Resonance effects in neutron scattering lengths
Energy Technology Data Exchange (ETDEWEB)
Lynn, J.E.
1989-06-01
The nature of neutron scattering lengths is described and the nuclear effects giving rise to their variation is discussed. Some examples of the shortcomings of the available nuclear data base, particularly for heavy nuclei, are given. Methods are presented for improving this data base, in particular for obtaining the energy variation of the complex coherent scattering length from long to sub-/angstrom/ wave lengths from the available sources of slow neutron cross section data. Examples of this information are given for several of the rare earth nuclides. Some examples of the effect of resonances in neutron reflection and diffraction are discussed. This report documents a seminar given at Argonne National Laboratory in March 1989. 18 refs., 18 figs.
Resonance effects in neutron scattering lengths
International Nuclear Information System (INIS)
Lynn, J.E.
1989-01-01
The nature of neutron scattering lengths is described and the nuclear effects giving rise to their variation is discussed. Some examples of the shortcomings of the available nuclear data base, particularly for heavy nuclei, are given. Methods are presented for improving this data base, in particular for obtaining the energy variation of the complex coherent scattering length from long to sub-angstrom wave lengths from the available sources of slow neutron cross section data. Examples of this information are given for several of the rare earth nuclides. Some examples of the effect of resonances in neutron reflection and diffraction are discussed. This report documents a seminar given at Argonne National Laboratory in March 1989. 18 refs., 18 figs
Chemical shift of neutron resonances and some ideas on neutron resonances and scattering theory
International Nuclear Information System (INIS)
Ignatovich, V.K.; )
2002-01-01
The dependence of positions of neutron resonances in nuclei in condensed matter on chemical environment is considered. A possibility of theoretical description of neutron resonances, different from R-matrix theory is investigated. Some contradictions of standard scattering theory are discussed and a new approach without these contradictions is formulated [ru
Measurements and applications of neutron multiple scattering in resonance region
International Nuclear Information System (INIS)
Ohkubo, Makio
1977-02-01
Capture yield of neutrons impinging on a thick material is complicated due to self-shielding and multiple scattering, especially in the resonance region. When the incident neutron energy is equal to a resonance energy of the material, capture probability of the neutron increases with sample thickness and reaches a saturation value P sub(CO). There is a simple relation between P sub(CO) and GAMMA sub(n)/GAMMA and the recoil energy by the Monte-Carlo calculation. To examine validity of the relation, P sub(CO) was measured for 19 resonances in 12 nuclides with thick samples, using a JAERI linac time-of-flight spectrometer with Moxon-Rae type gamma ray detector and transmission type neutron flux monitor. Results of the measurements confirmed the validity. With this relation, the GAMMA sub(n)/GAMMA or GAMMA sub(γ)/GAMMA value can be obtained from the measured P sub(CO), and also the level spins be determined by combining the transmission data. Because of the definition of P sub(CO), determination of the resonance parameters is not sensitive to the sample thickness as far as it is sufficiently thick. (auth.)
Perego, R.C.
2004-01-01
Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the
Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances
Energy Technology Data Exchange (ETDEWEB)
Parsons, Donald Kent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-28
When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutron up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.
MCRTOF, Multiple Scattering of Resonance Region Neutron in Time of Flight Experiments
International Nuclear Information System (INIS)
Ohkubo, Mako
1984-01-01
1 - Description of program or function: Multiple scattering of neutrons in the resonance energy region impinging on a disk with an arbitrary angle. 2 - Method of solution: The Monte Carlo method is employed to simulate the path of an incident neutron in a medium for which macroscopic cross sections are determined by resonance parameters. By tracing a large number of neutrons, probabilities for capture, transmission, front-face scattering, rear-face scattering and side-face scattering are determined and printed out as function of incident neutron energy. Optionally, the distribution of capture locations in the disk can be printed. The incident neutron energy is swept to fit a situation as encountered in time-of-flight experiments. 3 - Restrictions on the complexity of the problem: The cross section file is constructed from input resonance parameters with a single- level Breit-Wigner formula. The following restrictions and simplifications apply: - The maximum number of resonances is five. - Reactions other than capture and scattering are neglected. - The angular scattering distribution in the center-of-mass system is assumed to be uniform. - Chemical binding effects are neglected
Resonant Inverse Compton Scattering Spectra from Highly Magnetized Neutron Stars
Wadiasingh, Zorawar; Baring, Matthew G.; Gonthier, Peter L.; Harding, Alice K.
2018-02-01
Hard, nonthermal, persistent pulsed X-ray emission extending between 10 and ∼150 keV has been observed in nearly 10 magnetars. For inner-magnetospheric models of such emission, resonant inverse Compton scattering of soft thermal photons by ultrarelativistic charges is the most efficient production mechanism. We present angle-dependent upscattering spectra and pulsed intensity maps for uncooled, relativistic electrons injected in inner regions of magnetar magnetospheres, calculated using collisional integrals over field loops. Our computations employ a new formulation of the QED Compton scattering cross section in strong magnetic fields that is physically correct for treating important spin-dependent effects in the cyclotron resonance, thereby producing correct photon spectra. The spectral cutoff energies are sensitive to the choices of observer viewing geometry, electron Lorentz factor, and scattering kinematics. We find that electrons with energies ≲15 MeV will emit most of their radiation below 250 keV, consistent with inferred turnovers for magnetar hard X-ray tails. More energetic electrons still emit mostly below 1 MeV, except for viewing perspectives sampling field-line tangents. Pulse profiles may be singly or doubly peaked dependent on viewing geometry, emission locale, and observed energy band. Magnetic pair production and photon splitting will attenuate spectra to hard X-ray energies, suppressing signals in the Fermi-LAT band. The resonant Compton spectra are strongly polarized, suggesting that hard X-ray polarimetry instruments such as X-Calibur, or a future Compton telescope, can prove central to constraining model geometry and physics.
