-treatment of photothermal therapy (PTT) and photodynamic therapy (PDT) by using multi-component nanocomposite under excitation of separate wavelength, a novel single near infrared (NIR) laser-induced multifunctional theranostic nanoplatform has been rationally and successfully constructed by a single component black titania (B-TiO2-x) for effective imaging-guided cancer therapy for the first time. This multifunctional PEGylated B-TiO2-x shows high dispersity/stability in aqueous solution, excellent hemo/histocompatibility and broad absorption ranging from NIR to ultraviolet (UV). Both in vitro and in vivo results well demonstrated that such a novel multifunctional theranostic nanoplaform could achieve high therapeutic efficacy of simultaneous and synergistic PTT/PDT under the guidance of infrared thermal/photoacoustic (PA) dual-modal imaging, which was triggered by a single NIR laser. This research circumvents the conventional obstacles of using multi-component nanocomposites, UV light and high laser power density. Furthermore, negligible side effects to blood and main tissues could be found in 3 months' investigation, facilitating its potential biomedical application.

  8. Evaluation of selective arterial embolization effect by chitosan micro-hydrogels in hindlimb sarcoma rodent models using various imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai Kyoung; Kwon, Jeong Il; Na, Kyung Sook [Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); and others

    2015-09-15

    Embolization is mainly used to reduce the size of locally advanced tumors. In this study, selective arterial catheterization with chitosan micro-hydrogels (CMH) into the femoral artery was performed and the therapeutic effect was validated using different imaging methods. Male SD rats (n = 18, 6 weeks old) were randomly assigned into three groups: Group 1 as control, Group 2 without any ligation of distal femoral artery, and Group 3 with temporary ligation of the distal femoral artery. RR1022 sarcoma cell lines were inoculated into thigh muscle. After 1 week, CMH was injected into the proximal femoral artery. Different imaging modalities were performed during a 3-week follow-up. The tumor size was significantly (P < 0.001) decreased in both Group 2 and Group 3 (P < 0.001) after selective arterial embolization therapy. 18F-FDG-PET/CT revealed decreased intensity of 18F-FDG uptake in tumors. The accumulation status of 125I-CMH near the tumor was verified by gamma camera. Appropriate selective arterial embolization therapy with CMH was.

  9. Gold Nanocage-Photosensitizer Conjugates for Dual-Modal Image-Guided Enhanced Photodynamic Therapy

    Science.gov (United States)

    Srivatsan, Avinash; Jenkins, Samir V.; Jeon, Mansik; Wu, Zhijin; Kim, Chulhong; Chen, Jingyi; Pandey, Ravindra K.

    2014-01-01

    We have demonstrated that gold nanocage-photosensitizer conjugates can enable dual image-guided delivery of photosensitizer and significantly improve the efficacy of photodynamic therapy in a murine model. The photosensitizer, 3-devinyl-3-(1'-hexyloxyethyl)pyropheophorbide (HPPH), was noncovalently entrapped in the poly(ethylene glycol) monolayer coated on the surface of gold nanocages. The conjugate is stable in saline solutions, while incubation in protein rich solutions leads to gradual unloading of the HPPH, which can be monitored optically by fluorescence and photoacoustic imaging. The slow nature of the release in turn results in an increase in accumulation of the drug within implanted tumors due to the passive delivery of gold nanocages. Furthermore, the conjugate is found to generate more therapeutic singlet oxygen and have a lower IC50 value than the free drug alone. Thus the conjugate shows significant suppression of tumor growth as compared to the free drug in vivo. Short-term study showed neither toxicity nor phenotypical changes in mice at therapeutic dose of the conjugates or even at 100-fold higher than therapeutic dose of gold nanocages. PMID:24465274

  10. Combined modalities of magnetic resonance imaging, endoscopy and computed tomography in the evaluation of tumor responses to definitive chemoradiotherapy in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Qiu, Bo; Wang, DeLing; Yang, Hong; Xie, WeiHao; Liang, Ying; Cai, Peiqiang; Chen, ZhaoLin; Liu, MengZhong; Fu, JianHua; Xie, ChuanMiao; Liu, Hui

    2016-11-01

    To explore the value of combined modalities, including anatomical and functional magnetic resonance imaging (MRI), endoscopy and computed tomography (CT), for the assessment of tumor responses to definitive chemoradiotherapy (dCRT) in esophageal squamous cell carcinoma (ESCC). Sixty-seven patients with locally advanced ESCC were enrolled. Tumor response (TR) was assessed two months after the completion of dCRT. Evaluation criteria according to combined modalities, including MRI, endoscopy and CT, were established and compared with traditional criteria based on CT and endoscopy. Progression-free survival (PFS)⩾12months was used as the reference standard, and the accuracy of the two criteria in response assessment was analyzed. Thirty-seven (55.2%) and 10 (14.9%) patients were considered to exhibit CR, as assessed by combined modalities and the traditional criteria, respectively. Using PFS⩾12months as a surrogate for CR, the sensitivity and specificity of the combined modalities were 82.4% and 88.9%, respectively, compared with 20.6% and 92.6% for the traditional criteria. TR assessed by combined modalities (CR vs. non-CR) was prognostic of PFS in univariate and multivariate analyses (Log-rank, P<0.0001; Cox regression, HR=0.114, 95% CI 0.048-0.272). Tumor responses assessed by the combined modalities of MR, endoscopy and CT seemed highly predictive of prognosis after dCRT in ESCC patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. MRI 3D CISS– A Novel Imaging Modality in Diagnosing Trigeminal Neuralgia – A Review

    Science.gov (United States)

    Besta, Radhika; Shankar, Y. Uday; Kumar, Ashwini; Prakash, S. Bhanu

    2016-01-01

    Trigeminal Neuralgia (TN) is considered as one of the most painful neurologic disorders affecting oro-facial region. TN is often diagnosed clinically based on the patients complete history of pain (severity, duration, episodes etc), relief of pain on test dose of Carbamazepine, regional block of long acting anaesthetic. However, Magnetic Resonance Imaging (MRI) plays an important and confirmatory role in showing Neuro Vascular Conflict (NVC) which is the commonest causative factor for TN. This article reviews the effectiveness of three-dimensional constructive interference in steady-state (3D-CISS) MRI in diagnosing the exact location, degree of neurovascular conflict responsible for classical as well as atypical TN and possible pre-treatment evaluation and treatment outcome. PMID:27135019

  12. Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults

    DEFF Research Database (Denmark)

    Lancellotti, Patrizio; Nkomo, Vuyisile T; Badano, Luigi P;

    2013-01-01

    recognized only in the early 1970s, the heart is regarded in the current era as one of the most critical dose-limiting organs in radiotherapy. Several clinical studies have identified adverse clinical consequences of radiation-induced heart disease (RIHD) on the outcome of long-term cancer survivors......Cardiac toxicity is one of the most concerning side effects of anti-cancer therapy. The gain in life expectancy obtained with anti-cancer therapy can be compromised by increased morbidity and mortality associated with its cardiac complications. While radiosensitivity of the heart was initially....... A comprehensive review of potential cardiac complications related to radiotherapy is warranted. An evidence-based review of several imaging approaches used to detect, evaluate, and monitor RIHD is discussed. Recommendations for the early identification and monitoring of cardiovascular complications...

  13. Double jeopardy: multi-modality imaging of monozygotic "twin cap" atherosclerosis.

    Science.gov (United States)

    Murray, Scott W; Cooper, Robert M; Appleby, Clare; McCann, Caroline; Binukrishnan, Sukumaran; Radu, Maria D; Stables, Rodney H

    2014-11-01

    The investigation of asymptomatic but potentially vulnerable atherosclerosis is not yet a major focus for clinical Cardiologists. We have illustrated the contemporary investigation and treatment of such disease using a clinical case that involved monozygotic twins. One twin (T1) had unfortunately suffered a cardiac arrest whilst jogging and survived only due to bystander CPR and prompt defibrillation. His identical twin brother (T2), on subsequent investigation, harbours a compositionally identical lesion in a proximal coronary vessel that has not yet ruptured or provoked a clinical event. Following the presentation of both non-invasive and invasive images, we discuss the need for active suspicion and intensive treatment for those people with a 'genetic' risk of future myocardial infarction.

  14. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging.

    Science.gov (United States)

    Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong

    2016-09-15

    Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo.

  15. Magnetically engineered Cd-free quantum dots as dual-modality probes for fluorescence/magnetic resonance imaging of tumors.

    Science.gov (United States)

    Ding, Ke; Jing, Lihong; Liu, Chunyan; Hou, Yi; Gao, Mingyuan

    2014-02-01

    Magnetically engineered Cd-free CuInS2@ZnS:Mn quantum dots (QDs) were designed, synthesized, and evaluated as potential dual-modality probes for fluorescence and magnetic resonance imaging (MRI) of tumors in vivo. The synthesis of Mn-doped core-shell structured CuInS2@ZnS mainly comprised three steps, i.e., the preparation of fluorescent CuInS2 seeds, the particle surface coating of ZnS, and the Mn-doping of the ZnS shells. Systematic spectroscopy studies were carried out to illustrate the impacts of ZnS coating and the following Mn-doping on the optical properties of the QDs. In combination with conventional fluorescence, fluorescence excitation, and time-resolved fluorescence measurements, the structure of CuInS2@ZnS:Mn QDs prepared under optimized conditions presented a Zn gradient CuInS2 core and a ZnS outer shell, while Mn ions were mainly located in the ZnS shell, which well balanced the optical and magnetic properties of the resultant QDs. For the following in vivo imaging experiments, the hydrophobic CuInS2@ZnS:Mn QDs were transferred into water upon ligand exchange reactions by replacing the 1-dodecanethiol ligand with dihydrolipoic acid-poly(ethylene glycol) (DHLA-PEG) ligand. The MTT assays based on HeLa cells were carried out to evaluate the cytotoxicity of the current Cd-free CuInS2@ZnS:Mn QDs for comparing with that of water soluble CdTe QDs. Further in vivo fluorescence and MR imaging experiments suggested that the PEGylated CuInS2@ZnS:Mn QDs could well target both subcutaneous and intraperitoneal tumors in vivo.

  16. Magnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy

    OpenAIRE

    LIU Jun; Huang, Long; Tian, Xiumei; Chen, Xiaoming; Shao, Yuanzhi; Xie, Fukang; Chen, Dihu; Li, Li

    2016-01-01

    The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r 1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-modal imaging and photodynamic therapy (PDT). In vitro and in vivo MRI studies show that these products...

  17. Spatial-temporal and modal analysis of propeller induced ground vortices by particle image velocimetry

    Science.gov (United States)

    Yang, Y.; Sciacchitano, A.; Veldhuis, L. L. M.; Eitelberg, G.

    2016-10-01

    During the ground operation of aircraft, there is potentially a system of vortices generated from the ground toward the propulsor, commonly denoted as ground vortices. Although extensive research has been conducted on ground vortices induced by turbofans which were simplified by suction tubes, these studies cannot well capture the properties of ground vortices induced by propellers, e.g., the flow phenomena due to intermittent characteristics of blade passing and the presence of slipstream of the propeller. Therefore, the investigation of ground vortices induced by a propeller is performed to improve understanding of these phenomena. The distributions of velocities in two different planes containing the vortices were measured by high frequency Particle Image Velocimetry. These planes are a wall-parallel plane in close proximity to the ground and a wall-normal plane upstream of the propeller. The instantaneous flow fields feature highly unsteady flow in both of these two planes. The spectral analysis is conducted in these two flow fields and the energetic frequencies are quantified. The flow fields are further evaluated by applying the Proper Orthogonal Decomposition analysis to capture the coherent flow structures. Consistent flow structures with strong contributions to the turbulent kinetic energy are noticed in the two planes.

  18. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Patrick Baril

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  19. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    Science.gov (United States)

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy. PMID:25749473

  20. Reliability of whole slide images as a diagnostic modality for renal allograft biopsies.

    Science.gov (United States)

    Jen, Kuang-Yu; Olson, Jean L; Brodsky, Sergey; Zhou, Xin J; Nadasdy, Tibor; Laszik, Zoltan G

    2013-05-01

    The use of digital whole slide images (WSI) in the field of pathology has become feasible for routine diagnostic purposes and has become more prevalent in recent years. This type of technology offers many advantages but must show the same degree of diagnostic reliability as conventional glass slides. Several studies have examined this issue in various settings and indicate that WSI are a reliable method for diagnostic pathology. Since transplant pathology is a highly specialized field that requires not only accurate but rapid diagnostic evaluation of biopsy materials, this field may greatly benefit from the use of WSI. In this study, we assessed the reliability of using WSI compared to conventional glass slides in renal allograft biopsies. We examined morphologic features and diagnostic categories defined by the Banff 07 Classification of Renal Allograft Pathology as well as additional morphologic features not included in this classification scheme. We found that intraobserver scores, when comparing the use of glass slides versus WSI, showed substantial agreement for both morphologic features (κ = 0.68) and acute rejection diagnostic categories (κ = 0.74). Furthermore, interobserver reliability was comparable for morphologic features (κ = 0.44 [glass] vs 0.42 [WSI]) and acute rejection diagnostic categories (κ = 0.49 [glass] vs 0.51 [WSI]). These data indicate that WSI are as reliable as glass slides for the evaluation of renal allograft biopsies.

  1. Defeasible modalities

    CSIR Research Space (South Africa)

    Britz, K

    2013-01-01

    Full Text Available with a preference ordering on worlds in Kripke models. The resulting family of modal logics allow for the elegant expression of defeasible modalities. We also propose a tableau calculus which is sound and complete with respect to our preferential...

  2. Newer therapeutic molecules for multiple myeloma

    Directory of Open Access Journals (Sweden)

    Jain P

    2008-01-01

    Full Text Available Therapeutic management of multiple myeloma (MM for the last several decades has mainly involved regimens based on use of glucocorticoids and cytotoxic chemotherapeutics. Despite progress in delineating the activity of such regimens, at either conventional or high doses, MM has remained an incurable disease. This has sparked major interest in the development of novel therapies that in part capitalize on recent advances in our understanding of the biology of MM, including the molecular mechanisms by which MM cell-host bone marrow (BM interactions regulate tumor-cell growth, survival, and drug resistance in the BM milieu. Herein, we review the latest progress in the development of these novel anti-MM therapies, with major focus on therapies which have translated from preclinical evaluation to clinical application, including thalidomide and its more potent immunomodulatory derivatives (IMiD, the first-in-class proteasome inhibitor bortezomib (formerly known as PS-341. Search strategy included Medline using the terms ′Myeloma and Newer Drugs′ citations relevant to treatment guidelines issued in 1999 and 2008 were screened.

  3. Adenosine and adenosine receptors: Newer therapeutic perspective

    Directory of Open Access Journals (Sweden)

    Manjunath S

    2009-01-01

    Full Text Available Adenosine, a purine nucleoside has been described as a ′retaliatory metabolite′ by virtue of its ability to function in an autocrine manner and to modify the activity of a range of cell types, following its extracellular accumulation during cell stress or injury. These effects are largely protective and are triggered by binding of adenosine to any of the four adenosine receptor subtypes namely A1, A2a, A2b, A3, which have been cloned in humans, and are expressed in most of the organs. Each is encoded by a separate gene and has different functions, although overlapping. For instance, both A1 and A2a receptors play a role in regulating myocardial oxygen consumption and coronary blood flow. It is a proven fact that adenosine plays pivotal role in different physiological functions, such as induction of sleep, neuroprotection and protection against oxidative stress. Until now adenosine was used for certain conditions like paroxysmal supraventricular tachycardia (PSVT and Wolff Parkinson White (WPW syndrome. Now there is a growing evidence that adenosine receptors could be promising therapeutic targets in a wide range of conditions including cardiac, pulmonary, immunological and inflammatory disorders. After more than three decades of research in medicinal chemistry, a number of selective agonists and antagonists of adenosine receptors have been discovered and some have been clinically evaluated, although none has yet received regulatory approval. So this review focuses mainly on the newer potential role of adenosine and its receptors in different clinical conditions.

  4. Newer thrombolytic drugs for acute myocardial infarction.

    Science.gov (United States)

    Reddy, D S

    1998-01-01

    Arterial thrombosis is the underlying cause of a wide variety of cardiovascular diseases such as myocardial infarction, stroke and pulmonary thromboembolism. All the currently used thrombolytic agents are plasminogen activators, which are very efficient in restoring the blood flow. The fibrinolytic system comprises an inactive proenzyme plasminogen, that is converted by plasminogen activators to the enzyme plasmin, that degrades fibrin. Despite the widespread use of established thrombolytic agents such as streptokinase, tissue-plasminogen activator and urokinase, all these agents suffer from a number of inadequacies including resistance to reperfusion, occurrence of acute coronary reocclusion and bleeding complications. The quest continues for thrombolytic agents with a higher potency, specific thrombolytic activity and fibrin selectivity. Several lines of research towards improvement of thrombolytic agents are being explored including the construction of mutants and variants of plasminogen activators, chimeric plasminogen activators and conjugates of plasminogen activators with monoclonal antibodies. Newer molecules such as pro-urokinase, saruplase, alteplase, K1K2Pu and staphylokinase have shown promise in animal models of arterial and venous thrombosis and also in pilot scale clinical studies in patients with myocardial infarction. However, more clinical trials are needed to determine whether these novel recombinant thrombolytic agents shows improved efficacy and fibrin specificity with minimal bleeding tendencies.

  5. {sup 18}F-FDG PET/CT compared to conventional imaging modalities in pediatric primary bone tumors

    Energy Technology Data Exchange (ETDEWEB)

    London, Kevin [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Paediatrics and Child Health, Sydney Medical School, Sydney, NSW (Australia); Stege, Claudia; Kaspers, Gertjan [VU Medical Centre, Divisions of Paediatric Oncology/Haematology, Amsterdam (Netherlands); Cross, Siobhan; Dalla-Pozza, Luciano [The Children' s Hospital at Westmead, Department of Oncology, Sydney (Australia); Onikul, Ella [The Children' s Hospital at Westmead, Department of Medical Imaging, Sydney (Australia); Graf, Nicole [The Children' s Hospital at Westmead, Department of Pathology, Sydney (Australia); Howman-Giles, Robert [The Children' s Hospital at Westmead, Department of Nuclear Medicine, Sydney, NSW (Australia); University of Sydney, Discipline of Imaging, Sydney Medical School, Sydney, NSW (Australia)

    2012-04-15

    F-Fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) is useful in adults with primary bone tumors. Limited published data exist in children. To compare hybrid FDG positron emission tomography/computed tomography (PET/CT) with conventional imaging (CI) modalities in detecting malignant lesions, predicting response to chemotherapy and diagnosing physeal involvement in pediatric primary bone tumors. Retrospective analysis of PET/CT and CI reports with histopathology or follow-up > 6 months as reference standard. Response parameters and physeal involvement at diagnosis were compared to histopathology. A total of 314 lesions were detected in 86 scans. Excluding lung lesions, PET/CT had higher sensitivity and specificity than CI (83%, 98% and 78%, 97%, respectively). In lung lesions, PET/CT had higher specificity than CI (96% compared to 87%) but lower sensitivity (80% compared to 93%). Higher initial SUV{sub max} and greater SUV{sub max} reduction on PET/CT after chemotherapy predicted a good response. Change in tumor size on MRI did not predict response. Both PET/CT and MRI were very sensitive but of low specificity in predicting physeal tumor involvement. PET/CT appears more accurate than CI in detecting malignant lesions in childhood primary bone tumors, excluding lung lesions. It seems better than MRI at predicting tumor response to chemotherapy. (orig.)

  6. Echo-enhanced ultrasound with pulse inversion imaging: A new imaging modality for the differentiation of cystic pancreatic tumours

    Institute of Scientific and Technical Information of China (English)

    Steffen Rickes; Klaus M(o)nkemüller; Peter Malfertheiner

    2006-01-01

    AIM: To describe and discuss echo-enhanced sonography in the differential diagnosis of cystic pancreatic lesions.METHODS: The pulse inversion technique (with intravenous injection of 2.4 mL SonoVue(R)) or the power-Doppler mode under the conditions of the 2nd harmonic imaging (with intravenous injection of 4 g Levovist(R)) was used for echo-enhanced sonography.RESULTS: Cystadenomas frequently showed many vessels along fibrotic strands. On the other hand,cystadenocarcinomas were poorly and chaotically vascularized. "Young pseudocysts" were frequently found to have a highly vascularised wall. However, the wall of the "old pseudocysts" was poorly vascularized. Data from prospective studies demonstrated that based on these imaging criteria the sensitivities and specificities of echoenhanced sonography in the differentiation of cystic pancreatic masses were > 90%.CONCLUSION: Cystic pancreatic masses have a different vascularization pattern at echo-enhanced sonography. These characteristics are useful for their differential diagnosis, but histology is still the gold standard.

  7. Non-invasive image-guided laser microsurgery by a dual-wavelength fiber laser and an integrated fiber-optic multi-modal system.

    Science.gov (United States)

    Tsai, Meng-Tsan; Li, Dean-Ru; Chan, Ming-Che

    2016-10-15

    A new approach to non-invasive image-guided laser micro-treatment is demonstrated by a dual-wavelength fiber laser source and an integrated fiber-based multi-modal system. The fiber-based source, operated in 1.55 and 1.2 μm simultaneously, was directly connected to an integrated fiber-based multi-modal system for imaging and laser micro-treatment at the same time. The 1.2 μm radiations, within the 1.2-1.35 μm bio-penetration window of skin, were utilized for spectral domain optical coherence tomography imaging. The 1.55 μm radiations, highly absorptive to waters, were utilized for laser microsurgery. The new approach, which is simple in configuration and accurately controls the positions and exposure time of the laser microsurgery, shows great promises for future clinical applications.

  8. Treatment of Acute Pulmonary Embolism: Update on Newer Pharmacologic and Interventional Strategies

    Directory of Open Access Journals (Sweden)

    Francesco Pelliccia

    2014-01-01

    Full Text Available Acute pulmonary embolism (PE is a common complication in hospitalized patients, spanning multiple patient populations and crossing various therapeutic disciplines. Current treatment paradigm in patients with massive PE mandates prompt risk stratification with aggressive therapeutic strategies. With the advent of endovascular technologies, various catheter-based thrombectomy and thrombolytic devices are available to treat patients with massive or submassive PE. In this paper, a variety of newer treatment strategies for PE are analyzed, with special emphasis on various interventional treatment strategies. Clinical evidence for utilizing endovascular treatment modalities, based on our institutional experience as well as a literature review, is provided.

  9. Newer anticonvulsants: lamotrigine, topiramate and gabapentin.

    Science.gov (United States)

    Holmes, Lewis B; Hernandez-Diaz, Sonia

    2012-08-01

    BACKGROUND The second generation antiepileptic drugs (AEDs), which include lamotrigine, topiramate, and gabapentin, have been introduced during the past 20 years. Because the newer AEDs differ in their pharmacokinetics from the first generation AEDs, it is hoped that the second generation AEDs will be less teratogenic. METHODS The findings in pregnancy cohorts and case-control studies concerning lamotrigine, topiramate and gabapentin-exposed pregnancies have been analyzed. RESULTS The rate of all malformations in lamotrigine monotherapy-exposed pregnancies has been between 2.0 and 5.6%, in comparison to baseline rates of 1.1 to 3.6% in two unexposed comparison groups. Compared to reference populations, a higher risk (0.4%) of isolated oral clefts has been observed in one cohort of 1562 lamotrigine-exposed pregnancies, but the risk was lower (0.1%) in other studies. In topiramate-exposed pregnancies, the rate of all malformations has been 4.2 to 4.9%, with an increase in oral clefts with and without other anomalies. The limited information available now for gabapentin has shown no evidence of teratogenicity. Concerning other developmental effects of these drugs, young children exposed to lamotrigine in utero have shown no deficits in cognitive function. Prenatal exposure to topiramate has been associated with an elevated frequency of small size for gestational age newborns. CONCLUSIONS The information available suggests an increased risk of oral clefts in infants exposed to topiramate, and perhaps lamotrigine, early in pregnancy, and of growth retardation for topiramate-exposed infants. Larger sample sizes are needed to clarify the questions that have been raised.

