WorldWideScience

Sample records for neutrophil elastase activity

  1. Human neutrophil leukocyte elastase activity is inhibited by Phenol Red

    Science.gov (United States)

    Neutrophil elastase (NE) activity in urine, sputum and nasal mucous is used as an indicator of inflammation due to viral or bacterial infection. However, bovine nasal mucous neutrophils collected, lysed and stored in Dulbecco's minimal medium containing Phenol Red, showed no NE activity with methox...

  2. Activity of neutrophil elastase reflects the progression of acute pancreatitis

    DEFF Research Database (Denmark)

    Novovic, Srdan; Andersen, Anders M; Nord, Magnus

    2013-01-01

    Abstract Objective. Neutrophil elastase (NE) concentration is associated with progression of acute pancreatitis (AP), but measuring total NE concentration includes biologically inactive NE. This study aims to investigate the relationship between NE activity and the aetiology and severity of AP...... was associated with predicted severity of AP and AP-associated respiratory failure. Specific NE inhibitors may have therapeutic potential in acute pancreatitis....

  3. Neutrophil elastase induces inflammation and pain in mouse knee joints via activation of proteinase-activated receptor-2.

    Science.gov (United States)

    Muley, Milind M; Reid, Allison R; Botz, Bálint; Bölcskei, Kata; Helyes, Zsuzsanna; McDougall, Jason J

    2016-02-01

    Neutrophil elastase plays a crucial role in arthritis. Here, its potential in triggering joint inflammation and pain was assessed, and whether these effects were mediated by proteinase-activated receptor-2 (PAR2). Neutrophil elastase (5 μg) was injected into the knee joints of mice and changes in blood perfusion, leukocyte kinetics and paw withdrawal threshold were assessed. Similar experiments were performed in animals pretreated with the neutrophil elastase inhibitor sivelestat, the PAR2 antagonist GB83, the p44/42 MAPK inhibitor U0126 and in PAR2 receptor knockout (KO) mice. Neutrophil elastase activity was also evaluated in arthritic joints by fluorescent imaging and sivelestat was assessed for anti-inflammatory and analgesic properties. Intra-articular injection of neutrophil elastase caused an increase in blood perfusion, leukocyte kinetics and a decrease in paw withdrawal threshold. Sivelestat treatment suppressed this effect. The PAR2 antagonist GB83 reversed neutrophil elastase-induced synovitis and pain and these responses were also attenuated in PAR2 KO mice. The MAPK inhibitor U0126 also blocked neutrophil elastase-induced inflammation and pain. Active neutrophil elastase was increased in acutely inflamed knees as shown by an activatable fluorescent probe. Sivelestat appeared to reduce neutrophil elastase activity, but had only a moderate anti-inflammatory effect in this model. Neutrophil elastase induced acute inflammation and pain in knee joints of mice. These changes are PAR2-dependent and appear to involve activation of a p44/42 MAPK pathway. Blocking neutrophil elastase, PAR2 and p44/42 MAPK activity can reduce inflammation and pain, suggesting their utility as therapeutic targets. © 2015 The British Pharmacological Society.

  4. In Vitro Activities against Cystic Fibrosis Pathogens of Synthetic Host Defence Propeptides Processed by Neutrophil Elastase.

    LENUS (Irish Health Repository)

    Desgranges, Stephane

    2011-02-22

    The antimicrobial and haemolytic activities of a host defence peptide can be controlled by modification as a propeptide of reduced net charge which can be processed by neutrophil elastase, a serine protease involved in chronic airway inflammation and infections associated with cystic fibrosis.

  5. Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK-CHOP branch of the unfolded protein response.

    Science.gov (United States)

    Grechowa, Irina; Horke, Sven; Wallrath, Anja; Vahl, Christian-Friedrich; Dorweiler, Bernhard

    2017-09-01

    Human neutrophil elastase impacts on atherosclerotic plaque stability by inducing apoptosis in endothelial cells. Our aim was to investigate the proapoptotic mechanism of elastase on endothelial cells and to evaluate the presence of elastase in human plaque material. Human endothelial cells were treated with purified human neutrophil elastase. Apoptosis was assayed by capsase-3/7 activation, TUNEL, and sub-G 1 assay. Activation of unfolded protein response (UPR) effector molecules binding Ig protein, soluble X-binding protein-1, protein kinase RNA-like ER kinase (PERK), and C/EBP-homologous protein (CHOP) was analyzed by RT-PCR, immunocytochemistry, and Western blot. Genetic silencing of CHOP was achieved by small interfering RNA. Elastase induces autophagic-apoptotic forms of endothelial cell death in a time- and dose-dependent manner, in conjunction with a significant increase in phosphorylation/expression of the canonical UPR-activation markers PERK and CHOP. By using CHOP knockdown, we identified CHOP as a key mediator of elastase-induced endothelial cell death. Immunohistochemical analysis of human rupture-prone plaque specimens confirmed the presence of elastase and colocalization with apoptosis. We have demonstrated for the first time that the PERK-CHOP branch of the UPR is causally involved in elastase-induced apoptosis of endothelial cells. Ex vivo analysis of human rupture-prone plaques confirmed the presence of elastase and its colocalization with markers of apoptosis. This novel role of elastase underlines the potential of combined targeting of elastase and endoplasmic reticulum stress in the prevention of plaque progression and cardiovascular events.-Grechowa, I., Horke, S., Wallrath, A., Vahl, C.-F., Dorweiler, B. Human neutrophil elastase induces endothelial cell apoptosis by activating the PERK-CHOP branch of the unfolded protein response. © FASEB.

  6. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling

    DEFF Research Database (Denmark)

    Kristensen, Jacob Hull; Karsdal, Morten A.; Sand, Jannie M. B.

    2015-01-01

    Background: During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for ...

  7. Neutrophil elastase cleaves VEGF to generate a VEGF fragment with altered activity.

    Science.gov (United States)

    Kurtagic, Elma; Jedrychowski, Mark P; Nugent, Matthew A

    2009-03-01

    Excessive neutrophil elastase (NE) activity and altered vascular endothelial growth factor (VEGF) signaling have independently been implicated in the development and progression of pulmonary emphysema. In the present study, we investigated the potential link between NE and VEGF. We noted that VEGF(165) is a substrate for NE. Digestion of purified VEGF(165) with NE generated a partially degraded disulfide-linked fragment of VEGF. Mass spectrometric analysis revealed that NE likely cleaves VEGF(165) at both the NH(2) and COOH termini to produce VEGF fragment chains approximately 5 kDa reduced in size. NE treatment of VEGF-laden endothelial cell cultures and smooth muscle cells endogenously expressing VEGF generated VEGF fragments similar to those observed with purified VEGF(165). NE-generated VEGF fragment showed significantly reduced binding to VEGF receptor 2 and heparin yet retained the ability to bind to VEGF receptor 1. Interestingly, VEGF fragment showed altered signaling in pulmonary artery endothelial cells compared with intact VEGF(165). Specifically, treatment with VEGF fragment did not activate extracellular-regulated kinases 1 and 2 (ERK1/2), yet resulted in enhanced activation of protein kinase B (Akt). Treatment of monocyte/macrophage RAW 264.7 cells with VEGF fragment, on the other hand, led to both Akt and ERK1/2 activation, increased VEGFR1 expression, and stimulated chemotaxis. These findings suggest that the tissue response to NE-mediated injury might involve the generation of diffusible VEGF fragments that stimulate inflammatory cell recruitment and activation via VEGF receptor 1.

  8. Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanilloid 4 (TRPV4) to Cause Inflammation and Pain.

    Science.gov (United States)

    Zhao, Peishen; Lieu, TinaMarie; Barlow, Nicholas; Sostegni, Silvia; Haerteis, Silke; Korbmacher, Christoph; Liedtke, Wolfgang; Jimenez-Vargas, Nestor N; Vanner, Stephen J; Bunnett, Nigel W

    2015-05-29

    Proteases that cleave protease-activated receptor-2 (PAR(2)) at Arg(36)↓Ser(37) reveal a tethered ligand that binds to the cleaved receptor. PAR(2) activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR(2) at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR(2)-biased agonism is uncertain. We investigated whether neutrophil elastase, a biased agonist of PAR(2), causes inflammation and pain by activating PAR2 and TRP vanilloid 4 (TRPV4). Elastase cleaved human PAR(2) at Ala(66)↓Ser(67) and Ser(67)↓Val(68). Elastase stimulated PAR(2)-dependent cAMP accumulation and ERK1/2 activation, but not Ca(2+) mobilization, in KNRK cells. Elastase induced PAR(2) coupling to Gαs but not Gαq in HEK293 cells. Although elastase did not promote recruitment of G protein-coupled receptor kinase-2 (GRK(2)) or β-arrestin to PAR(2), consistent with its inability to promote receptor endocytosis, elastase did stimulate GRK6 recruitment. Elastase caused PAR(2)-dependent sensitization of TRPV4 currents in Xenopus laevis oocytes by adenylyl cyclase- and protein kinase A (PKA)-dependent mechanisms. Elastase stimulated PAR(2)-dependent cAMP formation and ERK1/2 phosphorylation, and a PAR(2)- and TRPV4-mediated influx of extracellular Ca(2+) in mouse nociceptors. Adenylyl cyclase and PKA-mediated elastase-induced activation of TRPV4 and hyperexcitability of nociceptors. Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR(2)- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR(2) causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR(2) as a mediator of protease-driven inflammation and pain.

  9. Neutrophil Cathepsin G, but Not Elastase, Induces Aggregation of MCF-7 Mammary Carcinoma Cells by a Protease Activity-Dependent Cell-Oriented Mechanism

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2014-01-01

    Full Text Available We previously found that a neutrophil serine protease, cathepsin G, weakens adherence to culture substrates and induces E-cadherin-dependent aggregation of MCF-7 human breast cancer cells through its protease activity. In this study, we examined whether aggregation is caused by degradation of adhesion molecules on the culture substrates or through an unidentified mechanism. We compared the effect of treatment with cathepsin G and other proteases, including neutrophil elastase against fibronectin- (FN- coated substrates. Cathepsin G and elastase potently degraded FN on the substrates and induced aggregation of MCF-7 cells that had been subsequently seeded onto the substrate. However, substrate-bound cathepsin G and elastase may have caused cell aggregation. After inhibiting the proteases on the culture substrates using the irreversible inhibitor phenylmethylsulfonyl fluoride (PMSF, we examined whether aggregation of MCF-7 cells was suppressed. PMSF attenuated cell aggregation on cathepsin G-treated substrates, but the effect was weak in cells pretreated with high concentrations of cathepsin G. In contrast, PMSF did not suppress cell aggregation on elastase-treated FN. Moreover, cathepsin G, but not elastase, induced aggregation on poly-L-lysine substrates which are not decomposed by these enzymes, and the action of cathepsin G was nearly completely attenuated by PMSF. These results suggest that cathepsin G induces MCF-7 aggregation through a cell-oriented mechanism.

  10. Synthesis and evaluation of benzoxazinone derivatives on activity of human neutrophil elastase and on hemorrhagic shock-induced lung injury in rats.

    Science.gov (United States)

    Hsieh, Pei-Wen; Yu, Huang-Ping; Chang, Yi-Ju; Hwang, Tsong-Long

    2010-07-01

    A new series of benzoxazinone analogs were designed, synthesized, and assayed to determine their effects on superoxide anion generation and neutrophil elastase (NE) release in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-activated human neutrophils. Of these, compounds 6-10 showed a potent dual inhibitory effect on NE release and superoxide anion generation. In contrast, compounds 11-15 exhibited highly selective and potent inhibitory activities on NE release. These results indicate that the inhibitory activity on NE release in FMLP-activated human neutrophils depended on the position of chloro-substituent in the A ring. On the other hand, 13 significantly attenuated the increase in myeloperoxidase (MPO) activity and edema in the lung of rats after trauma-hemorrhagic shock. Therefore, these compounds could be developed as new NE inhibitors. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  11. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury

    DEFF Research Database (Denmark)

    Bless, N M; Smith, D; Charlton, J

    1997-01-01

    Neutrophils play an important part in the development of acute inflammatory injury. Human neutrophils contain high levels of the serine protease elastase, which is stored in azurophilic granules and is secreted in response to inflammatory stimuli. Elastase is capable of degrading many components...... of extracellular matrix [1-4] and has cytotoxic effects on endothelial cells [5-7] and airway epithelial cells. Three types of endogenous protease inhibitors control the activity of neutrophil elastase, including alpha-1 protease inhibitor (alpha-1PI), alpha-2 macroglobulin and secreted leukoproteinase inhibitor...... (SLPI) [8-10]. A disturbed balance between neutrophil elastase and these inhibitors has been found in various acute clinical conditions (such as adult respiratory syndrome and ischemia-reperfusion injury) and in chronic diseases. We investigated the effect of NX21909, a selected oligonucleotide (aptamer...

  12. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa

    Science.gov (United States)

    Loo, Shining; Kam, Antony; Xiao, Tianshu; Nguyen, Giang K. T.; Liu, Chuan Fa; Tam, James P.

    2016-01-01

    Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases. PMID:27991569

  13. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa.

    Science.gov (United States)

    Loo, Shining; Kam, Antony; Xiao, Tianshu; Nguyen, Giang K T; Liu, Chuan Fa; Tam, James P

    2016-12-19

    Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases.

  14. Aggressive re-warming at 38.5 degrees C following deep hypothermia at 21 degrees C increases neutrophil membrane bound elastase activity and pro-inflammatory factor release

    NARCIS (Netherlands)

    Tang, Min; Zhao, Xiao-gang; He, Yi; Gu, Yan; Mei, Ju

    2016-01-01

    Background: Cardiopulmonary bypass (CPB) is often performed under hypothermic condition. The effects of hypothermia and re-warming on neutrophil activity are unclear. This study aimed to compare the effects of different hypothermia and re-warming regimens on neutrophil membrane bound elastase (MBE)

  15. Neutrophil elastase-mediated increase in airway temperature during inflammation

    DEFF Research Database (Denmark)

    Schmidt, Annika; Belaaouaj, Azzaq; Bissinger, Rosi

    2014-01-01

    in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Results...... Here we show a temperature of ~ 38 °C in neutrophil-dominated mucus plugs of chronically infected CF patients and implicate neutrophil elastase:α1-proteinase inhibitor complex formation as a relevant mechanism for the local temperature rise. Gene expression of the main pathogen in CF, P. aeruginosa......, under anaerobic conditions at 38 °C vs 30 °C revealed increased virulence traits and characteristic cell wall changes. Conclusion Neutrophil elastase mediates increase in airway temperature, which may contribute to P. aeruginosa selection during the course of chronic infection in CF....

  16. Neutrophil elastase processing of Gelatinase A is mediated by extracellular matrix

    Energy Technology Data Exchange (ETDEWEB)

    Rice, A.; Banda, M.J. [Univ. of California, San Franciso, CA (United States)

    1995-07-18

    Gelatinase A (72-kDa type IV collagenase) is a metalloproteinase that is expressed by many cells in culture and is overexpressed by some tumor cells. It has been suggested that the serine proteinase neutrophil elastase might play a role iii the posttranslational processing of gelatinase A and that noncatalytic interactions between gelatinase A and components of the extracellular matrix might alter potential processing pathways. These questions were addressed with the use of gelatin substrate zymography, gelatinolytic activity assays, and amino acid sequence analysis. We found that neutrophil elastase does proteolytically modify gelatinase A by cleaving at a number of sites within gelatinase A. Sequential treatment of gelatinase A with 4-aminophenylmercuric acetate (APMA) and neutrophil elastase yielded an active gelatinase with a 4-fold increase in gelatinolytic activity. The increased gelatinolytic activity correlated with that of a 40-kDa fragment of gelatinase A. Matrix components altered the proteolytic modifications in gelatinase A that were mediated by neutrophil elastase. In the absence of gelatin, neutrophil elastase destructively degraded gelatinase A by hydrolyzing at least two bonds within the fibronectin-like gelatin-binding domain of gelatinase A. In the presence of gelatin, these two inactivating cleavage sites were protected, and cleavage at a site within the hemopexin-like carboxyl-terminal domain resulted in a truncated yet active gelatinase. The results suggest a regulatory role for extracellular matrix molecules in stabilizing gelatinase A fragments and in altering the availability of sites susceptible to destructive proteolysis by neutrophil elastase. 32 refs., 10 figs.

  17. Neutrophil elastase and neurovascular injury following focal stroke and reperfusion

    NARCIS (Netherlands)

    Stowe, A.M.; Adair-Kirk, T.L.; Gonzales, E.R.; Perez, R.S.G.M.; Shah, A.M.; Park, T.S.; Gidday, J.M.

    2009-01-01

    Neutrophil elastase (NE) degrades basal lamina and extracellular matrix molecules, and recruits leukocytes during inflammation; however, a basic understanding of the role of NE in stroke pathology is lacking. We measured an increased number of extravascular NE-positive cells, as well as increased

  18. Characterization of Total Phenolic Constituents from the Stems of Spatholobus suberectus Using LC-DAD-MSn and Their Inhibitory Effect on Human Neutrophil Elastase Activity

    Directory of Open Access Journals (Sweden)

    Yiming Li

    2013-06-01

    Full Text Available Spatholobus suberectus Dunn, belonging to the legume family (Fabaceae, has been used as a Traditional Chinese Medicine for the treatment of anemia, menoxenia and rheumatism. A limited number of studies report that various types of flavonoids are the main characteristic constituents of this herb. We have now found that S. suberectus contains about 2% phenolic components and characterized the major phenolic components as homogeneous B-type procyanidin conjugates using a liquid chromatography with diode-array detection-ESI mass spectrometry (LC-DAD/ESI-MS method. This is the first report on occurrence of most B-type procyanidins in this herb. Moreover, the total phenolics extract was assayed for inhibitory activity on human neutrophil elastase and its IC50 was found to be 1.33 μg/mL.

  19. Quantitative structure-activity relationship analysis of human neutrophil elastase inhibitors using shuffling classification and regression trees and adaptive neuro-fuzzy inference systems.

    Science.gov (United States)

    Asadollahi-Baboli, M

    2012-07-01

    The purpose of this study was to develop quantitative structure-activity relationship models for N-benzoylindazole derivatives as inhibitors of human neutrophil elastase. These models were developed with the aid of classification and regression trees (CART) and an adaptive neuro-fuzzy inference system (ANFIS) combined with a shuffling cross-validation technique using interpretable descriptors. More than one hundred meaningful descriptors, representing various structural characteristics for all 51 N-benzoylindazole derivatives in the data set, were calculated and used as the original variables for shuffling CART modelling. Five descriptors of average Wiener index, Kier benzene-likeliness index, subpolarity parameter, average shape profile index of order 2 and folding degree index selected by the shuffling CART technique have been used as inputs of the ANFIS for prediction of inhibition behaviour of N-benzoylindazole derivatives. The results of the developed shuffling CART-ANFIS model compared to other techniques, such as genetic algorithm (GA)-partial least square (PLS)-ANFIS and stepwise multiple linear regression (MLR)-ANFIS, are promising and descriptive. The satisfactory results r2p = 0.845, Q2(LOO) = 0.861, r2(L25%O) = 0.829, RMSE(LOO)  = 0.305 and RMSE(L25%O)  = 0.336) demonstrate that shuffling CART-ANFIS models present the relationship between human neutrophil elastase inhibitor activity and molecular descriptors, and they yield predictions in excellent agreement with the experimental values.

  20. Is neutrophil elastase the missing link between emphysema and fibrosis? Evidence from two mouse models

    Directory of Open Access Journals (Sweden)

    Martorana Piero A

    2005-07-01

    Full Text Available Abstract Background The separation of emphysema from fibrosis is not as clear-cut as it was thought in early studies. These two pathologies may be present at the same time in human lungs and in mice either instilled with elastolytic enzymes or bleomycin or exposed to cigarette-smoke. According to a current view, emphysema originates from a protease/antiprotease imbalance, and a role for antiproteases has also been suggested in the modulation of the fibrotic process. In this study we investigate in experimental animal models of emphysema and fibrosis whether neutrophil elastase may constitute a pathogenic link between these two pathologies. Methods This study was done in two animal models in which emphysema and fibrosis were induced either by bleomycin (BLM or by chronic exposure to cigarette-smoke. In order to assess the protease-dependence of the BLM-induced lesion, a group mice was treated with 4-(2-aminoethyl-benzenesulfonyl fluoride hydrochloride, a serine proteinase inhibitor active toward neutrophil elastase. Lungs from each experimental group were used for the immunohistochemical assessment of transforming growth factor-β (TGF-β and transforming growth factor-α (TGF-α and for determination of the mean linear intercept as well as the percent volume densities of fibrosis and of emphysematous changes. Additionally, the lungs were also assessed for desmosine content and for the determination of elastase levels in the pulmonary interstitium by means of immunoelectron microscopy. Results We demonstrate that in BLM-treated mice (i the development of elastolytic emphysema precedes that of fibrosis; (ii significant amount of elastase in alveolar interstitium is associated with an increased expression of TGF-β and TGF-α; and finally, (iii emphysematous and fibrotic lesions can be significantly attenuated by using a protease inhibitor active against neutrophil elastase. Also, in a strain of mice that develop both emphysema and fibrosis after

  1. Inhibition of human neutrophil elastase by pentacyclic triterpenes.

    Directory of Open Access Journals (Sweden)

    Li Feng

    Full Text Available Inhibiting human neutrophil elastase (HNE is a promising strategy for treating inflammatory lung diseases, such as H1N1 and SARS virus infections. The use of sivelestat, the only clinically registered synthesized HNE inhibitor, is largely limited by its risk of organ toxicity because it irreversibly inhibits HNE. Therefore, potent reversible HNE inhibitors are promising alternatives to sivelestat.An in vitro HNE inhibition assay was employed to screen a series of triterpenes. Six pentacyclic triterpenes, but not tetracyclic triterpenes, significantly inhibited HNE. Of these pentacyclic triterpenes, ursolic acid exhibited the highest inhibitory potency (IC50 = 5.51 µM. The HNE inhibitory activity of ursolic acid was further verified using a mouse model of acute smoke-induced lung inflammation. The results of nuclear magnetic resonance and HNE inhibition kinetic analysis showed that the pentacyclic triterpenes competitively and reversibly inhibited HNE. Molecular docking experiments indicated that the molecular scaffold, 28-COOH, and a double bond at an appropriate location in the pentacyclic triterpenes are important for their inhibitory activity.Our results provide insights into the effects of pentacyclic triterpenes on lung inflammatory actions through reversible inhibition of HNE activity.

  2. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis.

    Science.gov (United States)

    Martinod, K; Witsch, T; Farley, K; Gallant, M; Remold-O'Donnell, E; Wagner, D D

    2016-03-01

    ESSENTIALS: Neutrophil elastase (NE) plays a role in extracellular trap formation (NETosis) triggered by microbes. The contribution of NE was evaluated in mouse NETosis models of sterile inflammation and thrombosis. NE is not required for mouse neutrophil NET production in vitro with non-infectious stimuli. NE deficiency had no significant effect on thrombosis in the inferior vena cava stenosis model. Neutrophil serine proteases have been implicated in coagulation and neutrophil extracellular trap (NET) formation. In human neutrophils, neutrophil elastase (NE) translocates to the nucleus during NETosis and cleaves histones, thus aiding in chromatin decondensation. NE(-/-) mice were shown not to release NETs in response to microbes. However, mouse studies evaluating the role of NE in NET formation in sterile inflammation and thrombosis are lacking. We wished to establish if neutrophils from NE(-/-) mice have a defect in NETosis, similar to peptidylarginine deiminase 4 (PAD4(-/-)) mice, and how this might have an impact on venous thrombosis, a model where NETs are produced and are crucial to thrombus development. We performed in vitro NET assays using neutrophils from wild-type (WT), NE(-/-), SerpinB1 (SB1)(-/-) and NE(-/-) SB1(-/-) mice. We compared WT and NE(-/-) animals using the inferior vena cava stenosis model of deep vein thrombosis (DVT). Neutrophil elastase deficiency resulted in a small reduction in ionomycin-induced NET formation in vitro without affecting histone citrullination. However, NET production in response to phorbol 12-myristate 13-acetate or platelet activating factor was normal in neutrophils from two independent NE-deficient mouse lines, and in NE(-/-) SB1(-/-) as compared with SB1(-/-) neutrophils. NE deficiency or inhibition did not prevent NETosis in vivo or DVT outcome. Neutrophil elastase is not required for NET formation in mice. NE(-/-) mice, which form pathological venous thrombi containing NETs, do not phenocopy PAD4(-/-) mice in in

  3. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Takemasa, Akihiro; Ishii, Yoshiki; Fukuda, Takeshi

    2012-12-01

    Neutrophil elastase plays pivotal roles in the pathogenesis of pulmonary fibrosis. The neutrophil elastase inhibitor, sivelestat, could alleviate pulmonary fibrosis; however, the antifibrotic mechanisms have not yet been clarified. We examined the antifibrotic mechanisms, mainly focusing on a key fibrotic cytokine, transforming growth factor (TGF)-β1, in this study. To elucidate the antifibrotic mechanisms of sivelestat, we examined a murine model of bleomycin-induced early-stage pulmonary fibrosis. After intratracheal instillation of bleomycin, sivelestat was administered intraperitoneally once a day for 7 or 14 days. Bronchoalveolar lavage fluid and lung samples were examined on day 7 or day 14 after bleomycin instillation. In the bleomycin-induced early-stage pulmonary fibrosis model, the neutrophil elastase level was increased in the lungs. Sivelestat significantly inhibited the increase in lung collagen content, fibrotic changes, the numbers of total cells (including macrophages, neutrophils and lymphocytes), the levels of the active form of TGF-β1 and phospho-Smad2 in bleomycin-induced early-stage pulmonary fibrosis. The total TGF-β1 levels and relative changes of TGF-β1 mRNA expression, however, were not decreased significantly by sivelestat. These results suggest that sivelestat alleviated bleomycin-induced pulmonary fibrosis via inhibition of both TGF-β activation and inflammatory cell recruitment in the lung.

  4. Equine neutrophil elastase in plasma, laminar tissue, and skin of horses administered black walnut heartwood extract.

    Science.gov (United States)

    de la Rebière de Pouyade, Geoffroy; Riggs, Laura M; Moore, James N; Franck, Thierry; Deby-Dupont, Ginette; Hurley, David J; Serteyn, Didier

    2010-06-15

    Laminitis is a local manifestation of a systemic inflammatory response that is characterized by neutrophil activation and movement of neutrophils into the laminar tissues. Given the evidence for the involvement of neutrophils in the development of laminitis, we measured concentrations of neutrophil elastase, a serine protease released from the azurophilic granules of neutrophils, in plasma, skin and laminar tissues obtained from control horses and horses given black walnut heartwood extract (BWHE) to induce laminitis. Healthy horses (5-15 years old) were randomly assigned to 4 groups: 3 experimental groups given BWHE via nasogastric tube, and a control group given an equal volume of water. The experimental groups consisted of horses euthanized 1.5h (n=5), 3h (n=6) or 12h (n=10) after BWHE administration. Control horses (n=7) were euthanized 12h after intragastric administration of water. Plasma samples were collected in all horses of the control and 12h BWHE groups at 0, 1, 2, 3, 4, 6, 8, 10, and 12h after treatment, and laminar tissue and skin from the middle region of the neck were harvested at the time of euthanasia in all 1.5 and 3h BWHE horses, in 6 of the 12h BWHE horses and in 5 of the control horses. Plasma and tissue concentrations of neutrophil elastase were determined using an equine specific ELISA, and statistical significance was set at plaminitis, and the systemic nature of the inflammatory process. Furthermore, neutrophil elastase may play a key role in the disintegration of the hoof basal membrane and be a target for the development of new treatments for laminitis. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Neutrophil elastase and cathepsin G protein and messenger RNA expression in bone marrow from a patient with Chediak-Higashi syndrome

    Science.gov (United States)

    Burnett, D; Ward, C J; Stockley, R A; Dalton, R G; Cant, A J; Hoare, S; Crocker, J

    1995-01-01

    Aims—To determine whether neutrophil elastase and cathepsin G are expressed, at transcriptional or translational levels, in the bone marrow from a patient with Chediak-Higashi syndrome. Methods—Blood neutrophils were isolated from three patients with Chediak-Higashi disease and bone marrow was collected from one. Cell lysates were analysed for neutrophil elastase and cathepsin G activity by enzyme linked immunosorbent assay and western immunoblotting. Northern blotting was used to detect messenger RNA (mRNA) for cathepsin G, elastase and β-actin in bone marrow extracts, and immunohistochemistry was used to localise the enzymes in marrow myeloid cells. Results—Elastase and cathepsin G were not detected in blood neutrophils from the patients with Chediak-Higashi disease, but were present in bone marrow cells, although immunohistochemistry showed they were not within cytoplasmic granules. The concentrations of elastase and cathepsin G in Chediak-Higashi bone marrow were about 25 and 15%, respectively, of those in normal marrow. Quantitative scanning of northern blots showed that elastase and cathepsin G mRNA, corrected for β-actin mRNA, were expressed equally in normal marrow. Conclusions—Transcription of elastase and cathepsin G mRNA in promyelocytes of patients with Chediak-Higashi disease is normal, but the protein products are deficient in these cells and absent in mature neutrophils. This suggests that the translated proteins are not packaged into azurophil granules but are degaded or secreted from the cells. Images PMID:16695972

  6. Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion.

    Science.gov (United States)

    Bulgari, Michela; Sangiovanni, Enrico; Colombo, Elisa; Maschi, Omar; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2012-12-01

    This study investigated whether the antiinflammatory effect of chamomile infusion at gastric level could be ascribed to the inhibition of metalloproteinase-9 and elastase. The infusions from capitula and sifted flowers (250-1500 µg/mL) and individual flavonoids (10 µM) were tested on phorbol 12-myristate 13-acetate-stimulated AGS cells and human neutrophil elastase. The results indicate that the antiinflammatory activity associated with chamomile infusions from both the capitula and sifted flowers is most likely due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner. The promoter activity was inhibited as well and the decrease of metalloproteinase-9 expression was found to be associated with the inhibition of NF-kB driven transcription. The results further indicate that the flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the antiinflammatory action of the chamomile infusion observed here. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Elevated Neutrophil Elastase in Tears of Ocular Graft-Versus-Host Disease Patients.

    Science.gov (United States)

    Arafat, Samer N; Robert, Marie-Claude; Abud, Tulio; Spurr-Michaud, Sandra; Amparo, Francisco; Dohlman, Claes H; Dana, Reza; Gipson, Ilene K

    2017-04-01

    To investigate the levels of neutrophil elastase (NE), matrix metalloproteinases (MMPs), and myeloperoxidase (MPO) in tear washes of patients with ocular graft-vs-host disease (oGVHD). Case-control study. Based on established criteria, oGVHD patients (n = 14; 28 eyes) and age-/sex-matched healthy controls (n = 14; 28 eyes) were enrolled. Tear washes were collected and analyzed for NE using a single-analyte enzyme-linked immunosorbent assay (ELISA). MMPs (1, 2, 3, 7, 8, 9, 12), MPO, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 were analyzed using multianalyte bead-based ELISA assays. Total MMP activity was measured using a fluorimetric assay. Correlation studies were performed between NE, MMP-8, MMP-9, and MPO within study groups. NE, MMP-8, MMP-9, and MPO levels were elevated in oGVHD tears when compared with controls (P < .0001). NE was the most elevated analyte. MMP activity was higher and TIMP-1 levels were lower in oGVHD than in control (P < .0001). In oGVHD, NE significantly correlated with MMP-8 (r = 0.92), MMP-9 (r = 0.90), and MPO (r = 0.79) (P < .0001). MMP-8 correlated with MMP-9 (r = 0.96, P < .0001), and MPO (r = 0.60, P = .001). MMP-9 correlated with MPO (r = 0.55, P = .002). In controls, NE, MMP-9, and MPO significantly correlated with each other (P < .0001). The marked increase in NE in oGVHD tears that correlated strongly with elevated MMP-8, MMP-9, and MPO suggests a common neutrophilic source and provides evidence of neutrophil activity on the ocular surface of oGVHD patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. BACILLUS THURINGIENSIS ELASTASES WITH INSECTICIDE ACTIVITY

    Directory of Open Access Journals (Sweden)

    E. V. Matseliukh

    2015-10-01

    Full Text Available The purpose of the research was a screening of proteases with elastase activity among Bacillus thuringiensis strains, their isolation, partially purification, study of physicochemical properties and insecticide activity in relation to the larvae of the Colorado beetle. The objects of the investigation were 18 strains of B. thuringiensis, isolated from different sources: sea water, dry biological product "Bitoksibatsillin" and also from natural populations of Colorado beetles of the Crimea, Kherson, Odesa, Mykolaiv and Zaporizhiia regions of Ukraine. Purification of enzymes with elastase activity isolated from above mentioned strains was performed by gel-chromatography and insecticide activity was studied on the 3–4 larvae instar of Colorado beetle. The ability of a number of B. thuringiensis strains to synthesize the proteases with elastase activity has been established. The most active were enzymes obtained from strains IMV B-7465, IMV B-7324 isolated from sea water, and strains 9, 902, Bt-H and 0-239 isolated from Colorado beetles. The study of the physicochemical properties of the partially purified proteases of these strains showed that they belonged to enzymes of the serine type. Peptidases of a number of B. thuringiensis strains (IMV B-7324, IMV B-7465, 902, 0-239, 9 are metal-dependent enzymes. Optimal conditions of action of all tested enzymes are the neutral and alkaline рН values and the temperatures of 30–40 °С. The studies of influence of the complex enzyme preparations and partially purified ones of B. thuringiensis strains on the larvae instar of Colorado beetles indicated that enzymes with elastase activity could be responsible for insecticide action of the tested strains.

  9. SP-A binds alpha1-antitrypsin in vitro and reduces the association rate constant for neutrophil elastase

    Directory of Open Access Journals (Sweden)

    Carrabino Natalia

    2005-12-01

    Full Text Available Abstract Background α1-antitrypsin and surfactant protein-A (SP-A are major lung defense proteins. With the hypothesis that SP-A could bind α1-antitrypsin, we designed a series of in vitro experiments aimed at investigating the nature and consequences of such an interaction. Methods and results At an α1-antitrypsin:SP-A molar ratio of 1:1, the interaction resulted in a calcium-dependent decrease of 84.6% in the association rate constant of α1-antitrypsin for neutrophil elastase. The findings were similar when SP-A was coupled with the Z variant of α1-antitrypsin. The carbohydrate recognition domain of SP-A appeared to be a major determinant of the interaction, by recognizing α1-antitrypsin carbohydrate chains. However, binding of SP-A carbohydrate chains to the α1-antitrypsin amino acid backbone and interaction between carbohydrates of both proteins are also possible. Gel filtration chromatography and turnover per inactivation experiments indicated that one part of SP-A binds several molar parts of α1-antitrypsin. Conclusion We conclude that the binding of SP-A to α1-antitrypsin results in a decrease of the inhibition of neutrophil elastase. This interaction could have potential implications in the physiologic regulation of α1-antitrypsin activity, in the pathogenesis of pulmonary emphysema, and in the defense against infectious agents.

  10. Elafin, an elastase-specific inhibitor, is cleaved by its cognate enzyme neutrophil elastase in sputum from individuals with cystic fibrosis.

    LENUS (Irish Health Repository)

    Guyot, Nicolas

    2008-11-21

    Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5-Lys-6 and Val-9-Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6-Gln-57 and Ser-10-Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.

  11. Usefulness of a selective neutrophil elastase inhibitor, sivelestat, in acute lung injury patients with sepsis

    Directory of Open Access Journals (Sweden)

    Miyoshi S

    2013-04-01

    Full Text Available Seigo Miyoshi,1 Hironobu Hamada,1,2 Ryoji Ito,1 Hitoshi Katayama,1 Kazunori Irifune,1 Toshimitsu Suwaki,3 Norihiko Nakanishi,4 Takanori Kanematsu,5 Kentaro Dote,6 Mayuki Aibiki,7 Takafumi Okura,1 Jitsuo Higaki1 1Department of Integrated Medicine and Informatics, Ehime University, Graduate School of Medicine, Toon, 2Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 3Department of Respiratory Medicine, Sumitomo Besshi Hospital, Niihama, 4Department of Respiratory Medicine, Ehime Prefectural Central Hospital, Matsuyama, 5Department of Respiratory Medicine, Matsuyama Red Cross Hospital, Matsuyama, 6Intensive Care Division, Ehime University Hospital, Toon, 7Department of Emergency Medicine, School of Medicine, Ehime University, Toon, Japan Background: Neutrophil elastase plays a crucial role in the development of acute lung injury (ALI in patients with systemic inflammatory response syndrome (SIRS. The clinical efficacy of the neutrophil elastase inhibitor, sivelestat, for patients with ALI associated with SIRS has not been convincingly demonstrated. The aim of this study was to determine if there are clinical features of patients with this condition that affect the efficacy of sivelestat. Methods: This was a retrospective study of 110 ALI patients with SIRS. Clinical information, including the etiology of ALI, the number of organs failing, scoring systems for assessing the severity of illness, and laboratory data, was collected at the time of diagnosis. Information on the number of ventilator-free days (VFDs and changes in PaO2/FIO2 (ΔP/F before and 7 days after the time of ALI diagnosis was also collected. The effect of sivelestat on ALI patients was also examined based on whether they had sepsis and whether their initial serum procalcitonin level was ≥0.5 ng/mL. Results: There were 70 patients who were treated with sivelestat and 40 control patients. VFDs and ΔP/F were significantly higher in the treated

  12. Serum and salivary matrix metalloproteinases, neutrophil elastase, myeloperoxidase in patients with chronic or aggressive periodontitis.

    Science.gov (United States)

    Nizam, Nejat; Gümüş, Pınar; Pitkänen, Jari; Tervahartiala, Taina; Sorsa, Timo; Buduneli, Nurcan

    2014-10-01

    Salivary, serum matrix metalloproteinase-8 (MMP-8), tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), neutrophil elastase (NE), and myeloperoxidase (MPO) levels were investigated in generalized chronic periodontitis (GCP), generalized aggressive periodontitis (GAgP), and healthy groups. Whole-mouth clinical periodontal measurements were recorded. Salivary, serum concentrations of MMP-8, MPO, TIMP-1, and NE were determined by immunofluorometric assay or ELISA in 18 patients with GCP, 23 patients with GAgP, 18 individuals with healthy periodontium. Patients in the GAgP group were younger than the other groups (pperiodontitis groups. Salivary, serum MPO, and salivary NE concentrations were higher; TIMP-1 concentrations were lower in the periodontitis groups than the controls (pperiodontal parameters in patients with generalized periodontitis.

  13. Usefulness of a selective neutrophil elastase inhibitor, sivelestat, in acute lung injury patients with sepsis

    Science.gov (United States)

    Miyoshi, Seigo; Hamada, Hironobu; Ito, Ryoji; Katayama, Hitoshi; Irifune, Kazunori; Suwaki, Toshimitsu; Nakanishi, Norihiko; Kanematsu, Takanori; Dote, Kentaro; Aibiki, Mayuki; Okura, Takafumi; Higaki, Jitsuo

    2013-01-01

    Background Neutrophil elastase plays a crucial role in the development of acute lung injury (ALI) in patients with systemic inflammatory response syndrome (SIRS). The clinical efficacy of the neutrophil elastase inhibitor, sivelestat, for patients with ALI associated with SIRS has not been convincingly demonstrated. The aim of this study was to determine if there are clinical features of patients with this condition that affect the efficacy of sivelestat. Methods This was a retrospective study of 110 ALI patients with SIRS. Clinical information, including the etiology of ALI, the number of organs failing, scoring systems for assessing the severity of illness, and laboratory data, was collected at the time of diagnosis. Information on the number of ventilator-free days (VFDs) and changes in PaO2/FIO2 (ΔP/F) before and 7 days after the time of ALI diagnosis was also collected. The effect of sivelestat on ALI patients was also examined based on whether they had sepsis and whether their initial serum procalcitonin level was ≥0.5 ng/mL. Results There were 70 patients who were treated with sivelestat and 40 control patients. VFDs and ΔP/F were significantly higher in the treated patients than in the control patients. However, there was no significant difference in the patient survival rate between the two groups. Sivelestat was more effective in ALI patients with a PaO2/FIO2 ratio ≥ 140 mmHg or sepsis. Sivelestat significantly prolonged survival and led to higher VFDs and increased ΔP/F in septic patients and patients with initial serum procalcitonin levels ≥ 0.5 ng/mL. Conclusion The results may facilitate a future randomized controlled trial to determine whether sivelestat is beneficial for ALI patients with sepsis. PMID:23596346

  14. Prognostic Significance of Immunoreactive Neutrophil Elastase in Human Breast Cancer: Long-Term Follow-Up Results in 313 Patients

    Directory of Open Access Journals (Sweden)

    Miwa Akizuki

    2007-03-01

    Full Text Available OBJECTIVE: We have measured the concentration of immunoreactive neutrophil elastase (ir-NE in the tumor extracts of 313 primary human breast cancers. Sufficient time has elapsed, and we are now ready to analyze its prognostic value in human breast cancer. METHODS: ir-NE concentration in tumor extracts was determined with an enzyme-linked immunosorbent assay that enables a rapid measurement of both free-form ir-NE and the α1-protease inhibitor-complexed form of ir-NE. We analyzed the prognostic value of this enzyme in human breast cancer in univariate and multivariate analyses. RESULTS: Patients with breast cancer tissue containing a high concentration of ir-NE had poor survival compared to those with a low concentration of ir-NE at the cutoff point of 9.0 µg/100 mg protein (P = .0012, which had been previously determined in another group of 49 patients. Multivariate stepwise analysis selected lymph node status (P= .0004; relative risk = 1.46 and ir-NE concentration (P= .0013; relative risk = 1.43 as independent prognostic factors for recurrence. CONCLUSIONS: Tumor ir-NE concentration is an independent prognostic factor in patients with breast cancer who undergo curative surgery. This enzyme may play an active role in tumor progression that leads to metastasis in human breast cancer.

  15. Exposure to Leishmania braziliensis triggers neutrophil activation and apoptosis.

    Directory of Open Access Journals (Sweden)

    Sarah A C Falcão

    2015-03-01

    Full Text Available BACKGROUND: Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. METHODS AND FINDINGS: Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. CONCLUSIONS: We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection.

  16. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Science.gov (United States)

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  17. Effect of a 120 km endurance race on plasma and muscular neutrophil elastase and myeloperoxidase concentrations in horses.

    Science.gov (United States)

    Serteyn, D; Sandersen, C; Lejeune, J-P; de la Rebière de Pouyade, G; Ceusters, J; Mouithys-Mickalad, A; Niesten, A; Fraipont, A; van Erck, E; Goachet, A G; Robert, C; Leclerc, J L; Votion, D-M; Franck, T

    2010-11-01

    Intense physical exercise can induce the degranulation of neutrophils leading to an increase in plasma concentration of the neutrophil marker enzymes myeloperoxidase (MPO) and elastase (ELT). These enzymes have pro-oxidative and pro-inflammatory properties and may play a role in the exercised-induced muscular damage. To measure MPO and ELT concentrations in plasma and muscles of endurance horses and to correlate them to the extent of exercise-induced muscular damage. Seven endurance horses qualified on 120 km races were tested in this study. Neutrophil count, serum creatine kinase (CK), plasmatic and muscular MPO and ELT concentrations were measured before and 2 h after a 120 km endurance race. The race produced a significant increase of neutrophils, CK, and plasma MPO and ELT levels. A significant correlation was observed between the MPO and ELT values in plasma (r(2) = 0.92, P ELT were not significantly correlated to muscular ones. An increase of mean concentrations (± s.e.) of MPO (T0: 9.85 ± 3.9, T1: 228.9 ± 95.9 ng/mg proteins) and ELT (T0: 8.4 ± 2.4, T1: 74.5 ± 39.7 ng/mg proteins) in the muscles were observed after the race. Interestingly, the individual data showed large differences between the horses. Muscular MPO and ELT concentrations were significantly correlated to plasma CK levels. The coefficient of correlation (r(2)) was 0.69 (P ELT, respectively. Results underline the possible role of MPO and ELT in exercise-induced muscular damage. Further studies should investigate the effect of exercise type and intensity, as well as the role of the training state on MPO and ELT involvement in muscular damage. The assessment of the intensity of exercise-induced neutrophilic degranulation may have a potential role in the monitoring of the athletic career. © 2010 EVJ Ltd.

  18. Epithelial-to-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma and Pancreatic Tumor Cell Lines: The Role of Neutrophils and Neutrophil-Derived Elastase

    Directory of Open Access Journals (Sweden)

    Thomas Große-Steffen

    2012-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is frequently associated with fibrosis and a prominent inflammatory infiltrate in the desmoplastic stroma. Moreover, in PDAC, an epithelial-to-mesenchymal transition (EMT is observed. To explore a possible connection between the infiltrating cells, particularly the polymorphonuclear neutrophils (PMN and the tumor cell transition, biopsies of patients with PDAC (n=115 were analysed with regard to PMN infiltration and nuclear expression of β-catenin and of ZEB1, well-established indicators of EMT. In biopsies with a dense PMN infiltrate, a nuclear accumulation of β-catenin and of ZEB1 was observed. To address the question whether PMN could induce EMT, they were isolated from healthy donors and were cocultivated with pancreatic tumor cells grown as monolayers. Rapid dyshesion of the tumor cells was seen, most likely due to an elastase-mediated degradation of E-cadherin. In parallel, the transcription factor TWIST was upregulated, β-catenin translocated into the nucleus, ZEB1 appeared in the nucleus, and keratins were downregulated. EMT was also induced when the tumor cells were grown under conditions preventing attachment to the culture plates. Here, also in the absence of elastase, E-cadherin was downmodulated. PMN as well as prevention of adhesion induced EMT also in liver cancer cell line. In conclusion, PMN via elastase induce EMT in vitro, most likely due to the loss of cell-to-cell contact. Because in pancreatic cancers the transition to a mesenchymal phenotype coincides with the PMN infiltrate, a contribution of the inflammatory response to the induction of EMT and—by implication—to tumor progression is possible.

  19. Serum elastase activity, serum elastase inhibitors, and occurrence of carotid atherosclerotic plaques: the Etude sur le Vieillissement Artériel (EVA) study.

    Science.gov (United States)

    Zureik, Mahmoud; Robert, Ladislas; Courbon, Dominique; Touboul, Pierre-Jean; Bizbiz, Latifa; Ducimetière, Pierre

    2002-06-04

    In the last decades, interest has increased in the potential deleterious atherogenic effects of some cellular elastase activities. The results of experimental and clinical investigations were inconsistent. In this report, we assessed the associations of serum elastase activity and serum elastase inhibitors with carotid plaque occurrence during the 4-year follow-up in a population of 859 subjects free of coronary heart disease and stroke (age, 59 to 71 years). Serum elastase activity and serum elastase inhibitors were measured at baseline examination. Carotid B-mode ultrasound examination was performed at baseline and 2 years and 4 years later. The occurrence of carotid plaques in subjects with the lowest serum elastase activity values (quartile 1), in those with the intermediate values (quartiles 2 to 3), and in those with the highest values (quartile 4) was, respectively, 24.6%, 18.9%, and 12.2% (P<0.001 for trend). The multivariate odds ratios of carotid plaque occurrence associated with the three groups (adjusted for major known cardiovascular risk factors) were, respectively, 1.00, 0.67 (CI, 0.44 to 1.02; P<0.06), and 0.40 (CI, 0.23 to 0.70, P<0.001). For serum elastase inhibitors, the occurrence of carotid plaques in quartile 1 (lowest values), quartiles 2 to 3, and quartile 4 (highest values) was, respectively, 11.7%, 18.8%, and 25.2% (P for trend<0.001). The corresponding multivariate adjusted odds ratios were 1.00, 1.98 (CI, 1.19 to 3.31, P<0.01), and 3.18 (CI, 1.80 to 5.60, P<0.001). Low values of serum elastase activity and high values of serum elastase inhibitors were strongly and independently associated with increased 4-year carotid plaque occurrence. Further studies are necessary to elucidate the nature of the associations between elastase parameters and atherosclerosis.

  20. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  1. Neutrophil Activation During Septic Shock.

    Science.gov (United States)

    Stiel, Laure; Meziani, Ferhat; Helms, Julie

    2018-04-01

    In addition to their well-known role as the cellular mediators of immunity, key other roles have been identified for neutrophils during septic shock. Importantly, neutrophils indeed play a critical role in the recently described immunothrombosis concept and in septic shock-induced coagulopathy. Septic shock is one of the most severe forms of infection, characterized by an inadequate host response to the pathogenic organism. This host response involves numerous defense mechanisms with an intense cellular activation, including neutrophil activation. Neutrophils are key cells of innate immunity through complex interactions with vascular cells and their activation may participate in systemic tissue damages. Their activation also leads to the emission of neutrophil extracellular traps, which take part in both pathogen circumscription and phagocytosis, but also in coagulation activation. Neutrophils thus stand at the interface between hemostasis and immunity, called immunothrombosis.The present review will develop a cellular approach of septic shock pathophysiology focusing on neutrophils as key players of septic shock-induced vascular cell dysfunction and of the host response, associating immunity and hemostasis. We will therefore first develop the role of neutrophils in the interplay between innate and adaptive immunity, and will then highlight recent advances in our understanding of immunothrombosis septic shock-induced coagulopathy.

  2. The System of Neutrophil Elastase and the Plasma Level of MMP-7 in Children with Pulmonary Arterial Hypertension and Chronic Cor Pulmonale

    Directory of Open Access Journals (Sweden)

    Еlena M. Vasilyeva

    2014-03-01

    Full Text Available A significant increase in the activity of neutrophil elastase (NE and anti-NE-protection in the plasma were detected in children having bronchopulmonary dysplasia (BPD complicated by pulmonary arterial hypertension (PAH and chronic cor pulmonale (CCP. The changes revealed were more pronounced in patients with CCP. The plasma concentration of the NE was slightly reduced, which was probably associated with the activation of anti-NE and an increase in the α1-antitrypsin level. A gradual increase was noted in the plasma level of the matrix metalloproteinase-7 (MMP-7 in patients with an increase in the severity of the condition. In patients with cystic fibrosis (with and without CCP, the pronounced increase in the MMP-7 level was observed. In patients with cystic fibrosis (CF, even without the additional complication with PAH and CCP, the MMP-7 level was significantly higher than in those with congenital broncho-pulmonary malformations (CBPM. The difference was increased in those patients with PAH and reached a maximum in those with CCP.

  3. Effect of some antiinflammatory plant species on elastase and myeloperoxidase enzyme activity

    OpenAIRE

    Cárdenas, Paola Andrea; Aragón, Diana Marcela; Ospina, Luis Fernando; Isaza, Gustavo; Pérez, Jorge Enrique

    2012-01-01

    In this work, the effect of aqueous and methanolic extracts of the plants species Critoniella acuminata, Salvia rubescens, Phenax rugosus (Poir.) Wedd and Tabebuia chrysanta G. on the enzymes elastase and myeloperoxidase, involved in degranulation leukocyte process, was evaluated, identifying the potential direct inhibitory effect on the enzyme and/or inhibition of the desgranulation of polymorphonuclear neutrophils. Extracts of Critoniella acuminata andSalvia rubescens presented effects on t...

  4. Fluctuations in C-reactive protein concentration and neutrophil activation during normal human pregnancy.

    Science.gov (United States)

    Belo, Luís; Santos-Silva, Alice; Rocha, Susana; Caslake, Muriel; Cooney, Josephine; Pereira-Leite, Luís; Quintanilha, Alexandre; Rebelo, Irene

    2005-11-01

    To clarify the changes in serum C-reactive protein (CRP) levels and in the neutrophil activation state during normal human pregnancy. A longitudinal study (n=23) was performed during the three trimesters of pregnancy; a group of non-pregnant women (n=24) was used as control. Total and differential leukocyte count, serum concentration of CRP and plasma levels of granulocyte-macrophage colony stimulating factor (GM-CSF) and of lactoferrin and elastase (two indirect markers of neutrophil activation) were measured. Pregnancy imposed an inflammatory response in the mother, observed by the significant increment in total white blood cell (WBC) and neutrophil counts and in the circulating levels of CRP, GM-CSF and lactoferrin, in all trimesters of gestation compared with non-pregnant controls. Plasma elastase concentration was also significantly higher in pregnant women, but only in the first trimester of gestation. Regarding the ratios of lactoferrin and elastase per neutrophil, they were significantly lower in pregnant women (all trimesters). During gestation, WBC and neutrophil count increased significantly from the first to the second trimester and remained high in the third period. In contrast, the ratios of lactoferrin and elastase per neutrophil decreased significantly from the first to the second trimester, remaining low in the last trimester. Concerning CRP levels, no consistent changes were observed throughout gestation; 12 cases (52.2%) presented fluctuations, whereas 7 (30.4%) showed progressive reductions and 4 (17.4%) progressive increments throughout pregnancy. Changes in CRP levels vary in a wide manner between subjects along pregnancy, even though median values are consistently elevated throughout pregnancy. Moreover, circulating levels of neutrophil-activation products are higher in normal human gestation.

  5. Oxidant activation of neutrophil collagenase

    International Nuclear Information System (INIS)

    Muthukumaran, G.; Amoruso, M.A.; Berg, R.A.

    1986-01-01

    Oxidant gas exposure leads to lung injury characterized by acute inflammation, connective tissue breakdown and alveolar damage. In an effort to better understand the mechanism for oxidant gas injury human peripheral neutrophils were isolated and incubated with 14 C-proline labelled extracellular matrix. Neutrophils in the presence of phorbol myristate acetate (PMA) alone (to stimulate the secretion of collagenase from specific granules) had no effect on the matrix. When neutrophils were incubated with PMA and 2 mM p-aminophenylmercuric acetate (APMA), the latter a known activator of collagenase, extensive degradation of the matrix was observed. The generation of the characteristic 3/4- and 1/4-clip fragments of Type I collagen was an indication that the major enzymatic activity operative was collagenase. This was further supported by its requirement for Ca 2+ and inhibition of enzymatic activity by EDTA. Further experiments indicated that 10 μM oxidized glutathione could replace APMA in activating the secreted collagenase. Since GSH is thought to be the major physiological antioxidant in the lung, the degradation of connective tissue caused by inflammation from oxidant gas injury may be attributed to the oxidation of GSH to GSSG with resultant activation of neutrophil collagenase

  6. Elastolytic activity of human blood monocytes characterized by a new monoclonal antibody against human leucocyte elastase. Relationship to rheumatoid arthritis

    DEFF Research Database (Denmark)

    Jensen, H S; Christensen, L D

    1990-01-01

    The leucocyte elastase of human blood monocytes was investigated by applying a new monoclonal antibody which did not block the enzyme activity against elastin. In a fixed population of mononuclear cells (MNC) and using fluorescence activated cell sorting (FACS), the human leucocyte elastase (HLE...

  7. Neutrophil activation by Campylobacter concisus

    OpenAIRE

    S?rensen, Nina B; Nielsen, Hans L; Varming, Kim; Nielsen, Henrik

    2013-01-01

    Background Campylobacter concisus is an emerging enteric pathogen associated with prolonged diarrhoea and possibly inflammatory bowel disease in children as well as adults, but the interaction with cells of the innate immune system is unclear. The magnitude of systemic immunoglobulin response in acute infection is unknown. Methods Neutrophils from healthy volunteers were activated with five faecal isolates of C. concisus from patients with gastroenteritis as well as the oral reference strain ...

  8. Activation of Neutrophils by Nanoparticles

    Directory of Open Access Journals (Sweden)

    David M. Goncalves

    2011-01-01

    Full Text Available The use of nanoparticles (NPs has increased in the past few years in various fields, including defence, aerospace, electronics, biology, medicine, and so forth. and in applications such as diagnostic technology, bioimaging, and drug/gene delivery. Thus, human exposure to NPs and nanomaterials is unavoidable and will certainly expand in the future resulting in a growing interest in nanotoxicology, the study of toxicity of nanomaterials. A number of studies have reported the effects of NPs in respect to pulmonary inflammation by investigating in vitro activation of pulmonary cells with NPs and in vivo in a variety of models in which neutrophils appear to be the predominant leukocyte cell type in lungs and in bronchoalveolar lavages following inhalation or intratracheal instillation of NPs. Despite the fact that several studies have reported an increased number of neutrophils, the literature dealing with the direct activation of neutrophils by a given NP is poorly documented. This paper will summarize the current literature in this latter area of research and will end with a perspective view in which our laboratory will be involved in the following years.

  9. Inhibitory effects of polyphenols from grape pomace extract on collagenase and elastase activity.

    Science.gov (United States)

    Wittenauer, Judith; Mäckle, Sonja; Sußmann, Daniela; Schweiggert-Weisz, Ute; Carle, Reinhold

    2015-03-01

    Breakdown and disorganization of extracellular matrix proteins like collagen, fibronectin and elastin are main characteristics of skin aging due to the enhanced activation of proteolytic enzymes such as collagenases and elastases. Inhibition of their enzymatic activities by natural plant compounds might be a promising approach to prevent extrinsic skin aging. Especially polyphenols are supposed to interact with those enzymes due to their molecular nature. In our investigation, extracts of pomace from Riesling grapes were analyzed for their inhibitory properties on collagenase as well as elastase. Crude grape pomace extract showed a dose-dependent inhibitory activity against both enzymes with IC50-values of 20.3μg/ml and 14.7μg/ml for collagenase and elastase activity, respectively. The extracts were fractionated into four fractions containing phenolic compounds differing in chemical structure and polarity. Except for the stilbene containing fraction, all other fractions showed inhibitory effects on both enzyme activities. The most pronounced impact was found for the hydrophilic low molecular weight polyphenols containing the free phenolic acids. In particular, gallic acid showed considerable inhibition values. EGCG was used as a positive control and showed a dose-dependent inhibition of collagenase activity (IC50=0.9mM). Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  11. Cotton Study: Albumin Binding and its Effect on Elastase Activity in the Chronic Non-Healing Wound

    Energy Technology Data Exchange (ETDEWEB)

    Castro, N.; Goheen, S.

    2005-01-01

    Cotton, as it is used in wound dressings is composed of nearly pure cellulose. During the wound-healing process, cotton is exposed to various blood components including water, salts, cells, and blood proteins. Albumin is the most prominent protein in blood. Elastase is an enzyme secreted by white blood cells and takes an active role in tissue reconstruction. In the chronic non-healing wound, elastase is often over-expressed such that this enzyme digests tissue and growth factors, and interferes with the normal healing process. Our goal is to design a cotton wound dressing that will sequester elastase or assist in reducing elastase activity in the presence of other blood proteins such as albumin. The ability of cotton and various cotton derivatives to sequester elastase and albumin has been studied by examining the adsorption of these two proteins separately. We undertook the present work to confirm the binding of albumin to cotton and to quantify the activity of elastase in the presence of various derivatives of cotton. We previously observed a slight increase in elastase activity when exposed to cotton. We also observed a continuous accumulation of albumin on cotton using high-performance liquid chromatography methods. In the present study, we used an open-column-absorption technique coupled with a colorimetric protein assay to confirm losses of albumin to cotton. We have also confirmed increased elastase activity after exposure to cotton. The results are discussed in relation to the porosity of cotton and the use of cotton for treating chronic non-healing wounds.

  12. Obesity is associated with more activated neutrophils in African American male youth.

    Science.gov (United States)

    Xu, X; Su, S; Wang, X; Barnes, V; De Miguel, C; Ownby, D; Pollock, J; Snieder, H; Chen, W; Wang, X

    2015-01-01

    There is emerging evidence suggesting the role of peripheral blood leukocytes in the pathogenesis of obesity and related diseases. However, few studies have taken a genome-wide approach to investigating gene expression profiles in peripheral leukocytes between obese and lean individuals with the consideration of obesity-related shifts in leukocyte types. We conducted this study in 95 African Americans (AAs) of both genders (age 14-20 years, 46 lean and 49 obese). Complete blood count with differential test (CBC) was performed in whole blood. Genome-wide gene expression analysis was obtained using the Illumina HumanHT-12 V4 Beadchip with RNA extracted from peripheral leukocytes. Out of the 95 participants, 64 had neutrophils stored. The validation study was based on real-time PCR with RNA extracted from purified neutrophils. CBC test suggested that, in males, obesity was associated with increased neutrophil percentage (P=0.03). Genome-wide gene expression analysis showed that, in males, the majority of the most differentially expressed genes were related to neutrophil activation. Validation of the gene expression levels of ELANE (neutrophil elastase) and MPO (myeloperoxidase) in purified neutrophils demonstrated that the expression of these two genes--important biomarkers of neutrophils activation--were significantly elevated in obese males (P=0.01 and P=0.02, respectively). The identification of increased neutrophil percentage and activation in obese AA males suggests that neutrophils have an essential role in the pathogenesis of obesity-related disease. Further functional and mechanistic studies on neutrophils may contribute to the development of novel intervention strategies reducing the burden associated with obesity-related health problems.