Neutron scattering. Experiment manuals
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Resonant cyclotron scattering in pulsar magnetospheres and its application to isolated neutron stars
International Nuclear Information System (INIS)
Tong Hao; Peng Qiuhe; Xu, Ren-Xin; Song Liming
2010-01-01
Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model. (letters)
Kotlarchyk, Michael; Thurston, George M
2016-12-28
In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.
International Nuclear Information System (INIS)
1991-02-01
The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research
Mughabghab, Said
2018-01-01
Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Filabozzi, A.; Pace, E.; Pietropaolo, A.
2012-01-01
The possibility is explored to sum up neutron Compton profiles at different scattering angles in deep inelastic neutron scattering measurements within the Resonance Detector (RD) configuration to enhance the statistics for a more reliable extraction of the momentum distribution of the constituents in the target. The RD configuration allows to select the energy of the scattered neutrons up to several tens of electron Volt, thus accessing energy and wave vector transfers well above 1 eV and 30 Å −1 , respectively. In the high-q/ω regime, the final state effects could be considered as negligible, as shown in a series of simulations using a Monte Carlo method with different inverse geometry instrument setups. The simulations show that it could be possible to conceive an instrument set up where the RD configuration allows the proper summation of several spectra at different scattering angles, providing a good separation of the proton recoil signal from that of the heavier atoms, thus avoiding the cell subtraction by fitting procedure.
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2013-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)
The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model
Tong, Hao; Xu, Ren-Xin; Song, Li-Ming
2011-12-01
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)
2010-07-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner [eds.
2010-07-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2010-01-01
The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)
DEFF Research Database (Denmark)
Mortensen, Asger; Rønnow, Henrik Moodysson; Bruus, Henrik
2000-01-01
The magnetic resonance at 41 meV observed in neutron scattering studies of YBa2Cu3O7 holds a key position in the understanding of high-T-c, superconductivity. Within the SO(5) model for superconductivity and antiferromagnetism, we have calculated the effect of an applied magnetic field on the neu......The magnetic resonance at 41 meV observed in neutron scattering studies of YBa2Cu3O7 holds a key position in the understanding of high-T-c, superconductivity. Within the SO(5) model for superconductivity and antiferromagnetism, we have calculated the effect of an applied magnetic field...
Tong, Hao; Xu, Renxin
2013-03-01
The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.
International Nuclear Information System (INIS)
Furrer, A.
1993-01-01
This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs
International Nuclear Information System (INIS)
Fayer, Michael J.; Gee, Glendon W.
2005-01-01
The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe
Resonantly scattering crystals and surfaces
International Nuclear Information System (INIS)
Gunn, J.M.F.; Mahon, P.J.
1990-12-01
We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)
Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Software A new portal for neutron scattering has just been established sets KUPLOT: data plotting and fitting software ILL/TAS: Matlab probrams for analyzing triple axis data
Roessli, B.; Böni, P.
2000-01-01
The technique of polarized neutron scattering is reviewed with emphasis on applications. Many examples of the usefulness of the method in various fields of physics are given like the determination of spin density maps, measurement of complex magnetic structures with spherical neutron polarimetry, inelastic neutron scattering and separation of coherent and incoherent scattering with help of the generalized XYZ method.
Coupling effects of giant resonances on the elastic and inelastic scattering of fast neutrons
International Nuclear Information System (INIS)
Delaroche, J.P.; Tornow, W.
1983-01-01
While the inelastic scattering of high energy hadrons is commonly used for the study of giant resonances in nuclei, it is just recently that one has thought to take into account these states in the analysis of proton scattering at low incident energies (E 0 and S 1 . (Auth.)
Statistical distribution of resonance parameters for inelastic scattering of fast neutrons
International Nuclear Information System (INIS)
Radunovic, J.
1973-01-01
This paper deals with the application of statistical method for the analysis of nuclear reactions related to complex nuclei. It is shown that inelastic neutron scattering which occurs by creation of a complex nucleus in the higher energy range can be treated by statistical approach
Neutron scattering and magnetism
International Nuclear Information System (INIS)
Mackintosh, A.R.
1983-01-01
Those properties of the neutron which make it a unique tool for the study of magnetism are described. The scattering of neutrons by magnetic solids is briefly reviewed, with emphasis on the information on the magnetic structure and dynamics which is inherent in the scattering cross-section. The contribution of neutron scattering to our understanding of magnetic ordering, excitations and phase transitions is illustrated by experimental results on a variety of magnetic crystals. (author)
Diffuse scattering of neutrons
International Nuclear Information System (INIS)
Novion, C.H. de.
1981-02-01
The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr
International Nuclear Information System (INIS)
Ram, P.N.; Dederichs, P.H.