  10. The increased use of computed tomography angiography and magnetic resonance angiography as the sole imaging modalities prior to infrainguinal bypass has had no effect on outcomes.

    Science.gov (United States)

    Shue, Bing; Damle, Rachelle N; Flahive, Julie; Kalish, Jeffrey A; Stone, David H; Patel, Virendra I; Schanzer, Andres; Baril, Donald T

    2015-08-01

    Angiography remains the gold standard imaging modality before infrainguinal bypass. Computed tomography angiography (CTA) and magnetic resonance angiography (MRA) have emerged as noninvasive alternatives for preoperative imaging. We sought to examine contemporary trends in the utilization of CTA and MRA as isolated imaging modalities before infrainguinal bypass and to compare outcomes following infrainguinal bypass in patients who underwent CTA or MRA versus those who underwent conventional arteriography. Patients undergoing infrainguinal bypass within the Vascular Study Group of New England were identified (2003-2012). Patients were stratified by preoperative imaging modality: CTA/MRA alone or conventional angiography. Trends in utilization of these modalities were examined and demographics of these groups were compared. Primary end points included primary patency, secondary patency, and major adverse limb events (MALE) at 1 year as determined by Kaplan-Meier analysis. Multivariable Cox proportional hazards models were constructed to evaluate the effect of imaging modality on primary patency, secondary patency, and MALE after adjusting for confounders. In 3123 infrainguinal bypasses, CTA/MRA alone was used in 462 cases (15%) and angiography was used in 2661 cases (85%). Use of CTA/MRA alone increased over time, with 52 (11%) bypasses performed between 2003 and 2005, 189 (41%) bypasses performed between 2006 and 2009, and 221 (48%) bypasses performed between 2010 and 2012 (P < 0.001). Patients with CTA/MRA alone, compared with patients with angiography, more frequently underwent bypass for claudication (33% vs. 26%, P = 0.001) or acute limb ischemia (13% vs. 5%, P < 0.0001), more frequently had prosthetic conduits (39% vs. 30%, P = 0.001), and less frequently had tibial/pedal targets (32% vs. 40%, P = 0.002). After adjusting for these and other confounders, multivariable analysis demonstrated that the use of CTA/MRA alone was not associated with a significant

  11. Imaging of Herniated Discs of the Cervical Spine: Inter-Modality Differences between 64-Slice Multidetector CT and 1.5-T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ji Sook; Cha, Jang Gyu [Dept. of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Han, Jong Kyu [Dept. of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan (Korea, Republic of); Kim, Hyun Joo [Dept. of Radiology, Soonchunhyang University Seoul Hospital, Seoul (Korea, Republic of)

    2015-08-15

    To assess inter-modality variability when evaluating cervical intervertebral disc herniation using 64-slice multidetector-row computed tomography (MDCT) and magnetic resonance imaging (MRI). Three musculoskeletal radiologists independently reviewed cervical spine 1.5-T MRI and 64-slice MDCT data on C2-3 though C6-7 of 51 patients in the context of intervertebral disc herniation. Interobserver and inter-modality agreements were expressed as unweighted kappa values. Weighted kappa statistics were used to assess the extents of agreement in terms of the number of involved segments (NIS) in disc herniation and epicenter measurements collected using MDCT and MRI. The interobserver agreement rates upon evaluation of disc morphology by the three radiologists were in fair to moderate agreement (k = 0.39-0.53 for MDCT images; k = 0.45-0.56 for MRIs). When the disc morphology was categorized into two and four grades, the inter-modality agreement rates were moderate (k-value, 0.59) and substantial (k-value, 0.66), respectively. The inter-modality agreements for evaluations of the NIS (k-value, 0.78) and the epicenter (k-value, 0.79) were substantial. Also, the interobserver agreements for the NIS (CT; k-value, 0.85 and MRI; k-value, 0.88) and epicenter (CT; k-value, 0.74 and MRI; k-value, 0.70) evaluations by two readers were substantial. MDCT tended to underestimate the extent of herniated disc lesions compared with MRI. Multidetector-row computed tomography and MRI showed a moderate-to-substantial degree of inter-modality agreement for the assessment of herniated cervical discs. MDCT images have a tendency to underestimate the anterior/posterior extent of the herniated disc compared with MRI.

  12. Terbium-doped gadolinium oxide nanoparticles prepared by laser ablation in liquid for use as a fluorescence and magnetic resonance imaging dual-modal contrast agent.

    Science.gov (United States)

    Chen, Fei; Chen, Min; Yang, Chuan; Liu, Jun; Luo, Ningqi; Yang, Guowei; Chen, Dihu; Li, Li

    2015-01-14

    Dual-modal lanthanide-doped gadolinium nanoparticles (NPs), which exhibit an excellent magnetic resonance imaging (MRI) spatial resolution and high fluorescence imaging (FI) sensitivity, have attracted tremendous attention in biotechnology and nanomedicine applications. In this paper, terbium (Tb) ion doped gadolinium oxide (Gd2O3:Tb) NPs with varied Tb concentrations were synthesized by a laser ablation in liquid (LAL) method. The characterization of the structure, morphology, and composition shows that these NPs are spherical with excellent crystallinity. The effects of Tb ion concentration on the visible green fluorescence and longitudinal relaxivity were investigated, indicating that the fluorescence properties were significantly influenced by the Tb ion concentration, but all samples were still efficient T1-weighted contrast agents. Furthermore, the optimum Tb doping concentration was determined to be 1%. The cell viability, cellular fluorescence imaging and in vivo MRI of this dual-modal nano-probe were studied, with the results revealing that the Gd2O3:Tb NPs did not have a significant cytotoxic effect, making them good candidates for use as a dual-modal contrast agent for MRI and fluorescence imaging.

  13. Imaging modalities in keratoconus

    Science.gov (United States)

    Matalia, Himanshu; Swarup, Rishi

    2013-01-01

    Diagnosis of keratoconus has greatly improved from simple clinical diagnosis with the advent of better diagnostic devices like corneal topographers based on placido disc, elevation based topographers and lately optical coherence tomography (OCT). These instruments are quite sensitive to pick up early keratoconus, which could help refractive surgeons to avoid serious complications like ectasia following keratorefractive surgeries. Each of these instruments has their advantages and disadvantages; in spite of that each one of them has its own place in the clinical practice. Currently, placido disc based topographers are the most commonly used topographers all over the world. There are many different companies making such devices, which follow the different techniques and color for the display. Due to these differences they are not directly comparable to each other. Various quantitative indices based on these topographers have been suggested and validated by different authors to aid in the diagnosis and quantification of keratoconus. OCT with its higher resolution and deeper penetration has created its place in the diagnostic armamentarium for keratoconus. PMID:23925322

  14. Imaging modalities in keratoconus

    Directory of Open Access Journals (Sweden)

    Himanshu Matalia

    2013-01-01

    Full Text Available Diagnosis of keratoconus has greatly improved from simple clinical diagnosis with the advent of better diagnostic devices like corneal topographers based on placido disc, elevation based topographers and lately optical coherence tomography (OCT. These instruments are quite sensitive to pick up early keratoconus, which could help refractive surgeons to avoid serious complications like ectasia following keratorefractive surgeries. Each of these instruments has their advantages and disadvantages; in spite of that each one of them has its own place in the clinical practice. Currently, placido disc based topographers are the most commonly used topographers all over the world. There are many different companies making such devices, which follow the different techniques and color for the display. Due to these differences they are not directly comparable to each other. Various quantitative indices based on these topographers have been suggested and validated by different authors to aid in the diagnosis and quantification of keratoconus. OCT with its higher resolution and deeper penetration has created its place in the diagnostic armamentarium for keratoconus.

  15. Imaging modalities in keratoconus

    National Research Council Canada - National Science Library

    Matalia, Himanshu; Swarup, Rishi

    2013-01-01

    Diagnosis of keratoconus has greatly improved from simple clinical diagnosis with the advent of better diagnostic devices like corneal topographers based on placido disc, elevation based topographers...

  16. Efficacy of I-123/I-131 Metaiodobenzylguanidine Scan as A Single Initial Diagnostic Modality in Pheochromocytoma: Comparison with Biochemical Test and Anatomic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Eun Ha; Lim, Seok Tae; Jeong, Young Jin; Kim, Dong Wook; Jeong, Hwan Jeong; Sohn, Myung Hee [Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of)

    2009-10-15

    We underwent this study to evaluate the diagnostic potential of I-123/I-131 metaiodobenzylguanidine (MIBG) scintigraphy alone in the initial diagnosis of pheochromocytoma, compared with biochemical test and anatomic imaging. Twenty two patients (M:F=13:9, Age: 44.3{+-} 19.3 years) having the clinical evaluation due to suspicious pheochromocytoma received the biochemical test, anatomic imaging modality (CT and/or MRI) and I-123/I-131 MIBG scan for diagnosis of pheochromocytoma, prior to histopathological confirmation. MIBG scans were independently reviewed by 2 nuclear medicine physicians. All patients were confirmed histopathologically by operation or biopsy (incisional or excisonal). In comparison of final diagnosis and findings of each diagnostic modality, the sensitivities of the biochemical test, anatomic imaging, and MIBG scan were 88.9%, 55.6%, and 88.9%, respectively. And the specificities of the biochemical test, anatomic imaging, and MIBG scan also were 69.2%, 69.2%, and 92.3%, respectively. MIBG scan showed one false positive (neuroblastoma) and one false negative finding. There was one patient with positive MIBG scan and negative findings of the biochemical test, anatomic imaging. Our data suggest that I-123/I-131 MIBG scan has higher sensitivity, specificity, positive predictive value, negative predictive value and accuracy than those of biochemical test and anatomic imaging. Thus, we expect that MIBG scan is electively used for initial diagnosis of pheochromocytoma alone as well as biochemical test and anatomic imaging.

  17. Comparative tolerability of the newer fluoroquinolone antibacterials.

    Science.gov (United States)

    Ball, P; Mandell, L; Niki, Y; Tillotson, G

    1999-11-01

    The most common adverse effects of the fluoroquinolones involve the gastrointestinal tract, skin and CNS, and are mainly mild and reversible. Of the gastrointestinal events, nausea and vomiting are the most common. Mild hepatic reactions are a class effect, usually presenting as mild transaminase level increases without clinical symptoms. However, postmarketing surveillance has revealed significant hepatotoxicity with trovafloxacin. It is not currently known whether the severe reactions to trovafloxacin are specific to that agent or simply represent an extreme of an emerging class effect. The enormous worldwide usage of, and extensive published adverse effect data on the other fluoroquinolones and naphthyridones suggests the former. In perspective, rare but serious hepatotoxicity has been reported with other fluoroquinolones and the overall incidence of trovafloxacin hepatotoxicity is not dissimilar to that reported with flucloxacillin and amoxicillin-clavulanic acid. CNS reactions vary in severity and include dizziness, convulsions (notably with lomefloxacin) and psychoses. Fluoroquinolones differ in their pro-convulsive activity, relating to their differing potential as gamma-aminobutyric acid antagonists and binding to the N-methyl-D-aspartate receptor. The basis for the increased seizure potential following the coadministration of nonsteroidal anti-inflammatory drugs with certain fluoroquinolones is not fully understood. Fluoroquinolone phototoxicity, caused by the generation of toxic free oxygen species under exposure to UVA radiation, is significantly more common with 8-halogenated compounds. Certain patient groups, e.g. patients with cystic fibrosis, are predisposed to this adverse effect. Murine photocarcinogenicity has been demonstrated with lomefloxacin, but no such effects have been reported in humans. Prolongation of the QTc interval is also a class effect, although cardiac arrhythmias have only been linked with sparfloxacin. Among the newer

  18. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging.

    Science.gov (United States)

    Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P; Leitgeb, Rainer A; Kittler, Harald; Drexler, Wolfgang

    2016-09-01

    Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo.

  19. Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging

    Science.gov (United States)

    Liu, Mengyang; Chen, Zhe; Zabihian, Behrooz; Sinz, Christoph; Zhang, Edward; Beard, Paul C.; Ginner, Laurin; Hoover, Erich; Minneman, Micheal P.; Leitgeb, Rainer A.; Kittler, Harald; Drexler, Wolfgang

    2016-01-01

    Cutaneous blood flow accounts for approximately 5% of cardiac output in human and plays a key role in a number of a physiological and pathological processes. We show for the first time a multi-modal photoacoustic tomography (PAT), optical coherence tomography (OCT) and OCT angiography system with an articulated probe to extract human cutaneous vasculature in vivo in various skin regions. OCT angiography supplements the microvasculature which PAT alone is unable to provide. Co-registered volumes for vessel network is further embedded in the morphologic image provided by OCT. This multi-modal system is therefore demonstrated as a valuable tool for comprehensive non-invasive human skin vasculature and morphology imaging in vivo. PMID:27699106

  20. Imaging modalities for diagnosis of juvenile idiopathic arthritis%幼年特发性关节炎的影像学检查

    Institute of Scientific and Technical Information of China (English)

    杨洋

    2012-01-01

    Juvenile idiopathic arthritis (JIA) is the most common cause of chronic arthritis in childhood worldwide which having considerable morbidity. Imaging modalities can assist diagnosis, assess the severity and prognosis, monitor progression and treatment response. The value and limit of different imaging modalities for diagnosis and treatment of JIA were reviewed in this article.%幼年特发性关节炎(JIA)是全球范围内儿童最常见的慢性关节炎,致残率高.影像学检查可以辅助诊断,评价疾病的严重程度和预后,监测病情和治疗效果.本文就不同影像学检查方法在JIA诊疗中的价值和局限性等进行综述.

  1. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  2. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Science.gov (United States)

    Pacak, Christina A; Hammer, Peter E; MacKay, Allison A; Dowd, Rory P; Wang, Kai-Roy; Masuzawa, Akihiro; Sill, Bjoern; McCully, James D; Cowan, Douglas B

    2014-01-01

    The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO) nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI) and X-ray micro-computed tomography (μCT). SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  3. Overview of multi-modal imaging technology and its development%多模式成像技术概述以及研究进展

    Institute of Scientific and Technical Information of China (English)

    王鑫; 刘飞; 李明泽; 刘欣; 白净

    2010-01-01

    Over the past several decades, medical imaging technology has developed rapidly and got wide applications. However, there is no one single imaging model suitable for all the clinical applications in the existing imaging technologies, such as X-CT, PET, SPECT, MRI, ultrasound, optical imaging and so on. Each one of them has its advantage and they can complement others, which brings on the development of the multi-modal imaging technology. This review gives introduction of the development of multi-modal imaging technology. Then,developments of systems, details of techniques and clinical applications are introduced in different terms including PET/CT, SPECT/CT, PET/MRI and so on. In the end, issues which should be considered, as well as the prospect of multi-modal imaging technology, are discussed.%在过去的几十年里,医学成像技术得到了迅速的发展以及广泛的应用.但目前存在的成像技术,如X-CT、PET、SPECT、MRI、超声以及光学成像等,没有一种成像方式能适用于所有方面的临床应用.不同成像技术各有所长,互相补充,这为多模式成像技术的发展提供了契机.首先介绍了多模式成像的历史和现状,然后介绍了PET/CT、SPECT/CT以及PET/MRI等系统的发展情况、技术细节以及临床应用,最后讨论了多模式成像过程中需要注意的问题,并展望了多模式成像技术的前景.

  4. MRI versus computed tomography as an imaging modality for postreduction assessment of irreducible hips in developmental dysplasia of the hip: an interobserver and intraobserver reliability study.

    Science.gov (United States)

    Barkatali, Bilal M; Imalingat, Herbert; Childs, James; Baumann, Andreas; Paton, Robin

    2016-11-01

    Following surgical reduction of an irreducible hip in developmental dysplasia of the hip, imaging is required to ascertain successful reduction. Recent studies have compared MRI versus computed tomography (CT) in terms of cost, time, sensitivity and specificity. This is the first study to compare intraobserver and interobserver reliability for both modalities. Nineteen CT scans of 38 hips in 10 patients and nine MRI scans of 18 hips in six patients were reviewed on two separate occasions by three clinicians. Image clarity, confidence of diagnosis, time taken to perform the scan as well as radiation dose for CT were recorded. Intraobserver and interobserver reliability κ values were calculated. There were 14 female patients and one male patient. The mean age at the time of the scan was 12 months (range 3-25 months). Intraobserver reliability was greater than 0.8 (both CT and MRI). Interobserver reliability was greater than 0.8 (both CT and MRI). Image clarity was higher for CT for two out of the three clinicians (9.47 vs. 6.33 P0.05). The mean radiation dose for CT was 91.75 DLP (dose length product, mGy×cm) (95% confidence interval±26.95). Our results show that MRI is equal to CT as an imaging modality in the assessment of postreduction hips in developmental dysplasia of the hip. Intraobserver and interobserver reliability was excellent for both. The image clarity was higher for CT, but this method of imaging carries a significant risk of radiation exposure. We recommend that MRI should supersede CT as an imaging modality for this clinical situation.

  5. Two Phase Non-Rigid Multi-Modal Image Registration Using Weber Local Descriptor-Based Similarity Metrics and Normalized Mutual Information

    Science.gov (United States)

    Yang, Feng; Ding, Mingyue; Zhang, Xuming; Wu, Yi; Hu, Jiani

    2013-01-01

    Non-rigid multi-modal image registration plays an important role in medical image processing and analysis. Existing image registration methods based on similarity metrics such as mutual information (MI) and sum of squared differences (SSD) cannot achieve either high registration accuracy or high registration efficiency. To address this problem, we propose a novel two phase non-rigid multi-modal image registration method by combining Weber local descriptor (WLD) based similarity metrics with the normalized mutual information (NMI) using the diffeomorphic free-form deformation (FFD) model. The first phase aims at recovering the large deformation component using the WLD based non-local SSD (wldNSSD) or weighted structural similarity (wldWSSIM). Based on the output of the former phase, the second phase is focused on getting accurate transformation parameters related to the small deformation using the NMI. Extensive experiments on T1, T2 and PD weighted MR images demonstrate that the proposed wldNSSD-NMI or wldWSSIM-NMI method outperforms the registration methods based on the NMI, the conditional mutual information (CMI), the SSD on entropy images (ESSD) and the ESSD-NMI in terms of registration accuracy and computation efficiency. PMID:23765270

  6. The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    Directory of Open Access Journals (Sweden)

    Wojtek James eGoscinski

    2014-03-01

    Full Text Available The Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE is a national imaging and visualisation facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organisation (CSIRO, and the Victorian Partnership for Advanced Computing (VPAC, with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI, x-ray computer tomography (CT, electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i integrated multiple different neuroimaging analysis software components, (ii enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research.

  7. Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites

    Science.gov (United States)

    Zhang, Hui; Li, Yu-Hao; Chen, Yang; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-01-01

    Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity. PMID:28272454

  8. Fathers in the newer family forms: male or female?

    Science.gov (United States)

    Agbayewa, M O

    1984-08-01

    Current social trends have produced significant changes in the family system, with the emergence of newer family forms -- single parent and homosexual families. The author used the example of a six year old boy in a female homosexual family to discuss the theories of sex role development. The literature on father-absence and the converging roles of father and mother, men and women, were reviewed with suggestions that women may function as fathers in the newer family forms. Longitudinal studies of children in these newer family forms are needed to define the implications of these social changes for personality development theories and mental health care delivery.

  9. Analysis on Modals and Semi-Modals

    Institute of Scientific and Technical Information of China (English)

    陈力

    2014-01-01

    The modal is a type of auxiliary verb that is used to indicate modality. There are thirteen modal auxiliaries including some past tense forms. In this paper, the modals and semi-modals will be studied through analyzing fifteen sample sentences and referring some grammar books. At last, some suggestions for ESL or ESL teacher to teach modals will be provided.

  10. Clinical applications of choroidal imaging technologies

    Directory of Open Access Journals (Sweden)

    Jay Chhablani

    2015-01-01

    Full Text Available Choroid supplies the major blood supply to the eye, especially the outer retinal structures. Its understanding has significantly improved with the advent of advanced imaging modalities such as enhanced depth imaging technique and the newer swept source optical coherence tomography. Recent literature reports the findings of choroidal changes, quantitative as well as qualitative, in various chorioretinal disorders. This review article describes applications of choroidal imaging in the management of common diseases such as age-related macular degeneration, high myopia, central serous chorioretinopathy, chorioretinal inflammatory diseases, and tumors. This article briefly discusses future directions in choroidal imaging including angiography.

  11. Newer Epilepsy Drugs May Be Safer During Pregnancy

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160751.html Newer Epilepsy Drugs May Be Safer During Pregnancy Small British ... 2016 (HealthDay News) -- Women who take the new epilepsy drugs levetiracetam and topiramate during pregnancy don't ...

  12. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    Science.gov (United States)

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  13. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orza, Anamaria; Wu, Hui; Li, Yuancheng; Mao, Hui, E-mail: hmao@emory.edu, E-mail: Xiangyang.Tang@emory.edu [Department of Radiology and Imaging Sciences and Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30322 (United States); Yang, Yi; Tang, Xiangyang, E-mail: hmao@emory.edu, E-mail: Xiangyang.Tang@emory.edu [Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322 (United States); Feng, Ting; Wang, Xueding [Department of Biomedical Engineering, University of Michigan School of Medicine, Ann Arbor, Michigan 48109 (United States); Yang, Lily [Department of Surgery, Emory University School of Medicine, Atlanta, Georgia 30322 (United States)

    2016-01-15

    Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agent and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.

  14. A dual-modal magnetic nanoparticle probe for preoperative and intraoperative mapping of sentinel lymph nodes by magnetic resonance and near infrared fluorescence imaging.

    Science.gov (United States)

    Zhou, Zhengyang; Chen, Hongwei; Lipowska, Malgorzata; Wang, Liya; Yu, Qiqi; Yang, Xiaofeng; Tiwari, Diana; Yang, Lily; Mao, Hui

    2013-07-01

    The ability to reliably detect sentinel lymph nodes for sentinel lymph node biopsy and lymphadenectomy is important in clinical management of patients with metastatic cancers. However, the traditional sentinel lymph node mapping with visible dyes is limited by the penetration depth of light and fast clearance of the dyes. On the other hand, sentinel lymph node mapping with radionucleotide technique has intrinsically low spatial resolution and does not provide anatomic details in the sentinel lymph node mapping procedure. This work reports the development of a dual modality imaging probe with magnetic resonance and near infrared imaging capabilities for sentinel lymph node mapping using magnetic iron oxide nanoparticles (10 nm core size) conjugated with a near infrared molecule with emission at 830 nm. Accumulation of magnetic iron oxide nanoparticles in sentinel lymph nodes leads to strong T2 weighted magnetic resonance imaging contrast that can be potentially used for preoperative localization of sentinel lymph nodes, while conjugated near infrared molecules provide optical imaging tracking of lymph nodes with a high signal to background ratio. The new magnetic nanoparticle based dual imaging probe exhibits a significant longer lymph node retention time. Near infrared signals from nanoparticle conjugated near infrared dyes last up to 60 min in sentinel lymph node compared to that of 25 min for the free near infrared dyes in a mouse model. Furthermore, axillary lymph nodes, in addition to sentinel lymph nodes, can be also visualized with this probe, given its slow clearance and sufficient sensitivity. Therefore, this new dual modality imaging probe with the tissue penetration and sensitive detection of sentinel lymph nodes can be applied for preoperative survey of lymph nodes with magnetic resonance imaging and allows intraoperative sentinel lymph node mapping using near infrared optical devices.