  13. NEUTROPHIL ACTIVATION IN RESPONSE TO MONOMERIC MYELOPEROXIDASE.

    Science.gov (United States)

    Gorudko, Irina V; Grigorieva, Daria V; Sokolov, Alexey V; Shamova, Ekaterina V; Kostevich, Valeria A; Kudryavtsev, Igor V; Syromiatnikova, Elena D; Vasilyev, Vadim B; Cherenkevich, Sergey N; Panasenko, Oleg M

    2018-03-27

    Myeloperoxidase (MPO) is an oxidant-producing enzyme that can also regulate cellular functions via its nonenzymatic effects. Mature active MPO isolated from normal human neutrophils is a 145 kDa homodimer, which consists of two identical protomers, connected by a single disulfide bond. By binding to CD11b/CD18 integrin, dimeric MPO induces neutrophil activation and adhesion augmenting leukocyte accumulation at sites of inflammation. This study was performed to compare the potency of dimeric and monomeric MPO to elicit selected neutrophil responses. Monomeric MPO (hemi-MPO) was obtained by treating the dimeric MPO by reductive alkylation. Analysis of the crucial signal transducer, intracellular Ca2+, showed that dimeric MPO induces Ca2+ mobilization from the intracellular calcium stores of neutrophils and influx of extracellular Ca2+ whereas effect of monomeric MPO on Са2+ increase in neutrophils was less. It was shown also that monomeric MPO was less sufficient than dimeric MPO to induce actin cytoskeleton reorganization, cell survival and neutrophil degranulation. Furthermore, we have detected monomeric MPO in the blood plasma of patients with acute inflammation. Our data suggest that the decomposition of dimeric MPO into monomers can serve as a regulatory mechanism that controls MPO-dependent activation of neutrophils and reduces proinflammatory effects of MPO.

  14. TGF-β1 and granulocyte elastase in the evaluation of activity of inflammatory bowel disease. A pilot study

    Directory of Open Access Journals (Sweden)

    Irena Ciećko-Michalska

    2014-01-01

    Full Text Available Introduction: The aim was to assess the usefulness of TGF-β1 and elastase in the evaluation of activity of ulcerative colitis (UC and Crohn’s disease (CD.Material and Methods: 32 patients diagnosed with UC, 31 with CD and 30 healthy volunteers were enrolled in this study. Diagnosis of the disease was confirmed by videocolonoscopy and histopathological evaluation of intestinal biopsies. Disease activity was assessed by use of the Mayo Scoring System for Assessment of Ulcerative Colitis Activity in UC patients and by CDAI in CD patients. hsCRP was determined by the immunonephelometric method, TGF-β1 and elastase plasma concentration by ELISA. The results of the study were analyzed using Statistica and R statistical language.Results: In UC a positive correlation between disease activity and platelet level, hsCRP and TGF-β1 concentration was noted. Elastase concentration in UC patients was significantly higher than in CD, but there was no correlation with the activity of the disease. In CD patients we observed a positive correlation between disease activity and leukocytes, platelet levels and elastase concentration, and a very low correlation with hsCRP and TGF-β1.Discussion: Determination of TGF-β1 can be used for evaluation of inflammatory activity in UC and it is connected with elevated concentrations of CRP and platelets. To a lower extent TGF-β1 can also be used for evaluation of inflammatory activity in CD. Examination of elastase concentration may be useful in the assessment of CD activity. Plasma elastase concentration may be helpful in UC and CD differentiation. The preliminary results of this investigation seem promising; nevertheless, more studies are necessary.

  15. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Role of α-Helical Structure in Organic Solvent-Activated Homodimer of Elastase Strain K

    Directory of Open Access Journals (Sweden)

    Chee Fah Wong

    2011-09-01

    Full Text Available Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3 was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.

  17. Triterpenes from Meliosma oldhamii Miquel Branches and their Elastase Inhibitory Activities

    Directory of Open Access Journals (Sweden)

    Sang-Hee Byeon

    2015-06-01

    Full Text Available Phytochemical investigation o n the ethanol extracts of Meliosma oldhamii Miquel branches led to the isolation of seven triterpene constituents: betulin ( 1 , lupeol ( 2 , oleanolic acid ( 3 , 3 b -acetoxyolean-12-en-28-acid (4, 3 b -acetoxyolean-12-en-28-aldehyde (5, 3 b -acetoxy-28-hydroxyolean-12-ene (6 and maslinic acid ( 7 . Their chemical structures were determined based on the spectr oscopic studies, as well as by comparison with literature data. Elastase inhibition activities were examined for the isolates using ursolic acid as a positive control . In this test , the compounds 1 and 3 proved to inhibit porcine pancreatic elastase with an IC 50 values of 39.3 and 39.5 m g/mL, indicating comparable activities to ursolic acid (IC 50 = 28.5 m g/mL. This study demonstrated that the M. oldhamii extract including triterpenes has potentials applicable as anti-wrinkle ingredient in cosmetic formulations. All of the compounds 1 - 7 were isolated for the first time from M. oldhamii .

  18. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines

    Directory of Open Access Journals (Sweden)

    Conor M. Henry

    2016-02-01

    Full Text Available Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ∼500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis.

  19. Analogues of Cucurbita maxima trypsin inhibitor III (CMTI-III) with elastase inhibitory activity.

    Science.gov (United States)

    Rózycki, J; Kupryszewski, G; Rolka, K; Ragnarsson, U; Zbyryt, T; Krokoszyńska, I; Wilusz, T

    1994-04-01

    Three new CMTI-III analogues containing the Val residue in the reactive site (position 5) were synthesized by the solid-phase method. The analogues displayed an elastase inhibitory activity. It is shown that the removal of the N-terminal Arg residue and the introduction of the Gly-Pro-Gln tripeptide in the region 23-25 decreases the antielastase activity by two orders of magnitude. The removal of the disulfide bridge in positions 16-28 and the substitution of Ala for Cys16 and Gly for Cys28 decreases the activity (measured as Ka with HLE) by five orders of magnitude as compared with [Val5]CMTI-III.

  20. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities.

    Science.gov (United States)

    Chlapanidas, Theodora; Faragò, Silvio; Lucconi, Giulia; Perteghella, Sara; Galuzzi, Marta; Mantelli, Melissa; Avanzini, Maria Antonietta; Tosca, Marta Cecilia; Marazzi, Mario; Vigo, Daniele; Torre, Maria Luisa; Faustini, Massimo

    2013-07-01

    Some biological properties of Bombyx mori sericins from twenty strains were investigated, fourteen fed with artificial diet, two with fresh mulberry leaves and four with both diets. Sericin exhibited ROS-scavenging, anti-tyrosinase and anti-elastase properties, the strain significantly influenced these properties, while diet only influenced the anti-tyrosinase activity. Sericins were clustered into 5 groups and one sericin from each group was further studied: sericins showed anti-proliferative activity on in vitro stimulated peripheral blood mononuclear cells; some strains decreased in vitro secretion of IFNγ, while no effects were observed on TNFα and IL10 release. Therefore, a mixture of sericins extracted from the most promising strains may be useful for dermatological and cosmetic use. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  2. Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide-enzyme complex

    NARCIS (Netherlands)

    Braun, P; Bitter, W; Tommassen, J

    2000-01-01

    The propeptide of Pseudomonas aeruginosa elastase functions both as an intramolecular chaperone required for the folding of the enzyme and as an inhibitor that prevents activity of the enzyme before its secretion into the extracellular medium. Since expression of the lasB gene, which encodes

  3. The Alpha-Tocopherol Form of Vitamin E Boosts Elastase Activity of Human PMNs and Their Ability to Kill Streptococcus pneumoniae

    Directory of Open Access Journals (Sweden)

    Elsa N. Bou Ghanem

    2017-05-01

    with increased activity of neutrophil elastase, a serine protease that is required to kill pneumococci. Notably, incubation with α-Toc increased PMN elastase activity from young donors and boosted their ability to kill complement-opsonized pneumococci. These findings demonstrate that α-Toc is a potent modulator of PMN responses and is a potential nutritional intervention to combat pneumococcal infection.

  4. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity.

    Science.gov (United States)

    Levine, Adam P; Duchen, Michael R; de Villiers, Simon; Rich, Peter R; Segal, Anthony W

    2015-01-01

    The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH.

  5. Storage Effect on Phenols and on the Antioxidant Activity of Extracts from Anemopsis californica and Inhibition of Elastase Enzyme

    Directory of Open Access Journals (Sweden)

    Carmen Lizette Del-Toro-Sánchez

    2015-01-01

    Full Text Available The amount of total phenols and flavonoids and the antioxidant activity of leaf, stem, and rhizome methanolic extracts from a commonly consumed Anemopsis californica under different storage conditions were investigated. Storage conditions were at 50, 25, 4, and −20°C, protected or not from light, during 180 days. The inhibition of the elastase enzyme was also evaluated. The results demonstrated that leaf, stem, and rhizome methanolic extracts of Anemopsis californica maintain approximately up to 97 and 95% stability in phenolic content and antioxidant activity, respectively, when stored during 60 days at −20°C in the dark. Additionally, these extracts, principally from leaf and rhizome, showed an elastase inhibitory effect by 75 and 71.8%, respectively. Therefore, this study provides the basis for further research on the anti-inflammatory activity. On the other hand, Anemopsis californica could comprise a good alternative of use as antioxidant in foods.

  6. Anti–elastase, anti–tyrosinase and matrix metalloproteinase–1 inhibitory activity of earthworm extracts as potential new anti–aging agent

    Directory of Open Access Journals (Sweden)

    Nurhazirah Azmi

    2014-05-01

    Conclusions: Earthworms extract showed effective inhibition of tyrosinase, elastase and MMP-1 activities. Therefore, this experiment further rationalizes the traditional use of this worm extracts which may be useful as an anti-wrinkle agent.

  7. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  8.  Role of CEACAM in neutrophil activation

    Directory of Open Access Journals (Sweden)

    Anna Pańczyszyn

    2012-08-01

    Full Text Available  Neutrophils express many surface adhesion molecules, including CEACAM1, CEACAM3, CEACAM4, CEACAM6 and CEACAM8 glycoproteins, which play an important role in biological functions of neutrophils such as adhesion, phagocytosis, oxidative burst and degranulation. CEACAM3 activates neutrophils and initiates phagocytosis as a result of binding to bacterial Opa protein. In addition, CEACAM1 and CEACAM6 can delay apoptosis. All neutrophil CEACAMs, except for CEACAM3, can stimulate adhesion of neutrophils to endothelium. One CEACAM family member, CEA, which is not expressed by neutrophils, displays strong chemotactic activity, and probably can prime and/or activate neutrophils to adhesion. Induction of CEACAM signaling can be initiated by dimerization of CEACAMs and/or phosphorylation of their cytoplasmic domains. CEACAM signaling is often associated with an increase in the cytoplasmic calcium level.

  9. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  10. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  11. Changes in plasma level of human leukocyte elastase during leukocytosis from physical effort.

    Science.gov (United States)

    Biondi, R; Tassi, C; Rossi, R; Benedetti, C; Ferranti, C; Paolocci, N; Parisse, I; De Bellis, F; Capodicasa, E

    2003-08-01

    Physical exercise is known to induce immunological changes, mainly leukocytosis and neutrophil activation. However, it is not known to what extent the leukocytosis, observed after exertion, is associated with an increase in plasma neutrophil elastase, an early marker of inflammatory response and neutrophil degranulation. In the present study changes in circulating leukocyte and neutrophil counts and human neutrophil elastase plasma levels were evaluated in volley-ball players before and after 2 h and 12 h prolonged training, during a competition season. For comparison, the same parameters were evaluated in untrained subjects before and after a jogging session. Basal white blood cell WBC, polymorpho nuclear PMN, and human polymorpho nuclear-elastase PMN-ELA values were within the normal healthy reference range and no significant differences were found between the two groups studied. Venous blood samples of nine volley-ball players showed a statistically significant increase in blood WBCs after 2 h exercise. This effect was paralleled by a statistically significant increase in PMN-ELA concentration compared to the values observed in the same individuals at rest. The exercise did not significantly change the basal correlation parameters between PMN level and PMN-ELA concentration. More pronounced WBC, PMN, and PMN-ELA increases were observed in the seven inactive subjects after 2 h jogging. There was no linear correlation between increased PMN counts and increased PMN-ELA concentrations in untrained subjects after exercise. The results show that not only the leukocyte count but also PMN-ELA plasma levels can be higher after physical effort. This has a practical significance as regards differential diagnosis demonstrating that determination of these two laboratory parameters can give abnormally high values even in the absence of an existing inflammatory process. Besides, lack of correlation between PMN count and PMN-ELA plasma levels in the untrained group suggest a

  12. Hypoxia upregulates neutrophil degranulation and potential for tissue injury

    Science.gov (United States)

    Hoenderdos, Kim; Lodge, Katharine M; Hirst, Robert A; Chen, Cheng; Palazzo, Stefano G C; Emerenciana, Annette; Summers, Charlotte; Angyal, Adri; Porter, Linsey; Juss, Jatinder K; O'Callaghan, Christopher; Chilvers, Edwin R

    2016-01-01

    Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion. PMID:27581620

  13. The Role of Neutrophil Proteins on the Amyloid Beta-RAGE Axis

    Science.gov (United States)

    Stock, Amanda J.; Kasus-Jacobi, Anne; Wren, Jonathan D.; Sjoelund, Virginie H.; Prestwich, Glenn D.

    2016-01-01

    We previously showed an elevated expression of the neutrophil protein, cationic antimicrobial protein of 37kDa (CAP37), in brains of patients with Alzheimer’s disease (AD), suggesting that CAP37 could be involved in AD pathogenesis. The first step in determining how CAP37 might contribute to AD pathogenesis was to identify the receptor through which it induces cell responses. To identify a putative receptor, we performed GAMMA analysis to determine genes that positively correlated with CAP37 in terms of expression. Positive correlations with ligands for the receptor for advanced glycation end products (RAGE) were observed. Additionally, CAP37 expression positively correlated with two other neutrophil proteins, neutrophil elastase and cathepsin G. Enzyme-linked immunosorbent assays (ELISAs) demonstrated an interaction between CAP37, neutrophil elastase, and cathepsin G with RAGE. Amyloid beta 1–42 (Aβ1–42), a known RAGE ligand, accumulates in AD brains and interacts with RAGE, contributing to Aβ1–42 neurotoxicity. We questioned whether the binding of CAP37, neutrophil elastase and/or cathepsin G to RAGE could interfere with Aβ1–42 binding to RAGE. Using ELISAs, we determined that CAP37 and neutrophil elastase inhibited binding of Aβ1–42 to RAGE, and this effect was reversed by protease inhibitors in the case of neutrophil elastase. Since neutrophil elastase and cathepsin G have enzymatic activity, mass spectrometry was performed to determine the proteolytic activity of all three neutrophil proteins on Aβ1–42. All three neutrophil proteins bound to Aβ1–42 with different affinities and cleaved Aβ1–42 with different kinetics and substrate specificities. We posit that these neutrophil proteins could modulate neurotoxicity in AD by cleaving Aβ1–42 and influencing the Aβ1–42 –RAGE interaction. Further studies will be required to determine the biological significance of these effects and their relevance in neurodegenerative diseases such as

  14. FOXO1 Regulates Bacteria-Induced Neutrophil Activity

    Directory of Open Access Journals (Sweden)

    Guangyu Dong

    2017-09-01

    Full Text Available Neutrophils play an essential role in the innate immune response to microbial infection and are particularly important in clearing bacterial infection. We investigated the role of the transcription factor FOXO1 in the response of neutrophils to bacterial challenge with Porphyromonas gingivalis in vivo and in vitro. In these experiments, the effect of lineage-specific FOXO1 deletion in LyzM.Cre+FOXO1L/L mice was compared with matched littermate controls. FOXO1 deletion negatively affected several critical aspects of neutrophil function in vivo including mobilization of neutrophils from the bone marrow (BM to the vasculature, recruitment of neutrophils to sites of bacterial inoculation, and clearance of bacteria. In vitro FOXO1 regulated neutrophil chemotaxis and bacterial killing. Moreover, bacteria-induced expression of CXCR2 and CD11b, which are essential for several aspects of neutrophil function, was dependent on FOXO1 in vivo and in vitro. Furthermore, FOXO1 directly interacted with the promoter regions of CXCR2 and CD11b. Bacteria-induced nuclear localization of FOXO1 was dependent upon toll-like receptor (TLR 2 and/or TLR4 and was significantly reduced by inhibitors of reactive oxygen species (ROS and nitric oxide synthase and deacetylases (Sirt1 and histone deacetylases. These studies show for the first time that FOXO1 activation by bacterial challenge is needed to mobilize neutrophils to transit from the BM to peripheral tissues in response to infection as well as for bacterial clearance in vivo. Moreover, FOXO1 regulates neutrophil function that facilitates chemotaxis, phagocytosis, and bacterial killing.

  15. Pancreatic elastase in human serum. Determination by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Geokas, M.C. (Univ. of California, Davis); Brodrick, J.W.; Johnson, J.H.; Largman, C.

    1977-01-10

    This study demonstrates that a serine endopeptidase of pancreatic origin (elastase 2) circulates in human blood. A specific and highly sensitive radioimmunoassay has been developed for pancreatic elastase 2 in human serum. The inactivation of elastase 2 employed as radioiodinated tracer with an active site-specific reagent (phenylmethanesulfonyl fluoride) was necessary to prevent its binding by serum ..cap alpha../sub 1/-antitrypsin and ..cap alpha../sub 2/-macroglobulin while maintaining its immunoreactivity. The assay is based upon competition of standard human pancreatic elastase 2 with /sup 125/I-labeled phenylmethanesulfonyl elastase 2 for specific antibody binding sites, after which a second antibody precipitation step is used to separate bound from free /sup 125/I-labeled phenylmethanesulfonyl elastase 2. The minimum detectable concentration of elastase 2 was 0.9 ng/ml. The average normal fasting serum level determined was 71 ng/ml, approximately 80-fold greater than the minimum detectable amount.

  16. Chemotactic Activity on Human Neutrophils to Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2013-07-01

    Full Text Available Objective: The aim of this study was to evaluate chemotactic activity o neutrophil to S. mutans. Chemotaxis assay was performed in blind well chambers. Materials and Methods: Hanks balanced salt solution (HBSS containing 106 S. mutans,  108 S. mutans, 10-8 M fMLP, or HBSS alone were placed in the lower wells of the chamber and covered with polycorbonate membrane filter. Neutrophils suspension (2x105 cells was then placed in the upper compartment. After incubation for 60 mins at 37ºC in a humidified atmosphere with 5% CO2, the filters were removed and stained with Giemsa. Result: ANOVA revealed statistically significant differences among groups (p<0.05, indicating that S. mutans induced neutrophils chemotaxis. The number of neutrophils migration in response to 108 S. mutans and 106 S. mutans were signifiantly greater compared to fMLP (p<0.05. Conclusion: S. mutans may activate human neutrophils, resulting in the chemotaxis of the neutrophils.DOI: 10.14693/jdi.v16i2.99

  17. The role of secretory leukocyte proteinase inhibitor and elafin (elastase-specific inhibitor/skin-derived antileukoprotease as alarm antiproteinases in inflammatory lung disease

    Directory of Open Access Journals (Sweden)

    Sallenave Jean-Michel

    2000-08-01

    Full Text Available Abstract Secretory leukocyte proteinase inhibitor and elafin are two low-molecular-mass elastase inhibitors that are mainly synthesized locally at mucosal sites. It is thought that their physicochemical properties allow them to efficiently inhibit target enzymes, such as neutrophil elastase, released into the interstitium. Historically, in the lung, these inhibitors were first purified from secretions of patients with chronic obstructive pulmonary disease and cystic fibrosis. This suggested that they might be important in controlling excessive neutrophil elastase release in these pathologies. They are upregulated by 'alarm signals' such as bacterial lipopolysaccharides, and cytokines such as interleukin-1 and tumor necrosis factor and have been shown to be active against Gram-positive and Gram-negative bacteria, so that they have joined the growing list of antimicrobial 'defensin-like' peptides produced by the lung. Their site of synthesis and presumed functions make them very attractive candidates as potential therapeutic agents under conditions in which the excessive release of elastase by neutrophils might be detrimental. Because of its natural tropism for the lung, the use of adenovirus-mediated gene transfer is extremely promising in such applications.

  18. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  19. Regulation by C5a of neutrophil activation during sepsis.

    Science.gov (United States)

    Riedemann, Niels C; Guo, Ren-Feng; Bernacki, Kurt D; Reuben, Jayne S; Laudes, Ines J; Neff, Thomas A; Gao, Hongwei; Speyer, Cecilia; Sarma, Vidya J; Zetoune, Firas S; Ward, Peter A

    2003-08-01

    In sepsis, there is evidence that excessive C5a generation leads to compromised innate immune functions, being associated with poor outcome. We now report that in vitro exposure of neutrophils to C5a causes increased levels of IkappaBalpha, decreased NF-kappaB-dependent gene transcription of TNFalpha, and decreased lipopolysaccharide (LPS)-induced TNFalpha production. Similar findings were obtained with neutrophils from cecal ligation/puncture (CLP)-induced septic rats. Such changes were reversed by antibody-induced in vivo blockade of C5a. In contrast, in vitro exposure of alveolar macrophages to C5a and LPS resulted in enhanced production of TNFalpha and no increase in IkappaBalpha. These data suggest that CLP-induced sepsis causes a C5a-dependent dysfunction of neutrophils, which is characterized by altered signaling associated with NF-kappaB activation.

  20. (neutrophil) Activity, Chronic Gastritis, Gastric Atrophy And Intestinal ...

    African Journals Online (AJOL)

    Incidental (early gastric) cancer was found in 3%, dysplasia in 2% and reactive gastropathy in 7% of the cases. A statistically significant relationship was found between Helicobacter pylori colonization intensity and the degrees of neutrophil activity, chronic inflammation and intestinal metaplasia. Conclusion: We concluded ...

  1. Polyphenol derivatives inhibit human neutrophil activity by suppressing oxidative burst

    Czech Academy of Sciences Publication Activity Database

    Drábiková, K.; Perečko, T.; Nosáľ, R.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2012-01-01

    Roč. 5, Suppl.1 (2012), s. 31-31 ISSN 1337-6853. [Interdisciplinary Toxicological Conference & Advanced Toxicological Course /17./. 27.08.2012-31.08.2012, Stará Lesná] Institutional research plan: CEZ:AV0Z40550506 Keywords : polyphenol derivatives * neutrophil activity * pinosylvin Subject RIV: CC - Organic Chemistry

  2. Synthesis and optimization of 2-pyridin-3-yl-benzo[d][1,3]oxazin-4-one based inhibitors of human neutrophil elastase.

    Science.gov (United States)

    Shreder, Kevin R; Cajica, Julia; Du, Lingling; Fraser, Allister; Hu, Yi; Kohno, Yasushi; Lin, Emme C K; Liu, Steve J; Okerberg, Eric; Pham, Lan; Wu, Jiangyue; Kozarich, John W

    2009-08-15

    The hit-to-lead optimization of the HNE inhibitor 5-methyl-2-(2-phenoxy-pyridin-3-yl)-benzo[d][1,3]oxazin-4-one is described. A structure-activity relationship study that focused on the 5 and 7 benzoxazinone positions yielded the optimized 5-ethyl-7-methoxy-benzo[d][1,3]oxazin-4-one core structure. 2-[2-(4-Methyl-piperazin-1-yl)-pyridin-3-yl] derivatives of this core were shown to yield HNE inhibitors of similar potency with significantly different stabilities in rat plasma.

  3. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps.

    Science.gov (United States)

    Manfredi, Angelo A; Rovere-Querini, Patrizia; D'Angelo, Armando; Maugeri, Norma

    2017-09-01

    The protection exerted by neutrophils against invading microbes is partially mediated via the generation of neutrophil extracellular traps (NETs). In sterile conditions NETs are damaging species, enriched in autoantigens and endowed with the ability to damage the vessel wall and bystander tissues, to promote thrombogenesis, and to impair wound healing. To identify and reposition agents that can be used to modulate the formation of NETs is a priority in the research agenda. Low molecular weight heparins (LMWH) are currently used, mostly on an empirical basis, in conditions in which NETs play a critical role, such as pregnancy complications associated to autoimmune disease. Here we report that LMWHs induce a profound change in the ability of human neutrophils to generate NETs and to mobilize the content of the primary granules in response to unrelated inflammatory stimuli, such as IL-8, PMA and HMGB1. Autophagy consistently accompanies NET generation in our system and autophagy inhibitors, 3-MA and wortmannin, prevent NET generation. Pretreatment with LMWH in vitro critically jeopardizes neutrophil ability to activate autophagy, a mechanism that might contribute to neutrophil unresponsiveness. Finally, we verified that treatment of healthy volunteers with a single prophylactic dose of parnaparin abrogated the ability of neutrophils to activate autophagy and to generate NETs. Together, these results support the contention that neutrophils, and NET generation in particular, might represent a preferential target of the anti-inflammatory action of LMWH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Strongly increased levels of fibrinogen elastase degradation products in patients with ischemic stroke

    NARCIS (Netherlands)

    Lau, L.M.L. de; Cheung, E.Y.L.; Kluft, C.; Leebeek, F.W.G.; Meijer, P.; Laterveer, R.; Dippel, D.W.J.; Maat, M.P.M.de

    2008-01-01

    Ischemic stroke is associated with leucocyte activation. Activated leucocytes release elastase, an enzyme that can degrade fibrinogen. Fibrinogen elastase degradation products (FgEDP) may serve as a specific marker of elastase proteolytic activity. In a case-control study of 111 ischemic stroke

  5. Tamoxifen does not inhibit the swell activated chloride channel in human neutrophils during the respiratory burst.

    Science.gov (United States)

    Ahluwalia, Jatinder

    2008-10-31

    Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (I(e)) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase I(e). In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 microM), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.

  6. Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst.

    Science.gov (United States)

    Kucekova, Zdenka; Humpolicek, Petr; Kasparkova, Vera; Perecko, Tomas; Lehocký, Marián; Hauerlandová, Iva; Sáha, Petr; Stejskal, Jaroslav

    2014-04-01

    Polyaniline colloids rank among promising application forms of this conducting polymer. Cytotoxicity, antibacterial activity, and neutrophil oxidative burst tests were performed on cells treated with colloidal polyaniline dispersions. The antibacterial effect of colloidal polyaniline against gram-positive and gram-negative bacteria was most pronounced for Bacillus cereus and Escherichia coli, with a minimum inhibitory concentration of 3,500 μg mL(-1). The data recorded on human keratinocyte (HaCaT) and a mouse embryonic fibroblast (NIH/3T3) cell lines using an MTT assay and flow cytometry indicated a concentration-dependent cytotoxicity of colloid, with the absence of cytotoxic effect at around 150 μg mL(-1). The neutrophil oxidative burst test then showed that colloidal polyaniline, in concentrations <150 μg mL(-1), was not able to stimulate the production of reactive oxygen species in neutrophils and whole human blood. However, it worked efficiently as a scavenger of those already formed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  8. Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Directory of Open Access Journals (Sweden)

    Endalew Yizengaw

    2016-11-01

    Full Text Available Immunologically, active visceral leishmaniasis (VL is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood.In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites.Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL.

  9. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells.

    Directory of Open Access Journals (Sweden)

    Michelle J Hansen

    Full Text Available While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA. Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation.

  10. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8.

    Science.gov (United States)

    Kamoshida, Go; Tansho-Nagakawa, Shigeru; Kikuchi-Ueda, Takane; Nakano, Ryuichi; Hikosaka, Kenji; Nishida, Satoshi; Ubagai, Tsuneyuki; Higashi, Shouichi; Ono, Yasuo

    2016-12-01

    Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target. © Society for Leukocyte Biology.

  11. GROUP B STREPTOCOCCUS CIRCUMVENTS NEUTROPHILS AND NEUTROPHIL EXTRACELLULAR TRAPS DURING AMNIOTIC CAVITY INVASION AND PRETERM LABOR

    Science.gov (United States)

    Boldenow, Erica; Gendrin, Claire; Ngo, Lisa; Bierle, Craig; Vornhagen, Jay; Coleman, Michelle; Merillat, Sean; Armistead, Blair; Whidbey, Christopher; Alishetti, Varchita; Santana-Ufret, Veronica; Ogle, Jason; Gough, Michael; Srinouanprachanh, Sengkeo; MacDonald, James W; Bammler, Theo K; Bansal, Aasthaa; Liggitt, H. Denny; Rajagopal, Lakshmi; Waldorf, Kristina M Adams

    2016-01-01

    Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are β-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor. PMID:27819066

  12. Exercise before scuba diving ameliorates decompression-induced neutrophil activation.

    Science.gov (United States)

    Madden, Dennis; Thom, Stephen R; Milovanova, Tatyana N; Yang, Ming; Bhopale, Veena M; Ljubkovic, Marko; Dujic, Zeljko

    2014-10-01

    The goals of this study were to investigate the difference in responses between a scuba dive preceded by aerobic exercise (EX) and a nonexercise control dive (CON) and to further evaluate the potential relation between venous gas emboli (VGE) and microparticles (MP). We hypothesized that exercise would alter the quantity and subtype of annexin V-positive MP and VGE. Nineteen divers performed two dives to 18 m seawater for 41 min separated by at least 3 d, one of which was preceded by 60 min of treadmill interval exercise. Blood was obtained before exercise, before diving, and 15 min, 2 h, 4 h, and 24 h after surfacing. Intravascular bubbles were quantified by transthoracic echocardiography at 15, 40, 80, and 120 min. The median VGE remained unchanged between the two dives; however, there was a significant increase in VGE in the exercise dive at 40 and 80 min at rest. MP were significantly elevated by approximately 2 times at all time points after CON compared with those after EX. Markers of neutrophil and platelet activation were elevated by both dives, and these elevations were attenuated in the EX dive. We conclude that some of the differences observed between the EX and CON related to MP and platelet and neutrophil activation provide additional insight into the potential protective benefits of exercise; however, further study is needed to understand the mechanism and true potential of these benefits.

  13. Neutrophilic nodules in the intestinal walls of Japanese monkeys associated with the neutrophil chemotactic activity of larval extracts and secretions of Oesophagostomum aculeatum.

    Science.gov (United States)

    Horii, Y; Ishii, A; Owhashi, M; Miyoshi, M; Usui, M

    1985-01-01

    High neutrophil chemotactic activity was detected in the culture medium from Oesophagostomum aculeatum larvae in vitro using blind-well chambers with Millipore filters, and guinea pig leucocytes as indicator cells. Neutrophil chemotactic activity was also detected in the extract from larval worms in a dose dependent fashion. This activity was detected in the low molecular weight fractions adjacent to a sodium chloride marker by gel filtration on Sephadex G200. These results were further confirmed with monkey neutrophils. The possible role of this activity in the formation of granulomatous lesions rich in neutrophils found in O aculeatum infections in the Japanese monkey is discussed.

  14. Involvement of p38MAPK in Impaired Neutrophil Bactericidal Activity of Hemodialysis Patients.

    Science.gov (United States)

    Kamikawa, Yasutaka; Sakai, Norihiko; Miyake, Taito; Sagara, Akihiro; Shinozaki, Yasuyuki; Kitajima, Shinji; Toyama, Tadashi; Hara, Akinori; Iwata, Yasunori; Shimizu, Miho; Furuichi, Kengo; Imamura, Ryu; Suda, Takashi; Kaneko, Shuichi; Wada, Takashi

    2018-01-10

    Mortality from infections has been reported to be higher in hemodialysis (HD) patients. Although dysfunction of neutrophils against bacterial infection was reported in HD patients, the precise mechanism remains to be clarified. We therefore examined the impacts of neutrophil inflammatory signaling on bactericidal activity in HD patients. Comprehensive analyses of intracellular signalings were performed in whole blood of HD patients and control using a microarray system. To confirm the contribution of the signaling to bactericidal activity in neutrophils, we examined the phosphorylation, bacterial killing function, reactive oxygen species (ROS) production, and myeloperoxidase (MPO) release in neutrophils against Staphylococcus aureus. RNA microarray analysis showed the suppression of p38 mitogen activated protein kinase (MAPK) signaling in HD patients. Neutrophils in HD patients showed the impairment of bactericidal activity against S. aureus compared to healthy subjects. Phosphorylation rate of p38MAPK of neutrophils in response to S. aureus was lower in HD patients than healthy subjects. The levels of ROS produced by neutrophils after co-culture with S. aureus were lower in HD patients, on the other hand, there was no difference of MPO release between HD patients and healthy subjects. A selective pharmacological inhibitor of p38MAPK suppressed bacterial killing function as well as ROS production in neutrophils of healthy subjects. Impairment of p38MAPK signaling pathway might contribute to the suppression of neutrophil bactericidal activity in HD patients through less production of ROS. © 2018 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  15. The effect of midazolam on neutrophil mitogen-activated protein kinase.

    LENUS (Irish Health Repository)

    Ghori, Kamran

    2010-06-01

    Neutrophil p38 mitogen-activated protein kinase (MAPK) is a key enzyme in the intracellular signalling pathway that is responsible for many neutrophil functions, which are important in neutrophil-endothelial interaction. The imidazole compounds are inhibitors of this enzyme system. The objectives of this in-vitro investigation were to examine the effect of midazolam on neutrophil p38 MAPK activation (phosphorylation) following in-vitro ischaemia-reperfusion injury, and the expression of adhesion molecule CD11b\\/CD18.

  16. Sputum epithelial cell-derived neutrophil-activating peptide-78 (ENA ...

    African Journals Online (AJOL)

    Background: Epithelial cell-derived neutrophil-activating peptide-78 (ENA-78) is a chemokine that recruits and activates neutrophils, possesses angiogenic properties and promotes connective tissue remodeling. Thus, it could play a pathogenic role in allergic airway inflammation. Eosinophils are the major source for this ...

  17. Neutrophil Protease Cleavage of Von Willebrand Factor in Glomeruli – An Anti-thrombotic Mechanism in the Kidney

    Directory of Open Access Journals (Sweden)

    Ramesh Tati

    2017-02-01

    Full Text Available Adequate cleavage of von Willebrand factor (VWF prevents formation of thrombi. ADAMTS13 is the main VWF-cleaving protease and its deficiency results in development of thrombotic microangiopathy. Besides ADAMTS13 other proteases may also possess VWF-cleaving activity, but their physiological importance in preventing thrombus formation is unknown. This study investigated if, and which, proteases could cleave VWF in the glomerulus. The content of the glomerular basement membrane (GBM was studied as a reflection of processes occurring in the subendothelial glomerular space. VWF was incubated with human GBMs and VWF cleavage was assessed by multimer structure analysis, immunoblotting and mass spectrometry. VWF was cleaved into the smallest multimers by the GBM, which contained ADAMTS13 as well as neutrophil proteases, elastase, proteinase 3 (PR3, cathepsin-G and matrix-metalloproteinase 9. The most potent components of the GBM capable of VWF cleavage were in the serine protease or metalloprotease category, but not ADAMTS13. Neutralization of neutrophil serine proteases inhibited GBM-mediated VWF-cleaving activity, demonstrating a marked contribution of elastase and/or PR3. VWF-platelet strings formed on the surface of primary glomerular endothelial cells, in a perfusion system, were cleaved by both elastase and the GBM, a process blocked by elastase inhibitor. Ultramorphological studies of the human kidney demonstrated neutrophils releasing elastase into the GBM. Neutrophil proteases may contribute to VWF cleavage within the subendothelium, adjacent to the GBM, and thus regulate thrombus size. This anti-thrombotic mechanism would protect the normal kidney during inflammation and could also explain why most patients with ADAMTS13 deficiency do not develop severe kidney failure.

  18. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst.

    Directory of Open Access Journals (Sweden)

    Rong Jin

    Full Text Available Recent work has revealed an essential involvement of soluble CD40L (sCD40L in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40, i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better

  19. 5 Year Expression and Neutrophil Defect Repair after Gene Therapy in Alpha-1 Antitrypsin Deficiency.

    Science.gov (United States)

    Mueller, Christian; Gernoux, Gwladys; Gruntman, Alisha M; Borel, Florie; Reeves, Emer P; Calcedo, Roberto; Rouhani, Farshid N; Yachnis, Anthony; Humphries, Margaret; Campbell-Thompson, Martha; Messina, Louis; Chulay, Jeffrey D; Trapnell, Bruce; Wilson, James M; McElvaney, Noel G; Flotte, Terence R

    2017-06-07

    Alpha-1 antitrypsin deficiency is a monogenic disorder resulting in emphysema due principally to the unopposed effects of neutrophil elastase. We previously reported achieving plasma wild-type alpha-1 antitrypsin concentrations at 2.5%-3.8% of the purported therapeutic level at 1 year after a single intramuscular administration of recombinant adeno-associated virus serotype 1 alpha-1 antitrypsin vector in alpha-1 antitrypsin deficient patients. We analyzed blood and muscle for alpha-1 antitrypsin expression and immune cell response. We also assayed previously reported markers of neutrophil function known to be altered in alpha-1 antitrypsin deficient patients. Here, we report sustained expression at 2.0%-2.5% of the target level from years 1-5 in these same patients without any additional recombinant adeno-associated virus serotype-1 alpha-1 antitrypsin vector administration. In addition, we observed partial correction of disease-associated neutrophil defects, including neutrophil elastase inhibition, markers of degranulation, and membrane-bound anti-neutrophil antibodies. There was also evidence of an active T regulatory cell response (similar to the 1 year data) and an exhausted cytotoxic T cell response to adeno-associated virus serotype-1 capsid. These findings suggest that muscle-based alpha-1 antitrypsin gene replacement is tolerogenic and that stable levels of M-AAT may exert beneficial neutrophil effects at lower concentrations than previously anticipated. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation

    NARCIS (Netherlands)

    Rossaint, Jan; Herter, Jan M.; van Aken, Hugo; Napirei, Markus; Döring, Yvonne; Weber, Christian; Soehnlein, Oliver; Zarbock, Alexander

    2014-01-01

    There is emerging evidence that neutrophil extracellular traps (NETs) play important roles in inflammatory processes. Here we report that neutrophils have to be simultaneously activated by integrin-mediated outside-in- and G-protein-coupled receptor (GPCR) signaling to induce NET formation in acute

  1. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target

    Science.gov (United States)

    Knight, Jason S.; Meng, He; Coit, Patrick; Yalavarthi, Srilakshmi; Sule, Gautam; Gandhi, Alex A.; Grenn, Robert C.; Mazza, Levi F.; Ali, Ramadan A.; Renauer, Paul; Wren, Jonathan D.; Bockenstedt, Paula L.; Wang, Hui; Eitzman, Daniel T.; Sawalha, Amr H.

    2017-01-01

    Antiphospholipid antibodies, present in one-third of lupus patients, increase the risk of thrombosis. We recently reported a key role for neutrophilsneutrophil extracellular traps (NETs), in particular — in the thrombotic events that define antiphospholipid syndrome (APS). To further elucidate the role of neutrophils in APS, we performed a comprehensive transcriptome analysis of neutrophils isolated from patients with primary APS. Moreover, APS-associated venous thrombosis was modeled by treating mice with IgG prepared from APS patients, followed by partial restriction of blood flow through the inferior vena cava. In patients, APS neutrophils demonstrated a proinflammatory signature with overexpression of genes relevant to IFN signaling, cellular defense, and intercellular adhesion. For in vivo studies, we focused on P-selectin glycoprotein ligand-1 (PSGL-1), a key adhesion molecule overexpressed in APS neutrophils. The introduction of APS IgG (as compared with control IgG) markedly potentiated thrombosis in WT mice, but not PSGL-1–KOs. PSGL-1 deficiency was also associated with reduced leukocyte vessel wall adhesion and NET formation. The thrombosis phenotype was restored in PSGL-1–deficient mice by infusion of WT neutrophils, while an anti–PSGL-1 monoclonal antibody inhibited APS IgG–mediated thrombosis in WT mice. PSGL-1 represents a potential therapeutic target in APS. PMID:28931754

  2. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils

    Science.gov (United States)

    Magalhães, Luísa M. D.; Viana, Agostinho; de Jesus, Augusto C.; Chiari, Egler; Galvão, Lúcia; Gomes, Juliana A.; Gollob, Kenneth J.

    2017-01-01

    Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs) associated with Chagas’ disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively). Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host’s immune response and favor parasite survival. PMID:29176759

  3. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  4. Enzymatic Activities of Bovine Peripheral Blood Leukocytes and Milk Polymorphonuclear Neutrophils during Intramammary Inflammation Caused by Lipopolysaccharide

    Science.gov (United States)

    Prin-Mathieu, C.; Le Roux, Y.; Faure, G. C.; Laurent, F.; Béné, M. C.; Moussaoui, F.

    2002-01-01

    Leukocytes are recruited from peripheral blood into milk as part of the inflammatory response to mastitis. However, excessive accumulation of inflammatory cells alters the quality of milk and the proteases produced by polymorphonuclear neutrophils (PMNs) and macrophages may lead to mammary tissue damage. To investigate PMN recruitment and the kinetics of their intracytoplasmic enzymes in inflammation, we generated mastitis in six cows by intramammary infusion of lipopolysaccharide (LPS). Clinical signs of acute mastitis were observed in all of the cows, and normal status was resumed by 316 h. Intracytoplasmic elastase, collagenase, and cathepsin activities were measured within live cells by flow cytometry in peripheral blood leukocytes and milk PMNs before and during the inflammatory process (at 10 time points between 4 and 316 h). The proportion of immature PMNs was appreciated by CD33 surface labeling measured in flow cytometry. Leukopenia was observed in the peripheral blood 4 h postinfusion, concomitant to an increase in somatic cell counts in milk. CD33+ PMNs were preferentially recruited from the peripheral blood to milk. Enzymatic activities were detected in PMNs, lymphocytes, and monocytes at levels depending on the cell type, sample nature, and time of collection. Milk PMNs had lower enzymatic activities than peripheral blood PMNs. This study showed that milk PMNs recruited during LPS-induced experimental mastitis have an immature phenotype and significantly lower enzymatic activities than peripheral blood PMNs. This suggests that CD33, an adhesion molecule, may be involved in the egress from blood to milk and that the enzymatic contents of PMNs are partly used during this process. PMID:12093678

  5. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  6. Activated Protein C Attenuates Severe Inflammation by Targeting VLA-3high Neutrophil Subpopulation in Mice.

    Science.gov (United States)

    Sarangi, Pranita P; Lee, Hyun-Wook; Lerman, Yelena V; Trzeciak, Alissa; Harrower, Eric J; Rezaie, Alireza R; Kim, Minsoo

    2017-10-15

    The host injury involved in multiorgan system failure during severe inflammation is mediated, in part, by massive infiltration and sequestration of hyperactive neutrophils in the visceral organ. A recombinant form of human activated protein C (rhAPC) has shown cytoprotective and anti-inflammatory functions in some clinical and animal studies, but the direct mechanism is not fully understood. Recently, we reported that, during endotoxemia and severe polymicrobial peritonitis, integrin VLA-3 (CD49c/CD29) is specifically upregulated on hyperinflammatory neutrophils and that targeting the VLA-3 high neutrophil subpopulation improved survival in mice. In this article, we report that rhAPC binds to human neutrophils via integrin VLA-3 (CD49c/CD29) with a higher affinity compared with other Arg-Gly-Asp binding integrins. Similarly, there is preferential binding of activated protein C (PC) to Gr1 high CD11b high VLA-3 high cells isolated from the bone marrow of septic mice. Furthermore, specific binding of rhAPC to human neutrophils via VLA-3 was inhibited by an antagonistic peptide (LXY2). In addition, genetically modified mutant activated PC, with a high affinity for VLA-3, shows significantly improved binding to neutrophils compared with wild-type activated PC and significantly reduced neutrophil infiltration into the lungs of septic mice. These data indicate that variants of activated PC have a stronger affinity for integrin VLA-3, which reveals novel therapeutic possibilities. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Nimesulide inhibits platelet-activating factor synthesis in activated human neutrophils

    NARCIS (Netherlands)

    Verhoeven, A. J.; Tool, A. T.; Kuijpers, T. W.; Roos, D.

    1993-01-01

    In an inflammatory locus, products of activated neutrophils may be toxic both to the micro-organisms to be eliminated and to the surrounding tissue. In several models of inflammation, nimesulide possesses marked anti-inflammatory properties. The present study was undertaken to further investigate

  8. Neutrophil chemotactic activity in bronchoalveolar lavage fluid of patients with AIDS-associated Pneumocystis carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; Kharazmi, A; Larsen, C G

    1997-01-01

    been shown to confer a poor prognosis in PCP. We therefore investigated the potential of BAL fluid from 17 patients with PCP to induce neutrophil chemotaxis. BAL fluid from patients induced considerable neutrophil chemotactic activity compared to normal controls. Elevated levels of IL-8 were detected...... in patient samples as compared to controls. A specific anti-IL-8 antibody significantly reduced chemotactic activity of patient samples by more than 50%. In conclusion, IL-8 appears to be a significant participant of neutrophil chemotaxis in AIDS-associated PCP, and may participate in the recruitment...

  9. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  10. Polymorphonuclear leukocyte elastase in patients with stroke.

    Science.gov (United States)

    Vila, N; Elena, M; Deulofeu, R; Chamorro, A

    1999-12-01

    Polymorphonuclear leukocytes (PMNL) are involved in the pathogenesis of acute cerebral ischemia and atherosclerosis. Elastase is one of the proteolytic enzymes released by activated PMNL. We evaluated whether plasma levels of elastase-inhibitor complexes (EIC) are related to acute cerebral damage or with extension of carotid atherosclerosis in patients with stroke. Plasma levels of EIC were determined in 44 patients during acute and chronic phases of stroke. We recorded in all patients vascular risk factors, clinical severity on admission, infarct volume, and extension of carotid atherosclerosis using B-mode ultrasound exam. EIC levels were not different between acute and chronic phases of stroke. Eleven patients (25%) had increased values of EIC. On multiple regression analysis diabetes, dislipemia, and coronary disease were predictors of abnormal EIC levels. EIC levels were not related to neurological severity on admission, infarct volume, or carotid atherosclerosis. EIC levels in stroke patients are associated to the presence of vascular risk factors and may reflect cellular inflammatory aspects of chronic vessel disease. However, whether elastase contributes to the development of carotid atherosclerosis in patients with stroke remains unknown.

  11. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging I: Reduced Skin Elasticity, Highly Associated with Enhanced Dermal Elastase Activity, Triggers Wrinkling and Sagging

    Science.gov (United States)

    Imokawa, Genji; Ishida, Koichi

    2015-01-01

    The repetitive exposure of skin to ultraviolet B (UVB) preferentially elicits wrinkling while ultraviolet A (UVA) predominantly elicits sagging. In chronically UVB or UVA-exposed rat skin there is a similar tortuous deformation of elastic fibers together with decreased skin elasticity, whose magnitudes are greater in UVB-exposed skin than in UVA-exposed skin. Comparison of skin elasticity with the activity of matrix metalloproteinases (MMPs) in the dermis of ovariectomized rats after UVB or UVA irradiation demonstrates that skin elasticity is more significantly decreased in ovariectomized rats than in sham-operated rats, which is accompanied by a reciprocal increase in elastase activity but not in the activities of collagenases I or IV. Clinical studies using animal skin and human facial skin demonstrated that topical treatment with a specific inhibitor or an inhibitory extract of skin fibroblast-derived elastase distinctly attenuates UVB and sunlight-induced formation of wrinkling. Our results strongly indicated that the upregulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. PMID:25856675

  12. Fusion expression of Helicobacter pylori neutrophil-activating protein in E.coli

    OpenAIRE

    Kang, Qiao-Zhen; Duan, Guang-Cai; Fan, Qing-Tang; Xi, Yuan-Lin

    2005-01-01

    AIM: To produce a recombinant protein rMBP-NAP, which was fusionally expressed by Helicobacter pylori (H pylori) neutrophil-activating protein (NAP) and E. coli maltose-binding protein (MBP) and to evaluate its immunoreactivity and immunogenicity.

  13. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  14. Semi-Automatic Rating Method for Neutrophil Alkaline Phosphatase Activity.

    Science.gov (United States)

    Sugano, Kanae; Hashi, Kotomi; Goto, Misaki; Nishi, Kiyotaka; Maeda, Rie; Kono, Keigo; Yamamoto, Mai; Okada, Kazunori; Kaga, Sanae; Miwa, Keiko; Mikami, Taisei; Masauzi, Nobuo

    2017-01-01

    The neutrophil alkaline phosphatase (NAP) score is a valuable test for the diagnosis of myeloproliferative neoplasms, but it has still manually rated. Therefore, we developed a semi-automatic rating method using Photoshop ® and Image-J, called NAP-PS-IJ. Neutrophil alkaline phosphatase staining was conducted with Tomonaga's method to films of peripheral blood taken from three healthy volunteers. At least 30 neutrophils with NAP scores from 0 to 5+ were observed and taken their images. From which the outer part of neutrophil was removed away with Image-J. These were binarized with two different procedures (P1 and P2) using Photoshop ® . NAP-positive area (NAP-PA) and granule (NAP-PGC) were measured and counted with Image-J. The NAP-PA in images binarized with P1 significantly (P < 0.05) differed between images with NAP scores from 0 to 3+ (group 1) and those from 4+ to 5+ (group 2). The original images in group 1 were binarized with P2. NAP-PGC of them significantly (P < 0.05) differed among all four NAP score groups. The mean NAP-PGC with NAP-PS-IJ indicated a good correlation (r = 0.92, P < 0.001) to results by human examiners. The sensitivity and specificity of NAP-PS-IJ were 60% and 92%, which might be considered as a prototypic method for the full-automatic rating NAP score. © 2016 Wiley Periodicals, Inc.

  15. Role of sphingomyelin synthase in controlling the antimicrobial activity of neutrophils against Cryptococcus neoformans.

    Directory of Open Access Journals (Sweden)

    Asfia Qureshi

    2010-12-01

    Full Text Available The key host cellular pathway(s necessary to control the infection caused by inhalation of the environmental fungal pathogen Cryptococcus neoformans are still largely unknown. Here we have identified that the sphingolipid pathway in neutrophils is required for them to exert their killing activity on the fungus. In particular, using both pharmacological and genetic approaches, we show that inhibition of sphingomyelin synthase (SMS activity profoundly impairs the killing ability of neutrophils by preventing the extracellular release of an antifungal factor(s. We next found that inhibition of protein kinase D (PKD, which controls vesicular sorting and secretion and is regulated by diacylglycerol (DAG produced by SMS, totally blocks the extracellular killing activity of neutrophils against C. neoformans. The expression of SMS genes, SMS activity and the levels of the lipids regulated by SMS (namely sphingomyelin (SM and DAG are up-regulated during neutrophil differentiation. Finally, tissue imaging of lungs infected with C. neoformans using matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS, revealed that specific SM species are associated with neutrophil infiltration at the site of the infection. This study establishes a key role for SMS in the regulation of the killing activity of neutrophils against C. neoformans through a DAG-PKD dependent mechanism, and provides, for the first time, new insights into the protective role of host sphingolipids against a fungal infection.

  16. Myeloperoxidase activity and the oxidized proteins in blood neutrophils of patients with pneumonia.

    Science.gov (United States)

    Muravlyova, Larissa; Molotov-Luchanskiy, Vilen; Bakirova, Ryszhan; Klyuyev, Dmitriy; Demidchik, Ludmila; Kolesnikova, Yevgeniya

    2014-10-01

    The main purpose of our investigation was to study myeloperoxidase activity and concentration of oxidized proteins in blood neutrophils of patients with ambulant pneumonia and secondary pneumonia which has arisen on a background of chronic obstructive pulmonary disease (COPD). Patients were divided into 2 groups. 17 patients with ambulant pneumonia moderate severity and respiratory insufficiency of grade 2 were included in the 1-st group. 20 COPD patients with secondary pneumonia moderate severity and with respiratory insufficiency of grade 2 were included in the 2-nd group. The control group consisted of 15 healthy subjects. The reactive protein carbonyl derivates, advanced oxidation protein products (AOPP) and myeloperoxidase activity were detected in neutrophils. In neutrophils of 1-st group patients the augmentation of reactive protein carbonyl derivates was observed in comparison with healthy ones. In neutrophils of 2-nd group patients the slight decrease of reactive protein carbonyl derivates was observed in comparison with healthy ones (by 17%). In neutrophils of 2-nd group patients the significant increasing AOPP in comparison with healthy ones (p <0.01) and 1 group patients (p <0.05) was fixed. Myeloperoxidase activity was higher in neutrophils of 1-th group patients in comparison with healthy ones. In neutrophils of 2-nd group patients myeloperoxidase activity was higher in comparison with the same of 1 group patients (by 67%, p <0.05). Our results showed the different direction of oxidized proteins formation neutrophils of patients with primary and secondary pneumonia. Besides that the varied degree of myeloperoxidase activity was fixed. Our results require more detailed understanding because they can reflect peculiar mechanisms of pneumonia development and determine the characteristics of their progression. Copyright © 2014. Published by Elsevier Inc.

  17. MEK-independent ERK activation in human neutrophils and its impact on functional responses.

    Science.gov (United States)

    Simard, François A; Cloutier, Alexandre; Ear, Thornin; Vardhan, Harsh; McDonald, Patrick P

    2015-10-01

    Neutrophils influence innate and adaptative immunity, notably through the generation of numerous cytokines and chemokines and through the modulation of their constitutive apoptosis. Several signaling cascades are known to control neutrophil responses, including the MEK pathway, which is normally coupled to ERK. However, we show here that in human neutrophils stimulated with cytokines or TLR ligands, MEK and ERK are activated independently of each other. Pharmacological blockade of MEK had no effect on the induction of ERK kinase activity and vice versa. In autologous PBMC exposed to the same stimuli or in neutrophils exposed to chemoattractants, this uncoupling of MEK and ERK was not observed. Whereas we had shown before that MEK inhibition impairs cytokine generation translationally in LPS- or TNF-stimulated neutrophils, ERK inhibition affected this response transcriptionally and translationally. Transcriptional targets or ERK include the mitogen- and stress-activated protein kinase 1 (MSK-1) and its substrates, C/EBPβ and CREB, whereas translational targets include the S6 kinase and its substrate, the S6 ribosomal protein. In addition to affecting cytokine production, ERK inhibition interfered with how LPS or TNF promotes neutrophil survival and levels of the myeloid cell leukemia 1 (Mcl-1) antiapoptotic protein. Whereas the ERK-activating kinase was not identified, we found that the MAP3K, TGF-β-activated kinase 1 (TAK1), acts upstream of ERK and MEK in neutrophils. Our results document a functional uncoupling of the MEK/ERK module under certain stimulatory conditions and suggest that therapeutic strategies based on MEK inhibition might benefit from being complemented by ERK inhibition, particularly in chronic inflammatory conditions featuring a strong neutrophilic component. © Society for Leukocyte Biology.

  18. IL-17A is essential to the development of elastase-induced pulmonary inflammation and emphysema in mice

    Directory of Open Access Journals (Sweden)

    Kurimoto Etsuko

    2013-01-01

    Full Text Available Abstract Background Pulmonary emphysema is characterized by alveolar destruction and persistent inflammation of the airways. Although IL-17A contributes to many chronic inflammatory diseases, it’s role in the inflammatory response of elastase-induced emphysema remains unclear. Methods In a model of elastase-induced pulmonary emphysema we examined the response of IL-17A-deficient mice, monitoring airway inflammation, static compliance, lung histology and levels of neutrophil-related chemokine and pro-inflammatory cytokines in bronchoalveolar lavage (BAL fluid. Results Wild-type mice developed emphysematous changes in the lung tissue on day 21 after elastase treatment, whereas emphysematous changes were decreased in IL-17A-deficient mice compared to wild-type mice. Neutrophilia in BAL fluid, seen in elastase-treated wild-type mice, was reduced in elastase-treated IL-17A-deficient mice on day 4, associated with decreased levels of KC, MIP-2 and IL-1 beta. Elastase-treated wild-type mice showed increased IL-17A levels as well as increased numbers of IL-17A+ CD4 T cells in the lung in the initial period following elastase treatment. Conclusions These data identify the important contribution of IL-17A in the development of elastase-induced pulmonary inflammation and emphysema. Targeting IL-17A in emphysema may be a potential therapeutic strategy for delaying disease progression.

  19. Demodex-associated bacterial proteins induce neutrophil activation

    OpenAIRE

    O'Reilly, N.; Bergin, D.; Reeves, E.P.; McElvaney, N.G.; Kavanagh, K.

    2012-01-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than do controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea, thus suggesting a possible role for bacterial proteins in the aetiology of this condition. Objectives To examine the response of neutrophils to proteins derived from a bacterium isolated...

  20. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing.

    Science.gov (United States)

    Garg, Abhishek D; Vandenberk, Lien; Fang, Shentong; Fasche, Tekele; Van Eygen, Sofie; Maes, Jan; Van Woensel, Matthias; Koks, Carolien; Vanthillo, Niels; Graf, Norbert; de Witte, Peter; Van Gool, Stefaan; Salven, Petri; Agostinis, Patrizia

    2017-05-01

    Innate immune sensing of dying cells is modulated by several signals. Inflammatory chemokines-guided early recruitment, and pathogen-associated molecular patterns-triggered activation, of major anti-pathogenic innate immune cells like neutrophils distinguishes pathogen-infected stressed/dying cells from sterile dying cells. However, whether certain sterile dying cells stimulate innate immunity by partially mimicking pathogen response-like recruitment/activation of neutrophils remains poorly understood. We reveal that sterile immunogenic dying cancer cells trigger (a cell autonomous) pathogen response-like chemokine (PARC) signature, hallmarked by co-release of CXCL1, CCL2 and CXCL10 (similar to cells infected with bacteria or viruses). This PARC signature recruits preferentially neutrophils as first innate immune responders in vivo (in a cross-species, evolutionarily conserved manner; in mice and zebrafish). Furthermore, key danger signals emanating from these dying cells, that is, surface calreticulin, ATP and nucleic acids stimulate phagocytosis, purinergic receptors and toll-like receptors (TLR) i.e. TLR7/8/9-MyD88 signaling on neutrophil level, respectively. Engagement of purinergic receptors and TLR7/8/9-MyD88 signaling evokes neutrophil activation, which culminates into H 2 O 2 and NO-driven respiratory burst-mediated killing of viable residual cancer cells. Thus sterile immunogenic dying cells perform 'altered-self mimicry' in certain contexts to exploit neutrophils for phagocytic targeting of dead/dying cancer cells and cytotoxic targeting of residual cancer cells.

  1. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation.

    Science.gov (United States)

    Bai, Ming; Grieshaber-Bouyer, Ricardo; Wang, Junxia; Schmider, Angela B; Wilson, Zachary S; Zeng, Liling; Halyabar, Olha; Godin, Matthew D; Nguyen, Hung N; Levescot, Anaïs; Cunin, Pierre; Lefort, Craig T; Soberman, Roy J; Nigrovic, Peter A

    2017-11-09

    CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177 pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177 pos and CD177 neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177 pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration. © 2017 by The American Society of Hematology.

  2. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones.

    Directory of Open Access Journals (Sweden)

    Mona Saffarzadeh

    Full Text Available Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET. These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction.

  3. Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses

    National Research Council Canada - National Science Library

    Mohamadzadeh, Mansour; Coberley, Sadie S; Olinger, Gene G; Kalina, Warren V; Ruthel, Gordon; Fullter, Claudette L; Swenson, Dana L; Pratt, William D; Kuhns, Douglas B; Schmaljohn, Alan L

    2006-01-01

    .... Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory...

  4. THE RELATION BETWEEN PHAGOCYTIC ACTIVITY OF THE NEUTROPHILS (PMN AND THE GLICEMIC LEVEL AT THE SPORTSMAN

    Directory of Open Access Journals (Sweden)

    D. Cotuna

    1999-01-01

    Full Text Available We tried to find a relation between the phagocytes activity of the neutrophils and the level of glicemy in athletes applying the ANOVA test, taking into account the fact that hyperglicemy reduces the phagocytes activity of the neutrophils which becomes so more spherical and burden after the contact with foreign particles. The phagocyte activity of neutrophils (PMN had been established through NBT technique and the glicemy level was determined by Hagerdon – Jansen method. From these notices processed by ANOVA test applied on the values of phagocyte activity of PMN and on glicemy level we conclude that does not exist a tendency of association of these two parameters in a relationship.

  5. Physicochemical properties of elastase isolated from clinical Pseudomonas Aeruginosa

    International Nuclear Information System (INIS)

    Elbazza, Z.E.; Moroz, A.F.

    1989-01-01

    Purified elastase was obtained from clinical Pseudomonas Aeruginosa (P.A.-283). The enzyme showed not only elasto lytic activity, but also a broad proteolytic activity against various proteins. The activity of the enzyme on collagen and gelatin was also observed. The optimum pH for elastase was 7.8 to 8.0 for both the proteolytic and elasto lytic activities. The elastase was stable in a pH range from 6.6 to 9.0. Optimum temperature for proteolytic and elasto lytic activities was 40 and inhibition of elastase occurs at 80 . The D 1 0 value of the P.A-283 was found to be 0.11 kGy. Increasing the dose level value of gamma-irradiation decrease the proteolytic activity in the culture filtrate reaching only 16% at the dose level 0.5 kGy. Chelating agents and some metal ions inhibited both proteolytic and elasto lytic activities. Selective inhibition of elasto lytic activity was observed in high concentrations of sodium and ammonium salts without concurrent decrease in the proteolytic activity of the enzyme.4 fig., 3 tab

  6. Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis).