1981-07-01
Some aspects of resonant vibrations of self-interstitials in the 100-dumbbell configuration in fcc-metals are discussed by extending previous calculations of Zeller et al. and Schober et al. Employing a simple defect model with nearest-neighbour interaction the local frequency spectrum of the defect is calculated showing several localized modes and low-frequency resonant modes. The change in the total density of states due to the defects is expressed as the derivative of a generalized phase shift which is used to calculate the change in the lattic specific heat due to single interstitials. Inelastic neutron scattering away from the one-phonon lines is proposed as a method to observe the resonant modes induced by self-interstitials. The model calculation in Cu shows that the well defined resonant modes due to dumbbell vibrations have appreciable intensity and could presumably be detected in neutron scattering measurements. The effect of di-interstitials on the phonon dispersion in Al is also discussed. (orig./GSCH)
Scattering with polarized neutrons
International Nuclear Information System (INIS)
Schweizer, J.
2007-01-01
In the history of neutron scattering, it was shown very soon that the use of polarized neutron beams brings much more information than usual scattering with unpolarized neutrons. We shall develop here the different scattering methods that imply polarized neutrons: 1) polarized beams without polarization analysis, the flipping ratio method; 2) polarized beams with a uniaxial polarization analysis; 3) polarized beams with a spherical polarization analysis. For all these scattering methods, we shall give examples of the physical problems which can been solved by these methods, particularly in the field of magnetism: investigation of complex magnetic structures, investigation of spin or magnetization densities in metals, insulators and molecular compounds, separation of magnetic and nuclear scattering, investigation of magnetic properties of liquids and amorphous materials and even, for non magnetic material, separation between coherent and incoherent scattering. (author)
Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M
2010-06-09
The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.
Introduction to neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Fischer, W E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1996-11-01
We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.
International Nuclear Information System (INIS)
Doll, P.
1990-02-01
Neutron-proton scattering as fundamental interaction process below and above hundred MeV is discussed. Quark model inspired interactions and phenomenological potential models are described. The seminar also indicates the experimental improvements for achieving new precise scattering data. Concluding remarks indicate the relevance of nucleon-nucleon scattering results to finite nuclei. (orig.) [de
Polarimetric neutron scattering
International Nuclear Information System (INIS)
Tasset, F.
2001-01-01
Polarimetric Neutron Scattering in introduced, both by, explaining methodological issues and the corresponding instrumental developments. After a short overview of neutron spin polarization and the neutron polarization 3d-vector a pictorial approach of the microscopic theory is used to show how a polarized beam interacts with lattice and magnetic Fourier components in a crystal. Examples are given of using Spherical Neutron Polarimetry (SNP) and the corresponding Cryopad polarimeter for the investigation of non-collinear magnetic structures. (R.P.)
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2017-01-01
. In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus......We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering...
Deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-03-01
The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2014-01-01
The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Symposium on neutron scattering
International Nuclear Information System (INIS)
Lehmann, M.S.; Saenger, W.; Hildebrandt, G.; Dachs, H.
1984-01-01
Extended abstracts of the named symposium are presented. The first part of this report contains the abstracts of the lectures, the second those of the posters. Topics discussed on the symposium include neutron diffraction and neutron scattering studies in magnetism, solid state chemistry and physics, materials research. Some papers discussing instruments and methods are included too. (GSCH)
Introductory theory of neutron scattering
International Nuclear Information System (INIS)
Gunn, J.M.F.
1986-12-01
The paper comprises a set of six lecture notes which were delivered to the summer school on 'Neutron Scattering at a pulsed source', Rutherford Laboratory, United Kingdom, 1986. The lectures concern the physical principles of neutron scattering. The topics of the lectures include: diffraction, incoherent inelastic scattering, connection with the Schroedinger equation, magnetic scattering, coherent inelastic scattering, and surfaces and neutron optics. (UK)
Neutron scattering. Experiment manuals
International Nuclear Information System (INIS)
Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner
2012-01-01
The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, the neutron polarization analyzer DNS, the neutron spin-echo spectrometer J-NSE, the small-angle neutron diffractometers KWS-1/-2, the very-small-angle neutron diffractometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)
Energy Technology Data Exchange (ETDEWEB)
ZALIZNYAK,I.A.; LEE,S.H.
2004-07-30
Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern
Virtual neutron scattering experiments
DEFF Research Database (Denmark)
Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael
2016-01-01
We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...
Slow neutron scattering experiments
International Nuclear Information System (INIS)
Moon, R.M.
1985-01-01
Neutron scattering is a versatile technique that has been successfully applied to condensed-matter physics, biology, polymer science, chemistry, and materials science. The United States lost its leadership role in this field to Western Europe about 10 years ago. Recently, a modest investment in the United States in new facilities and a positive attitude on the part of the national laboratories toward outside users have resulted in a dramatic increase in the number of US scientists involved in neutron scattering research. Plans are being made for investments in new and improved facilities that could return the leadership role to the United States. 23 references, 4 figures, 3 tables
Neutron scattering in Australia
International Nuclear Information System (INIS)
Knott, R.B.
1994-01-01
Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains
Neutron scattering in Australia
Energy Technology Data Exchange (ETDEWEB)
Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)
1994-12-31
Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.
Small angle neutron scattering
International Nuclear Information System (INIS)
Bernardini, G.; Cherubini, G.; Fioravanti, A.; Olivi, A.