  15. The Role of Vascular Imaging in the Initial Assessment of Patients with Acute Ischemic Stroke.

    Science.gov (United States)

    Qazi, Emmad; Al-Ajlan, Fahad S; Najm, Mohamed; Menon, Bijoy K

    2016-04-01

    Over the last few years, improvement in radiological imaging and treatment has changed the management of acute ischemic stroke. We have made significant advances in not only the imaging modalities themselves but also in identifying imaging parameters that can help us predict patient outcomes with both intravascular thrombolysis and endovascular thrombectomy. In this review, we describe the added utility of baseline vascular imaging including computed tomography angiography and magnetic resonance angiography in the diagnosis and management of patients with acute ischemic stroke. We focus on information these imaging modalities provide on clot characteristics, tissue state, collateral status, and endovascular planning. We also highlight the benefits of newer imaging modalities like dynamic computed tomography angiography (CTA) and multi-phase CTA. Lastly, we also describe some of the disadvantages of vascular imaging in ischemic stroke.

  16. 双模态分子影像探针研究进展%Progress of the Dual-Modality Probes for Molecular Imaging

    Institute of Scientific and Technical Information of China (English)

    黄佳国; 曾文彬; 周明; 高峰

    2011-01-01

    分子影像技术可以在分子水平上实现生物有机体生理和病理变化的在体、实时、动态、无刨的三维成像,融合不同影像的双、多模态技术,可实现不同影像设备的优势互补,同时亦可减少假阳性和假阴性,从而使获取的结果更为精确可靠.双、多模态融合已成为生物医学成像的发展趋势,并逐渐在疾病的治疗、诊断及监测等方面发挥重要作用.本文综述了双模态分子探针的优势和面临的挑战,总结了当前双模态分子探针独特的设计策略及其相关应用研究,并对目前的热点和前景进行了总结和展望.%Molecular imaging enables the visualisation of cellular functions, physiological and pathological changes and the follow-up of molecular process in living organisms with intravital, real-time, non-invansive,dymanic three-dimensional imaging. However, no single modality is sufficient and perfect to obtain all the necessary information. The combination of two or more imaging technologies, which called dual- or multi-modality imaging, can not only offer the benefits of relevant imagine devices complementary with each other, but also decrease false positive and negative rates, which will significantly improve the accuracy and credibility of diagnosis. Hence, Dual- or multi-modality probes open up the new horizon for biomedical imaging and play a critical role in the diagnosis and monitoring of disease as well as the treatment. The purpose of this article is to provide an overview of recent development in the design strategies and application of dual-modality probes. The perspective of future trends in this field and the research frontiers nowadays are also briefly outlined.

  17. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation

    Directory of Open Access Journals (Sweden)

    Danny Eytan

    2016-01-01

    Full Text Available Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory, and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage

  18. Non-invasive imaging modalities for preoperative axillary lymph node staging in patients with breast cancer; Nichtinvasive bildgebende Verfahren zum praeoperativen axillaeren Lymphknotenstaging beim Mammakarzinom

    Energy Technology Data Exchange (ETDEWEB)

    Wasser, K.; Schnitzer, A.; Schoenberg, S.O. [Universitaetsmedizin Mannheim, Institut fuer Klinische Radiologie und Nuklearmedizin, Mannheim (Germany); Brade, J. [Universitaetsmedizin Mannheim, Institut fuer Medizinische Statistik, Mannheim (Germany)

    2010-11-15

    In the last decade sentinel lymph node biopsy has become a well-established method for axillary lymph node staging in patients with breast cancer. Using preoperative imaging modalities it can be tested whether patients are suitable for sentinel node biopsy or if they should directly undergo an axillary dissection. The imaging modalities used must be mainly characterized by a high positive predictive value (PPV). For this question B-mode ultrasound is the best evaluated method and provides clear morphological signs for a high PPV (>90%) but the sensitivity barely exceeds 50%. It has not yet been proven whether other modalities such as duplex sonography, magnetic resonance imaging, computed tomography (CT) or scintigraphy might achieve a higher sensitivity while still maintaining a high PPV. There is only some evidence that positron emission tomography (PET) might achieve a higher sensitivity. This should be confirmed by further studies because PET or PET/CT will play an increasing role for an initial whole body staging in patients with breast cancer in the near future. (orig.) [German] Die Waechterlymphknotenbiopsie hat sich in den letzten 10 Jahren fuer das axillaere Lymphknotenstaging des Mammakarzinoms fest etabliert. Durch praeoperative bildgebende Verfahren kann getestet werden, ob sich Patientinnen fuer eine Waechterlymphknotenbiopsie eignen oder direkt einer axillaeren Dissektion unterzogen werden sollten. Diese bildgebenden Verfahren muessen sich in erster Linie durch einen hohen positiven Vorhersagewert (PVW) auszeichnen. Die B-Bild-Sonographie ist diesbezueglich bisher am besten evaluiert. Sie liefert eindeutige morphologische Kriterien fuer einen hohen PVW (>90%). Die Sensitivitaet liegt dabei allerdings kaum ueber 50%. Bisher ist nicht erwiesen, dass andere Verfahren wie die Duplexsonographie, die MRT, die CT oder Szintigraphie eine bessere Sensitivitaet bei hohem PVW liefern. Lediglich fuer die Positronenemissionstomographie (PET) bestehen Hinweise

  19. Variation modal Retinex image enhancement algorithm based on PCA%基于PCA的可变框架模型Retinex图像增强算法

    Institute of Scientific and Technical Information of China (English)

    冯瑞利; 蔡自兴; 郭璠

    2011-01-01

    针对恶劣天气下拍摄图像的退化现象,提出了一种基于主成分分析(principal component analysis,PCA)的可变框架模型Retinex图像增强算法.PCA变换提供通道间良好的正交性,可避免由于亮度调整带来的色度失真.该算法通过PCA变换得到图像亮度分量、色度分量,对得到的亮度分量使用改进的可变框架模型Retinex进行处理,适当调整色度分量,最后对处理得到的RGB图像进行去相关拉伸.实验结果表明,该方法能有效改善恶劣天气造成的图像退化现象,提高图像的清晰度.%For the degradation of images taken under bad weather, this paper proposed a variation modal Retinex image enhancement algorithm based on PCA. PCA transformation provided orthogonality between channels and avoided producing incorrect colors despite the modification of luminance. Firstly, it utilized the PCA transformation to get the luminance component and the chrominance components. Secondly, processed the luminance component with improved variation modal Retinex image enhancement algorithm, and adjusted the chrominance components appropriately. Finally, processed the RGB image with decorrelation stretch. Experimental results show that the method can effectively ameliorate the image degradation taken under bad weather and improve image clarity.

  20. India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy.

    Science.gov (United States)

    Jian, Jia; Liu, Chengbo; Gong, Yuping; Su, Lei; Zhang, Bin; Wang, Zhigang; Wang, Dong; Zhou, Yu; Xu, Fenfen; Li, Pan; Zheng, Yuanyi; Song, Liang; Zhou, Xiyuan

    2014-01-01

    The in vivo applications of gas-core microbubbles have been limited by gas diffusion, rapid body clearance, and poor vascular permeability. To overcome these limitations, using a modified three-step emulsion process, we have developed a first-of-its-kind India ink incorporated optically-triggerable phase-transition perfluorocarbon nanodroplets (INDs) that can provide not only three types of contrast mechanisms-conventional/thermoelastic photoacoustic, phase-transition/nonlinear photoacoustic, and ultrasound imaging contrasts, but also a new avenue for photoacoustic effect mediated tumor therapy. Upon pulsed laser illumination above a relatively low energy threshold, liquid-gas phase transition of the INDs has been demonstrated both in vitro and in vivo, offering excellent contrasts for photoacoustic and ultrasound dual-modality imaging. With further increased laser energy, the nanodroplets have been shown to be capable of destructing cancer cells in vivo, presumably due to the photoacoustic effect induced shock-wave generation from the carbon particles of the incorporated India ink. The demonstrated results suggest that the developed multifunctional phase-transition nanodroplets have a great potential for many theranostic biomedical applications, including photoacoustic/ultrasound dual-modality molecular imaging and targeted, localized cancer therapy.

  1. Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer

    Science.gov (United States)

    Pan, Yuanwei; Zhang, Ling'e.; Zeng, Leyong; Ren, Wenzhi; Xiao, Xueshan; Zhang, Jichao; Zhang, Lili; Li, Aiguo; Lu, Guangming; Wu, Aiguo

    2015-12-01

    Multidrug resistance (MDR) of cancers is still a major challenge, and it is very important to develop visualized nanoprobes for the diagnosis and treatment of drug resistant cancers. In this work, we developed a multifunctional delivery system based on DOX-encapsulated NaYF4:Yb/Er@NaGdF4 yolk-shell nanostructures for simultaneous dual-modal imaging and enhanced chemotherapy in drug resistant breast cancer. Using the large pore volume of the nanostructure, the delivery system had a high loading efficiency and excellent stability. Also, an in vitro and in vivo toxicity study showed the good biocompatibility of the as-prepared yolk-shell nanomaterials. Moreover, by nanocarrier delivery, the uptake of DOX could be greatly increased in drug resistant MCF-7/ADR cells. Compared with free DOX, the as-prepared delivery system enhanced the chemotherapy efficacy against MCF-7/ADR cells, indicating the excellent capability for overcoming MDR. Furthermore, core-shell NaYF4:Yb/Er@NaGdF4 improved the upconversion luminescence (UCL) performance, and the designed delivery system could also be applied for simultaneous UCL and magnetic resonance (MR) imaging, which could be a good candidate as a dual-modal imaging nanoprobe. Therefore, we developed a multifunctional yolk-shell delivery system, which could have potential applications as a visualized theranostic nanoprobe to overcome MDR in breast cancer.

  2. Comparing perceived auditory width to the visual image of a performing ensemble in contrasting bi-modal environments.

    Science.gov (United States)

    Valente, Daniel L; Braasch, Jonas; Myrbeck, Shane A

    2012-01-01

    Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene.

  3. PSMA-Targeted Nano-Conjugates as Dual-Modality (MRI/PET) Imaging Probes for the Non-Invasive Detection of Prostate Cancer

    Science.gov (United States)

    2009-10-01

    mM PBS, 0.1M MES, goat serum, methanol (99.9%), DMSO(99.9%)) at room temperature (Fig. 2). The nanotag solutions were monitored by UV-Vis, DLS, and...in metabolic cages (4 mice per cage) to collect urine and feces at 24 h, 48 h, and 72 h p.i. For the evaluation of pharmacokinetic (PK) parameters...targeted PET/MRI dual modality imaging probes was impeded by the availability of arsenic -74, we were able to take a different route to develop multi

  4. Multi-Modality Phantom Development

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Jennifer S.; Peng, Qiyu; Moses, William W.

    2009-03-20

    Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe both our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.

  5. Multifunctional BaYbF5: Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging.

    Science.gov (United States)

    Li, Xiaolong; Yi, Zhigao; Xue, Zhenluan; Zeng, Songjun; Liu, Hongrong

    2017-06-01

    Development of high-quality upconversion nanoparticles (UCNPs) with combination of the merits of multiple molecular imaging techniques, such as, upconversion luminescence (UCL) imaging, X-ray computed tomography (CT), and magnetic resonance (MR) imaging, could significantly improve the accuracy of biological diagnosis. In this work, multifunctional BaYbF5: Gd/Er (50:2mol%) UCNPs were synthesized via a solvothermal method using oleic acid (OA) as surface ligands (denoted as OA-UCNPs). The OA-UCNPs were further treated by diluted HCl to form ligand-free UCNPs (LF-UCNPs) for later bioimaging applications. The cytotoxicity assay in HeLa cells shows low cell toxicity of these LF-UCNPs. Owing to the efficient UCL of BaYbF5: Gd/Er, the LF-UCNPs were successfully used as luminescent bioprobe in UCL bioimaging. And, X-ray CT imaging reveals that BaYbF5: Gd/Er UCNPs can act as potential contrast agents for detection of the liver and spleen in the live mice owing to the high-Z elements (e.g., Ba, Yb, and Gd) in host matrix. Moreover, with the addition of Gd, the as-designed UCNPs exhibit additional positive contrast enhancement in T1-weighted MR imaging. These findings demonstrate that BaYbF5: Gd/Er UCNPs are potential candidates for tri-modal imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison of the Ability of Various Imaging Modalities (CT & Plain X- Ray in Detecting Drug Transport in Body Packers

    Directory of Open Access Journals (Sweden)

    Morteza Sanei

    2009-01-01

    Full Text Available "ndrugs within the human body. In our country due to vast common border with Afghanistan which is the biggest Opium producer in the world and has the second place in Heroine production, drug smuggling has potential national threat and besides it has a global impact as using our territory as the major smuggling route to the west. Furthermore, in recent years new generations of African smugglers of new types of drugs are using our country as a transit route to transport drugs to Europe or Africa. In this way handmade or automatically produced packets are swallowed, rectally or vaginally inserted, and then transported. The first choice modality is plain x-ray of the abdomen in upright and supine positions. Recently abdominal and pelvic CT without contrast has shown a great success rate in the detection of body packers with changing window modality to detect different types of drugs. "nMaterials and Methods: Plain x-ray and abdominal and pelvic CT without contrast were performed for 12 cases who confessed to drug packet ingestion. The presence, number and location of the packets were evaluated in different modalities and the density of the packets were also measured in Hounsfield units (HU. "nResults: The mean age of our cases was 28.2±5.9 years (range, 17-35 years. Eleven (91.6 % patients were male and only one case was female. All patients had characteristic findings in plain x-ray and also all packets were visualized in all patients "nConclusion: Plain x-ray has a distinctive position in detecting packets in intestines especially when oral contrast materials are used. It is cheaper and more accessible than CT, but using different Hounsfield units in CT windows can even characterize different types of drugs even before extracting them.  

  7. Modal Indicators for Operational Modal Identification

    DEFF Research Database (Denmark)

    Zhang, L.; Brincker, Rune; Andersen, P.

    2001-01-01

    Modal validation is of paramount importance for all two-stage time domain modal identification algorithms. However, due to a higher noise/signal ratio in operational/ambient modal analysis, being able to determine the right model order and to distinguish between structural modes and computational...... modes become more significant than in traditional modal analysis. The two major modal indicators, i.e. Modal Confidence Factor (MCF) and Modal Amplitude Coherence (MAmC) are extended to two-stage time domain modal identification algorithms, together with a newly developed indicator, named as Modal...... Participation Indicator (MPI). The application of the three indicators is illustrated on different cases of operational/ambient modal identification. Three major time domain modal identification algorithms are used the Polyreference Complex Exponential (PRCE), Extended Ibrahim Time Domain (EITD), Eigensystem...

  8. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography

    Science.gov (United States)

    Liu, Yubin; Wang, Yating

    2016-01-01

    We developed a homemade dual-modality imaging system that combines multispectral photoacoustic computed tomography and ultrasound computed tomography for reconstructing the structural and functional information of human finger joint systems. The fused multispectral photoacoustic-ultrasound computed tomography (MPAUCT) system was examined by the phantom and in vivo experimental tests. The imaging results indicate that the hard tissues such as the bones and the soft tissues including the blood vessels, the tendon, the skins, and the subcutaneous tissues in the finger joints systems can be effectively recovered by using our multimodality MPAUCT system. The developed MPAUCT system is able to provide us with more comprehensive information of the human finger joints, which shows its potential for characterization and diagnosis of bone or joint diseases. PMID:27774453

  9. Dual-Modality Imaging of the Human Finger Joint Systems by Using Combined Multispectral Photoacoustic Computed Tomography and Ultrasound Computed Tomography

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2016-01-01

    Full Text Available We developed a homemade dual-modality imaging system that combines multispectral photoacoustic computed tomography and ultrasound computed tomography for reconstructing the structural and functional information of human finger joint systems. The fused multispectral photoacoustic-ultrasound computed tomography (MPAUCT system was examined by the phantom and in vivo experimental tests. The imaging results indicate that the hard tissues such as the bones and the soft tissues including the blood vessels, the tendon, the skins, and the subcutaneous tissues in the finger joints systems can be effectively recovered by using our multimodality MPAUCT system. The developed MPAUCT system is able to provide us with more comprehensive information of the human finger joints, which shows its potential for characterization and diagnosis of bone or joint diseases.

  10. Cone-beam CT-based delineation of stereotactic lung targets: the influence of image modality and target size on interobserver variability.

    Science.gov (United States)

    Altorjai, Gabriela; Fotina, Irina; Lütgendorf-Caucig, Carola; Stock, Markus; Pötter, Richard; Georg, Dietmar; Dieckmann, Karin

    2012-02-01

    It is generally agreed that the safe implementation of stereotactic body radiotherapy requires image guidance. The aim of this work was to assess interobserver variability in the delineation of lung lesions on cone-beam CT (CBCT) images compared with CT-based contouring for adaptive stereotactic body radiotherapy. The influence of target size was also evaluated. Eight radiation oncologists delineated gross tumor volumes in 12 patient cases (non-small cell lung cancer I-II or solitary metastasis) on planning CTs and on CBCTs. Cases were divided into two groups with tumor diameters of less than (Group A) or more than 2 cm (Group B). Comparison of mean volumes delineated by all observers and range and coefficient of variation were reported for each case and image modality. Interobserver variability was assessed by means of standard error of measurement, conformity index (CI), and its generalized observer-independent approach. The variance between single observers on CT and CBCT images was measured via interobserver reliability coefficient. Interobserver variability on CT images was 17% with 0.79 reliability, compared with 21% variability on CBCT and 0.76 reliability. On both image modalities, values of the intraobserver reliability coefficient (0.99 for CT and 0.97 for CBCT) indicated high reproducibility of results. In general, lower interobserver agreement was observed for small lesions (CI(genA) = 0.62 ± 0.06 vs. CI(genB) = 0.70 ± 0.03, p < 0.05). The analysis of single patient cases revealed that presence of spicules, diffuse infiltrations, proximity of the tumors to the vessels and thoracic wall, and respiration motion artifacts presented the main sources of the variability. Interobserver variability for Stage I-II non-small cell lung cancer and lung metastasis was slightly higher on CBCT compared with CT. Absence of significant differences in interobserver variability suggests that CBCT imaging provides an effective tool for tumor localization, and image

  11. In Vivo Magnetic Resonance and Fluorescence Dual-Modality Imaging of Tumor Angiogenesis in Rats Using GEBP11 Peptide Targeted Magnetic Nanoparticles.

    Science.gov (United States)

    Su, Tao; Wang, Yabin; Wang, Jiinda; Han, Dong; Ma, Sai; Cao, Jianbo; Li, Xiujuan; Zhang, Ran; Qiao, Hongyu; Liang, Jimin; Liu, Gang; Yang, Bo; Liang, Shuhui; Nie, Yongzhan; Wu, Kaichun; Li, Jiayi; Cao, Feng

    2016-05-01

    Angiogenesis is an essential process for tumor progression. Tumor vasculature-targeting peptides have shown great potential for use in cancer imaging and therapy. Our previous studies have shown that GEBP11, a novel vasculature-specific binding peptide that exhibits high affinity and specificity to tumor angiogenesis, is a promising candidate for the diagnosis and targeted radiotherapy of gastric cancer. In the present study, we developed a novel magnetic resonance and fluorescence (MR/Fluo) dual-modality imaging probe by covalently coupling 2,3-dimercaptosuccinnic acid-coated paramagnetic nanoparticles (DMSA-MNPs) and Cy5.5 to the GEBP11 peptide. The probe Cy5.5-GEBP11-DMSA-MNPs (CGD-MNPs), with a hydrodynamic diameter of 82.8 ± 6.5 nm, exhibited good imaging properties, high stability and little cytotoxicity. In vivo MR/Fluo imaging revealed that CGD-MNPs were successfully applied to visualize tumor angiogenesis in SGC-7901 xenograft mouse models. Prussian blue and CD31 immunohistochemical staining confirmed that CGD-MNPs co-localized with tumor blood vessels. In conclusion, CGD-MNPs are promising candidates for use as MR and fluorescence imaging probes for visualizing gastric cancer angiogenesis in vivo.

  12. Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer.

    Science.gov (United States)

    Adams, S; Baum, R P; Stuckensen, T; Bitter, K; Hör, G

    1998-09-01

    The aims of this study were to investigate the detection of cervical lymph node metastases of head and neck cancer by positron emission tomographic (PET) imaging with fluorine-18 fluorodeoxyglucose (FDG) and to perform a prospective comparison with computed tomography (CT), magnetic resonance imaging (MRI), sonographic and histopathological findings. Sixty patients with histologically proven squamous cell carcinoma were studied by PET imaging before surgery. Preoperative endoscopy (including biopsy), CT, MRI and sonography of the cervical region were performed in all patients within 2 weeks preceding 18F-FDG whole-body PET. FDG PET images were analysed visually and quantitatively for objective assessment of regional tracer uptake. Histopathology of the resected neck specimens revealed a total of 1284 lymph nodes, 117 of which showed metastatic involvement. Based on histopathological findings, FDG PET correctly identified lymph node metastases with a sensitivity of 90% and a specificity of 94% (Pcontrolled study confirms FDG PET as the procedure with the highest sensitivity and specificity for detecting lymph node metastases of head and neck cancer and has become a routine method in our University Medical Center. Furthermore, the optimal diagnostic modality may be a fusion image showing the increased metabolism of the tumour and the anatomical localization.

  13. Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo.

    Science.gov (United States)

    Liu, Chunyan; Gao, Zhenyu; Zeng, Jianfeng; Hou, Yi; Fang, Fang; Li, Yilin; Qiao, Ruirui; Shen, Lin; Lei, Hao; Yang, Wensheng; Gao, Mingyuan

    2013-08-27

    Detection of early malignant tumors remains clinically difficult; developing ultrasensitive imaging agents is therefore highly demanded. Owing to the unusual magnetic and optical properties associated with f-electrons, rare-earth elements are very suitable for creating functional materials potentially useful for tumor imaging. Nanometer-sized particles offer such a platform with which versatile unique properties of the rare-earth elements can be integrated. Yet the development of rare-earth nanoparticle-based tumor probes suitable for imaging tiny tumors in vivo remains difficult, which challenges not only the physical properties of the nanoparticles but also the rationality of the probe design. Here we report new approaches for size control synthesis of magnetic/upconversion fluorescent NaGdF4:Yb,Er nanocrystals and their applications for imaging tiny tumors in vivo. By independently varying F(-):Ln(3+) and Na(+):Ln(3+) ratios, the size and shape regulation mechanisms were investigated. By replacing the oleic acid ligand with PEG2000 bearing a maleimide group at one end and two phosphate groups at the other end, PEGylated NaGdF4:Yb,Er nanoparticles with optimized size and upconversion fluorescence were obtained. Accordingly, a dual-modality molecular tumor probe was prepared, as a proof of concept, by covalently attaching antitumor antibody to PEGylated NaGdF4:Yb,Er nanoparticles through a "click" reaction. Systematic investigations on tumor detections, through magnetic resonance imaging and upconversion fluorescence imaging, were carried out to image intraperitoneal tumors and subcutaneous tumors in vivo. Owing to the excellent properties of the molecular probes, tumors smaller than 2 mm was successfully imaged in vivo. In addition, pharmacokinetic studies on differently sized particles were performed to disclose the particle size dependent biodistributions and elimination pathways.