    Science.gov (United States)

    Korkmaz, Brice; Lesner, Adam; Letast, Stephanie; Mahdi, Yassir K; Jourdan, Marie-Lise; Dallet-Choisy, Sandrine; Marchand-Adam, Sylvain; Kellenberger, Christine; Viaud-Massuard, Marie-Claude; Jenne, Dieter E; Gauthier, Francis

    2013-07-01

    Neutrophils are among the first cells implicated in acute inflammation. Leaving the blood circulation, they quickly migrate through the interstitial space of tissues and liberate oxidants and other antimicrobial proteins together with serine proteinases. Neutrophil elastase, cathepsin G, proteinase 3 (PR3), and neutrophil serine protease 4 are four hematopoietic serine proteases activated by dipeptidyl peptidase I during neutrophil maturation and are mainly stored in cytoplasmic azurophilic granules. They regulate inflammatory and immune responses after their release from activated neutrophils at inflammatory sites. Membrane-bound PR3 (mbPR3) at the neutrophil surface is the prime antigenic target of antineutrophil cytoplasmic autoantibodies (ANCA) in granulomatosis with polyangiitis (GPA), a vasculitis of small blood vessels and granulomatous inflammation of the upper and/or lower respiratory tracts. The interaction of ANCA with mbPR3 results in excessive activation of neutrophils to produce reactive oxygen species and liberation of granular proteinases to the pericellular environment. In this review, we focus on PR3 and dipeptidyl peptidase I as attractive pharmacological targets whose inhibition is expected to attenuate autoimmune activation of neutrophils in GPA.

  7. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites.

    OpenAIRE

    Weiss, S J; Regiani, S

    1984-01-01

    Triggered neutrophils rapidly degraded labeled matrices secreted by cultured, venous endothelial cells via a process dependent on elastase but not oxygen metabolites. In the presence of high concentrations of alpha-1-proteinase inhibitor, the ability of the stimulated neutrophil to solubilize the matrix was impaired. However, at lower concentrations of alpha-1-proteinase inhibitor the neutrophil could enhance the degradative potential of its released elastase by a H2O2-dependent process. Coin...

  8. LPS-Induced Galectin-3 Oligomerization Results in Enhancement of Neutrophil Activation

    Science.gov (United States)

    Fermino, Marise Lopes; Polli, Claudia Danella; Toledo, Karina Alves; Liu, Fu-Tong; Hsu, Dan K.; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2011-01-01

    Galectin-3 (Gal 3) is a glycan-binding protein that can be secreted by activated macrophages and mast cells at inflammation sites and plays an important role in inflammatory diseases caused by Bacteria and their products, such as lipopolysaccharides (LPS). Although it is well established that Gal 3 can interact with LPS, the pathophysiological importance of LPS/Gal 3 interactions is not fully understood. Data presented herein demonstrate for the first time that the interaction of Gal 3, either via its carbohydrate binding C-terminal domain or via its N-terminal part, with LPS from different bacterial strains, enhances the LPS-mediated neutrophil activation in vitro. Gal 3 allowed low LPS concentrations (1 µg/mL without serum, 1 ng/mL with serum) to upregulate CD11b expression and reactive oxygen species (ROS) generation on human neutrophils in vitro and drastically enhanced the binding efficiency of LPS to the neutrophil surface. These effects required LPS preincubation with Gal 3, before neutrophil stimulation and involved specific Gal 3/LPS interaction. A C-terminal Gal-3 fragment, which retains the lectin domain but lacks the N-terminal part, was still able to bind both to Escherichia coli LPS and to neutrophils, but had lost the ability to enhance neutrophil response to LPS. This result emphasizes the importance of an N-terminus-mediated Gal 3 oligomerization induced by its interaction with LPS. Finally we demonstrated that Balb/C mice were more susceptible to LPS-mediated shock when LPS was pretreated with Gal 3. Altogether, these results suggest that multimeric interactions between Gal 3 oligomers and LPS potentiate its pro-inflammatory effects on neutrophils. PMID:22031821

  9. RNA-seq reveals activation of both common and cytokine-specific pathways following neutrophil priming.

    Directory of Open Access Journals (Sweden)

    Helen L Wright

    Full Text Available Neutrophils are central to the pathology of inflammatory diseases, where they can damage host tissue through release of reactive oxygen metabolites and proteases, and drive inflammation via secretion of cytokines and chemokines. Many cytokines, such as those generated during inflammation, can induce a similar "primed" phenotype in neutrophils, but it is unknown if different cytokines utilise common or cytokine-specific pathways to induce these functional changes. Here, we describe the transcriptomic changes induced in control human neutrophils during priming in vitro with pro-inflammatory cytokines (TNF-α and GM-CSF using RNA-seq. Priming led to the rapid expression of a common set of transcripts for cytokines, chemokines and cell surface receptors (CXCL1, CXCL2, IL1A, IL1B, IL1RA, ICAM1. However, 580 genes were differentially regulated by TNF-α and GM-CSF treatment, and of these 58 were directly implicated in the control of apoptosis. While these two cytokines both delayed apoptosis, they induced changes in expression of different pro- and anti-apoptotic genes. Bioinformatics analysis predicted that these genes were regulated via differential activation of transcription factors by TNF-α and GM-CSF and these predictions were confirmed using functional assays: inhibition of NF-κB signalling abrogated the protective effect of TNF-α (but not that of GM-CSF on neutrophil apoptosis, whereas inhibition of JAK/STAT signalling abrogated the anti-apoptotic effect of GM-CSF, but not that of TNF-α (p<0.05. These data provide the first characterisation of the human neutrophil transcriptome following GM-CSF and TNF-α priming, and demonstrate the utility of this approach to define functional changes in neutrophils following cytokine exposure. This may provide an important, new approach to define the molecular properties of neutrophils after in vivo activation during inflammation.

  10. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis)

    NARCIS (Netherlands)

    de Jong, Hanna K.; Koh, Gavin C. K. W.; Achouiti, Ahmed; van der Meer, Anne J.; Bulder, Ingrid; Stephan, Femke; Roelofs, Joris J. T. H.; Day, Nick P. J.; Peacock, Sharon J.; Zeerleder, Sacha; Wiersinga, W. Joost

    2014-01-01

    Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause

  11. Heightened systemic levels of neutrophil and eosinophil granular proteins in pulmonary tuberculosis and reversal following treatment.

    Science.gov (United States)

    Moideen, Kadar; Kumar, Nathella Pavan; Nair, Dina; Banurekha, Vaithilingam V; Bethunaickan, Ramalingam; Babu, Subash

    2018-04-09

    Granulocytes are activated during tuberculosis (TB) infection and act as immune effector cells and granulocyte responses are implicated in TB pathogenesis. Plasma levels of neutrophil and eosinophil granular proteins provide an indirect measure of degranulation. In this study, we wanted to examine the levels of neutrophil and eosinophil granular proteins in individuals with pulmonary tuberculosis (PTB) and to compare them with the levels in latent TB (LTB) individuals. Hence, we measured the plasma levels of myeloperoxidase (MPO), neutrophil elastase, and proteinase-3; major basic protein (MBP), eosinophil derived neurotoxin (EDN), eosinophil cationic protein (ECP) and eosinophil peroxidase (EPX) in these individuals. Finally, we also measured the levels of all of these parameters in PTB individuals following anti-tuberculosis (ATT) treatment. Our data reveal that PTB individuals are characterized by significantly higher plasma levels of MPO, elastase, human proteinase 3 as well as MBP and EDN in comparison to LTB individuals. Our data also reveal that ATT resulted in reversal of all of these changes, indicating an association with TB disease. Finally, our data show that the systemic levels of MPO and proteinase-3 can significantly discriminate PTB from LTB individuals. Thus, our data suggest that neutrophil and eosinophil granular proteins could play a potential role in the innate immune response and therefore, the pathogenesis of pulmonary TB. Copyright © 2018 American Society for Microbiology.

  12. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    International Nuclear Information System (INIS)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-01-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of 3 H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes

  13. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    Energy Technology Data Exchange (ETDEWEB)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-11-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of /sup 3/H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes.

  14. Sputum epithelial cell-derived neutrophil-activating peptide-78 (ENA ...

    African Journals Online (AJOL)

    EL-HAKIM

    macrophages, eosinophils, basophils and dendritic ... (ECP) as a marker of eosinophil activation, as well as eosinophil counts in ... Keywords: Bronchial asthma; chemokines; children; epithelial cell-derived neutrophil-activating peptide-78; eosinophils; eosinophil cationic protein; sputum markers. Gehan A. Mostafa,.

  15. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: effects of eculizumab

    NARCIS (Netherlands)

    Bijnen, S.T. van; Wouters, D.; Mierlo, G.J. van; Muus, P.; Zeerleder, S.

    2015-01-01

    BACKGROUND: Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated hemolysis and a high risk of life-threatening venous and arterial thrombosis. Uncontrolled complement activation and the release of cell-free heme may result in systemic inflammation, neutrophil activation,

  16. Neutrophil activation and nucleosomes as markers of systemic inflammation in paroxysmal nocturnal hemoglobinuria: effects of eculizumab

    NARCIS (Netherlands)

    van Bijnen, S. T. A.; Wouters, D.; van Mierlo, G. J.; Muus, P.; Zeerleder, S.

    2015-01-01

    Paroxysmal nocturnal hemoglobinuria (PNH) is characterized by complement-mediated hemolysis and a high risk of life-threatening venous and arterial thrombosis. Uncontrolled complement activation and the release of cell-free heme may result in systemic inflammation, neutrophil activation, and the

  17. The role of activated neutrophils in the early stage of equine laminitis.

    Science.gov (United States)

    de la Rebière de Pouyade, Geoffroy; Serteyn, Didier

    2011-07-01

    Despite ongoing research and a widening range of treatment options, laminitis remains a severely damaging condition with poorly understood pathophysiology. Results obtained from cytokine regulation studies during the last decade have highlighted the inflammatory nature of laminitis. This review will describe the role of systemic activation and local infiltration of neutrophils in laminar tissues in the induction of laminitis. Particular emphasis is placed on the role of neutrophil activation in subsequent vascular dysfunction and oxidative and proteolysis imbalances that are pathways previously implicated in laminitis. Neutrophils, by the way of their interdependent relationship with endothelial cells and keratinocytes, dramatically increase the inflammatory response culminating in the failure of the laminar dermal-epidermal interface. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Activated host neutrophils in the larval midgut lumen of the human bot fly Dermatobia hominis.

    Science.gov (United States)

    Leite, Antônio C R; Evangelista, L G

    2002-04-01

    Light microscopy (LM) and transmission electron microscopy (TEM) were used to observe activated polymorphonuclear neutrophils from mammalian hosts as well as invading bacteria in the midgut lumen of larvae of the human bot fly Dermatobia hominis. Other resident or recruited cells associated with dermal myiasis were fed on by larvae and digested more rapidly than neutrophils. The latter were observed moving towards bacteria and particles of food, extending the filopodia and engulfing material to be digested within phagosomes. The larval midgut lumen, thus, appears to be a suitable environment to produce neutrophil activation at least for short periods, as seen in mammalian hosts. Although interactions between phagocytes and bacteria in the midgut lumen may be important in bot fly larval development, further studies are required to confirm this.

  19. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin.

    Science.gov (United States)

    Maes, Michael; Twisk, Frank N M; Kubera, Marta; Ringel, Karl

    2012-02-01

    There is evidence that inflammatory pathways and cell-mediated immunity (CMI) play an important role in the pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Activation of inflammatory and CMI pathways, including increased levels of cytokines, is known to induce fatigue and somatic symptoms. Given the broad spectrum inflammatory state in ME/CFS, the aim of this study was to examine whether inflammatory and CMI biomarkers are increased in individuals with ME/CFS. In this study we therefore measured plasma interleukin-(IL)1, tumor necrosis factor (TNF)α, and PMN-elastase, and serum neopterin and lysozyme in 107 patients with ME/CFS, 37 patients with chronic fatigue (CF), and 20 normal controls. The severity of ME/CFS was measured with the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. Serum IL-1, TNFα, neopterin and lysozyme are significantly higher in patients with ME/CFS than in controls and CF patients. Plasma PMN-elastase is significantly higher in patients with ME/CFS than in controls and CF patients and higher in the latter than in controls. Increased IL-1 and TNFα are significantly correlated with fatigue, sadness, autonomic symptoms, and a flu-like malaise; neopterin is correlated with fatigue, autonomic symptoms, and a flu-like malaise; and increased PMN-elastase is correlated with concentration difficulties, failing memory and a subjective experience of infection. The findings show that ME/CFS is characterized by low-grade inflammation and activation of CMI. The results suggest that characteristic symptoms of ME/CFS, such as fatigue, autonomic symptoms and a flu-like malaise, may be caused by inflammatory mediators, e.g. IL-1 and TNFα. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Activation and regulation of arachidonic acid release in rabbit peritoneal neutrophils

    International Nuclear Information System (INIS)

    Tao, W.

    1988-01-01

    Arachidonic acid release in rabbit neutrophils can be enhanced by the addition of chemotactic fMet-Leu-Phe, platelet-activating factor, PAF, or the calcium ionophore A23187. Over 80% of the release [ 3 H]arachidonic acid comes from phosphatidylcholine and phosphatidylinositol. The release is dose-dependent and increases with increasing concentration of the stimulus. The A23187-induced release increases with increasing time of the stimulation. [ 3 H]arachidonic acid release, but not the rise in the concentration of intracellular calcium, is inhibited in pertussis toxin-treated neutrophils stimulated with PAF. The [ 3 H]arachidonic acid released by A23187 is potentiated while that release by fMET-Leu-Phe or PAF is inhibited in phorbol 12-myristate 13-acetate, PMA, treated rabbit neutrophils. The protein kinase C inhibitor 1-(5-isoquinoline sulfonyl)-2-methylpiperazine, H-7, has no effect on the potentiation by PMA of the A23187-induced release, it prevents the inhibition by PMA of the release produced by PAF or fMet-Leu-Phe. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. The diacylglycerol kinase inhibitor R59022 increases the level of diacylglycerol in neutrophils stimulated with fMet-Leu-Phe. Furthermore, R59022 potentiates [ 3 H] arachidonic acid release produced by fMet-Leu-Phe. This potentiation is not inhibited by H-7, in fact, it is increased in H-7-treated neutrophils

  1. Healthy elderly people lack neutrophil-mediated functional activity to type V group B Streptococcus.

    Science.gov (United States)

    Amaya, Rene A; Baker, Carol J; Keitel, Wendy A; Edwards, Morven S

    2004-01-01

    To determine the function of capsular polysaccharide (CPS)-specific immunoglobulin-G (IgG) and neutrophils from older adults in increasing ingestion and killing of type V group B Streptococcus (GBS). Cross-sectional study. Outpatient clinic at Baylor College of Medicine. The subjects were 40 healthy, community-dwelling adults aged 65 and older from Houston, Texas. The serum level of type V GBS CPS-specific IgG was measured using an enzyme-linked immunosorbent assay. Functional activity was evaluated using an opsonophagocytosis assay. Sera from four subjects promoted efficient neutrophil-mediated phagocytosis and killing of type V GBS (mean log10 reduction+/-standard deviation in colony-forming units (cfu)=1.51+/-0.39). Each had serum CPS-specific IgG concentrations exceeding 1 microg/mL. Sera from 36 subjects did not promote neutrophil-mediated functional activity (mean log10 reduction in cfu=-0.09+/-0.06; P=.025). Only one of these 36 had a CPS-specific IgG concentration exceeding 1 microg/mL. When pooled sera from young adults given type V GBS conjugate vaccine was added at CPS-specific IgG concentrations of 4 microg/mL or 0.4 microg/mL, sera from all subjects promoted neutrophil-mediated killing of type V GBS. No impairment was evident in the neutrophil function of elderly subjects when it was compared with that of young adults. CPS-specific IgG and neutrophils from healthy older adults function to ingest and kill type V GBS, but these antibodies are not present in sufficient amounts in most individuals. Further studies should determine whether a type V GBS vaccine induces functionally active antibodies in older people.

  2. Elastase-induced emphysema in guinea pigs

    International Nuclear Information System (INIS)

    Loscutoff, S.M.

    1979-01-01

    Pulmonary function changes measured in guinea pigs 4 to 5 wk following intratracheal instillation of crystalline porcine pancreatic elastase resembled comparable changes in humans with moderately severe pulmonary emphysema. Compared with saline-treated controls, elastase-treated animals had increased values for all divisions of lung volume, increased static compliance and prolonged time constants. Since humans with emphysema are especially sensitive to air pollutants, elastase-treated animals may be useful as sensitive animal models in inhalatio toxicology

  3. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    Science.gov (United States)

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  4. Endocytosis is required for exocytosis and priming of respiratory burst activity in human neutrophils.

    Science.gov (United States)

    Creed, T Michael; Tandon, Shweta; Ward, Richard A; McLeish, Kenneth R

    2017-10-01

    Neutrophil generation of reactive oxygen species (ROS) is enhanced by exposure to pro-inflammatory agents in a process termed priming. Priming is depending on exocytosis of neutrophil granules and p47 phox phosphorylation-dependent translocation of cytosolic NADPH oxidase components. Clathrin-mediated endocytosis was recently reported to be necessary for priming, but the mechanism linking endocytosis to priming was not identified. The present study examined the hypothesis that endocytosis regulates neutrophil priming by controlling granule exocytosis. Clathrin-mediated endocytosis by isolated human neutrophils was inhibited by chlorpromazine, monodansylcadaverine, and sucrose. Exocytosis of granule subsets was measured as release of granule components by ELISA or chemiluminescence. ROS generation was measured as extracellular release of superoxide as reduction of ferrocytochrome c. p38 MAPK activation and p47 phox phosphorylation were measured by immunoblot analysis. Statistical analysis was performed using a one-way ANOVA with the Tukey-Kramer multiple-comparison test. Inhibition of endocytosis prevented priming of superoxide release by TNFα and inhibited TNFα stimulation and priming of exocytosis of all four granule subsets. Inhibition of endocytosis did not reduce TNFα-stimulated p38 MAPK activation or p47 phox phosphorylation. Inhibition of NADPH oxidase activity blocked TNFα stimulation of secretory vesicle and gelatinase granule exocytosis. Endocytosis is linked to priming of respiratory burst activity through ROS-mediated control of granule exocytosis.

  5. Activation of proteinase 3 contributes to Non-alcoholic Fatty Liver Disease (NAFLD) and insulin resistance.

    Science.gov (United States)

    Toonen, Erik J M; Mirea, Andreea-Manuela; Tack, Cees J; Stienstra, Rinke; Ballak, Dov B; van Diepen, Janna A; Hijmans, Anneke; Chavakis, Triantafyllos; Dokter, Wim H; Pham, Christine T N; Netea, Mihai G; Dinarello, Charles A; Joosten, Leo A B

    2016-05-24

    Activation of inflammatory pathways is known to accompany development of obesity-induced non-alcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive pro-inflammatory mediators IL-1β and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In the present study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human alpha-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3 deficient mice showed strongly reduced levels of lipids in the liver after fed a high fat diet. Moreover, these mice were resistant to high fat diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1(-/-) mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with alpha-1 antitrypsin during the last 10 days of a 16 week high fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential.

  6. Isolation of Microsporum gypseum in soil samples from different geographical regions of Brazil, evaluation of the extracellular proteolytic enzymes activities (keratinase and elastase and molecular sequencing of selected strains

    Directory of Open Access Journals (Sweden)

    Mauro Cintra Giudice

    2012-09-01

    Full Text Available A survey of Microsporum gypseum was conducted in soil samples in different geographical regions of Brazil. The isolation of dermatophyte from soil samples was performed by hair baiting technique and the species were identified by morphology studies. We analyzed 692 soil samples and the recuperating rate was 19.2%. The activities of keratinase and elastase were quantitatively performed in 138 samples. The sequencing of the ITS region of rDNA was performed in representatives samples. M. gypseum isolates showed significant quantitative differences in the expression of both keratinase and elastase, but no significant correlation was observed between these enzymes. The sequencing of the representative samples revealed the presence of two teleomorphic species of M. gypseum (Arthroderma gypseum and A. incurvatum. The enzymatic activities may play an important role in the pathogenicity and a probable adaptation of this fungus to the animal parasitism. Using the phenotypical and molecular analysis, the Microsporum identification and their teleomorphic states will provide a useful and reliable identification system.

  7. Respiratory syncytial virus fusion protein promotes TLR-4-dependent neutrophil extracellular trap formation by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Giselle A Funchal

    Full Text Available Acute viral bronchiolitis by Respiratory Syncytial Virus (RSV is the most common respiratory illness in children in the first year of life. RSV bronchiolitis generates large numbers of hospitalizations and an important burden to health systems. Neutrophils and their products are present in the airways of RSV-infected patients who developed increased lung disease. Neutrophil Extracellular Traps (NETs are formed by the release of granular and nuclear contents of neutrophils in the extracellular space in response to different stimuli and recent studies have proposed a role for NETs in viral infections. In this study, we show that RSV particles and RSV Fusion protein were both capable of inducing NET formation by human neutrophils. Moreover, we analyzed the mechanisms involved in RSV Fusion protein-induced NET formation. RSV F protein was able to induce NET release in a concentration-dependent fashion with both neutrophil elastase and myeloperoxidase expressed on DNA fibers and F protein-induced NETs was dismantled by DNase treatment, confirming that their backbone is chromatin. This viral protein caused the release of extracellular DNA dependent on TLR-4 activation, NADPH Oxidase-derived ROS production and ERK and p38 MAPK phosphorylation. Together, these results demonstrate a coordinated signaling pathway activated by F protein that led to NET production. The massive production of NETs in RSV infection could aggravate the inflammatory symptoms of the infection in young children and babies. We propose that targeting the binding of TLR-4 by F protein could potentially lead to novel therapeutic approaches to help control RSV-induced inflammatory consequences and pathology of viral bronchiolitis.

  8. Purification and characterization of elastase from the pyloric caeca of rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Bassompierre, Marc; Nielsen, Henrik Hauch; Børresen, Torger

    1993-01-01

    1. An elastase-like enzyme was purified from the pyloric caeca of rainbow trout by hydrophobic interaction, cation exchange and gel-filtration chromatography. 2. The approximate molecular weight of the elastase was 27 kDa and the isoelectric point was remarkably basic. 3. The pH optimum of this e......1. An elastase-like enzyme was purified from the pyloric caeca of rainbow trout by hydrophobic interaction, cation exchange and gel-filtration chromatography. 2. The approximate molecular weight of the elastase was 27 kDa and the isoelectric point was remarkably basic. 3. The pH optimum...... of this enzyme was 8.0, when assayed with Succinyl-Ala-Ala-Ala-p-Nitroanilide. 4. When assayed with Succinyl-Ala-Ala-Ala-p-Nitroanilide, the enzyme activity had a temperature optimum of 45 degree C, and the enzyme was stable up to this temperature. 5. The trout elastase exhibited a higher specific activity than...... porcine elastase against Succinyl-Ala-Ala-Ala-p-Nitroanilide and elastin-orcein. 6. The trout elastase was inhibited by elastatinal, PMSF, TPCK, SBTI and Bowman-Birk inhibitor....

  9. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation.

    Directory of Open Access Journals (Sweden)

    Bram J van Raam

    Full Text Available BACKGROUND: Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Deltapsi(m, which is usually generated by the respiratory chain complexes. We investigated the source of Deltapsi(m in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this Deltapsi(m for the generation of ATP. METHODS AND PRINCIPAL FINDINGS: Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but Deltapsi(m was still decreased by inhibition of complex III, confirming the role of the respiratory chain in maintaining Deltapsi(m. Complex V did not maintain Deltapsi(m by consumption of ATP, as has previously been suggested for eosinophils. We show that complex III in neutrophil mitochondria can receive electrons from glycolysis via the glycerol-3-phosphate shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were lacking in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercomplex organisation while gaining increased aerobic glycolysis, just like neutrophils. CONCLUSIONS: We show that neutrophils can maintain Deltapsi(m via the glycerol-3-phosphate shuttle, whereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors.

  10. An In Vitro Model for Studying Neutrophil Activation During Cardiopulmonary Bypass by Using a Polymerase Chain Reaction Thermocycler

    NARCIS (Netherlands)

    Tang, Min; Zhao, Xiao-Gang; Gu, Y. John; Chen, Chang-Zhi

    The accurate temperature control of a polymerase chain reaction (PCR) thermocycler was exploited in developing an in vitro model to study neutrophil activation during cardiopulmonary bypass. Neutrophils from 12 volunteers underwent temperature changes in a PCR thermocycler (37 degrees C for 30

  11. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... at sites of active inflammation....

  12. Elastase modifies bleomycin-induced pulmonary fibrosis in mice.

    Science.gov (United States)

    Trajano, Larissa Alexsandra Silva Neto; Trajano, Eduardo Tavares Lima; Lanzetti, Manuella; Mendonça, Morena Scopel Amorim; Guilherme, Rafael Freitas; Figueiredo, Rodrigo Tinoco; Benjamim, Cláudia Farias; Valenca, Samuel Santos; Costa, Andréa Monte Alto; Porto, Luís Cristóvão

    2016-04-01

    Pulmonary fibrosis (PF) is characterized by excessive accumulation of collagen in the lungs. Emphysema is characterized by loss of the extracellular matrix (ECM) and alveolar enlargement. We studied the co-participation of elastase-induced mild emphysema in bleomycin-induced PF in mice by analyzing oxidative stress, inflammation and lung histology. C57BL/6 mice were divided into four groups: control; bleomycin (0.1U/mouse); elastase (using porcine pancreatic elastase (PPE)+bleomycin (3U/mouse 14 days before 0.1U/mouse of bleomycin; PPE+B); elastase (3U/mouse). Mice were humanely sacrificed 7, 14 and 21 days after treatment with bleomycin or vehicle. PF was observed 14 days and 21 days after bleomycin treatment but was observed after 14 days only in the PPE+B group. In the PPE+B group at 21 days, we observed many alveoli and alveolar septa with few PF areas. We also observed marked and progressive increases of collagens 7, 14 and 21 days after bleomycin treatment whereas, in the PPE+B group, collagen deposition was observed only at 14 days. There was a reduction in activities of the antioxidant enzymes superoxide dismutase (pbleomycin treatment compared with the control group. These endpoints were also reduced (pbleomycin) overall histology was improved to that of the nearest control group. Copyright © 2016. Published by Elsevier GmbH.

  13. Human neutrophil migration and activation by BJcuL, a galactose binding lectin purified from Bothrops jararacussu venom

    Directory of Open Access Journals (Sweden)

    Fernandes Luiz

    2011-01-01

    Full Text Available Abstract Background Neutrophil migration to an inflamed site constitutes the first line of the innate immune response against invading microorganisms. Given the crucial role of endogenous lectins in neutrophil mobilization and activation, lectins from exogenous sources have often been considered as putative modulators of leukocyte function. Lectins purified from snake venom have been described as galactoside ligands that induce erythrocyte agglutination and platelet aggregation. This study evaluated human neutrophil migration and activation by C-type lectin BJcuL purified from Bothrops jararacussu venom. Results Utilizing fluorescence microscopy, we observed that biotinylated-BJcuL was evenly distributed on the neutrophil surface, selectively inhibited by D-galactose. Lectin was able to induce modification in the neutrophil morphology in a spherical shape for a polarized observed by optical microscopy and exposure to BJcuL in a Boyden chamber assay resulted in cell migration. After 30 minutes of incubation with BJcuL we found enhanced neutrophil functions, such as respiratory burst, zymozan phagocytosis and an increase in lissosomal volume. In addition, BJcuL delays late apoptosis neutrophils. Conclusion These results demonstrate that BJcuL can be implicated in a wide variety of immunological functions including first-line defense against pathogens, cell trafficking and induction of the innate immune response since lectin was capable of inducing potent neutrophil activation.

  14. Bovine Polymorphonuclear Neutrophils Cast Neutrophil Extracellular Traps against the Abortive Parasite Neospora caninum

    Science.gov (United States)

    Villagra-Blanco, Rodolfo; Silva, Liliana M. R.; Muñoz-Caro, Tamara; Yang, Zhengtao; Li, Jianhua; Gärtner, Ulrich; Taubert, Anja; Zhang, Xichen; Hermosilla, Carlos

    2017-01-01

    Neospora caninum represents a relevant apicomplexan parasite causing severe reproductive disorders in cattle worldwide. Neutrophil extracellular trap (NET) generation was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites. In vitro interactions of bovine PMN with N. caninum were analyzed at different ratios and time spans. Extracellular DNA staining was used to illustrate the typical molecules of NETs [i.e., histones (H3), neutrophil elastase (NE), myeloperoxidase (MPO), pentraxin] via antibody-based immunofluorescence analyses. Functional inhibitor treatments were applied to reveal the role of several enzymes [NADPH oxidase (NOX), NE, MPO, PAD4], ATP-dependent P2Y2 receptor, store-operated Ca++entry (SOCE), CD11b receptor, ERK1/2- and p38 MAPK-mediated signaling pathway in tachyzoite-triggered NETosis. N. caninum tachyzoites triggered NETosis in a time- and dose-dependent manner. Scanning electron microscopy analyses revealed NET structures being released by bovine PMN and entrapping tachyzoites. N. caninum-induced NET formation was found not to be NOX-, NE-, MPO-, PAD4-, ERK1/2-, and p38 MAP kinase-dependent process since inhibition of these enzymes led to a slight decrease of NET formation. CD11b was also identified as a neutrophil receptor being involved in NETosis. Furthermore, N. caninum-triggered NETosis depends on Ca++ influx as well as neutrophil metabolism since both the inhibition of SOCE and of P2Y2-mediated ATP uptake diminished NET formation. Host cell invasion assays indicated that PMN-derived NETosis hampered tachyzoites from active host cell invasion, thereby inhibiting further intracellular replication. NET formation represents an early and effective mechanism of response of the innate immune system, which might reduce initial infection rates during the acute phase of cattle neosporosis. PMID:28611772

  15. Shiga toxin-2 induces neutrophilia and neutrophil activation in a murine model of hemolytic uremic syndrome.

    Science.gov (United States)

    Fernández, G C; Rubel, C; Dran, G; Gómez, S; Isturiz, M A; Palermo, M S

    2000-06-01

    It has been demonstrated that infections due to Shiga toxins (Stx) producing Escherichia coli are the main cause of the hemolytic uremic syndrome (HUS). Although it is recognized that Stx damage the glomerular endothelium, clinical and experimental evidence suggests that the inflammatory response is able to potentiate Stx toxicity. Lipopolysaccharides (LPS) and neutrophils (PMN) represent two central components of inflammation during a gram-negative infection. In this regard, patients with high peripheral PMN counts at presentation have a poor prognosis. Since the murine model has been used to study LPS-Stx interactions, we analyzed the effects of Stx alone or in combination with LPS on the kinetics of neutrophil production and activation and their participation in renal damage. We observed a sustained neutrophilia after Stx2 injection. Moreover, these neutrophils showed increased expression of CD11b, enhanced cytotoxic capacity, and greater adhesive properties. Regarding the cooperative effects of LPS on Stx2 action, we demonstrated potentiation of neutrophilia and CD11b induction at early times by pretreatment with LPS. Finally, a positive correlation between neutrophil percentage and renal damage (assayed as plasmatic urea) firmly suggests a role for PMN in the pathogenesis of HUS.

  16. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  17. The Natural Stilbenoid Piceatannol Decreases Activity and Accelerates Apoptosis of Human Neutrophils: Involvement of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Viera Jancinova

    2013-01-01

    Full Text Available Neutrophils are able to release cytotoxic substances and inflammatory mediators, which, along with their delayed apoptosis, have a potential to maintain permanent inflammation. Therefore, treatment of diseases associated with chronic inflammation should be focused on neutrophils; formation of reactive oxygen species and apoptosis of these cells represent two promising targets for pharmacological intervention. Piceatannol, a naturally occurring stilbenoid, has the ability to reduce the toxic action of neutrophils. This substance decreased the amount of oxidants produced by neutrophils both extra- and intracellularly. Radicals formed within neutrophils (fulfilling a regulatory role were reduced to a lesser extent than extracellular oxidants, potentially dangerous for host tissues. Moreover, piceatannol did not affect the phosphorylation of p40phox—a component of NADPH oxidase, responsible for the assembly of functional oxidase in intracellular (granular membranes. The stilbenoid tested elevated the percentage of early apoptotic neutrophils, inhibited the activity of protein kinase C (PKC—the main regulatory enzyme in neutrophils, and reduced phosphorylation of PKC isoforms α, βII, and δ on their catalytic region. The results indicated that piceatannol may be useful as a complementary medicine in states associated with persisting neutrophil activation and with oxidative damage of tissues.

  18. D-lactic acid interferes with the effects of platelet activating factor on bovine neutrophils.

    Science.gov (United States)

    Alarcón, P; Conejeros, I; Carretta, M D; Concha, C; Jara, E; Tadich, N; Hidalgo, M A; Burgos, R A

    2011-11-15

    D-lactic acidosis occurs in ruminants, such as cattle, with acute ruminal acidosis caused by ingestion of excessive amounts of highly fermentable carbohydrates. Affected animals show clinical signs similar to those of septic shock, as well as acute laminitis and liver abscesses. It has been proposed that the inflammatory response and susceptibility to infection could both be caused by the inhibition of phagocytic mechanisms. To determine the effects of d-lactic acid on bovine neutrophil functions, we pretreated cells with different concentrations of D-lactic acid and measured intracellular pH using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and calcium flux using FLUO-3 AM-loaded neutrophils. Reactive oxygen species (ROS) production was measured using a luminol chemiluminescence assay, and MMP-9/gelatinase-B granule release was measured by zymography. CD11b and CD62L/l-selectin expression, changes in cell shape, superoxide anion production, phagocytosis of Escherichia coli-Texas red bioparticles, and apoptosis were all measured using flow cytometry. Our results demonstrated that D-lactic acid reduced ROS production, CD11b upregulation and MMP-9 release in bovine neutrophils treated with 100 nM platelet-activating factor (PAF). D-lactic acid induced MMP-9 release and, at higher concentrations, upregulated CD11b expression, decrease L-selectin expression, and induces late apoptosis. We concluded that D-lactic acid can interfere with neutrophil functions induced by PAF, leading to reduced innate immune responses during bacterial infections. Moreover, the increase of MMP-9 release and CD11b expression induced by 10mM D-lactic acid could promote an nonspecific neutrophil-dependent inflammatory reaction in cattle with acute ruminal acidosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Epithelial Cell–Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia

    Science.gov (United States)

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A.; Zabinski, Mary C.; Yuen, Constance K.; Lung, Wing Yi; Gower, Adam C.; Belkina, Anna C.; Ramirez, Maria I.; Deng, Jane C.; Quinton, Lee J.; Jones, Matthew R.

    2016-01-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6GbrightCD11bbright neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia. PMID:27064756

  20. Epithelial Cell-Derived Secreted and Transmembrane 1a Signals to Activated Neutrophils during Pneumococcal Pneumonia.

    Science.gov (United States)

    Kamata, Hirofumi; Yamamoto, Kazuko; Wasserman, Gregory A; Zabinski, Mary C; Yuen, Constance K; Lung, Wing Yi; Gower, Adam C; Belkina, Anna C; Ramirez, Maria I; Deng, Jane C; Quinton, Lee J; Jones, Matthew R; Mizgerd, Joseph P

    2016-09-01

    Airway epithelial cell responses are critical to the outcome of lung infection. In this study, we aimed to identify unique contributions of epithelial cells during lung infection. To differentiate genes induced selectively in epithelial cells during pneumonia, we compared genome-wide expression profiles from three sorted cell populations: epithelial cells from uninfected mouse lungs, epithelial cells from mouse lungs with pneumococcal pneumonia, and nonepithelial cells from those same infected lungs. Of 1,166 transcripts that were more abundant in epithelial cells from infected lungs compared with nonepithelial cells from the same lungs or from epithelial cells of uninfected lungs, 32 genes were identified as highly expressed secreted products. Especially strong signals included two related secreted and transmembrane (Sectm) 1 genes, Sectm1a and Sectm1b. Refinement of sorting strategies suggested that both Sectm1 products were induced predominantly in conducting airway epithelial cells. Sectm1 was induced during the early stages of pneumococcal pneumonia, and mutation of NF-κB RelA in epithelial cells did not diminish its expression. Instead, type I IFN signaling was necessary and sufficient for Sectm1 induction in lung epithelial cells, mediated by signal transducer and activator of transcription 1. For target cells, Sectm1a bound to myeloid cells preferentially, in particular Ly6G(bright)CD11b(bright) neutrophils in the infected lung. In contrast, Sectm1a did not bind to neutrophils from uninfected lungs. Sectm1a increased expression of the neutrophil-attracting chemokine CXCL2 by neutrophils from the infected lung. We propose that Sectm1a is an epithelial product that sustains a positive feedback loop amplifying neutrophilic inflammation during pneumococcal pneumonia.

  1. An intense and short-lasting burst of neutrophil activation differentiates early acute myocardial infarction from systemic inflammatory syndromes.

    Directory of Open Access Journals (Sweden)

    Norma Maugeri

    Full Text Available BACKGROUND: Neutrophils are involved in thrombus formation. We investigated whether specific features of neutrophil activation characterize patients with acute coronary syndromes (ACS compared to stable angina and to systemic inflammatory diseases. METHODS AND FINDINGS: The myeloperoxidase (MPO content of circulating neutrophils was determined by flow cytometry in 330 subjects: 69 consecutive patients with acute coronary syndromes (ACS, 69 with chronic stable angina (CSA, 50 with inflammation due to either non-infectious (acute bone fracture, infectious (sepsis or autoimmune diseases (small and large vessel systemic vasculitis, rheumatoid arthritis. Four patients have also been studied before and after sterile acute injury of the myocardium (septal alcoholization. One hundred thirty-eight healthy donors were studied in parallel. Neutrophils with normal MPO content were 96% in controls, >92% in patients undergoing septal alcoholization, 91% in CSA patients, but only 35 and 30% in unstable angina and AMI (STEMI and NSTEMI patients, compared to 80%, 75% and 2% of patients with giant cell arteritis, acute bone fracture and severe sepsis. In addition, in 32/33 STEMI and 9/21 NSTEMI patients respectively, 20% and 12% of neutrophils had complete MPO depletion during the first 4 hours after the onset of symptoms, a feature not observed in any other group of patients. MPO depletion was associated with platelet activation, indicated by P-selectin expression, activation and transactivation of leukocyte β2-integrins and formation of platelet neutrophil and -monocyte aggregates. The injection of activated platelets in mice produced transient, P-selectin dependent, complete MPO depletion in about 50% of neutrophils. CONCLUSIONS: ACS are characterized by intense neutrophil activation, like other systemic inflammatory syndromes. In the very early phase of acute myocardial infarction only a subpopulation of neutrophils is massively activated, possibly via

  2. Invariant NKT cells promote skin wound healing by preventing a prolonged neutrophilic inflammatory response.

    Science.gov (United States)

    Tanno, Hiromasa; Kawakami, Kazuyoshi; Kanno, Emi; Suzuki, Aiko; Takagi, Naoyuki; Yamamoto, Hideki; Ishii, Keiko; Imai, Yoshimichi; Maruyama, Ryoko; Tachi, Masahiro

    2017-09-01

    The wound-healing process consists of the inflammation, proliferation, and remodeling phases. In chronic wounds, the inflammation phase is prolonged with persistent neutrophil infiltration. The inflammatory response is critically regulated by cytokines and chemokines that are secreted from various immune cells. Recently, we showed that skin wound healing was delayed and the healing process was impaired under conditions lacking invariant natural killer T (iNKT) cells, an innate immune lymphocyte with potent immuno-regulatory activity. In the present study, we investigated the effect of iNKT cell deficiency on the neutrophilic inflammatory response during the wound healing process. Neutrophil infiltration was prolonged in wound tissue in mice genetically lacking iNKT cells (Jα18KO mice) than in wild-type (WT) control mice on days 1 and 3 after wounding. MIP-2, KC, and IL-17A were produced at a significantly higher level in Jα18KO mice than in WT mice. In addition, neutrophil apoptosis was significantly reduced in the wound tissue in Jα18KO mice than in WT mice. Treatment with anti-IL-17A mAb, anti-Gr-1 mAb, or neutrophil elastase inhibitor reversed the impaired wound healing in Jα18KO mice. These results suggest that iNKT cells may promote the wound healing process through preventing the prolonged inflammatory response mediated by neutrophils. © 2017 by the Wound Healing Society.

  3. Crystal-induced neutrophil activation: X. Proinflammatory role of the tyrosine kinase Tec.

    Science.gov (United States)

    Popa-Nita, Oana; Marois, Louis; Paré, Guillaume; Naccache, Paul H

    2008-06-01

    Monosodium urate monohydrate (MSU) crystals are among the most potent proinflammatory stimuli, and an innate immune inflammatory response to the crystal surface is involved in the pathogenesis of gouty arthritis. Release of the crystals into the joint cavity promotes an acute inflammation characterized by massive infiltration of neutrophils, which leads to tissue damage. The aim of the present study was to assess the involvement of the tyrosine kinase Tec in MSU crystal-initiated transduction events in human neutrophils. Immunoprecipitation and immunoblotting techniques were used for the cellular signaling studies. Chemotaxis and enzyme-linked immunosorbent assay techniques were used for the functional studies. Silencing of Tec expression using specific small interfering RNA was also performed. MSU crystals induced the phosphorylation and activation of Tec in a Src-dependent manner. This activation was necessary for the MSU crystal-induced secretion of interleukin-1beta (IL-1beta) and IL-8 and for the generation of chemotactic activity in supernatants of MSU crystal-stimulated neutrophils. In addition, colchicine, an effective drug for the treatment of gout, inhibited the MSU crystal-induced tyrosine phosphorylation of Tec, thus modulating its kinase activity. Our findings show that Tec is the principal kinase of the Tec family that plays a major role in the responses of human neutrophils to MSU crystals, which are likely to be involved in the initiation and perpetuation of gout. Our results suggest that the specific inhibition of Tec during the acute phase of MSU crystal-induced inflammation may be considered for the treatment of gouty arthritis.

  4. Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts

    Czech Academy of Sciences Publication Activity Database

    Denev, P.; Kratchanova, M.; Číž, Milan; Lojek, Antonín; Vašíček, Ondřej; Blazheva, D.; Nedelcheva, P.; Vojtek, L.; Hyršl, P.

    2014-01-01

    Roč. 61, č. 2 (2014), s. 359-367 ISSN 0001-527X Institutional support: RVO:68081707 Keywords : herbs * polyphenols * antioxidant activity Subject RIV: BO - Biophysics Impact factor: 1.153, year: 2014

  5. Reverse translation in tuberculosis: neutrophils as clues for development of active disease

    Directory of Open Access Journals (Sweden)

    Anca eDorhoi

    2014-02-01

    Full Text Available Tuberculosis (TB is a major health issue globally. Although typically the disease can be cured by chemotherapy and prevented – at least in part, in newborn by vaccination, general consensus exists that development of novel intervention measures requires better understanding of disease mechanisms. Human TB is characterized by polarity between host resistance as seen in 2 billion individuals with latent TB infection and susceptibility occurring in 9 million individuals who develop active TB disease every year. Experimental animal models often do not reflect this polarity adequately, calling for a reverse translational approach. Gene expression profiling has allowed identification of biomarkers that discriminate between latent infection and active disease. Functional analysis of most relevant markers in experimental animal models can help to better understand mechanisms driving disease progression. We have embarked on in-depth characterization of candidate markers of pathology and protection hereby harnessing mouse mutants with defined gene deficiencies. Analysis of mutants deficient in miR223 expression and CXCL5 production allowed elucidation of relevant pathogenic mechanisms. Intriguingly, these deficiencies were linked to aberrant neutrophil activities. Our findings point to a detrimental potential of neutrophils in TB. Reciprocally, measures that control neutrophils should be leveraged for amelioration of TB in adjunct to chemotherapy.

  6. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    Directory of Open Access Journals (Sweden)

    Leandro da Silva Borges

    2014-01-01

    Full Text Available Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK and lactate dehydrogenase (LDH activities, cytokines, complement component 3 (C3, and the concentrations of immunoglobulin (Ig, IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold immediately after class, while the activities of CK-cardiac muscle (1.0-fold and LDH (3.0-fold were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  7. Chronic inflammation and neutrophil activation as possible causes of joint diseases in ballet dancers.

    Science.gov (United States)

    Borges, Leandro da Silva; Bortolon, José Ricardo; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α , IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  8. Retinoid agonist Am80-enhanced neutrophil bactericidal activity arising from granulopoiesis in vitro and in a neutropenic mouse model

    Science.gov (United States)

    Ding, Wanjing; Shimada, Hiroyuki; Li, Lin; Mittal, Rahul; Zhang, Xiaokun; Shudo, Koichi; He, Qiaojun; Prasadarao, Nemani V.

    2013-01-01

    Despite advances in the therapeutic use of recombinant granulocyte colony-stimulating factor (G-CSF) to promote granulopoiesis of human hematopoietic stem cells (HSCs), neutropenia remains one of the most serious complications of cancer chemotherapy. We discovered that retinoid agonist Am80 (tamibarotene) is more potent than G-CSF in coordinating neutrophil differentiation and immunity development. Am80-induced neutrophils (AINs) either in vitro or in neutropenic mouse model displayed strong bactericidal activities, similar to those of human peripheral blood neutrophils (PBNs) or mouse peripheral blood neutrophils (MPBNs) but markedly greater than did G-CSF–induced neutrophils (GINs). In contrast to GINs but similar to PBNs, the enhanced bacterial killing by AINs accompanied both better granule maturation and greater coexpression of CD66 antigen with the integrin β2 subunit CD18. Consistently, anti-CD18 antibody neutralized Am80-induced bactericidal activities of AINs. These studies demonstrate that Am80 is more effective than G-CSF in promoting neutrophil differentiation and bactericidal activities, probably through coordinating the functional interaction of CD66 with CD18 to enhance the development of neutrophil immunity during granulopoiesis. Our findings herein suggest a molecular rationale for developing new therapy against neutropenia using Am80 as a cost-effective treatment option. PMID:23243275

  9. Thirty-minutes' exposure to smartphone call triggers neutrophil activation in vitro.

    Science.gov (United States)

    Lippi, Giuseppe; Danese, Elisa; Brocco, Giorgio; Benati, Marco; Salvagno, Gian Luca; Montagnana, Martina; Franchini, Massimo

    2016-09-01

    Despite accumulating evidence about the negative health effects of exposure to electromagnetic fields emitted by mobile phones, no information is available on the potential impact of radiofrequency (RF) waves on polymorphonuclear leukocytes biology. Two sequential whole blood tubes were collected from 16 ostensibly healthy volunteers. After placing the former tube of each subject in a plastic rack, 1 cm from a commercial smartphone (carrier frequency, 900 MHz), a call was placed on the smartphone and a communication lasting 30 min was manually activated. The latter blood tube of each volunteer was placed in another plastic rack, for an identical period of time, avoiding close contact with sources of RF waves. A complete blood count was then assessed in all whole blood samples, using Advia 2120. The 30-min exposure of blood to RF waves did not induce significant variations of total and differential leukocyte counts. A significant decrease was however observed for many neutrophils parameters, with median percentage variation of -3.9% for the lobularity index (LI), -29.8% for the myeloperoxidase index (MPXI), -0.6% for the neutrophil cluster mean x (NEUTx) and -0.7% for the neutrophil cluster mean y (NEUTy), respectively. The percentage of blood samples with reduced values after exposure to RF waves was 81% for LI, 88% for NEUTx and 100% for both MPXI and NEUTy. The results of this study show that exposure to smartphone RF waves triggers activation of neutrophils in vitro, as mirrored by the significant variations observed in many activation parameters in Advia 2120.

  10. Chronic neutrophilic leukemia.

    Science.gov (United States)

    Bredeweg, Arthur; Burch, Micah; Krause, John R

    2018-01-01

    Chronic neutrophilic leukemia is a rare myeloproliferative disorder characterized by a sustained peripheral blood neutrophilia, absence of the BCR/ABL oncoprotein, bone marrow hypercellularity with less than 5% myeloblasts and normal neutrophil maturation, and no dysplasia. This leukemia has been associated with mutations in the colony-stimulating factor 3 receptor (CSF3R) that may activate this receptor, leading to the proliferation of neutrophils that are the hallmark of chronic neutrophilic leukemia. We present a case of chronic neutrophilic leukemia and discuss the criteria for diagnosis and the significance of mutations found in this leukemia.

  11. Enhanced {sup 18}F-FDG uptake in activated neutrophils is unaffected by respiratory burst inhibition with RGD

    Energy Technology Data Exchange (ETDEWEB)

    Paik, J. Y.; Lee, K. H.; Go, B. H.; Jeong, K. H.; Kim, H. K.; Choi, J. S.; Choi, Y.; Kim, P. T [Samsung Medical Center, Seoul (Korea, Republic of)

    2004-07-01

    Respiratory burst generation is an important response of activated neutrophils and is associated with enhanced glucose metabolism. Since such activation in dependent on adhesion through integrins, we investigated how integrin occupation with RGD influences respiratory burst response and {sup 18}F-FDG uptake in neutrophils. Human neutrophils separated from healthy volunteers were incubated in RPMI media. For RGD peptide inhibitory experiments, neutrophils were preincubated with 200 {mu} g/ml of cRGD peptides ad 37.deg. for 2 hr prior. Respiratory burst generation and uptake of {sup 18}F-FDG was then measured with or without PMA stimulation. Cellular total hexokinase levels were assayed with a colorimetric method. Treatment with RGD in the basal state resulted in a significant but relatively small increase in neutrophil superoxide release to 1.5{+-}0.25 fold o control levels (p<0.005). Whereas PMA stimulation caused a marked increase in superoxide generation, pretreatment with RGD caused a significant attenuation of this response to 35.6{+-}0.2% (p<0.005). PMA stimulation resulted in a significant increase in {sup 18}F-FDG uptake. However, unlike the attenution of superoxide generation, neutrophils pretreated with RGD before PMA stimulation showed an identical magnitude of enhanced {sup 18}F-FDG uptake (201.8{+-}20.5 of controls, p=0.0001). In addition, hexokinase levels were increased to comparable levels of approximately 1.5 fold for PMA stimulated neutrophils irrespective of RGD pretreatment. In conclusion, soluble RGD blocks stimulation of respiratory burst activation in neutrophils but does not inhibit stimulation of cellular glucose metabolism. This dissociation may contribute to maximally enhanced neutrophil FDG uptake in inflammatory lesions regardless of the occupancy of their integrin receptors.

  12. Biochemical properties and primary structure of elastase inhibitor AFUEI from Aspergillus fumigatus.

    Science.gov (United States)

    Okumura, Yoshiyuki; Matsui, Takeshi; Ogawa, Kenji; Uchiya, Kei-ichi; Nikai, Toshiaki

    2008-07-01

    An elastase inhibitor from Aspergillus fumigatus (AFUEI) was isolated, and its biochemical properties and primary structure examined. The inhibitor was purified by column chromatography using DE52 cellulose and Sephadex G-75, and was found to be homogeneous as indicated by a single band following discontinuous PAGE and SDS-PAGE. A molecular mass of 7525.1 Da was observed by matrix-assisted desorption/ionization time-of-flight mass spectroscopy. The elastolytic activity of elastases from A. fumigatus, Aspergillus flavus and human leukocytes was inhibited by AFUEI. However, the elastolytic activity of porcine pancreas elastase, Pseudomonas aeruginosa elastase and elastase from snake venom was not affected by AFUEI. No inhibitory effect of DTT or 2-mercaptoethanol on the elastase inhibitory activity of AFUEI was observed. The amino acid sequence of AFUEI peptides derived from digests utilizing clostripain was determined by Edman sequencing. AFUEI was composed of 68 aa and had a calculated molecular mass of 7526.2 Da. The search for amino acid homology with other proteins demonstrated that aa 1-68 of AFUEI are 100 % identical to aa 20-87 of the hypothetical protein AFUA 3G14940 of A. fumigatus.

  13. Mechanisms Mediating the Biologic Activity of Synthetic Proline, Glycine, and Hydroxyproline Polypeptides in Human Neutrophils

    Science.gov (United States)

    Weinberger, Barry; Hanna, Nazeeh; Laskin, Jeffrey D.; Heck, Diane E.; Gardner, Carol R.; Gerecke, Donald R.; Laskin, Debra L.

    2005-01-01

    The accumulation of neutrophils at sites of tissue injury or infection is mediated by chemotactic factors released as part of the inflammatory process. Some of these factors are generated as a direct consequence of tissue injury or infection, including degradation fragments of connective tissue collagen and bacterial- or viral-derived peptides containing collagen-related structural motifs. In these studies, we examined biochemical mechanisms mediating the biologic activity of synthetic polypeptides consisting of repeated units of proline (Pro), glycine (Gly), and hydroxyproline (Hyp), major amino acids found within mammalian and bacterial collagens. We found that the peptides were chemoattractants for neutrophils. Moreover, their chemotactic potency was directly related to their size and composition. Thus, the pentameric peptides (Pro-Pro-Gly)5 and (Pro-Hyp-Gly)5 were more active in inducing chemotaxis than the corresponding decameric peptides (Pro-Pro-Gly)10 and (Pro-Hyp-Gly)10. In addition, the presence of Hyp in peptides reduced chemotactic activity. The synthetic peptides were also found to reduce neutrophil apoptosis. In contrast to chemotaxis, this activity was independent of peptide size or composition. The effects of the peptides on both chemotaxis and apoptosis were blocked by inhibitors of phosphatidylinositol 3-kinase (PI3-K) and p38 mitogen-activated protein (MAP) kinase. However, only (Pro-Pro-Gly)5 and (Pro-Pro-Gly)10 induced expression of PI3-K and phosphorylation of p38 MAP kinase, suggesting a potential mechanism underlying reduced chemotactic activity of Hyp-containing peptides. Although none of the synthetic peptides tested had any effect on intracellular calcium mobilization, each induced nuclear binding activity of the transcription factor NF-κB. These findings indicate that polymeric polypeptides containing Gly-X-Y collagen-related structural motifs promote inflammation by inducing chemotaxis and blocking apoptosis. However, distinct calcium

  14. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  15. Neutrophils reduce the parasite burden in Leishmania (Leishmania amazonensis-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Erico Vinícius de Souza Carmo

    2010-11-01

    Full Text Available Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L major, whereas less information is available for L. (L amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L. amazonensis (C3H/HePas. In contrast, the susceptible strain (BALB/c displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L. amazonensis-infected macrophages in vitro.Mouse peritoneal macrophages infected with L. (L. amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. The main findings were 1 intracellular parasites were efficiently destroyed in the co-cultures; 2 the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas or susceptible (BALB/c to L. (L. amazonensis; 3 parasite destruction did not require contact between infected macrophages and neutrophils; 4 tumor necrosis factor alpha (TNF-α, neutrophil elastase and platelet activating factor (PAF were involved with the leishmanicidal activity, and 5 destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-α, as reported for other Leishmania species.The present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L. amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.

  16. Release of Active Peptidyl Arginine Deiminases by Neutrophils Can Explain Production of Extracellular Citrullinated Autoantigens in Rheumatoid Arthritis Synovial Fluid

    Science.gov (United States)

    Spengler, Julia; Lugonja, Božo; Jimmy Ytterberg, A.; Zubarev, Roman A.; Creese, Andrew J.; Pearson, Mark J.; Grant, Melissa M.; Milward, Michael; Lundberg, Karin; Buckley, Christopher D.; Filer, Andrew; Raza, Karim; Cooper, Paul R.; Chapple, Iain L.

    2015-01-01

    Objective In the majority of patients with rheumatoid arthritis (RA), antibodies specifically recognize citrullinated autoantigens that are generated by peptidylarginine deiminases (PADs). Neutrophils express high levels of PAD and accumulate in the synovial fluid (SF) of RA patients during disease flares. This study was undertaken to test the hypothesis that neutrophil cell death, induced by either NETosis (extrusion of genomic DNA–protein complexes known as neutrophil extracellular traps [NETs]) or necrosis, can contribute to production of autoantigens in the inflamed joint. Methods Extracellular DNA was quantified in the SF of patients with RA, patients with osteoarthritis (OA), and patients with psoriatic arthritis (PsA). Release of PAD from neutrophils was investigated by Western blotting, mass spectrometry, immunofluorescence staining, and PAD activity assays. PAD2 and PAD4 protein expression, as well as PAD enzymatic activity, were assessed in the SF of patients with RA and those with OA. Results Extracellular DNA was detected at significantly higher levels in RA SF than in OA SF (P < 0.001) or PsA SF (P < 0.05), and its expression levels correlated with neutrophil concentrations and PAD activity in RA SF. Necrotic neutrophils released less soluble extracellular DNA compared to NETotic cells in vitro (P < 0.05). Higher PAD activity was detected in RA SF than in OA SF (P < 0.05). The citrullinated proteins PAD2 and PAD4 were found attached to NETs and also freely diffused in the supernatant. PAD enzymatic activity was detected in supernatants of neutrophils undergoing either NETosis or necrosis. Conclusion Release of active PAD isoforms into the SF by neutrophil cell death is a plausible explanation for the generation of extracellular autoantigens in RA. PMID:26245941

  17. Amiloride (Am) dissociates human neutrophil (N) activation events

    International Nuclear Information System (INIS)

    Berkow, R.L.; Dodson, R.; Kraft, A.S.

    1986-01-01

    Human N can be stimulated to release granule contents and superoxide anion (O/sub 2 - /). These events are associated with an Am sensitive Na + /H + exchange and N alkalinization. Am has been reported to inhibit protein kinase C (PKC) in HL-60 cells. Due to the central role of PKC in N activation they assessed the effect of prolonged exposure of N to Am. When N were treated with 10 -6 to 10 -3 M Am at 37 0 C for 15 min a dose dependent inhibition of O/sub 2 - / release was seen upon N stimulation with FMLP (10 -6 M), A23187 (10 -5 M), or serum treated Zymosan (Z) (2.5 mg/ml). Maximal inhibition depended on the time of exposure of N to Am prior to stimulation and remained after removal of Am by washing. N treated with 10 -3 M Am had a decreased influx of 45 Ca ++ upon stimulation with FMLP. Phorbol myristate acetate induced release of N O/sub 2 - / was unaffected by pretreatment with Am. Similarly, Am did not inhibit stimulated N lysozyme release or the incorporation of 32 P into proteins. Monensin (a Na + /H + ionophore) did not correct the Am induced inhibition of O/sub 2 - / suggesting that cell acidification alone can not explain the Am effect. In conclusion: (1) Na + /H + exchange modulates N O/sub 2 - / release upon stimulation with FMLP, A23187, and Z. PMA induced N responses are not affected by cell acidification; (2) N granule release is under separate cellular control than O/sub 2 - /; (3) Am does not inhibit PKC or protein phosphorylation in N; and (4) decreased 45 Ca ++ influx may partially explain the Am effect on FMLP induced O/sub 2 - / release

  18. Assessment of phagocytic activity of neutrophils in chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Lalitha Shanmugam

    2015-01-01

    Full Text Available Aim: To assess the phagocytic activity of neutrophils in subjects with chronic obstructive pulmonary disease (COPD. Background/Need of Study: There is a paucity of data in relation to phagocytic function in COPD. By this multidisciplinary study, a better understanding about the etiology of lung destruction among COPD patients is being sought. Materials and Methods: The study was conducted among 28 subjects with COPD and 25 controls in a private tertiary hospital in Chennai after obtaining Institutional Ethical Clearance. Known cases of COPD as proven by clinical findings and spirometry were included in the study, and subjects with any other source of infection, recent surgery, or chronic granulomatous disease were excluded. The study subjects were divided into three groups based on the severity of COPD as determined by spirometry, and healthy volunteers were taken as Group 4. After obtaining informed consent, validated respiratory health questionnaire was administered. The phagocytic function was assessed by Candida phagocytic test and Nitroblue Tetrazolium (NBT Reduction Test. Results: Significantly impaired phagocytic function as indicated by lower phagocytic, lytic indices and decreased NBT reduction of neutrophils was seen in COPD subjects compared to normal healthy controls (P <.001. Conclusion: This study showed that there is phagocytic dysfunction in COPD subjects when compared with normal subjects. This could be due to underlying inflammation in human airway. Understanding the role of neutrophils may lead to improved understanding of the pathogenesis of COPD, which in turn may pave way for implementing modified therapeutic intervention strategies.

  19. The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst

    Directory of Open Access Journals (Sweden)

    Elaine Reina

    2013-10-01

    Full Text Available Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS. The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH assays. A standard luminol-dependent chemiluminescence (CL assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P=0.0081. However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P=0.985. P. major (−0.10±0.11, aucubin (0.06±0.16, baicalein (−0.10±0.11, and genistein (−0.18±0.07 all significantly (P<0.0001 inhibited ROS production from the neutrophils. P. major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with relation to

  20. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... fluid and reduced the antiviral activity of bronchoalveolar lavage fluid. HNP-1 and -2 differed somewhat in their independent antiviral activity and their binding to SP-D. These results are relevant to the early phase of host defense against IAV, and suggest a complex interplay between SP-D and HNPs...

  1. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    International Nuclear Information System (INIS)

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A.