1976-09-01
A method for the analysis of the data derived from neutron small angle scattering measurements has been accomplished in the case of homogeneous particles, starting from the basic theory without making any assumption on the form of particle size distribution function. The experimental scattering curves are interpreted with the aid the computer by means of a proper routine. The parameters obtained are compared with the corresponding ones derived from observations at the transmission electron microscope
Systematic study on nuclear resonant scattering
International Nuclear Information System (INIS)
Suarez, A.A.; Freitas, M.L.
1974-01-01
New resonant scattering effect of thermal neutron capture gamma rays from Ti and Fe on Sb, Cu, Se and Ce target were observed. These results together with those published by other authors are summarized and discussed in terms of a possible systematic search for new resonant scattering effects
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1980-01-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)
Applied neutron resonance theory
International Nuclear Information System (INIS)
Froehner, F.H.
1978-07-01
Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de
International Nuclear Information System (INIS)
Chrien, R.E.
1986-10-01
The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs
Neutron resonance parameters for 238U
International Nuclear Information System (INIS)
Poortmans, F.; Mewissen, L.; Cornelis, E.; Vanpraet, G.; Rohr, G.; Shelley, R.; Veen, T. van der; Weigmann, H.
1977-01-01
A series of total, capture and scattering cross section measurements using the neutron time-of-flight facility at the CBNM linear electron accelerator were performed. The neutron widths have been obtained for more than 400 resonances below 4.3 keV and the total capture width for 73 resonances
Small angle neutron scattering
Directory of Open Access Journals (Sweden)
Cousin Fabrice
2015-01-01
Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of
Sensitivity of neutron scattering properties to the coupling to giant resonances
International Nuclear Information System (INIS)
Delaroche, J.P.; Guss, P.P.; Floyd, C.E.; Walter, R.L.; Tornow, W.
1983-01-01
Extended coupled channels calculations have been performed for neutron elastic and inelastic cross sections and analyzing powers for vibrational nuclei with 40 208 Pb and 12 MeV results for 40 Ca are illustrated here
Energy Technology Data Exchange (ETDEWEB)
Naberejnev, D.G. [Aix-Marseille-1 Univ., 13 - Marseille (France)
1999-02-01
At present time the problem of taking into account of the crystalline binding in the heavy nuclei resonance range is not correctly treated in nuclear data processing codes. The present work deals separately with resonant absorption and scattering of neutrons. The influence of crystalline binding is considered for both types of reactions in the harmonic crystal frame work. The harmonic crystal model is applied to the study of resonant absorption cross sections to show the inconsistency of the free gas model widely in use in reactor neutronics. The errors due to the use of the latter were found to be non negligible. These errors should be corrected by introducing a more elaborated harmonic crystal model in codes for resonances analysis and on the nuclear data processing stage. Currently the influence of crystalline binding on transfer cross section in the resonance domain is taken into account in a naive manner using the model of the free nucleus at rest in the laboratory system. In this work I present a formalism (Uncoupled Phonon Approximation) which permits to consider in more detail the crystalline structure of the nuclear fuel. This formalism shows new features in comparison with the static model. (author)
Energy Technology Data Exchange (ETDEWEB)
Naberejnev, D G [Aix-Marseille-1 Univ., 13 - Marseille (France)
1999-02-01
At present time the problem of taking into account of the crystalline binding in the heavy nuclei resonance range is not correctly treated in nuclear data processing codes. The present work deals separately with resonant absorption and scattering of neutrons. The influence of crystalline binding is considered for both types of reactions in the harmonic crystal frame work. The harmonic crystal model is applied to the study of resonant absorption cross sections to show the inconsistency of the free gas model widely in use in reactor neutronics. The errors due to the use of the latter were found to be non negligible. These errors should be corrected by introducing a more elaborated harmonic crystal model in codes for resonances analysis and on the nuclear data processing stage. Currently the influence of crystalline binding on transfer cross section in the resonance domain is taken into account in a naive manner using the model of the free nucleus at rest in the laboratory system. In this work I present a formalism (Uncoupled Phonon Approximation) which permits to consider in more detail the crystalline structure of the nuclear fuel. This formalism shows new features in comparison with the static model. (author)
Inelastic scattering of neutrons
International Nuclear Information System (INIS)
Sal'nikov, O.A.
1984-06-01
The paper reviews the main problems concerning the mechanism of the inelastic scatterings of neutrons by nuclei, concentrating on the different models which calculate the angular distributions. In the region of overlapping levels, both the compound nucleus mechanism and the preequilibrium Griffin (exciton) model are discussed, and their contribution relative to that of a direct mechanism is considered. The parametrization of the level density and of the nuclear moment of inertia are also discussed. The excitation functions of discrete levels are also presented, and the importance of elucidating their five structure (for practical calculations, such as for shielding) is pointed out
Neutron resonance spectroscopy
International Nuclear Information System (INIS)
Gunsing, F.
2005-06-01
The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)
Neutron resonance spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Gunsing, F
2005-06-15
The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)
Single Crystal Diffuse Neutron Scattering
Directory of Open Access Journals (Sweden)
Richard Welberry
2018-01-01
Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.
Energy Technology Data Exchange (ETDEWEB)
Radunovic, J [Institute of nuclear sciences Boris Kidric, Vinca, Beograd (Yugoslavia)
1973-07-01
This paper deals with the application of statistical method for the analysis of nuclear reactions related to complex nuclei. It is shown that inelastic neutron scattering which occurs by creation of a complex nucleus in the higher energy range can be treated by statistical approach.