  14. Does comorbidity explain trends in prescribing of newer antihypertensive agents?

    NARCIS (Netherlands)

    Greving, JP; Denig, P; van der Veen, WJ; Beltman, FW; Sturkenboom, MCJM; de Zeeuw, D; Haaijer-Ruskamp, FM

    2004-01-01

    Objective Concerns exist about heavily prescribing of new drugs when the evidence on hard outcomes is still limited. This has been the case for the newer classes of anti hypertensives, especially in hypertensive patients without additional comorbidity. The association between comorbidity and trends

  15. Newer Researchers in Higher Education: Policy Actors or Policy Subjects?

    Science.gov (United States)

    Ashwin, Paul; Deem, Rosemary; McAlpine, Lynn

    2016-01-01

    In this article, we explore the extent to which 42 newer researchers, in the academic sub-field of higher education, were aware of, responded to and negotiated their careers in relation to higher education policies. Participants, who were mainly from European countries, tended to divide into two similarly sized groups: one that engaged with and…

  16. Folic acid-conjugated GdPO4:Tb3+@SiO2 Nanoprobe for folate receptor-targeted optical and magnetic resonance bi-modal imaging

    Science.gov (United States)

    Xu, Xianzhu; Zhang, Xiaoying; Wu, Yanli

    2016-11-01

    Both fluorescent and magnetic nanoprobes have great potential applications for diagnostics and therapy. In the present work, a folic acid-conjugated and silica-modified GdPO4:Tb3+ (GdPO4:Tb3+@SiO2-FA) dual nanoprobe was strategically designed and synthesized for the targeted dual-modality optical and magnetic resonance (MR) imaging via a facile aqueous method. Their structural, optical, and magnetic properties were determined using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible spectra (UV-Vis), photoluminescence (PL), and superconducting quantum interference device (SQUID). These results indicated that GdPO4:Tb3+@SiO2-FA were uniform monodisperse core-shell structured nanorods (NRs) with an average length of 200 nm and an average width of 25 nm. The paramagnetic property of the synthesized GdPO4:Tb3+@SiO2-FA NRs was confirmed with its linear hysteresis plot (M-H). In addition, the NRs displayed an obvious T1-weighted effect and thus it could potentially serve as a T1-positive contrast agent. The NRs emitted green lights due to the 5D4 → 7F5 transition of the Tb3+. The in vitro assays with NCI-H460 lung cancer cells and human embryonic kidney cell line 293T cells indicated that the GdPO4:Tb3+@SiO2-FA nanoprobe could specifically bind the cells bearing folate receptors (FR). The MTT assay of the NRs revealed that its cytotoxicity was very low. Further in vivo MRI experiments distinctively depict enhanced anatomical features in a xenograft tumor. These results suggest that the GdPO4:Tb3+@SiO2-FA NPs have excellent imaging and cell-targeting abilities for the folate receptor-targeted dual-modality optical and MR imaging and can be potentially used as the nanoprobe for bioimaging.

  17. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Busca, P., E-mail: busca@elet.polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Fiorini, C., E-mail: carlo.fiorini@polimi.it [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Butt, A.D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P. [Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 20133 Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano (Italy); Nemeth, G.; Major, P. [Mediso Medical Imaging Systems, Alsotorokvesz 14, H-1022 Budapest (Hungary); Erlandsson, K. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Hutton, B.F. [University College London, Gower Street, WC1E 6BT London (United Kingdom); Centre for Medical Radiation Physics, University of Wollongong, NSW 2522 (Australia)

    2014-01-11

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity. -- Highlights: • We introduce INSERT, a new multi-modality SPECT/MRI instrument. • We propose two possible photodetectors (SDD, SiPM) for the scintillators readout. • We show possible results for INSERT, based on simulations.

  18. Open framework for management and processing of multi-modality and multidimensional imaging data for analysis and modelling muscular function

    Science.gov (United States)

    García Juan, David; Delattre, Bénédicte M. A.; Trombella, Sara; Lynch, Sean; Becker, Matthias; Choi, Hon Fai; Ratib, Osman

    2014-03-01

    Musculoskeletal disorders (MSD) are becoming a big healthcare economical burden in developed countries with aging population. Classical methods like biopsy or EMG used in clinical practice for muscle assessment are invasive and not accurately sufficient for measurement of impairments of muscular performance. Non-invasive imaging techniques can nowadays provide effective alternatives for static and dynamic assessment of muscle function. In this paper we present work aimed toward the development of a generic data structure for handling n-dimensional metabolic and anatomical data acquired from hybrid PET/MR scanners. Special static and dynamic protocols were developed for assessment of physical and functional images of individual muscles of the lower limb. In an initial stage of the project a manual segmentation of selected muscles was performed on high-resolution 3D static images and subsequently interpolated to full dynamic set of contours from selected 2D dynamic images across different levels of the leg. This results in a full set of 4D data of lower limb muscles at rest and during exercise. These data can further be extended to a 5D data by adding metabolic data obtained from PET images. Our data structure and corresponding image processing extension allows for better evaluation of large volumes of multidimensional imaging data that are acquired and processed to generate dynamic models of the moving lower limb and its muscular function.

  19. Magnetic and fluorescent Gd2O3:Yb(3+)/Ln(3+) nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy.

    Science.gov (United States)

    Liu, Jun; Huang, Long; Tian, Xiumei; Chen, Xiaoming; Shao, Yuanzhi; Xie, Fukang; Chen, Dihu; Li, Li

    The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-modal imaging and photodynamic therapy (PDT). In vitro and in vivo MRI studies show that these products can serve as good MRI contrast agents. The bright upconversion luminescence of the products allows their use as fluorescence nanoprobes for live cells imaging. We also utilized the luminescence-emission capability of the UCNs for the activation of a photosensitizer to achieve significant PDT results. To the best of our knowledge, this study is the first use of lanthanide-doped Gd2O3 UCNs in a theranostics application. This investigation provides a useful platform for the development of Gd2O3-based UCNs for clinical diagnosis, treatment, and imaging-guided therapy of cancer.

  20. Magnetic and fluorescent Gd2O3:Yb3+/Ln3+ nanoparticles for simultaneous upconversion luminescence/MR dual modal imaging and NIR-induced photodynamic therapy

    Science.gov (United States)

    Liu, Jun; Huang, Long; Tian, Xiumei; Chen, Xiaoming; Shao, Yuanzhi; Xie, Fukang; Chen, Dihu; Li, Li

    2017-01-01

    The development of upconversion nanoparticles (UCNs) for theranostics application is a new strategy toward the accurate diagnosis and efficient treatment of cancer. Here, magnetic and fluorescent lanthanide-doped gadolinium oxide (Gd2O3) UCNs with bright upconversion luminescence (UCL) and high longitudinal relaxivity (r1) are used for simultaneous magnetic resonance imaging (MRI)/UCL dual-modal imaging and photodynamic therapy (PDT). In vitro and in vivo MRI studies show that these products can serve as good MRI contrast agents. The bright upconversion luminescence of the products allows their use as fluorescence nanoprobes for live cells imaging. We also utilized the luminescence-emission capability of the UCNs for the activation of a photosensitizer to achieve significant PDT results. To the best of our knowledge, this study is the first use of lanthanide-doped Gd2O3 UCNs in a theranostics application. This investigation provides a useful platform for the development of Gd2O3-based UCNs for clinical diagnosis, treatment, and imaging-guided therapy of cancer. PMID:28031709

  1. Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing`s sarcoma: review of current imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Woude, H.-J. van der; Bloem, J.L. [Department of Radiology, Leiden University Medical Centre, C2-S, P.O. Box 9600, NL-2300 RC Leiden (Netherlands); Hogendoorn, P.C.W. [Department of Pathology, Leiden University Medical Centre, Leiden (Netherlands)

    1998-02-01

    Diagnostic imaging is pivotal in the initial detection, characterization, staging and post-treatment follow-up of patients with high-grade osteogenic and Ewing`s sarcoma. In the present review article, conventional and new imaging modalities are discussed with regard to the monitoring of the effect of neoadjuvant chemotherapy in such patients. Presurgical monitoring of response to chemotherapy may have an impact on modification of neoadjuvant treatment protocols, on patient selection for the performance and timing of limb-salvage surgery and on planning of radiation therapy (in non-operated Ewing`s sarcomas) and selection of postoperative chemotherapy regimens. Dynamic contrast-enhanced MR imaging, as part of a routine MR protocol, assists in the detection of the most viable parts of the tumour and serves as an initial standard for follow-up of the metabolic activity of the tumour during and after chemotherapy, both in small intraosseous tumours and in tumours with an associated soft tissue mass. In combination with selected morphological features, dynamic imaging parameters are therefore advocated for monitoring the effect of neoadjuvant chemotherapy in patients with osteogenic and Ewing`s sarcoma. (orig.) With 9 figs., 2 tabs., 62 refs.

  2. Rapamycin/DiR loaded lipid-polyaniline nanoparticles for dual-modal imaging guided enhanced photothermal and antiangiogenic combination therapy.

    Science.gov (United States)

    Wang, Jinping; Guo, Fang; Yu, Meng; Liu, Li; Tan, Fengping; Yan, Ran; Li, Nan

    2016-09-10

    Imaging-guided photothermal therapy (PTT) has promising application for treating tumors. Nevertheless, so far imaging-guided photothermal drug-delivery systems have been developed with limited success for tumor chemo-photothermal therapy. In this study, as the proof-of-concept, a stimuli-responsive tumor-targeting rapamycin/DiR loaded lipid-polyaniline nanoparticle (RDLPNP) for dual-modal imaging-guided enhanced PTT efficacy is reported for the first time. In this system, polyaniline (PANI) with π-π electronic conjugated system and effective photothermal efficiency is chosen as the appropriate model receptor of fluorescence resonance energy transfer (FRET), and loaded cyanine probe (e.g., 1,1-dioctadecyl-3,3,3,3-tetramethylindotricarbocyanine iodide, DiR) acts as the donor of near-infrared fluorescence (NIRF). In addition, rapamycin (RAPA), which is used as the antiangiogenesis chemotherapeutic drug, can cutdown the tumor vessels and delay tumor growth obviously. After intravenous treatment of RDLPNPs into Hela tumor bearing mice, fluorescent (from DiR) and enhanced photoacoustic (from DLPNPs) signals were found in tumor site over time, which reached to peak at the 6h time point. After irradiating with an NIR laser, a good anti-tumor effect was observed owing to the enhanced photothermal and antiangiogenic effect of RDLPNPs. These results show that the multifunctional nanoparticle can be used as a promising imaging-guided photothermal drug delivery nanoplatform for cancer therapy.

  3. Development of a multi-scale and multi-modality imaging system to characterize tumours and their microenvironment in vivo

    Science.gov (United States)

    Rouffiac, Valérie; Ser-Leroux, Karine; Dugon, Emilie; Leguerney, Ingrid; Polrot, Mélanie; Robin, Sandra; Salomé-Desnoulez, Sophie; Ginefri, Jean-Christophe; Sebrié, Catherine; Laplace-Builhé, Corinne

    2015-03-01

    In vivo high-resolution imaging of tumor development is possible through dorsal skinfold chamber implantable on mice model. However, current intravital imaging systems are weakly tolerated along time by mice and do not allow multimodality imaging. Our project aims to develop a new chamber for: 1- long-term micro/macroscopic visualization of tumor (vascular and cellular compartments) and tissue microenvironment; and 2- multimodality imaging (photonic, MRI and sonography). Our new experimental device was patented in March 2014 and was primarily assessed on 75 mouse engrafted with 4T1-Luc tumor cell line, and validated in confocal and multiphoton imaging after staining the mice vasculature using Dextran 155KDa-TRITC or Dextran 2000kDa-FITC. Simultaneously, a universal stage was designed for optimal removal of respiratory and cardiac artifacts during microscopy assays. Experimental results from optical, ultrasound (Bmode and pulse subtraction mode) and MRI imaging (anatomic sequences) showed that our patented design, unlike commercial devices, improves longitudinal monitoring over several weeks (35 days on average against 12 for the commercial chamber) and allows for a better characterization of the early and late tissue alterations due to tumour development. We also demonstrated the compatibility for multimodality imaging and the increase of mice survival was by a factor of 2.9, with our new skinfold chamber. Current developments include: 1- defining new procedures for multi-labelling of cells and tissue (screening of fluorescent molecules and imaging protocols); 2- developing ultrasound and MRI imaging procedures with specific probes; 3- correlating optical/ultrasound/MRI data for a complete mapping of tumour development and microenvironment.

  4. Spectral and lifetime fluorescence imaging microscopies: new modalities of multiphoton microscopy applied to tissue or cell engineering.

    Science.gov (United States)

    Dumas, D; Gaborit, N; Grossin, L; Riquelme, B; Gigant-Huselstein, C; De Isla, N; Gillet, P; Netter, P; Stoltz, J F

    2004-01-01

    Spectral and multiphoton imaging is the preferred approach for non-invasive study allowing deeper penetration to image molecular processes in living cells. But currently available fluorescence microscopic techniques based on fluorescence intensity, such as confocal or multiphoton excitation, cannot provide detailed quantitative information about the dynamic of complex cellular structure (molecular interaction). Due to the variation of the probe concentration, photostability, cross-talking, its effects cannot be distinguished in simple intensity images. Therefore, Time Resolved fluorescence image is required to investigate molecular interactions in biological systems. Fluorescence lifetimes are generally absolute, sensitive to environment, independent of the concentration of the probe and allow the use of probes with overlapping spectra but that not have the same fluorescence lifetime. In this work, we present the possibilities that are opened up by Fluorescence Lifetime Imaging Microscopy, firstly to collect images based on fluorescence lifetime contrast of GFP variants used as a reporter of gene expression in chondrocytes and secondly, to measure molecular proximity in erythrocyte (glycophorin/membrane) by Fluorescence Resonance Energy Transfer (FLIM-FRET).

  5. MR imaging in assessing of the esophageal cancer; MR versus other diagnostic modalities; Diagnostyka raka przelyku - MR a inne techniki diagnostyczne

    Energy Technology Data Exchange (ETDEWEB)

    Salamon, Z.; Perczynski, W.; Kolodziejczyk, J. [Zaklad Diagnostyki Obrazowej, Centrum Medyczne Ksztalcenia Podyplomowego, Oddzial Chirurgii, Centralny Szpital Kliniczny, Warsaw-Miedzylesie (Poland)

    1996-12-31

    The authors present different diagnostic modalities used in staging of esophageal cancer: esophageoscopy, double contrast X-ray examination, computed tomography (CT) and endoluminal ultrasound (EUS). We compare diagnostic efficiency of MR imaging with methods mentioned above. EUS is the method of choice in T1 and T2 tumors but it becomes useless in case of esophageal stricture. CT and MR are very useful specially in T3 and T4 tumors with assessing the tumor`s extend and adjacent organs invasion. MR is superior than CT specially in assessing the vessel`s invasion. Both the MR and CT are limited in assessing the lymph nodes involvement. Because of time consuming and cost effectiveness MR should not be used in detecting the distal metastases. (author) 16 refs, 7 figs, 4 tabs

  6. Plant Polyphenol-Assisted Green Synthesis of Hollow CoPt Alloy Nanoparticles for Dual-Modality Imaging Guided Photothermal Therapy.

    Science.gov (United States)

    Song, Xiao-Rong; Yu, Shu-Xian; Jin, Gui-Xiao; Wang, Xiaoyong; Chen, Jianzhong; Li, Juan; Liu, Gang; Yang, Huang-Hao

    2016-03-01

    Theranostic nanomedicines that integrate diagnostic and therapeutic moieties into a single nanoscale platform are playing an increasingly important role in fighting cancer. Here, a facile and green synthetic strategy for hollow CoPt alloy nanoparticles (HCPA-NPs) using plant polyphenols as assisted agents is reported for the first time. This novel strategy enables size-controlled synthesis of HCPA-NPs through the control of the molecular sizes of polyphenols. It is also a versatile strategy for synthesizing other hollow alloy nanoparticles with various metal compositions due to the diverse metal-chelating ability of the polyphenols. Further studies show that HCPA-NPs have good biocompatibility and can be successfully implemented for magnetic resonance and photoacoustic dual-modal imaging guided photothermal therapy. This work brings new insights for the green synthesis of hollow nanoparticles and extends these biocompatible nanoparticles for theranostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Canonical Correlation Analysis for Feature-Based Fusion of Biomedical Imaging Modalities and Its Application to Detection of Associative Networks in Schizophrenia.

    Science.gov (United States)

    Correa, Nicolle M; Li, Yi-Ou; Adalı, Tülay; Calhoun, Vince D

    2008-12-01

    Typically data acquired through imaging techniques such as functional magnetic resonance imaging (fMRI), structural MRI (sMRI), and electroencephalography (EEG) are analyzed separately. However, fusing information from such complementary modalities promises to provide additional insight into connectivity across brain networks and changes due to disease. We propose a data fusion scheme at the feature level using canonical correlation analysis (CCA) to determine inter-subject covariations across modalities. As we show both with simulation results and application to real data, multimodal CCA (mCCA) proves to be a flexible and powerful method for discovering associations among various data types. We demonstrate the versatility of the method with application to two datasets, an fMRI and EEG, and an fMRI and sMRI dataset, both collected from patients diagnosed with schizophrenia and healthy controls. CCA results for fMRI and EEG data collected for an auditory oddball task reveal associations of the temporal and motor areas with the N2 and P3 peaks. For the application to fMRI and sMRI data collected for an auditory sensorimotor task, CCA results show an interesting joint relationship between fMRI and gray matter, with patients with schizophrenia showing more functional activity in motor areas and less activity in temporal areas associated with less gray matter as compared to healthy controls. Additionally, we compare our scheme with an independent component analysis based fusion method, joint-ICA that has proven useful for such a study and note that the two methods provide complementary perspectives on data fusion.

  8. Multi-modal magnetic resonance imaging and histology of vascular function in xenografts using macromolecular contrast agent hyperbranched polyglycerol (HPG-GdF).

    Science.gov (United States)

    Baker, Jennifer H E; McPhee, Kelly C; Moosvi, Firas; Saatchi, Katayoun; Häfeli, Urs O; Minchinton, Andrew I; Reinsberg, Stefan A

    2016-01-01

    Macromolecular gadolinium (Gd)-based contrast agents are in development as blood pool markers for MRI. HPG-GdF is a 583 kDa hyperbranched polyglycerol doubly tagged with Gd and Alexa 647 nm dye, making it both MR and histologically visible. In this study we examined the location of HPG-GdF in whole-tumor xenograft sections matched to in vivo DCE-MR images of both HPG-GdF and Gadovist. Despite its large size, we have shown that HPG-GdF extravasates from some tumor vessels and accumulates over time, but does not distribute beyond a few cell diameters from vessels. Fractional plasma volume (fPV) and apparent permeability-surface area product (aPS) parameters were derived from the MR concentration-time curves of HPG-GdF. Non-viable necrotic tumor tissue was excluded from the analysis by applying a novel bolus arrival time (BAT) algorithm to all voxels. aPS derived from HPG-GdF was the only MR parameter to identify a difference in vascular function between HCT116 and HT29 colorectal tumors. This study is the first to relate low and high molecular weight contrast agents with matched whole-tumor histological sections. These detailed comparisons identified tumor regions that appear distinct from each other using the HPG-GdF biomarkers related to perfusion and vessel leakiness, while Gadovist-imaged parameter measures in the same regions were unable to detect variation in vascular function. We have established HPG-GdF as a biocompatible multi-modal high molecular weight contrast agent with application for examining vascular function in both MR and histological modalities. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Wavelength-Modulated Differential Photoacoustic (WM-DPA) imaging: a high dynamic range modality towards noninvasive diagnosis of cancer

    Science.gov (United States)

    Dovlo, Edem; Lashkari, Bahman; Choi, Sung soo Sean; Mandelis, Andreas

    2016-03-01

    This study explores wavelength-modulated differential photo-acoustic (WM-DPA) imaging for non-invasive early cancer detection via sensitive characterization of functional information such as hemoglobin oxygenation (sO2) levels. Well-known benchmarks of tumor formation such as angiogenesis and hypoxia can be addressed this way. While most conventional photo-acoustic imaging has almost entirely employed high-power pulsed lasers, frequency-domain photo-acoustic radar (FD-PAR) has seen significant development as an alternative technique. It employs a continuous wave laser source intensity-modulated and driven by frequency-swept waveforms. WM-DPA imaging utilizes chirp modulated laser beams at two distinct wavelengths for which absorption differences between oxy- and deoxygenated hemoglobin are minimum (isosbestic point, 805 nm) and maximum (680 nm) to simultaneously generate two signals detected using a standard commercial array transducer as well as a single-element transducer that scans the sample. Signal processing is performed using Lab View and Matlab software developed in-house. Minute changes in total hemoglobin concentration (tHb) and oxygenation levels are detectable using this method since background absorption is suppressed due to the out-of-phase modulation of the laser sources while the difference between the two signals is amplified, thus allowing pre-malignant tumors to become identifiable. By regulating the signal amplitude ratio and phase shift the system can be tuned to applications like cancer screening, sO2 quantification and hypoxia monitoring in stroke patients. Experimental results presented demonstrate WM-DPA imaging of sheep blood phantoms in comparison to single-wavelength FD-PAR imaging. Future work includes the functional PA imaging of small animals in vivo.

  10. Automatic generation of boundary conditions using Demons non-rigid image registration for use in 3D modality-independent elastography

    Science.gov (United States)

    Pheiffer, Thomas S.; Ou, Jao J.; Miga, Michael I.

    2010-02-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm, and are often determined by time-consuming point correspondence methods requiring manual user input. Unfortunately, generation of accurate boundary conditions for the biomechanical model is often difficult due to the challenge of accurately matching points between the source and target surfaces and consequently necessitates the use of large numbers of fiducial markers. This study presents a novel method of automatically generating boundary conditions by non-rigidly registering two image sets with a Demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray computed tomography image data with known boundary conditions. These preliminary results have produced boundary conditions with accuracy of up to 80% compared to the known conditions. Finally, these boundary conditions were utilized within a 3D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.

  11. Multi-modality evaluation of the abnormalities of the aortic arches in children: techniques and imaging spectrum with emphasis on MRI

    Energy Technology Data Exchange (ETDEWEB)

    Oddone, Mauro; Granata, Claudio; Toma, Paolo [Giannina Gaslini Hospital for Sick Children, Department of Radiology, Genoa (Italy); Vercellino, Nadia; Bava, Erica [Giannina Gaslini Hospital for Sick Children, Department of Cardiovascular Surgery, Genoa (Italy)

    2005-10-01

    The failure of embryonic vascular arches to fuse and regress in the usual manner during the formation of the aortic arch, pulmonary arteries and ductus arteriosus can cause a wide spectrum of vascular congenital abnormalities of the aortic arch and its branches. These abnormal vascular structures may cause variable compression of the trachea and/or oesophagus with symptoms ranging from none to severe stridor, dyspnoea, dysphagia and cyanosis. Diagnosis and possible treatment of affected patients require multiple imaging modalities. In the majority of cases, the underlying malformation can be detected by chest radiography and barium oesophagography, visualizing the location of the aortic arch and the presence of anomalous compressions of the trachea and/or oesophagus. However, in most cases the exact configuration of the vascular abnormality cannot be fully defined with conventional radiology alone. MRI is fundamental for evaluation of the thoracic vessels. Not only is it non-invasive, but it can also provide large-field-of-view images in any number of planes with three-dimensional reconstruction, adding valuable information about exact vascular configuration, tracheobronchial compression and brachiocephalic vessel branching. The aim of this review is to describe the imaging findings in children affected with special emphasis on MRI. (orig.)

  12. Simulation of the expected performance of INSERT: A new multi-modality SPECT/MRI system for preclinical and clinical imaging

    Science.gov (United States)

    Busca, P.; Fiorini, C.; Butt, A. D.; Occhipinti, M.; Peloso, R.; Quaglia, R.; Schembari, F.; Trigilio, P.; Nemeth, G.; Major, P.; Erlandsson, K.; Hutton, B. F.