    1989-01-01

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation

  2. Impact of T cell activation, HIV replication and hepatitis C virus infection on neutrophil CD64 expression.

    Science.gov (United States)

    Morquin, D; Tuaillon, E; Makinson, A; Bendriss, S; Le Moing, V; Reynes, J

    2017-11-01

    Overexpression of the Fc receptor CD64 on neutrophils is associated with innate immune response and bacterial infections. During HIV infection a large set of immune disorders including T-lymphocyte over-activation, microbial translocation, impairment of neutrophil functions, and immunodeficiency may interplay with neutrophil CD64 expression. Associations of neutrophil CD64 expression with CD8 + T cell activation, CD4 + T cells number, HIV, and HCV replications were investigated in HIV infected patients using a standardized method. Higher neutrophil CD64 expression was observed in HIV infected subjects compared to healthy controls (0.91 vs. 0.75, P < 0.001). Among 115 HIV infected patients, nine (8.8%) had a CD64 expression over the clinical threshold as calculated against bead standard (i.e., 1.5). HIV viremic patients were more likely to have an index above 1.5 (OR: 6.68, P values: 0.01). A trend for correlation between CD64 expression and CD8 T cell activation was observed (P values: 0.08). Blood CD4 + T lymphocyte depletion and HCV replication did not affect neutrophil CD64 expression. HIV infection and HIV replication are associated with up-regulation of neutrophil CD64. CD64 overexpression above the clinical threshold was observed in a minor proportion of HIV infected individuals treated by antiretroviral therapy and may be a marker of neutrophil activation related to non-AIDS-linked comorbidities. © 2016 International Clinical Cytometry Society. © 2016 International Clinical Cytometry Society.

  3. PI3Kβ plays a critical role in neutrophil activation by immune complexes.

    Science.gov (United States)

    Kulkarni, Suhasini; Sitaru, Cassian; Jakus, Zoltan; Anderson, Karen E; Damoulakis, George; Davidson, Keith; Hirose, Misa; Juss, Jatinder; Oxley, David; Chessa, Tamara A M; Ramadani, Faruk; Guillou, Herve; Segonds-Pichon, Anne; Fritsch, Anja; Jarvis, Gavin E; Okkenhaug, Klaus; Ludwig, Ralf; Zillikens, Detlef; Mocsai, Attila; Vanhaesebroeck, Bart; Stephens, Len R; Hawkins, Phillip T

    2011-04-12

    Neutrophils are activated by immunoglobulin G (IgG)-containing immune complexes through receptors that recognize the Fc portion of IgG (FcγRs). Here, we used genetic and pharmacological approaches to define a selective role for the β isoform of phosphoinositide 3-kinase (PI3Kβ) in FcγR-dependent activation of mouse neutrophils by immune complexes of IgG and antigen immobilized on a plate surface. At low concentrations of immune complexes, loss of PI3Kβ alone substantially inhibited the production of reactive oxygen species (ROS) by neutrophils, whereas at higher doses, similar suppression of ROS production was achieved only by targeting both PI3Kβ and PI3Kδ, suggesting that this pathway displays stimulus strength-dependent redundancy. Activation of PI3Kβ by immune complexes involved cooperation between FcγRs and BLT1, the receptor for the endogenous proinflammatory lipid leukotriene B₄. Coincident activation by a tyrosine kinase-coupled receptor (FcγR) and a heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor (BLT1) may provide a rationale for the preferential activation of the β isoform of PI3K. PI3Kβ-deficient mice were highly protected in an FcγR-dependent model of autoantibody-induced skin blistering and were partially protected in an FcγR-dependent model of inflammatory arthritis, whereas combined deficiency of PI3Kβ and PI3Kδ resulted in near-complete protection in the latter case. These results define PI3Kβ as a potential therapeutic target in inflammatory disease.

  4. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury.

    Science.gov (United States)

    Rodrigues, Rosana S; Bozza, Fernando A; Hanrahan, Christopher J; Wang, Li-Ming; Wu, Qi; Hoffman, John M; Zimmerman, Guy A; Morton, Kathryn A

    2017-05-01

    Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24h following the intraperitoneal injection of 10mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Significant uptake of 18 F-FDG occurred by 2h following LPS, and progressively increased to 24h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14 C-2DG uptake in activated neutrophils. 18 F

  5. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Orion D Weiner

    2006-02-01

    Full Text Available Migrating cells need to make different actin assemblies at the cell's leading and trailing edges and to maintain physical separation of signals for these assemblies. This asymmetric control of activities represents one important form of cell polarity. There are significant gaps in our understanding of the components involved in generating and maintaining polarity during chemotaxis. Here we characterize a family of complexes (which we term leading edge complexes, scaffolded by hematopoietic protein 1 (Hem-1, that organize the neutrophil's leading edge. The Wiskott-Aldrich syndrome protein family Verprolin-homologous protein (WAVE2 complex, which mediates activation of actin polymerization by Rac, is only one member of this family. A subset of these leading edge complexes are biochemically separable from the WAVE2 complex and contain a diverse set of potential polarity-regulating proteins. RNA interference-mediated knockdown of Hem-1-containing complexes in neutrophil-like cells: (a dramatically impairs attractant-induced actin polymerization, polarity, and chemotaxis; (b substantially weakens Rac activation and phosphatidylinositol-(3,4,5-tris-phosphate production, disrupting the (phosphatidylinositol-(3,4,5-tris-phosphate/Rac/F-actin-mediated feedback circuit that organizes the leading edge; and (c prevents exclusion of activated myosin from the leading edge, perhaps by misregulating leading edge complexes that contain inhibitors of the Rho-actomyosin pathway. Taken together, these observations show that versatile Hem-1-containing complexes coordinate diverse regulatory signals at the leading edge of polarized neutrophils, including but not confined to those involving WAVE2-dependent actin polymerization.

  6. Tec kinases regulate actin assembly and cytokine expression in LPS-stimulated human neutrophils via JNK activation.

    Science.gov (United States)

    Zemans, Rachel L; Arndt, Patrick G

    2009-01-01

    The acute inflammatory response involves neutrophils wherein recognition of bacterial products, such as lipopolysaccharide (LPS), activates intracellular signaling pathways. We have shown that the mitogen-activated protein kinase (MAPK) c-Jun NH(2) terminal kinase (JNK) is activated by LPS in neutrophils and plays a critical role in monocyte chemoattractant protein (MCP)-1 expression and actin assembly. As the Tec family kinases are expressed in neutrophils and regulate activation of the MAPKs in other cell systems, we hypothesized that the Tec kinases are an upstream component of the signaling pathway leading to LPS-induced MAPKs activation in neutrophils. Herein, we show that the Tec kinases are activated in LPS-stimulated human neutrophils and that inhibition of the Tec kinases, with leflunomide metabolite analog (LFM-A13), decreased LPS-induced JNK, but not p38, activity. Furthermore, LPS-induced actin polymerization as well as MCP-1, tumor necrosis factor-alpha, interleukin-6, and interleukin-1beta expression are dependent on Tec kinase activity.

  7. One-step chromatographic purification of Helicobacter pylori neutrophil-activating protein expressed in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Kuo-Shun Shih

    Full Text Available Helicobacter pylori neutrophil-activating protein (HP-NAP, a major virulence factor of Helicobacter pylori (H. pylori, is capable of activating human neutrophils to produce reactive oxygen species (ROS and secrete inammatory mediators. HP-NAP is a vaccine candidate, a possible drug target, and a potential in vitro diagnostic marker for H. pylori infection. HP-NAP has also been shown to be a novel therapeutic agent for the treatment of allergic asthma and bladder cancer. Hence, an efficient way to obtain pure HP-NAP needs to be developed. In this study, one-step anion-exchange chromatography in negative mode was applied to purify the recombinant HP-NAP expressed in Bacillus subtilis (B. subtilis. This purification technique was based on the binding of host cell proteins and/or impurities other than HP-NAP to DEAE Sephadex resins. At pH 8.0, almost no other proteins except HP-NAP passed through the DEAE Sephadex column. More than 60% of the total HP-NAP with purity higher than 91% was recovered in the flow-through fraction from this single-step DEAE Sephadex chromatography. The purified recombinant HP-NAP was further demonstrated to be a multimeric protein with a secondary structure of α-helix and capable of activating human neutrophils to stimulate ROS production. Thus, this one-step negative chromatography using DEAE Sephadex resin can efficiently yield functional HP-NAP from B. subtilis in its native form with high purity. HP-NAP purified by this method could be further utilized for the development of new drugs, vaccines, and diagnostics for H. pylori infection.

  8. One-Step Chromatographic Purification of Helicobacter pylori Neutrophil-Activating Protein Expressed in Bacillus subtilis

    Science.gov (United States)

    Shih, Kuo-Shun; Lin, Chih-Chang; Hung, Hsiao-Fang; Yang, Yu-Chi; Wang, Chung-An; Jeng, Kee-Ching; Fu, Hua-Wen

    2013-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP), a major virulence factor of Helicobacter pylori (H. pylori), is capable of activating human neutrophils to produce reactive oxygen species (ROS) and secrete inammatory mediators. HP-NAP is a vaccine candidate, a possible drug target, and a potential in vitro diagnostic marker for H. pylori infection. HP-NAP has also been shown to be a novel therapeutic agent for the treatment of allergic asthma and bladder cancer. Hence, an efficient way to obtain pure HP-NAP needs to be developed. In this study, one-step anion-exchange chromatography in negative mode was applied to purify the recombinant HP-NAP expressed in Bacillus subtilis (B. subtilis). This purification technique was based on the binding of host cell proteins and/or impurities other than HP-NAP to DEAE Sephadex resins. At pH 8.0, almost no other proteins except HP-NAP passed through the DEAE Sephadex column. More than 60% of the total HP-NAP with purity higher than 91% was recovered in the flow-through fraction from this single-step DEAE Sephadex chromatography. The purified recombinant HP-NAP was further demonstrated to be a multimeric protein with a secondary structure of α-helix and capable of activating human neutrophils to stimulate ROS production. Thus, this one-step negative chromatography using DEAE Sephadex resin can efficiently yield functional HP-NAP from B. subtilis in its native form with high purity. HP-NAP purified by this method could be further utilized for the development of new drugs, vaccines, and diagnostics for H. pylori infection. PMID:23577158

  9. Neutrophilic proteases: Mediators of formyl-methionyl-leucyl-phenylalanine-induced ileitis in rats

    International Nuclear Information System (INIS)

    von Ritter, C.; Be, R.; Granger, D.N.

    1989-01-01

    N-formyl-methionyl-leucyl-phenylalanine (FMLP), a tripeptide of bacterial origin that activates and attracts neutrophils, increases mucosal permeability when placed in the lumen of rat ileum. Although studies using neutropenic animals demonstrate the essential role of neutrophils in FMLP-induced mucosal injury, the neutrophil-derived chemical mediator of this injury process remains undefined. The objective of this study was to determine whether neutrophilic proteases mediate FMLP-induced increases in mucosal permeability. The blood-to-lumen clearance of 51 Cr-ethylenediaminetetraacetate was used to monitor mucosal permeability in the terminal ileum of Sprague-Dawley rats. In control (untreated) animals luminal perfusion with 10(-5) M FMLP resulted in twofold and fourfold increases in 51 Cr-ethylenediaminetetraacetate clearance after 1 and 2 h of FMLP exposure, respectively. Pretreatment with the nonspecific serine protease inhibitor, soybean trypsin inhibitor (15 mg/kg), significantly attenuated the clearance responses normally observed during luminal perfusion with FMLP. The specific elastase inhibitors MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl (10 mg/kg) and Eglin c (8 mg/kg) significantly attenuated the FMLP-induced increases in ethylenediaminetetraacetate clearance observed after both 1 and 2 h of exposure. The results of this study indicate that neutrophilic proteases mediate at least part of the increased mucosal permeability induced by luminal exposure to FMLP

  10. Lung Neutrophils Facilitate Activation of Naïve Antigen Specific CD4+ T Cells During Mycobacterium tuberculosis Infection1

    Science.gov (United States)

    Blomgran, Robert; Ernst, Joel D.

    2012-01-01

    Initiation of the adaptive immune response to Mycobacterium tuberculosis occurs in the lung-draining mediastinal lymph node, and requires transport of M. tuberculosis by migratory dendritic cells (DCs) to the local lymph node. The previously-published observations that: 1) neutrophils are a transiently prominent population of M. tuberculosis-infected cells in the lungs early in infection; and 2) that the peak of infected neutrophils immediately precedes the peak of infected DCs in the lungs, prompted us to characterize the role of neutrophils in the initiation of adaptive immune responses to M. tuberculosis. We found that, although depletion of neutrophils in vivo increased the frequency of M. tuberculosis infected DCs in the lungs, it decreased trafficking of DCs to the mediastinal lymph node. This resulted in delayed activation (CD69 expression) and proliferation of naïve M. tuberculosis Ag85B-specific CD4 T cells in the mediastinal lymph node. To further characterize the role for neutrophils in DC-migration we used a Transwell chemotaxis system and found that DCs that were directly infected by M. tuberculosis migrated poorly in response to CCL19, an agonist for the chemokine receptor CCR7. In contrast, DCs that had acquired M. tuberculosis through uptake of infected neutrophils exhibited unimpaired migration. These results reveal a mechanism wherein neutrophils promote adaptive immune responses to M. tuberculosis by delivering M. tuberculosis to DCs in a form that make DCs more effective initiators of naïve CD4 T cell activation. These observations provide insight into a mechanism for neutrophils to facilitate initiation of adaptive immune responses in tuberculosis. PMID:21555529

  11. Administration of C1 inhibitor reduces neutrophil activation in patients with sepsis

    NARCIS (Netherlands)

    Zeerleder, Sacha; Caliezi, Christoph; van Mierlo, Gerard; Eerenberg-Belmer, Anke; Sulzer, Irmela; Hack, C. Erik; Wuillemin, Walter A.

    2003-01-01

    Forty patients with severe sepsis or septic shock recently received C1 inhibitor. In the present study we studied the effect of C1 inhibitor therapy on circulating elastase-alpha(1)-antitrypsin complex (EA) and lactoferrin (LF) levels in these patients to gain further insight about agonists involved

  12. Evidence for activation of a respiratory burst in the interaction of human neutrophils with Mycobacterium tuberculosis.

    OpenAIRE

    May, M E; Spagnuolo, P J

    1987-01-01

    We examined the capacity of human neutrophils to develop a respiratory burst, as monitored by superoxide release, in response to interaction with Mycobacterium tuberculosis. Serum-opsonized, heat-killed mycobacteria induced significant release of superoxide from neutrophils after 30 min of exposure, with a maximum release of 34 +/- 1.7 nmol/30 min per 5 X 10(6) neutrophils occurring with a mycobacterium/neutrophil ratio of 40:1. Similar levels of superoxide release were induced by live mycoba...

  13. Study of Possible Mechanisms Involved in the Inhibitory Effects of Coumarin Derivatives on Neutrophil Activity

    Science.gov (United States)

    Drábiková, Katarína; Perečko, Tomáš; Nosál', Radomír; Harmatha, Juraj; Šmidrkal, Jan; Jančinová, Viera

    2013-01-01

    To specify the site of action of the synthetic coumarin derivatives 7-hydroxy-3-(4′-hydroxyphenyl) coumarin (HHC) and 7-hydroxy-3-(4′-hydroxyphenyl) dihydrocoumarin (HHDC), we evaluated their effects on extra- and intracellular reactive oxygen species (ROS) formation in phorbol-myristate-13-acetate (PMA) stimulated human neutrophils. We studied also the effects of HHC and HHDC on possible molecular mechanisms which participate in the activation of NADPH oxidase, that is, on PKC activity, on phosphorylation of some PKC isoforms (α, βII, and δ), and on phosphorylation of the NADPH oxidase subunit p40phox. Without affecting cytotoxicity, both coumarines tested were effective inhibitors/scavengers of ROS produced by neutrophils on extracellular level. HHC markedly diminished oxidant production and also, intracellularly, decreased PKC activity and partly phosphorylation of PKCα, βII. On the other hand, we did not observe any effect of coumarin derivatives on phosphorylation of PKCδ and on phosphorylation of the NADPH oxidase subunit p40phox, which were suggested to be involved in the PMA-dependent intracellular activation process. In agreement with our previous findings, we assume that the different molecular structures of HHC and HHDC with their different physicochemical and free radical scavenging characteristics are responsible for their diverse effects on the parameters tested. PMID:24349608

  14. Crystal structure of the complex of porcine pancreatic elastase with TEI-8362.

    Science.gov (United States)

    Koizumi, Masahiro; Muratani, Emiko; Fujii, Katsuhiko; Takimoto-Kamimura, Midori

    2004-01-01

    The crystal structure of porcine pancreatic elastase (PPE) complexed with a new benzoxazinone inhibitor, TEI-8362, of human neutrophil elastase (HNE) was determined at 1.8 A resolution. The hydroxyl oxygen of Ser195 opened the benzoxazinone by nucleophilic attack and formed a covalent bond with the carbonyl carbon. Hydrophobic interaction between the terminal benzene of TEI-8362 and the S4 pocket is reinforced by the side chain of Arg217 and has an impact on the ligand binding conformation. Two additional interactions with the oxyanion hole and His57 are introduced to the benzoxazinone structure of TEI-8362. These combinatorial interactions will also exist in HNE and cause high preference of TEI-8362 for HNE.

  15. The Effects of Plantago major on the Activation of the Neutrophil Respiratory Burst.

    Science.gov (United States)

    Reina, Elaine; Al-Shibani, Nouf; Allam, Eman; Gregson, Karen S; Kowolik, Michael; Windsor, L Jack

    2013-10-01

    Plantago major is a common plant that grows worldwide in temperate zones and is found in fields, lawns, and on the roadsides. Its leaves and seeds have been used in almost all parts of the world for centuries as a wound healer, analgesic, antioxidant, and antibiotic, as well as an immune system modulator, antiviral, antifungal, and anti-inflammatory agent. Baicalein and aucubin are the two most biologically active components of P. major, and both have been shown to have antioxidant, anti-inflammatory, and anticancer properties. Neutrophils have a pivotal role in wound healing and inflammation. Their principal mechanism of host defense is the killing of pathogens via the production of reactive oxygen species (ROS). The aim of the present study was to determine the in vitro effects of P. major extract, baicalein, and aucubin on human neutrophil respiratory burst activity. The cytotoxicity of the agents was assessed by lactate dehydrogenase (LDH) assays. A standard luminol-dependent chemiluminescence (CL) assay was utilized to monitor the respiratory burst of the neutrophils after exposure to P. major extract and its two active ingredients, baicalein and aucubin. Three replicates per group were included in each of the three runs of the experiments and analysis of variance (ANOVA) was used for statistical analysis. P. major and baicalein were not toxic to the cells at any of the concentrations examined. Aucubin was toxic to the cells only at the highest concentration tested (P = 0.0081). However, genistein was toxic to the cells at all of the concentrations examined except for the lowest concentration of 16.9 μg/ml (P = 0.985). P. major (-0.10 ± 0.11), aucubin (0.06 ± 0.16), baicalein (-0.10 ± 0.11), and genistein (-0.18 ± 0.07) all significantly (P major extract inhibited neutrophil ROS production, as did aucubin and baicalein. Therefore, these components should be investigated further with relation to the regulation of destructive ROS production in conditions

  16. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  17. Ascorbic acid supplementation diminishes microparticle elevations and neutrophil activation following SCUBA diving.

    Science.gov (United States)

    Yang, Ming; Barak, Otto F; Dujic, Zeljko; Madden, Dennis; Bhopale, Veena M; Bhullar, Jasjeet; Thom, Stephen R

    2015-08-15

    Predicated on evidence that diving-related microparticle generation is an oxidative stress response, this study investigated the role that oxygen plays in augmenting production of annexin V-positive microparticles associated with open-water SCUBA diving and whether elevations can be abrogated by ascorbic acid. Following a cross-over study design, 14 male subjects ingested placebo and 2-3 wk later ascorbic acid (2 g) daily for 6 days prior to performing either a 47-min dive to 18 m of sea water while breathing air (∼222 kPa N2/59 kPa O2) or breathing a mixture of 60% O2/balance N2 from a tight-fitting face mask at atmospheric pressure for 47 min (∼40 kPa N2/59 kPa O2). Within 30 min after the 18-m dive in the placebo group, neutrophil activation, and platelet-neutrophil interactions occurred, and the total number of microparticles, as well as subgroups bearing CD66b, CD41, CD31, CD142 proteins or nitrotyrosine, increased approximately twofold. No significant elevations occurred among divers after ingesting ascorbic acid, nor were elevations identified in either group after breathing 60% O2. Ascorbic acid had no significant effect on post-dive intravascular bubble production quantified by transthoracic echocardiography. We conclude that high-pressure nitrogen plays a key role in neutrophil and microparticle-associated changes with diving and that responses can be abrogated by dietary ascorbic acid supplementation. Copyright © 2015 the American Physiological Society.

  18. Butyrate and propionate induced activated or non-activated neutrophil apoptosis via HDAC inhibitor activity but without activating GPR-41/GPR-43 pathways.

    Science.gov (United States)

    Aoyama, Michiko; Kotani, Joji; Usami, Makoto

    2010-06-01

    Decreased neutrophil apoptosis is implicated in persistent inflammation resulting in systemic inflammatory response syndrome and multiple organ dysfunctions syndromes. Short-chain fatty acids (SCFAs) may be a candidate to control neutrophil apoptosis because SCFAs are normally produced in the gut and related products have been approved for human use. We investigated the effects of SCFAs on apoptosis of activated and non-activated neutrophils and their mechanisms. Purified neutrophils obtained from healthy volunteers were preincubated for 1 h with or without the G-protein receptor (GPR) inhibitor pertussis toxin (100 ng/mL) or U-73122 (50 ng/mL), extracellular signal-related protein kinase inhibitor PD98059 (10 microM), mitogen-activated protein kinase (MAPK) p38 inhibitor SB203580 (25 microM), Jun kinase inhibitor-I (2 microM), caspase-3 and -7 inhibitor Z-VAD-FMK (100 microM), caspase-8 inhibitor Z-IETD-FMK (50 microM), or caspase-9 inhibitor Z-LEHD-FMK (50 microM). The cells were then cultured with or without SCFAs or trichostatin A, a typical histone deacetylase inhibitor, in the presence or absence of lipopolysaccharide (1 microg/mL) or tumor necrosis factor-alpha (100 ng/mL). Neutrophil apoptosis was assessed by annexin V staining using flow cytometry. The GPR-41 and -43 and apoptosis-related proteins (bax, mcl-1, a1) mRNA were measured by quantitative real-time polymerase chain reaction and the expression of acetylated histone H3 was determined by western blot. The caspase inhibitors inhibited butyrate- and propionate-induced neutrophil apoptosis treated or untreated with lipopolysaccharide or tumor necrosis factor-alpha, whereas GPR and MAPK inhibitors had no effect. The mRNA expressions of GPR-43 and a1 protein were reduced by butyrate and propionate. The expressions of acetylated histone H3 were induced by butyrate and propionate. These results suggest that butyrate and propionate increase apoptosis of neutrophils irrespective of their activation state, by

  19. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance

    Directory of Open Access Journals (Sweden)

    Giang T. Nguyen

    2017-08-01

    Full Text Available Reactive oxygen species (ROS generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs, toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs. Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation

  20. Neutrophils extracellular traps damage Naegleria fowleri trophozoites opsonized with human IgG.

    Science.gov (United States)

    Contis-Montes de Oca, A; Carrasco-Yépez, M; Campos-Rodríguez, R; Pacheco-Yépez, J; Bonilla-Lemus, P; Pérez-López, J; Rojas-Hernández, S

    2016-08-01

    Naegleria fowleri infects humans through the nasal mucosa causing a disease in the central nervous system known as primary amoebic meningoencephalitis (PAM). Polymorphonuclear cells (PMNs) play a critical role in the early phase of N. fowleri infection. Recently, a new biological defence mechanism called neutrophil extracellular traps (NETs) has been attracting attention. NETs are composed of nuclear DNA combined with histones and antibacterial proteins, and these structures are released from the cell to direct its antimicrobial attack. In this work, we evaluate the capacity of N. fowleri to induce the liberation of NETs by human PMN cells. Neutrophils were cocultured with unopsonized or IgG-opsonized N. fowleri trophozoites. DNA, histone, myeloperoxidase (MPO) and neutrophil elastase (NE) were stained, and the formation of NETs was evaluated by confocal microscopy and by quantifying the levels of extracellular DNA. Our results showed N. fowleri induce the liberation of NETs including release of MPO and NE by human PMN cells as exposure interaction time is increased, but N. fowleri trophozoites evaded killing. However, when trophozoites were opsonized, they were susceptible to the neutrophils activity. Therefore, our study suggests that antibody-mediated PMNs activation through NET formation may be crucial for antimicrobial responses against N. fowleri. © 2016 John Wiley & Sons Ltd.

  1. Staphylococcus aureus SaeR/S-Regulated Factors Decrease Monocyte-Derived Tumor Necrosis Factor-α to Reduce Neutrophil Bactericidal Activity.

    Science.gov (United States)

    Sward, Eli W; Fones, Elizabeth M; Spaan, Russel R; Pallister, Kyler B; Haller, Brandon L; Guerra, Fermin E; Zurek, Oliwia W; Nygaard, Tyler K; Voyich, Jovanka M

    2018-03-05

    The ability of Staphylococcus aureus to evade killing by human neutrophils significantly contributes to disease progression. In this study, we characterize an influential role for the S. aureus SaeR/S 2-component gene regulatory system in suppressing monocyte production of tumor necrosis factor alpha (TNF-α) to subsequently influence human neutrophil priming. Using flow cytometry and TNF-α specific enzyme-linked immunosorbent assays we identify the primary cellular source of TNF-α in human blood and in purified peripheral blood mononuclear cells (PBMCs) during interaction with USA300 and an isogenic saeR/S deletion mutant (USA300∆saeR/S). Assays with conditioned media from USA300 and USA300∆saeR/S exposed PBMCs were used to investigate priming on neutrophil bactericidal activity. TNF-α production from monocytes was significantly reduced following challenge with USA300 compared to USA300∆saeR/S. We observed that priming of neutrophils using conditioned medium from peripheral blood mononuclear cells stimulated with USA300∆saeR/S significantly increased neutrophil bactericidal activity against USA300 relative to unprimed neutrophils and neutrophils primed with USA300 conditioned medium. The increased neutrophil bactericidal activity was associated with enhanced reactive oxygen species production that was significantly influenced by elevated TNF-α concentrations. Our findings identify an immune evasion strategy used by S. aureus to impede neutrophil priming and subsequent bactericidal activity.

  2. Neutrophils, from marrow to microbes

    DEFF Research Database (Denmark)

    Borregaard, Niels

    2010-01-01

    Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage. N...... microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms....

  3. Elastase B of Pseudomonas aeruginosa stimulates the humoral immune response in the greater wax moth, Galleria mellonella.

    Science.gov (United States)

    Andrejko, Mariola; Mizerska-Dudka, Magdalena

    2011-05-01

    The role of Pseudomonas aeruginosa elastase B in activation of the humoral immune response in Galleria mellonella larvae was investigated. The results of our study showed that elastase B injected at a sublethal concentration was responsible for eliciting the humoral immune response in G. mellonella larvae. The insects exhibited increased antibacterial activity, namely, we observed appearance of antimicrobial peptides and a higher level of lysozyme in cell-free hemolymph. Elastase B seems to be a more potent elicitor than thermolysin because similar maximal antibacterial activity levels were observed at a 5-fold lower concentration. We also demonstrated that there were differences in the kinetics of induction of antimicrobial activity between thermolysin and elastase B. The maximum level was observed 18h post challenge of thermolysin and 38h after injection of elastase B. It was also shown that, 24h after elastase injection, the relative levels of apoLp-III in the hemolymph significantly increased in comparison with control G. mellonella larvae. The activation of immune responses in metalloproteinase-challenged larvae involved synthesis of metalloproteinase inhibitors which increased the survival rates of insects both against the lethal dose of thermolysin as well as against viable pathogenic bacterial cells of P. aeruginosa. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Butyrate-Loaded Chitosan/Hyaluronan Nanoparticles: A Suitable Tool for Sustained Inhibition of ROS Release by Activated Neutrophils

    DEFF Research Database (Denmark)

    Sacco, Pasquale; Decleva, Eva; Tentor, Fabio

    2017-01-01

    that butyrate inhibits neutrophil ROS release in a dose and time-dependent fashion. Given the short half-life of butyrate, chitosan/hyaluronan nanoparticles are next designed and developed as controlled release carriers able to provide cells with a long-lasting supply of this SCFA. Notably, while the inhibition...... of neutrophil ROS production by free butyrate declines over time, that of butyrate-loaded chitosan/hyaluronan nanoparticles (B-NPs) is sustained. Additional valuable features of these nanoparticles are inherent ROS scavenger activity, resistance to cell internalization, and mucoadhesiveness. B-NPs appear...

  5. Extracellular vesicles derived from Gram-negative bacteria, such as Escherichia coli, induce emphysema mainly via IL-17A-mediated neutrophilic inflammation.

    Science.gov (United States)

    Kim, You-Sun; Lee, Won-Hee; Choi, Eun-Jeong; Choi, Jun-Pyo; Heo, Young Joo; Gho, Yong Song; Jee, Young-Koo; Oh, Yeon-Mok; Kim, Yoon-Keun

    2015-04-01

    Recent evidence indicates that Gram-negative bacteria-derived extracellular vesicles (EVs) in indoor dust can evoke neutrophilic pulmonary inflammation, which is a key pathology of chronic obstructive pulmonary disease (COPD). Escherichia coli is a ubiquitous bacterium present in indoor dust and secretes nanometer-sized vesicles into the extracellular milieu. In the current study, we evaluated the role of E. coli-derived EVs on the development of COPD, such as emphysema. E. coli EVs were prepared by sequential ultrafiltration and ultracentrifugation. COPD phenotypes and immune responses were evaluated in C57BL/6 wild-type (WT), IFN-γ-deficient, or IL-17A-deficient mice after airway exposure to E. coli EVs. The present study showed that indoor dust from a bed mattress harbors E. coli EVs. Airway exposure to E. coli EVs increased the production of proinflammatory cytokines, such as TNF-α and IL-6. In addition, the repeated inhalation of E. coli EVs for 4 wk induced neutrophilic inflammation and emphysema, which are associated with enhanced elastase activity. Emphysema and elastase activity enhanced by E. coli EVs were reversed by the absence of IFN-γ or IL-17A genes. In addition, during the early period, lung inflammation is dependent on IL-17A and TNF-α, but not on IFN-γ, and also on TLR4. Moreover, the production of IFN-γ is eliminated by the absence of IL-17A, whereas IL-17A production is not abolished by IFN-γ absence. Taken together, the present data suggest that E. coli-derived EVs induce IL-17A-dependent neutrophilic inflammation and thereby emphysema, possibly via upregulation of elastase activity. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion.

    Science.gov (United States)

    Reidel, Boris; Radicioni, Giorgia; Clapp, Phillip W; Ford, Amina A; Abdelwahab, Sabri; Rebuli, Meghan E; Haridass, Prashamsha; Alexis, Neil E; Jaspers, Ilona; Kesimer, Mehmet

    2018-02-15

    E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. To determine the effects of e-cigarette use on the airways. Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.

  7. Elevated glucose concentrations promote receptor-independent activation of adherent human neutrophils: an experimental and computational approach

    DEFF Research Database (Denmark)

    Kummer, Ursula; Zobeley, Jürgen; Brasen, Jens Christian

    2007-01-01

    these dynamic metabolic changes, mathematical simulations were performed. A model for glycolysis in neutrophils was created. The results indicated that the frequency change in NAD(P)H oscillations can result from the activation of the hexose monophosphate shunt, which competes with glycolysis for glucose-6...

  8. Inhalation of activated protein C inhibits endotoxin-induced pulmonary inflammation in mice independent of neutrophil recruitment

    NARCIS (Netherlands)

    Slofstra, S. H.; Groot, A. P.; Maris, N. A.; Reitsma, P. H.; Cate, H. Ten; Spek, C. A.

    2006-01-01

    BACKGROUND AND PURPOSE: Intravenous administration of recombinant human activated protein C (rhAPC) is known to reduce lipopolysaccharide (LPS)-induced pulmonary inflammation by attenuating neutrophil chemotaxis towards the alveolar compartment. Ideally, one would administer rhAPC in pulmonary

  9. A taurine-supplemented vegan diet may blunt the contribution of neutrophil activation to acute coronary events.

    Science.gov (United States)

    McCarty, Mark F

    2004-01-01

    Neutrophils are activated in the coronary circulation during acute coronary events (unstable angina and myocardial infarction), often prior to the onset of ischemic damage. Moreover, neutrophils infiltrate coronary plaque in these circumstances, and may contribute to the rupture or erosion of this plaque, triggering thrombosis. Activated neutrophils secrete proteolytic enzymes in latent forms which are activated by the hypochlorous acid (HOCl) generated by myeloperoxidase. These phenomena may help to explain why an elevated white cell count has been found to be an independent coronary risk factor. Low-fat vegan diets can decrease circulating leukocytes--neutrophils and monocytes--possibly owing to down-regulation of systemic IGF-I activity. Thus, a relative neutropenia may contribute to the coronary protection afforded by such diets. However, vegetarian diets are devoid of taurine - the physiological antagonist of HOCl--and tissue levels of this nutrient are relatively low in vegetarians. Taurine has anti-atherosclerotic activity in animal models, possibly reflecting a role for macrophage-derived myeloperoxidase in the atherogenic process. Taurine also has platelet-stabilizing and anti-hypertensive effects that presumably could reduce coronary risk. Thus, it is proposed that a taurine-supplemented low-fat vegan diet represents a rational strategy for diminishing the contribution of activated neutrophils to acute coronary events; moreover, such a regimen would work in a number of other complementary ways to promote cardiovascular health. Moderate alcohol consumption, the well-tolerated drug pentoxifylline, and 5-lipoxygenase inhibitors--zileuton, boswellic acids, fish oil--may also have potential in this regard. Copyright 2004 Elsevier Ltd.

  10. [Suppression of anti-Candida activity of human neutrophils by glucose and diminishment of the glucose effect by an amino acid mixture].

    Science.gov (United States)

    Tansho, T; Okinaga, K; Tansho, S; Abe, S; Yamaguchi, H

    1996-05-01

    Effects of a glucose and amino acid mixture prescribed for parenteral alimentation on anti-Candida activity of neutrophils were examined. Neutrophils obtained from peripheral blood of healthy humans inhibited the growth of Candida albicans in vitro. More than 1.0% of glucose inhibited the anti-Candida activity of the neutrophils in a dose-dependent manner. This glucose effect was reduced by the addition of an amino acid mixture clinically prescribed with a carbohydrate solution (PN-twin) in Japan. The amino acid mixture neutralized the suppression of anti-Candida activity of neutrophils by dexamethasone. These results suggest that an amino acid mixture prescribed in an alimentation solution may play a role as a neutralizer of the suppressive action of glucose for anti-Candida activity of neutrophils in a limited area near the top of a catheter in a blood vessel.

  11. Inflammatory Ly6Chigh Monocytes Protect against Candidiasis through IL-15-Driven NK Cell/Neutrophil Activation.

    Science.gov (United States)

    Domínguez-Andrés, Jorge; Feo-Lucas, Lidia; Minguito de la Escalera, María; González, Leticia; López-Bravo, María; Ardavín, Carlos

    2017-06-20

    Neutrophils play a crucial role in defense against systemic candidiasis, a disease associated with a high mortality rate in patients receiving immunosuppressive therapy, although the early immune mechanisms that boost the candidacidal activity of neutrophils remain to be defined in depth. Here, we used a murine model of systemic candidiasis to explore the role of inflammatory Ly6C high monocytes in NK cell-mediated neutrophil activation during the innate immune response against C. albicans. We found that efficient anti-Candida immunity required a collaborative response between the spleen and kidney, which relied on type I interferon-dependent IL-15 production by spleen inflammatory Ly6C high monocytes to drive efficient activation and GM-CSF release by spleen NK cells; this in turn was necessary to boost the Candida killing potential of kidney neutrophils. Our findings unveil a role for IL-15 as a critical mediator in defense against systemic candidiasis and hold promise for the design of IL-15-based antifungal immunotherapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of the dimetilsulfoxido in the response chemiluminescent and the consumption of oxygen of neutrophils activated human

    International Nuclear Information System (INIS)

    Garcia, J.

    2001-01-01

    Dimethylsulfoxide (DMSO), a hydroxyl radical scavenger, exerted a dose dependent inhibition on the luminol and lucigenin-enhanced chemiluminescent responses of human neutrophils activated with soluble and particulate stimulants. DMSO inhibition of the luminol chemiluminescense induced by calcium ionophore A23187 was probably due to OH scavenging, whereas inhibition of the lucigenin chemiluminescence suggested DMSO negatively affects the NADPH-dependent membrane oxidase of neutrophils. In agreement with this, DMSO moderately inhibited O2 consumption in PMN suspensions stimulated with chemotactic peptide and opsonized zymosan-induced luminol chemiluminescense was observed only when added before or in conjunction with stimulants, whereas A23187-induced chemiluminescense was inhibited by DMSO regardless of time of addition. Washing of DMSO-treated PMN resulted in increased luminol enhanced chemiluminescense in response to chemotactic peptide and opsonized zymosan. This is consistent with the idea that DMSO may be interfering with activation of the membrane subunits of the oxidase by translocation and docking of the cytoplasmic, regulatory subunits. These data imply that DMSO inhibits neutrophil chemiluminescense both by OH scavenging and interfering with oxidase activation. Key words:Dimethylsulfoxide, chemiluminescent, luminol, lucigenin,neutrophils [es

  13. Tamoxifen up-regulates catalase production, inhibits vessel wall neutrophil infiltration, and attenuates development of experimental abdominal aortic aneurysms.

    Science.gov (United States)

    Grigoryants, Vladimir; Hannawa, Kevin K; Pearce, Charles G; Sinha, Indranil; Roelofs, Karen J; Ailawadi, Gorav; Deatrick, Kristopher B; Woodrum, Derek T; Cho, Brenda S; Henke, Peter K; Stanley, James C; Eagleton, Matthew J; Upchurch, Gilbert R

    2005-01-01

    Selective estrogen receptor modulators (SERMs), similar to estrogens, possess vasoprotective effects by reducing release of reactive oxygen species. Little is known about the potential effects of SERMs on the pathogenesis of abdominal aortic aneurysms (AAAs). This study's objective was to investigate the growth of experimental AAAs in the setting of the SERM tamoxifen. In the first set of experiments, adult male rats underwent subcutaneous tamoxifen pellet (delivering 10 mg/kg/day) implantation (n = 14) or sham operation (n = 16). Seven days later, all animals underwent pancreatic elastase perfusion of the abdominal aorta. Aortic diameters were determined at that time, and aortas were harvested 7 and 14 days after elastase perfusion for immunohistochemistry, real-time polymerase chain reaction, Western blot analysis, and zymography. In the second set of experiments, a direct irreversible catalase inhibitor, 3-amino-1,2,4-triazole (AT), was administered intraperitoneally (1 mg/kg) daily to tamoxifen-treated (n = 6) and control rats (n = 6), starting on day 7 after elastase perfusion. Aortic diameters were measured on day 14. In a third set of experiments, rats were perfused with catalase (150 mg/kg) after the elastase (n = 5), followed by daily intravenous injections of catalase (150 mg/kg/day) administered for 10 days. A control group of rats (n = 7) received 0.9% NaCl instead of catalase. Mean AAA diameters were approximately 50% smaller in tamoxifen-treated rats compared with sham rats 14 days after elastase perfusion (P = .002). The tamoxifen-treated group's aortas had a five-fold increase in catalase mRNA expression (P = .02) on day 7 and an eight-fold increase in catalase protein on day 14 (P = .04). Matrix metalloprotroteinase-9 activity was 2.4-fold higher (P = .01) on day 7 in the aortas of the controls compared to the tamoxifen-treated group's aortas. Tamoxifen-treated rats had approximately 40% fewer aortic polymorphonuclear neutrophils compared to

  14. NITRIC OXIDE ACTIVITY OF NEUTROPHIL IN BLOOD AND CEREBROSPINAL FLUID OF THE CHILDREN WITH BACTERIAL AND VIRAL MENINGITIS

    Directory of Open Access Journals (Sweden)

    V. P. Molochniy

    2014-01-01

    Full Text Available The article presents the results of study of nitric oxide activity of neutrophil leucocytic and freeradical processes in blood and cerebrospinal fluid of the children with bacterial and viral meningitison the acute period diseases. The peculiarities or activity of freeradical processes and nitric oxide of cerebrospinal fluid with bacterial meningitis in acute period diseases and activities of studies of ferments with the health children. 

  15. LukM/LukF'-PV is the most active Staphylococcus aureus leukotoxin on bovine neutrophils.

    Science.gov (United States)

    Barrio, Maria B; Rainard, Pascal; Prévost, Gilles

    2006-07-01

    Staphylococcus aureus is a ubiquitous pathogen causing infections in humans and domestic animals. It is often associated with bovine mastitis. Among secreted virulence factors, the leukotoxins constitute a family of toxins composed of two distinct subunits (class S and F proteins) which induce first Ca2+ influx and subsequent pore formation that allows ethidium entry. As mastitis-causing isolates harbor the genes of at least two, and often three leukotoxins, we compared the biological activities of the purified leukotoxins whose genes are found in mastitis-causing isolates on bovine polymorphonuclear neutrophils (PMN): spreading on a solid support, calcium influx and ethidium entry. In the spreading assay, the homologous pair LukM/LukF'-PV was the most active leukotoxin. Within each class, either S or F, subunits were interchangeable and generated leukotoxins with different specific activity. LukM was also very active when associated with heterologous F subunits. A similar ranking of homologous pairs was also found in the ethidium entry assay: LukM/LukF'-PV > HlgA/HlgB > HlgC/HlgB > LukE/LukD = LukEv/LukDv. In the Ca2+ flux assay, LukM/F'-PV was the most active pair, but gamma-hemolysin (Hlg) was also very efficient. LukEv/Dv was more active (twofold) than LukE/D in the spreading assay, but the two variants showed similar activities in the other two assays. Supposing that spreading and ethidium entry (pore formation) reflect toxic activities on bovine PMN, and Ca2+ influx cell activation, LukM/F'-PV was by far the most cytotoxic leukotoxin, but it was closely followed by gamma-hemolysin for PMN activation. These results suggest that LukM/F'-PV may constitute a particular virulence attribute of mastitis-causing S. aureus strains.

  16. Comparison of disease activity measures for anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis

    Science.gov (United States)

    Merkel, PA; Cuthbertson, DD; Hellmich, B; Hoffman, GS; Jayne, DRW; Kallenberg, CGM; Krischer, JP; Luqmani, R; Mahr, AD; Matteson, EL; Specks, U; Stone, JH

    2011-01-01

    Aim Currently, several different instruments are used to measure disease activity and extent in clinical trials of anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis, leading to division among investigative groups and difficulty comparing study results. An exercise comparing six different vasculitis instruments was performed. Methods A total of 10 experienced vasculitis investigators from 5 countries scored 20 cases in the literature of Wegener granulomatosis or microscopic polyangiitis using 6 disease assessment tools: the Birmingham Vasculitis Activity Score (BVAS), The BVAS for Wegener granulomatosis (BVAS/WG), BVAS 2003, a Physician Global Assessment (PGA), the Disease Extent Index (DEI) and the Five Factor Score (FFS). Five cases were rescored by all raters. Results Reliability of the measures was extremely high (intraclass correlations for the six measures all=0.98). Within each instrument, there were no significant differences or outliers among the scores from the 10 investigators. Test/retest reliability was high for each measure: range=0.77 to 0.95. The scores of the five acute activity measures correlated extremely well with one another. Conclusions Currently available tools for measuring disease extent and activity in ANCA-associated vasculitis are highly correlated and reliable. These results provide investigators with confidence to compare different clinical trial data and helps form common ground as international research groups develop new, improved and universally accepted vasculitis disease assessment instruments. PMID:18664546

  17. The Fc Receptor Polymorphisms and Expression of Neutrophil Activation Markers in Patients with Sickle Cell Disease from Western India

    Directory of Open Access Journals (Sweden)

    Harshada K. Kangne

    2013-01-01

    Full Text Available Objective. Sickle cell disease has variable clinical manifestations. Activation of neutrophils plays an important role in the initiation and propagation of vaso occlusive crises which can be analysed by determining the expression of neutrophil antigens such as CD16, CD32, and CD62L. The common FcγR polymorphisms (FcγRIIA and FcγRIIIB are considered to influence clinical presentation. This study focuses on distribution of FcγR polymorphisms and their association with neutrophil activity among the patients from western India. Methods. In this paper 127 sickle cell anemia patients and 58 patients with sickle-β-thalassemia (median age 12±8.58 years with variable clinical phenotypes along with 175 normals were investigated. FcγRs polymorphisms were analysed by RFLP and AS-PCR. Activation of neutrophils was measured by flow cytometry. Results. The genotypic frequency of the H/R genotype of FcγRIIA and the NA1/NA1 genotype of FcγRIIIB was significantly decreased in patients compared to normals (P-0.0074, P-0.0471, resp.. We found a significant difference in the expression of CD32 and CD62L among the patients as against normals. A significantly higher expression of CD32 was seen in the milder patients with the H/H genotype (P-0.0231, whereas the expression of CD16 was higher in severe patients with the NA2/NA2 genotype (P-0.0312. Conclusion. The two FcγR polymorphisms had significant association with variable phenotypes of sickle cell disease. The expression of CD62L decreased in our patients indicating activation of neutrophils.

  18. Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis

    NARCIS (Netherlands)

    Renckens, Rosemarijn; Roelofs, Joris J. T. H.; Florquin, Sandrine; van der Poll, Tom

    2006-01-01

    BACKGROUND: Urokinase-type plasminogen activator receptor (uPAR) is expressed on many different cells, including leukocytes. uPAR has been implicated to play a role in neutrophil migration to sites of inflammation. METHODS: To determine the role that uPAR plays in neutrophil recruitment in response

  19. Eosinophil-derived neurotoxin, elastase, and cytokine profile in effusion from eosinophilic otitis media.

    Science.gov (United States)

    Uchimizu, Hirotaka; Matsuwaki, Yoshinori; Kato, Masahiko; Otori, Nobuyosi; Kojima, Hiromi

    2015-09-01

    Eosinophilic otitis media (EOM) is an intractable disease characterized by a remarkably viscous effusion and accumulation of numerous eosinophils in both the middle ear effusion and the mucosa. The key factors in EOM pathogenesis remain unclear. The purpose of this study is to identify the important factors involved in EOM pathogenesis. Middle ear effusion samples were collected from 12 patients with EOM and 9 patients with secretory otitis media (SOM), as controls. Multiple cytokines in the effusion were measured using a Bio-Plex™ Human Cytokine 27-Plex panel. Eosinophil-derived neurotoxin (EDN) and elastase were measured by ELISA. The concentrations of EDN, elastase, and each cytokine were compared between the EOM and SOM groups. Furthermore, in the EOM group, each cytokine was examined for correlation with EDN and elastase. EDN and elastase concentrations were significantly higher in the EOM group than in the SOM group (p < 0.05). IL-5, IL-1β, MIP-1α, G-CSF, IL-1ra, IL-4, IFN-γ, MIP-1β, IL-10, TNF-α, VEGF, and IL-2 concentration was significantly higher in the EOM group than in the SOM group (p < 0.05). Significant positive correlations were found between EDN and IL-1ra, IL-2, IL-5, IL-9, IL-13, eotaxin, MIP-1α, PDGF-BB, and RANTES in the EOM group (p < 0.05). Our study showed that IL-5, IL-2, MIP-1α, and IL-1ra are the important factors involved in EOM pathogenesis. Furthermore, not only eosinophil, but also neutrophil are involved in middle ear inflammation of EOM. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  20. β-lactam antibiotic-induced release of lipoteichoic acid from Staphylococcus aureus leads to activation of neutrophil granulocytes

    Directory of Open Access Journals (Sweden)

    Hartung Thomas

    2006-06-01

    Full Text Available Abstract Background Polymorphonuclear neutrophil granulocytes (PMN are phagocytes of the first line of antimicrobial defense. Previously we demonstrated that lipoteichoic acid (LTA from Staphylococcus aureus (S. aureus directly activates neutrophil granulocytes. Others have reported that exposure of S. aureus to β-lactam antibiotics leads to LTA release. In the present study we addressed the question whether exposure of S. aureus to β-lactam antibiotics or antibiotics of other groups results in the generation of PMN-stimulating activity and whether this activity can be attributed to LTA. Methods S. aureus were exposed to flucloxacillin, a β-lactam antibiotic or to the protein synthesis-inhibitors erythromycin and gentamicin, or to ciprofloxacin, a gyrase inhibitor. Supernatants of the antibiotic-treated bacteria were assayed for their LTA content and for their effect on PMN functions. Results We observed that exposure of S. aureus to flucloxacillin and, to a lesser degree to ciprofloxacin, but not to erythromycin or gentamicin led to LTA release. Co-incubation of neutrophil granulocytes with LTA-containing supernatants led to PMN activation as assed by morphological changes, release of IL-8, delay of spontaneous apoptosis and enhanced phagocytic activity. Depletion of LTA from the supernatants markedly reduced their PMN-activating capacity. Conclusion The findings suggest that, via the activation of PMN, antibiotic-induced LTA release from S. aureus leads to enhanced antimicrobial activity of the innate immune defense mechanisms.

  1. A phospholipase A₂ from Bothrops asper snake venom activates neutrophils in culture: expression of cyclooxygenase-2 and PGE₂ biosynthesis.

    Science.gov (United States)

    Moreira, Vanessa; Gutiérrez, José María; Amaral, Rafaela Bacci; Lomonte, Bruno; Purgatto, Eduardo; Teixeira, Catarina

    2011-02-01

    In this study, the production of prostaglandin E₂ (PGE₂) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A₂ (PLA₂), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA₂s (cytosolic PLA₂ and Ca(2+)-independent PLA₂) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE₂ levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE₂ production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF₃), an intracellular PLA₂ inhibitor, but not bromoenol lactone (BEL), an iPLA₂ inhibitor, suppressed the MT-III-induced AA and PGE₂ release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE₂. COX-2 isoform is preeminent over COX-1 for production of PGE₂ stimulated by MT-III. PGE₂ and AA release by MT-III probably is related to cPLA₂ activation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Neutrophil chemotactic activity in bronchoalveolar lavage fluid of patients with AIDS-associated Pneumocystis carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; Kharazmi, A; Larsen, C G

    1997-01-01

    Pneumocystis carinii pneumonia (PCP) is accompanied by an acute inflammatory infiltration of the lung parenchyma. The cellular infiltrate is characterized by inflammatory cells including neutrophils, lymphocytes and macrophages. Furthermore, neutrophilia in bronchoalveolar lavage (BAL) fluid has...

  3. Endothelium and the effect of activated neutrophils on arterial smooth muscle

    Directory of Open Access Journals (Sweden)

    Bauer Viktor

    2015-03-01

    Full Text Available The aim of the study was to analyze the involvement of the endothelium in the effects of neutrophils (PMNL on phenylephrine-pre-contracted isolated rings of the rat thoracic aorta and to compare their effects with those of peroxynitrite (ONOO− and hypochlorous acid (HOCl. Activated PMNL-induced contraction of the precontracted aorta was prevented by the blockade of NO-synthase and by endothelium removal. In the endothelium-free preparations, the effect of PMNL reappeared in the presence of sodium nitroprusside. The effect of ONOO− and HOCl significantly differed from that of activated PMNL both in the presence and absence of the endothelium. It is therefore likely that neither ONOO− nor HOCl generated by transformation of superoxide anion radical (O2•− produced by PMNL is involved in their action. Reduction of the relaxant effect of nitric oxide derived from the endothelium by O2•− seems to be the keystone mechanism in generation of PMNL-induced contraction.

  4. Data on human neutrophil activation induced by pepducins with amino acid sequences derived from β2AR and CXCR4

    Directory of Open Access Journals (Sweden)

    André Holdfeldt

    2016-09-01

    Full Text Available The data described here is related to the research article titled (Gabl et al., 2016 [1]. Pepducins with peptide sequence derived from one of the intracellular domains of a given G-protein coupled receptor (GPCR can either activate or inhibit cell functions. Here we include data on human neutrophil function induced by pepducins derived from β2AR (ICL3-8 and CXCR4 (ATI-2341, respectively. ICL3-8 exerts neither direct activating effect on the NADPH-oxidase as measured by superoxide release nor inhibitory effect on FPR signaling. ATI-2341 dose-dependently triggers neutrophil activation and these cells were subsequently desensitized in their response to FPR2 specific agonists F2Pal10 and WKYMVM. Moreover, the ATI-2341 response is inhibited by PBP10 and the peptidomimetic Pam-(Lys-betaNSpe6-NH2 (both are FPR2 specific inhibitors, but not to the FPR1 specific inhibitor cyclosporine H.

  5. The role of neutrophilic mediators in acute inflammation of the gut

    International Nuclear Information System (INIS)

    Ritter, C. von.

    1988-01-01

    Activation of granulocytes within the lamina propria by luminally derived bacterial products may represent an important mechanism in the pathogenesis of inflammatory bowel disease. One objective of this thesis was to determine the effects of luminal perfusion with N-formyl-methionyl-leucyl-phenylalanine (FMLP), a bacterial product that attracts and activates granulocytes, on mucosal permeability in different regions of the rat small intestine and colon. Mucosal permeability was measured using the blood-to-lumen clearance of 51 Cr-EDTA during luminal perfusion with FMLP dissolved in Tyrode's solution. Of the bowel segments studied, mucosal permeability was significantly increased only in the distal 10 cm of the ileum. In order to define the role of neutrophilic oxidants in FMLP-induced ileitis, we evaluated the protective effect of several free radical scavengers and antioxidant enzymes. Pretreatment with the either superoxide dismutase or catalase had no effect on the FMLP-induced increase in mucosal permeability. However, treatment with either Mn-desferrioxamine, PZ51, desferrioxamine, or dimethylsulfoxide significantly attenuated FMLP-induced mucosal damage. Non-oxidative toxins released from activated neutrophil may be another mechanism by which FMLP increases mucosal permeability. In order to investigate the role of neutrophilic proteases in FMLP-induced ileitis, the effects of the nonspecific protease inhibitor soybean trypsin inhibitor, and the elastase inhibitors MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl(MAAPV) and Eglin C on the FMLP-induced increases in 51 Cr-EDTA clearance were determined

  6. Lactobacillus rhamnosus GG Activation of Dendritic Cells and Neutrophils Depends on the Dose and Time of Exposure

    Directory of Open Access Journals (Sweden)

    Shirong Cai

    2016-01-01

    Full Text Available This study evaluates the ability of Lactobacillus rhamnosus GG (LGG to activate DC and neutrophils and modulate T cell activation and the impact of bacterial dose on these responses. Murine bone marrow derived DC or neutrophils were stimulated with LGG at ratios of 5 : 1, 10 : 1, and 100 : 1 (LGG : cells and DC maturation (CD40, CD80, CD86, CD83, and MHC class II and cytokine production (IL-10, TNF-α, and IL-12p70 were examined after 2 h and 18 h coculture and compared to the ability of BCG (the present immunotherapeutic agent for bladder cancer to stimulate these cells. A 2 h exposure to 100 : 1 (high dose or an 18 h exposure to 5 : 1 or 10 : 1 (low dose, LGG : cells, induced the highest production of IL-12 and upregulation of CD40, CD80, CD86, and MHC II on DC. In DCs stimulated with LGG activated neutrophils IL-12 production decreased with increasing dose. LGG induced 10-fold greater IL-12 production than BCG. T cell IFNγ and IL-2 production was significantly greater when stimulated with DC activated with low dose LGG. In conclusion, DC or DC activated with neutrophils exposed to low dose LGG induced greater Th1 polarization in T cells and this could potentially exert stronger antitumor effects. Thus the dose of LGG used for immunotherapy could determine treatment efficacy.

  7. Allosteric modulation of proteinase 3 activity by anti-neutrophil cytoplasmic antibodies in granulomatosis with polyangiitis.

    Science.gov (United States)

    Hinkofer, Lisa C; Hummel, Amber M; Stone, John H; Hoffman, Gary S; Merkel, Peter A; Spiera, E Robert F; St Clair, William; McCune, Joseph W; Davis, John C; Specks, Ulrich; Jenne, Dieter E

    2015-05-01

    Anti-neutrophil cytoplasmic antibodies (ANCA) with proteinase 3 (PR3) specificity are a useful laboratory biomarker for the diagnosis of Granulomatosis with Polyangiitis (GPA) and are believed to be implicated in the pathogenesis. It has been repeatedly suggested that disease activity of GPA is more closely related to the appearance and rise of PR3-inhibiting ANCA than to an increase of total ANCA. Previous studies on a limited number of patient samples, however, have yielded inconclusive results. To overcome the previous methodological limitations, we established a new ultrasensitive method to quantify the inhibitory capacity of PR3-ANCA using small volumes of plasma from patients with GPA. A large collection of longitudinally-collected samples from the Wegener Granulomatosis Etanercept Trial (WGET) became available to us to determine the functional effects of ANCA on PR3 in comparison to clinical disease manifestations. In these patient samples we not only detected PR3-ANCA with inhibitory capacity, but also PR3-ANCA with enhancing effects on PR3 activity. However no correlation of these activity-modulating PR3-ANCA with disease activity at either the time of enrollment or over the course of disease was found. Only patients with pulmonary involvement, especially patients with nodule formation in the respiratory tract, showed a slight, but not significant, decrease of inhibitory capacity. Epitope mapping of the activity-modulating PR3-ANCA revealed a binding on the active site surface of PR3. Yet these ANCA were able to bind to PR3 with an occupied active site cleft, indicating an allosteric mechanism of inhibition. The recently described signal ratio between the MCPR3-3 and MCPR3-2 capture ELISA was consistent with the binding of activity-modulating ANCA to the active site surface. Evidence for a shared epitope between activity-modulating PR3-ANCA and MCPR3-7, however, was very limited, suggesting that a majority of PR3-ANCA species do not inhibit PR3 by the same

  8. Proinflammatory effects of bacterial lipoprotein on human neutrophil activation status, function and cytotoxic potential in vitro.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    Bacterial lipoprotein (BLP) is the most abundant protein in gram-negative bacterial cell walls, heavily outweighing lipopolysaccharide (LPS). Herein we present findings demonstrating the potent in vitro effects of BLP on neutrophil (PMN) activation status, function, and capacity to transmigrate an endothelial monolayer. PMNs are the principal effectors of the initial host response to injury or infection and constitute a significant threat to invading bacterial pathogens. The systemic inflammatory response syndrome (SIRS) is characterised by significant host tissue injury mediated, in part, by uncontrolled regulation of PMN cytotoxic activity. We found that BLP-activated human PMN as evidenced by increased CD11b\\/CD18 (Mac-1) expression. Up-regulation of PMN Mac-1 in response to BLP occurred independently of membrane-bound CD14 (mCD14). A similar up-regulation of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells was observed whilst E-Selectin expression was unaffected. PMN transmigration across a human umbilical vein endothelial cell (HUVEC) monolayer was markedly increased after treating either PMN\\'s or HUVEC independently with BLP. This increased transmigration did not occur as a result of any direct effect of BLP on HUVEC monolayer permeability, assessed objectively using the passage of FITC-labeled Dextran-70. BLP primed PMN for enhanced respiratory burst and superoxide anion production in response to PMA, but did not influence phagocytosis of opsonized Escherichia coli. BLP far exceeds LPS as a gram-negative bacterial wall component, these findings therefore implicate BLP as an additional putative mediator of SIRS arising from gram-negative infection.

  9. New Selective Peptidyl Di(chlorophenyl) Phosphonate Esters for Visualizing and Blocking Neutrophil Proteinase 3 in Human Diseases*

    Science.gov (United States)

    Guarino, Carla; Legowska, Monika; Epinette, Christophe; Kellenberger, Christine; Dallet-Choisy, Sandrine; Sieńczyk, Marcin; Gabant, Guillaume; Cadene, Martine; Zoidakis, Jérôme; Vlahou, Antonia; Wysocka, Magdalena; Marchand-Adam, Sylvain; Jenne, Dieter E.; Lesner, Adam; Gauthier, Francis; Korkmaz, Brice

    2014-01-01

    The function of neutrophil protease 3 (PR3) is poorly understood despite of its role in autoimmune vasculitides and its possible involvement in cell apoptosis. This makes it different from its structural homologue neutrophil elastase (HNE). Endogenous inhibitors of human neutrophil serine proteases preferentially inhibit HNE and to a lesser extent, PR3. We constructed a single-residue mutant PR3 (I217R) to investigate the S4 subsite preferences of PR3 and HNE and used the best peptide substrate sequences to develop selective phosphonate inhibitors with the structure Ac-peptidylP(O-C6H4-4-Cl)2. The combination of a prolyl residue at P4 and an aspartyl residue at P2 was totally selective for PR3. We then synthesized N-terminally biotinylated peptidyl phosphonates to identify the PR3 in complex biological samples. These inhibitors resisted proteolytic degradation and rapidly inactivated PR3 in biological fluids such as inflammatory lung secretions and the urine of patients with bladder cancer. One of these inhibitors revealed intracellular PR3 in permeabilized neutrophils and on the surface of activated cells. They hardly inhibited PR3 bound to the surface of stimulated neutrophils despite their low molecular mass, suggesting that the conformation and reactivity of membrane-bound PR3 is altered. This finding is relevant for autoantibody binding and the subsequent activation of neutrophils in granulomatosis with polyangiitis (formerly Wegener disease). These are the first inhibitors that can be used as probes to monitor, detect, and control PR3 activity in a variety of inflammatory diseases. PMID:25288799

  10. Proteomic Characterization of Middle Ear Fluid Confirms Neutrophil Extracellular Traps as a Predominant Innate Immune Response in Chronic Otitis Media.