Calculations of neutron spectra after neutron-neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Crawford, B E [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S L [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Howell, C R [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G E [North Carolina State University, Raleigh, NC 27695-8202 (United States); Tornow, W [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Furman, W I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Muzichka, A Yu [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A V [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E I [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V N [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)
2004-09-01
A direct neutron-neutron scattering length, a{sub nn}, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of a{sub nn} will not only help resolve conflicting results of a{sub nn} by indirect means, but also in comparison to the proton-proton scattering length, a{sub pp}, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrum-Maxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermal-thermal and thermal-epithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.
Applications of thermal neutron scattering
International Nuclear Information System (INIS)
Kostorz, G.
1978-01-01
Although in the past neutrons have been used quite frequently in the study of condensed matter, a more recent development has lead to applications of thermal neutron scattering in the investigation of more practical rather than purely academic problems. Physicists, chemists, materials scientists, biologists, and others have recognized and demonstrated that neutron scattering techniques can yield supplementary information which, in many cases, could not be obtained with other methods. The paper illustrates the use of neutron scattering in these areas of applied research. No attempt is made to present all the aspects of neutron scattering which can be found in textbooks. From the vast amount of experimental data, only a few examples are presented for the study of structure and atomic arrangement, ''extended'' structure, and dynamic phenomena in substances of current interest in applied research. (author)
Energy Technology Data Exchange (ETDEWEB)
Granovsky, S A [M V Lomonosov Moscow State University, 119991 GSP-1 Moscow (Russian Federation); Kreyssig, A; Canfield, P C [Ames Laboratory USDOE, Iowa State University, Ames, IA 50011 (United States); Doerr, M; Loewenhaupt, M [TU Dresden, Institut fuer Festkoerperphysik, D-01062, Dresden (Germany); Ritter, C [Institut Laue-Langevin, F-38042 Grenoble Cedex 9 (France); Dudzik, E; Feyerherm, R, E-mail: ser@plms.r [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, BESSY, D-12489, Berlin (Germany)
2010-06-09
The magnetic structure of GdMn{sub 2}Ge{sub 2} (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T{sub C} = 96 K and the collinear antiferromagnetic phase in the temperature region T{sub C} < T < T{sub N} = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L{sub 2} absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.
Huang diffuse scattering of neutrons
International Nuclear Information System (INIS)
Burkel, E.; Guerard, B. v.; Metzger, H.; Peisl, J.
1979-01-01
Huang diffuse neutron scattering was measured for the first time on niobium with interstitially dissolved deuterium as well as on MgO after neutron irradiation and Li 7 F after γ-irradiation. With Huang diffuse scattering the strength and symmetry of the distortion field around lattice defects can be determined. Our results clearly demonstrate that this method is feasible with neutrons. The present results are compared with X-ray experiments and the advantages of using neutrons is discussed in some detail. (orig.)
Commercial applications of neutron scattering
International Nuclear Information System (INIS)
Hutchings, M.T.
1993-01-01
The fact that industry is now willing to pay the full commercial cost for certain neutron scattering experiments aimed at solving its urgent materials - related problems is a true testimony to the usefulness of neutrons as microscopic probes. This paper gives examples of such use of three techniques drawn mainly from our experience at AEA Technology Harwell Laboratory. These are diffraction to measure residual stress, small angle neutron scattering to examine hardening precipitates in ferritic steels brought about by irradiation, and reflectivity to study amorphous diamond layers deposited on silicon. In most cases it is the penetrative power of the neutron which proves to be its best asset for commercial industrial applicaitons. (author)
Neutron scattering studies of modulated magnetic structures
Energy Technology Data Exchange (ETDEWEB)
Aagaard Soerensen, Steen
1999-08-01
This report describes investigations of the magnetic systems DyFe{sub 4}Al{sub 8} and MnSi by neutron scattering and in the former case also by X-ray magnetic resonant scattering. The report is divided into three parts: An introduction to the technique of neutron scattering with special emphasis on the relation between the scattering cross section and the correlations between the scattering entities of the sample. The theoretical framework of neutron scattering experiments using polarized beam technique is outlined. The second part describes neutron and X-ray scattering investigation of the magnetic structures of DyFe{sub 4}Al{sub 8}. The Fe sublattice of the compound order at 180 K in a cycloidal structure in the basal plane of the bct crystal structure. At 25 K the ordering of the Dy sublattice shows up. By the element specific technique of X-ray resonant magnetic scattering, the basal plane cycloidal structure was also found for the Dy sublattice. The work also includes neutron scattering studies of DyFe{sub 4}Al{sub 8} in magnetic fields up to 5 T applied along a <110> direction. The modulated structure at the Dy sublattice is quenched by a field lower than 1 T, whereas modulation is present at the Fe sublattice even when the 5 T field is applied. In the third part of the report, results from three small angle neutron experiments on MnSi are presented. At ambient pressure, a MnSi is known to form a helical spin density wave at temperature below 29 K. The application of 4.5 kbar pressure intended as hydrostatic decreased the Neel temperature to 25 K and changed the orientation of the modulation vector. To understand this reorientation within the current theoretical framework, anisotropic deformation of the sample crystal must be present. The development of magnetic critical scattering with an isotropic distribution of intensity has been studied at a level of detail higher than that of work found in the literature. Finally the potential of a novel polarization
Neutron scattering applications in structural biology: now and the future
Energy Technology Data Exchange (ETDEWEB)
Trewhella, J [Los Alamos National Lab., NM (United States)
1996-05-01
Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques all contribute unique information on biomolecular structures. In particular, solution scattering techniques give critical information on the conformations and dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods is demonstrated here by studies of protein/DNA complexes, and Ca{sup 2+}-binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach using neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources. (author)
Neutron resonance absorption theory
International Nuclear Information System (INIS)
Reuss, P.