    2014-01-01

    A new multi-modality imaging tool is under development in the framework of the INSERT (INtegrated SPECT/MRI for Enhanced Stratification in Radio-chemo Therapy) project, supported by the European Community. The final goal is to develop a custom SPECT apparatus, that can be used as an insert for commercially available MRI systems such as 3 T MRI with 59 cm bore diameter. INSERT is expected to offer more effective and earlier diagnosis with potentially better outcome in survival for the treatment of brain tumors, primarily glioma. Two SPECT prototypes will be developed, one dedicated to preclinical imaging, the second one dedicated to clinical imaging. The basic building block of the SPECT detector ring is a small 5 cm×5 cm gamma camera, based on the well-established Anger architecture with a continuous scintillator readout by an array of silicon photodetectors. Silicon Drift Detectors (SDDs) and Silicon PhotoMultipliers (SiPM) are being considered as possible scintillator readout, considering that the detector choice plays a predominant role for the final performance of the system, such as energy and spatial resolution, as well as the useful field of view of the camera. Both solutions are therefore under study to evaluate their performances in terms of field of view (FOV), spatial and energy resolution. Preliminary simulations for both the preclinical and clinical systems have been carried out to evaluate resolution and sensitivity.

  13. Synthesis of tumor-targeted folate conjugated fluorescent magnetic albumin nanoparticles for enhanced intracellular dual-modal imaging into human brain tumor cells.

    Science.gov (United States)

    Wang, Xueqin; Tu, Miaomiao; Tian, Baoming; Yi, Yanjie; Wei, ZhenZhen; Wei, Fang

    2016-11-01

    Superparamagnetic iron oxide nanoparticles (SPIO NPs), utilized as carriers are attractive materials widely applied in biomedical fields, but target-specific SPIO NPs with lower toxicity and excellent biocompatibility are still lacking for intracellular visualization in human brain tumor diagnosis and therapy. Herein, bovine serum albumin (BSA) coated superparamagnetic iron oxide, i.e. γ-Fe2O3 nanoparticles (BSA-SPIO NPs), are synthesized. Tumor-specific ligand folic acid (FA) is then conjugated onto BSA-SPIO NPs to fabricate tumor-targeted NPs, FA-BSA-SPIO NPs as a contrast agent for MRI imaging. The FA-BSA-SPIO NPs are also labeled with fluorescein isothiocyanate (FITC) for intracellular visualization after cellular uptake and internalization by glioma U251 cells. The biological effects of the FA-BSA-SPIO NPs are investigated in human brain tumor U251 cells in detail. These results show that the prepared FA-BSA-SPIO NPs display undetectable cytotoxicity, excellent biocompatibility, and potent cellular uptake. Moreover, the study shows that the made FA-BSA-SPIO NPs are effectively internalized for MRI imaging and intracellular visualization after FITC labeling in the targeted U251 cells. Therefore, the present study demonstrates that the fabricated FITC-FA-BSA-SPIO NPs hold promising perspectives by providing a dual-modal imaging as non-toxic and target-specific vehicles in human brain tumor treatment in future.

  14. The role of red blood cell scintigraphy in the multiple-modality imaging diagnosis of a rare case of diffuse hepatic hemangiomatosis in an adult

    Directory of Open Access Journals (Sweden)

    Ernesto Cason

    2013-03-01

    Full Text Available Introduction: Angiomas are one of the most common primary tumors of the liver. Diffuse hepatic angiomatosis, however, is quite rare and usually observed in pediatric patients. We report a rare case of diffuse hepatic hemangiomatosis in a 33-year-old woman. Case report: The patient presented with abdominal pain and a palpable upper abdominal mass. Abdominal CT and magnetic resonance imaging (MRI findings suggested diffuse hepatic hemangiomatosis, but this finding was not confirmed by subsequent contrast-enhanced abdominal ultrasonography (US. The patient then underwent single photon emission computed tomography (SPECT/CT scintigraphy with Tc-99m-labeling of red blood cells (RBC. This examination revealed increased uptake of labeled erythrocytes in several of the hepatic lesions corresponding to CT and RM findings, thereby confirming the clinical hypothesis of diffuse hepatic hemangiomatosis. Discussion: RBC scintigraphy with SPECT/CT can facilitate the comparison of other crosssectional imaging methods such as CT and MRI. This case highlights the importance of a multiple-modality approach in the imaging diagnosis of this condition.

  15. The risk assessment of Gd2O3:Yb3+/Er3+ nanocomposites as dual-modal nanoprobes for magnetic and fluorescence imaging

    Science.gov (United States)

    Huang, Long; Tian, Xiumei; Liu, Jun; Zheng, Cunjing; Xie, Fukang; Li, Li

    2017-02-01

    Our group has synthesized Gd2O3:Yb3+/Er3+ nanocomposites as magnetic/fluorescence imaging successfully in the previous study, which exhibit good uniformity and monodispersibility with a mean size of 7.4 nm. However, their systematic risk assessment remains unknown. In this article, the in vitro biocompatibility of the Gd2O3:Yb3+/Er3+ was assessed on the basis of cell viability and apoptosis. In vivo immunotoxicity was evaluated by monitoring the product of reactive oxygen species (ROS), clusters of differentiation (CD) markers, and superoxide dismutase (SOD) in Balb/c mice. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd2O3:Yb3+/Er3+ and gadodiamide which are used commonly in clinical. Few nanoprobes were localized in the phagosomes of the liver, heart, lung, spleen, kidney, brain, and tumor under the transmission electron microscopy (TEM) images. In addition, our products reveal good T1-weighted contrast enhancement of xenografted murine tumor. Therefore, the above results may contribute to the effective application of Gd2O3:Yb3+/Er3+ as molecular imaging contrast agents and dual-modal nanoprobes for cancer detection.

  16. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    Directory of Open Access Journals (Sweden)

    Hengkai Guo

    Full Text Available Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US and magnetic resonance (MR. Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  17. Newer endovascular tools: a review of experimental and clinical aspects.

    Science.gov (United States)

    Sorenson, Thomas; Brinjikji, Waleed; Lanzino, Giuseppe

    2016-03-01

    The history of treatment of intracranial aneurysms dates back to the late 18th century. These early physicians largely based their crude techniques around "wire insertion alone, galvanopuncture (electrothrombosis), and fili-galvanopuncture (wire insertion together with electrothrombosis)," albeit with overwhelmingly unfavorable outcomes. By the end of the 20th century, treatment options progressed to include two highly effective, and safe, procedures: surgical clipping and endovascular coiling. These methods have been found to be effective treatments for a large portion of aneurysms, but there still exists a subset of patients that do not respond well to these therapies. While much progress has been made in stent-assisted coiling including the development of newer stents aimed at keep the coil ball from protruding into the parent vessel, the introduction of flow diverters has characterized a new phase in the endovascular treatment of intracranial aneurysms. This treatment paradigm is rapidly becoming the treatment of choice for large and complex aneurysms internal carotid artery. Intrasaccular flow diverters such as the Woven EndoBridge device (WEB) and Luna device are showing promise in the treatment of wide neck bifurcation aneurysms. Other newer devices including the pCONus Bifurcating Aneurysm Implant and Endovascular Clip Systems (eCLIPs) are showing promise in small clinical and preclinical studies. As technology improves, newer devices with ingenious designs are constantly being introduced into the clinical arena. Most of these devices try to address the limitations of traditional endovascular methods in regard to providing a safe and effective treatment of wide-necked bifurcation aneurysms. Several large prospective studies are underway and once completed, the role of these newer devices will be better defined. It is easy to anticipate that with advances in 3D techniques and printing, a future in which customized devices are designed based on the individual

  18. Newer calcium channel antagonists and the treatment of hypertension.

    Science.gov (United States)

    Cummins, D F

    1999-07-01

    Calcium channel antagonists have become popular medications for the management of hypertension. These agents belong to the diphenylalkylamine, benzothiazepine, dihydropyridine, or tetralol chemical classes. Although the medications share a common pharmacological mechanism in reducing peripheral vascular resistance, clinical differences between the sub-classes can be linked to structural profiles. This heterogeneity is manifested by differences in vascular selectivity, effects on cardiac conduction and adverse events. The lack of differentiation between calcium channel antagonists in clinical trials has contributed to uncertainty associated with their impact on morbidity and mortality. Data from more recent studies in specific patient populations underscores the importance of investigating these antihypertensives as individual agents. A proposed therapeutic classification system suggests that newer agents should share the slow onset and long-acting antihypertensive effect of amlodipine. Additionally, a favourable trough-to-peak ratio has been recommended as an objective measurement of efficacy. The newer drugs, barnidipine and lacidipine, have a therapeutic profile similar to amlodipine, but trough-to-peak ratios are not substantially greater than the recommended minimum of 0.50. Aranidipine, cilnidipine and efonidipine have unique pharmacological properties that distinguish them from traditional dihydropyridines. Although clinical significance is unconfirmed, these newer options may be beneficial for patients with co-morbid conditions that preclude use of older antagonists.

  19. MMX-I: A data-processing software for multi-modal X-ray imaging and tomography

    Science.gov (United States)

    Bergamaschi, A.; Medjoubi, K.; Messaoudi, C.; Marco, S.; Somogyi, A.

    2017-06-01

    Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, including X-ray fluorescence, absorption, phase and dark-field contrasts, providing structural and chemical details of the samples. Combining these scanning techniques with the infrastructure developed for fast data acquisition at Synchrotron Soleil permits to perform multimodal imaging and tomography during routine user experiments at the Nanoscopium beamline. A main challenge of such imaging techniques is the online processing and analysis of the generated very large volume (several hundreds of Giga Bytes) multimodal data-sets. This is especially important for the wide user community foreseen at the user oriented Nanoscopium beamline (e.g. from the fields of Biology, Life Sciences, Geology, Geobiology), having no experience in such data-handling. MMX-I is a new multi-platform open-source freeware for the processing and reconstruction of scanning multi-technique X-ray imaging and tomographic datasets. The MMX-I project aims to offer, both expert users and beginners, the possibility of processing and analysing raw data, either on-site or off-site. Therefore we have developed a multi-platform (Mac, Windows and Linux 64bit) data processing tool, which is easy to install, comprehensive, intuitive, extendable and user-friendly. MMX-I is now routinely used by the Nanoscopium user community and has demonstrated its performance in treating big data.

  20. NSAID enteropathy: appearance at CT and MR enterography in the age of multi-modality imaging and treatment.

    Science.gov (United States)

    Frye, Judson M; Hansel, Stephanie L; Dolan, Steven G; Fidler, Jeff L; Song, Louis M Wong Kee; Barlow, John M; Smyrk, Tom C; Flicek, Kristina T; Hara, Amy K; Bruining, David H; Fletcher, Joel G

    2015-06-01

    CT and MR enterography and capsule endoscopy are increasingly used as routine diagnostic tests for patients with potential small bowel disorders and obscure gastrointestinal bleeding. Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used drugs that disrupt prostaglandin synthesis and result in a variety of localized complications within the small bowel ranging from ulcer formation to characteristic circumferential strictures, or diaphragms. NSAID enteropathy encompasses this spectrum of acute and chronic inflammatory sequelae, and is associated with typical findings at capsule endoscopy and surgery. Herein we review the typical clinical presentation of NSAID enteropathy, in addition to its endoscopic appearances, focusing on imaging findings at cross-sectional enterography. Multiple, short-segment strictures are the hallmarks of imaging diagnosis. Strictures may have minimal hyperenhancement or wall thickening, but these findings are typically symmetric and circumferential with respect to the bowel lumen. Multifocal Crohn's strictures, and occasionally radiation-induced strictures or adhesions, will mimic NSAID diaphragms. Multi-phase or multi-sequence imaging at CT and MR enterography increase diagnostic confidence in stricture presence. Strategies for subsequent workup and therapy after enterography are also discussed. Given the frequent use of NSAIDs and typical appearance of these strictures, knowledge of characteristic imaging findings can be particularly useful when evaluating patients with anemia and recurrent small bowel obstruction.

  1. Synovial and inflammatory diseases in childhood: role of new imaging modalities in the assessment of patients with juvenile idiopathic arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Damasio, Maria Beatrice [G. Gaslini Institute, Department of Diagnostic Imaging, Genoa (Italy); Malattia, Clara [G. Gaslini Institute, Department of Pediatrics 2, Genoa (Italy); Martini, Alberto [University of Genova, Department of Pediatrics, Genoa (Italy); Toma, Paolo [Bambin Gesu Pediatric Hospital, Rome (Italy)

    2010-06-15

    Juvenile idiopathic arthritis (JIA) represents a group of heterogeneous diseases characterized by a chronic inflammatory process primarily targeting the synovial membrane. A persistent synovitis is associated with an increased risk of osteocartilaginous damage. With the advent of effective structure-modifying treatment for JIA, it may be possible to significantly reduce or even completely prevent structural damage and associated functional disability. The trend towards early suppression of inflammation, in order to prevent erosive disease, shifts the emphasis away from conventional radiographic detectable structural damage to the slightest traces of early joint damage, and drives the need for alternative imaging techniques more sensitive in detecting early signs of disease activity and damage. In this regard MRI and US are playing an increasing role in the evaluation of arthritic joints. This article will review the key aspects of the current status and recent important advances of imaging techniques available to investigate the child with rheumatic disease, briefly discussing conventional radiography, and particularly focusing on MRI and US. In this era of advancing imaging technology, knowledge of the relative values of available imaging techniques is necessary to optimize the management of children with JIA. (orig.)

  2. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL Micelles with Fluorescence and Magnetic Resonance (MR Dual Imaging Modalities and Drug Delivery Performance

    Directory of Open Access Journals (Sweden)

    Sidan Tian

    2016-06-01

    Full Text Available The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers. Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA, was synthesized via consecutive atom transfer radical polymerization (ATRP, where OEGMA, DPA, and GMA are oligo(ethylene glycolmethyl ether methacrylate, 2-(diisopropylaminoethyl methacrylate, and glycidyl methacrylate, respectively. The resulting diblock copolymer was further functionalized with DOTA(Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid or benzaldehyde moieties via copper(I-catalyzed alkyne-azide cycloaddition (CuAAC chemistry, resulting in the formation of DOTA(Gd-POEGMA-b-P(DPA-co-GMA and benzaldehyde-POEGMA-b-P(DPA-co-GMA copolymers. The resultant block copolymers co-assembled into mixed micelles at neutral pH in the presence of tetrakis[4-(2-mercaptoethoxyphenyl]ethylene (TPE-4SH, which underwent spontaneous crosslinking reactions with GMA residues embedded within the micellar cores, simultaneously switching on TPE fluorescence due to the restriction of intramolecular rotation. Moreover, camptothecin (CPT was encapsulated into the crosslinked cores at neutral pH, and tumor-targeting pH low insertion peptide (pHLIP, sequence: AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG moieties were attached to the coronas through the Schiff base chemistry, yielding a theranostic nanovector with fluorescence and MR dual imaging modalities and tumor-targeting capability. The nanovectors can be efficiently taken up by A549 cells, as monitored by TPE fluorescence. After internalization, intracellular acidic pH triggered the release of loaded CPT, killing cancer cells in a selective manner. On the other hand, the nanovectors labeled with DOTA

  3. Experimental modal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ibsen, Lars Bo; Liingaard, M.

    2006-12-15

    This technical report concerns the basic theory and principles for experimental modal analysis. The sections within the report are: Output-only modal analysis software, general digital analysis, basics of structural dynamics and modal analysis and system identification. (au)

  4. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  5. Multifunctional polypyrrole@fe3o4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy

    KAUST Repository

    Tian, Qiwei

    2013-11-27

    Magnetic Fe3O4 crystals are produced in situ on preformed polypyrrole (PPY) nanoparticles by rationally converting the residual Fe species in the synthetic system. The obtained PPY@Fe3O4 composite nanoparticles exhibit good photostability and biocompatibility, and they can be used as multifunctional probes for MRI, thermal imaging, and photothermal ablation of cancer cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging.

    Science.gov (United States)

    Park, Yong Il; Lee, Kang Taek; Suh, Yung Doug; Hyeon, Taeghwan

    2015-03-21

    Lanthanide-doped upconverting nanoparticles (UCNPs) have recently attracted enormous attention in the field of biological imaging owing to their unique optical properties: (1) efficient upconversion photoluminescence, which is intense enough to be detected at the single-particle level with a (nonscanning) wide-field microscope setup equipped with a continuous wave (CW) near-infrared (NIR) laser (980 nm), and (2) resistance to photoblinking and photobleaching. Moreover, the use of NIR excitation minimizes adverse photoinduced effects such as cellular photodamage and the autofluorescence background. Finally, the cytotoxicity of UCNPs is much lower than that of other nanoparticle systems. All these advantages can be exploited simultaneously without any conflicts, which enables the establishment of a novel UCNP-based platform for wide-field two-photon microscopy. UCNPs are also useful for multimodal in vivo imaging because simple variations in the composition of the lattice atoms and dopant ions integrated into the particles can be easily implemented, yielding various distinct biomedical activities relevant to magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET). These multiple functions embedded in a single type of UCNPs play a crucial role in precise disease diagnosis. The application of UCNPs is extended to therapeutic fields such as photodynamic and photothermal cancer therapies through advanced surface conjugation schemes.

  7. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    Energy Technology Data Exchange (ETDEWEB)

    Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.; Li, H.; Siddiqui, M. S.; Chetty, I. J. [Department of Radiation Oncology, Henry Ford Health System, 2799 West Brand Boulevard, Detroit, Michigan 48202 (United States); Scheib, S. G.; Schmelzer, P. [Varian Medical System, Täfernstrasse 7, Dättwil AG 5405 (Switzerland)

    2016-05-15

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2 mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.

  8. Integration of multi-modality imaging for accurate 3D reconstruction of human coronary arteries in vivo

    Science.gov (United States)

    Giannoglou, George D.; Chatzizisis, Yiannis S.; Sianos, George; Tsikaderis, Dimitrios; Matakos, Antonis; Koutkias, Vassilios; Diamantopoulos, Panagiotis; Maglaveras, Nicos; Parcharidis, George E.; Louridas, George E.

    2006-12-01

    In conventional intravascular ultrasound (IVUS)-based three-dimensional (3D) reconstruction of human coronary arteries, IVUS images are arranged linearly generating a straight vessel volume. However, with this approach real vessel curvature is neglected. To overcome this limitation an imaging method was developed based on integration of IVUS and biplane coronary angiography (BCA). In 17 coronary arteries from nine patients, IVUS and BCA were performed. From each angiographic projection, a single end-diastolic frame was selected and in each frame the IVUS catheter was interactively detected for the extraction of 3D catheter path. Ultrasound data was obtained with a sheath-based catheter and recorded on S-VHS videotape. S-VHS data was digitized and lumen and media-adventitia contours were semi-automatically detected in end-diastolic IVUS images. Each pair of contours was aligned perpendicularly to the catheter path and rotated in space by implementing an algorithm based on Frenet-Serret rules. Lumen and media-adventitia contours were interpolated through generation of intermediate contours creating a real 3D lumen and vessel volume, respectively. The absolute orientation of the reconstructed lumen was determined by back-projecting it onto both angiographic planes and comparing the projected lumen with the actual angiographic lumen. In conclusion, our method is capable of performing rapid and accurate 3D reconstruction of human coronary arteries in vivo. This technique can be utilized for reliable plaque morphometric, geometrical and hemodynamic analyses.

  9. Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging.

    Science.gov (United States)

    Wu, Yongquan; Sun, Yun; Zhu, Xingjun; Liu, Qian; Cao, Tianye; Peng, Juanjuan; Yang, Yang; Feng, Wei; Li, Fuyou

    2014-05-01

    Applications of lanthanide-based nanoparticles for bioimaging have attracted increasing attention. Herein, small size PEG-EuOF:(153)Sm nanocrystals (∼5 nm) (PEG = poly(ethylene glycol)bis(carboxymethyl)ether) combined with the radioactive and X-ray absorption properties were synthesized. The distribution of the PEG-EuOF nanocrystals in living animals was studied by ex vivo radioassay, inductively coupled plasma-atomic emission spectrum (ICP-AES) analysis and in vivo SPECT imaging, which indicated that the small size PEG-EuOF:(153)Sm had long blood retention time (blood half-life (t1/2) reach to 4.65 h) and were eliminated significantly through biliary/gastrointestinal pathway in vivo. Meanwhile, benefiting from the high attenuation ability of Eu, the small size PEG-EuOF was successfully applied for lymph node CT imaging, extending the bio-applications of these small nanocrystals. The results of cytotoxicity and in vivo toxicity also showed that the PEG-EuOF nanocrystals have relatively low toxicity, which suggest their safety for in vivo imaging. The studies provide preliminary validation for the use of PEG-EuOF nanocrystals for in vivo bioimaging applications.

  10. Mixing of multi-modal images for conformational radiotherapy: application to patient re positioning; Fusion d`images multi-modales pour la radiotherapie conformationnelle: application au repositionnement du patient

    Energy Technology Data Exchange (ETDEWEB)

    Vassal, P

    1998-06-29

    This study shows a procedure of patient re positioning by comparative evaluation between the position of the patient and the theoretical expected position of the patient; the stagger between the two information gives the error of installation in translation and rotation. A correction is calculated and applied to the treatment environment (position and orientation of the patient, position and orientation of the irradiation source). The control system allows to determine the precise position of the tumor volume. The echography allows to determine the position of an organ.The surface captor is used to localize the tumors of the face or of the brain, with the respect to the face, the acquisition and the treatment of information take only few minutes. The X rays imager is applied for the localization of bones structures. (N.C.)

  11. Three-dimensional imaging of the uterus:The value of the coronal plane

    Institute of Scientific and Technical Information of China (English)

    Lufee Wong; Nikki White; Jayshree Ramkrishna; Edward Araujo Júnior; Simon Meagher; Fabricio Da Silva Costa

    2015-01-01

    Advent in three-dimensional(3D) imaging technology has seen 3D ultrasound establish itself as a useful adjunct complementary to traditional two-dimensional imaging of the female pelvis. This advantage largely arises from its ability to reconstruct the coronal plane of the uterus, which allows further delineation of many gynecological disorders. 3D imaging of the uterus is now the preferred imaging modality for assessing congenital uterine anomalies and intrauterine device localization. Newer indications include the diagnosis of adenomyosis. It can also add invaluable information to delineate other endometrial and myometrial pathology such as fibroids and endometrial polyps.

  12. Clinical usefulness of breast-specific gamma imaging as an adjunct modality to mammography for diagnosis of breast cancer: a systemic review and meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yu.; Wei, Wei; Yang, Hua-Wei; Liu, Jian-Lun [Affiliated Cancer Hospital of Guangxi Medical University, Department of Breast Surgery of Guangxi Cancer Hospital, Nanning, Guangxi (China)

    2013-03-15

    The purpose of this study was to assess the diagnostic performance of breast-specific gamma imaging (BSGI) as an adjunct modality to mammography for detecting breast cancer. Comprehensive searches of MEDLINE (1984 to August 2012) and EMBASE (1994 to August 2012) were performed. A summary receiver operating characteristic curve (SROC) was constructed to summarize the overall test performance of BSGI. The sensitivities for detecting subcentimetre cancer and ductal carcinoma in situ (DCIS) were pooled. The potential of BSGI to complement mammography was also evaluated by identifying mammography-occult breast cancer. Analysis of the studies revealed that the overall validity estimates of BSGI in detecting breast cancer were as follows: sensitivity 95 % (95 % CI 93-96 %), specificity 80 % (95 % CI 78-82 %), positive likelihood ratio 4.63 (95 % CI 3.13-6.85), negative likelihood ratio 0.08 (95 % CI 0.05-0.14), and diagnostic odds ratio 56.67 (95 % CI 26.68-120.34). The area under the SROC was 0.9552 and the Q* point was 0.8977. The pooled sensitivities for detecting subcentimetre cancer and DCIS were 84 % (95 % CI 80-88 %) and 88 % (95 % CI 81-92 %), respectively. Among patients with normal mammography, 4 % were diagnosed with breast cancer by BSGI, and among those with mammography suggestive of malignancy or new biopsy-proven breast cancer, 6 % were diagnosed with additional cancers in the breast by BSGI. BSGI had a high diagnostic performance as an excellent adjunct modality to mammography for detecting breast cancer. The ability to identify subcentimetre cancer and DCIS was also high. (orig.)