    Directory of Open Access Journals (Sweden)

    Stephanie Val

    Full Text Available Chronic Otitis Media (COM is characterized by middle ear effusion (MEE and conductive hearing loss. MEE reflect mucus hypersecretion, but global proteomic profiling of the mucosal components are limited.This study aimed at characterizing the proteome of MEEs from children with COM with the goal of elucidating important innate immune responses.MEEs were collected from children (n = 49 with COM undergoing myringotomy. Mass spectrometry was employed for proteomic profiling in nine samples. Independent samples were further analyzed by cytokine multiplex assay, immunoblotting, neutrophil elastase activity, next generation DNA sequencing, and/or immunofluorescence analysis.109 unique and common proteins were identified by MS. A majority were innate immune molecules, along with typically intracellular proteins such as histones and actin. 19.5% percent of all mapped peptide counts were from proteins known to be released by neutrophils. Immunofluorescence and immunoblotting demonstrated the presence of neutrophil extracellular traps (NETs in every MEE, along with MUC5B colocalization. DNA found in effusions revealed unfragmented DNA of human origin.Proteomic analysis of MEEs revealed a predominantly neutrophilic innate mucosal response in which MUC5B is associated with NET DNA. NETs are a primary macromolecular constituent of human COM middle ear effusions.

  11. Faecal pancreatic elastase - 1 a non invasive measure of exocrine ...

    African Journals Online (AJOL)

    Objectives:- The major objective of this work was to establish the assay of faecal pancreatic elastase-1 in spot stool samples as an exocrine pancreatic function test at ... An ELISA technique which recognizes human pancreatic elastase-1 from spot stool samples was employed for the test and read photometrically at 405nm.

  12. [Pancreatic exocrine function in diabetes mellitus. Determination of fecal elastase].

    Science.gov (United States)

    Mancilla A, Carla; Hurtado H, Carmen; Tobar A, Eduardo; Orellana N, Ivonne; Pineda B, Pedro; Castillo M, Iván; Ledezma R, Rodrigo; Berger F, Zoltán

    2006-04-01

    One of the complications of diabetes mellitus is the development of pancreatic exocrine insufficiency. To study pancreatic exocrine function in diabetics patients. Seventy two diabetic patients were included in the protocol, but two were withdrawn because an abdominal CAT scan showed a chronic calcified pancreatitis, previously undiagnosed. Fecal elastase was measured by ELISA and the presence of fat in feces was assessed using the steatocrit. Mean age was 60+/-12 years and 67 (96%) patients had a type 2 diabetes. Fecal elastase was normal (elastase >200 microg/g) in 47 (67%) patients, mildly decreased (100-200 microg/g) in 10 (14%) and severely decreased in 13 (19%). There was a significant association between elastase levels and time of evolution of diabetes (p=0.049) and between lower elastase levels and the presence of a positive steatocrit (p=0.042). No significant association was found between elastase levels and other chronic complications of diabetes such as retinopathy, nephropathy, neuropathy, microangiopathy or with insulin requirement. One third of this group of diabetic patients had decreased levels of fecal elastase, that was associated with the time of evolution of diabetes. Patients with lower levels of elastase have significantly more steatorrhea. Among diabetics it is possible to find a group of patients with non diagnosed chronic pancreatitis.

  13. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity.

    Science.gov (United States)

    Sun, Bo; Li, Zhao-Shen; Tu, Zhen-Xing; Xu, Guo-Ming; Du, Yi-Qi

    2006-11-21

    To construct a live attenuated Salmonella typhimurium (S. typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity. By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments. A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recombinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylorii whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response. The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  14. Earthworm coelomocyte extracellular traps: structural and functional similarities with neutrophil NETs.

    Science.gov (United States)

    Homa, Joanna

    2018-03-01

    Invertebrate immunity is associated with natural mechanisms that include cellular and humoral elements, similar to those that play a role in vertebrate innate immune responses. Formation of extracellular traps (ETs) is a newly discovered mechanism to combat pathogens, operating not only in vertebrate leucocytes but also in invertebrate immune cells. The ET components include extracellular DNA (exDNA), antimicrobial proteins and histones. Formation of mammalian ETs depends on enzymes such as neutrophil elastase, myeloperoxidase, the citrullination of histones and protease activity. It was confirmed that coelomocytes-immunocompetent cells of the earthworm Eisenia andrei-are also able to release ETs in a protease-dependent manner, dependent or independent of the formation of reactive oxygen species and rearrangement of the cell cytoskeleton. Similar to vertebrate leukocytes (e.g., neutrophil), coelomocytes are responsible for many immune functions like phagocytosis, cytotoxicity and secretion of humoral factors. ETs formed by coelomocyte analogues to neutrophil ETs consist of exDNA, histone H3 and attached to these structures proteins, e.g., heat shock proteins HSP27. The latter fact confirms that mechanisms of ET release are conserved in evolution. The study on Annelida adds this animal group to the list of invertebrates capable of ET release, but most importantly provides insides into innate mechanisms of ET formation in lower animal taxa.

  15. Equol Effectively Inhibits Toxic Activity of Human Neutrophils without Influencing Their Viability

    Czech Academy of Sciences Publication Activity Database

    Pažoureková, S.; Lucová, M.; Nosál, R.; Drábiková, K.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2016-01-01

    Roč. 97, 3/4 (2016), s. 138-145 ISSN 0031-7012 Institutional support: RVO:61388963 Keywords : neutrophils * equol * chemiluminescence * reactive oxygen species * p40(phox) * apoptosis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.442, year: 2016

  16. Ability of Staphylococcus aureus coagulase genotypes to resist neutrophil bactericidal activity and phagocytosis

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Scott, N. L.; Sordillo, L. M.

    1994-01-01

    genotype. The interaction between bacteria and neutrophils was measured by phagocytosis and bactericidal effect. The average percent killing of bacteria was lowest (40.0%) with strains belonging to the most common genotype, medium (50%) with strains belonging to the intermediate type, and highest (64...

  17. The Beta-2-Adrenoreceptor Agonists, Formoterol and Indacaterol, but Not Salbutamol, Effectively Suppress the Reactivity of Human Neutrophils In Vitro

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2014-01-01

    Full Text Available The clinical relevance of the anti-inflammatory properties of beta-2 agonists remains contentious possibly due to differences in their molecular structures and agonist activities. The current study has compared the effects of 3 different categories of β2-agonists, namely, salbutamol (short-acting, formoterol (long-acting and indacaterol (ultra-long-acting, at concentrations of 1–1000 nM, with human blood neutrophils in vitro. Neutrophils were activated with either N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, 1 µM or platelet-activating factor (PAF, 200 nM in the absence and presence of the β2-agonists followed by measurement of the generation of reactive oxygen species and leukotriene B4, release of elastase, and expression of the β2-integrin, CR3, using a combination of chemiluminescence, ELISA, colorimetric, and flow cytometric procedures respectively. These were correlated with alterations in the concentrations of intracellular cyclic-AMP and cytosolic Ca2+. At the concentrations tested, formoterol and indacaterol caused equivalent, significant (P<0.05 at 1–10 nM dose-related inhibition of all of the pro-inflammatory activities tested, while salbutamol was much less effective (P<0.05 at 100 nM and higher. Suppression of neutrophil reactivity was accompanied by elevations in intracellular cAMP and accelerated clearance of Ca2+ from the cytosol of activated neutrophils. These findings demonstrate that β2-agonists vary with respect to their suppressive effects on activated neutrophils.

  18. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury genetic algorithm

    International Nuclear Information System (INIS)

    Rodrigues, Rosana S.; Bozza, Fernando A.; Hanrahan, Christopher J.; Wang, Li-Ming; Wu, Qi; Hoffman, John M.; Zimmerman, Guy A.; Morton, Kathryn A.

    2017-01-01

    Introduction: Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18 F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14 C-2DG uptake in activated neutrophils. Methods: Lung uptake of 18 F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24 h following the intraperitoneal injection of 10 mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14 C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. Results: Significant uptake of 18 F-FDG occurred by 2 h following LPS, and progressively increased to 24 h. Lung uptake of 18 F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18 F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14 C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. Conclusion: Systemic endotoxin-induced ALI results in very early and progressive uptake of 18 F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14 C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. Advances in knowledge and implications for patient care: 18 F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14

  19. Statin Treatment Is Associated with Reduction in Serum Levels of Receptor Activator of NF-κB Ligand and Neutrophil Activation in Patients with Severe Carotid Stenosis

    Directory of Open Access Journals (Sweden)

    Sébastien Lenglet

    2014-01-01

    Full Text Available Systemic and intraplaque biomarkers have been widely investigated in clinical cohorts as promising surrogate parameters of cardiovascular vulnerability. In this pilot study, we investigated if systemic and intraplaque levels of calcification biomarkers were affected by treatment with a statin in a cohort of patients with severe carotid stenosis and being asymptomatic for ischemic stroke. Patients on statin therapy had reduced serum osteopontin (OPN, RANKL/osteoprotegerin (OPG ratio, and MMP-9/pro-MMP-9 activity as compared to untreated patients. Statin-treated patients exhibited increased levels of collagen and reduced neutrophil infiltration in downstream portions of carotid plaques as compared to untreated controls. In upstream plaque portions, OPG content was increased in statin-treated patients as compared to controls. Other histological parameters (such as lipid, macrophage, smooth muscle cell, and MMP-9 content as well as RANKL, RANK, and OPG mRNA levels did not differ between the two patient groups. Serum RANKL/OPG ratio positively correlated with serum levels of neutrophilic products, intraplaque neutrophil, and MMP-9 content within downstream portions of carotid plaques. In conclusion, statin treatment was associated with improvement in serum RANKL levels and reduced neutrophil activity both systemically and in atherosclerotic plaques.

  20. Polyphenol Content and Modulatory Activities of Some Tropical Dietary Plant Extracts on the Oxidant Activities of Neutrophils and Myeloperoxidase

    Science.gov (United States)

    Tsumbu, Cesar N.; Deby-Dupont, Ginette; Tits, Monique; Angenot, Luc; Frederich, Michel; Kohnen, Stephane; Mouithys-Mickalad, Ange; Serteyn, Didier; Franck, Thierry

    2012-01-01

    Young leaves of Manihot esculenta Crantz (Euphorbiaceae), Abelmoschus esculentus (Malvaceae), Hibiscus acetosella (Malvaceae) and Pteridium aquilinum (Dennstaedtiaceae) are currently consumed as green vegetables by peoples in sub-Saharan Africa, Latin America, Asia and their migrants living in Western Europe. Sub-Saharan peoples use Manihot, Abelmoschus and Hibiscus also in the folk medicine to alleviate fever and pain, in the treatment of conjunctivitis, rheumatism, hemorrhoid, abscesses, ... The present study investigates the effects of aqueous extracts of those plants on the production of reactive oxygen species (ROS) and the release of myeloperoxidase (MPO) by equine neutrophils activated with phorbol 12-myristate 13-acetate (PMA). The ROS production was measured by lucigenin-enhanced chemiluminescence (CL), and the release of total MPO by an ELISA method. The study also investigates the effect of the extracts on the activity of MPO by studying its nitration activity on tyrosine and by using a new technique called SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection) that allows studying the direct interaction of compounds with the enzyme. In all experiments, the aqueous extracts of the plants developed concentration-dependent inhibitory effects. A moderate heat treatment did not significantly modify the inhibitory capacity of the extracts in comparison to not heated ones. Total polyphenol and flavonoid contents were determined with an HPLC-UV/DAD analysis and a spectroscopic method using Folin-Ciocalteu reagent. Some polyphenols with well-known antioxidant activities (caffeic acid, chlorogenic acid, hyperoside, rosmarinic acid and rutin) were found in the extracts and may partly explain the inhibitory activities observed. The role of those dietary and medicinal plants in the treatment of ROS-dependent inflammatory diseases could have new considerations for health. PMID:22312276

  1. Polyphenol Content and Modulatory Activities of Some Tropical Dietary Plant Extracts on the Oxidant Activities of Neutrophils and Myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Thierry Franck

    2012-01-01

    Full Text Available Young leaves of Manihot esculenta Crantz (Euphorbiaceae, Abelmoschus esculentus (Malvaceae, Hibiscus acetosella (Malvaceae and Pteridium aquilinum (Dennstaedtiaceae are currently consumed as green vegetables by peoples in sub-Saharan Africa, Latin America, Asia and their migrants living in Western Europe. Sub-Saharan peoples use Manihot, Abelmoschus and Hibiscus also in the folk medicine to alleviate fever and pain, in the treatment of conjunctivitis, rheumatism, hemorrhoid, abscesses, ... The present study investigates the effects of aqueous extracts of those plants on the production of reactive oxygen species (ROS and the release of myeloperoxidase (MPO by equine neutrophils activated with phorbol 12-myristate 13-acetate (PMA. The ROS production was measured by lucigenin-enhanced chemiluminescence (CL, and the release of total MPO by an ELISA method. The study also investigates the effect of the extracts on the activity of MPO by studying its nitration activity on tyrosine and by using a new technique called SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection that allows studying the direct interaction of compounds with the enzyme. In all experiments, the aqueous extracts of the plants developed concentration-dependent inhibitory effects. A moderate heat treatment did not significantly modify the inhibitory capacity of the extracts in comparison to not heated ones. Total polyphenol and flavonoid contents were determined with an HPLC-UV/DAD analysis and a spectroscopic method using Folin-Ciocalteu reagent. Some polyphenols with well-known antioxidant activities (caffeic acid, chlorogenic acid, hyperoside, rosmarinic acid and rutin were found in the extracts and may partly explain the inhibitory activities observed. The role of those dietary and medicinal plants in the treatment of ROS-dependent inflammatory diseases could have new considerations for health.

  2. Matrix Metalloproteinase-9/Neutrophil Gelatinase-Associated Lipocalin Complex Activity in Human Glioma Samples Predicts Tumor Presence and Clinical Prognosis

    Directory of Open Access Journals (Sweden)

    Ming-Fa Liu

    2015-01-01

    Full Text Available Matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin (MMP-9/NGAL complex activity is elevated in brain tumors and may serve as a molecular marker for brain tumors. However, the relationship between MMP-9/NGAL activity in brain tumors and patient prognosis and treatment response remains unclear. Here, we compared the clinical characteristics of glioma patients with the MMP-9/NGAL activity measured in their respective tumor and urine samples. Using gelatin zymography assays, we found that MMP-9/NGAL activity was significantly increased in tumor tissues (TT and preoperative urine samples (Preop-1d urine. Activity was reduced by seven days after surgery (Postop-1w urine and elevated again in cases of tumor recurrence. The MMP-9/NGAL status correlated well with MRI-based tumor assessments. These findings suggest that MMP-9/NGAL activity could be a novel marker to detect gliomas and predict the clinical outcome of patients.

  3. Assessment of antioxidant activity of spray dried extracts of Psidium guajava leaves by DPPH and chemiluminescence inhibition in human neutrophils.

    Science.gov (United States)

    Fernandes, M R V; Azzolini, A E C S; Martinez, M L L; Souza, C R F; Lucisano-Valim, Y M; Oliveira, W P

    2014-01-01

    This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β -cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH(•) method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

  4. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  5. Assessment of Antioxidant Activity of Spray Dried Extracts of Psidium guajava Leaves by DPPH and Chemiluminescence Inhibition in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    M. R. V. Fernandes

    2014-01-01

    Full Text Available This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β-cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL produced by neutrophils stimulated with phorbol myristate acetate (PMA and the DPPH radical scavenging (DPPH* method. In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH• method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

  6. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma.

    Directory of Open Access Journals (Sweden)

    Andrezza C Chagas

    2014-02-01

    Full Text Available Neutrophils are the host's first line of defense against infections, and their extracellular traps (NET were recently shown to kill Leishmania parasites. Here we report a NET-destroying molecule (Lundep from the salivary glands of Lutzomyia longipalpis. Previous analysis of the sialotranscriptome of Lu. longipalpis showed the potential presence of an endonuclease. Indeed, not only was the cloned cDNA (Lundep shown to encode a highly active ss- and dsDNAse, but also the same activity was demonstrated to be secreted by salivary glands of female Lu. longipalpis. Lundep hydrolyzes both ss- and dsDNA with little sequence specificity with a calculated DNase activity of 300000 Kunitz units per mg of protein. Disruption of PMA (phorbol 12 myristate 13 acetate- or parasite-induced NETs by treatment with recombinant Lundep or salivary gland homogenates increases parasite survival in neutrophils. Furthermore, co-injection of recombinant Lundep with metacyclic promastigotes significantly exacerbates Leishmania infection in mice when compared with PBS alone or inactive (mutagenized Lundep. We hypothesize that Lundep helps the parasite to establish an infection by allowing it to escape from the leishmanicidal activity of NETs early after inoculation. Lundep may also assist blood meal intake by lowering the local viscosity caused by the release of host DNA and as an anticoagulant by inhibiting the intrinsic pathway of coagulation.

  7. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exocytosis

    DEFF Research Database (Denmark)

    Clemmensen, Stine N; Jacobsen, Lars C; Rørvig, Sara

    2011-01-01

    Alpha-1-antitrypsin (A1AT) is an important inhibitor of neutrophil proteases including elastase, cathepsin G, and proteinase 3. Transcription profiling data suggest that A1AT is expressed by human neutrophil granulocytes during all developmental stages. A1AT has hitherto only been found associated....... Neutrophils from patients with A1AT-deficiency carrying the (PI)ZZ mutation in the A1AT gene appeared structurally and functionally normal, but A1AT produced in leukocytes of these patients lacked the ability to bind proteases efficiently. We conclude that A1AT generation and release from neutrophils add...

  8. Evaluation of the antioxidant activity of passion fruit (Passiflora edulis and Passiflora alata) extracts on stimulated neutrophils and myeloperoxidase activity assays.

    Science.gov (United States)

    Zeraik, Maria Luiza; Serteyn, Didier; Deby-Dupont, Ginette; Wauters, Jean-Nöel; Tits, Monique; Yariwake, Janete H; Angenot, Luc; Franck, Thierry

    2011-09-15

    The antioxidant activity of methanol extracts from Passiflora edulis and Passiflora alata pulp, and P. edulis rinds, healthy or infected with the passion fruit woodiness virus (PWV), was investigated using the oxidant activities of the neutrophil and the neutrophil granule enzyme myeloperoxidase (MPO), both playing key roles in inflammation. The reactive oxygen species produced by stimulated neutrophils were evaluated by lucigenin-enhanced chemiluminescence (CL) and the activity of purified MPO was measured by SIEFED (Specific Immunological Extraction Followed by Enzymatic Detection), a technique for studying the direct interaction of a compound with the enzyme. The rind extracts of P. edulis possessed higher and dose-dependent inhibitory effects on CL response and on the peroxidase activity of MPO than total pulp extracts from both passion fruit species. The quantification of isoorientin in the extracts showed a correlation with their antioxidant activity, suggesting the potential of P. edulis rinds as functional food or as a possible source of natural flavonoids. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. FEATURES OF CHEMILUMINESCENT ACTIVITY OF NEUTROPHILIC GRANULOCYTES IN PATIENTS WITH CHRONIC GASTRITIS, CHRONIC ATROPHIC GASTRITIS AND GASTRIC CANCER

    Directory of Open Access Journals (Sweden)

    O. V. Smirnova

    2017-01-01

    Full Text Available Chronic gastritis is the most common disease of gastro-intestinal tract. Precancerous potential is among most important epidemiological features of chronic gastritis. Immune system plays a distinct role in transformation from precancerous state to malignancy. In this context, the aim of our work was a study of spontaneous and induced chemiluminescence activity of neutrophilic granulocytes in patients with chronic superficial gastritis, chronic atrophic gastritis and gastric cancer. The work presents results of comprehensive laboratory examination of patients with chronic gastritis (CG (a total of 85 persons. 25 patients with chronic atrophic gastritis (CAG, and 50 patients with gastric cancer (GC at the age of 19 to 70 years were enrolled. Control group included 115 healthy donors without gastrointestinal complaints at the age of 19 to 67 years. The study was performed with venous blood samples taken from cubital vein into Vacutainer tubes with sodium heparin (5 U/mL prior to starting any pathogenic treatment. Evaluation of spontaneous and induced chemiluminescence was performed for 90 minutes at a 36-channel “CL 3606” chemiluminescence analyzer (Russia. In our study, patients with gastric cancer showed clear unidirectional changes in chemiluminescent activity of neutrophilic granulocytes (NG. When measuring spontaneous and induced NG chemiluminescence, we diagnosed a decreased phagocytic activity characterized by prolonged time-to-peak and area under the curve for spontaneous and induced CL, thus presuming longer activation time required in cases of reduced phagocytic function. The NG activity in patients with chronic gastritis is not impaired, but, similar changes of time-to-peak and area under were detected. Chemiluminescent activity of NG is increased in the group of CAG patients, and, considering similar changes in activation time and area under the curve, NG also produce greater amount of reactive oxygen species. Thus, for all H

  10. NSP4 Is Stored in Azurophil Granules and Released by Activated Neutrophils as Active Endoprotease with Restricted Specificity

    DEFF Research Database (Denmark)

    Perera, Natascha C; Wiesmüller, Karl-Heinz; Larsen, Maria Torp

    2013-01-01

    as a novel azurophil granule protein of neutrophils by Western blot analyses of subcellular fractions as well as by RT-PCR analyses of neutrophil precursors from human bone marrow. The highest mRNA levels were observed in myeloblasts and promyelocytes, similar to myeloperoxidase, a marker of azurophil...... granules. To determine the extended sequence specificity of recombinant NSP4, we used an iterative fluorescence resonance energy transfer-based optimization strategy. In total, 142 different peptide substrates with arginine in P1 and variations at the P1', P2', P3, P4, and P2 positions were tested...

  11. Fcγ and Complement Receptors and Complement Proteins in Neutrophil Activation in Rheumatoid Arthritis: Contribution to Pathogenesis and Progression and Modulation by Natural Products

    Directory of Open Access Journals (Sweden)

    Adriana Balbina Paoliello-Paschoalato

    2015-01-01

    Full Text Available Rheumatoid arthritis (RA is a highly disabling disease that affects all structures of the joint and significantly impacts on morbidity and mortality in RA patients. RA is characterized by persistent inflammation of the synovial membrane lining the joint associated with infiltration of immune cells. Eighty to 90% of the leukocytes infiltrating the synovia are neutrophils. The specific role that neutrophils play in the onset of RA is not clear, but recent studies have evidenced that they have an important participation in joint damage and disease progression through the release of proteolytic enzymes, reactive oxygen species (ROS, cytokines, and neutrophil extracellular traps, in particular during frustrated phagocytosis of immune complexes (ICs. In addition, the local and systemic activation of the complement system contributes to the pathogenesis of RA and other IC-mediated diseases. This review discusses (i the participation of Fcγ and complement receptors in mediating the effector functions of neutrophils in RA; (ii the contribution of the complement system and ROS-dependent and ROS-independent mechanisms to joint damage in RA; and (iii the use of plant extracts, dietary compounds, and isolated natural compounds in the treatment of RA, focusing on modulation of the effector functions of neutrophils and the complement system activity and/or activation.

  12. Structures and metal-binding properties of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center.

    Science.gov (United States)

    Yokoyama, Hideshi; Fujii, Satoshi

    2014-06-26

    Helicobacter pylori causes severe diseases, such as chronic gastritis, peptic ulcers, and stomach cancers. H. pylori neutrophil-activating protein (HP-NAP) is an iron storage protein that forms a dodecameric shell, promotes the adhesion of neutrophils to endothelial cells, and induces the production of reactive oxygen radicals. HP-NAP belongs to the DNA-protecting proteins under starved conditions (Dps) family, which has significant structural similarities to the dodecameric ferritin family. The crystal structures of the apo form and metal-ion bound forms, such as iron, zinc, and cadmium, of HP-NAP have been determined. This review focused on the structures and metal-binding properties of HP-NAP. These metal ions bind at the di-nuclear ferroxidase center (FOC) by different coordinating patterns. In comparison with the apo structure, metal loading causes a series of conformational changes in conserved residues among HP-NAP and Dps proteins (Trp26, Asp52, and Glu56) at the FOC. HP-NAP forms a spherical dodecamer with 23 symmetry including two kinds of pores. Metal ions have been identified around one of the pores; therefore, the negatively-charged pore is suitable for the passage of metal ions.

  13. Case of invasive nontypable Haemophilus influenzae respiratory tract infection with a large quantity of neutrophil extracellular traps in sputum

    Directory of Open Access Journals (Sweden)

    Hamaguchi S

    2012-12-01

    Full Text Available Shigeto Hamaguchi,1,* Masafumi Seki,1,* Norihisa Yamamoto,1 Tomoya Hirose,2 Naoya Matsumoto,2 Taro Irisawa,2 Ryosuke Takegawa,2 Takeshi Shimazu,2 Kazunori Tomono11Division of Infection Control and Prevention, 2Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan *These authors contributed equally to this workAbstract: Haemophilus influenzae type b was once the most common cause of invasive H. influenzae infection, but the incidence of this disease has decreased markedly with introduction of conjugate vaccines to prevent the disease. In contrast, the incidence of invasive infection caused by nontypable H. influenzae has increased in the US and in European countries. Neutrophil extracellular traps (NETs are fibrous structures released extracellularly from activated neutrophils during inflammation, including in pneumonia, and rapidly trap and kill pathogens as a first line of immunological defense. However, their function and pathological role have not been fully investigated. Here, we report a case of fatal nontypable H. influenzae infection with severe pneumonia and bacteremia in an adult found to have a vast amount of NETs in his sputum. The patient had a two-day history of common cold-like symptoms and was taken to the emergency room as a cardiopulmonary arrest. He recovered temporarily, but died soon afterwards, although appropriate antibiotic therapy and general management had been instituted. Massive lobular pneumonia and sepsis due to nontypable H. influenzae was found, in spite of H. influenzae type b vaccine being available. His sputum showed numerous bacteria phagocytosed by neutrophils, and immunohistological staining indicated a number of NETs containing DNA, histone H3, and neutrophil elastase. This case highlights an association between formation of NETs and severe respiratory and septic infection. An increase in severe nontypable H. influenzae disease can be expected as a

  14. Complement C5 activation during influenza A infection in mice contributes to neutrophil recruitment and lung injury.

    Directory of Open Access Journals (Sweden)

    Cristiana C Garcia

    Full Text Available Influenza virus A (IAV causes annual epidemics and intermittent pandemics that affect millions of people worldwide. Potent inflammatory responses are commonly associated with severe cases of IAV infection. The complement system, an important mechanism of innate and humoral immune responses to infections, is activated during primary IAV infection and mediates, in association with natural IgM, viral neutralization by virion aggregation and coating of viral hemmagglutinin. Increased levels of the anaphylatoxin C5a were found in patients fatally infected with the most recent H1N1 pandemic virus. In this study, our aim was to evaluate whether targeting C5 activation alters inflammatory lung injury and viral load in a murine model of IAV infection. To address this question C57Bl/6j mice were infected intranasally with 10(4 PFU of the mouse adapted Influenza A virus A/WSN/33 (H1N1 or inoculated with PBS (Mock. We demonstrated that C5a is increased in bronchoalveolar lavage fluid (BALF upon experimental IAV infection. To evaluate the role of C5, we used OmCI, a potent arthropod-derived inhibitor of C5 activation that binds to C5 and prevents release of C5a by complement. OmCI was given daily by intraperitoneal injection from the day of IAV infection until day 5. Treatment with OmCI only partially reduced C5a levels in BALF. However, there was significant inhibition of neutrophil and macrophage infiltration in the airways, Neutrophil Extracellular Traps (NETs formation, death of leukocytes, lung epithelial injury and overall lung damage induced by the infection. There was no effect on viral load. Taken together, these data suggest that targeting C5 activation with OmCI during IAV infection could be a promising approach to reduce excessive inflammatory reactions associated with the severe forms of IAV infections.

  15. Low concentrations of neutrophil extracellular traps induce proliferation in human keratinocytes via NF-kB activation.

    Science.gov (United States)

    Tonello, Stelvio; Rizzi, Manuela; Migliario, Mario; Rocchetti, Vincenzo; Renò, Filippo

    2017-10-01

    Granulocytes play a pivotal role in innate immune response, as pathogen invasion activates neutrophils, a subclass of granulocytes, inducing the production of neutrophil extracellular traps (NETs). In this study, it has been evaluated how NETs could affect human keratinocytes (HaCaT cells) behaviour. HaCaT cells were treated with increasing NETs concentrations (0.01-200ng/ml) and the effect on cell proliferation was evaluated by MTT assay. Inhibition studies were performed by pre-treating cells with dexamethasone, chloropromazine or amiloride. NF-kB pathway activation was evaluated by western blot. HaCaT cells stimulation with increasing concentrations of NETs (0.01-50ng/ml) for 48h resulted in a modulation of cell proliferation with a maximum increase corresponding to 0.5-1ng/ml stimulation. NETs low concentrations not only increased cell proliferation, but were also able to induce a faster wound closure in an in vitro scratch assay. NETs scaffold, composed by histone proteins and DNA, is recognized by Toll Like Receptor 9 (TLR 9) that, in turn, activates the NF-kB pathway. In fact, NETs induced proliferation was inhibited by chloropromazine (1nM), that blocks chlatrin vesicles formation, and by amiloride (50nM) that inhibits macropinocytosis. Moreover, dexamethasone, an inhibitor of NF-kB, was able to abolish the NETs effect. This study thus demonstrates that low NETs concentrations undergo internalization finally resulting in a quick NF-kB pathway activation and HaCaT cells proliferation increase, suggesting a close relationship between first immune response and wound healing onset. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  16. Structural changes of the ligand and of the receptor alters the receptor preference for neutrophil activating peptides starting with a 3 formylmethionyl group

    DEFF Research Database (Denmark)

    Forsman, Huamei; Winther, Malene; Gabl, Michael

    2015-01-01

    Pathogenic Staphylococcus aureus strains produce N-formylmethionyl containing peptides, of which the tetrapeptide fMIFL is a potent activator of the neutrophil formyl peptide receptor 1 (FPR1) and the PSMα2 peptide is a potent activator of the closely related FPR2. Variants derived from these two...... peptide activators were used to disclose the structural determinants for receptor interaction. Removal of five amino acids from the C-terminus of PSMα2 gave rise to a peptide that had lost the receptor-independent neutrophil permeabilizing effect, whereas neutrophil activation capacity as well as its...... preference for FPR2 was retained. Shorter peptides, PSMα21–10 and PSMα21–5, activate neutrophils, but the receptor preference for these peptides was switched to FPR1. The fMIFL-PSM5–16 peptide, in which the N-terminus of PSMα21–16 was replaced by the sequence fMIFL, was a dual agonist for FPR1/FPR2, whereas...

  17. Clinical Efficacy of Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease (HFMD) is Dependent upon Inhibition of Neutrophil Activation.

    Science.gov (United States)

    Wen, Tao; Xu, Wenjun; Liang, Lianchun; Li, Junhong; Ding, Xiaorong; Chen, Xiao; Hu, Jianhua; Lv, Aiping; Li, Xiuhui

    2015-08-01

    Andrographolide sulfonate treatment has been shown to improve clinical severe hand, foot, and mouth disease (HFMD) efficacies when combined with conventional therapy. However, the mechanisms for its therapeutic effects remain elusive. In this study, we aimed to investigate whether andrographolide sulfonate exerts its efficacy by acting on neutrophil activation. We obtained serial plasma samples at two time points (before and after 5 days of therapy) from 28 HFMD patients who received conventional therapy and 18 patients who received combination therapy (andrographolide sulfonate plus conventional therapy). Then, we measured plasma myeloperoxidase (MPO), S100A8/A9, histone, and inflammatory cytokine levels. Furthermore, we examined if andrographolide sulfonate had direct effects on neutrophil activation in vitro. We observed that MPO and S100A8/A9 levels were markedly elevated in the HFMD patients before clinical treatment. At 5 days post-medication, the MPO, S100A8/A9, histone, and interleukin-6 levels were markedly lower in the combination therapy group compared with the conventional therapy group. In vitro studies showed that andrographolide sulfonate inhibited lipopolysaccharide-stimulated neutrophil activation, demonstrated by the decreased production of reactive oxygen species and cytokines. These data indicate that neutrophil activation modulation by andrographolide sulfonate may be a critical determinant for its clinical HFMD treatment efficacy. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Differential neutrophil activation in viral infections: Enhanced TLR-7/8-mediated CXCL8 release in asthma

    NARCIS (Netherlands)

    Tang, Francesca S.M.; Van Ly, David; Spann, Kirsten; Reading, Patrick C.; Burgess, Janette K.; Hartl, Dominik; Baines, Katherine J.; Oliver, Brian G.

    Background and objective Respiratory viral infections are a major cause of asthma exacerbations. Neutrophils accumulate in the airways and the mechanisms that link neutrophilic inflammation, viral infections and exacerbations are unclear. This study aims to investigate anti-viral responses in

  19. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation

    NARCIS (Netherlands)

    van Raam, Bram J.; Sluiter, Wim; de Wit, Elly; Roos, Dirk; Verhoeven, Arthur J.; Kuijpers, Taco W.

    2008-01-01

    BACKGROUND: Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Deltapsi(m)), which is usually generated by the respiratory chain complexes. We investigated the source of Deltapsi(m) in neutrophils, as compared to peripheral blood

  20. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation

    NARCIS (Netherlands)

    B.J. van Raam (Bram); W.J. Sluiter (Wim); F.R.C. de Wit (Frank); D. Roos (Dirk); A.J. Verhoeven (Arthur); T.W. Kuijpers (Taco W.)

    2008-01-01

    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood

  1. Serum IL8 and mRNA level of CD11b in circulating neutrophils are increased in clinically amyopathic dermatomyositis with active interstitial lung disease.

    Science.gov (United States)

    Zou, Jing; Chen, Jie; Yan, Qingran; Guo, Qiang; Bao, Chunde

    2016-01-01

    The objective of this study is to assess serum IL8 and the potential activity of circulating neutrophils on relative messenger RNA (mRNA) levels and their relationship with disease activity in clinically amyopathic dermatomyositis (CADM) associated with interstitial lung disease (ILD). We studied 18 CADM patients and compared them with 18 classic dermatomyositis (DM) patients and 18 healthy control subjects. Serum IL8 level and mRNA expressions of neutrophils (chemokine (C-X-C motif) receptor 1 (CXCR1), cluster of differentiation molecule 11b (CD11b), cluster of differentiation 64 (CD64), myeloid cell leukemia 1 (MCL1), interleukin-18 (IL18)) were detected. The overproduction of serum IL8 level was most significant in the CADM group with active period. The mRNA expressions of CD11b, IL18, and MCL1 were greatly increased in the neutrophils in patients with CADM compared with DM or healthy controls. Up-expressions of CD11b, IL18, and MCL1 were detected in the neutrophils in CADM patients of active period compared with remission period. A positive correlation was found between CD11b mRNA level and high-resolution computed tomography (HRCT) score, in CADM associated with ILD. Serum IL8 level and mRNA levels of CD11b, MCL1, and IL18 in circulating neutrophils are related with the disease activity of CADM-ILD. The mRNA level of CD11b is positively correlated with HRCT score in CADM-ILD.

  2. High intensity cycling before SCUBA diving reduces post-decompression microparticle production and neutrophil activation.

    Science.gov (United States)

    Madden, Dennis; Thom, Stephen R; Yang, Ming; Bhopale, Veena M; Ljubkovic, Marko; Dujic, Zeljko

    2014-09-01

    Venous gas emboli (VGE) have traditionally served as a marker for decompression stress after SCUBA diving and a reduction in bubble loads is a target for precondition procedures. However, VGE can be observed in large quantities with no negative clinical consequences. The effect of exercise before diving on VGE has been evaluated with mixed results. Microparticle (MP) counts and sub-type expression serve as indicators of vascular inflammation and DCS in mice. The goal of the present study is to evaluate the effect of anaerobic cycling (AC) on VGE and MP following SCUBA diving. Ten male divers performed two dives to 18 m for 41 min, one dive (AC) was preceded by a repeated-Wingate cycling protocol; a control dive (CON) was completed without exercise. VGE were analyzed at 15, 40, 80, and 120 min post-diving. Blood for MP analysis was collected before exercise (AC only), before diving, 15 and 120 min after surfacing. VGE were significantly lower 15 min post-diving in the AC group, with no difference in the remaining measurements. MPs were elevated by exercise and diving, however, post-diving elevations were attenuated in the AC dive. Some markers of neutrophil elevation (CD18, CD41) were increased in the CON compared to the AC dive. The repeated-Wingate protocol resulted in an attenuation of MP counts and sub-types that have been related to vascular injury and DCS-like symptoms in mice. Further studies are needed to determine if MPs represent a risk factor or marker for DCS in humans.

  3. Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase

    Directory of Open Access Journals (Sweden)

    Milena V. Oliveira

    2016-10-01

    Full Text Available Many experimental models have been proposed to study the pathophysiological features of emphysema, as well as to search for new therapeutic approaches for acute or chronically injured lung parenchyma. We aimed to characterize an emphysema model induced by multiple instillations of elastase by tracking the changes in inflammation, remodeling, and cardiac function after each instillation. Forty-eight C57BL/6 mice were randomly assigned across 2 groups. Emphysema (ELA animals received 1, 2, 3, or 4 intratracheal instillations of pancreatic porcine elastase (PPE, 0.2 IU with a 1-week interval between them. Controls (C received saline following the same protocol. Before and after implementation of the protocol, animals underwent echocardiographic analysis. After the first instillation of PPE, the percentage of mononuclear cells in the lung parenchyma was increased compared to C (p = 0.0001. The second instillation resulted in hyperinflated alveoli, increased mean linear intercept, and reduced elastic fiber content in lung parenchyma compared to C (p=0.0197. Following the third instillation, neutrophils and collagen fiber content in alveolar septa and airways were increased, whereas static lung elastance was reduced compared to C (p=0.0094. After the fourth instillation, the percentage of M1 macrophages in lungs; levels of interleukin-1beta, keratinocyte-derived chemokine, hepatocyte growth factor, and vascular endothelial growth factor; and collagen fiber content in the pulmonary vessel wall were increased compared to C (p=0.0096. At this time point, pulmonary arterial hypertension was apparent, with increased diastolic right ventricular wall thickness. In conclusion, the initial phase of emphysema was characterized by lung inflammation with predominance of mononuclear cells, whereas at the late stage, impairment of pulmonary and cardiovascular functions was observed. This model enables analysis of therapies at different time points during controlled

  4. Platelet-activating factor (PAF) stimulates the PAF-synthesizing enzyme acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase and PAF synthesis in neutrophils.

    OpenAIRE

    Doebber, T W; Wu, M S

    1987-01-01

    Platelet activating factor (1-alkyl-2-acetyl-sn-glycero-3-phosphocholine; PAF) induced in isolated rat peritoneal and human peripheral neutrophils a rapid and potent activation of the PAF biosynthetic enzyme acetyl-CoA:1-alkyl-sn-glycero-3-phosphocholine O2-acetyltransferase (EC 2.3.1.67). The PAF-induced activation of the neutrophil acetyltransferase (8-10 times basal neutrophil activity) was maximal within 30 sec after PAF addition, as was the PAF-stimulated degranulation. After 1 min of PA...

  5. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  6. Bid truncation, Bid/Bax targeting to the mitochondria, and caspase activation associated with neutrophil apoptosis are inhibited by granulocyte colony-stimulating factor

    NARCIS (Netherlands)

    Maianski, Nikolai A.; Roos, Dirk; Kuijpers, Taco W.

    2004-01-01

    Neutrophil apoptosis constitutes a way of managing neutrophil-mediated reactions. It allows coping with infections, but avoiding overt bystander tissue damage. Using digitonin-based subcellular fractionation and Western blotting, we found that spontaneous apoptosis of human neutrophils (after

  7. The proteolytically stable peptidomimetic Pam-(Lys-βNSpe)6-NH2 selectively inhibits human neutrophil activation via formyl peptide receptor 2.

    Science.gov (United States)

    Skovbakke, Sarah Line; Heegaard, Peter M H; Larsen, Camilla J; Franzyk, Henrik; Forsman, Huamei; Dahlgren, Claes

    2015-01-15

    Immunomodulatory host defense peptides (HDPs) are considered to be lead compounds for novel anti-sepsis and anti-inflammatory agents. However, development of drugs based on HDPs has been hampered by problems with toxicity and low bioavailability due to in vivo proteolysis. Here, a subclass of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging flow cytometry in primary neutrophils and FPR-transfected cell lines, we found that a fluorescently labeled analog of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore, the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating peptide agonist Cy5-WKYMWM, while the binding of an FPR1-selective agonist was not inhibited. To our knowledge, Pam-(Lys-βNSpe)6-NH2 is the first HDP mimic found to inhibit activation of human neutrophils via direct interaction with FPR2. Hence, we consider Pam-(Lys-βNSpe)6-NH2 to be a convenient tool in the further dissection of the role of FPR2 in inflammation and homeostasis as well as for investigation of the importance of neutrophil stimulation in anti-infective therapy involving HDPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Neutrophil extracellular traps formation by bacteria causing endometritis in the mare.

    Science.gov (United States)

    Rebordão, M R; Carneiro, C; Alexandre-Pires, G; Brito, P; Pereira, C; Nunes, T; Galvão, A; Leitão, A; Vilela, C; Ferreira-Dias, G

    2014-12-01

    Besides the classical functions, neutrophils (PMNs) are able to release DNA in response to infectious stimuli, forming neutrophil extracellular traps (NETs) and killing pathogens. The pathogenesis of endometritis in the mare is not completely understood. The aim was to evaluate the in vitro capacity of equine PMNs to secrete NETs by chemical activation, or stimulated with Streptococcus equi subspecies zooepidemicus (Szoo), Escherichia coli (Ecoli) or Staphylococcus capitis (Scap) strains obtained from mares with endometritis. Ex vivo endometrial mucus from mares with bacterial endometritis were evaluated for the presence of NETs. Equine blood PMNs were used either without or with stimulation by phorbol-myristate-acetate (PMA), a strong inducer of NETs, for 1-3h. To evaluate PMN ability to produce NETs when phagocytosis was impaired, the phagocytosis inhibitor cytochalasin (Cyt) was added after PMA. After the addition of bacteria, a subsequent 1-h incubation was carried out in seven groups. NETs were visualized by 4',6-diamidino-2-phenylindole (DAPI) and anti-histone. Ex vivo samples were immunostained for myeloperoxidase and neutrophil elastase. A 3-h incubation period of PMN + PMA increased NETs (p Ecoli or Scap (p < 0.05). Ex vivo NETs were present in mares with endometritis. Scanning electron microscopy showed the spread of NETs formed by smooth fibers and globules that can be aggregated in thick bundles. Formation of NETs and the subsequent entanglement of bacteria suggest that equine NETs might be a complementary mechanism in fighting some of the bacteria causing endometritis in the mare. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Yersinia enterocolitica YopH-Deficient Strain Activates Neutrophil Recruitment to Peyer's Patches and Promotes Clearance of the Virulent Strain.

    Science.gov (United States)

    Dave, Mabel N; Silva, Juan E; Eliçabe, Ricardo J; Jeréz, María B; Filippa, Verónica P; Gorlino, Carolina V; Autenrieth, Stella; Autenrieth, Ingo B; Di Genaro, María S

    2016-11-01

    Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Acetylcholine stimulation of human neutrophil chemotactic activity is directly inhibited by tiotropium involving Gq and ERK-1/2 regulation

    Directory of Open Access Journals (Sweden)

    Kurai M

    2012-01-01

    Full Text Available Tiotropium, a long-acting anticholinergic, may improve chronic obstructive pulmonary disease (COPD by mechanisms beyond bronchodilatation. We tested the hypothesis that tiotropium may act as an anti-inflammatory mediator by directly acting on and inhibiting human neutrophil chemotactic activity (NCA that is promoted by acetylcholine (ACh exposure. ACh treatment increased NCA in a dose dependent manner (p < 0.001 and tiotropium pretreatment reduced ACh stimulation (dose effect; 0 to 1000 nM; p < 0.001. Selective muscarinic receptor inhibitors demonstrated that subtype-3 (M3 receptor plays a role in NCA regulation. In addition, NCA that was stimulated by cevimeline (M3 agonist and pasteurella multocida toxin (PMT, M3 coupled Gq agonist. However, the increased NCA to cevimeline and PMT was reduced by tiotropium pretreatment (p < 0.001. ACh treatment stimulated ERK-1/2 activation by promoting protein phosphorylation and tiotropium reduced this effect (p < 0.01. In addition, pretreatment of the cells with a specific MEK-1/2 kinase inhibitor reduced ACh stimulated NCA (p < 0.01. Together these results demonstrated that cholinergic stimulation of NCA is effectively inhibited by tiotropium and is governed by a mechanism involving M3 coupled Gq signaling and downstream ERK signaling. This study further demonstrates that tiotropium may act as an anti-inflammatory agent in lung disease.

  11. Phasor-Based Endogenous NAD(PH Fluorescence Lifetime Imaging Unravels Specific Enzymatic Activity of Neutrophil Granulocytes Preceding NETosis

    Directory of Open Access Journals (Sweden)

    Ruth Leben

    2018-03-01

    Full Text Available Time-correlated single-photon counting combined with multi-photon laser scanning microscopy has proven to be a versatile tool to perform fluorescence lifetime imaging in biological samples and, thus, shed light on cellular functions, both in vitro and in vivo. Here, by means of phasor-analyzed endogenous NAD(PH (nicotinamide adenine dinucleotide (phosphate fluorescence lifetime imaging, we visualize the shift in the cellular metabolism of healthy human neutrophil granulocytes during phagocytosis of Staphylococcus aureus pHrodo™ beads. We correlate this with the process of NETosis, i.e., trapping of pathogens by DNA networks. Hence, we are able to directly show the dynamics of NADPH oxidase activation and its requirement in triggering NETosis in contrast to other pathways of cell death and to decipher the dedicated spatio-temporal sequence between NADPH oxidase activation, nuclear membrane disintegration and DNA network formation. The endogenous FLIM approach presented here uniquely meets the increasing need in the field of immunology to monitor cellular metabolism as a basic mechanism of cellular and tissue functions.

  12. In vivo priming and ex vivo activation of equine neutrophils in black walnut extract-induced equine laminitis is not attenuated by systemic lidocaine administration.

    Science.gov (United States)

    Loftus, John P; Williams, Jarred M; Belknap, James K; Black, Samuel J

    2010-11-15

    Laminitis is a crippling disease of horses characterized by an inflammatory response in the tissue that suspends the axial skeleton within the hoof. Pain is a common feature of laminitic pathology and its management is an important component of the treatment regime for this disease. Systemic lidocaine administration is commonly utilized to manage pain in equine laminitis; however, the potential anti-inflammatory effects of this drug during the treatment of equine laminitis have not been investigated. Here, we sought to determine if lidocaine concentrations achieved in the plasma (therapeutic concentrations) of horses systemically administered lidocaine are capable of attenuating neutrophil activation and associated inflammation. To identify markers of activation, purified neutrophils were stimulated in vitro with LPS or recombinant equine IL-8 (reqIL-8) and surface expression of CD13 and CD18 was ascertained by immunofluorescent staining. Activation with LPS or reqIL-8 in vitro induced an elevated expression of CD13 as well as a putative conformational change in CD18 detected by elevated staining with a sub-saturating concentration of anti-CD18 mAb. Lidocaine attenuated the activation-induced changes in CD13 and CD18 expression only when used at 30-70 times therapeutic concentrations. For in vivo analyses, horses were administered black walnut extract (BWE) to induce laminitis and either systemic lidocaine (n=6) or saline (n=6) as a control. Whole blood was collected and incubated with or without reqIL-8. Following which, leukocytes were stained for CD13 and CD18. Protein was extracted from laminar tissue and subjected to gelatin zymography to measure matrix metalloproteinase-9 (MMP-9) accumulation. Results obtained show that changes in neutrophil size, granularity/complexity, CD13 surface expression and CD18 staining intensity occurred over time post BWE administration irrespective of lidocaine treatment in response to incubation alone or with 100 ng/ml of reqIL-8

  13. Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Jiehao Zhou

    2010-01-01

    Full Text Available We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE. The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP- 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P<.05. Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P<.05 and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier.

  14. Matrix metalloproteinase, hyaluronidase and elastase inhibitory potential of standardized extract of Centella asiatica.

    Science.gov (United States)

    Nema, Neelesh Kumar; Maity, Niladri; Sarkar, Birendra Kumar; Mukherjee, Pulok Kumar

    2013-09-01

    Centella asiatica (L.) Urban (Apiaceae), a valuable herb described in Ayurveda, is used in the indigenous system of medicine as a tonic to treat skin diseases. Centella asiatica methanol extract and its ethyl acetate, n-butanol and aqueous fraction, were subjected for the evaluation of skin care potential through the in vitro hyaluronidase, elastase and matrix metalloproteinase-1 (MMP-1) inhibitory assay. The C. asiatica plant was extracted with methanol and fractionated with ethyl acetate, n-butanol and water. The enzymatic activities were evaluated using ursolic acid and oleanolic acid as standards. Isolate molecule asiaticoside was quantified in the crude extract and fractions through high-performance liquid chromatography (HPLC) and structural was characterized by liquid chromatography-mass spectroscopy (LC-MS) and ¹H nuclear magnetic resonance (NMR). Isolated compound was also evaluated for in vitro enzyme assays. Extract exhibited anti-hyaluronidase and anti-elastase activity with IC₅₀ of 19.27 ± 0.37 and 14.54 ± 0.39 µg/mL, respectively, as compared to ursolic acid. Centella asiatica n-butanol fraction (CAnB) and isolated compound showed significant hyaluronidase (IC₅₀ = 27.00 ± 0.43 and 18.63 ± 0.33 µg/mL) and elastase (IC₅₀ = 29.15 ± 0.31 and 19.45 ± 0.25 µg/mL) inhibitory activities, respectively, and also showed significant MMP-1 inhibition (p asiatica may be a prospective agent for skin care.

  15. Opposing Effects of Platelet-Activating Factor and Lyso-Platelet-Activating Factor on Neutrophil and Platelet ActivationS⃞

    OpenAIRE

    Welch, Emily J.; Naikawadi, Ram P.; Li, Zhenyu; Lin, Phoebe; Ishii, Satoshi; Shimizu, Takao; Tiruppathi, Chinnaswamy; Du, Xiaoping; Subbaiah, Papasani V.; Ye, Richard D.

    2008-01-01

    Platelet-activating factor (PAF) is a potent, bioactive phospholipid that acts on multiple cells and tissues through its G protein-coupled receptor (GPCR). PAF is not stored but is rapidly generated via enzymatic acetylation of the precursor 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPAF). The bioactivity of PAF is effectively and tightly regulated by PAF acetylhydrolases, which convert PAF back to lysoPAF. Previous studies report that lysoPAF is an i...

  16. Copaiba oil-resin treatment is neuroprotective and reduces neutrophil recruitment and microglia activation after motor cortex excitotoxic injury.

    Science.gov (United States)

    Guimarães-Santos, Adriano; Santos, Diego Siqueira; Santos, Ijair Rogério; Lima, Rafael Rodrigues; Pereira, Antonio; de Moura, Lucinewton Silva; Carvalho, Raul Nunes; Lameira, Osmar; Gomes-Leal, Walace

    2012-01-01

    The oil-resin of Copaifera reticulata Ducke is used in the Brazilian folk medicine as an anti-inflammatory and healing agent. However, there are no investigations on the possible anti-inflammatory and neuroprotective roles of copaiba oil-resin (COR) after neural disorders. We have investigated the anti-inflammatory and neuroprotective effects of COR following an acute damage to the motor cortex of adult rats. Animals were injected with the neurotoxin N-Methyl-D-Aspartate (NMDA) (n = 10) and treated with a single dose of COR (400 mg/kg, i.p.) soon after surgery (Group 1) or with two daily doses (200 mg/kg, i.p.) during 3 days (Group 2) alter injury. Control animals were treated with vehicle only. COR treatment induced tissue preservation and decreased the recruitment of neutrophils and microglial activation in the injury site compared to vehicle animals. The results suggest that COR treatment induces neuroprotection by modulating inflammatory response following an acute damage to the central nervous system.

  17. Faster activation of polymorphonuclear neutrophils in resistant mice during early innate response to Pseudomonas aeruginosa lung infection

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Moser, C; Kobayashi, O

    2004-01-01

    Polymorphonuclear neutrophils (PMNs) are crucial for the outcome of Pseudomonas aeruginosa lung infection in patients with cystic fibrosis. We compared PMNs and inflammatory cytokines in the lungs and blood from susceptible BALB/c and resistant C3H/HeN mice 1 and 2 days after intratracheal...... was decreased 1 day after bacterial challenge, whereas the expression was increased after 2 days of challenge on PMNs of C3H/HeN mice only. These changes were accompanied by a more severe lung inflammation in BALB/c mice and faster clearance of the bacteria in C3H/HeN mice. In conclusion, the rapid early...... bacterial clearance in the lungs of C3H/HeN mice could be explained by faster activation of the PMNs, as indicated by the higher up-regulation of CD11b. The severe lung inflammation in BALB/c mice may be caused by the early higher content of G-CSF in the sera mobilizing PMNs from the bone marrow...

  18. Neutrophils in Cancer: Two Sides of the Same Coin

    Directory of Open Access Journals (Sweden)

    Eileen Uribe-Querol

    2015-01-01

    Full Text Available Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  19. Impact of maternal gestational diabetes on neutrophil functions of ...

    African Journals Online (AJOL)

    Ehab

    L-selectin (CD62L), is a cell adhesion molecule found on lymphocytes and the preimplantation embryo. It is a marker of neutrophil activation and an important mediator of neutrophil rolling and adhesion to activated endothelium17. Our results demonstrated that neutrophils from neonates of gestational diabetic mothers had ...

  20. Effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs on the production of reactive oxygen species by activated rat neutrophils

    Directory of Open Access Journals (Sweden)

    Paino I.M.M.

    2005-01-01

    Full Text Available The release of reactive oxygen specie (ROS by activated neutrophil is involved in both the antimicrobial and deleterious effects in chronic inflammation. The objective of the present investigation was to determine the effect of therapeutic plasma concentrations of non-steroidal anti-inflammatory drugs (NSAIDs on the production of ROS by stimulated rat neutrophils. Diclofenac (3.6 µM, indomethacin (12 µM, naproxen (160 µM, piroxicam (13 µM, and tenoxicam (30 µM were incubated at 37ºC in PBS (10 mM, pH 7.4, for 30 min with rat neutrophils (1 x 10(6 cells/ml stimulated by phorbol-12-myristate-13-acetate (100 nM. The ROS production was measured by luminol and lucigenin-dependent chemiluminescence. Except for naproxen, NSAIDs reduced ROS production: 58 ± 2% diclofenac, 90 ± 2% indomethacin, 33 ± 3% piroxicam, and 45 ± 6% tenoxicam (N = 6. For the lucigenin assay, naproxen, piroxicam and tenoxicam were ineffective. For indomethacin the inhibition was 52 ± 5% and diclofenac showed amplification in the light emission of 181 ± 60% (N = 6. Using the myeloperoxidase (MPO/H2O2/luminol system, the effects of NSAIDs on MPO activity were also screened. We found that NSAIDs inhibited both the peroxidation and chlorinating activity of MPO as follows: diclofenac (36 ± 10, 45 ± 3%, indomethacin (97 ± 2, 100 ± 1%, naproxen (56 ± 8, 76 ± 3%, piroxicam (77 ± 5, 99 ± 1%, and tenoxicam (90 ± 2, 100 ± 1%, respectively (N = 3. These results show that therapeutic levels of NSAIDs are able to suppress the oxygen-dependent antimicrobial or oxidative functions of neutrophils by inhibiting the generation of hypochlorous acid.

  1. p47phox molecular activation for assembly of the neutrophil NADPH oxidase complex

    Czech Academy of Sciences Publication Activity Database

    Marcoux, J.; Man, Petr; Petit-Haertlein, I.; Vives, C.; Forest, E.; Fieschi, F.

    2010-01-01

    Roč. 285, č. 37 (2010), s. 28980-28990 ISSN 0021-9258 Institutional research plan: CEZ:AV0Z50200510 Keywords : SRC HOMOLOGY-3 DOMAINS * PHOSPHORYLATION-INDUCED ACTIVATION * TANDEM SH3 DOMAINS Subject RIV: CE - Biochemistry Impact factor: 5.328, year: 2010

  2. Analysis of the in vitro activity of human neutrophils against Aspergillus fumigatus in presence of antifungal and immunosuppressive agents.

    Science.gov (United States)

    Decker, Christina; Wurster, Sebastian; Lazariotou, Maria; Hellmann, Anna-Maria; Einsele, Hermann; Ullmann, Andrew J; Löffler, Jürgen

    2017-10-09

    Neutrophils are essential in the first line defense against moulds. This in vitro study assessed different neutrophil effector mechanisms in the presence of clinically relevant antifungal and immunosuppressive agents. Therapeutic concentrations of liposomal amphotericin B led to reduced IL-8 and oxidative burst response to the synthetic stimulus PMA, whereas no major alterations of oxidative burst, phagocytosis, or cytokine response to germinated stages of Aspergillus fumigatus and no supra-additive effects of antifungal and immunosuppressive drugs were observed. Conventional and liposomal amphotericin B as well as voriconazole, however, led to reduced neutrophil extracellular trap formation in response to A. fumigatus germ tubes. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Extracellular Nucleases of Streptococcus equi subsp. zooepidemicus Degrade Neutrophil Extracellular Traps and Impair Macrophage Activity of the Host.

    Science.gov (United States)

    Ma, Fang; Guo, Xiao; Fan, Hongjie

    2017-01-15

    The pathogen Streptococcus equi subsp. zooepidemicus is associated with a wide range of animals, including humans, and outbreaks frequently occur in pigs, equines, and goats. Thus far, few studies have assessed interactions between the host immune system and S. equi subsp. zooepidemicus and how these interactions explain the wide host spectrum of S. equi subsp. zooepidemicus Neutrophils, the first line of innate immunity, possess a defense mechanism called neutrophil extracellular traps (NETs), which primarily consist of DNA and granule proteins that trap bacteria via charge interactions. Extracellular nucleases play important roles in the degradation of the DNA backbone of NETs. Here, two related extracellular nucleases, nuclease and 5'-nucleotidase (named ENuc and 5Nuc, respectively, in this study), were identified as being encoded by the SESEC_RS04165 gene and the SESEC_RS05720 gene (named ENuc and 5Nuc, respectively), and three related gene deletion mutant strains, specifically, the single-mutant ΔENuc and Δ5Nuc strains and the double-mutant ΔENuc Δ5Nuc strain, were constructed. The ΔENuc and Δ5Nuc single-mutant strains and the ΔENuc Δ5Nuc double-mutant strain demonstrated lower virulence than wild-type S. equi subsp. zooepidemicus when the mouse survival rate was evaluated postinfection. Furthermore, wild-type S. equi subsp. zooepidemicus more frequently traversed the bloodstream and transferred to other organs. Wild-type S. equi subsp. zooepidemicus induced fewer NETs and was able to survive in NETs, whereas only 40% of the ΔENuc Δ5Nuc double-mutant cells survived. S. equi subsp. zooepidemicus degraded the NET DNA backbone and produced deoxyadenosine, primarily through the action of ENuc and/or 5Nuc. However, the double-mutant ΔENuc Δ5Nuc strain lost the ability to degrade NETs into deoxyadenosine. Deoxyadenosine decreased RAW 264.7 cell phagocytosis to 40% of that of normal macrophages. Streptococcus equi subsp. zooepidemicus causes serious

  4. Complete identification of E-selectin ligand activity on neutrophils reveals a dynamic interplay and distinct functions of PSGL-1, ESL-1 and CD44

    Science.gov (United States)

    Wild, Martin; Vestweber, Dietmar; Frenette, Paul S.