1991-11-01
After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr
Neutron scattering and physisorption
International Nuclear Information System (INIS)
Marlow, I.; Thomas, R.K.; Trewern, T.D.
1977-01-01
Neutron scattering experiments on methane and ammonia adsorbed on a graphitized carbon black are described. Diffraction from adsorbed deuterated methane shows that, at a coverage of 0.7, it forms an epitaxial layer with a √3x√3 structure. Between 50 and 60 K it undergoes a phase transition from two-dimensional solid to liquid (bulk melting point=89.7 K). Similar results are obtained for deuterated methane on a sample of graphon intercalated with potassium. From the effect of adsorbed methane on the intensities of 001 peaks of both substrates the carbon atom of the methane is estimated to be 3.3+-0.2 A from the surface. Ammonia-d 3 on graphon behaves quite differently from methane. It follows a type III isotherm and at low temperatures desorbs from the surface to form bulk ammonia. This has anomalous melting properties which are shown to be related to adsorption isobars for the system. The detailed interpretation of the results emphasizes the close link between adsorption and heterogeneous nucleation. Quasielastic experiments on the ammonia-graphon system show that the adsorbed ammonia is undergoing translational diffusion on the surface which is much faster than in the bulk. This is attributed to the breaking up of the hydrogen bonded network normally present in t
Bibliography for thermal neutron scattering
International Nuclear Information System (INIS)
Sakamoto, M.; Chihara, J.; Nakahara, Y.; Kadotani, H.; Sekiya, T.
1976-12-01
It contains bibliographical references to measurements, calculations, reviews and basic studies on thermal neutron scatterings and dynamical properties of condensed matter. About 2,700 documents up to the end of 1975 are covered. (auth.)
Neutron scattering studies in the actinide region
International Nuclear Information System (INIS)
Kegel, G.H.R.; Egan, J.J.
1993-09-01
This report discusses the following topics: Prompt fission neutron energy spectra for 235 U and 239 Pu; Two-parameter measurement of nuclear lifetimes; ''Black'' neutron detector; Data reduction techniques for neutron scattering experiments; Inelastic neutron scattering studies in 197 Au; Elastic and inelastic scattering studies in 239 Pu; and neutron induced defects in silicon dioxide MOS structures
Neutron scattering science in Australia
Energy Technology Data Exchange (ETDEWEB)
Knott, Robert [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)
1999-10-01
Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)
Neutron scattering science in Australia
International Nuclear Information System (INIS)
Knott, Robert
1999-01-01
Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)
New techniques in neutron scattering
International Nuclear Information System (INIS)
Hayter, J.B.
1993-01-01
New neutron sources being planned, such as the Advanced Neutron Source (ANS) or the European Spallation Source (ESS), will provide an order of magnitude flux increase over what is available today, but neutron scattering will still remain a signal-limited technique. At the same time, the development of new materials, such as polymer and ceramic composites or a variety of complex fluids, will increasingly require neutron-based research. This paper will discuss some of the new techniques which will allow us to make better use of the available neutrons, either through improved instrumentation or through sample manipulation. Discussion will center primarily on unpolarized neutron techniques since polarized neutrons will be the subject of the next paper. (author)
Neutron scattering from fractals
DEFF Research Database (Denmark)
Kjems, Jørgen; Freltoft, T.; Richter, D.
1986-01-01
The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...
Phase transitions and neutron scattering
International Nuclear Information System (INIS)
Shirane, G.
1993-01-01
A review is given of recent advances in neutron scattering studies of solid state physics. I have selected the study of a structural phase transition as the best example to demonstrate the power of neutron scattering techniques. Since energy analysis is relatively easy, the dynamical aspects of a transition can be elucidated by the neutron probe. I shall discuss in some detail current experiments on the 100 K transition in SrTiO 3 , the crystal which has been the paradigm of neutron studies of phase transitions for many years. This new experiment attempts to clarify the relation between the neutron central peak, observed in energy scans, and the two length scales observed in recent x-ray diffraction studies where only scans in momentum space are possible. (author)
Advances in neutron scattering spectroscopy
International Nuclear Information System (INIS)
White, J.W.
1977-01-01
Some aspects of the application of neutron scattering to problems in polymer science, surface chemistry, and adsorption phenomena, as well as molecular biology, are reviewed. In all these areas, very significant work has been carried out using the medium flux reactors at Harwell, Juelich and Risoe, even without the use of advanced multidetector techniques or of a neutron cold source. A general tendency can also be distinguished in that, for each of these new fields, a distinct preference for colder neutrons rather than thermal neutron beams can be seen. (author)
Anomalous and resonance small-angle scattering
International Nuclear Information System (INIS)
Epperson, J.E.; Thiyagarajan, P.