  13. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    Science.gov (United States)

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  14. Aluminium hydroxide stabilised MnFe2O4 and Fe3O4 nanoparticles as dual-modality contrasts agent for MRI and PET imaging.

    Science.gov (United States)

    Cui, Xianjin; Belo, Salome; Krüger, Dirk; Yan, Yong; de Rosales, Rafael T M; Jauregui-Osoro, Maite; Ye, Haitao; Su, Shi; Mathe, Domokos; Kovács, Noémi; Horváth, Ildikó; Semjeni, Mariann; Sunassee, Kavitha; Szigeti, Krisztian; Green, Mark A; Blower, Philip J

    2014-07-01

    Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [(18)F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for (18)F-fluoride and 100% for (64)Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of (18)F from NPs, but no sign of efflux of (64)Cu.

  15. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging.

    Science.gov (United States)

    Lai, Pei-Yu; Huang, Chih-Ching; Chou, Tzung-Han; Ou, Keng-Liang; Chang, Jia-Yaw

    2017-03-01

    Here, we present the microwave-assisted synthesis of In2S3/ZnS core/shell quantum dots (QDs) co-doped with Ag(+) and Mn(2+) (referred to as AgMn:In2S3/ZnS). Ag(+) altered the optical properties of the host QDs, whereas the spin magnetic moment (S=5/2) of Mn(2+) efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In2S3/ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s(-1)mM(-1)), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In2S3/ZnS conjugated to hyaluronic acid (referred to as AgMn:In2S3/ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In2S3/ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications.

  16. Designing and testing the coronagraphic Modal Wavefront Sensor: a fast non-common path error sensor for high-contrast imaging

    Science.gov (United States)

    Wilby, M. J.; Keller, C. U.; Haffert, S.; Korkiakoski, V.; Snik, F.; Pietrow, A. G. M.

    2016-07-01

    Non-Common Path Errors (NCPEs) are the dominant factor limiting the performance of current astronomical high-contrast imaging instruments. If uncorrected, the resulting quasi-static speckle noise floor limits coronagraph performance to a raw contrast of typically 10-4, a value which does not improve with increasing integration time. The coronagraphic Modal Wavefront Sensor (cMWS) is a hybrid phase optic which uses holographic PSF copies to supply focal-plane wavefront sensing information directly from the science camera, whilst maintaining a bias-free coronagraphic PSF. This concept has already been successfully implemented on-sky at the William Herschel Telescope (WHT), La Palma, demonstrating both real-time wavefront sensing capability and successful extraction of slowly varying wavefront errors under a dominant and rapidly changing atmospheric speckle foreground. In this work we present an overview of the development of the cMWS and recent first light results obtained using the Leiden EXoplanet Instrument (LEXI), a high-contrast imager and high-dispersion spectrograph pathfinder instrument for the WHT.

  17. Ten-year technical and clinical outcomes in TransAtlantic Inter-Society Consensus II infrainguinal C/D lesions using duplex ultrasound arterial mapping as the sole imaging modality for critical lower limb ischemia.

    LENUS (Irish Health Repository)

    Sultan, Sherif

    2013-04-01

    The aim of this study was to evaluate duplex ultrasound arterial mapping (DUAM) as the sole imaging modality when planning for bypass surgery (BS) and endovascular revascularization (EvR) in patients with critical limb ischemia for TransAtlantic Inter-Society Consensus (TASC) II C\\/D infrainguinal lesions.

  18. Chitosan-Gated Magnetic-Responsive Nanocarrier for Dual-Modal Optical Imaging, Switchable Drug Release, and Synergistic Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Mu, Qingxin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Revia, Richard [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Wang, Kui [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Zhou, Xuezhe [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Pauzauskie, Peter J. [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA; Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhou, Shuiqin [Department of Chemistry, The College of Staten Island, City University of New York, Staten Island NY 10314 USA; Zhang, Miqin [Department of Materials Science and Engineering, University of Washington, Seattle WA 98195 USA

    2017-01-25

    In this study, we present a multifunctional yet structurally simple nanocarrier that has a high drug loading capacity, releases drug in response to onset of an AC magnetic field, and can serve as a long-term imaging contrast agent and effectively kills cancer cells by synergistic action. This nanocarrier (HMMC-NC) has a spherical shell structure with a center cavity of 80 nm in diameter. The shell is comprised of two layers: an inner layer of magnetite that exhibits superparamagnetism and an outer layer of mesoporous carbon embedded with carbon dots that exhibit photoluminescence property. Thus in addition to being a drug carrier, HMMC-NC is also a contrast agent for bioimaging. The switchable drug release is enabled by the chitosan molecules attached on the nanocarrier as the switching material which turns on or off the drug release in response to the application or withdrawal of an AC magnetic field.

  19. A fully automated multi-modal computer aided diagnosis approach to coronary calcium scoring of MSCT images

    Science.gov (United States)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-03-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. However, it can be difficult for a human observer to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the feasibility and requirement for an automated scoring method to reduce the subjectivity and reproducibility error inherent with manual clinical calcium scoring.

  20. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

    Directory of Open Access Journals (Sweden)

    Zhang M

    2015-11-01

    Full Text Available Miaomiao Zhang,1,* Huixiang Ju,2,* Li Zhang,1,* Mingzhong Sun,2 Zhongwei Zhou,2 Zhenyu Dai,3 Lirong Zhang,1 Aihua Gong,1 Chaoyao Wu,1 Fengyi Du1 1School of Medicine, Jiangsu University, Zhenjiang, People’s Republic of China; 2Department of Clinical Laboratory, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China; 3Radiology Department, Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: X-ray computed tomography (CT is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis. Keywords: carbon dots, contrast agents, iodine-doped, CT imaging

  1. An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images

    Science.gov (United States)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-02-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and

  2. SU-E-J-85: The Effect of Different Imaging Modalities On the Delineation of the True Spinal Cord for Spinal Stereotactic Body Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, L; Brodin, P; Mani, K; Lee, A; Garg, M; Tome, W; Kalnicki, S [Montefiore Medical Center, Bronx, NY (United States)

    2015-06-15

    Purpose: SBRT allows the delivery of high dose radiation treatments to localized tumors while minimizing dose to surrounding tissues. Due to the large doses delivered, accurate contouring of organs at risk is essential. In this study, differences between the true spinal cord as seen using MRI and CT myelogram (CTM) have been assessed in patients with spinal metastases treated using SBRT. Methods: Ten patients were identified that have both a CTM and a MRI. Using rigid registration tools, the MRI was fused to the CTM. The thecal sac and true cord were contoured using each imaging modality. Images were exported and analyzed for similarity by computing the Dice similarity coefficient and the modified Hausdorff distance (greatest distance from a point in one set to the closest point in the other set). Results: The Dice coefficient was calculated for the thecal sac (0.81 ±0.06) and true cord (0.63 ±0.13). These two measures are correlated; however, some points show a low true cord overlap despite a high overlap for the thecal sac. The Hausdorff distance for structure comparisons was also calculated. For thecal sac structures, the average value, 1.6mm (±1.1), indicates good overlap. For true cord comparison, the average value, 0.3mm (±0.16), indicates very good overlap. The minimum Hausdorff distance between the true cord and thecal sac was on average 1.6mm (±0.9) Conclusion: The true cord position as seen in MRI and CTM is fairly constant, although care should be taken as large differences can be seen in individual patients. Avoidning the true cord in spine SBRT is critical, so the ability to visualize the true cord before performing SBRT to the vertebrae is essential. Here, CT myelogram appears an excellent, robust option, that can be obtained the day of treatment planning and is unaffected by uncertainties in image fusion.

  3. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging.

    Science.gov (United States)

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.

  4. Modal Epistemology and Conceivability

    DEFF Research Database (Denmark)

    Philosophical argumentation often depends on modal facts, i.e. facts about what is possible, contingent, or necessary. For thought and cognition outside the domain of philosophy modal facts are also often decisive. It seems we have an easy access to modal facts, but how so? Through a presentation...... of the state-of-the-art in modal epistemology I wish to outline a research project based on conceivability that will try to explain how we come to know modal facts....

  5. Latest developments in the iLids performance standard: from multiple standard camera views to new imaging modalities

    Science.gov (United States)

    Sage, K. H.; Nilski, A. J.; Sillett, I. M.

    2009-09-01

    The Imagery Library for Intelligent Detection Systems (iLids) is the UK Government's standard for Video Based Detection Systems (VBDS). The first four iLids scenarios were released in November 2006 and annual evaluations for these four scenarios began in 2007. The Home Office Scientific Development Branch (HOSDB), in partnership with the Centre for the Protection of National Infrastructure (CPNI), has also developed a fifth iLids Scenario; Multiple Camera Tracking (MCT). The fifth scenario data sets were made available in November 2008 to industry, academic and commercial research organizations The imagery contains various staged events of people walking through the camera views. Multiple Camera Tracking Systems (MCTS) are expected to initialise on a specific target and be able to track the target over some or all of the camera views. HOSDB and CPNI are now working on a sixth iLids dataset series. These datasets will cover several technology areas: • Thermal imaging systems • Systems that rely on active IR illumination The aim is to develop libraries that promote the development of systems that are able to demonstrate effective performance in the key application area of people and vehicular detection at a distance. This paper will: • Describe the evaluation process, infrastructure and tools that HOSDB will use to evaluate MCT systems. Building on the success of our previous automated tools for evaluation, HOSDB has developed the MCT evaluation tool CLAYMORE. CLAYMORE is a tool for the real-time evaluation of MCT systems. • Provide an overview of the new sixth scenario aims and objectives, library specifications and timescales for release.

  6. Bio-image warehouse system: concept and implementation of a diagnosis-based data warehouse for advanced imaging modalities in neuroradiology.

    Science.gov (United States)

    Minati, L; Ghielmetti, F; Ciobanu, V; D'Incerti, L; Maccagnano, C; Bizzi, A; Bruzzone, M G

    2007-03-01

    Advanced neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), chemical shift spectroscopy imaging (CSI), diffusion tensor imaging (DTI), and perfusion-weighted imaging (PWI) create novel challenges in terms of data storage and management: huge amounts of raw data are generated, the results of analysis may depend on the software and settings that have been used, and most often intermediate files are inherently not compliant with the current DICOM (digital imaging and communication in medicine) standard, as they contain multidimensional complex and tensor arrays and various other types of data structures. A software architecture, referred to as Bio-Image Warehouse System (BIWS), which can be used alongside a radiology information system/picture archiving and communication system (RIS/PACS) system to store neuroimaging data for research purposes, is presented. The system architecture is conceived with the purpose of enabling to query by diagnosis according to a predefined two-layered classification taxonomy. The operational impact of the system and the time needed to get acquainted with the web-based interface and with the taxonomy are found to be limited. The development of modules enabling automated creation of statistical templates is proposed.

  7. Newer antidepressants and panic disorder: a meta-analysis.

    Science.gov (United States)

    Andrisano, Costanza; Chiesa, Alberto; Serretti, Alessandro

    2013-01-01

    Selective serotonin reuptake inhibitors and venlafaxine are currently considered as first-line agents for patients with panic disorder (PD). However, a systematic comparison of newer antidepressants for the treatment of PD is lacking thus far. Eligible studies focusing on PD patients treated with newer antidepressants were entered in the Cochrane Collaboration Review Manager. Our primary outcome measure was the mean change in panic symptoms from the baseline to the endpoint in patients treated with antidepressants as compared with those treated with placebo. Secondary outcome measures included the mean change in the overall anxiety scores and dropout rates. Sensitivity analyses were also carried out. Fifty studies focusing on 5236 patients were included. The following antidepressants were significantly superior to placebo for PD patients with the following increasing order of effectiveness: citalopram, sertraline, paroxetine, fluoxetine, and venlafaxine for panic symptoms and paroxetine, fluoxetine, fluvoxamine, citalopram, venlafaxine, and mirtazapine for overall anxiety symptoms. Aside from reboxetine and fluvoxamine, all drugs were associated with significantly lower dropout rates as compared with placebo. Several clinical variables moderated clinical outcomes. However, because of some inconsistencies across the studies and limited evidence for some drugs under investigation, further head-to-head comparisons are required.

  8. Newer drugs in the management of diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Vinod S. Deshmukh

    2013-02-01

    Full Text Available Modern life style with present days technological advances have made human life sedentary. This is causing increasing prevalence of obesity and physical inactivity amongst population. The number of cases of diabetes worldwide in the year 2000 among adults 20 years of age is estimated to be 171 million in recent reports and is said to rise to more than 300 million by 2025. The raised plasma glucose levels give rise to complications in the form of microvascular and macrovascular complications diminished quality of life with reduced life expectancy. The currently available drugs used in the management of type II DM are not completely satisfactory in regard of controlling blood glucose level, many of the times they are associated with undesirable side effects. Hence there is continuous ongoing work in development of newer drugs, which are safe, efficacious and potent as well as free of undesirable effects such as sustained hypoglycaemia. Fortunately there are newer drug, few of them approved while other still knocking the door from the classes of drug such as GLP-1Mimetic, DPP-4 Inhibitors and others. Here we have tried to cover them in brief. [Int J Basic Clin Pharmacol 2013; 2(1.000: 4-11

  9. CT/MRI双模态造影剂的制备和表征%Synthesis and characterization of dual modality contrast agent for CT/MRI imaging

    Institute of Scientific and Technical Information of China (English)

    王月花; 宋丽娜; 丁佳丽; 鲁珊珊; 蒋燕妮; 张宇; 顾宁

    2011-01-01

    Objective: To synthesis a kind of oil- in- water nanoemulsion for dual modal CT/MRI imaging and characterize it. Methods: Using coprecipitation method to synthesis oleic acid coated Fe3O4 nanoparticles, and dispersed them into iodinated oil injection. CT/MRI dual modality contrast agent was prepared on the basis of nanoemulsion formation, which was characterized by TEM, DLS, assembly of nanodroplets under a horizontal magnetic field,CT and MRI. Results : (l) TEM results revealed that the nanoemulsion had a size of 100 nm. DLS study showed the hydrodynamic mean diameter was 81.7 nm, approximately. (2) Placing the nanoemulsion under a horizontal magnetic field showed Fe3O4 nanoparticles existed in the droplets. ( 3 ) CT and MRI measurements showed the CT value was 292. 6 HU ( iodine concentration : 24 mg · ml-1) , and the relaxibility value ( r2) of the nanoemulsion was 65. 7 mmol·L -1 ·s -1. Conclusion : This kind of oil-in-water nanoemulsion enhances prominently CT and MRI contrast, which is expected to become an excellent dual modality contrast agent for CT/MRI imaging.%目的:合成用于CT/MRI双模态造影的水包油型纳米乳液,并对其进行表征.方法:用共沉淀法合成油酸包裹的Fe3O4纳米颗粒,然后将其分散到市售的碘化油注射液中,借助纳米乳液的合成方法合成出CT/MRI双模态造影剂,并用透射电镜(TEM)、动态光散射(DLS)、水平磁场作用下乳滴的组装、CT和MRI等方法进行表征.结果:(1) TEM结果显示,乳滴的直径约为100 nm,DLS测得其水动力尺寸平均为81.7 nm;(2) 将乳液置于水平磁场作用下验证了Fe3O4纳米颗粒确实存在于乳滴内;(3) CT、MRI等分析手段显示了该乳液的CT值为292.6 HU(碘含量为24 mg·ml-1),弛豫率为65.7 mmol·L-1·s-1.结论:CT/MRI双模态造影的水包油型纳米乳液具有良好的CT和MRI造影增强效果,有望成为一种性能优异的CT/MRI双模态造影剂.

  10. Newer generation antidepressants for depressive disorders in children and adolescents.

    Science.gov (United States)

    Hetrick, Sarah E; McKenzie, Joanne E; Cox, Georgina R; Simmons, Magenta B; Merry, Sally N

    2012-11-14

    Depressive disorders are common in young people and are associated with significant negative impacts. Newer generation antidepressants, particularly selective serotonin reuptake inhibitors (SSRIs), are often used, however evidence of their effectiveness in children and adolescents is not clear. Furthermore, there have been warnings against their use in this population due to concerns about increased risk of suicidal ideation and behaviour. To determine the efficacy and adverse outcomes, including definitive suicidal behaviour and suicidal ideation, of newer generation antidepressants compared with placebo in the treatment of depressive disorders in children and adolescents. For this update of the review, we searched the Cochrane Depression, Anxiety and Neurosis Review Group's Specialised Register (CCDANCTR) to October 2011. The CCDANCTR includes relevant randomised controlled trials from the following bibliographic databases: CENTRAL (the Cochrane Central Register of Controlled Trials) (all years), EMBASE (1974 -), MEDLINE (1950 -) and PsycINFO (1967 -). We searched clinical trial registries and pharmaceutical company websites. We checked reference lists of included trials and other reviews, and sent letters to key researchers and the pharmaceutical companies of included trials from January to August 2011. Published and unpublished randomised controlled trials (RCTs), cross-over trials and cluster trials comparing a newer generation antidepressant with a placebo in children and adolescents aged 6 to 18 years old and diagnosed with a depressive disorder were eligible for inclusion. In this update, we amended the selection criteria to include newer generation antidepressants rather than SSRIs only. Two or three review authors selected the trials, assessed their quality, and extracted trial and outcome data. We used a random-effects meta-analysis. We used risk ratio (RR) to summarise dichotomous outcomes and mean difference (MD) to summarise continuous measures

  11. Efficient Dual-Modal NIR-to-NIR Emission of Rare Earth Ions Co-doped Nanocrystals for Biological Fluorescence Imaging.

    Science.gov (United States)

    Zhou, Jiajia; Shirahata, Naoto; Sun, Hong-Tao; Ghosh, Batu; Ogawara, Makoto; Teng, Yu; Zhou, Shifeng; Sa Chu, Rong Gui; Fujii, Minoru; Qiu, Jianrong

    2013-02-07

    A novel approach has been developed for the realization of efficient near-infrared to near-infrared (NIR-to-NIR) upconversion and down-shifting emission in nanophosphors. The efficient dual-modal NIR-to-NIR emission is realized in a β-NaGdF4/Nd(3+)@NaGdF4/Tm(3+)-Yb(3+) core-shell nanocrystal by careful control of the identity and concentration of the doped rare earth (RE) ion species and by manipulation of the spatial distributions of these RE ions. The photoluminescence results reveal that the emission efficiency increases at least 2-fold when comparing the materials synthesized in this study with those synthesized through traditional approaches. Hence, these core-shell structured nanocrystals with novel excitation and emission behaviors enable us to obtain tissue fluorescence imaging by detecting the upconverted and down-shifted photoluminescence from Tm(3+) and Nd(3+) ions, respectively. The reported approach thus provides a new route for the realization of high-yield emission from RE ion doped nanocrystals, which could prove to be useful for the design of optical materials containing other optically active centers.

  12. Phase-Transition Nanodroplets for Real-Time Photoacoustic/Ultrasound Dual-Modality Imaging and Photothermal Therapy of Sentinel Lymph Node in Breast Cancer

    Science.gov (United States)

    Yang, Lu; Cheng, Juan; Chen, Yuli; Yu, Shengjie; Liu, Fengqiu; Sun, Yang; Chen, Yu; Ran, Haitao

    2017-01-01

    Pathological status of lymph nodes (LNs) plays a critical role in staging and treatment for the patients with breast cancer. Sentinel lymph node biopsy has become the standard method in determining pathological status of axillary LNs. Therefore, the determination of sentinel lymph nodes (SLNs) and therapy of metastatic LNs are highly desirable in clinic. Herein, an unprecedented carbon nanoparticles (CNs)-incorporated liquid-gas phase-transition nanodroplets (CNPs) with strong near-infrared (NIR) absorption, good biocompatibility, excellent photoacoustic (PA) and ultrasound (US) contrast, and high photothermal-conversion efficiency are reported in this study. Upon laser irradiation, liquid-gas phase transition of the CNPs has been demonstrated to provide excellent contrasts for PA/US dual-modality imaging both in vitro and in vivo. Additionally, the CNPs are capable of staining lymph nodes, which can contribute significantly to the identification of LNs with naked eyes. With increased laser energy, the CNPs exhibit the high performance in killing the breast cancer cells both in vitro and in vivo, due to the photothermal effect induced from the CNs within CNPs. These results suggest that the developed multifunctional phase-transition nanodroplets have high potential to act as the theranostic agents in both SLNs detection and therapy of metastatic LNs. PMID:28338071

  13. Newer fluoroquinolones in the treatment of acute exacerbations of COPD

    Science.gov (United States)

    Patel, Amit; Wilson, Robert

    2006-01-01

    Acute exacerbations of COPD are a major cause of morbidity and mortality. Bacteria are implicated in about half of all cases. The frequency of exacerbations is related to decline in lung function and poorer quality of life. 25% of patients with COPD have bacterial colonization of the lower airways in stable state whereas non-smokers without COPD have airways that are sterile. The significance of the colonization is unclear, but there is emerging evidence that it may be detrimental. Much of the data recommending antibiotic treatment are based on findings more than 10 years old and do not take into account emerging bacterial resistance. This article reviews these data and that from newer antibiotic trials. It also reviews current antibiotic prescribing guidelines from major respiratory societies around the world. Recent antibiotic trials have compared fluoroquinolones with “standard” antibiotics and found, in the main, longer exacerbation-free intervals and better bacterial eradication rates in those treated with fluoroquinolones. PMID:18046861

  14. Newer approaches in topical combination therapy for acne.

    Science.gov (United States)

    Fu, Lisa W; Vender, Ronald B

    2011-10-01

    Acne vulgaris is a common chronic inflammatory cutaneous disease involving the pilosebaceous unit. Its pathophysiology is multifactorial and complex, including obstruction of the pilosebaceous unit due to increased sebum production, abnormal keratinization, proliferation of Propionibacterium acnes (P. acnes), and inflammation. Topical agents are the most commonly used therapy for acne. First generation topicals mainly consist of single agent retinoids, benzoyl peroxide (BPO) and antibacterials that target comedones, P. acnes, and inflammation. Novel topical therapies include combination products with advanced vehicle formulations that target multiple acne pathophysiologies and offer simplified treatment regimes. For example, the combination of clindamycin and tretinoin in a unique vehicle formulation allows for progressive follicle penetration and decreased irritation, resulting in increased efficacy. Furthermore, adapalene or clindamycin with BPO combinations target comedones, inflammation, and P. acnes synergistically. These newer combination products have the potential to increase both efficacy and patient adherence when compared with single agent treatment.

  15. Newer Approaches In The Treatment of Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Kamlesh Patel

    2013-01-01

    Full Text Available Diabetes Mellitus is a public health problem worldwide. The most effective anti-diabetic drugs currently available include insulin and newer insulin preparations, sulphonylureas, biguanides, meglitinides, thiazolidinediones, alpha- glucosidase inhibitors, incretins, guargum and glucomannan. However, the future therapies will need to focus on those patents who do not respond well to these treatments and who account for 50% of the health care costs of diabetes mellitus. Drug development for diabetes mellitus has been directed at improving currently available drugs and findings new compounds. In this review article, we will review the role of future new chemical entities able to target the metabolic disorder. Some of these new anti-diabetic treatment strategies may in the future not only control symptoms and modify the natural course of diabetes, but also potentially prevent or cure the disease.