    2014-01-01

    SUMMARY The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro but the complete identification of its physiological ligands has remained elusive. Here, we show using gene- and RNA-targeted loss-of-function that E-selectin ligand-1 (ESL-1), PSGL-1 and CD44 encompass all endothelial selectin ligand activity on neutrophils. PSGL-1 plays a major role in the initial leukocyte capture, while ESL-1 is critical to convert initial tethers into steady slow rolling. CD44 controls rolling velocity and mediates E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling. PMID:17442598

  5. Crystal structure of Helicobacter pylori neutrophil-activating protein with a di-nuclear ferroxidase center in a zinc or cadmium-bound form

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Hideshi, E-mail: h-yokoya@u-shizuoka-ken.ac.jp [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Tsuruta, Osamu; Akao, Naoya; Fujii, Satoshi [School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Structures of a metal-bound Helicobacter pylori neutrophil-activating protein were determined. Black-Right-Pointing-Pointer Two zinc ions were tetrahedrally coordinated by ferroxidase center (FOC) residues. Black-Right-Pointing-Pointer Two cadmium ions were coordinated in a trigonal-bipyramidal and octahedral manner. Black-Right-Pointing-Pointer The second metal ion was more weakly coordinated than the first at the FOC. Black-Right-Pointing-Pointer A zinc ion was found in one negatively-charged pore suitable as an ion path. -- Abstract: Helicobacter pylori neutrophil-activating protein (HP-NAP) is a Dps-like iron storage protein forming a dodecameric shell, and promotes adhesion of neutrophils to endothelial cells. The crystal structure of HP-NAP in a Zn{sup 2+}- or Cd{sup 2+}-bound form reveals the binding of two zinc or two cadmium ions and their bridged water molecule at the ferroxidase center (FOC). The two zinc ions are coordinated in a tetrahedral manner to the conserved residues among HP-NAP and Dps proteins. The two cadmium ions are coordinated in a trigonal-bipyramidal and distorted octahedral manner. In both structures, the second ion is more weakly coordinated than the first. Another zinc ion is found inside of the negatively-charged threefold-related pore, which is suitable for metal ions to pass through.

  6. Re-Examining Neutrophil Participation in GN.

    Science.gov (United States)

    Caster, Dawn J; Powell, David W; Miralda, Irina; Ward, Richard A; McLeish, Kenneth R

    2017-08-01

    Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN. Copyright © 2017 by the American Society of Nephrology.

  7. Neutrophils at work

    DEFF Research Database (Denmark)

    Nauseef, William M; Borregaard, Niels

    2014-01-01

    In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from...

  8. Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Directory of Open Access Journals (Sweden)

    Francesca S. M. Tang

    2015-01-01

    Full Text Available Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood and suboptimal (ASubopt asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7, and healthy controls (HC (n=9 were stimulated with bacterial (LPS (1 μg/mL, fMLF (100 nM, and viral (imiquimod (3 μg/mL, R848 (1.5 μg/mL, and poly I:C (10 μg/mL surrogates or live rhinovirus (RV 16 (MOI1. Cell-free supernatant was collected after 1 h for neutrophil elastase (NE and matrix metalloproteinase- (MMP- 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.

  9. Vaccination against canine leishmaniosis increases the phagocytic activity, nitric oxide production and expression of cell activation/migration molecules in neutrophils and monocytes.

    Science.gov (United States)

    Moreira, Marcela L; Costa-Pereira, Christiane; Alves, Marina Luiza Rodrigues; Marteleto, Bruno H; Ribeiro, Vitor M; Peruhype-Magalhães, Vanessa; Giunchetti, Rodolfo C; Martins-Filho, Olindo A; Araújo, Márcio S S

    2016-04-15

    Visceral leishmaniasis (VL) is transmitted by phlebotomine sandfly vectors and domestic dogs serve as a reservoir. The elimination of seropositive dogs has been a recommended strategy for managing the disease in Brazil. A protective canine vaccine would be an important tool for controlling the disease, reducing the parasites available to sandfly vectors and, consequently, reducing the number of human VL cases. Leishmune(®) is an anti-canine Leishmaniosis (VL Canine) vaccine produced by Zoetis (Pfizer, Brazil) that was commercially available in Brazil until 2014. The main goal of the present study was to investigate the protective immunological events induced by vaccination with Leishmune(®) in the time frame of one year. Healthy, non-vaccinated dogs and dogs of 1, 6 and 10 months post-vaccination were evaluated. Results showed that Leishmune(®) induced an increase in phagocytic activity of neutrophils and monocytes and also increased NO production. Immunological events were correlated with functional responses, as high levels of IgG and an increase of the receptor Fcγ were detected. Vaccination induced an increased expression of TLR (2, 4, 5, 9), integrin (CD29, CD49f), activation (MHCII) and co-stimulatory (CD80, CD81) molecules by neutrophils and monocytes. Vaccination led to decrease of IL-4 and an increase of IL-8 production by monocytes and higher IFN-γ and IL-17 production by T-cells. The results suggested that Leishmune(®) was able to induce a long-lasting change in immune response, mediated by supportive immunological events that may be participating in protective immunity against CL. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Does human leukocyte elastase degrade intact skin elastin?

    DEFF Research Database (Denmark)

    Schmelzer, Christian E H; Jung, Michael C; Wohlrab, Johannes

    2012-01-01

    and organs, including the aorta, lung, cartilage, elastic ligaments and skin, and is thus critical for their long-term function. Mature elastin is an insoluble and extremely durable protein that undergoes very little turnover, but sustained exposure to proteases may lead to irreversible and severe damage......This study aimed to investigate the susceptibility of intact fibrillar human elastin to human leukocyte elastase and cathepsin G. Elastin is a vital protein of the extracellular matrix of vertebrates, and provides exceptional properties including elasticity and tensile strength to many tissues...... small tissue samples to test enzymes for their elastolytic potential. This workflow was applied to skin samples from variously aged individuals, and it was found that strong differences exist in the degradability of the elastins investigated. In summary, human leukocyte elastase was unable to degrade...

  11. Characterization and primary structure of elastase inhibitor, AFLEI, from Aspergillus flavus.

    Science.gov (United States)

    Okumura, Yoshiyuki; Ogawa, Kenji; Uchiya, Kei-ichi

    2007-01-01

    The amino acid sequence of elastase inhibitor, AFLEI, isolated from Aspergillus flavus was determined by the Edman sequencing procedure of peptides derived from digests utilizing clostripain. A molecular weight of 7,525.8 was observed by TOF-MS. AFLEI contained 68 amino acid residues and has a calculated molecular weight of 7,526.2. The search for amino acid homology with other proteins demonstrated that amino acid residues 1 to 51 of AFLEI are 100% identical to residues 20 to 70 of the hypothetical protein Afu3g14940. The Michaelis constant (Km) for succinyl L-alanyl- L-alanyl- L-alanyl p-nitroanilide (STANA), and inhibition constant (Ki), for elastase of AFLEI, were found to be 6.7 x 10(2) microM and 4.0 x 10(-2) microM, respectively. Inhibitory activity was compared with six protease inhibitors (ulinastatin, nafamostat mesilate, sivelestat sodium hydrate, gabexate mesilate, elastatinal and elafin). The other six protease inhibitors demonstrated very weak inhibitory activity by comparison with AFLEI.

  12. GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury

    Science.gov (United States)

    Park, Dae Won; Jiang, Shaoning; Liu, Yanping; Siegal, Gene P.; Inoki, Ken; Abraham, Edward

    2014-01-01

    Although AMP-activated protein kinase (AMPK) is involved in regulating carbohydrate and lipid metabolism, activated AMPK also plays an anti-inflammatory role in many cell populations. However, despite the ability of AMPK activation to diminish the severity of inflammatory responses, previous studies have found that AMPK activity is diminished in LPS-treated neutrophils and also in lungs of mice with LPS-induced acute lung injury (ALI). Since GSK3β participates in regulating AMPK activity, we examined potential roles for GSK3β in modulating LPS-induced activation of neutrophils and macrophages and in influencing severity of ALI. We found that GSK3β-dependent phosphorylation of T479-AMPK was associated with pT172 dephosphorylation and inactivation of AMPK following TLR4 engagement. GSK3β inhibitors BIO (6-bromoindirubin-3′-oxime), SB216763, or siRNA knockdown of GSK3β, but not the PI3K/AKT inhibitor LY294002, prevented Thr172-AMPK dephosphorylation. Exposure to LPS resulted in rapid binding between IKKβ and AMPKα, and phosphorylation of S485-AMPK by IKKβ. These results suggest that IKKβ-dependent phosphorylation of S485-AMPK was an essential step in subsequent phosphorylation and inactivation AMPK by GSK3β. Inhibition of GSK3β activity delayed IκBα degradation and diminished expression of the proinflammatory TNF-α in LPS-stimulated neutrophils and macrophages. In vivo, inhibition of GSK3β decreased the severity of LPS-induced lung injury as assessed by development of pulmonary edema, production of TNF-α and MIP-2, and release of the alarmins HMGB1 and histone 3 in the lungs. These results show that inhibition of AMPK by GSK3β plays an important contributory role in enhancing LPS-induced inflammatory responses, including worsening the severity of ALI. PMID:25239914

  13. Neutrophil granule proteins generate bactericidal ammonia chloramine on reaction with hydrogen peroxide.

    Science.gov (United States)

    Green, Jessie N; Chapman, Anna L P; Bishop, Cynthia J; Winterbourn, Christine C; Kettle, Anthony J

    2017-12-01

    The neutrophil enzyme, myeloperoxidase, by converting hydrogen peroxide (H 2 O 2 ) and chloride to hypochlorous acid (HOCl), provides important defense against ingested micro-organisms. However, there is debate about how efficiently HOCl is produced within the phagosome and whether its reactions with phagosomal constituents influence the killing mechanism. The phagosome is a small space surrounding the ingested organism, into which superoxide, H 2 O 2 and high concentrations of proteins from cytoplasmic granules are released. Previous studies imply that HOCl is produced in the phagosome, but a large proportion should react with proteins before reaching the microbe. To mimic these conditions, we subjected neutrophil granule extract to sequential doses of H 2 O 2 . Myeloperoxidase in the extract converted all the H 2 O 2 to HOCl, which reacted with the granule proteins. 3-Chlorotyrosine, protein carbonyls and large amounts of chloramines were produced. At higher doses of H 2 O 2 , the extract developed potent bactericidal activity against Staphylococcus aureus. This activity was due to ammonia monochloramine, formed as a secondary product from protein chloramines and dichloramines. Isolated myeloperoxidase and elastase also became bactericidal when modified with HOCl and antibacterial activity was seen with a range of species. Comparison of levels of protein modification in the extract and in phagosomes implies that a relatively low proportion of phagosomal H 2 O 2 would be converted to HOCl, but there should be sufficient for substantial protein chloramine formation and some breakdown to ammonia monochloramine. It is possible that HOCl could kill ingested bacteria by an indirect mechanism involving protein oxidation and monochloramine formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The Proteolytically Stable Peptidomimetic Pam-(Lys-ßNSpe)6-NH2 Selectively Inhibits Human Neutrophil Activation via Formyl Peptide Receptor 2

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Heegaard, Peter M. H.; Larsen, Camilla J.

    2015-01-01

    of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release...... of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogues of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging...... flow cytometry in primary neutrophils and FPR-transfected cell lines we found that a fluorescently labelled analogue of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating...

  15. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Elevated tissue transglutaminase antibodies in juvenile idiopathic arthritis children: Relation to neutrophil-to-lymphocyte ratio and disease activity

    Directory of Open Access Journals (Sweden)

    Rasha E. Gheith

    2017-10-01

    Full Text Available Background: Subclinical gut inflammation is described in juvenile idiopathic arthritis (JIA, so has joint involvement been related to celiac disease (CD. The well-known involvement of tissue transglutaminase (tTG in the pathogenesis of CD stimulated progress in the field of autoimmune diseases. Aim of the work: To screen JIA children for tTG antibodies and to detect its relation to the neutrophil-lymphocyte ratio (NLR and disease activity. Patients and methods: The study included 44 JIA children with 44 matched controls. All subjects had no GIT symptoms suggestive of CD. Disease activity was assessed using the juvenile arthritis disease activity score in 27 joints (JADAS-27. The tTG antibodies (IgA and IgG were assessed. Results: The patients mean age was 12.5 ± 2.8 years and disease duration 5.01 ± 2.9 years; Female:Male 3.4:1. The mean JADAS-27 score was 12.6 ± 2.04. tTG antibodies were positive in 43.2% of the patients compared to 18.2% control (p = 0.01. Antibodies positivity was comparable according to gender and subtypes. The NLR in JIA children (1.62 ± 0.58 was significantly higher than in control (1.3 ± 0.5 (p = 0.006. Those with positive tTG antibodies had a significantly reduced body mass index (p = 0.02 and increased NLR (p = 0.02 compared to those with negative tTG. Only NLR and JADAS-27 would significantly predict antibodies positivity (p = 0.037 and p = 0.04, respectively. Conclusion: Increased tTG antibodies are frequent in JIA children raising the possibility of an associated subclinical CD. Markedly reduced BMI and increased NLR could forecast the presence of these antibodies. In addition to the JADAS-27, the NLR is a simple test that could predict this association and could be a useful biomarker.

  17. Peritendinous elastase treatment induces tendon degeneration in rats: A potential model of tendinopathy in vivo.

    Science.gov (United States)

    Wu, Yen-Ting; Wu, Po-Ting; Jou, I-Ming

    2016-03-01

    The purpose of this study was to investigate the role of elastase on tendinopathy, as well as to evaluate the potential for peritendinous injections of elastase into rats to cause tendinopathy. We first investigated the expression of elastase in the tendons of patients with tendinopathy, and then established the effects of elastase injection on the Achilles tendons of rats. Ultrasonographic and incapacitance testing was used to conduct tests for 8 weeks. Tendon tissues were collected for histological observation and protein levels of collagen type I and type III were detected using Western blotting. The percentage of elastase-positive cells increased in human specimens with grades II and III tendinopathy. The rat model demonstrated that the thickness of the tendon increased after elastase injection during Week 2-8. Hypercellularity and focal lesions were detected after Week 2. The expression of elastase was increased and elastin was decreased in Week 8. Collagen type I expression was decreased, but type III was increased in Week 4. These results suggested that elastase may be involved in the development of chronic tendinopathy, and that peritendinous injection of elastase may result in tendinopathy in rats. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  18. Neutrophil beta-2 microglobulin: an inflammatory mediator

    DEFF Research Database (Denmark)

    Bjerrum, O W; Nissen, Mogens Holst; Borregaard, N

    1990-01-01

    Beta-2 microglobulin (beta 2m) constitutes the light invariant chain of HLA class I antigen, and is a constituent of mobilizable compartments of neutrophils. Two forms of beta 2m exist: native beta 2m and proteolytically modified beta 2m (Des-Lys58-beta 2m), which shows alpha mobility in crossed...... radioimmuno-electrophoresis. The modification of native beta 2m can be executed by membrane-associated activity of mononuclear cells, and Des-Lys58-beta 2m augments the production of interleukin 2. In this study we present evidence that human neutrophils contain native beta 2m in specific granules, secretory...... vesicles, and plasma membrane. Beta 2m was released in the native form from neutrophils in response to stimulation with chemotactic stimuli and phorbol ester. The results of experiments designed to study the modification of native beta 2m by neutrophils indicated that neutrophils do not participate...

  19. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  20. Highly glycosylated alpha1-acid glycoprotein is synthesized in myelocytes, stored in secondary granules, and released by activated neutrophils

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Jacobsen, Lars C; Rasmussen, Thomas

    2005-01-01

    enriched in promyelocytes, myelocytes/metamyelocytes (MYs), and BM neutrophils. These analyses demonstrated a transient, high mRNA expression of genuine secondary/tertiary granule proteins and AGP in MYs. In agreement with this, immunocytochemistry revealed the presence of AGP protein and the secondary...... granule protein lactoferrin in cells from the MY stage and throughout granulocytic differentiation. Immunoelectron microscopy demonstrated the colocalization of AGP and lactoferrin in secondary granules of neutrophils. This finding was substantiated by the failure to detect AGP and lactoferrin in blood......Alpha-1-acid glycoprotein (AGP) is an acute-phase protein produced by hepatocytes and secreted into plasma in response to infection/injury. We recently assessed the transcriptional program of terminal granulocytic differentiation by microarray analysis of bone marrow (BM) populations highly...

  1. Neutrophil migration under normal and sepsis conditions.

    Science.gov (United States)

    Lerman, Yelena V; Kim, Minsoo

    2015-01-01

    Neutrophil migration is critical for pathogen clearance and host survival during severe sepsis. Interaction of neutrophil adhesion receptors with ligands on endothelial cells results in firm adhesion of the circulating neutrophils, followed by neutrophil activation and directed migration to sites of infection through the basement membrane and interstitial extracellular matrix. Proteolytic enzymes and reactive oxygen species are produced and released by neutrophils in response to a variety of inflammatory stimuli. Although these mediators are important for host defense, they also promote tissue damage. Excessive neutrophil migration during the early stages of sepsis may lead to an exaggerated inflammatory response with associated tissue damage and subsequent organ dysfunction. On the other hand, dysregulation of migration and insufficient migratory response that occurs during the latter stages of severe sepsis contributes to neutrophils' inability to contain and control infection and impaired wound healing. This review discusses the major steps and associated molecules involved in the balance of neutrophil trafficking, the precise regulation of which during sepsis spells life or death for the host.

  2. Dogs cast NETs too: Canine neutrophil extracellular traps in health and immune-mediated hemolytic anemia.

    Science.gov (United States)

    Jeffery, Unity; Kimura, Kayoko; Gray, Robert; Lueth, Paul; Bellaire, Bryan; LeVine, Dana

    2015-12-15

    Neutrophil extracellular traps (NETs) are webs of DNA and protein with both anti-microbial and pro-thrombotic properties which have not been previously reported in dogs. To confirm dog neutrophils can form NETs, neutrophils were isolated from healthy dogs, and stimulated in vitro with 2μM, 8μM, 31μM, and 125μM platelet activating factor (PAF) or 0.03μM, 0.1μM, 0.4μM, 1.6μM and 6.4μM phorbol-12-myristate-13-acetate (PMA). Extracellular DNA was measured using the cell impermeable dye Sytox Green every hour for 4h. At 4h, extracellular DNA was significantly greater than non-stimulated cells at concentrations ≥31μM and ≥0.1μM for PAF and PMA, respectively. Cells stimulated with 31.25μM PAF reached maximal fluorescence by 1h, whereas maximal fluorescence was not achieved until 2h for cells stimulated with 0.1μM PMA. Immunofluorescent imaging using DAPI and anti-elastase antibody confirmed that extracellular DNA is released as NETs. As NETs have been implicated in thrombosis, nucleosomes, a marker correlated with NET formation, were measured in the serum of dogs with the thrombotic disorder primary immune-mediated hemolytic anemia (IMHA) (n=7) and healthy controls (n=20) using a commercially available ELISA. NETs were significantly higher in IMHA cases than controls (median 0.12 and 0.90, respectively, p=0.01), but there were large positive interferences associated with hemolysis and icterus. In summary, the study is the first to describe NET generation by canine neutrophils and provides preliminary evidence that a marker associated with NETs is elevated in IMHA. However, this apparent elevation must be interpreted with caution due to the effect of interference, emphasizing the need for a more specific and robust assay for NETs in clinical samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  4. Free radical-scavenging activity and DNA damaging potential of auxins IAA and 2-methyl-IAA evaluated in human neutrophils by the alkaline comet assay.

    Science.gov (United States)

    Salopek-Sondi, Branka; Piljac-Zegarac, Jasenka; Magnus, Volker; Kopjar, Nevenka

    2010-01-01

    Auxins, of which indole-3-acetic acid (IAA) is the most widespread representative, are plant hormones. In addition to plants, IAA also naturally occurs in humans in micromolar concentrations. In the presence of peroxidase, indolic auxins are converted to cytotoxic oxidation products and have thus been proposed for use in gene-directed enzyme/prodrug tumor therapy. Since data on the genotoxicity of IAA and its derivatives are not consistent, here we investigate the early DNA damaging effects (2-h treatment) of the auxins, IAA, and 2-methyl-indole-3-acetic acid (2-Me-IAA) by the alkaline comet assay and compare them with their free radical-scavenging activity measured by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Human neutrophils are chosen as the test system since they possess inherent peroxidase activity. The results of the comet assay indicate an increase in DNA damage in a dose-dependent manner up to 1.00 mM of both auxins. Generally, IAA applied in the same concentration had greater potential to damage DNA in human neutrophils than did 2-Me-IAA. The genotoxicities of the two examined auxins are negatively correlated with their antioxidant activities, as measured by the DPPH assay; 2-Me-IAA showed a higher antioxidant capacity than did IAA. We assume that differences in the molecular structure of the tested auxins contributed to differences in their metabolism, in particular, with respect to interactions with peroxidases and other oxidative enzymes in neutrophils. However, the exact mechanisms have to be elucidated in future studies. (c) 2010 Wiley Periodicals, Inc.

  5. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils

    DEFF Research Database (Denmark)

    Thomsen, Kim; Christophersen, Lars; Jensen, Peter Østrup

    2016-01-01

    Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have...... observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa...

  6. Inhibition of the neutrophil oxidative burst by sphingoid long-chain bases: role of protein kinase C in the activation of the burst

    International Nuclear Information System (INIS)

    Wilson, E.; Olcott, M.C.; Bell, R.M.; Merrill, A.H.; Lambeth, J.D.

    1986-01-01

    The neutrophil oxidative burst is triggered by a variety of both particulate (opsonized zymosan) and soluble agonists [formylmethionylleucylphenylalanine (FMLP), arachidonate, short-chained diacylglycerols (DAG) and phorbol myristate acetate (PMA)]. The authors show that the long-chain lipid bases sphinganine and sphingosine block activation of the burst in human neutrophils. Inhibition is reversible, does not alter cell viability, and does not affect phagocytosis. The inhibition affects the activation mechanism rather than the NADPH-oxidase enzyme. The structural requirements for inhibition include a hydrophobic carbon chain and an amino-containing headgroup, and the naturally occurring erythro sphinganine was more potent than the threo isomer. Activation of the oxidative burst by a variety of agonists was blocked by the same concentration of sphinganine indicating a common inhibited step. The authors suggest that the common step is protein kinase C, as evidenced by the following: 1) long-chain bases inhibit PKC in a micelle reconstituted system, 2) PMA-induced phophorylation is inhibited by sphinganine, and 3) sphinganine competes with ( 3 H)-phorbol dibutyrate for its cytosolic receptor (i.e. protein kinase C). The authors suggest that sphingoid long-chain bases play a role in the cellular regulations

  7. Cryptococcus neoformans modulates extracellular killing by neutrophils

    Directory of Open Access Journals (Sweden)

    Asfia eQureshi

    2011-09-01

    Full Text Available We recently established a key role for host sphingomyelin synthase (SMS in the regulation of the killing activity of neutrophils against Cryptococcus neoformans. In this work, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and NK cells (Tgε26 mice. To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike C. albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. Next, we monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the medium and found that pre-incubation with live but not heat-killed fungal cells significantly inhibits further killing activity of the medium. We next studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption-ionization (MALDI tissue imaging in infected lung we found that similarly to previous observations in the isogenic wild type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells.

  8. The third serine proteinase with chymotrypsin specificity isolated from Atlantic cod (Gadus morhua) is a type-II elastase

    DEFF Research Database (Denmark)

    Asgeirsson, B; Leth-Larsen, Rikke; Thórólfsson, M

    1998-01-01

    efficiency of elastase C. The effects of several inhibitors on cod elastase C were identical to effects on chymotrypsins variants A and B, but dissimilar when compared with porcine pancreatic elastase. On the basis of the specificity and amino acid sequence, we conclude that the enzyme under study is most...

  9. Investigation of the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability by peritoneal macrophage from BALB/c mice

    Directory of Open Access Journals (Sweden)

    Soleimani N

    2015-04-01

    Full Text Available Abstract Background: The neutrophil-activating protein (HP-NAP of Helicobacter pylori is a protective antigen and a major virulence factor of this bacteria. Stimulating the immune system for helicobacter infection treatment could have an important role. The aim of study is to assess the effect of recombinant Neutrophil activating protein (Hp-NapA of helicobacter pylori on proliferation and viability of peritoneal macrophages from BALB/c mice. Materials and Methods: In this experimental study, recombinant Hp-NapA of helicobacter pylori was produced in vitro. Mice peritoneal macrophages were purified and cultured. Different concentrations of recombinant Hp-NapA was used for macrophages stimulation. MTT assay was performed to assess the viability and proliferation of macrophages. Results: The results elucidated that the increasing effect of stimulation with recombinant Hp-NapA was significant at the dose of 30 µg/ml(p=0.01. The rate of viabitity was significantly higher than control group at the doses of 30 and 60 µg/ml and in the concurrency series of recombinant protein with lipopolysaccharid, there was a statistically significarit increase in proliferation at just these doses. Conclusion: According to our findings, recombinant Hp-NapA has a positive effect on proliferation, viability and function of peritoneal macrophages. Therefore, it is proposed that recombinant Hp-NapA can be studied as an immunomodulator for immunotherapy.

  10. Mitochondria in neutrophil apoptosis

    NARCIS (Netherlands)

    van Raam, B. J.; Verhoeven, A. J.; Kuijpers, T. W.

    2006-01-01

    Central in the regulation of the short life span of neutrophils are their mitochondria. These organelles hardly contribute to the energy status of neutrophils but play a vital role in the apoptotic process. Not only do the mitochondria contain cytotoxic proteins that are released during apoptosis

  11. Apoptosis of neutrophils

    NARCIS (Netherlands)

    Maianski, N. A.; Maianski, A. N.; Kuijpers, T. W.; Roos, D.

    2004-01-01

    Regulation of the neutrophil life span by apoptosis provides a fine balance between their function as effector cells of host defense and a safe turnover of these potentially harmful cells. Alterations of neutrophil apoptosis are associated with a number of diseases. As do other cell types,

  12. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoon Shin; Lim, Goh-Woon [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung [Department of Microbiology, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Yoo, Eun-Sun [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Chan Ra, Jeong [Stem Cell Research Center, RNL BIO, Seoul 153-768 (Korea, Republic of); Ryu, Kyung-Ha, E-mail: ykh@ewha.ac.kr [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  13. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2012-02-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  14. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2011-04-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  15. Amiloride interferes with platelet- activating factor-induced respiratory burst and MMP-9 release in bovine neutrophils independent of Na+/H+ exchanger 1.

    Science.gov (United States)

    Larrazabal, C S; Carretta, M D; Hidalgo, M A; Burgos, R A

    2017-09-01

    Cytoplasmic pH homeostasis is required for an appropriate response in polymorphonuclear neutrophils (PMNs). In these cells, chemotaxis and reactive oxygen species (ROS) production are reduced by the use of Na + /H + exchanger (NHE-1) inhibitors, but these results are mainly obtained using amiloride, a non-selective NHE-1 inhibitor. In bovine PMNs, the role of NHE-1 in functional responses has not been confirmed yet. The aim of this study was to determine the role of NHE-1 using amiloride and zoniporide in pH regulation, ROS production, matrix metalloproteinase 9 (MMP-9) release and calcium flux in bovine PMNs induced by the platelet activation factor (PAF), additionally we evaluated the presence of NHE-1 and NHE-2 mRNA Our data show the presence only of NHE-1 but not NHE-2 in bovine PMNs. Amiloride or zoniporide inhibited the intracellular alkalization induced by PAF without affecting calcium flux. Amiloride diminished ROS production and MMP-9 release, while zoniporide enhanced ROS production without change the MMP-9 release induced by PAF. Our work led us to conclude that changes in intracellular pH induced by PAF are regulated by NHE-1 in bovine neutrophils, but the effects of amiloride on ROS production and MMP-9 release induced by PAF are not NHE-1 dependent. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Reactivation of desensitized formyl peptide receptors by platelet activating factor: a novel receptor cross talk mechanism regulating neutrophil superoxide anion production.

    Directory of Open Access Journals (Sweden)

    Huamei Forsman

    Full Text Available Neutrophils express different chemoattractant receptors of importance for guiding the cells from the blood stream to sites of inflammation. These receptors communicate with one another, a cross talk manifested as hierarchical, heterologous receptor desensitization. We describe a new receptor cross talk mechanism, by which desensitized formyl peptide receptors (FPRdes can be reactivated. FPR desensitization is induced through binding of specific FPR agonists and is reached after a short period of active signaling. The mechanism that transfers the receptor to a non-signaling desensitized state is not known, and a signaling pathway has so far not been described, that transfers FPRdes back to an active signaling state. The reactivation signal was generated by PAF stimulation of its receptor (PAFR and the cross talk was uni-directional. LatrunculinA, an inhibitor of actin polymerization, induced a similar reactivation of FPRdes as PAF while the phosphatase inhibitor CalyculinA inhibited reactivation, suggesting a role for the actin cytoskeleton in receptor desensitization and reactivation. The activated PAFR could, however, reactivate FPRdes also when the cytoskeleton was disrupted prior to activation. The receptor cross talk model presented prophesies that the contact on the inner leaflet of the plasma membrane that blocks signaling between the G-protein and the FPR is not a point of no return; the receptor cross-talk from the PAFRs to the FPRdes initiates an actin-independent signaling pathway that turns desensitized receptors back to a signaling state. This represents a novel mechanism for amplification of neutrophil production of reactive oxygen species.

  17. Blockade of RAGE ameliorates elastase-induced emphysema development and progressionviaRAGE-DAMP signaling.

    Science.gov (United States)

    Lee, Hanbyeol; Park, Jeong-Ran; Kim, Woo Jin; Sundar, Isaac K; Rahman, Irfan; Park, Sung-Min; Yang, Se-Ran

    2017-05-01

    The receptor for advanced glycan end products (RAGE) has been identified as a susceptibility gene for chronic obstructive pulmonary disease (COPD) in genome-wide association studies (GWASs). However, less is known about how RAGE is involved in the pathogenesis of COPD. To determine the molecular mechanism by which RAGE influences COPD in experimental COPD models, we investigated the efficacy of the RAGE-specific antagonist FPS-ZM1 administration in in vivo and in vitro COPD models. We injected elastase intratracheally and the RAGE antagonist FPS-ZM1 in mice, and the infiltrated inflammatory cells and cytokines were assessed by ELISA. Cellular expression of RAGE was determined in protein, serum, and bronchoalveolar lavage fluid of mice and lungs and serum of human donors and patients with COPD. Downstream damage-associated molecular pattern (DAMP) pathway activation in vivo and in vitro and in patients with COPD was assessed by immunofluorescence staining, Western blot analysis, and ELISA. The expression of membrane RAGE in initiating the inflammatory response and of soluble RAGE acting as a decoy were associated with up-regulation of the DAMP-related signaling pathway via Nrf2. FPS-ZM1 administration significantly reversed emphysema in the lung of mice. Moreover, FPS-ZM1 treatment significantly reduced lung inflammation in Nrf2 +/+ , but not in Nrf2 -/- mice. Thus, our data indicate for the first time that RAGE inhibition has an essential protective role in COPD. Our observation of RAGE inhibition provided novel insight into its potential as a therapeutic target in emphysema/COPD.-Lee, H., Park, J.-R., Kim, W. J., Sundar, I. K., Rahman, I., Park, S.-M., Yang. S.-R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. © FASEB.

  18. Selective modulation of the CD4 molecular complex by Pseudomonas aeruginosa alkaline protease and elastase

    DEFF Research Database (Denmark)

    Pedersen, B K; Kharazmi, A; Theander, T G

    1987-01-01

    The binding of monoclonal antibodies against CD4 was specifically inhibited by treatment of human CD4+ cells with either alkaline protease (AP) or elastase (Ela), purified from Pseudomonas aeruginosa. Binding of antibodies against CD3 (pan T), CD5 (pan T), CD8 (T suppressor/cytotoxic), HLA-ABC, HLA......-DR, HLA-DQ, HLA-DP/DR, and beta 2 microglobulin was not inhibited by AP or Ela. Heat-inactivation of the proteases at 65 degrees C for 20 min or treatment with the metal chelator EDTA abolished the inhibitory activity of both proteases. These findings may serve to develop novel immunological methods...

  19. Reactivity and selectivity in the inhibition of elastase by 3-oxo-beta-sultams and in their hydrolysis.

    Science.gov (United States)

    Tsang, Wing-Yin; Ahmed, Naveed; Hemming, Karl; Page, Michael I

    2007-12-21

    3-oxo-beta-sultams are both beta-sultams and beta-lactams and are a novel class of time-dependent inhibitors of elastase. The inhibition involves formation of a covalent enzyme-inhibitor adduct with transient stability by acylation of the active-site serine resulting from substitution at the carbonyl centre of the 3-oxo-beta-sultam, C-N fission, and expulsion of the sulfonamide. The lead compound, N-benzyl-4,4-dimethyl-3-oxo-beta-sultam 1 is a reasonably potent inhibitor against porcine pancreatic elastase with a second-order rate constant of 768 M(-1) s(-1) at pH 6, but also possesses high chemical reactivity with a half-life for hydrolysis of only 6 mins at the same pH in water. Interestingly, the hydrolysis of 3-oxo-beta-sultams occurs at the sulfonyl centre with S-N fission and expulsion of the amide leaving group, whereas the enzyme reaction occurs at the acyl centre. Increasing selectivity between these two reactive centres was explored by examining the effect of substituents on the reactivity of 3-oxo-beta-sultam towards hydrolysis and enzyme inhibition. The inhibition activity against porcine pancreatic elastase has a much higher sensitivity to substituent variation than does the rate of alkaline hydrolysis. A difference of 2000-fold is observed in the second-order rate constants, k(i), for inhibition whereas there is only a 100-fold difference in the second-order rate constants, k(OH), for alkaline hydrolysis within the series. The higher sensitivity of enzyme inhibition to substituents than that of simple chemical reactivity indicates a significant degree of molecular recognition of the 3-oxo-beta-sultams by the enzyme.

  20. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Kadirvel, Ramanathan; Ding, Yong-Hong; Dai, Daying; Danielson, Mark A.; Lewis, Debra A.; Cloft, Harry J.; Kallmes, David F. [Mayo Clinic College of Medicine, Department of Radiology, Rochester, MN (United States); Zakaria, Hasballah; Robertson, Anne M. [University of Pittsburgh, Department of Mechanical Engineering, Pittsburgh, PA (United States)

    2007-12-15

    Biological and biophysical factors have been shown to play an important role in the initiation, progression, and rupture of intracranial aneurysms. The purpose of this study was to evaluate the association between hemodynamic forces and markers of vascular remodeling in elastase-induced saccular aneurysms in rabbits. Elastase-induced aneurysms were created at the origin of the right common carotid artery in rabbits. Hemodynamic parameters were estimated using computational fluid dynamic simulations based on 3-D-reconstructed models of the vasculature. Expression of matrix metalloproteinases (MMPs), their inhibitors (TIMPs) and markers of vascular remodeling were measured in different spatial regions within the aneurysms. Altered expression of biological markers relative to controls was correlated with the locations of subnormal time-averaged wall shear stress (WSS) but not with the magnitude of pressure. In the aneurysms, WSS was low and expression of biological markers was significantly altered in a time-dependent fashion. At 2 weeks, an upregulation of active-MMP-2, downregulation of TIMP-1 and TIMP-2, and intact endothelium were found in aneurysm cavities. However, by 12 weeks, endothelial cells were absent or scattered, and levels of pro- and active-MMP-2 were not different from those in control arteries, but pro-MMP-9 and both TIMPs were upregulated. These results reveal a strong, spatially localized correlation between diminished WSS and differential expression of biological markers of vascular remodeling in elastase-induced saccular aneurysms. The ability of the wall to function and maintain a healthy endothelium in a low shear environment appears to be significantly impaired by chronic exposure to low WSS. (orig.)

  1. The lipidated peptidomimetic Lau-[(S)-Aoc]-(Lys-βNphe)6-NH2 is a novel formyl peptide receptor 2 agonist that activates both human and mouse neutrophil NADPH-oxidase

    DEFF Research Database (Denmark)

    Holdfeldt, Andre; Skovbakke, Sarah Line; Winther, Malene

    2016-01-01

    Neutrophils expressing formyl peptide receptor 2 (FPR2) play key roles in host defense, immune regulation, and resolution of inflammation. Consequently, the search for FPR2-specific modulators has attracted much attention due to its therapeutic potential. Earlier described agonists......2 (F2M2), showing comparable potency in activating human and mouse neutrophils by inducing a rise in intracellular Ca2+ concentration and assembly of the superoxide-generating NADPH oxidase. This FPR2/Fpr2 agonist contains a headgroup consisting of a 2-aminooctanoic acid (Aoc) residue acylated......2 signaling as well as for development of prophylactic immunomodulatory therapy. This novel class of cross-species FPR2/Fpr2 agonists should enable translation of results obtained with mouse neutrophils (and disease models) into enhanced understanding of human inflammatory and immune diseases....

  2. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    Science.gov (United States)

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  3. Altered neutrophil trafficking during sepsis.

    Science.gov (United States)

    Guo, Ren-Feng; Riedemann, Niels C; Laudes, Ines J; Sarma, Vidya J; Kunkel, Robin G; Dilley, Kari A; Paulauskis, Joseph D; Ward, Peter A

    2002-07-01

    In sepsis, dysregulation of the inflammatory system is well known, as reflected in excessive inflammatory mediator production, complement activation, and appearance of defects in phagocytic cells. In the current study sepsis was induced in rats by cecal ligation/puncture. Early in sepsis the beta(1) and beta(2) integrin content on blood neutrophils increased in a nontranscriptional manner, and the increase in beta(2), but not beta(1), integrin content was C5a dependent. Similar changes could be induced in vitro on blood neutrophils following contact with phorbol ester or C5a. Direct injury of lungs of normal rats induced by deposition of IgG immune complexes (IgG-IC) caused 5-fold increases in the myeloperoxidase content that was beta(2), but not beta(1), dependent. In contrast, in cecal ligation/puncture lungs myeloperoxidase increased 10-fold after IgG immune complex deposition and was both beta(1) and beta(2) integrin dependent. These data suggest that sepsis causes enhanced neutrophil trafficking into the lung via mechanisms that are not engaged in the nonseptic state.

  4. Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kγ pathways

    Science.gov (United States)

    Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus

    2010-01-01

    Selectins mediate leukocyte rolling, trigger β2-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)–dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) γ2– and phosphoinositide 3-kinase (PI3K) γ–dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP3), and inducing E-selectin–mediated slow rolling. Inhibition of this signal-transduction pathway diminished Gαi-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Gαi-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk−/− and Plcg2−/− mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement. PMID:20167705

  5. Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Yuandani

    2013-01-01

    Full Text Available The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µg/mL. There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells. The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µg/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µg/mL. Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µg/mL. Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.

  6. Deranged Bioenergetics and Defective Redox Capacity in T Lymphocytes and Neutrophils Are Related to Cellular Dysfunction and Increased Oxidative Stress in Patients with Active Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Ko-Jen Li

    2012-01-01

    Full Text Available Urinary excretion of N-benzoyl-glycyl-Nε-(hexanonyllysine, a biomarker of oxidative stress, was higher in 26 patients with active systemic lupus erythematosus (SLE than in 11 non-SLE patients with connective tissue diseases and in 14 healthy volunteers. We hypothesized that increased oxidative stress in active SLE might be attributable to deranged bioenergetics, defective reduction-oxidation (redox capacity, or other factors. We demonstrated that, compared to normal cells, T lymphocytes (T and polymorphonuclear neutrophils (PMN of active SLE showed defective expression of facilitative glucose transporters GLUT-3 and GLUT-6, which led to increased intracellular basal lactate and decreased ATP production. In addition, the redox capacity, including intracellular GSH levels and the enzyme activity of glutathione peroxidase (GSH-Px and γ-glutamyl-transpeptidase (GGT, was decreased in SLE-T. Compared to normal cells, SLE-PMN showed decreased intracellular GSH levels, and GGT enzyme activity was found in SLE-PMN and enhanced expression of CD53, a coprecipitating molecule for GGT. We conclude that deranged cellular bioenergetics and defective redox capacity in T and PMN are responsible for cellular immune dysfunction and are related to increased oxidative stress in active SLE patients.

  7. Neutrophil development and function critically depend on Bruton tyrosine kinase in a mouse model of X-linked agammaglobulinemia.

    Science.gov (United States)

    Fiedler, Katja; Sindrilaru, Anca; Terszowski, Grzegorz; Kokai, Enikö; Feyerabend, Thorsten B; Bullinger, Lars; Rodewald, Hans-Reimer; Brunner, Cornelia

    2011-01-27

    Bruton tyrosine kinase (Btk) is essential for B cell development and function and also appears to be important for myeloid cells. The bone marrow of Btk-deficient mice shows enhanced granulopoiesis compared with that of wild-type mice. In purified granulocyte-monocyte-progenitors (GMP) from Btk-deficient mice, the development of granulocytes is favored at the expense of monocytes. However, Btk-deficient neutrophils are impaired in maturation and function. Using bone marrow chimeras, we show that this defect is cell-intrinsic to neutrophils. In GMP and neutrophils, Btk plays a role in GM-CSF- and Toll-like receptor-induced differentiation. Molecular analyses revealed that expression of the lineage-determining transcription factors C/EBPα, C/EBPβ, and PU.1, depends on Btk. In addition, expression of several granule proteins, including myeloperoxidase, neutrophilic granule protein, gelatinase and neutrophil elastase, is Btk-dependent. In the Arthus reaction, an acute inflammatory response, neutrophil migration into tissues, edema formation, and hemorrhage are significantly reduced in Btk-deficient animals. Together, our findings implicate Btk as an important regulator of neutrophilic granulocyte maturation and function in vivo.

  8. Crystal structures of the complex of porcine pancreatic elastase with two valine-derived benzoxazinone inhibitors.

    Science.gov (United States)

    Radhakrishnan, R; Presta, L G; Meyer, E F; Wildonger, R

    1987-12-05

    The crystal structures of porcine pancreatic elastase complexed to two similar benzoxazinone inhibitors are reported to 2.09 A and 1.76 A resolution, and refined to conventional R factors of 0.153 and 0.172.

  9. Altered Neutrophil Function in Localized Juvenile Periodontitis: Intrinsic or Induced?

    Science.gov (United States)

    Agarwal, Sudha; Huang, Jian Ping; Piesco, Nicholas P; Suzuki, Jon B; Riccelli, Angelina E; Johns, Lee P

    1996-03-01

    Localized juvenile periodontitis (LJP) is an aggressive periodontal disease of familial nature. Neutrophils from a majority of patients with this disease exhibit decreased Chemotaxis with increased adherence, oxidative burst, and degranulation in response to opsonized bacteria. It is proposed that the biological basis for these altered neutrophil functions in LJP may be due either to intrinsic cell abnormalities or to the effect of factors present in the sera of LJP patients, which can modulate neutrophil functions. LJP neutrophils exhibit a lower number of receptors for chemoattractants and GP-110 molecules which are known to facilitate Chemotaxis. Furthermore, these cells exhibit lower signal transduction in response to a biological stimulus. These observations suggest that intrinsic cellular defects may be responsible for altered neutrophil functions in LJP. However, healthy neutrophils, when treated with very low concentrations of proinflammatory cytokines, also exhibit the characteristics of altered or "defective" LJP neutrophils. Additionally, healthy neutrophils, when treated with LJP serum, also exhibit many of the characteristics associated with LJP neutrophils. Attempts to identify these factors have shown that cytokines like TNF-α and/or IL1 β in LJP sera may be at least partially responsible for modulating neutrophil functions in LJP. These cytokines are primarily produced by activated macrophages, indicating a role for these cells in the etiology of LJP. The hyper-responsiveness of these cells to an immunologic challenge can result in local increases in cytokines leading to excessive bone loss and tissue damage at the site of infection, while systemic elevations in cytokines would lead to decreased neutrophil Chemotaxis, both of which are observed in LJP. Present evidence indicates that neutrophil functions are indeed altered in the majority of LJP patients. However, the biological basis for the alteration may not be due to the neutrophils themselves

  10. Starvation Selection Restores Elastase and Rhamnolipid Production in a Pseudomonas aeruginosa Quorum-Sensing Mutant

    Science.gov (United States)

    Van Delden, Christian; Pesci, Everett C.; Pearson, James P.; Iglewski, Barbara H.

    1998-01-01

    The las quorum-sensing system of Pseudomonas aeruginosa controls the expression of elastase and rhamnolipid. We report that starvation can select a mutant producing these virulence factors in spite of a lasR deletion. Expression of the autoinducer synthase gene rhlI was increased in this suppressor mutant, suggesting compensation by the rhl system. These data show that P. aeruginosa can restore elastase and rhamnolipid production in the absence of a functional las quorum-sensing system. PMID:9712807

  11. Neutrophil FcγRIIA promotes IgG-mediated glomerular neutrophil capture via Abl/Src kinases.

    Science.gov (United States)

    Nishi, Hiroshi; Furuhashi, Kazuhiro; Cullere, Xavier; Saggu, Gurpanna; Miller, Mark J; Chen, Yunfeng; Rosetti, Florencia; Hamilton, Samantha L; Yang, Lihua; Pittman, Spencer P; Liao, Jiexi; Herter, Jan M; Berry, Jeffrey C; DeAngelo, Daniel J; Zhu, Cheng; Tsokos, George C; Mayadas, Tanya N

    2017-10-02

    The kidney glomerular capillaries are frequent sites of immune complex deposition and subsequent neutrophil accumulation in post-infectious and rapidly progressive glomerulonephritis. However, the mechanisms of neutrophil recruitment remain enigmatic, and there is no targeted therapeutic to avert this proximal event in glomerular inflammation. The uniquely human activating Fc receptor FcγRIIA promotes glomerular neutrophil accumulation and damage in anti-glomerular basement membrane-induced (anti-GBM-induced) glomerulonephritis when expressed on murine neutrophils. Here, we found that neutrophils are directly captured by immobilized IgG antibodies under physiological flow conditions in vitro through FcγRIIA-dependent, Abl/Src tyrosine kinase-mediated F-actin polymerization. Biophysical measurements showed that the lifetime of FcγRIIA-IgG bonds increased under mechanical force in an F-actin-dependent manner, which could enable the capture of neutrophils under physiological flow. Kidney intravital microscopy revealed that circulating neutrophils, which were similar in diameter to glomerular capillaries, abruptly arrested following anti-GBM antibody deposition via neutrophil FcγRIIA and Abl/Src kinases. Accordingly, inhibition of Abl/Src with bosutinib reduced FcγRIIA-mediated glomerular neutrophil accumulation and renal injury in experimental, crescentic anti-GBM nephritis. These data identify a pathway of neutrophil recruitment within glomerular capillaries following IgG deposition that may be targeted by bosutinib to avert glomerular injury.

  12. Elastase effect on the extracellular matrix of rat aortic smooth muscle cells in culture

    International Nuclear Information System (INIS)

    Kispert, J.; Mogayzel, P.J. Jr.; Pratt, C.A.; Toselli, P.; Wolfe, B.L.; Faris, B.; Franzblau, C.

    1986-01-01

    The effect of porcine pancreatic elastase on the extracellular matrix (ECM) of neonatal rat aortic smooth muscle cell cultures was monitored both chemically and ultrastructurally. Initially, the elastin appeared as non-coalesced material closely associated with filaments, presumably microfibrils. The insoluble elastin accumulated in the ECM of cells in culture for 6 weeks accounted for 40-45% of the total protein. After exposure to elastase for 30-60 minutes, the elastin content was reduced to 14-20%. The reduction in the total protein content of the cultures after elastase treatment was due primarily to the loss of elastin. Although the amino acid compositions of the elastin isolated from cultures both before and after elastase treatment were similar, there were striking ultrastructural differences in the amorphous elastin. The elastin assumed a mottled appearance after elastase exposure, similar to that seen in in vivo emphysema models. Pulse experiments with 3 H-valine demonstrated an increase in protein synthesis by the cells 20 hours after elastase exposure, suggesting the potential for elastin repair. The use of this culture system will aid in clarifying the role of elastolysis in pulmonary and vascular injuries

  13. Localization and Functionality of the Inflammasome in Neutrophils

    DEFF Research Database (Denmark)

    Bakele, Martina; Joos, Melanie; Burdi, Sofia

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality...... of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein...... and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases...

  14. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC)...... distribution of CD177+ and CD177- subsets but may be associated with neutrophil activation during on-going inflammation.......OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC...... quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177...

  15. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis

    NARCIS (Netherlands)

    Maianski, N. A.; Geissler, J.; Srinivasula, S. M.; Alnemri, E. S.; Roos, D.; Kuijpers, T. W.

    2004-01-01

    Mitochondria are known to combine life-supporting functions with participation in apoptosis by controlling caspase activity. Here, we report that in human blood neutrophils the mitochondria are different, because they preserve mainly death-mediating abilities. Neutrophil mitochondria hardly

  16. Increased neutrophil priming and sensitization before commencing cardiopulmonary bypass in cardiac surgical patients

    NARCIS (Netherlands)

    Gu, YJ; Schoen, P; Tigchelaar, [No Value; Loef, BG; Ebels, T; Rankin, AJ; van Oeveren, W

    2002-01-01

    Background. Neutrophil activation is implicated in postoperative complications in patients having cardiac surgery with cardiopulmonary bypass (CPB). This study was designed to determine the temporal fluctuations in the primability of neutrophils in the preoperative, intraoperative, and postoperative

  17. CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation

    NARCIS (Netherlands)

    Marcos, Veronica; Zhou, Zhe; Yildirim, Ali Onder; Bohla, Alexander; Hector, Andreas; Vitkov, Ljubomir; Wiedenbauer, Eva-Maria; Krautgartner, Wolf Dietrich; Stoiber, Walter; Belohradsky, Bernd H.; Rieber, Nikolaus; Kormann, Michael; Koller, Barbara; Roscher, Adelbert; Roos, Dirk; Griese, Matthias; Eickelberg, Oliver; Döring, Gerd; Mall, Marcus A.; Hartl, Dominik

    2010-01-01

    Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases.

  18. Neutrophil Interactions Stimulate Evasive Hyphal Branching by Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Felix Ellett

    2017-01-01

    Full Text Available Invasive aspergillosis (IA, primarily caused by Aspergillus fumigatus, is an opportunistic fungal infection predominantly affecting immunocompromised and neutropenic patients that is difficult to treat and results in high mortality. Investigations of neutrophil-hypha interaction in vitro and in animal models of IA are limited by lack of temporal and spatial control over interactions. This study presents a new approach for studying neutrophil-hypha interaction at single cell resolution over time, which revealed an evasive fungal behavior triggered by interaction with neutrophils: Interacting hyphae performed de novo tip formation to generate new hyphal branches, allowing the fungi to avoid the interaction point and continue invasive growth. Induction of this mechanism was independent of neutrophil NADPH oxidase activity and neutrophil extracellular trap (NET formation, but could be phenocopied by iron chelation and mechanical or physiological stalling of hyphal tip extension. The consequence of branch induction upon interaction outcome depends on the number and activity of neutrophils available: In the presence of sufficient neutrophils branching makes hyphae more vulnerable to destruction, while in the presence of limited neutrophils the interaction increases the number of hyphal tips, potentially making the infection more aggressive. This has direct implications for infections in neutrophil-deficient patients and opens new avenues for treatments targeting fungal branching.

  19. Characterization of Yersinia pestis Interactions with Human Neutrophils In vitro

    Directory of Open Access Journals (Sweden)

    Sophia C. Dudte

    2017-08-01

    Full Text Available Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macrophages, neutrophils have been considered non-permissive to Y. pestis intracellular survival. Several studies have shown killing of the vast majority of Y. pestis ingested by human neutrophils. However, survival of 10–15% of Y. pestis after phagocytosis by neutrophils is consistently observed. Furthermore, these surviving bacteria eventually replicate within and escape from the neutrophils. We set out to further characterize the interactions between Y. pestis and human neutrophils by (1 determining the effects of known Y. pestis virulence factors on bacterial survival after uptake by neutrophils, (2 examining the mechanisms employed by the neutrophil to kill the majority of intracellular Y. pestis, (3 determining the activation phenotype of Y. pestis-infected neutrophils, and (4 characterizing the Y. pestis-containing phagosome in neutrophils. We infected human neutrophils in vitro with Y. pestis and assayed bacterial survival and uptake. Deletion of the caf1 gene responsible for F1 capsule production resulted in significantly increased uptake of Y. pestis. Surprisingly, while the two-component regulator PhoPQ system is important for survival of Y. pestis within neutrophils, pre-induction of this system prior to infection did not increase bacterial survival. We used an IPTG-inducible mCherry construct to distinguish viable from non-viable intracellular bacteria and determined the association of the Y. pestis-containing phagosome with neutrophil NADPH-oxidase and markers of primary, secondary and tertiary granules. Additionally, we show that inhibition of

  20. Neutrophil labeling with [{sup 99m}Tc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Hayley [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ramsay, Stuart C. [School of Medicine, James Cook University, Townsville, Queensland (Australia) and Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia)]. E-mail: stuart.ramsey@jcu.edu.au; Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Cassidy, Nathan [Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland (Australia)

    2006-04-15

    Introduction: [{sup 99m}Tc]-technetium stannous colloid (TcSnC)-labeled white cells are used to image inflammation. Neutrophil labeling with TcSnC is probably phagocytic, but the phagocytic receptor involved is not known. We hypothesised that complement receptor 3 (CR3) plays a key role. Phagocytic labeling could theoretically result in neutrophil activation or priming, affecting the behaviour of labeled cells. Fluorescence-activated cell sorter (FACS) analysis side scatter measurements can assess neutrophil activation and priming. Methods: We tested whether TcSnC neutrophil labeling is CR3-mediated by assessing if neutrophil uptake of TcSnC was inhibited by a monoclonal antibody (mAb) directed at the CD11b component of CR3. We tested if TcSnC-labeled neutrophils show altered activation or priming status, comparing FACS side scatter in labeled and unlabeled neutrophils and examining the effect of lipopolysaccharide (LPS), a known priming agent. Results: Anti-CD11b mAb reduced neutrophil uptake of TcSnC in a dose-dependent fashion. Labeled neutrophils did not show significantly increased side scatter compared to controls. LPS significantly increased side scatter in control cells and labeled neutrophils. However, the increase was significantly greater in labeled neutrophils than unlabeled cells. Conclusions: Neutrophil labeling with TcSnC is related to the function of CR3, a receptor which plays a central role in phagocytosis. TcSnC labeling did not significantly activate or prime neutrophils. However, labeled neutrophils showed a greater priming response to LPS. This could result in labeled neutrophils demonstrating increased adhesion on activated endothelium at sites of infection.

  1. Epic Immune Battles of History: Neutrophils vs. Staphylococcus aureus

    Science.gov (United States)

    Guerra, Fermin E.; Borgogna, Timothy R.; Patel, Delisha M.; Sward, Eli W.; Voyich, Jovanka M.

    2017-01-01

    Neutrophils are the most abundant leukocytes in human blood and the first line of defense after bacteria have breached the epithelial barriers. After migration to a site of infection, neutrophils engage and expose invading microorganisms to antimicrobial peptides and proteins, as well as reactive oxygen species, as part of their bactericidal arsenal. Ideally, neutrophils ingest bacteria to prevent damage to surrounding cells and tissues, kill invading microorganisms with antimicrobial mechanisms, undergo programmed cell death to minimize inflammation, and are cleared away by macrophages. Staphylococcus aureus (S. aureus) is a prevalent Gram-positive bacterium that is a common commensal and causes a wide range of diseases from skin infections to endocarditis. Since its discovery, S. aureus has been a formidable neutrophil foe that has challenged the efficacy of this professional assassin. Indeed, proper clearance of S. aureus by neutrophils is essential to positive infection outcome, and S. aureus has developed mechanisms to evade neutrophil killing. Herein, we will review mechanisms used by S. aureus to modulate and evade neutrophil bactericidal mechanisms including priming, activation, chemotaxis, production of reactive oxygen species, and resolution of infection. We will also highlight how S. aureus uses sensory/regulatory systems to tailor production of virulence factors specifically to the triggering signal, e.g., neutrophils and defensins. To conclude, we will provide an overview of therapeutic approaches that may potentially enhance neutrophil antimicrobial functions. PMID:28713774

  2. A Neutrophil Proteomic Signature in Surgical Trauma Wounds

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2018-03-01

    Full Text Available Non-healing wounds continue to be a clinical challenge for patients and medical staff. These wounds have a heterogeneous etiology, including diabetes and surgical trauma wounds. It is therefore important to decipher molecular signatures that reflect the macroscopic process of wound healing. To this end, we collected wound sponge dressings routinely used in vacuum assisted therapy after surgical trauma to generate wound-derived protein profiles via global mass spectrometry. We confidently identified 311 proteins in exudates. Among them were expected targets belonging to the immunoglobulin superfamily, complement, and skin-derived proteins, such as keratins. Next to several S100 proteins, chaperones, heat shock proteins, and immune modulators, the exudates presented a number of redox proteins as well as a discrete neutrophil proteomic signature, including for example cathepsin G, elastase, myeloperoxidase, CD66c, and lipocalin 2. We mapped over 200 post-translational modifications (PTMs; cysteine/methionine oxidation, tyrosine nitration, cysteine trioxidation to the proteomic profile, for example, in peroxiredoxin 1. Investigating manually collected exudates, we confirmed presence of neutrophils and their products, such as microparticles and fragments containing myeloperoxidase and DNA. These data confirmed known and identified less known wound proteins and their PTMs, which may serve as resource for future studies on human wound healing.

  3. Neutrophils, from marrow to microbes

    DEFF Research Database (Denmark)

    Borregaard, Niels

    2010-01-01

    Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage...

  4. Influence of recombinant bovine gamma interferon on neutrophil function

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, M.J.

    1987-01-01

    To determine the role of cytokines in enhancing neutrophil function, peripheral blood neutrophils from healthy cattle were preincubated with recombinant bovine gamma interferon (rboIFN-gamma). Pretreatment of neutrophils with rboIFN-gamma activated neutrophils to have enhanced antibody-dependent (ADCC) and -independent (AINC) cytotoxicity and impaired random migration. Neutrophil ingestion, superoxide anion production, and iodination activity were not consistently affected by rboIFN-gamma pretreatment. In order to better understand the activation process, the molecular events involved in the enhancement of neutrophil cytotoxicity and the inhibition random migration were investigated. Both RNA and protein syntheses by neutrophils were required for the enhancement of AINC activity and the inhibition of random migration, but were not required for the enhancement of ADCC by rboIFN-gamma. Specifically, rbo-IFN-gamma treatment of neutrophils enhanced the expression of two major proteins of molecular mass 60,000 and 94,000 as determined by SDS-polyacrylamide, linear-gradient gel electrophoresis and /sup 35/S-fluorography.

  5. Gβ1 is required for neutrophil migration in zebrafish.

    Science.gov (United States)

    Ke, Wenfan; Ye, Ding; Mersch, Kacey; Xu, Hui; Chen, Songhai; Lin, Fang

    2017-08-01

    Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae Protect Mice against Elastase-Induced Emphysema

    Directory of Open Access Journals (Sweden)

    Ellen Games

    2016-10-01

    Full Text Available Background: Chronic obstructive pulmonary disease (COPD is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes (p-cymene, carvacrol and thymol isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae. Methods: Mices received porcine pancreatic elastase (PPE and were treated with p-cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. Results: In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1β, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF, and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma (p < 0.05. All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide (p < 0.05. Conclusion: Monoterpenes p-cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.

  7. Structurally Related Monoterpenes p-Cymene, Carvacrol and Thymol Isolated from Essential Oil from Leaves of Lippia sidoides Cham. (Verbenaceae) Protect Mice against Elastase-Induced Emphysema.

    Science.gov (United States)

    Games, Ellen; Guerreiro, Marina; Santana, Fernanda R; Pinheiro, Nathalia M; de Oliveira, Emerson A; Lopes, Fernanda D T Q S; Olivo, Clarice R; Tibério, Iolanda F L C; Martins, Mílton A; Lago, João Henrique G; Prado, Carla M

    2016-10-20

    Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes ( p -cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). Mices received porcine pancreatic elastase (PPE) and were treated with p -cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1β, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma ( p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide ( p < 0.05). Monoterpenes p -cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.

  8. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Leonardo Iula

    2018-02-01

    AEBSF reduced IL-1β secretion. Moreover, IL-1β could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1β intersect azurophil granules content and that serine proteases also regulate IL-1β secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1β secretion in human neutrophils.