1988-01-01
Significant changes in the small-angle scattered intensity can be induced by making measurements with radiation close to an absorption edge of an appropriate atomic species contained in the sample. These changes can be related quantitatively to the real and imaginary anomalous-dispersion terms for the scattering factor (X-rays) or scattering length (neutrons). The physics inherent in these anomalous-dispersion terms is first discussed before consideration of how they enter the relevant scattering theory. Two major areas of anomalous-scattering research have emerged; macromolecules in solution and unmixing of metallic alloys. Research in each area is reviewed, illustrating both the feasibility and potential of these techniques. All the experimental results reported to date have been obtained with X-rays. However, it is pointed out that the formalism is the same for the analog experiment with neutrons, and a number of suitable isotopes exist which exhibit resonance in an accessible range of energy. Potential applications of resonance small-angle neutron scattering are discussed. (orig.)
New Techniques in Neutron Scattering
DEFF Research Database (Denmark)
Birk, Jonas Okkels
potential performance than any existing facility, however in order to use this pulse structure optimally many existing neutron scattering instruments will need to be redesigned. This defense will concentrate on the design and optimization of the inverse time-of-flight cold neutron spectrometer CAMEA......, simulations and prototyping to optimize the instrument and ensure that it will deliver the predicted performance when constructed. During the design a new prismatic analyser concept that can be of interest to many other neutron spectrometers was developed. The design work was compiled into an instrument......Neutron scattering is an important experimental technique in amongst others solid state physics, biophysics, and engineering. This year construction of European Spallation Source (ESS) was commenced in Lund, Sweeden. The facility will use a new long pulsed source principle to obtain higher...
Material science and neutron scattering
International Nuclear Information System (INIS)
1983-01-01
Neutron scattering experiments complete and extend the condensed matter studies made with X and gamma rays. Then story show a permanent evolution of the instrumentation, methods and experimental techniques to improve the result quality. This is more especially important as neutron sources are weaker than photon and electron sources. Progress in this research domain is due, in most part, to discovery and development of materials for the different measurement device components [fr
Theoretical challenges in neutron scattering
International Nuclear Information System (INIS)
Lovesey, S.W.
1985-07-01
Topics in the interpretation of neutron scattering experiments from paramagnets and quantum fluids are used to illustrate the puissance of the technique in condensed matter research, and to record some fundamental shortcomings in the available theory of many-particle systems. (author)
Bibliography for thermal neutron scattering
International Nuclear Information System (INIS)
Sakamoto, Masanobu; Chihara, Junzo; Gotoh, Yorio; Kadotani, Hiroyuki; Sekiya, Tamotsu.
1979-09-01
Bibliographic references are given for measurements, calculations, reviews and basic studies of thermal neutron scattering and dynamical properties of condensed matter. This is the sixth edition covering 3,326 articles collected up to 1978. The edition being the final issue of the present bibliography series, a forthcoming edition will be published in a new form of bibliography. (author)
Recent development in magnetic neutron scattering studies
International Nuclear Information System (INIS)
Endoh, Yasuo
1993-01-01
Neutron scattering results contain many new concepts in modern magnetism. We review here the most recent neutron magnetic scattering studies from so called '214' copper oxide lamellar materials, because a number of important developments in magnetism are condensed in this novel subject. We show that neutron scattering has played crucial role in our understanding of modern magnetism. (author)
DEFF Research Database (Denmark)
Konstantatos, Andreas; Bewley, Robert; Barra, Anne Laure
2016-01-01
. Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single...
Neutron scattering studies of Mn12-acetate
International Nuclear Information System (INIS)
Robinson, R.A.
2000-01-01
Full text: The S=10 magnetic molecule Mn 12 -acetate, which crystallises into a tetragonal crystal structure, has attracted substantial recent attention by virtue of its low temperature bulk magnetic properties, which give evidence for resonant quantum tunnelling of the magnetisation. We report a full neutron crystal structure including positions of all protons/deuterons, including the solvated water and acetic acid, a polarised-neutron study of the real space magnetisation, which confirms a simple magnetic-structure model for the molecule, albeit with reduced Mn moments, and inelastic neutron scattering data containing both the excitations within the 21-fold degenerate S=10 manifold, and those from S=10 to the S=9 manifolds. Both manifolds are split by uniaxial magnetic anisotropy, and we report coefficients for 2nd and 4th-order terms in the magnetic Hamiltonian
Interface detection by neutron scattering
International Nuclear Information System (INIS)
De Monchy, A.R.; Kok, C.A.; Dorrepaal, J.
1979-01-01
A method and apparatus for detecting an interface of materials having different hydrogen content present in a metal vessel or pipe eg. made of steel, are described. Steel walls of columns, reactors, pipelines etc can be monitored. It is very suitable for detection of liquid water or hydrocarbons present in gas pipelines and also for the detection of a liquid hydrocarbon in a vessel or column. A series of measurements of the hydrogen density of the contents of a vessel or pipe are made using at least one californium-252 neutron source located near the outer side of the pipe. Neutrons are emitted and are scattered by the contents of the pipe. At least one neutron detector is located near the outer side of the metal wall. The detectors have a higher sensitivity for scattered neutrons (from the light hydrogen nuclei present in water or hydrocarbons). A source of 0.1 - 1 micrograms produces enough neutrons for most technical applications so the handling is relatively safe although shielding is advocated. The detectors contain helium-3 at a pressure of about 10 bar. Current pulses from the detector are counted. (U.K.)