  16. Susceptibility of Urinary Tract Bacteria to Newer Antimicrobial Drugs

    Directory of Open Access Journals (Sweden)

    Manjula Mehta

    2016-01-01

    Full Text Available Urinary tract infections (UTIs are among the commonest types of bacterial infections. The antibiotic treatment for UTIs is associated with important medical and economic implications. Many different microorganisms can cause UTIs though the most common pathogens are E. coli and members of family Enterobacteriaceae. The knowledge of etiology and antibiotic resistance pattern of the organisms causing urinary tract infection is essential. The present study was undertaken to evaluate trends of antibiotic susceptibility of commonly isolated uropathogens using newer antimicrobial agents, prulifloxacin, fosfomycin (FOM and doripenem. We conclude that maintaining a record of culture results and the antibiogram may help clinicians to determine the empirical and/or specific treatment based on the antibiogram of the isolate for better therapeutic outcome.

  17. Newer therapeutic options for chronic inflammatory demyelinating polyradiculoneuropathy.

    Science.gov (United States)

    Kuitwaard, Krista; van Doorn, Pieter A

    2009-05-29

    Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an immune-mediated disorder with variable symptoms and severity that can be difficult to diagnose. Intravenous immunoglobulin, plasma exchange and corticosteroids have all been proven to be beneficial in randomized controlled trials, although the proof for corticosteroids is less clear. Although these treatments are likely to be similar in efficacy, they differ in terms of their cost, availability and adverse effects. These characteristics should be taken into account when deciding which treatment to offer a patient. If there is no response to the first treatment option, one of the other treatments should be tried. Patients with a pure motor CIDP may deteriorate after corticosteroid treatment. Some patients do not respond or become refractory or intolerant to these conventional treatments. Those who become unresponsive to therapy should be checked again for the appearance of a monoclonal protein or other signs of malignancy. Over the years, small non-randomized studies have reported possible beneficial effects of various immunosuppressive agents. A Cochrane review concluded that currently there is insufficient evidence to decide whether these immunosuppressive drugs are beneficial in CIDP. When giving immunosuppressive drugs, one should be aware that some might even cause demyelinating disease. It is difficult to prove beneficial effects of these newer treatments since they have only been used in small groups of patients, who are refractory to other treatments, and often in combination with other treatments. CIDP patients can deteriorate during or after infections or improve spontaneously, making it more difficult to judge treatment efficacy. Various treatments for CIDP are described such as azathioprine, ciclosporin, cyclophosphamide, interferons, methotrexate, mycophenolate mofetil, rituximab and etanercept. An overview of these newer treatments, their mode of action, adverse effects and

  18. What Medical, Urologic, and Radiation Oncologists Want from Molecular Imaging of Prostate Cancer.

    Science.gov (United States)

    Ballas, Leslie K; de Castro Abreu, Andre Luis; Quinn, David I

    2016-10-01

    As molecular imaging better delineates the state of prostate cancer, clinical management will evolve. The currently licensed imaging modalities are limited by lack of specificity or sensitivity for the extent of cancer and for predicting outcome in response to therapy. Clinicians want molecular imaging that-by being more reliable in tailoring treatment and monitoring response for each patient-will become a key facet of precision medicine, surgery, and radiation therapy. Identifying patients who are candidates for specific or novel treatments is important, but equally important is the finding that a given patient may not be a good candidate for single-modality therapy. This article presents prostate cancer scenarios in which managing clinicians would welcome molecular imaging innovations to help with decision making. The potential role of newer techniques that may help fill this wish list is discussed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Representation learning for cross-modality classification

    NARCIS (Netherlands)

    G. van Tulder (Gijs); M. de Bruijne (Marleen)

    2017-01-01

    textabstractDifferences in scanning parameters or modalities can complicate image analysis based on supervised classification. This paper presents two representation learning approaches, based on autoencoders, that address this problem by learning representations that are similar across domains. Bot

  20. Experimental modal analysis

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Liingaard, Morten

    This technical report concerns the basic theory and principles for experimental modal analysis. The sections within the report are: Output-only modal analysis software (section 1.1), general digital analysis (section 1.2), basics of structural dynamics and modal analysis (section 1.3) and system ...

  1. Synthesis, radiosynthesis and in vitro evaluation of 18F-Bodipy-C16/triglyceride as a dual modal imaging agent for brown adipose tissue

    National Research Council Canada - National Science Library

    Andreas Paulus; Marco Maenen; Natascha Drude; Emmani B M Nascimento; D van Marken Lichtenbelt; Felix M Mottaghy; Matthias Bauwens

    2017-01-01

    .... We designed a dual-modal fluorescent/PET fatty acid based tracer on commercially available Bodipy-C16, which can be synthesized to its corresponding triglyceride and which combines the benefits...

  2. Diagnostic imaging in the diagnosis of small bowel Crohn's Disease - A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Victoria Louise [Bristol Royal Infirmary, UBHT, Radiology, Marlborough Street, Bristol (United Kingdom)], E-mail: vlc198@hotmail.com

    2008-11-15

    Crohn's Disease can be imaged using Barium sulphate studies, ultrasound, magnetic resonance imaging, computerised tomography and nuclear medicine. However, the radiological pathway used for the diagnosis and management of this disease can vary from hospital to hospital. By evaluating the literature a broad picture can be developed regarding the sensitivity and specificity of each modality. It is often the case that the sensitivity and specificity of a modality can change due to the level of skill of the operator. Barium sulphate studies are still considered to be the recognised route for diagnosing Crohn's Disease, but it is apparent that newer studies are concerned with trying to find a more patient tolerant, less invasive method of radiological diagnosis. It is also important to consider when evaluating a pathway, the availability of each modality within each individual hospital setting.

  3. Husserl’s Modal Sense of Evidence: Modality versus Modalization

    Directory of Open Access Journals (Sweden)

    Ivana Anton

    2013-12-01

    Full Text Available Phenomenological evidence has been characterized as fulfillment of a meaning intention, comprehension that tends to assimilate evidence to fulfilled consciousness, without making justice to the essential and mutual implication of emptiness and fullness that constitutes it out of its horizontic-intentional kind. The horizon, typically configured, offers the field of possible fulfillment; that is why it can be said that evidence takes place in a consciousness of possibility, namely, a modal one, though in an originary material and not doxic or positional sense,because it is the first one that is incumbent upon relationships of fulfillment. Modality that essentially characterizes evidence does not reveal itself then in the possible modalization as positional modification of a unitary content, but in its “outlined” material configuration of fullness and emptiness that gives somethingas something referring to other possibilities as moments of its own validity.

  4. Global myocardial strain assessment by different imaging modalities to predict outcomes after ST-elevation myocardial infarction:A systematic review

    Institute of Scientific and Technical Information of China (English)

    Abhishek Shetye; Sheraz A Nazir; Iain B Squire; Gerald P McCann

    2015-01-01

    AIM: To conduct a systematic review relating myocardial strain assessed by different imaging modalities for prognostication following ST-elevation myocardial infarction(STEMI).METHODS: An online literature search was performed in Pub Med and OVID? electronic databases to identify any studies that assessed global myocardial strain parameters using speckle-tracking echocardiography(STE) and/or cardiac magnetic resonance imaging(CMR) techniques [either myocardial tagging or feature tracking(FT) software] in an acute STEMI cohort(days 0-14 post-event) to predict prognosis [either development of major adverse cardiac events(MACE)] or adverse left ventricular(LV) remodelling at follow-up(≥ 6 mo for MACE,≥ 3 mo for remodelling). Search was restricted to studies within the last 20 years. All studies that matched the pre-defined search criteria were reviewed and their results interpreted. Due to considerable heterogeneity between studies,metaanalysis was not performed.RESULTS: A total of seven studies(n = 7) were identified that matched the search criteria. All studies used STE to evaluate strain parameters- five(n = 5) assessed global longitudinal strain(GLS)(n = 5),one assessed GLS rate(GLS-R)(n = 1) and one assessed both(n = 1). Three studies showed that GLS independently predicted the development of adverse LV remodelling by multivariate analysis- odds ratio between 1.19(CI: 1.04-1.37,P < 0.05) and 10(CI: 6.7-14,P < 0.001) depending on the study. Four studies showed that GLS predicted the development of MACE- hazard ratio(HR) between 1.1(CI: 1-1.1,P = 0.006) and 2.34(1.10-4.97,P < 0.05). One paper found that GLS-R could significantly predict MACEHR 18(10-35,P < 0.001)- whilst another showed it did not. GLS <-10.85% had sensitivity/specificity of 89.7%/91% respectively for predicting the development of remodelling whilst GLS <-13% could predict the development of MACE with sensitivity/specificity of 100%/89% respectively. No suitable studies were identified that

  5. Operational Modal Analysis Tutorial

    DEFF Research Database (Denmark)

    Brincker, Rune; Andersen, Palle

    analysis in an easier way and in many cases more effectively than traditional modal analysis methods. It can be applied for modal testing and analysis on a wide range of structures and not only for problems generally investigated using traditional modal analysis, but also for those requiring load......In this paper the basic principles in operational modal testing and analysis are presented and discussed. A brief review of the techniques for operational modal testing and identification is presented, and it is argued, that there is now a wide range of techniques for effective identification...... estimation, vibration level estimation and fatigue analysis....

  6. ACTION OF NEWER DISINFECTANTS ON MULTIDRUG RESISTANT BACTERIA

    Directory of Open Access Journals (Sweden)

    Bipasa

    2014-03-01

    Full Text Available BACKGROUND: Current procedures for infection control in hospital environments have not been successful in curbing the rise in infections by multi-drug-resistant (MDR pathogens. Emergence of resistance to chemical disinfectants is increasing steadily and has been reported worldwide. So prevention of multidrug-resistant health care associated infections (HAI has become a priority issue and great challenge to clinicians. This requires appropriate sterilization and disinfection procedures and strict adherence to protocol in infection control policy. There is a need to evaluate the efficacy of newer disinfectants which have come into the market for better control of HAI. AIMS AND OBJECTIVES: The aim of this study was to evaluate and compare disinfection efficacy of three newer disinfectants– Novacide (didecyldimethylammonium chloride and polyhexamethylene biguanide, Silvicide a strong oxidizing agent (hydrogen peroxide and silver nitrate and Virkon, a powerful oxidizing agent (a stabilized blend of peroxygen compounds and potassium salts, pitting them against two time-honored conventional disinfectants phenol and lysol and testing them against common MDR clinical isolates, reference strains and spores. MATERIALS AND METHODS: All the disinfectants at different dilutions were tested for bactericidal efficacy by liquid suspension time-kill tests. A heavy initial microbial load was simulated by preparing bacterial inoculum. Numbers of viable cells were counted and reduction in microbial colony counts before and after disinfectant exposure was expressed as log reduction. RESULTS: Among the disinfectants, Novacide was most effective. All clinical MDR bacterial isolates and reference strains were killed within 30 seconds of exposure at 0.156% solution, whereas spores got killed after 30 minutes of exposure at 2.5% solution which is the recommended concentration. For Silvicide all vegetative bacteria were killed at 5% solution after 20 minutes contact time

  7. Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ajmone Marsan, Nina [Leiden University Medical Center, Department of Cardiology, Albinusdreef 2, ZA, Leiden (Netherlands); Policlinico S. Matteo, Department of Cardiology, Pavia (Italy); Henneman, Maureen M.; Ypenburg, Claudia; Bleeker, Gabe B.; Bax, Jeroen J. [Leiden University Medical Center, Department of Cardiology, Albinusdreef 2, ZA, Leiden (Netherlands); Chen, Ji; Garcia, Ernest V. [Emory University School of Medicine, Department of Radiology, Atlanta, Georgia (United States); Dibbets, Petra; Stokkel, Marcel P. [Leiden University Medical Center, Department of Nuclear Medicine, Leiden (Netherlands); Ghio, Stefano; Tavazzi, Luigi [Policlinico S. Matteo, Department of Cardiology, Pavia (Italy); Wall, Ernst E. van der [Leiden University Medical Center, Department of Cardiology, Albinusdreef 2, ZA, Leiden (Netherlands); The Interuniversity Cardiology Institute of the Netherlands, Utrecht (Netherlands)

    2008-01-15

    To compare left ventricular (LV) dyssynchrony assessment by phase analysis from gated myocardial perfusion SPECT (GMPS) with LV dyssynchrony assessment by tri-plane tissue Doppler imaging (TDI). Baseline LV dyssynchrony assessed with standard deviation (SD) of time-to-peak systolic velocity of 12 LV segments (Ts-SD) with TDI has proven to be a powerful predictor of response to CRT. Information on LV dyssynchrony can also be provided by GMPS with phase analysis of regional LV maximal count changes throughout the cardiac cycle. Forty heart failure patients, referred for evaluation of potential eligibility for CRT, underwent both 3D echocardiography, with tri-plane TDI, and resting GMPS. From tri-plane TDI, Ts-SD was used as a validated parameter of LV dyssynchrony and compared with different indices (histogram bandwidth, phase SD, histogram skewness and kurtosis) derived from phase analysis of GMPS. Histogram bandwidth and phase SD showed good correlation with Ts-SD (r=0.77 and r=0.74, p<0.0001, respectively). Patients with substantial LV dyssynchrony assessed with tri-plane TDI (Ts-SD {>=}33 ms) had also significantly higher values of histogram bandwidth and phase SD. The results of this study support the use of phase analysis by GMPS to evaluate LV dyssynchrony. Histogram bandwidth and phase SD showed the best correlation with Ts-SD assessed with tri-plane TDI and appeared the most optimal variables for assessment of LV dyssynchrony with GMPS. (orig.)

  8. Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging

    Science.gov (United States)

    Ajmone Marsan, Nina; Henneman, Maureen M.; Chen, Ji; Ypenburg, Claudia; Dibbets, Petra; Ghio, Stefano; Bleeker, Gabe B.; Stokkel, Marcel P.; van der Wall, Ernst E.; Tavazzi, Luigi; Garcia, Ernest V.

    2007-01-01

    Purpose To compare left ventricular (LV) dyssynchrony assessment by phase analysis from gated myocardial perfusion SPECT (GMPS) with LV dyssynchrony assessment by tri-plane tissue Doppler imaging (TDI). Baseline LV dyssynchrony assessed with standard deviation (SD) of time-to-peak systolic velocity of 12 LV segments (Ts-SD) with TDI has proven to be a powerful predictor of response to CRT. Information on LV dyssynchrony can also be provided by GMPS with phase analysis of regional LV maximal count changes throughout the cardiac cycle. Methods Forty heart failure patients, referred for evaluation of potential eligibility for CRT, underwent both 3D echocardiography, with tri-plane TDI, and resting GMPS. From tri-plane TDI, Ts-SD was used as a validated parameter of LV dyssynchrony and compared with different indices (histogram bandwidth, phase SD, histogram skewness and kurtosis) derived from phase analysis of GMPS. Results Histogram bandwidth and phase SD showed good correlation with Ts-SD (r=0.77 and r=0.74, p<0.0001, respectively). Patients with substantial LV dyssynchrony assessed with tri-plane TDI (Ts-SD ≥33 ms) had also significantly higher values of histogram bandwidth and phase SD. Conclusions The results of this study support the use of phase analysis by GMPS to evaluate LV dyssynchrony. Histogram bandwidth and phase SD showed the best correlation with Ts-SD assessed with tri-plane TDI and appeared the most optimal variables for assessment of LV dyssynchrony with GMPS. PMID:17874098

  9. Newer Gene Editing Technologies toward HIV Gene Therapy

    Directory of Open Access Journals (Sweden)

    Premlata Shankar

    2013-11-01

    Full Text Available Despite the great success of highly active antiretroviral therapy (HAART in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called “Berlin patient” who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  10. Newer antidepressants in pregnancy: prospective outcome of a case series.

    Science.gov (United States)

    Yaris, Fusun; Kadioglu, Mine; Kesim, Murat; Ulku, Cunay; Yaris, Ersin; Kalyoncu, Nuri Ihsan; Unsal, Mesut

    2004-12-01

    Antidepressant drug choice in pregnancy is a complex problem especially for new drugs. Among 590 cases exposed to drugs during pregnancy who were followed by our center, 21 cases used newer antidepressants, i.e., venlafaxine, mirtazapine, nefazodone. We present the gestational findings and fetal outcomes of these cases. Ten cases had used venlafaxine, one case had used both venlafaxine and mirtazapine, eight had used mirtazapine alone or with some other drugs and two had used nefazodone, in the first trimester. Of the 21 cases, 17 (80.9%) had healthy babies, 3 (14.3%) decided to terminate the pregnancy, and 1 (4.8%) spontaneous abortion was observed in a case exposed to mirtazapine, alprazolam, diazepam and trifluoperazine. All obstetrical findings were normal during the pregnancy of each case. No congenital abnormality and developmental problem was observed in the babies followed up for 12 months. The aim of the present study is to contribute the data to the limited knowledge available in the literature regarding human pregnancy.

  11. An update on newer monoclonal antibodies in lymphoma therapy

    Directory of Open Access Journals (Sweden)

    Subhashini Archana Kadavakolan

    2016-01-01

    Full Text Available In 2014, an estimated 9.4% of all new cancers in the US were accounted to hematological cancers. Most of these cancers have a B-cell origin and on the cell surface express antigen CD20-known to restrict B-cells. Considering the intrinsic immune status of the patients receiving chemotherapy, monoclonal antibodies (mAbs are designed to provide active or passive immunotherapy. Clinical success of rituximab-anti-CD20 mAb in the treatment of lymphoma has led to the development of newer generations of mAb to increase the anti-tumor activity. Hence, recent advances in lymphoma therapy are being built on the conventional prototype of anti-CD20 mAb-rituximab. Our review is an update on the advances in lymphoma therapy using mAb against CD20 including the second generation-ofatumumab, veltuzumab, ocrelizumab, and the third-generation mAbs-ocaratuzumab and obinutuzumab.

  12. Newer gene editing technologies toward HIV gene therapy.

    Science.gov (United States)

    Manjunath, N; Yi, Guohua; Dang, Ying; Shankar, Premlata

    2013-11-14

    Despite the great success of highly active antiretroviral therapy (HAART) in ameliorating the course of HIV infection, alternative therapeutic approaches are being pursued because of practical problems associated with life-long therapy. The eradication of HIV in the so-called "Berlin patient" who received a bone marrow transplant from a CCR5-negative donor has rekindled interest in genome engineering strategies to achieve the same effect. Precise gene editing within the cells is now a realistic possibility with recent advances in understanding the DNA repair mechanisms, DNA interaction with transcription factors and bacterial defense mechanisms. Within the past few years, four novel technologies have emerged that can be engineered for recognition of specific DNA target sequences to enable site-specific gene editing: Homing Endonuclease, ZFN, TALEN, and CRISPR/Cas9 system. The most recent CRISPR/Cas9 system uses a short stretch of complementary RNA bound to Cas9 nuclease to recognize and cleave target DNA, as opposed to the previous technologies that use DNA binding motifs of either zinc finger proteins or transcription activator-like effector molecules fused to an endonuclease to mediate sequence-specific DNA cleavage. Unlike RNA interference, which requires the continued presence of effector moieties to maintain gene silencing, the newer technologies allow permanent disruption of the targeted gene after a single treatment. Here, we review the applications, limitations and future prospects of novel gene-editing strategies for use as HIV therapy.

  13. Brain tumors in children--current therapies and newer directions.

    Science.gov (United States)

    Khatua, Soumen; Sadighi, Zsila Sousan; Pearlman, Michael L; Bochare, Sunil; Vats, Tribhawan S

    2012-07-01

    Brain tumors are the second most common malignancy and the major cause of cancer related mortality in children. Though significant advances in neuroimaging, neurosurgery, radiation therapy and chemotherapy have evolved over the years, overall survival rate remains less than 75%. Malignant gliomas, high risk medulloblastoma with recurrence and infant brain tumors continue to be a major cause of therapeutic frustration. Even today diffuse pontine gliomas are universally fatal. Though tumors like low grade glioma have an overall excellent survival, recurrences and progression in eloquent areas pose therapeutic challenges. As research continues to unravel the biology including key molecules and signaling pathways responsible for the oncogenesis of different childhood brain tumors, novel targeted therapies are profiled. Identification of major targets like the Epidermal Growth factor Receptor (EGFR), Platelet Derived Growth Factor Receptor (PDGFR), Vascular Endothelial Growth factor (VEGF) and key signaling pathways like the MAPK and PI3K/Akt/mTOR has enabled us over the recent years to better understand tumor behavior and design tailored therapy. These efforts have improved overall survival of children with brain tumors. This review article discusses the current status of common brain tumors in children and the newer therapeutic approaches.

  14. Newer Demographic Development of the Settlement of Murter

    Directory of Open Access Journals (Sweden)

    Sonja Podgorelec

    1998-10-01

    Full Text Available Murter is the largest settlement on the same-named island and also in the entire Šibenik archipelago. As opposed to most of the settlements on the island, its population was less involved in earlier emigration flows, whereas newer emigration began to effect Murter only after the sixties. The effect of the depopulation period is visible in the changes of the age-sex structure, where can be seen primarily in ageing of the population and a disproportion in the sex ratio. Yet it can be confirmed that the settlement of Murter has not such an unfavourable demographic situation as do most Dalmatian islands. A slightly falling birth rate can be noticed, as well as a slight increase in the death rate. The demographic perspective of this population is relatively favourable (due to an expected development of tourism, development of agriculture and trades, nautical infrastructures etc., if addition emigration factors will not come into play. Based on a multiple-criteria evaluation of developmental levels, the island of Murter, primarily due to the central position of the settlement Murter, is ranked 11th out of 47 Croatian islands. The reason is that all higher ranked islands also have a significantly larger area.

  15. Radiolabeled cyclic arginine-glycine-aspartic (RGD)-conjugated iron oxide nanoparticles as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer

    Science.gov (United States)

    Deng, Shengming; Zhang, Wei; Zhang, Bin; Hong, Ruoyu; Chen, Qing; Dong, Jiajia; Chen, Yinyiin; Chen, Zhiqiang; Wu, Yiwei

    2015-01-01

    Ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) modified with a novel cyclic arginine-glycine-aspartate (RGD) peptide were made and radiolabeled as single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) dual-modality agents for imaging of breast cancer. The probe was tested both in vitro and in vivo to determine its receptor targeting efficacy and feasibility for SPECT and MRI. The radiochemical syntheses of 125I-cRGD-USPIO were accomplished with a radiochemical purity of 96.05 ± 0.33 %. High radiochemical stability was found in fresh human serum and in phosphate-buffered saline. The average hydrodynamic size of 125I-cRGD-USPIO determined by dynamic light scattering was 51.3 nm. Results of in vitro experiments verified the specificity of the radiolabeled nanoparticles to tumor cells. Preliminary biodistribution studies of 125I-radiolabeled cRGD-USPIO in Bcap37-bearing nude mice showed that it had long circulation half-life, high tumor uptake, and high initial blood retention with moderate liver uptake. In vivo tumor targeting and uptake of the radiolabeled nanoparticles in mice model were visualized by SPECT and MRI collected at different time points. Our results strongly indicated that the 125I-cRGD-USPIO could be used as a promising bifunctional radiotracer for early clinical tumor detection with high sensitivity and high spatial resolution by SPECT and MRI.

  16. Operational Modal Analysis Tutorial

    OpenAIRE

    Brincker, Rune; Andersen, Palle

    2007-01-01

    In this paper the basic principles in operational modal testing and analysis are presented and discussed. A brief review of the techniques for operational modal testing and identification is presented, and it is argued, that there is now a wide range of techniques for effective identification of modal parameters of practical interest - including the mode shape scaling factor - with a high degree of accuracy. It is also argued that the operational technology offers the user a number of advanta...