  9. Evaluation of Antiradical and Anti-Inflammatory Activities of Ethyl Acetate and Butanolic Subfractions of Agelanthus dodoneifolius (DC.) Polhill & Wiens (Loranthaceae) Using Equine Myeloperoxidase and Both PMA-Activated Neutrophils and HL-60 Cells

    Science.gov (United States)

    Boly, Rainatou; Franck, Thierry; Kohnen, Stephan; Lompo, Marius; Guissou, Innocent Pierre; Dubois, Jacques; Serteyn, Didier; Mouithys-Mickalad, Ange

    2015-01-01

    The ethyl acetate and n-butanolic subfractions of Agelanthus dodoneifolius were investigated for their antioxidant and antimyeloperoxidase (MPO) activities. The reactive oxygen species (ROS) generation was assessed by lucigenin-enhanced chemiluminescence (CL) and dichlorofluorescein- (DCF-) induced fluorescence techniques from phorbol myristate acetate- (PMA-) stimulated equine neutrophils and human myeloid cell line HL-60, respectively. In parallel, the effects of the tested subfractions were evaluated on the total MPO release by stimulated neutrophils and on the specific MPO activity by means of immunological assays. The results showed the potent activity of the butanolic subfraction, at least in respect of the chemiluminescence test (IC50 = 0.3 ± 0.1 µg/mL) and the ELISA and SIEFED assays (IC50 = 2.8 ± 1.2 µg/mL and 1.3 ± 1.0 µg/mL), respectively. However, the ethyl acetate subfraction was found to be the most potent in the DCF assay as at the highest concentration, DCF fluorescence intensity decreases of about 50%. Moreover, we demonstrated that the ethyl acetate subfraction was rich in catechin (16.51%) while it was not easy to identify the main compounds in the butanolic subfraction using the UPLC-MS/MS technique. Nevertheless, taken together, our results provide evidence that Agelanthus dodoneifolius subfractions may represent potential sources of natural antioxidants and of antimyeloperoxidase compounds. PMID:25821497

  10. Salmonella transiently reside in luminal neutrophils in the inflamed gut.

    Directory of Open Access Journals (Sweden)

    Yvonne Loetscher

    Full Text Available BACKGROUND: Enteric pathogens need to grow efficiently in the gut lumen in order to cause disease and ensure transmission. The interior of the gut forms a complex environment comprising the mucosal surface area and the inner gut lumen with epithelial cell debris and food particles. Recruitment of neutrophils to the intestinal lumen is a hallmark of non-typhoidal Salmonella enterica infections in humans. Here, we analyzed the interaction of gut luminal neutrophils with S. enterica serovar Typhimurium (S. Tm in a mouse colitis model. RESULTS: Upon S. Tm(wt infection, neutrophils transmigrate across the mucosa into the intestinal lumen. We detected a majority of pathogens associated with luminal neutrophils 20 hours after infection. Neutrophils are viable and actively engulf S. Tm, as demonstrated by live microscopy. Using S. Tm mutant strains defective in tissue invasion we show that pathogens are mostly taken up in the gut lumen at the epithelial barrier by luminal neutrophils. In these luminal neutrophils, S. Tm induces expression of genes typically required for its intracellular lifestyle such as siderophore production iroBCDE and the Salmonella pathogenicity island 2 encoded type three secretion system (TTSS-2. This shows that S. Tm at least transiently survives and responds to engulfment by gut luminal neutrophils. Gentamicin protection experiments suggest that the life-span of luminal neutrophils is limited and that S. Tm is subsequently released into the gut lumen. This "fast cycling" through the intracellular compartment of gut luminal neutrophils would explain the high fraction of TTSS-2 and iroBCDE expressing intra- and extracellular bacteria in the lumen of the infected gut. CONCLUSION: In conclusion, live neutrophils recruited during acute S. Tm colitis engulf pathogens in the gut lumen and may thus actively engage in shaping the environment of pathogens and commensals in the inflamed gut.

  11. Murine abdominal aortic aneurysm model by orthotopic allograft transplantation of elastase-treated abdominal aorta.

    Science.gov (United States)

    Liu, Zhenjie; Wang, Qiwei; Ren, Jun; Assa, Carmel Rebecca; Morgan, Stephanie; Giles, Jasmine; Han, Qi; Liu, Bo

    2015-12-01

    Murine models have proved instrumental in studying various aspects of abdominal aortic aneurysm (AAA), from identification of underlying pathophysiologic changes to the development of novel therapeutic strategies. In the current study, we describe a new model in which an elastase-treated donor aorta is transplanted to a recipient mouse and allowed to progress to aneurysm. We hypothesized that by transplanting an elastase-treated abdominal aorta of one genotype to a recipient mouse of a different genotype, one can differentiate pathophysiologic factors that are intrinsic to the aortic wall from those stemming from circulation and other organs. Elastase-treated aorta was transplanted to the infrarenal abdominal aorta of recipient mice by end-to-side microsurgical anastomosis. Heat-inactivated elastase-treated aorta was used as a control. Syngeneic transplants were performed with use of 12-week-old C57BL/6 littermates. Transplant grafts were harvested from recipient mice on day 7 or day 14 after surgery. The aneurysm outcome was measured by aortic expansion, elastin degradation, proinflammatory cytokine expression, and inflammatory cell infiltration and compared with that produced with the established, conventional elastase infusion model. The surgical technique success rate was 75.6%, and the 14-day survival rate was 51.1%. By day 14 after surgery, all of the elastase-treated transplanted abdominal aortas had dilated and progressed to AAAs, defined as 100% or more increase in the maximal external diameter compared with that measured before elastase perfusion, whereas none of the transplanted aortas pretreated with inactive elastase became aneurysmal (percentage increase in maximum aortic diameter: 159.36% ± 23.27%, transplanted elastase, vs 41.46% ± 9.34%, transplanted inactive elastase). Aneurysm parameters, including elastin degradation and infiltration of macrophages and T lymphocytes, were found to be identical to those observed in the conventional elastase

  12. Degradation of elastic fiber and elevated elastase expression in long head of biceps tendinopathy.

    Science.gov (United States)

    Wu, Yen-Ting; Su, Wei-Ren; Wu, Po-Ting; Shen, Po-Chuan; Jou, I-Ming

    2017-09-01

    Tendinopathy of the long head of the biceps (TLHB) involves various types of extracellular matrix degeneration, but previous studies have not evaluated elastic fibers. The purpose of this study was to investigate elastic fiber distribution in long head of the biceps (LHB). The TLHB tendons of 16 consecutive patients (eight men and eight women; average age of 55.75 years; age range of 40-71 years) were transected and harvested. Three cadaveric LHB tendons were used as the control group. The expression of collagen type I was decreased, but type III was increased in TLHB. Disruption of elastic fibers was particularly observed in grade II specimens where the level of elastase-positive staining was significantly higher than in grade I specimens. Elastic fibers were not observed in the grade III area, implying a higher expression of elastase than in the grade I area. Results of Western blotting showed that the expression of elastin was higher in the control group and the levels of elastin significantly decreased in grades II and III of TLHB. Levels of osteopontin and elastase were increased in primary culture of human tenocytes after experiencing elastic derived peptide treatment. These results suggested that elastase may be caused by the disruption of elastic fibers in the development of chronic tendinopathy and that elastic derived peptide may enhance elastase and osteopontin expression. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1919-1926, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  13. Crucial Involvement of Tumor-Associated Neutrophils in the Regulation of Chronic Colitis-Associated Carcinogenesis in Mice

    Science.gov (United States)

    Wang, Chen; Wang, Zhen; Gu, Hong-Yu; Du, Xiang; Zhou, Xiao-Yan; Zheng, Chun-Lei; Chi, Ya-Yun; Mukaida, Naofumi; Li, Ying-Yi

    2012-01-01

    Ulcerative colitis (UC) is a major form of chronic inflammation that can frequently progress to colon cancer. Several studies have demonstrated massive infiltration of neutrophils and macrophages into the lamina propria and submucosa in the progression of UC-associated colon carcinogenesis. Macrophages contribute to the development of colitis-associated colon cancer (CAC). However, the role of neutrophils is not well understood. To better understand the involvement of tumor-associated neutrophils (TANs) in the regulation of CAC, we used a mouse CAC model produced by administering azoxymethane (AOM), followed by repeated dextran sulfate sodium (DSS) ingestion. This causes severe colonic inflammation and subsequent development of multiple tumors in mice colon. We observed that colorectal mucosal inflammation became increasingly severe with AOM and DSS treatment. Macrophages infiltrated the lamina propria and submucosa, together with a marked increase in neutrophil infiltration. The chemokine CXCL2 increased in the lamina propria and submucosal regions of the colons of the treated mice, together with the infiltration of neutrophils expressing CXCR2, a specific receptor for CXCL2. This process was followed by neoplastic transformation. After AOM and DSS treatment, the mice showed enhanced production of metalloproteinase (MMP)-9 and neutrophil elastase (NE), accompanied by excessive vessel generation and cell proliferation. Moreover, CXCL2 promoted neutrophil recruitment and induced neutrophils to express MMP-9 and NE in vitro. Furthermore, administration of neutrophil-neutralizing antibodies after the last DSS cycle markedly reduced the number and size of tumors and decreased the expression of CXCR2, CXCL2, MMP-9, and NE. These observations indicate a crucial role for TANs in the initiation and progression of CAC and suggest that the CXCL2–CXCR2 axis might be useful in reducing the risk of UC-associated colon cancer. PMID:23272179

  14. Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Kun Shang

    Full Text Available Ulcerative colitis (UC is a major form of chronic inflammation that can frequently progress to colon cancer. Several studies have demonstrated massive infiltration of neutrophils and macrophages into the lamina propria and submucosa in the progression of UC-associated colon carcinogenesis. Macrophages contribute to the development of colitis-associated colon cancer (CAC. However, the role of neutrophils is not well understood. To better understand the involvement of tumor-associated neutrophils (TANs in the regulation of CAC, we used a mouse CAC model produced by administering azoxymethane (AOM, followed by repeated dextran sulfate sodium (DSS ingestion. This causes severe colonic inflammation and subsequent development of multiple tumors in mice colon. We observed that colorectal mucosal inflammation became increasingly severe with AOM and DSS treatment. Macrophages infiltrated the lamina propria and submucosa, together with a marked increase in neutrophil infiltration. The chemokine CXCL2 increased in the lamina propria and submucosal regions of the colons of the treated mice, together with the infiltration of neutrophils expressing CXCR2, a specific receptor for CXCL2. This process was followed by neoplastic transformation. After AOM and DSS treatment, the mice showed enhanced production of metalloproteinase (MMP-9 and neutrophil elastase (NE, accompanied by excessive vessel generation and cell proliferation. Moreover, CXCL2 promoted neutrophil recruitment and induced neutrophils to express MMP-9 and NE in vitro. Furthermore, administration of neutrophil-neutralizing antibodies after the last DSS cycle markedly reduced the number and size of tumors and decreased the expression of CXCR2, CXCL2, MMP-9, and NE. These observations indicate a crucial role for TANs in the initiation and progression of CAC and suggest that the CXCL2-CXCR2 axis might be useful in reducing the risk of UC-associated colon cancer.

  15. Evidence for a self-enforcing inflammation in neutrophil-mediated chronic diseases

    NARCIS (Netherlands)

    Overbeek, S.A.

    2011-01-01

    In summary, this thesis provides evidence for the self-sustaining role of neutrophils in the inflammatory state in the pathogenesis of COPD and CD. In active disease, neutrophils release proteolytic enzymes that breakdown collagen. One of the collagen fragments can be neutrophilic chemoattractant

  16. Effects of Granulocyte Colony-Stimulating Factor on Opsonin Receptor Expression and Neutrophil Antibacterial Activity in a Mouse Model of Severe Acute Pancreatitis.

    Science.gov (United States)

    Hong-Fang, Tuo; Yan-Hui, Peng; Lei, Bao; Wan-Xing, Zhang

    2017-05-09

    The antimicrobial function of neutrophils, which is dependent on opsonin receptors, deteriorates in severe acute pancreatitis (SAP). Granulocyte colony-stimulating factor (G-CSF) putatively enhanced levels of the opsonin receptors CD11b and CD32/16 in healthy human subjects, and provided protection against infection in animal models of SAP. A statistically convincing study of the effect of G-CSF on CD32/16 expression in an SAP model is lacking. We used a mouse model of SAP to investigate the association between G-CSF administration and CD32/16 levels on neutrophils and bacterial translocation. G-CSF or saline was subcutaneously injected into SAP-induced mice. The pancreases were histologically examined, and leukocytes were stained to count neutrophils. The expression of CD11b and CD32/16 on neutrophils was measured by flow cytometry, and bacterial translocation was observed by bacterial culture. The numbers of CD11b and CD32/16-positive neutrophils were significantly elevated in the SAP mice treated with G-CSF, and the mean fluorescence intensities of these receptors on neutrophils were significantly elevated. Bacterial translocations to cavity organs were suppressed from 17% to 6% by G-CSF treatment. Our results indicated that the number of neutrophils significantly increased with increasing expression of CD11b and CD32/16 and their mean fluorescence intensities (MFIs). This inhibited bacterial translocation to other organs. These results are in accord with other studies in SAP dogs and SAP mice. Our findings suggest that G-CSF was effective in protecting against bacterial infection in SAP mice.

  17. Effects of Granulocyte Colony-Stimulating Factor on Opsonin Receptor Expression and Neutrophil Antibacterial Activity in a Mouse Model of Severe Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Tuo Hong-Fang

    2017-05-01

    Full Text Available The antimicrobial function of neutrophils, which is dependent on opsonin receptors, deteriorates in severe acute pancreatitis (SAP. Granulocyte colony-stimulating factor (G-CSF putatively enhanced levels of the opsonin receptors CD11b and CD32/16 in healthy human subjects, and provided protection against infection in animal models of SAP. A statistically convincing study of the effect of G-CSF on CD32/16 expression in an SAP model is lacking. We used a mouse model of SAP to investigate the association between G-CSF administration and CD32/16 levels on neutrophils and bacterial translocation. G-CSF or saline was subcutaneously injected into SAP-induced mice. The pancreases were histologically examined, and leukocytes were stained to count neutrophils. The expression of CD11b and CD32/16 on neutrophils was measured by flow cytometry, and bacterial translocation was observed by bacterial culture.The numbers of CD11b and CD32/16-positive neutrophils were significantly elevated in the SAP mice treated with G-CSF, and the mean fluorescence intensities of these receptors on neutrophils were significantly elevated. Bacterial translocations to cavity organs were suppressed from 17% to 6% by G-CSF treatment. Our results indicated that the number of neutrophils significantly increased with increasing expression of CD11b and CD32/16 and their mean fluorescence intensities (MFIs. This inhibited bacterial translocation to other organs. These results are in accord with other studies in SAP dogs and SAP mice. Our findings suggest that G-CSF was effective in protecting against bacterial infection in SAP mice.

  18. INVITRO RELEASE OF NEUTROPHIL ELASTASE, MYELOPEROXIDASE AND BETA-GLUCURONIDASE IN PATIENTS WITH EMPHYSEMA AND HEALTHY-SUBJECTS

    NARCIS (Netherlands)

    RENKEMA, TEJ; POSTMA, DS; NOORDHOEK, JA; SLUITER, HJ; KAUFFMAN, HF

    1991-01-01

    Evidence is accumulating that cigarette smoking plays an important role in the protease-antiprotease imbalance in alpha-1-antitrypsin-sufficient emphysema. Since most smokers, however, do not develop emphysema, it has to be presumed that other factors in addition to smoking contribute to the origin

  19. Neutrophil Extracellular DNA Traps Induce Autoantigen Production by Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Youngwoo Choi

    2017-01-01

    Full Text Available The hypothesis of autoimmune involvement in asthma has received much recent interest. Autoantibodies, such as anti-cytokeratin (CK 18, anti-CK19, and anti-α-enolase antibodies, react with self-antigens and are found at high levels in the sera of patients with severe asthma (SA. However, the mechanisms underlying autoantibody production in SA have not been fully determined. The present study was conducted to demonstrate that neutrophil extracellular DNA traps (NETs, cytotoxic molecules released from neutrophils, are a key player in the stimulation of airway epithelial cells (AECs to produce autoantigens. This study showed that NETs significantly increased the intracellular expression of tissue transglutaminase (tTG but did not affect that of CK18 in AECs. NETs induced the extracellular release of both tTG and CK18 in a concentration-dependent manner. Moreover, NETs directly degraded intracellular α-enolase into small fragments. However, antibodies against neutrophil elastase (NE or myeloperoxidase (MPO attenuated the effects of NETs on AECs. Furthermore, each NET isolated from healthy controls (HC, nonsevere asthma (NSA, and SA had different characteristics. Taken together, these findings suggest that AECs exposed to NETs may exhibit higher autoantigen production, especially in SA. Therefore, targeting of NETs may represent a new therapy for neutrophilic asthma with a high level of autoantigens.

  20. Bottlenose dolphins (Tursiops truncatus do also cast neutrophil extracellular traps against the apicomplexan parasite Neospora caninum

    Directory of Open Access Journals (Sweden)

    R. Villagra-Blanco

    2017-12-01

    Full Text Available Neutrophil extracellular traps (NETs are web-like structures composed of nuclear DNA decorated with histones and cytoplasmic peptides which antiparasitic properties have not previously been investigated in cetaceans. Polymorphonuclear neutrophils (PMN were isolated from healthy bottlenose dolphins (Tursiops truncatus, and stimulated with Neospora caninum tachyzoites and the NETs-agonist zymosan. In vitro interactions of PMN with the tachyzoites resulted in rapid extrusion of NETs. For the demonstration and quantification of cetacean NETs, extracellular DNA was stained by using either Sytox Orange® or Pico Green®. Scanning electron microscopy (SEM and fluorescence analyses demonstrated PMN-derived release of NETs upon exposure to tachyzoites of N. caninum. Co-localization studies of N. caninum induced cetacean NETs proved the presence of DNA adorned with histones (H1, H2A/H2B, H3, H4, neutrophil elastase (NE, myeloperoxidase (MPO and pentraxin (PTX confirming the molecular properties of mammalian NETosis. Dolphin-derived N. caninum-NETosis were efficiently suppressed by DNase I and diphenyleneiodonium (DPI treatments. Our results indicate that cetacean-derived NETs represent an ancient, conserved and relevant defense effector mechanism of the host innate immune system against N. caninum and probably other related neozoan parasites circulating in the marine environment. Keywords: Tursiops truncatus, cetaceans, Neutrophil extracellular traps, Innate immunity, Neospora caninum.

  1. The emerging role of neutrophils in thrombosis – The journey of TF through NETs

    Directory of Open Access Journals (Sweden)

    Konstantinos eKambas

    2012-12-01

    Full Text Available The production of TF by neutrophils and their contribution in thrombosis was until recently a matter of scientific debate. Experimental data suggested the de novo TF production by neutrophils under inflammatory stimuli, while others proposed that these cells acquired microparticle-derived TF. Recent experimental evidence revealed the critical role of neutrophils in thrombotic events. Neutrophil derived TF has been implicated in this process in several human and animal models. Additionally, neutrophil extracellular trap (NET release has emerged as a major contributor in neutrophil-driven thrombogenicity in disease models including sepsis, deep venous thrombosis and malignancy. It is suggested that NETs provide the scaffold for fibrin deposition and platelet entrapment and subsequent activation. The recently reported autophagy-dependent extracellular delivery of TF in NETs further supports the involvement of neutrophils in thrombosis. Herein, we seek to review novel data regarding the role of neutrophils in thrombosis, emphasizing the implication of TF and NETs.

  2. Stabilization of porcine pancreatic elastase crystals by glutaraldehyde cross-linking.

    Science.gov (United States)

    Hofbauer, Stefan; Brito, José A; Mulchande, Jalmira; Nogly, Przemyslaw; Pessanha, Miguel; Moreira, Rui; Archer, Margarida

    2015-10-01

    Elastase is a serine protease from the chymotrypsin family of enzymes with the ability to degrade elastin, an important component of connective tissues. Excessive elastin proteolysis leads to a number of pathological diseases. Porcine pancreatic elastase (PPE) is often used for drug development as a model for human leukocyte elastase (HLE), with which it shares high sequence identity. Crystals of PPE were grown overnight using sodium sulfate and sodium acetate at acidic pH. Cross-linking the crystals with glutaraldehyde was needed to resist the soaking procedure with a diethyl N-(methyl)pyridinyl-substituted oxo-β-lactam inhibitor. Crystals of PPE bound to the inhibitor belonged to the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a = 51.0, b = 58.3, c = 74.9 Å, and diffracted to 1.8 Å resolution using an in-house X-ray source.

  3. Urinary and serum soluble CD25 complements urinary soluble CD163 to detect active renal anti-neutrophil cytoplasmic autoantibody-associated vasculitis: a cohort study.

    Science.gov (United States)

    Dekkema, Gerjan J; Abdulahad, Wayel H; Bijma, Theo; Moran, Sarah M; Ryan, Louise; Little, Mark A; Stegeman, Coen A; Heeringa, Peter; Sanders, Jan-Stephan F

    2018-03-01

    Early detection of renal involvement in anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is of major clinical importance to allow prompt initiation of treatment and limit renal damage. Urinary soluble cluster of differentiation 163 (usCD163) has recently been identified as a potential biomarker for active renal vasculitis. However, a significant number of patients with active renal vasculitis test negative using usCD163. We therefore studied whether soluble CD25 (sCD25), a T cell activation marker, could improve the detection of renal flares in AAV. sCD25 and sCD163 levels in serum and urine were measured by enzyme-linked immunosorbent assay in 72 patients with active renal AAV, 20 with active extrarenal disease, 62 patients in remission and 18 healthy controls. Urinary and blood CD4+ T and CD4+ T effector memory (TEM) cell counts were measured in 22 patients with active renal vasculitis. Receiver operating characteristics (ROC) curves were generated and recursive partitioning was used to calculate whether usCD25 and serum soluble CD25 (ssCD25) add utility to usCD163. usCD25, ssCD25 and usCD163 levels were significantly higher during active renal disease and significantly decreased after induction of remission. A combination of usCD25, usCD163 and ssCD25 outperformed all individual markers (sensitivity 84.7%, specificity 95.1%). Patients positive for sCD25 but negative for usCD163 (n = 10) had significantly higher C-reactive protein levels and significantly lower serum creatinine and proteinuria levels compared with the usCD163-positive patients. usCD25 correlated positively with urinary CD4+ T and CD4+ TEM cell numbers, whereas ssCD25 correlated negatively with circulating CD4+ T and CD4+ TEM cells. Measurement of usCD25 and ssCD25 complements usCD163 in the detection of active renal vasculitis.

  4. Haptoglobin is synthesized during granulocyte differentiation, stored in specific granules, and released by neutrophils in response to activation

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Jacobsen, Lars C; Nielsen, Marianne J

    2006-01-01

    Haptoglobin (Hp) is a plasma protein synthesized primarily by hepatocytes. It exerts a broad range of anti-inflammatory activities and acts indirectly as a bacteriostatic agent and an antioxidant by virtue of its ability to bind free hemoglobin (Hb) and to facilitate its immediate clearance by ma...

  5. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice.

    Science.gov (United States)

    Dong, Hui; Huang, Yanmei; Yao, Shuwen; Liang, Bingshao; Long, Yan; Xie, Yongqiang; Mai, Jialiang; Gong, Sitang; Zhou, Zhenwen

    2017-07-01

    The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4 + CD25 + Foxp3 + Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4 + CD25 + Foxp3 + Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4 + CD25 + Foxp3 + Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.

  6. Antioxidant activity of Calendula officinalis extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Falchi, Mario; Bertelli, Aldo; Morelli, Roberto; Lo Scalzo, Roberto

    2009-01-01

    There is growing interest in natural chemical compounds from aromatic, spicy, medicinal and other plants with antioxidant properties in order to find new sources of compounds inactivating free radicals generated by metabolic pathways within body tissue and cells, mainly polymorphonuclear leukocytes (PMNs) whose overregulated recruitment and activation generate a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to an imbalance of redox homeostasis and oxidative stress. The aim of this study was to examine whether a propylene glycol extract of Calendula officinalis interferes with ROS and RNS during the PMN respiratory bursts, and to establish the lowest concentration at which it still exerts antioxidant activity by means of luminol-amplified chemiluminescence. Electron paramagnetic resonance (EPR) spectroscopy was also used in order to confirm the activity of the C. officinalis extract. The C. officinalis extract exerted its anti-ROS and anti-RNS activity in a concentration-dependent manner, with significant effects being observed at even very low concentrations: 0.20 microg/ml without L-arginine, 0.10 microg/ml when L-arginine was added to the test with phorbol 12-myristate 13-acetate and 0.05 microg/ml when it was added to the test with N-formyl-methionyl-leucyl-phenylalanine. The EPR study confirmed these findings, 0.20 microg/ml being the lowest concentration of C. officinalis extract that significantly reduced 2,2-diphenyl-1-picrylhydrazyl. These findings are interesting for improving the antioxidant network and restoring the redox balance in human cells with plant-derived molecules as well as extending the possibility of antagonizing the oxidative stress generated in living organisms when the balance is in favor of free radicals as a result of the depletion of cell antioxidants. Copyright 2009 S. Karger AG, Basel.

  7. Effects of dietary supplementation of Chinese medicinal herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs.

    Science.gov (United States)

    Huang, C W; Lee, T T; Shih, Y C; Yu, B

    2012-04-01

    The purpose of this study was to evaluate the effects of dietary Chinese medicinal herbs (CMH) supplementation composed of Panax ginseng, Dioscoreaceae opposite, Atractylodes macrocephala, Glycyrrhiza uralensis, Ziziphus jujube and Platycodon grandiflorum, on the performance, intestinal tract morphology and immune activity in weanling pigs. Two hundred and forty weaned pigs were assigned randomly to four dietary groups including the negative control (basal diet), 0.1% CMH, 0.3% CMH and 0.114% antibiotic (Chlortetracycline calcium Complex, Sulfathiazole and Procaine Penicillin G) supplementation groups for a 28-day feeding trial. Results indicated that both CMH supplementation groups had a better gain and feed/gain than control group (CT) during the first 2 weeks of the experimental period. The 0.3% CMH had a significant decrease in the diarrhoea score in first 10 days of experimental period when compared with other groups. The CMH supplementation groups had a higher villous height, increased lactobacilli counts in digesta of ileum and decreased coliform counts in colon compared with CT. The immune activities of polymorphonuclear leucocytes (PMNs), including the respiratory burst and Salmonella-killing ability, were significantly enhanced in CMH supplementation groups at day 7 of experiment period. The CMH and antibiotic supplementations increased the nutrient digestibility such as dietary dry matter, crude protein and gross energy in weanling pigs. In conclusion, the dietary CMH supplementation improved intestinal morphology and immune activities of PMNs, thus giving rise to nutrient digestibility and reduce diarrhoea frequency in weanling pigs. © 2011 Blackwell Verlag GmbH.

  8. A Pepducin Derived from the Third Intracellular Loop of FPR2 Is a Partial Agonist for Direct Activation of This Receptor in Neutrophils But a Full Agonist for Cross-Talk Triggered Reactivation of FPR2

    DEFF Research Database (Denmark)

    Gabl, Michael; Winther, Malene; Skovbakke, Sarah Line

    2014-01-01

    We recently described a novel receptor cross-talk mechanism in neutrophils, unique in that the signals generated by the PAF receptor (PAFR) and the ATP receptor (P2Y2R) transfer formyl peptide receptor 1 (FPR1) from a desensitized (non-signaling) state back to an actively signaling state (Forsman H...... et al., PLoS One, 8:e60169, 2013; Önnheim K, et al., Exp Cell Res, 323:209, 2014). In addition to the G-protein coupled FPR1, neutrophils also express the closely related receptor FPR2. In this study we used an FPR2 specific pepducin, proposed to work as an allosteric modulator at the cytosolic...... signaling interface, to determine whether the cross-talk pathway is utilized also by FPR2. The pepducin used contains a fatty acid linked to a peptide sequence derived from the third intracellular loop of FPR2, and it activates as well as desensensitizes this receptor. We now show that neutrophils...

  9. The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing

    DEFF Research Database (Denmark)

    Theilgaard-Monch, K.; Knudsen, Steen; Follin, P.

    2004-01-01

    of PMNs. Among the up-regulated genes were cytokines and chemokines critical for chemotaxis of macrophages, T cells, and PMNs, and for the modulation of their inflammatory responses. PMNs in skin lesions down-regulated receptors mediating chemotaxis and anti-microbial activity, but up-regulated other....... These included the breakdown of fibrin clots and degradation of extracellular matrix, the promotion of angiogenesis, the migration and proliferation of keratinocytes and fibroblasts, the adhesion of keratinocytes to the dermal layer, and finally, the induction of anti-microbial gene expression in keratinocytes...

  10. Neutrophils Induced Licensing of Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Keishiro Amano

    2015-01-01

    Full Text Available Natural killer (NK cells acquire effector function through a licensing process and exert anti-leukemia/tumor effect. However, there is no means to promote a licensing effect of allogeneic NK cells other than cytomegalovirus reactivation-induced licensing in allogeneic hematopoietic stem cell transplantation in human. In mice, a licensing process is mediated by Ly49 receptors which recognize self-major histocompatibility complex class I. The distribution of four Ly49 receptors showed similar pattern in congenic mice, B10, B10.BR, and B10.D2, which have B10 background. Forty Gy-irradiated 2×106 B10.D2 cells including splenocytes, peripheral blood mononuclear cells in untreated mice, or granulocyte colony-stimulating factor treated mice were injected intraperitoneally into B10 mice. We found that murine NK cells were effectively licensed by intraperitoneal injection of donor neutrophils with its corresponding NK receptor ligand in B10 mice as a recipient and B10.D2 as a donor. Mechanistic studies revealed that NK cells showed the upregulation of intracellular interferon-γ and CD107a expression as markers of NK cell activation. Moreover, enriched neutrophils enhanced licensing effect of NK cells; meanwhile, licensing effect was diminished by depletion of neutrophils. Collectively, injection of neutrophils induced NK cell licensing (activation via NK receptor ligand interaction.

  11. MAC-1 Glycoprotein Family mediates adherence of neutrophils to endothelial cells stimulated by leukotriene B/sub 4/ and platelet activating factor

    Energy Technology Data Exchange (ETDEWEB)

    Tonnesen, M.G.; Anderson, D.C.; Springer, T.A.; Knedler, A.; Avdi, N.; Henson, P.M.

    1986-03-01

    The process of neutrophil (N) adhesion to and migration through endothelium (EC), an early event in the induction of the acute inflammatory response, has been attributed to the generation of extravascular chemoattractant peptides and lipids. Although both leukotriene B/sub 4/ (LTB/sub 4/) and platelet activating factor (PAF) enhance N adherence to EC, the mechanisms involved in this interaction are still not completely understood. Since the MAC-1 Glycoprotein (GP) Family has recently been shown to be required for a variety of adherence-dependent functions of stimulated N, the authors questioned whether these adherence-associated GP might be involved in N adherence to EC stimulated by LTB/sub 4/ or PAF. Using a microtiter adherence assay with /sup 111/In labeled N, they assessed the ability of N from patients with MAC-1, LFA-1 Deficiency to adhere to monolayers of human omental microvascular or umbilical vein EC as well as to serum-coated plastic. Patient N exhibited markedly diminished adherence in response to LTB/sub 4/ or PAF compared to normal controls. LTB/sub 4/ and PAF enhanced expression of the MAC-1 GP Family on the surface of normal N as determined by flow cytofluorimetry using a monoclonal antibody (TS1/18) to the GP common beta subunit. In addition TS1/18 (20 ..mu..g/ml) completely inhibited N adherence stimulated by either LTB/sub 4/ (10/sup -8/M) or PAF(10/sup -11/M). Thus, the MAC-1 GP Family appears to be important in chemotactic factor regulation of N adherence to EC.

  12. Release of adenosine from human neutrophils stimulated by platelet activating factor, leukotriene B4 and opsonized zymosan

    Directory of Open Access Journals (Sweden)

    S. Sipka

    1992-01-01

    Full Text Available Isolated human polymorphonuclear leukocytes (PMNL stimulated by platelet activating factor (PAF, leukotriene B4 (LTB4 or opsonized zymosan (OZ released adenosine measured by thermospray high performance liquid chromatography mass spectrometry in the cell-free supernatants. Stimulation by PAF or LTB4 resulted in a bellshaped concentration-effect curve; 5 × 10−7 M PAF, 10−8 M LTB4 and 500 μg ml−1 OZ induced peak adenosine release, thus cytotoxic concentrations did not elevate adenosine level in the supernatants. Therefore adenosine release was characteristic of viable cells. As calculated from concentration-effect curves, the rank order of potency for adenosine release was PAF > LTB > OZ. These resuits suggest that adenosine, when bound specifically to membrane receptor sites, may initiate signal transduction, and, in co-operation with other inflammatory mediators, may modulate phagocyte function, e.g. production of chemoluminescence (CL.

  13. Factor XII and uPAR upregulate neutrophil functions to influence wound healing.

    Science.gov (United States)

    Stavrou, Evi X; Fang, Chao; Bane, Kara L; Long, Andy T; Naudin, Clément; Kucukal, Erdem; Gandhi, Agharnan; Brett-Morris, Adina; Mumaw, Michele M; Izadmehr, Sudeh; Merkulova, Alona; Reynolds, Cindy C; Alhalabi, Omar; Nayak, Lalitha; Yu, Wen-Mei; Qu, Cheng-Kui; Meyerson, Howard J; Dubyak, George R; Gurkan, Umut A; Nieman, Marvin T; Sen Gupta, Anirban; Renné, Thomas; Schmaier, Alvin H

    2018-01-29

    Coagulation factor XII (FXII) deficiency is associated with decreased neutrophil migration, but the mechanisms remain uncharacterized. Here, we examine how FXII contributes to the inflammatory response. In 2 models of sterile inflammation, FXII-deficient mice (F12-/-) had fewer neutrophils recruited than WT mice. We discovered that neutrophils produced a pool of FXII that is functionally distinct from hepatic-derived FXII and contributes to neutrophil trafficking at sites of inflammation. FXII signals in neutrophils through urokinase plasminogen activator receptor-mediated (uPAR-mediated) Akt2 phosphorylation at S474 (pAktS474). Downstream of pAkt2S474, FXII stimulation of neutrophils upregulated surface expression of αMβ2 integrin, increased intracellular calcium, and promoted extracellular DNA release. The sum of these activities contributed to neutrophil cell adhesion, migration, and release of neutrophil extracellular traps in a process called NETosis. Decreased neutrophil signaling in F12-/- mice resulted in less inflammation and faster wound healing. Targeting hepatic F12 with siRNA did not affect neutrophil migration, whereas WT BM transplanted into F12-/- hosts was sufficient to correct the neutrophil migration defect in F12-/- mice and restore wound inflammation. Importantly, these activities were a zymogen FXII function and independent of FXIIa and contact activation, highlighting that FXII has a sophisticated role in vivo that has not been previously appreciated.

  14. The antimicrobial peptide LL-37 modulates the inflammatory and host defense response of human neutrophils.

    Science.gov (United States)

    Alalwani, Sadek M; Sierigk, Johannes; Herr, Christian; Pinkenburg, Olaf; Gallo, Richard; Vogelmeier, Claus; Bals, Robert

    2010-04-01

    The human cathelicidin antimicrobial peptide acts as an effector molecule of the innate immune system with direct antimicrobial and immunomodulatory effects. The aim of this study was to test whether the cathelicidin LL-37 modulates the response of neutrophils to microbial stimulation. Human neutrophils were exposed to LPS, Staphylococcus aureus and Pseudomonas aeruginosa subsequent to incubation with LL-37 and cytokine release was measured by ELISA. The incubation with LL-37 significantly decreased the release of proinflammatory cytokines from stimulated human neutrophils. ROS production of neutrophils was determined by a luminometric and a flow cytometry method. The peptide induced the production of ROS and the engulfment of bacteria into neutrophils. Peritoneal mouse neutrophils isolated from CRAMP-deficient and WT animals were treated with LPS and TNF-alpha in the supernatant was measured by ELISA. Antimicrobial activity of neutrophils was detected by incubating neutrophils isolated from CRAMP-knockout and WT mice with bacteria. Neutrophils from CRAMP-deficient mice released significantly more TNF-alpha after bacterial stimulation and showed decreased antimicrobial activity as compared to cells from WT animals. In conclusion, LL-37 modulates the response of neutrophils to bacterial activation. Cathelicidin controls the release of inflammatory mediators while increasing antimicrobial activity of neutrophils.

  15. Activation of neutrophils and inhibition of the proinflammatory cytokine response by endogenous granulocyte colony-stimulating factor in murine pneumococcal pneumonia

    NARCIS (Netherlands)

    Knapp, Sylvia; Hareng, Lars; Rijneveld, Anita W.; Bresser, Paul; van der Zee, Jaring S.; Florquin, Sandrine; Hartung, Thomas; van der Poll, Tom

    2004-01-01

    Granulocyte colony-stimulating factor (G-CSF) is considered to improve host defense during infection, via increased recruitment of and enhanced performance of neutrophils and subsequent inhibition of potentially harmful proinflammatory mediators. The present study sought to determine the role of

  16. Human neutrophil alloantigens systems

    Directory of Open Access Journals (Sweden)

    Elyse Moritz

    2009-09-01

    Full Text Available Neutrophil alloantigens are involved in a variety of clinical conditions including immune neutropenias, transfusion-related acute lung injury (TRALI, refractoriness to granulocyte transfusions and febrile transfusion reactions. In the last decade, considerable progress has been made in the characterization of the implicated antigens. Currently, seven antigens are assigned to five human neutrophil antigen (HNA systems. The HNA-1a, HNA-1b and HNA-1c antigens have been identified as polymorphic forms of the neutrophil Fcγ receptor IIIb (CD16b, encoded by three alleles. Recently, the primary structure of the HNA-2a antigen was elucidated and the HNA-2a-bearing glycoprotein was identified as a member of the Ly-6/uPAR superfamily, which has been clustered as CD177. The HNA-3a antigen is located on a 70-95 kDa glycoprotein; however, its molecular basis is still unknown. Finally, the HNA-4a and HNA-5a antigens were found to be caused by single nucleotide mutations in the αM (CD11b and αL (CD11a subunits of the leucocyte adhesion molecules (β2 integrins. Molecular and biochemical characterization of neutrophil antigenshave expanded our diagnostic tools by the introduction of genotyping techniques and immunoassays for antibody identification. Further studies in the field of neutrophil immunology will facilitate the prevention and management of transfusion reactions and immune diseases caused by neutrophil antibodies.Os aloantígenos de neutrófilos estão associados a várias condições clínicas como neutropenias imunes, insuficiência pulmonar relacionada à transfusão (TRALI, refratariedade à transfusão de granulócitos, e reações transfusionais febris. Na última década, foi observado considerável progresso na caracterização dos aloantígenos envolvidos nestas condições clínicas. Atualmente sete antígenos estão incluídos em cinco sistemas de antígenos de neutrófilo humano (HNA. Os antígenos HNA-1a, HNA-1b e HNA-1c foram

  17. Neutrophils are a major source of the epithelial barrier disrupting cytokine oncostatin M in patients with mucosal airways disease.

    Science.gov (United States)

    Pothoven, Kathryn L; Norton, James E; Suh, Lydia A; Carter, Roderick G; Harris, Kathleen E; Biyasheva, Assel; Welch, Kevin; Shintani-Smith, Stephanie; Conley, David B; Liu, Mark C; Kato, Atsushi; Avila, Pedro C; Hamid, Qutayba; Grammer, Leslie C; Peters, Anju T; Kern, Robert C; Tan, Bruce K; Schleimer, Robert P

    2017-06-01

    We have previously shown that oncostatin M (OSM) levels are increased in nasal polyps (NPs) of patients with chronic rhinosinusitis (CRS), as well as in bronchoalveolar lavage fluid, after segmental allergen challenge in allergic asthmatic patients. We also showed in vitro that physiologic levels of OSM impair barrier function in differentiated airway epithelium. We sought to determine which hematopoietic or resident cell type or types were the source of the OSM expressed in patients with mucosal airways disease. Paraffin-embedded NP sections were stained with fluorescence-labeled specific antibodies against OSM, GM-CSF, and hematopoietic cell-specific markers. Live cells were isolated from NPs and matched blood samples for flow cytometric analysis. Neutrophils were isolated from whole blood and cultured with the known OSM inducers GM-CSF and follistatin-like 1, and OSM levels were measured in the supernatants. Bronchial biopsy sections from control subjects, patients with moderate asthma, and patients with severe asthma were stained for OSM and neutrophil elastase. OSM staining was observed in NPs, showed colocalization with neutrophil elastase (n = 10), and did not colocalize with markers for eosinophils, macrophages, T cells, or B cells (n = 3-5). Flow cytometric analysis of NPs (n = 9) showed that 5.1% ± 2% of CD45 + cells were OSM + , and of the OSM + cells, 56% ± 7% were CD16 + Siglec-8 - , indicating neutrophil lineage. Only 0.6 ± 0.4% of CD45 + events from matched blood samples (n = 5) were OSM + , suggesting that increased OSM levels in patients with CRS was locally stimulated and produced. A majority of OSM + neutrophils expressed arginase 1 (72.5% ± 12%), suggesting an N2 phenotype. GM-CSF levels were increased in NPs compared with those in control tissue and were sufficient to induce OSM production (P < .001) in peripheral blood neutrophils in vitro. OSM + neutrophils were also observed at increased levels in biopsy specimens

  18. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those ori...

  19. Effect of elastase and ventilation on elastic recoil of excised dog lungs.

    Science.gov (United States)

    Polzin, J K; Napier, J S; Taylor, J C; Rodarte, J R

    1979-03-01

    The effect of porcine pancreatic elastase and mechanical ventilation on tissue elastic recoil was examined in excised dog lung lobes. Lobes incubated for one hour with an elastase-buffer mixture showed a significant (P less than 0.001) left shift of the liquid-filled pressure-volume curve at all pressures measured (0 to 12 cm H2O) when compared to lobes treated with buffer only. These results suggest that the contribution of elastin to the elastic properties of lung tissue is greatest at mid-lung volumes, but that it also contributes to delimiting maximal lung volume. Elastase and buff-treated lobes were inflated cyclically with humidified air to a pressure of 20 cm H2O 6 times per min during a 16-hour period. This mechanical ventilation caused no further decrease of tissue elastic recoil. Ventilation did cause an unexpected increase in the elastic recoil of liquid-filled lobes that was significant at pressures of 4 cm H2O (P less than 0.025) or more (P less than 0.001). Elastase and buffer-treated lobes showed an almost identical rightward shift of the pressure-volume curve after ventilation when compared to the respective nonventilated control lobes. This increased recoil cannot be attributed to altered surface tension.

  20. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Science.gov (United States)

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  1. Multiple Phenotypic Changes Define Neutrophil Priming

    Science.gov (United States)

    Miralda, Irina; Uriarte, Silvia M.; McLeish, Kenneth R.

    2017-01-01

    Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses. PMID:28611952

  2. Multiple Phenotypic Changes Define Neutrophil Priming

    Directory of Open Access Journals (Sweden)

    Irina Miralda

    2017-05-01

    Full Text Available Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.

  3. Multiple Phenotypic Changes Define Neutrophil Priming.

    Science.gov (United States)

    Miralda, Irina; Uriarte, Silvia M; McLeish, Kenneth R

    2017-01-01

    Exposure to pro-inflammatory cytokines, chemokines, mitochondrial contents, and bacterial and viral products induces neutrophils to transition from a basal state into a primed one, which is currently defined as an enhanced response to activating stimuli. Although, typically associated with enhanced generation of reactive oxygen species (ROS) by the NADPH oxidase, primed neutrophils show enhanced responsiveness of exocytosis, NET formation, and chemotaxis. Phenotypic changes associated with priming also include activation of a subset of functions, including adhesion, transcription, metabolism, and rate of apoptosis. This review summarizes the breadth of phenotypic changes associated with priming and reviews current knowledge of the molecular mechanisms behind those changes. We conclude that the current definition of priming is too restrictive. Priming represents a combination of enhanced responsiveness and activated functions that regulate both adaptive and innate immune responses.

  4. Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment.

    Science.gov (United States)

    Michaeli, Janna; Shaul, Merav E; Mishalian, Inbal; Hovav, Avi-Hai; Levy, Liran; Zolotriov, Lidia; Granot, Zvi; Fridlender, Zvi G

    2017-01-01

    The role of neutrophils in tumor progression has become in recent years a subject of growing interest. Tumor-associated neutrophils (TANs), which constitute an important portion of the tumor microenvironment, promote immunosuppression in advanced tumors by modulating the proliferation, activation and recruitment of a variety of immune cell types. Studies which investigated the consequences of manipulating TAN polarization suggest that the impact of these neutrophils on tumor progression is considerably mediated by and dependent on the presence of CD8 T-cells. It has been previously shown that granulocytic myeloid regulatory cells, i.e. TANs and granulocytic myeloid-derived suppressor cells (G-MDSCs) are capable of suppressing CD8 T-cell proliferation and affect their activation. In the current study, we find that in addition, TANs isolated from different models of murine cancer promote immunosuppression by strongly inducing CD8 T-cell apoptosis. We demonstrate that the TNFα pathway in TANs is critical for the induction of apoptosis, and that the mechanism through which apoptosis is induced involves the production of NO, but not ROS. In the absence of pre-activation, TANs are capable of activating CD8 T-cells, but specifically induce the apoptosis of non-activated CD8 + CD69 - cells. Despite this contradictive effect on T-cell function, we show in vivo that TANs suppress the anti-tumor effect of CD8 T-cells and abolish their ability to delay tumor growth. Our results add another important layer on the understanding of the possible mechanisms by which TANs regulate the anti-tumor immune response mediated by CD8 T-cells, therefore promoting a tumor-supportive environment.

  5. Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells.

    Science.gov (United States)

    Tsai, Chung-Che; Kuo, Ting-Yu; Hong, Zhi-Wei; Yeh, Ying-Chieh; Shih, Kuo-Shun; Du, Shin-Yi; Fu, Hua-Wen

    2015-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP) activates several innate leukocytes including neutrophils, monocytes, and mast cells. It has been reported that HP-NAP induces degranulation and interleukin-6 (IL-6) secretion of rat peritoneal mast cells. However, the molecular mechanism is not very clear. Here, we show that HP-NAP activates human mast cell line-1 (HMC-1) cells to secrete histamine and IL-6. The secretion depends on pertussis toxin (PTX)-sensitive heterotrimeric G proteins but not on Toll-like receptor 2. Moreover, HP-NAP induces PTX-sensitive G protein-mediated activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38-mitogen-activated protein kinase (p38 MAPK), and Akt in HMC-1 cells. Inhibition of ERK1/2, p38 MAPK, or phosphatidylinositol 3-kinase (PI3K) suppresses HP-NAP-induced release of histamine and IL-6 from HMC-1 cells. Thus, the activation of HMC-1 cells by HP-NAP is through Gi-linked G protein-coupled receptor-mediated MAPKs and PI3K/Akt pathways.

  6. Antimicrobial peptides and nitric oxide production by neutrophils from periodontitis subjects

    Directory of Open Access Journals (Sweden)

    F.S. Mariano

    2012-11-01

    Full Text Available Neutrophils play an important role in periodontitis by producing nitric oxide (NO and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS, Porphyromonas gingivalis-LPS (Pg-LPS and Escherichia coli-LPS (Ec-LPS. qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens.

  7. Genomics of chronic neutrophilic leukemia

    Science.gov (United States)

    Maxson, Julia E.

    2017-01-01

    Chronic neutrophilic leukemia (CNL) is a distinct myeloproliferative neoplasm with a high prevalence (>80%) of mutations in the colony-stimulating factor 3 receptor (CSF3R). These mutations activate the receptor, leading to the proliferation of neutrophils that are a hallmark of CNL. Recently, the World Health Organization guidelines have been updated to include CSF3R mutations as part of the diagnostic criteria for CNL. Because of the high prevalence of CSF3R mutations in CNL, it is tempting to think of this disease as being solely driven by this genetic lesion. However, recent additional genomic characterization demonstrates that CNL has much in common with other chronic myeloid malignancies at the genetic level, such as the clinically related diagnosis atypical chronic myeloid leukemia. These commonalities include mutations in SETBP1, spliceosome proteins (SRSF2, U2AF1), and epigenetic modifiers (TET2, ASXL1). Some of these same mutations also have been characterized as frequent events in clonal hematopoiesis of indeterminate potential, suggesting a more complex disease evolution than was previously understood and raising the possibility that an age-related clonal process of preleukemic cells could precede the development of CNL. The order of acquisition of CSF3R mutations relative to mutations in SETBP1, epigenetic modifiers, or the spliceosome has been determined only in isolated case reports; thus, further work is needed to understand the impact of mutation chronology on the clonal evolution and progression of CNL. Understanding the complete landscape and chronology of genomic events in CNL will help in the development of improved therapeutic strategies for this patient population. PMID:28028025

  8. Fluid phase recognition molecules in neutrophil-dependent immune responses.

    Science.gov (United States)

    Jaillon, Sébastien; Ponzetta, Andrea; Magrini, Elena; Barajon, Isabella; Barbagallo, Marialuisa; Garlanda, Cecilia; Mantovani, Alberto

    2016-04-01

    The innate immune system comprises both a cellular and a humoral arm. Neutrophils are key effector cells of the immune and inflammatory responses and have emerged as a major source of humoral pattern recognition molecules (PRMs). These molecules, which include collectins, ficolins, and pentraxins, are specialised in the discrimination of self versus non-self and modified-self and share basic multifunctional properties including recognition and opsonisation of pathogens and apoptotic cells, activation and regulation of the complement cascade and tuning of inflammation. Neutrophils act as a reservoir of ready-made soluble PRMs, such as the long pentraxin PTX3, the peptidoglycan recognition protein PGRP-S, properdin and M-ficolin, which are stored in neutrophil granules and are involved in neutrophil effector functions. In addition, other soluble PRMs, such as members of the collectin family, are not expressed in neutrophils but can modulate neutrophil-dependent immune responses. Therefore, soluble PRMs are an essential part of the innate immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on molecules involved in neutrophil effector functions. Copyright © 2016. Published by Elsevier Ltd.

  9. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions

    NARCIS (Netherlands)

    Glogauer, Michael; Marchal, Christophe C.; Zhu, Fei; Worku, Aelaf; Clausen, Björn E.; Foerster, Irmgard; Marks, Peter; Downey, Gregory P.; Dinauer, Mary; Kwiatkowski, David J.

    2003-01-01

    Defects in myeloid cell function in Rac2 knockout mice underline the importance of this isoform in activation of NADPH oxidase and cell motility. However, the specific role of Rac1 in neutrophil function has been difficult to assess since deletion of Rac1 results in embryonic lethality in mice. To

  10. Targeting neutrophilic inflammation in severe neutrophilic asthma : can we target the disease-relevant neutrophil phenotype?

    NARCIS (Netherlands)

    Bruijnzeel, Piet L B; Uddin, Mohib; Koenderman, Leo

    2015-01-01

    In severe, neutrophilic asthma, neutrophils are thought to have an important role in both the maintenance of the disease and during exacerbations. These patients often display excessive, mucosal airway inflammation with unresolving neutrophilia. Because this variant of asthma is poorly controlled by

  11. Natural product HTP screening for attenuation of cytokine-induced neutrophil chemo attractants (CINCs) and NO2- in LPS/IFNγ activated glioma cells.

    Science.gov (United States)

    Mazzio, Elizabeth A; Bauer, David; Mendonca, Patricia; Taka, Equar; Soliman, Karam F A

    2017-01-15

    Chronic and acute central nervous system (CNS) inflammation are contributors toward neurological injury associated with head trauma, stroke, infection, Parkinsons or Alzheimers disease. CNS inflammatory illnesses can also contribute toward risk of developing glioblastoma multiforme (GBM). With growing public interest in complementary and alternative medicines (CAMs), we conduct a high throughput (HTP) screening of >1400 natural herbs, plants and over the counter (OTC) products for anti-inflammatory effects on lipopolysaccharide (LPS)/interferon gamma (IFNγ) activated C6 glioma cells. Validation studies were performed showing a pro-inflammatory profile of [LPS 3 µg/ml/ IFNγ 3 ng/ml] consistent with greater release [>8.5 fold] of MCP-1, NO2-, cytokine-induced neutrophil chemo-attractants (CINC) 1, CINC 2a and CINC3. The data show no changes to the following, IL-13, TNF-a, fracktaline, leptin, LIX, GM-CSF, ICAM1, L-Selectin, activin A, agrin, IL-1α, MIP-3a, B72/CD86, NGF, IL-1b, MMP-8, IL-1 R6, PDGF-AA, IL-2, IL-4, prolactin R, RAGE, IL-6, Thymus Chemokine-1, CNTF,IL-10 or TIMP-1. A HTP screening was conducted, where we employ an in vitro efficacy index (iEI) defined as the ratio of toxicity (LC 50 )/anti-inflammatory potency (IC 50 ). The iEI was precautionary to ensure biological effects were occurring in fully viable cells (ratio > 3.8) independent of toxicity. Using NO2- as a guideline molecule, the data show that 1.77% (25 of 1410 tested) had anti-inflammatory effects with iEI ratios >3.8 and IC 50 s 1750.0μg/ml, and the compound with the greatest iEI was quercetin where the IC 50 /LC 50 was 10.0/>363.6μg/ml. These substances also downregulate the production of iNOS expression and attenuate CINC-3 release. In summary, this HTP screening provides guideline information about the efficacy of natural products that could prevent inflammatory processes associated with neurodegenerative disease and aggressive glioma tumor growth. Copyright © 2016 Elsevier B

  12. STK11/LKB1 deficiency promotes neutrophil recruitment and proinflammatory cytokine production to suppress T cell activity in the lung tumor microenvironment

    Science.gov (United States)

    Koyama, Shohei; Akbay, Esra A.; Li, Yvonne Y.; Aref, Amir R.; Skoulidis, Ferdinandos; Herter-Sprie, Grit S.; Buczkowski, Kevin A.; Liu, Yan; Awad, Mark M.; Denning, Warren L.; Diao, Lixia; Wang, Jing; Parra-Cuentas, Edwin R.; Wistuba, Ignacio I.; Soucheray, Margaret; Thai, Tran C.; Asahina, Hajime; Kitajima, Shunsuke; Altabef, Abigail; Cavanaugh, Jillian D.; Rhee, Kevin; Gao, Peng; Zhang, Haikuo; Fecci, Peter E.; Shimamura, Takeshi; Hellmann, Matthew D.; Heymach, John V.; Hodi, F. Stephen; Freeman, Gordon J.; Barbie, David A.; Dranoff, Glenn; Hammerman, Peter S.; Wong, Kwok-Kin

    2016-01-01

    STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether inactivation of tumor suppressor genes such as STK11/LKB1 exert similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T cell suppressive effects, along with a corresponding increase in the expression of T cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1 inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1 targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL-6 neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1 mutated tumors with PD-1 targeting antibody therapies. PMID:26833127

  13. A pepducin derived from the third intracellular loop of FPR2 is a partial agonist for direct activation of this receptor in neutrophils but a full agonist for cross-talk triggered reactivation of FPR2.

    Directory of Open Access Journals (Sweden)

    Michael Gabl

    Full Text Available We recently described a novel receptor cross-talk mechanism in neutrophils, unique in that the signals generated by the PAF receptor (PAFR and the ATP receptor (P2Y2R transfer formyl peptide receptor 1 (FPR1 from a desensitized (non-signaling state back to an actively signaling state (Forsman H et al., PLoS One, 8:e60169, 2013; Önnheim K, et al., Exp Cell Res, 323∶209, 2014. In addition to the G-protein coupled FPR1, neutrophils also express the closely related receptor FPR2. In this study we used an FPR2 specific pepducin, proposed to work as an allosteric modulator at the cytosolic signaling interface, to determine whether the cross-talk pathway is utilized also by FPR2. The pepducin used contains a fatty acid linked to a peptide sequence derived from the third intracellular loop of FPR2, and it activates as well as desensensitizes this receptor. We now show that neutrophils desensitized with the FPR2-specific pepducin display increased cellular responses to stimulation with PAF or ATP. The secondary PAF/ATP induced response was sensitive to FPR2-specific inhibitors, disclosing a receptor cross-talk mechanism underlying FPR2 reactivation. The pepducin induced an activity in naïve cells similar to that of a conventional FPR2 agonist, but with lower potency (partial efficacy, meaning that the pepducin is a partial agonist. The PAF- or ATP-induced reactivation was, however, much more pronounced when neutrophils had been desensitized to the pepducin as compared to cells desensitized to conventional agonists. The pepducin should thus in this respect be classified as a full agonist. In summary, we demonstrate that desensitized FPR2 can be transferred back to an actively signaling state by receptor cross-talk signals generated through PAFR and P2Y2R, and the difference in agonist potency with respect to pepducin-induced direct receptor activation and cross-talk reactivation of FPR2 puts the concept of functional selectivity in focus.

  14. A CEACAM6-High Airway Neutrophil Phenotype and CEACAM6-High Epithelial Cells Are Features of Severe Asthma.

    Science.gov (United States)

    Shikotra, Aarti; Choy, David F; Siddiqui, Salman; Arthur, Greer; Nagarkar, Deepti R; Jia, Guiquan; Wright, Adam K A; Ohri, Chandra M; Doran, Emma; Butler, Claire A; Hargadon, Beverley; Abbas, Alexander R; Jackman, Janet; Wu, Lawren C; Heaney, Liam G; Arron, Joseph R; Bradding, Peter

    2017-04-15

    Severe asthma represents a major unmet clinical need; understanding the pathophysiology is essential for the development of new therapies. Using microarray analysis, we previously found three immunological clusters in asthma: Th2-high, Th17-high, and Th2/17-low. Although new therapies are emerging for Th2-high disease, identifying molecular pathways in Th2-low disease remains an important goal. Further interrogation of our previously described microarray dataset revealed upregulation of gene expression for carcinoembryonic Ag cell adhesion molecule (CEACAM) family members in the bronchi of patients with severe asthma. Our aim was therefore to explore the distribution and cellular localization of CEACAM6 using immunohistochemistry on bronchial biopsy tissue obtained from patients with mild-to-severe asthma and healthy control subjects. Human bronchial epithelial cells were used to investigate cytokine and corticosteroid in vitro regulation of CEACAM6 gene expression. CEACAM6 protein expression in bronchial biopsies was increased in airway epithelial cells and lamina propria inflammatory cells in severe asthma compared with healthy control subjects. CEACAM6 in the lamina propria was localized to neutrophils predominantly. Neutrophil density in the bronchial mucosa was similar across health and the spectrum of asthma severity, but the percentage of neutrophils expressing CEACAM6 was significantly increased in severe asthma, suggesting the presence of an altered neutrophil phenotype. CEACAM6 gene expression in cultured epithelial cells was upregulated by wounding and neutrophil elastase. In summary, CEACAM6 expression is increased in severe asthma and primarily associated with airway epithelial cells and tissue neutrophils. CEACAM6 may contribute to the pathology of treatment-resistant asthma via neutrophil and airway epithelial cell-dependent pathways. Copyright © 2017 by The American Association of Immunologists, Inc.

  15. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Science.gov (United States)

    Jannat, Risat A.; Dembo, Micah; Hammer, Daniel A.

    2009-01-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma, and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micro-machined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the KD of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β2-integrins leads to a significant reduction but not an elimination of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation. PMID:20473350

  16. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  17. Neutrophil recruitment to lymph nodes limits local humoral response to Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Olena Kamenyeva

    2015-04-01

    Full Text Available Neutrophils form the first line of host defense against bacterial pathogens. They are rapidly mobilized to sites of infection where they help marshal host defenses and remove bacteria by phagocytosis. While splenic neutrophils promote marginal zone B cell antibody production in response to administered T cell independent antigens, whether neutrophils shape humoral immunity in other lymphoid organs is controversial. Here we investigate the neutrophil influx following the local injection of Staphylococcus aureus adjacent to the inguinal lymph node and determine neutrophil impact on the lymph node humoral response. Using intravital microscopy we show that local immunization or infection recruits neutrophils from the blood to lymph nodes in waves. The second wave occurs temporally with neutrophils mobilized from the bone marrow. Within lymph nodes neutrophils infiltrate the medulla and interfollicular areas, but avoid crossing follicle borders. In vivo neutrophils form transient and long-lived interactions with B cells and plasma cells, and their depletion augments production of antigen-specific IgG and IgM in the lymph node. In vitro activated neutrophils establish synapse- and nanotube-like interactions with B cells and reduce B cell IgM production in a TGF-β1 dependent manner. Our data reveal that neutrophils mobilized from the bone marrow in response to a local bacterial challenge dampen the early humoral response in the lymph node.

  18. Misoprostol Inhibits Equine Neutrophil Adhesion, Migration, and Respiratory Burst in an In Vitro Model of Inflammation

    Directory of Open Access Journals (Sweden)

    Emily Medlin Martin

    2017-09-01

    Full Text Available In many equine inflammatory disease states, neutrophil activities, such as adhesion, migration, and reactive oxygen species (ROS production become dysregulated. Dysregulated neutrophil activation causes tissue damage in horses with asthma, colitis, laminitis, and gastric glandular disease. Non-steroidal anti-inflammatory drugs do not adequately inhibit neutrophil inflammatory functions and can lead to dangerous adverse effects. Therefore, novel therapies that target mechanisms of neutrophil-mediated tissue damage are needed. One potential neutrophil-targeting therapeutic is the PGE1 analog, misoprostol. Misoprostol is a gastroprotectant that induces intracellular formation of the secondary messenger molecule cyclic AMP (cAMP, which has been shown to have anti-inflammatory effects on neutrophils. Misoprostol is currently used in horses to treat NSAID-induced gastrointestinal injury; however, its effects on equine neutrophils have not been determined. We hypothesized that treatment of equine neutrophils with misoprostol would inhibit equine neutrophil adhesion, migration, and ROS production, in vitro. We tested this hypothesis using isolated equine peripheral blood neutrophils collected from 12 healthy adult teaching/research horses of mixed breed and gender. The effect of misoprostol treatment on adhesion, migration, and respiratory burst of equine neutrophils was evaluated via fluorescence-based adhesion and chemotaxis assays, and luminol-enhanced chemiluminescence, respectively. Neutrophils were pretreated with varying concentrations of misoprostol, vehicle, or appropriate functional inhibitory controls prior to stimulation with LTB4, CXCL8, PAF, lipopolysaccharide (LPS or immune complex (IC. This study revealed that misoprostol pretreatment significantly inhibited LTB4-induced adhesion, LTB4-, CXCL8-, and PAF-induced chemotaxis, and LPS-, IC-, and PMA-induced ROS production in a concentration-dependent manner. This data indicate that

  19. RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness

    DEFF Research Database (Denmark)

    Jennings, Richard T; Strengert, Monika; Hayes, Patti

    2014-01-01

    Neutrophil responses are central to host protection and inflammation. Neutrophil activation follows a two-step process where priming amplifies responses to activating stimuli. Priming is essential for life span extension, chemotaxis and respiratory burst activity. Here we show that the cytoskeletal...... organizer RhoA suppresses neutrophil priming via formins. Premature granule exocytosis in Rho-deficient neutrophils activated numerous signaling pathways and amplified superoxide generation. Deletion of Rho altered front-to-back coordination by simultaneously increasing uropod elongation, leading edge...... neutrophils exacerbated LPS-mediated lung injury, deleting Rho in innate immune cells was highly protective in Influenza A virus infection. Hence, Rho is a key regulator of disease progression by maintaining neutrophil quiescence and suppressing hyperresponsiveness....