  17. Modal extension rule

    Institute of Scientific and Technical Information of China (English)

    WU Xia; SUN Jigui; LIN Hai; FENG Shasha

    2005-01-01

    Modal logics are good candidates for a formal theory of agents. The efficiency of reasoning method in modal logics is very important, because it determines whether or not the reasoning method can be widely used in systems based on agent. In this paper,we modify the extension rule theorem proving method we presented before, and then apply it to P-logic that is translated from modal logic by functional transformation. At last, we give the proof of its soundness and completeness.

  18. Exploring newer cardioprotective strategies: ω-3 fatty acids in perspective.

    Science.gov (United States)

    Di Minno, Matteo Nicola Dario; Tremoli, Elena; Tufano, Antonella; Russolillo, Anna; Lupoli, Roberta; Di Minno, Giovanni

    2010-10-01

    In the 1980s, observational retrospective studies showed an inverse relation between coronary heart disease (CHD) and consumption of fish containing fatty acids that belong to the omega (ω)-3 family. Large case-control studies and prospective intervention trials consistently showed that ω-3 fatty acids supplementation lowers fatal myocardial infarction (MI) and sudden cardiac death. By analysing the strengths of the results of individual studies and how the meta-analyses agree with them, putting together relevant backgrounds, and identifying open questions, the following findings/directions emerge. (i) Dietary and non-dietary intake of ω-3 fatty acids reduces overall mortality, mortality due to MI, and sudden death in patients with CHD; (ii) Fish oil consumption directly or indirectly affects cardiac electrophysiology. Fish oil reduces heart rate, a major risk factor for sudden death; (iii) Among patients with implantable cardioverter defibrillators, ω-3 fatty acids do not reduce the risk of ventricular tachycardia/ventricular fibrillation and may actually be pro-arrhythmic; (iv) The consumption of ω-3 fatty acids leads to a 10-33% net decrease of triglyceride levels. The effect is dose-dependent, larger in studies with higher mean baseline triglyceride levels, and consistent in different populations (healthy people, people with dyslipidaemia, diabetes, or known cardiovascular risk factors); (v) Outcomes for which a small beneficial effect ω-3 fatty acids is found include blood pressure (about 2 mmHg reduction), re-stenosis rates after coronary angioplasty (14% reduction), and exercise tolerance testing. Major experimental data provide strength (biological plausibility) for these findings, and define directions for newer clinical trials with ω-3 fatty acids.

  19. Advances in Modal Logic

    DEFF Research Database (Denmark)

    Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume...... is the proceedings of the conference of record in its fi eld, Advances in Modal Logic. Its contributions are state-of-the-art papers. The topics include decidability and complexity results for specifi c modal logics, proof theory of modal logic, logics for reasoning about time and space, provability logic, dynamic...... epistemic logic, and the logic of evidence....

  20. What is the most accurate whole-body imaging modality for assessment of local and distant recurrent disease in colorectal cancer? A meta-analysis. Imaging for recurrent colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Monique; Lambregts, Doenja M.J. [Maastricht University Medical Centre, Department of Radiology, Maastricht (Netherlands); Maastricht University Medical Centre, Department of Surgery, Maastricht (Netherlands); Rutten, Iris J.G.; Cappendijk, Vincent C.; Beets-Tan, Regina G.H. [Maastricht University Medical Centre, Department of Radiology, Maastricht (Netherlands); Nelemans, Patty J. [Maastricht University, Department of Epidemiology, Maastricht (Netherlands); Beets, Geerard L. [Maastricht University Medical Centre, Department of Surgery, Maastricht (Netherlands)

    2011-08-15

    The objective of this study was to compare the diagnostic performance of positron emission tomography (PET), PET/CT, CT and MRI as whole-body imaging modalities for the detection of local and/or distant recurrent disease in colorectal cancer (CRC) patients who have a (high) suspicion of recurrent disease, based on clinical findings or rise in carcinoembryonic antigen (CEA). A meta-analysis was undertaken. PubMed and Embase were searched for studies on the accuracy of whole-body imaging for patients with suspected local and/or distant recurrence of their CRC. Additionally, studies had to have included at least 20 patients with CRC and 2 x 2 contingency tables had to be provided or derivable. Articles evaluating only local recurrence or liver metastasis were excluded. Summary receiver-operating characteristic (ROC) curves were constructed from the data on sensitivity and specificity of individual studies and pooled estimates of diagnostic odds ratios (DORs) and areas under the ROC curve (AUCs) were calculated. To test for heterogeneity the Cochran Q test was used. Fourteen observational studies were included which evaluated PET, PET/CT, CT and/or MRI. Study results were available in 12 studies for PET, in 5 studies for CT, in 5 studies for PET/CT and in 1 study for MRI. AUCs for PET, PET/CT and CT were 0.94 (0.90-0.97), 0.94 (0.87-0.98) and 0.83 (0.72-0.90), respectively. In patient based analyses PET/CT had a higher diagnostic performance than PET with an AUC of 0.95 (0.89-0.97) for PET/CT vs 0.92 (0.86-0.96) for PET. Both whole-body PET and PET/CT are very accurate for the detection of local and/or distant recurrent disease in CRC patients with a (high) suspicion of recurrent disease. CT has the lowest diagnostic performance. This difference is probably mainly due to the lower accuracy of CT for detection of extrahepatic metastases (including local recurrence). For clinical practice PET/CT might be the modality of choice when evaluating patients with a (high

  1. The Risk of Specific Congenital Anomalies in Relation to Newer Antiepileptic Drugs : A Literature Review

    NARCIS (Netherlands)

    de Jong, Josta; Garne, Ester; Jong-van den Berg, de Lolkje; Wang, Hao

    2016-01-01

    BACKGROUND: More information is needed about possible associations between the newer anti-epileptic drugs (AEDs) in the first trimester of pregnancy and specific congenital anomalies of the fetus. OBJECTIVES: We performed a literature review to find signals for potential associations between newer A

  2. The Risk of Specific Congenital Anomalies in Relation to Newer Antiepileptic Drugs : A Literature Review

    NARCIS (Netherlands)

    de Jong, Josta; Garne, Ester; Jong-van den Berg, de Lolkje; Wang, Hao

    BACKGROUND: More information is needed about possible associations between the newer anti-epileptic drugs (AEDs) in the first trimester of pregnancy and specific congenital anomalies of the fetus. OBJECTIVES: We performed a literature review to find signals for potential associations between newer

  3. Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment.

    LENUS (Irish Health Repository)

    Byrne, A T

    2009-11-03

    Photodynamic therapy (PDT) is a treatment modality for a range of diseases including cancer. The BF(2)-chelated tetraaryl-azadipyrromethenes (ADPMs) are an emerging class of non-porphyrin PDT agent, which have previously shown excellent photochemical and photophysical properties for therapeutic application. Herein, in vivo efficacy and mechanism of action studies have been completed for the lead agent, ADMP06.

  4. Modal-Power-Based Haptic Motion Recognition

    Science.gov (United States)

    Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei

    Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.

  5. Modals of Strong Obligation

    Science.gov (United States)

    Matthews-Bresky, R. J. H.

    1977-01-01

    Discusses regularities and peculiarities in the use of the modal verbs of obligation "must,""need" and "should," also of the non-modals "have (got) to" and "need to." Agreements and differences in the use of the verbs are shown, with examples. Use of the various tense-forms is discussed. (IFS/WGA)

  6. Video: Modalities and Methodologies

    Science.gov (United States)

    Hadfield, Mark; Haw, Kaye

    2012-01-01

    In this article, we set out to explore what we describe as the use of video in various modalities. For us, modality is a synthesizing construct that draws together and differentiates between the notion of "video" both as a method and as a methodology. It encompasses the use of the term video as both product and process, and as a data collection…

  7. Newer Hemostatic Agents Used in the Practice of Dermatologic Surgery

    Science.gov (United States)

    Brewer, Jerry D.

    2013-01-01

    Minor postoperative bleeding is the most common complication of cutaneous surgery. Because of the commonality of this complication, hemostasis is an important concept to address when considering dermatologic procedures. Patients that have a bleeding diathesis, an inherited/acquired coagulopathy, or who are on anticoagulant/antiplatelet medications pose a greater risk for bleeding complications during the postoperative period. Knowledge of these conditions preoperatively is of the utmost importance, allowing for proper preparation and prevention. Also, it is important to be aware of the various hemostatic modalities available, including electrocoagulation, which is among the most effective and widely used techniques. Prompt recognition of hematoma formation and knowledge of postoperative wound care can prevent further complications such as wound dehiscence, infection, or skin-graft necrosis, minimizing poor outcomes. PMID:23997764

  8. Advances in Modal Logic

    DEFF Research Database (Denmark)

    Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume i...... epistemic logic, and the logic of evidence.......Modal logic is a subject with ancient roots in the western logical tradition. Up until the last few generations, it was pursued mainly as a branch of philosophy. But in recent years, the subject has taken new directions with connections to topics in computer science and mathematics. This volume...... is the proceedings of the conference of record in its fi eld, Advances in Modal Logic. Its contributions are state-of-the-art papers. The topics include decidability and complexity results for specifi c modal logics, proof theory of modal logic, logics for reasoning about time and space, provability logic, dynamic...

  9. Parametric modal transition systems

    DEFF Research Database (Denmark)

    Beneš, Nikola; Křetínský, Jan; Larsen, Kim Guldstrand;

    2011-01-01

    Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects in the refin......Modal transition systems (MTS) is a well-studied specification formalism of reactive systems supporting a step-wise refinement methodology. Despite its many advantages, the formalism as well as its currently known extensions are incapable of expressing some practically needed aspects...... in the refinement process like exclusive, conditional and persistent choices. We introduce a new model called parametric modal transition systems (PMTS) together with a general modal refinement notion that overcome many of the limitations and we investigate the computational complexity of modal refinement checking....

  10. Stimulus Modality and Smoking Behavior: Moderating Role of Implicit Attitudes.

    Science.gov (United States)

    Ezeh, Valentine C; Mefoh, Philip

    2015-07-20

    This study investigated whether stimulus modality influences smoking behavior among smokers in South Eastern Nigeria and also whether implicit attitudes moderate the relationship between stimulus modality and smoking behavior. 60 undergraduate students of University of Nigeria, Nsukka were used. Participants were individually administered the IAT task as a measure of implicit attitude toward smoking and randomly assigned into either image condition that paired images of cigarette with aversive images of potential health consequences or text condition that paired images of cigarette with aversive texts of potential health consequences. A one- predictor and one-moderator binary logistic analysis indicates that stimulus modality significantly predicts smoking behavior (p = modality and IAT scores was also significant (p = modality effect was larger for participants in the image group who held more negative implicit attitudes towards smoking. The finding shows the urgent need to introduce the use of aversive images of potential health consequences on cigarette packs in Nigeria.

  11. Imaging for Prostate Cancer Recurrence.

    Science.gov (United States)

    Maurer, Tobias; Eiber, Matthias; Fanti, Stefano; Budäus, Lars; Panebianco, Valeria

    2016-06-01

    Correct identification of metastatic sites in recurrent prostate cancer (PCa) is of crucial importance because it leads to further treatment decisions. To provide an overview on current imaging procedures and their performance in recurrent PCa. Medline search via PubMed was performed with the keywords imaging, recurrent, and prostate cancer as well as more detailed searches including the keywords bone scan, bone scintigraphy, computed tomography, magnetic resonance imaging, positron emission tomography, PET, choline, FDG, prostate-specific membrane antigen, and PSMA, with emphasis on recent literature from 2010 to the present. Non-English published literature was excluded. Abstracts and full-text articles were reviewed and assessed for relevant content. In diagnostic imaging and particularly with newer technologies like positron emission tomography (PET), a profound lack of prospectively designed studies in recurrent PCa has to be noted. In most studies histologic validation has only been performed in a subset of patient cohorts. Heterogeneity of included patient cohorts, lack of standardized assessment, as well as diverging end points, hamper systematic comparison of different image modalities. Thus evidence for currently used imaging in recurrent PCa is only presented descriptively. Computed tomography and magnetic resonance imaging (MRI) as well as bone scintigraphy still represent the standard imaging for recurrent PCa; however, particularly for detection of local recurrence, multiparametric MRI is a valuable imaging modality. PET using choline and particularly tracers against prostate-specific membrane antigen might improve visualization of metastatic lesions. These findings need to be validated in prospective trials. Imaging of recurrent prostate cancer (PCa) is important to guide further treatment. Computed tomography, magnetic resonance imaging, and bone scintigraphy represent the current standard. Positron emission tomography, especially with cancer

  12. Supervised Cross-Modal Factor Analysis for Multiple Modal Data Classification

    KAUST Repository

    Wang, Jingbin

    2015-10-09

    In this paper we study the problem of learning from multiple modal data for purpose of document classification. In this problem, each document is composed two different modals of data, i.e., An image and a text. Cross-modal factor analysis (CFA) has been proposed to project the two different modals of data to a shared data space, so that the classification of a image or a text can be performed directly in this space. A disadvantage of CFA is that it has ignored the supervision information. In this paper, we improve CFA by incorporating the supervision information to represent and classify both image and text modals of documents. We project both image and text data to a shared data space by factor analysis, and then train a class label predictor in the shared space to use the class label information. The factor analysis parameter and the predictor parameter are learned jointly by solving one single objective function. With this objective function, we minimize the distance between the projections of image and text of the same document, and the classification error of the projection measured by hinge loss function. The objective function is optimized by an alternate optimization strategy in an iterative algorithm. Experiments in two different multiple modal document data sets show the advantage of the proposed algorithm over other CFA methods.

  13. Coherence for Modalities

    CERN Document Server

    Dosen, K

    2008-01-01

    Positive modalities in systems in the vicinity of S4 and S5 are investigated in terms of categorial proof theory. Coherence and maximality results are demonstrated, and connections with mixed distributive laws and Frobenius algebras are exhibited.

  14. Modalities in medieval logic

    OpenAIRE

    2009-01-01

    This dissertation is an exercise in conceptual archeology. Using the tools of contemporary logic we analyse texts in medieval logic and reconstruct their logical theories by creating a formal framework which models them. Our focus is medieval texts which deal with various modalities: the writings on alethic modalities by William of Sherwood, Pseudo-Aquinas, and St. Thomas Aquinas in the 13th century, St. Anselm of Canterbury’s writings on facere and debere in the late 11th century; Lambert of...

  15. Trends in the utilization of imaging for upper tract urothelial carcinoma.

    Science.gov (United States)

    Mohapatra, Anand; Vemana, Goutham; Bhayani, Sam; Baty, Jack; Vetter, Joel; Strope, Seth A

    2016-05-01

    To evaluate the changes in use of the different imaging modalities for diagnosing upper tract urothelial carcinoma (UTUC) and assess how these changes have affected tumor stage at the time of surgery. We assessed the Surveillance, Epidemiology, and End Results (SEER) cancer registry and linked Medicare claims data (1992-2009) for 5377 patients who underwent surgery for UTUC. We utilized International Classification of Disease-Oncology 3 codes to identify UTUC. International Classification of Disease, ninth Revision, Clinical Modification and Current Procedure Terminology codes identified surgical treatment and imaging modalities. We assessed for use of intravenous pyelography, retrograde pyelography (RGP), computed tomography urography (CTU), magnetic resonance urography (MRU), and endoscopy. For each modality, patients were categorized as having received the modality at least once or not at all. Patient characteristics were compared using chi-squared tests. Usage of imaging modalities and tumor stage was trended using Cochran-Armitage tests. We stratified our data into 2 multivariate logistic regression models to determine the effect of imaging modalities on tumor stage: 1992 to 1999 with all modalities except MRU, and 2000 to 2009 with all modalities. Our patient population was predominantly White males of more than 70 years old. Intravenous pyelography and RGP declined in use (62% and 72% in 1992 vs. 6% and 58% in 2009, respectively) while computed tomography urography, MRU, and endoscopy increased in use (2%, 0%, and 37% in 1992 vs. 44%, 6%, and 66% in 2009, respectively). In both regression analyses, endoscopy was associated with lower-stage tumors. In the 2000 to 2009 model, RGP was associated with lower-stage tumors, and MRU was associated with higher-stage tumors. Finally, our data showed an increasing number of modalities utilized for each patient (1% receiving 4 modalities in 1992 vs. 20% in 2009). We found trends toward the utilization of newer imaging

  16. Compact chelator-free Ni-integrated CuS nanoparticles with tunable near-infrared absorption and enhanced relaxivity for in vivo dual-modal photoacoustic/MR imaging

    Science.gov (United States)

    Gao, Duyang; Zhang, Pengfei; Liu, Chengbo; Chen, Chi; Gao, Guanhui; Wu, Yayun; Sheng, Zonghai; Song, Liang; Cai, Lintao

    2015-10-01

    A chelator-free doping method is developed for constructing a Ni-integrated CuS nanostructure as a novel PA/MRI contrast agent. It exhibits tunable near-infrared absorption. Moreover, the hybrid nanostructure has demonstrated a dramatically enhanced T1 relaxivity compared with Ni ions. Due to these unique properties, chelator-free nanoparticles have been successfully applied for in vivo PA/MRI dual-modal imaging.A chelator-free doping method is developed for constructing a Ni-integrated CuS nanostructure as a novel PA/MRI contrast agent. It exhibits tunable near-infrared absorption. Moreover, the hybrid nanostructure has demonstrated a dramatically enhanced T1 relaxivity compared with Ni ions. Due to these unique properties, chelator-free nanoparticles have been successfully applied for in vivo PA/MRI dual-modal imaging. Electronic supplementary information (ESI) available: Details of the experimental procedure and Fig. S1 to S5. See DOI: 10.1039/c5nr05237h

  17. An optimized algorithm of image stitching in the case of a multi-modal probe for monitoring the evolution of scars

    Science.gov (United States)

    Kassab, R.; Treuillet, S.; Marzani, F.; Pieralli, C.; Lapayre, J. C.

    2013-03-01

    We propose a new system that makes possible to monitor the evolution of scars after the excision of a tumorous dermatosis. The hardware part of this system is composed of a new optical innovative probe with which two types of images can be acquired simultaneously: an anatomic image acquired under a white light and a functional one based on autofluorescence from the protoporphyrin within the cancer cells. For technical reasons related to the maximum size of the area covered by the probe, acquired images are too small to cover the whole scar. That is why a sequence of overlapping images is taken in order to cover the required area. The main goal of this paper is to describe the creation of two panoramic images (anatomic and functional). Fluorescence images do not have enough salient information for matching the images; stitching algorithms are applied over each couple of successive white light images to produce an anatomic panorama of the entire scar. The same transformations obtained from this step are used to register and stitch the functional images. Several experiments have been implemented using different stitching algorithms (SIFT, ASIFT and SURF), with various transformation parameters (angles of rotation, projection, scaling, etc…) and different types of skin images. We present the results of these experiments that propose the best solution. Thus, clinician has two panoramic images superimposed and usable for diagnostic support. A collaborative layer is added to the system to allow sharing panoramas among several practitioners over different places.

  18. New Ultrasound Modalities in Rheumatology.

    Science.gov (United States)

    Gutierrez, Marwin; Okano, Tadashi; Reginato, Anthony M; Cazenave, Tomas; Ventura-Rios, Lucio; Bertolazzi, Chiara; Pineda, Carlos

    2015-12-01

    Over the years, ultrasound (US) has accumulated important evidence supporting its relevant role for the assessment of inflammatory processes of different rheumatologic diseases, as well as in the follow-up in assessing the response to different therapeutic approaches. This has been possible because of the increase in training, competency, and knowledge, as well as the rapid progress in the US technologies.Currently, some US machines can be equipped by sophisticated software modalities (i.e., 3-dimensional US, elastosonography, automated cardiovascular software, and fusion imaging) that can augment US traditional role as a safe, fast, and easy-to-perform modality and giving it new life and increased relevance in rheumatology. In this article, we evaluated the US developments, from conventional B-mode to more sophisticated technologies, and their potential clinical impact in the field of rheumatology.Three-dimensional US can improve the accuracy of the assessment of bone erosions and the quantification of power Doppler because of its multiplanar view including coronal, axial and sagital view. Elastosonography is still looking for its role in rheumatology. Preliminary works induce us to consider it as a promise tool for the assessment of tendon pathology and skin of patients with connective tissue disorders. The automated method for the measurement of carotid intima-media thickness permits a rapid and accurate assessment. The preliminary published data showed that it is reliable, and valid compared to the traditional method; they also support the future of rheumatologists as the direct operators in evaluating the cardiovascular risk in daily practice. Fusion imaging increases the diagnostic power of US, displaying simultaneously in the monitor, the US image, and the corresponding computed tomography/magnetic resonance imaging image. However, there are no sufficient data supporting its application in daily rheumatologic practice.

  19. A newer technique to program a semi adjustable articulator

    Directory of Open Access Journals (Sweden)

    R Venkateshwaran

    2014-01-01

    Full Text Available Introduction: The difficulty in reproducing accurate angle of condylar guidance in semi-adjustable articulators. Purpose: The purpose of this study was to determine the correlation between the angle of horizontal condylar inclination obtained on a semi-adjustable articulator and the corresponding angle traced on a temporomandibular joint (TMJ radiograph in completely edentulous subject. Materials and Methods: The horizontal condylar inclination angle was obtained in a semi-adjustable articulator by means of height tracer (extra oral tracing device and interocclusal records to program the articulator in 21 subjects. TMJ radiograph were recorded by the same operator with same orthopantomogram (OPG machine (planmeca. Tracings of inclines of articular eminence on the radiograph were compared with the angle obtained on a semi-adjustable articulator. Each measurement was made using manual methods of measuring angle. The results were subjected to the Pearson correlation statistical analysis (α =0.01. Results: The outline of the articular eminence in a TMJ tomogram radiographic image was identified and traced. A significant correlation was found between the horizontal condylar inclination on a semi-adjustable and the corresponding TMJ tomogram radiographic image for both right (R = 0.789; P = 0.001 and left (i = 0.747; P = 0.004 sides. Conclusion: The articular eminence traced on a TMJ tomogram image represents the horizontal condylar inclination with a mean difference of 5° in 21 subjects evaluated.

  20. Toward predicate approaches to modality

    CERN Document Server

    Stern, Johannes

    2016-01-01

    In this volume, the author investigates and argues for, a particular answer to the question: What is the right way to logically analyze modalities from natural language within formal languages? The answer is: by formalizing modal expressions in terms of predicates. But, as in the case of truth, the most intuitive modal principles lead to paradox once the modal notions are conceived as predicates. The book discusses the philosophical interpretation of these modal paradoxes and argues that any satisfactory approach to modality will have to face the paradoxes independently of the grammatical category of the modal notion. By systematizing modal principles with respect to their joint consistency and inconsistency, Stern provides an overview of the options and limitations of the predicate approach to modality that may serve as a useful starting point for future work on predicate approaches to modality. Stern also develops a general strategy for constructing philosophically attractive theories of modal notions conce...

  1. The Difference Between Modal Verbs in Deontic and Epistemic Modality

    Directory of Open Access Journals (Sweden)

    Menik Winiharti

    2012-10-01

    Full Text Available Modality is always interesting to discuss. Understanding it is crucial for both language teachers and learners. This essay discusses the concept of modality, its types and uses. It has a goal to find the difference between deontic and epistemic modality that is indicated by their modal verbs. It also provides the readers a better understanding of modality, particularly of its types and uses. The result of the analysis shows that in general, deontic modality indicates obligation and permission, while epistemic modality expresses possibility and prediction. However, the difference between deontic and epistemic modality is not a clear cut, since one single modal verb can express both types, and one single proposition can be expressed by more than one modal verb.  

  2. Computer-based image analysis in radiological diagnostics and image-guided therapy 3D-Reconstruction, contrast medium dynamics, surface analysis, radiation therapy and multi-modal image fusion

    CERN Document Server

    Beier, J

    2001-01-01

    This book deals with substantial subjects of postprocessing and analysis of radiological image data, a particular emphasis was put on pulmonary themes. For