  20. Neutrophil Functions in Periodontal Homeostasis

    Directory of Open Access Journals (Sweden)

    Ricarda Cortés-Vieyra

    2016-01-01

    Full Text Available Oral tissues are constantly exposed to damage from the mechanical effort of eating and to microorganisms, mostly bacteria. In healthy gingiva tissue remodeling and a balance between bacteria and innate immune cells are maintained. However, excess of bacteria biofilm (plaque creates an inflammation state that recruits more immune cells, mainly neutrophils to the gingiva. Neutrophils create a barrier for bacteria to reach inside tissues. When neutrophils are insufficient, bacteria thrive causing more inflammation that has been associated with systemic effects on other conditions such as atherosclerosis, diabetes, and cancer. But paradoxically when neutrophils persist, they can also promote a chronic inflammatory state that leads to periodontitis, a condition that leads to damage of the bone-supporting tissues. In periodontitis, bone loss is a serious complication. How a neutrophil balance is needed for maintaining healthy oral tissues is the focus of this review. We present recent evidence on how alterations in neutrophil number and function can lead to inflammatory bone loss, and how some oral bacteria signal neutrophils to block their antimicrobial functions and promote an inflammatory state. Also, based on this new information, novel therapeutic approaches are discussed.

  1. d(− Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    Directory of Open Access Journals (Sweden)

    Pablo Alarcón

    2017-08-01

    Full Text Available Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(− lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(− lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(− lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET production (NETosis in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(− lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(− lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1. d(− lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(− lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(− lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  2. Neutrophilic dermatosis of dorsal hands

    Directory of Open Access Journals (Sweden)

    S Kaur

    2015-01-01

    Full Text Available Sweet′s syndrome is characterized by erythematous tender nodules and plaques over face and extremities. Fever, leukocytosis with neutrophilia, and a neutrophilic infiltrate in the dermis are characteristic features. Neutrophilic dermatosis of dorsal hands is a rare localized variant of Sweet′s syndrome occurring predominantly over dorsa of hands. Various degrees of vascular damage may be observed on histopathology of these lesions. Both Sweet′s syndrome and its dorsal hand variant have been reported in association with malignancies, inflammatory bowel diseases, and drugs. We report a patient with neutrophilic dermatoses of dorsal hands associated with erythema nodosum. He showed an excellent response to corticosteroids and dapsone.

  3. Neutrophil chemotactic responses induced by fresh and swollen Rhizopus oryzae spores and Aspergillus fumigatus conidia.

    OpenAIRE

    Waldorf, A R; Diamond, R D

    1985-01-01

    With the induction of germination, Rhizopus oryzae spores and Aspergillus fumigatus conidia activate the complement system and induce neutrophil chemotaxis. In contrast, freshly isolated R. oryzae spores did not induce neutrophil migration into lung tissue of mice after intranasal inoculation. Moreover, in microchemotaxis assays neither fresh R. oryzae spores nor A. fumigatus conidia activated sera to stimulate human neutrophil chemotaxis above control migration until at least 10(7) or 10(8) ...

  4. The effect of azithromycin in adults with stable neutrophilic COPD: a double blind randomised, placebo controlled trial.

    Directory of Open Access Journals (Sweden)

    Jodie L Simpson

    Full Text Available Chronic Obstructive Pulmonary Disease (COPD is a progressive airway disease characterised by neutrophilic airway inflammation or bronchitis. Neutrophilic bronchitis is associated with both bacterial colonisation and lung function decline and is common in exacerbations of COPD. Despite current available therapies to control inflammation, neutrophilic bronchitis remains common. This study tested the hypothesis that azithromycin treatment, as an add-on to standard medication, would significantly reduce airway neutrophil and neutrophils chemokine (CXCL8 levels, as well as bacterial load. We conducted a randomised, double-blind, placebo-controlled study in COPD participants with stable neutrophilic bronchitis.Eligible participants (n = 30 were randomised to azithromycin 250 mg daily or placebo for 12 weeks in addition to their standard respiratory medications. Sputum was induced at screening, randomisation and monthly for a 12 week treatment period and processed for differential cell counts, CXCL8 and neutrophil elastase assessment. Quantitative bacteriology was assessed in sputum samples at randomisation and the end of treatment visit. Severe exacerbations where symptoms increased requiring unscheduled treatment were recorded during the 12 week treatment period and for 14 weeks following treatment. A sub-group of participants underwent chest computed tomography scans (n = 15.Nine participants with neutrophilic bronchitis had a potentially pathogenic bacteria isolated and the median total bacterial load of all participants was 5.22×107 cfu/mL. Azithromycin treatment resulted in a non-significant reduction in sputum neutrophil proportion, CXCL8 levels and bacterial load. The mean severe exacerbation rate was 0.33 per person per 26 weeks in the azithromycin group compared to 0.93 exacerbations per person in the placebo group (incidence rate ratio (95%CI: 0.37 (0.11,1.21, p = 0.062. For participants who underwent chest CT scans, no

  5. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5

    NARCIS (Netherlands)

    Alard, Jean-Eric; Ortega-Gomez, Almudena; Wichapong, Kanin; Bongiovanni, Dario; Horckmans, Michael; Megens, Remco T. A.; Leoni, Giovanna; Ferraro, Bartolo; Rossaint, Jan; Paulin, Nicole; Ng, Judy; Ippel, Hans; Suylen, Dennis; Hinkel, Rabea; Blanchet, Xavier; Gaillard, Fanny; D'Amico, Michele; von Hundelshausen, Phillipp; Zarbock, Alexander; Scheiermann, Christoph; Hackeng, Tilman M.; Steffens, Sabine; Kupatt, Christian; Nicolaes, Gerry A. F.; Weber, Christian; Soehnlein, Oliver

    2015-01-01

    In acute and chronic inflammation, neutrophils and platelets, both of which promote monocyte recruitment, are often activated simultaneously. We investigated how secretory products of neutrophils and platelets synergize to enhance the recruitment of monocytes. We found that neutrophil-borne human

  6. Preoperative neutrophil response as a predictive marker of clinical outcome following open heart surgery and the impact of leukocyte filtration.

    LENUS (Irish Health Repository)

    Soo, Alan W

    2010-11-01

    Open heart surgery is associated with a massive systemic inflammatory response. Neutrophils, are the main mediator of this response. We hypothesised that the degree of neutrophil activation and inflammatory response to open heart surgery varies individually and correlates with clinical outcome. The aim of this study was to determine if individual clinical outcome can be predicted preoperatively through assessment of in-vitro stimulated neutrophil responses. Following that, the effects of neutrophil depletion through leukocyte filters are examined.

  7. The impact of platelet-activating factor (PAF)-like mediators on the functional activity of neutrophils: anti-inflammatory effects of human PAF-acetylhydrolase

    NARCIS (Netherlands)

    Kuijpers, T. W.; van den Berg, J. M.; Tool, A. T.; Roos, D.

    2001-01-01

    Platelet-activating factor (PAF) is a proinflammatory agent in infectious and inflammatory diseases, partly due to the activation of infiltrating phagocytes. PAF exerts its actions after binding to a monospecific PAF receptor (PAFR). The potent bioactivity is reflected by its ability to activate

  8. Neutrophil programming dynamics and its disease relevance.

    Science.gov (United States)

    Ran, Taojing; Geng, Shuo; Li, Liwu

    2017-11-01

    Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.

  9. Inhibition of plasmin, urokinase, tissue plasminogen activator, and C1S by a myxoma virus serine proteinase inhibitor.

    Science.gov (United States)

    Lomas, D A; Evans, D L; Upton, C; McFadden, G; Carrell, R W

    1993-01-05

    The myxoma and malignant rabbit fibroma poxviruses are lethal tumorigenic viruses of rabbits whose virulence is modulated by the production of a virus-encoded secreted serine proteinase inhibitor, SERP-1. This viral protein was detected in medium harvested from myxoma and malignant rabbit fibroma virus-infected cells, and its inhibitory profile has been characterized by gel and kinetic analysis. SERP-1 forms complexes with and inhibits the human fibrinolytic enzymes plasmin, urokinase, and two-chain tissue-type plasminogen activator (association rate constants 3.4 x 10(4), 4.3 x 10(4), and 3.6 x 10(4) M-1 s-1 respectively). It is also able to inhibit C1S, the first enzyme in the complement cascade with an association rate constant which was unaffected by the addition of heparin (1.3 x 10(3) M-1 s-1). SERP-1 acts as a substrate for and is cleaved by thrombin, porcine trypsin, human neutrophil elastase, porcine pancreatic elastase, thermolysin, subtilisin, bovine alpha-chymotrypsin, and factor Xa. Incubation with kallikrein and cathepsin G had no effect. The structure of SERP-1 has been modeled on other members of the serpin family which revealed the characteristic serpin architecture apart from the absence of the D-helix. Structural analysis and kinetic assays demonstrate that the absence of this region does not prevent inhibitory activity and furthermore allow the identification of cysteine residues involved in internal and intermolecular disulfide bonding.

  10. Secapin, a bee venom peptide, exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities.

    Science.gov (United States)

    Lee, Kwang Sik; Kim, Bo Yeon; Yoon, Hyung Joo; Choi, Yong Soo; Jin, Byung Rae

    2016-10-01

    Bee venom contains a variety of peptide constituents that have various biological, toxicological, and pharmacological actions. However, the biological actions of secapin, a venom peptide in bee venom, remain largely unknown. Here, we provide the evidence that Asiatic honeybee (Apis cerana) secapin (AcSecapin-1) exhibits anti-fibrinolytic, anti-elastolytic, and anti-microbial activities. The recombinant mature AcSecapin-1 peptide was expressed in baculovirus-infected insect cells. AcSecapin-1 functions as a serine protease inhibitor-like peptide that has inhibitory effects against plasmin, elastases, microbial serine proteases, trypsin, and chymotrypsin. Consistent with these functions, AcSecapin-1 inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products, thus indicating the role of AcSecapin-1 as an anti-fibrinolytic agent. AcSecapin-1 also inhibited both human neutrophil and porcine pancreatic elastases. Furthermore, AcSecapin-1 bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi and gram-positive and gram-negative bacteria. Taken together, our data demonstrated that the bee venom peptide secapin has multifunctional roles as an anti-fibrinolytic agent during fibrinolysis and an anti-microbial agent in the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  12. STK11/LKB1 Deficiency Promotes Neutrophil Recruitment and Proinflammatory Cytokine Production to Suppress T-cell Activity in the Lung Tumor Microenvironment.

    Science.gov (United States)

    Koyama, Shohei; Akbay, Esra A; Li, Yvonne Y; Aref, Amir R; Skoulidis, Ferdinandos; Herter-Sprie, Grit S; Buczkowski, Kevin A; Liu, Yan; Awad, Mark M; Denning, Warren L; Diao, Lixia; Wang, Jing; Parra-Cuentas, Edwin R; Wistuba, Ignacio I; Soucheray, Margaret; Thai, Tran; Asahina, Hajime; Kitajima, Shunsuke; Altabef, Abigail; Cavanaugh, Jillian D; Rhee, Kevin; Gao, Peng; Zhang, Haikuo; Fecci, Peter E; Shimamura, Takeshi; Hellmann, Matthew D; Heymach, John V; Hodi, F Stephen; Freeman, Gordon J; Barbie, David A; Dranoff, Glenn; Hammerman, Peter S; Wong, Kwok-Kin

    2016-03-01

    STK11/LKB1 is among the most commonly inactivated tumor suppressors in non-small cell lung cancer (NSCLC), especially in tumors harboring KRAS mutations. Many oncogenes promote immune escape, undermining the effectiveness of immunotherapies, but it is unclear whether the inactivation of tumor suppressor genes, such as STK11/LKB1, exerts similar effects. In this study, we investigated the consequences of STK11/LKB1 loss on the immune microenvironment in a mouse model of KRAS-driven NSCLC. Genetic ablation of STK11/LKB1 resulted in accumulation of neutrophils with T-cell-suppressive effects, along with a corresponding increase in the expression of T-cell exhaustion markers and tumor-promoting cytokines. The number of tumor-infiltrating lymphocytes was also reduced in LKB1-deficient mouse and human tumors. Furthermore, STK11/LKB1-inactivating mutations were associated with reduced expression of PD-1 ligand PD-L1 in mouse and patient tumors as well as in tumor-derived cell lines. Consistent with these results, PD-1-targeting antibodies were ineffective against Lkb1-deficient tumors. In contrast, treating Lkb1-deficient mice with an IL6-neutralizing antibody or a neutrophil-depleting antibody yielded therapeutic benefits associated with reduced neutrophil accumulation and proinflammatory cytokine expression. Our findings illustrate how tumor suppressor mutations can modulate the immune milieu of the tumor microenvironment, and they offer specific implications for addressing STK11/LKB1-mutated tumors with PD-1-targeting antibody therapies. ©2016 American Association for Cancer Research.

  13. Quantification of Lung Damage in an Elastase-Induced Mouse Model of Emphysema

    Directory of Open Access Journals (Sweden)

    Arrate Muñoz-Barrutia

    2012-01-01

    Full Text Available Objective. To define the sensitivity of microcomputed tomography- (micro-CT- derived descriptors for the quantification of lung damage caused by elastase instillation. Materials and Methods. The lungs of 30 elastase treated and 30 control A/J mice were analyzed 1, 6, 12, and 24 hours and 7 and 17 days after elastase instillation using (i breath-hold-gated micro-CT, (ii pulmonary function tests (PFTs, (iii RT-PCR for RNA cytokine expression, and (iv histomorphometry. For the latter, an automatic, parallel software toolset was implemented that computes the airspace enlargement descriptors: mean linear intercept (Lm and weighted means of airspace diameters (D0, D1, and D2. A Support Vector Classifier was trained and tested based on three nonhistological descriptors using D2 as ground truth. Results. D2 detected statistically significant differences (P<0.01 between the groups at all time points. Furthermore, D2 at 1 hour (24 hours was significantly lower (P<0.01 than D2 at 24 hours (7 days. The classifier trained on the micro-CT-derived descriptors achieves an area under the curve (AUC of 0.95 well above the others (PFTS AUC = 0.71; cytokine AUC = 0.88. Conclusion. Micro-CT-derived descriptors are more sensitive than the other methods compared, to detect in vivo early signs of the disease.

  14. Diagnostic Performance of Measurement of Fecal Elastase-1 in Detection of Exocrine Pancreatic Insufficiency - Systematic Review and Meta-analysis.

    Science.gov (United States)

    Vanga, Rohini R; Tansel, Aylin; Sidiq, Saad; El-Serag, Hashem B; Othman, Mohamed

    2018-01-25

    Tests to quantify fecal levels of chymotrypsin like elastase family member 3 (CELA3 or elastase-1) in feces are widely used to identify patients with exocrine pancreatic insufficiency (EPI). However, the diagnostic accuracy of this test, an ELISA, is not clear. We performed a systematic review and meta-analysis to determine the accuracy of measurement of fecal elastase-1 in detection of EPI. We searched PubMed, Embase, and reference lists for articles through November 2016 describing studies that compared fecal level of elastase-1 with results from a reference standard, direct method (secretin stimulation test), or indirect method (measurement of fecal fat) for detection of EPI. Sensitivity and specificity values were pooled statistically using bivariate diagnostic meta-analysis. We included total of 428 cases of EPI and 673 individuals without EPI (controls), from 14 studies, in the meta-analysis. The assay for elastase-1, compared to secretin stimulation test, identified patients with pancreatic insufficiency with a pooled sensitivity value of 0.77 (95% CI, 0.58-0.89) and specificity value of 0.88 (95% CI, 0.78-0.93). In an analysis of 345 cases of EPI and 312 controls, from 6 studies, the fecal elastase-1 assay identified patients with EPI with a pooled sensitivity value of 0.96 (95% CI, 0.79-0.99) and specificity value of 0.88 (95% CI, 0.59-0.97), compared to quantitative fecal fat estimation. In patients with low pre-test probability of EPI (5%), the fecal elastase-1 assay would have a false-negative rate of 1.1% and a false-positive rate of 11%, indicating a high yield in ruling out EPI but not in detection of EPI. In contrast, in patients with high pre-test probability of EPI (40%), approximately 10% of patients with EPI would be missed (false negatives). In a systematic review and meta-analysis of studies that compared fecal level of elastase-1 for detection of EPI, we found that normal level of elastase-1 (above 200 mcg/g) can rule out EPI in patients with

  15. Anandamide and neutrophil function in patients with fibromyalgia.

    Science.gov (United States)

    Kaufmann, Ines; Schelling, Gustav; Eisner, Christoph; Richter, Hans Peter; Krauseneck, Till; Vogeser, Michael; Hauer, Daniela; Campolongo, Patrizia; Chouker, Alexander; Beyer, Antje; Thiel, Manfred

    2008-06-01

    Fibromyalgia (FM) is a common stress-related painful disorder. There is considerable evidence of neuroimmunologic alterations in FM which may be the consequence of chronic stress and pain or causally involved in the development of this disorder. The endocannabinoid system has been shown to play a pivotal role in mammalian nociception, is activated under stressful conditions and can be an important signaling pathway for immune modulation. The endocannabinoid system could therefore be involved in the complex pathophysiology of FM. We tested this hypothesis by evaluating the effects of stress hormones and the endocannabinoid anandamide on neutrophil function in patients with FM. We determined plasma levels of catecholamines, cortisol and anandamide in 22 patients with primary FM and 22 age- and sex-matched healthy controls. Neutrophil function was characterized by measuring the hydrogen peroxide (H2O2) release (oxidative stress) and the ingestion capabilities of neutrophils (microbicidal function). FM patients had significantly higher norepinephrine and anandamide plasma levels. Neutrophils of FM patients showed an elevated spontaneous H2O2 production. The ability of neutrophils to adhere was negatively correlated with serum cortisol levels. Adhesion and phagocytosis capabilities of neutrophils correlated positively with anandamide plasma levels. In conclusion, patients with FM might benefit from pharmacologic manipulation of endocannabinoid signaling which should be tested in controlled studies.

  16. Deacylated lipopolysaccharide inhibits neutrophil adherence to endothelium induced by lipopolysaccharide in vitro

    OpenAIRE

    1987-01-01

    Selective deacylation of the nonhydroxylated fatty acids from S. typhimurium LPS by an acyloxyacyl hydrolase isolated from leukocytes reduces toxic activity of LPS in vivo. We examined the effect of deacylated LPS on neutrophil adherence to human umbilical vein endothelial cells (HUVE). Pretreatment of HUVE with LPS (13 ng/ml for 4 h) produced a marked increase in the adherence of subsequently added neutrophils. In contrast, there was no increase in the adherence of neutrophils to HUVE pretre...

  17. Involvement of neutrophil hyporesponse and the role of Toll-like receptors in human immunodeficiency virus 1 protection.

    Directory of Open Access Journals (Sweden)

    Juan C Hernandez

    Full Text Available Neutrophils contribute to pathogen clearance through pattern recognition receptors (PRRs activation. However, the role of PRRs in neutrophils in both HIV-1-infected [HIV-1(+] and HIV-1-exposed seronegative individuals (HESN is unknown. Here, a study was carried out to evaluate the level of PRR mRNAs and cytokines produced after activation of neutrophils from HIV-1(+, HESN and healthy donors.The neutrophils were stimulated with specific agonists for TLR2, TLR4 and TLR9 in the presence of HIV-1 particles. Pro-inflammatory cytokine production, expression of neutrophil activation markers and reactive oxygen species (ROS production were analyzed in neutrophils from HESN, HIV-1(+ and healthy donors (controls.We found that neutrophils from HESN presented reduced expression of PRR mRNAs (TLR4, TLR9, NOD1, NOD2, NLRC4 and RIG-I and reduced expression of cytokine mRNAs (IL-1β, IL-6, IL-18, TNF-α and TGF-β. Moreover, neutrophils from HESN were less sensitive to stimulation through TLR4. Furthermore, neutrophils from HESN challenged with HIV-1 and stimulated with TLR2 and TLR4 agonists, produced significantly lower levels of reactive oxygen species, versus HIV-1(+.A differential pattern of PRR expression and release of innate immune factors in neutrophils from HESN is evident. Our results suggest that lower neutrophil activation can be involved in protection against HIV-1 infection.

  18. Effects of acrolein on leukotriene biosynthesis in human neutrophils.

    Science.gov (United States)

    Berry, Karin A Zemski; Henson, Peter M; Murphy, Robert C

    2008-12-01

    Acrolein is a toxic, highly reactive alpha,beta-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-lipoxygenase (5-LO) products in addition to small amounts of cyclooxygenase (COX) products were detected using LC/MS/MS. A dose-dependent decrease in the formation of 5-LO products was observed in GM-CSF/fMLP-stimulated neutrophils when acrolein (0-50 microM) was present with almost complete inhibition at > or = 25 microM acrolein. The production of COX products was not affected by acrolein in these cells. The effect of acrolein was examined on key parts of the eicosanoid pathway, such as arachidonic acid release, intracellular calcium ion concentration, and adenosine production. In addition, the direct effect of acrolein on 5-LO enzymatic activity was probed using a recombinant enzyme. Some of these factors were affected by acrolein but did not completely explain the almost complete inhibition of 5-LO product formation in GM-CSF/fMLP-treated cells with acrolein. In addition, the effect of acrolein on different stimuli that initiate the 5-LO pathway [platelet-activating factor (PAF)/fMLP, GM-CSF/PAF, opsonized zymosan, and A23187] was examined. Acrolein had no significant effect on the leukotriene production in neutrophils stimulated with PAF/fMLP, GM-CSF/ PAF, or OPZ. Additionally, 50% inhibition of the 5-LO pathway was observed in A23187-stimulated neutrophils. Our results suggest that acrolein has a profound effect on the 5-LO pathway in neutrophils, which may have implications in disease states, such as chronic obstructive pulmonary disease and other pulmonary disease, where both activated neutrophils and acrolein are

  19. Neutrophil extracellular traps go viral

    Directory of Open Access Journals (Sweden)

    Günther Schönrich

    2016-09-01

    Full Text Available Neutrophils are the most numerous immune cells. Their importance as a first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils to produce extracellular traps (NETs in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand disproportionate NET formation can cause local or systemic damage. Only recently was it recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.

  20. Elevated levels of epithelial neutrophil activating peptide-78 (ENA-78 (CXCL5 and Interleukin-1β is correlated with varicocele-caused infertility: A novel finding

    Directory of Open Access Journals (Sweden)

    Alireza Nazari

    2017-12-01

    Full Text Available Background: Varicocele is the most common disorder found in subfertile men. Little is known about the potential effects of ENA-78 and IL-1 β on pathogenesis of varicocele and male infertility. Therefore, current investigation was aimed to explore the role of ENA-78 and IL-1 β in varicocele. Methods: To explore association between ENA-78, IL-1 β and infertility, the seminal levels of these mediators were measured in studied groups by ELISA technique. Results: ENA-78 and IL-1β levels were significantly raised in infertile men with varicocele compared to other groups (P < 0.001. Conclusion: Possibly spermatozoa motility of these patients is reduced in response to elevated ENA-78. IL-1 β as the neutrophils products appears to be potential diagnostic biomarkers and therapeutic targets for varicocele-caused infertility.

  1. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  2. Grape-seed Polyphenols Play a Protective Role in Elastase-induced Abdominal Aortic Aneurysm in Mice.

    Science.gov (United States)

    Wang, Chao; Wang, Yunxia; Yu, Maomao; Chen, Cong; Xu, Lu; Cao, Yini; Qi, Rong

    2017-08-24

    Abdominal aortic aneurysm (AAA) is a kind of disease characterized by aortic dilation, whose pathogenesis is linked to inflammation. This study aimed to determine whether grape-seed polyphenols (GSP) has anti-AAA effects and what mechanism is involved, thus to find a way to prevent occurrence and inhibit expansion of small AAA. In our study, AAA was induced by incubating the abdominal aorta of the mice with elastase, and GSP was administrated to the mice by gavage at different doses beginning on the day of the AAA inducement. In in vivo experiments, 800 mg/kg GSP could significantly reduce the incidence of AAA, the dilatation of aorta and elastin degradation in media, and dramatically decrease macrophage infiltration and activation and expression of matrix metalloproteinase (MMP) -2 and MMP-9 in the aorta, compared to the AAA model group. Meanwhile, 400 mg/kg GSP could also but not completely inhibit the occurrence and development of AAA. In in vitro experiments, GSP dose-dependently inhibited mRNA expression of interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1), and significantly inhibited expression and activity of MMP-2 and MMP-9, thus prevented elastin from degradation. In conclusion, GSP showed great anti-AAA effects and its mechanisms were related to inhibition of inflammation.

  3. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia

    Directory of Open Access Journals (Sweden)

    Roger D. Pechous

    2017-05-01

    Full Text Available Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.

  4. Leucine Rich α-2 Glycoprotein: A Novel Neutrophil Granule Protein and Modulator of Myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Lawrence J Druhan

    Full Text Available Leucine-rich α2 glycoprotein (LRG1, a serum protein produced by hepatocytes, has been implicated in angiogenesis and tumor promotion. Our laboratory previously reported the expression of LRG1 in murine myeloid cell lines undergoing neutrophilic granulocyte differentiation. However, the presence of LRG1 in primary human neutrophils and a role for LRG1 in regulation of hematopoiesis have not been previously described. Here we show that LRG1 is packaged into the granule compartment of human neutrophils and secreted upon neutrophil activation to modulate the microenvironment. Using immunofluorescence microscopy and direct biochemical measurements, we demonstrate that LRG1 is present in the peroxidase-negative granules of human neutrophils. Exocytosis assays indicate that LRG1 is differentially glycosylated in neutrophils, and co-released with the secondary granule protein lactoferrin. Like LRG1 purified from human serum, LRG1 secreted from activated neutrophils also binds cytochrome c. We also show that LRG1 antagonizes the inhibitory effects of TGFβ1 on colony growth of human CD34+ cells and myeloid progenitors. Collectively, these data invoke an additional role for neutrophils in innate immunity that has not previously been reported, and suggest a novel mechanism whereby neutrophils may modulate the microenvironment via extracellular release of LRG1.

  5. Myeloperoxidase attracts neutrophils by physical forces

    NARCIS (Netherlands)

    Klinke, Anna; Nussbaum, Claudia; Kubala, Lukas; Friedrichs, Kai; Rudolph, Tanja K.; Rudolph, Volker; Paust, Hans-Joachim; Schroeder, Christine; Benten, Daniel; Lau, Denise; Szocs, Katalin; Furtmueller, Paul G.; Heeringa, Peter; Sydow, Karsten; Duchstein, Hans-Juergen; Ehmke, Heimo; Schumacher, Udo; Meinertz, Thomas; Sperandio, Markus; Baldus, Stephan

    2011-01-01

    Recruitment of polymorphonuclear neutrophils (PMNs) remains a paramount prerequisite in innate immune defense and a critical cofounder in inflammatory vascular disease. Neutrophil recruitment comprises a cascade of concerted events allowing for capture, adhesion and extravasation of the leukocyte.

  6. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    International Nuclear Information System (INIS)

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-01-01

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-γ, tumor necrosis factor, or interleukin lα or 1β. The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes

  7. Characterization of cucurbita maxima phloem serpin-1 (CmPS-1). A developmentally regulated elastase inhibitor.

    Science.gov (United States)

    Yoo, B C; Aoki, K; Xiang, Y; Campbell, L R; Hull, R J; Xoconostle-Cázares, B; Monzer, J; Lee, J Y; Ullman, D E; Lucas, W J

    2000-11-10

    We report on the molecular, biochemical, and functional characterization of Cucurbita maxima phloem serpin-1 (CmPS-1), a novel 42-kDa serine proteinase inhibitor that is developmentally regulated and has anti-elastase properties. CmPS-1 was purified to near homogeneity from C. maxima (pumpkin) phloem exudate and, based on microsequence analysis, the cDNA encoding CmPS-1 was cloned. The association rate constant (k(a)) of phloem-purified and recombinant His(6)-tagged CmPS-1 for elastase was 3.5 +/- 1.6 x 10(5) and 2.7 +/- 0.4 x 10(5) m(-)(1) s(-)(1), respectively. The fraction of complex-forming CmPS-1, X(inh), was estimated at 79%. CmPS-1 displayed no detectable inhibitory properties against chymotrypsin, trypsin, or thrombin. The elastase cleavage sites within the reactive center loop of CmPS-1 were determined to be Val(347)-Gly(348) and Val(350)-Ser(351) with a 3:2 molar ratio. In vivo feeding assays conducted with the piercing-sucking aphid, Myzus persicae, established a close correlation between the developmentally regulated increase in CmPS-1 within the phloem sap and the reduced ability of these insects to survive and reproduce on C. maxima. However, in vitro feeding experiments, using purified phloem CmPS-1, failed to demonstrate a direct effect on aphid survival. Likely roles of this novel phloem serpin in defense against insects/pathogens are discussed.

  8. Myosin heavy chain and physiological adaptation of the rat diaphragm in elastase-induced emphysema

    Directory of Open Access Journals (Sweden)

    Stedman Hansell H

    2003-02-01

    Full Text Available Abstract Background Several physiological adaptations occur in the respiratory muscles in rodent models of elastase-induced emphysema. Although the contractile properties of the diaphragm are altered in a way that suggests expression of slower isoforms of myosin heavy chain (MHC, it has been difficult to demonstrate a shift in MHCs in an animal model that corresponds to the shift toward slower MHCs seen in human emphysema. Methods We sought to identify MHC and corresponding physiological changes in the diaphragms of rats with elastase-induced emphysema. Nine rats with emphysema and 11 control rats were studied 10 months after instillation with elastase. MHC isoform composition was determined by both reverse transcriptase polymerase chain reaction (RT-PCR and immunocytochemistry by using specific probes able to identify all known adult isoforms. Physiological adaptation was studied on diaphragm strips stimulated in vitro. Results In addition to confirming that emphysematous diaphragm has a decreased fatigability, we identified a significantly longer time-to-peak-tension (63.9 ± 2.7 ms versus 53.9 ± 2.4 ms. At both the RNA (RT-PCR and protein (immunocytochemistry levels, we found a significant decrease in the fastest, MHC isoform (IIb in emphysema. Conclusion This is the first demonstration of MHC shifts and corresponding physiological changes in the diaphragm in an animal model of emphysema. It is established that rodent emphysema, like human emphysema, does result in a physiologically significant shift toward slower diaphragmatic MHC isoforms. In the rat, this occurs at the faster end of the MHC spectrum than in humans.

  9. Effect of Elastase-induced Emphysema on the Force-generating Ability of the Diaphragm

    Science.gov (United States)

    Supinski, Gerald S.; Kelsen, Steven G.

    1982-01-01

    The effect of emphysema on the ability of the diaphragm to generate force was examined in costal diaphragm muscle strips from 10 Golden hamsters killed 18 mo after intratracheal injection of pancreatic elastase in a dose producing hyperinflation (mean total lung capacity [TLC] = 163% of control) and generalized panacinar emphysema. 13 saline-injected normal animals served as controls. The time course of isometric tension and the effect of alterations in muscle fiber and sarcomere length on the isometric tension (T) generated in response to tetanizing electrical stimuli (length-tension [L-T] relationship) were examined. Elastase administration caused an increase in diaphragm muscle thickness and reduction in the length of costal diaphragm muscle fibers measured in situ. Emphysema significantly increased the maximum tetanic tension as a result of hypertrophy. Maximal tension corrected for increases in muscle cross-sectional area (T/cm2), however, was the same in emphysematous (E) and control (C) animals. Emphysema also shifted the muscle fiber L-T curve of the diaphragm but not of a control muscle, the soleus, toward shorter lengths. In contrast to the effects of E on the diaphragm muscle fiber L-T curve, the sarcomere L-T curve was the same in E and C. Since the length at which tension was maximal correlated closely with sarcomere number (r = 0.94; P < 0.001) reduction in the number of sarcomeres in series in muscles from emphysematous animals appeared to explain the shift in the muscle fiber L-T curve. We conclude that in elastase-induced emphysema adaptive changes both in diaphragm cross-sectional area and sarcomere number augment the force-generating ability of the diaphragm. We speculate that changes in sarcomere number compensate for alterations in muscle fiber length resulting from chronic hyperinflation of the thorax, while diaphragmatic muscle hypertrophy represents a response to changes in respiratory load and/or diaphragm configuration (La

  10. [Effect of Ginkgo biloba extract on the function of alveolar polymorphonuclear neutrophils in severe acute pancreatitis rats complicated with lung injury].

    Science.gov (United States)

    Xu, Xiao-Wu; Yang, Xiao-Min; Jin, Zhou-Xiang; Zhu, Shao-Jun

    2014-04-01

    To explore the effect of Ginkgo biloba extract (GBE) on the function of alveolar polymorphonuclear neutrophils (PMN) in severe acute pancreatitis (SAP) rats complicated with lung injury (LI). Forty-eight adult SD rats were randomly divided into three groups, i.e., the sham-operation group, the SAP group, and the GBE treatment group, 16 in each group. The SAP model was successfully induced by retrograde injection of 5% sodium taurocholate solution into the biliopancreatic duct. Rats in the sham-operation group only received flipping of the duodenum. Those in the GBE treatment group received GBE intervention based on SAP model. Equal volume of normal saline was given to rats in the sham-operation group and the SAP group. Rats were sacrificed at 6 and 12 h after operation respectively. The lung tissue was sampled to evaluate the LI score. The wet/dry ratio (W/D) of lung tissues was detected. The activity of myeloperoxidase (MPO) was measured. Alveolar PMN was harvested by bronchoalveolar lavage. The content of neutrophil elastase (NE) in bronchoalveolar lavage fluid (BALF) was measured by enzyme-linked immunoabsorbent assay (ELISA). The percentage of CD11b/CD18 double positive PMN was detected using flow cytometry. The expression of intercellular adhesion molecule-1 (ICAM-1) and NE protein in the lung tissue was detected by Western blot. Compared with the sham-operation group, significant pathologic lesion occurred in the lung tissue of rats in the SAP group; the pathologic LI score, lung tissue W/D ratio, MPO, and NE content in BALF significantly increased, the expression of ICAM-1 and NE in the lung tissue was obviously up-regulated, and the percentage of CD11b/CD18 double positive PMN significantly increased (P treatment group (P complicated with LI, resulting in the adherence of PMN to pulmonary vascular endothelial cells, and then activating PMN to release NE and aggravate LI. GBE could alleviate LI through down-regulating the expression ICAM-1 and CD11b/CD18

  11. Monosodium Urate Crystals Generate Nuclease-Resistant Neutrophil Extracellular Traps via a Distinct Molecular Pathway.

    Science.gov (United States)

    Chatfield, Simon M; Grebe, Kathrin; Whitehead, Lachlan W; Rogers, Kelly L; Nebl, Thomas; Murphy, James M; Wicks, Ian P

    2018-03-01

    Neutrophil extracellular traps (NETs) and the cell death associated with it (NETosis) have been implicated in numerous diseases. Mechanistic studies of NETosis have typically relied on nonphysiological stimuli, such as PMA. The human disease of gout is caused by monosodium urate (MSU) crystals. We observed that DNA consistent with NETs is present in fluid from acutely inflamed joints of gout patients. NETs also coat the crystals found in uninflamed tophi of chronic gout patients. We developed a quantitative, live cell imaging assay, which measures the key features of NETosis, namely, cell death and chromatin decondensation. We show that MSU and other physiologically relevant crystals induce NETosis through a molecular pathway that is distinct from PMA and Candida hyphae. Crystals interact with lysosomes to induce NADPH oxidase-independent cell death, with postmortem chromatin decondensation mediated by neutrophil elastase. The resulting MSU-induced NETs are enriched for actin and are resistant to serum and DNase degradation. These findings demonstrate a distinct physiological NETosis pathway in response to MSU crystals, which coats MSU crystals in DNA that persists in tissues as gouty tophi. Copyright © 2018 by The American Association of Immunologists, Inc.

  12. Hematological indices, inflammatory markers and neutrophil CD64 expression: comparative trends during experimental human endotoxemia.

    NARCIS (Netherlands)

    Meer, W. van der; Pickkers, P.; Scott, C.S.; Hoeven, J.G. van der; Gunnewiek, J.K.

    2007-01-01

    CD64 is a high-affinity Fc(gamma)RI receptor expressed by activated neutrophils that has been recently evaluated as a potential sepsis parameter. In the present study, the kinetics of neutrophil membrane CD64 expression were examined during a standardized inflammatory response, using a human

  13. Pneumovirus-Induced Lung Disease in Mice Is Independent of Neutrophil-Driven Inflammation

    NARCIS (Netherlands)

    Cortjens, Bart; Lutter, René; Boon, Louis; Bem, Reinout A.; van Woensel, Job B. M.

    2016-01-01

    The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been

  14. Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway.

    LENUS (Irish Health Repository)

    Fanning, N F

    2012-02-03

    Iodinated contrast media (ICM) can induce apoptosis (programmed cell death) in renal, myocardial and endothelial cells. Following intravascular injection, circulating immune cells are exposed to high concentrations of ICM. As neutrophils constitutively undergo apoptosis we hypothesized that ICM may adversely affect neutrophil survival. Our aim was to investigate the effect of ICM on neutrophil apoptosis. Neutrophils were isolated from healthy subjects and cultured in vitro with ionic (diatrizoate and ioxaglate) and non-ionic (iohexol and iotrolan) ICM. The effect of ICM on neutrophil apoptosis in both unstimulated and lipopolysaccharide-stimulated neutrophils was determined by annexin V flow cytometry. The influence of physicochemical properties of the different ICM on apoptosis of neutrophils was also studied. We further investigated the effects of ICM on key intracellular signal pathways, including p38 mitogen-activated protein kinase (MAPK) by Western blotting, and mitochondrial depolarization and caspase activity by flow cytometry. Isoiodine concentrations (20 mg ml(-1)) of ionic (diatrizoate 69.6+\\/-2.9%; ioxaglate 58.9+\\/-2.0%) and non-ionic (iohexol 57.3+\\/-2.9%; iotrolan 57.1+\\/-2.6%) ICM significantly induced neutrophil apoptosis over control levels (47.7+\\/-1.4%). The apoptotic effect of ICM was influenced by their chemical structure, with ionic ICM having a more significant (p<0.01) apoptotic effect than non-ionic ICM (p<0.05). Furthermore, ICM reversed the anti-apoptotic effect of lipopolysaccharide (1000 ng ml(-1)) treated neutrophils to control levels (23.0+\\/-3.5% to 61.2+\\/-5.3%; n=4; p<0.05). These agents induce apoptosis through a p38 MAPK independent pathway that results in mitochondrial depolarization, and is dependent on caspase activation. As neutrophils play a central role in host response to infection and injury, ICM, through induction of neutrophil apoptosis, could have a significant deleterious effect on host immune defence and

  15. Immune modulation by neutrophil subsets

    NARCIS (Netherlands)

    Kamp, V.M.

    2013-01-01

    We show that human neutrophils can suppress T-cell proliferation in acute systemic inflammation and thus have anti-inflammatory functions, next to their well-known pro-inflammatory functions. The suppression is mediated by ROS production and integrin MAC-1, which are also important for the

  16. New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation.

    Directory of Open Access Journals (Sweden)

    Astrid Obermayer

    Full Text Available Polymorphonuclear neutrophils have in recent years attracted new attention due to their ability to release neutrophil extracellular traps (NETs. These web-like extracellular structures deriving from nuclear chromatin have been depicted in ambiguous roles between antimicrobial defence and host tissue damage. NETs consist of DNA strands of varying thickness and are decorated with microbicidal and cytotoxic proteins. Their principal structure has in recent years been characterised at molecular and ultrastructural levels but many features that are of direct relevance to cytotoxicity are still incompletely understood. These include the extent of chromatin decondensation during NET formation and the relative amounts and spatial distribution of the microbicidal components within the NET. In the present work, we analyse the structure of NETs found in induced sputum of patients with acutely exacerbated chronic obstructive pulmonary disease (COPD using confocal laser microscopy and electron microscopy. In vitro induced NETs from human neutrophils serve for purposes of comparison and extended analysis of NET structure. Results demonstrate that COPD sputa are characterised by the pronounced presence of NETs and NETotic neutrophils. We provide new evidence that chromatin decondensation during NETosis is most extensive and generates substantial amounts of double-helix DNA in 'beads-on-a-string' conformation. New information is also presented on the abundance and location of neutrophil elastase (NE and citrullinated histone H3 (citH3. NE occurs in high densities in nearly all non-fibrous constituents of the NETs while citH3 is much less abundant. We conclude from the results that (i NETosis is an integral part of COPD pathology; this is relevant to all future research on the etiology and therapy of the disease; and that (ii release of 'beads-on-a-string' DNA studded with non-citrullinated histones is a common feature of in vivo NETosis; this is of relevance to

  17. Cigarette smoke-induced damage-associated molecular pattern release from necrotic neutrophils triggers proinflammatory mediator release.

    Science.gov (United States)

    Heijink, Irene H; Pouwels, Simon D; Leijendekker, Carin; de Bruin, Harold G; Zijlstra, G Jan; van der Vaart, Hester; ten Hacken, Nick H T; van Oosterhout, Antoon J M; Nawijn, Martijn C; van der Toorn, Marco

    2015-05-01

    Cigarette smoking, the major causative factor for the development of chronic obstructive pulmonary disease, is associated with neutrophilic airway inflammation. Cigarette smoke (CS) exposure can induce a switch from apoptotic to necrotic cell death in airway epithelium. Therefore, we hypothesized that CS promotes neutrophil necrosis with subsequent release of damage-associated molecular patterns (DAMPs), including high mobility group box 1 (HMGB1), alarming the innate immune system. We studied the effect of smoking two cigarettes on sputum neutrophils in healthy individuals and of 5-day CS or air exposure on neutrophil counts, myeloperoxidase, and HMGB1 levels in bronchoalveolar lavage fluid of BALB/c mice. In human peripheral blood neutrophils, mitochondrial membrane potential, apoptosis/necrosis markers, caspase activity, and DAMP release were studied after CS exposure. Finally, we assessed the effect of neutrophil-derived supernatants on the release of chemoattractant CXCL8 in normal human bronchial epithelial cells. Cigarette smoking caused a significant decrease in sputum neutrophil numbers after 3 hours. In mice, neutrophil counts were significantly increased 16 hours after repeated CS exposure but reduced 2 hours after an additional exposure. In vitro, CS induced necrotic neutrophil cell death, as indicated by mitochondrial dysfunction, inhibition of apoptosis, and DAMP release. Supernatants from CS-treated neutrophils significantly increased the release of CXCL8 in normal human bronchial epithelial cells. Together, these observations show, for the first time, that CS exposure induces neutrophil necrosis, leading to DAMP release, which may amplify CS-induced airway inflammation by promoting airway epithelial proinflammatory responses.

  18. Imaging neutrophil migration dynamics using micro-optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Chu, Kengyeh K.; Yonker, Lael; Som, Avira; Pazos, Michael; Kusek, Mark E.; Hurley, Bryan P.; Tearney, Guillermo J.

    2016-03-01

    Neutrophils are immune cells that undergo chemotaxis, detecting and migrating towards a chemical signal gradient. Neutrophils actively migrate across epithelial boundaries, interacting with the epithelium to selectively permit passage without compromising the epithelial barrier. In many inflammatory disorders, excessive neutrophil migration can cause damage to the epithelium itself. The signaling pathways and mechanisms that facilitate trans-epithelial migration are not fully characterized. Our laboratory has developed micro-optical coherence tomography (μOCT), which has 2 μm lateral resolution and 1 μm axial resolution. As a high-resolution native contrast modality, μOCT can directly visualize individual neutrophils as they interact with a cell layer cultured on a transwell filter. A chemoattractant can be applied to the apical side of inverted monolayer, and human neutrophils placed in the basolateral compartment, while μOCT captures 3D images of the chemotaxis. μOCT images can also generate quantitative metrics of migration volume to study the dependence of chemotaxis on monolayer cell type, chemoattractant type, and disease state of the neutrophils. For example, a disease known as leukocyte adhesion deficiency (LAD) can be simulated by treating neutrophils with antibodies that interfere with the CD18 receptor, a facilitator of trans-epithelial migration. We conducted a migration study of anti-CD18 treated and control neutrophils using T84 intestinal epithelium as a barrier. After one hour, μOCT time-lapse imaging indicated a strong difference in the fraction of neutrophils that remain attached to the epithelium after migration (0.67 +/- 0.12 attached anti-CD18 neutrophils, 0.23 +/- 0.08 attached control neutrophils, n = 6, p < 0.05), as well as a modest but non-significant decrease in total migration volume for treated neutrophils. We can now integrate μOCT-derived migration metrics with simultaneously acquired measurements of transepithelial electrical

  19. Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation through CXCL2.

    Science.gov (United States)

    Li, Jackson LiangYao; Lim, Chun Hwee; Tay, Fen Wei; Goh, Chi Ching; Devi, Sapna; Malleret, Benoit; Lee, Bernett; Bakocevic, Nadja; Chong, Shu Zhen; Evrard, Maximilien; Tanizaki, Hideaki; Lim, Hwee Ying; Russell, Bruce; Renia, Laurent; Zolezzi, Francesca; Poidinger, Michael; Angeli, Veronique; St John, Ashley L; Harris, John E; Tey, Hong Liang; Tan, Suet Mien; Kabashima, Kenji; Weninger, Wolfgang; Larbi, Anis; Ng, Lai Guan

    2016-02-01

    Deposition of immune complexes (ICs) in tissues triggers acute inflammatory pathology characterized by massive neutrophil influx leading to edema and hemorrhage, and is especially associated with vasculitis of the skin, but the mechanisms that regulate this type III hypersensitivity process remain poorly understood. Here, using a combination of multiphoton intravital microscopy and genomic approaches, we re-examined the cutaneous reverse passive Arthus reaction and observed that IC-activated neutrophils underwent transmigration, triggered further IC formation, and transported these ICs into the interstitium, whereas neutrophil depletion drastically reduced IC formation and ameliorated vascular leakage in vivo. Thereafter, we show that these neutrophils expressed high levels of CXCL2, which further amplified neutrophil recruitment and activation in an autocrine and/or paracrine manner. Notably, CXCL1 expression was restricted to tissue-resident cell types, but IC-activated neutrophils may also indirectly, via soluble factors, modulate macrophage CXCL1 expression. Consistent with their distinct cellular origins and localization, only neutralization of CXCL2 but not CXCL1 in the interstitium effectively reduced neutrophil recruitment. In summary, our study establishes that neutrophils are able to self-regulate their own recruitment and responses during IC-mediated inflammation through a CXCL2-driven feed forward loop. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA

    DEFF Research Database (Denmark)

    Laux, D.C.; Corson, J.M.; Givskov, Michael Christian

    2002-01-01

    The pathogenesis of Pseudomonas aeruginosa is at least partially attributable to its ability to synthesize and secrete the siderophore pyoverdin and the two zinc metal loproteases elastase and LasA, and its ability to form biofilms in which bacterial cells are embedded in an alginate matrix....... In the present study, a lysophospholipid, 1-paimitoyl-2-hydroxy-sn-glycero-3-phosphate [also called monopalmitoylphosphatidic acid (MPPA)], which accumulates in inflammatory exudates, was shown to inhibit the extracellular accumulation of P. aeruginosa PAO1 alginate, elastase, LasA protease and the siderophore...

  1. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  2. Cytoplasmic lipid bodies of human neutrophilic leukocytes

    International Nuclear Information System (INIS)

    Weller, P.F.; Ackerman, S.J.; Nicholson-Weller, A.; Dvorak, A.M.

    1989-01-01

    The morphology and function of cytoplasmic lipid bodies in human neutrophils were evaluated. By transmission electron microscopy, neutrophil lipid bodies were cytoplasmic inclusions, usually several microns in diameter, that occasionally coalesced to attain a diameter up to 7 microM. Neutrophil lipid bodies were not enveloped by membrane but were often surrounded by a more electron-dense shell at their periphery. Normal peripheral blood neutrophils contained an average of approximately one lipid body per cell. Lipid bodies appeared in greater numbers in neutrophils from inflammatory lesions. Perturbation of neutrophils during conventional methods of cell isolation and purification modestly increased lipid body numbers in neutrophils, whereas incubation of neutrophils with 1 microM oleic acid rapidly induced lipid body formation over 30 to 60 minutes. After granulocytes were incubated for 2 hours with 3H-fatty acids, including arachidonic, oleic, and palmitic acids, electron microscopic autoradiography demonstrated that lipid bodies represented the predominant intracellular sites of localization of each of the three 3H-fatty acids. There was lesser labeling noted in the perinuclear cisterna, but not in cell membranes. Virtually all of each of the three 3H-fatty acids incorporated by the neutrophils were esterified into chromatographically resolved classes of neutral lipids or phospholipids. These findings indicate that cytoplasmic lipid bodies are more prominent in neutrophils in vivo engaged in inflammatory responses and that these organelles in human neutrophils function as sites of deposition of esterified, incorporated fatty acids

  3. New strategy for sepsis: Targeting a key role of platelet-neutrophil interaction

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2014-07-01

    Full Text Available Neutrophil and platelet are essential arms of the innate immune response. In sepsis, platelet abnormal activation as well as neutrophil paralysis are well recognized. For platelet, it is characterized by the contribution to disseminated intravascular coagulation (DIC and the enhanced inflammation response. In terms of neutrophil, its dysfunction is manifested by the impaired recruitment and migration to the infectious foci, abnormal sequestration in the remote organs, and the delayed clearance. More recently, it has been apparent that together platelet-neutrophil interaction can induce a faster and harder response during sepsis. This article focuses on the activation of platelet, dysfunction of neutrophil, and the interaction between them during sepsis and profiles some of the molecular mechanisms and outcomes in these cellular dialogues, providing a novel strategy for treatment of sepsis.

  4. Proteome of monocyte priming by lipopolysaccharide, including changes in interleukin-1beta and leukocyte elastase inhibitor

    Directory of Open Access Journals (Sweden)

    Beranova-Giorgianni Sarka

    2008-05-01

    Full Text Available Abstract Background Monocytes can be primed in vitro by lipopolysaccharide (LPS for release of cytokines, for enhanced killing of cancer cells, and for enhanced release of microbicidal oxygen radicals like superoxide and peroxide. We investigated the proteins involved in regulating priming, using 2D gel proteomics. Results Monocytes from 4 normal donors were cultured for 16 h in chemically defined medium in Teflon bags ± LPS and ± 4-(2-aminoethyl-benzenesulfonyl fluoride (AEBSF, a serine protease inhibitor. LPS-primed monocytes released inflammatory cytokines, and produced increased amounts of superoxide. AEBSF blocked priming for enhanced superoxide, but did not affect cytokine release, showing that AEBSF was not toxic. After staining large-format 2D gels with Sypro ruby, we compared the monocyte proteome under the four conditions for each donor. We found 30 protein spots that differed significantly in response to LPS or AEBSF, and these proteins were identified by ion trap mass spectrometry. Conclusion We identified 19 separate proteins that changed in response to LPS or AEBSF, including ATP synthase, coagulation factor XIII, ferritin, coronin, HN ribonuclear proteins, integrin alpha IIb, pyruvate kinase, ras suppressor protein, superoxide dismutase, transketolase, tropomyosin, vimentin, and others. Interestingly, in response to LPS, precursor proteins for interleukin-1β appeared; and in response to AEBSF, there was an increase in elastase inhibitor. The increase in elastase inhibitor provides support for our hypothesis that priming requires an endogenous serine protease.

  5. High performance mass spectrometry based proteomics reveals enzyme and signaling pathway regulation in neutrophils during the early stage of surgical trauma

    DEFF Research Database (Denmark)

    Arshid, Samina; Tahir, Muhammad; Fontes, Belchor

    2017-01-01

    In clinical conditions trauma is associated with high mortality and morbidity. Neutrophils play a key role in the development of multiple organ failure after trauma. To have a detailed understanding of the neutrophil activation at primary stages after trauma, neutrophils were isolated from control...

  6. New Coumarin Derivatives and Other Constituents from the Stem Bark of Zanthoxylum avicennae: Effects on Neutrophil Pro-Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Jih-Jung Chen

    2015-04-01

    Full Text Available Three new coumarin derivatives, 8-formylalloxanthoxyletin (1, avicennone (2, and (Z-avicennone (3, have been isolated from the stem bark of Zanthoxylum avicennae (Z. avicennae, together with 15 known compounds (4–18. The structures of these new compounds were determined through spectroscopic and MS analyses. Compounds 1, 4, 9, 12, and 15 exhibited inhibition (half maximal inhibitory concentration (IC50 values ≤7.65 µg/mL of superoxide anion generation by human neutrophils in response to formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB. Compounds 1, 2, 4, 8 and 9 inhibited fMLP/CB-induced elastase release with IC50 values ≤8.17 µg/mL. This investigation reveals bioactive isolates (especially 1, 2, 4, 8, 9, 12 and 15 could be further developed as potential candidates for the treatment or prevention of various inflammatory diseases.

  7. New Coumarin Derivatives and Other Constituents from the Stem Bark of Zanthoxylum avicennae: Effects on Neutrophil Pro-Inflammatory Responses

    Science.gov (United States)

    Chen, Jih-Jung; Yang, Chieh-Kai; Kuo, Yueh-Hsiung; Hwang, Tsong-Long; Kuo, Wen-Lung; Lim, Yun-Ping; Sung, Ping-Jyun; Chang, Tsung-Hsien; Cheng, Ming-Jen

    2015-01-01

    Three new coumarin derivatives, 8-formylalloxanthoxyletin (1), avicennone (2), and (Z)-avicennone (3), have been isolated from the stem bark of Zanthoxylum avicennae (Z. avicennae), together with 15 known compounds (4–18). The structures of these new compounds were determined through spectroscopic and MS analyses. Compounds 1, 4, 9, 12, and 15 exhibited inhibition (half maximal inhibitory concentration (IC50) values ≤7.65 µg/mL) of superoxide anion generation by human neutrophils in response to formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 2, 4, 8 and 9 inhibited fMLP/CB-induced elastase release with IC50 values ≤8.17 µg/mL. This investigation reveals bioactive isolates (especially 1, 2, 4, 8, 9, 12 and 15) could be further developed as potential candidates for the treatment or prevention of various inflammatory diseases. PMID:25938967

  8. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    Science.gov (United States)

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Effects of areca nut extracts on the functions of human neutrophils in vitro.

    Science.gov (United States)

    Hung, S L; Chen, Y L; Wan, H C; Liu, T Y; Chen, Y T; Ling, L J

    2000-08-01

    Aqueous extracts of ripe areca nut without husk (ripe ANE) and fresh and tender areca nut with husk (tender ANE) were examined for their effects on the defensive functions of human neutrophils. Exposure of peripheral blood neutrophils to ripe ANE and tender ANE inhibited their bactericidal activity against oral pathogens, including Actinobacillus actinomycetemcomitans and Streptococcus mutans, in a dose-dependent manner. At the concentrations tested, ripe and tender ANEs did not significantly affect the viability of neutrophils as verified by their ability to exclude trypan blue dye. However, both ANEs inhibited the production of bactericidal superoxide anion by neutrophils as measured by cytochrome c reduction. Moreover, the ripe ANE inhibited neutrophils more effectively than did tender ANE. Arecoline, a major alkaloid of areca nut, only exhibited an inhibitory effect on the functions of neutrophils when high concentrations were used. Therefore, arecoline could not be used to explain the inhibitory effects observed for ANEs. In conclusion, our results demonstrated that ripe and tender ANEs reduced the antibacterial activity and the superoxide anion production of neutrophils. This effect may contribute to a less efficient elimination of bacteria from the periodontal environment. Inhibition of the antimicrobial functions of neutrophils may alter the microbial ecology of the oral cavity, and this may be one possible mechanism by which areca nut compromises the oral health of users of areca nut products.

  10. The beetroot component betanin modulates ROS production, DNA damage and apoptosis in human polymorphonuclear neutrophils.

    Science.gov (United States)

    Zielińska-Przyjemska, Małgorzata; Olejnik, Anna; Kostrzewa, Artur; Łuczak, Michał; Jagodziński, Paweł P; Baer-Dubowska, Wanda

    2012-06-01

    The aim of this study was to evaluate the effect of betanin, one of the beetroot major components, on ROS production, DNA damage and apoptosis in human resting and stimulated with phorbol 12-myristate13-acetate polymorphonuclear neutrophils, one of the key elements of the inflammatory response. Incubation of neutrophils with betanin in the concentration range 2-500 µM resulted in significant inhibition of ROS production (by 15-46%, depending on the ROS detection assay). The antioxidant capacity of betanin was most prominently expressed in the chemiluminescence measurements. This compound decreased also the percentage of DNA in comet tails in stimulated neutrophils, but only at the 24 h time point. In resting neutrophils an increased level of DNA in comet tails was observed. Betanin did not affect the activity of caspase-3, in resting neutrophils, but significantly enhanced the enzyme activity in stimulated neutrophils. The western blot analysis showed, however, an increased level of caspase-3 cleavage products as a result of betanin treatment both in resting and stimulated neutrophils. The results indicate that betanin may be responsible for the effect of beetroot products on neutrophil oxidative metabolism and its consequences, DNA damage and apoptosis. The dose and time dependent effects on these processes require further studies. Copyright © 2011 John Wiley & Sons, Ltd.

  11. On the pharmacology of oxidative burst of neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Drábiková, K.; Harmatha, Juraj; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.

    2011-01-01

    Roč. 4, č. 2 (2011), A51-A51 ISSN 1337-6853. [TOXCON 2011. Interdisciplinary Toxicology Conference /16./. 17.05.2011-20.05.2011, Praha] Institutional research plan: CEZ:AV0Z40550506 Keywords : N-feruloyl- serotonin * oxidative burst * inhibition of neutrophil activation Subject RIV: CC - Organic Chemistry

  12. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: kinetic and solvent isotope effect studies

    International Nuclear Information System (INIS)

    Stein, R.L.; Trainor, D.A.

    1986-01-01

    The mechanism of inactivation of human leukocyte elastase (HLE) by the chloromethyl ketone MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl was investigated. The dependence of the first-order rate constant for inactivation on concentration of chloromethyl ketone is hyperbolic and suggests formation of a reversible Michaelis complex prior to covalent interaction between the enzyme and inhibitor. However, the observed Ki value is 10 microM, at least 10-fold lower than dissociation constants for complexes formed from interaction of HLE with structurally related substrates or reversible inhibitors, and suggests that Ki is a complex kinetic constant, reflecting the formation and accumulation of both the Michaelis complex and a second complex. It is proposed that this second complex is a hemiketal formed from attack of the active site serine on the carbonyl carbon of the inhibitor. The accumulation of this intermediate may be a general feature of reactions of serine proteases and chloromethyl ketones derived from specific peptides and accounts for the very low Ki values observed for these reactions. The solvent deuterium isotope effect (SIE) on the inactivation step (ki) is 1.58 +/- 0.07 and is consistent with rate-limiting, general-catalyzed attack of the active site His on the methylene carbon of the inhibitor with displacement of chloride anion. The general catalyst is thought to be the active site Asp. In contrast, the SIE on the second-order rate constant for HLE inactivation, ki/Ki, is inverse and equals 0.64 +/- 0.05

  13. Dihydroxyoctadecamonoenoate esters inhibit the neutrophil ...

    Indian Academy of Sciences (India)

    PRAKASH

    The leukotoxins (±)9(10)-epoxy-12Z- and (±)12(13)-epoxy-. 9Z-octadecenoic acid [9(10)- and 12(13)]-EpOME (figure. 1A) are produced by inflammatory leukocytes such as neutrophils and macrophages (Ozawa et al 1988b; Zhang et al 1995; Hayakawa et al 1986). Plasma levels of the. EpOMEs are elevated in patients ...

  14. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    Directory of Open Access Journals (Sweden)

    Irundika H K Dias

    Full Text Available The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. - by the nicotinamide adenine dinucleotide (NADPH oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2, a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH/oxidised glutathione (GSSG ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC, and modifier (GCLM subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  15. A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis.

    Directory of Open Access Journals (Sweden)

    Alexander D Malkin

    2015-10-01

    Full Text Available Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8, a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3-6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40-80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5

  16. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and