Detection of explosives by neutron scattering
International Nuclear Information System (INIS)
Brooks, F.D.; Buffler, A.; Allie, M.S.; Nchodu, M.R.; Bharuth-Ram, K.
1998-01-01
For non-intrusive detection of hidden explosives or other contraband such as narcotics a fast neutron scattering analysis (FNSA) technique is proposed. An experimental arrangement uses a collimated, pulsed beam of neutrons directed at the sample. Scattered neutrons are detected by liquid scintillation counters at different scattering angles. A scattering signature is derived from two-parameter data, counts vs pulse height and time-of-flight measured for each element (H, C, N or O) at each of two scattering angles and two neutron energies. The elemental signatures are very distinctive and constitute a good response matrix for unfolding elemental components from the scattering signatures measured for different compounds
Summary of neutron scattering lengths
International Nuclear Information System (INIS)
Koester, L.
1981-12-01
All available neutron-nuclei scattering lengths are collected together with their error bars in a uniform way. Bound scattering lengths are given for the elements, the isotopes, and the various spin-states. They are discussed in the sense of their use as basic parameters for many investigations in the field of nuclear and solid state physics. The data bank is available on magnetic tape, too. Recommended values and a map of these data serve for an uncomplicated use of these quantities. (orig.)
Inelastic neutron scattering from clusters
International Nuclear Information System (INIS)
Gudel, H.U.
1985-01-01
Magnetic excitations in clusters of paramagnetic ions have non-vanishing cross-sections for inelastic neutron scattering (INS). Exchange splittings can be determined, the temperature dependence of exchange can be studied, intra- and intercluster effects can be separated and magnetic form factors determined. INS provides a more direct access to the molecular properties than bulk techniques. Its application is restricted to complexes with no or few (< 10%) hydrogen atoms
Polymer research by neutron scattering
International Nuclear Information System (INIS)
Richter, D.
1993-01-01
Polymer physics aims on an understanding of the macroscopic behavior of polymer systems on the basis of their molecular structure and dynamics. For this purpose neutrons serve as a unique probe, allowing a simultaneous investigation of polymer structure and dynamics on a molecular scale. Furthermore, hydrogen deuterium exchange facilitates molecular labeling and offers the possibility to observe selected chains or chain parts in dense systems. Neutron small angle scattering reveals information on the conformation and possible aggregation of polymer chains. Data on linear and star like molecules are shown as examples. High resolution neutron spin-echospectroscopy observes the molecular dynamics of long chain molecules. Results on the large scale motion of chins in polymer melts are presented. finally, experiments on chain relaxation close to the glass transition are displayed. Three distinctly different relaxation processes are revealed. (author)
Neutron scattering and models: Silver
International Nuclear Information System (INIS)
Smith, A.B.
1996-07-01
Differential neutron elastic-scattering cross sections of elemental silver were measured from 1.5 → 10 MeV at ∼ 100 keV intervals up to 3 MeV, at ∼ 200 keV intervals from 3 → 4 MeV, and at ∼ 500 keV intervals above 4 MeV. At ≤ 4 MeV the angular range of the measurements was ∼ 20 0 → 160 0 with 10 measured values below 3 MeV and 20 from 3 → 4 MeV at each incident energy. Above 4 MeV ≥ 40 scattering angles were used distributed between ∼ 17 0 and 16 0 All of the measured elastic distributions included some contributions due to inelastic scattering. Below 4 MeV the measurements determined cross sections for ten inelastically-scattered neutron groups corresponding to observed excitations of 328 ± 13, 419 ± 50, 748 ± 25, 908 ± 26, 115 ± 38, 1286 ± 25, 1507 ± 20, 1632 ± 30, 1835 ± 20 and 1944 ± 26 keV. All of these inelastic groups probably were composites of contributions from the two isotopes 107 Ag and 109 Ag. The experimental results were interpreted in terms of the spherical optical model and of rotational and vibrational coupled-channels models, and physical implications are discussed. In particular, the neutron-scattering results are consistent with a ground-state rotational band with a quadrupole deformation Β 2 = 0.20 ± ∼ 10% for both of the naturally-occurring silver isotopes
Observation of pulsed neutron Ramsey resonance
Energy Technology Data Exchange (ETDEWEB)
Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna, Moscow Region (Russian Federation); Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)
2007-07-15
A Ramsey resonance for pulsed neutrons was observed. The separated oscillatory fields for nuclear magnetic resonance were synchronized with a neutron pulse, and then the Ramsey resonance was observed as a function of the neutron velocity. The phase of one of the oscillatory fields was modulated as a function of the neutron time of flight for a neutron velocity measurement.
Neutron scattering lengths of 3He
International Nuclear Information System (INIS)
Alfimenkov, V.P.; Akopian, G.G.; Wierzbicki, J.; Govorov, A.M.; Pikelner, L.B.; Sharapov, E.I.
1976-01-01
The total neutron scattering cross-section of 3 He has been measured in the neutron energy range from 20 meV to 2 eV. Together with the known value of coherent scattering amplitude it leads to the two sts of n 3 He scattering lengths
Resonant neutron-induced atomic displacements
Energy Technology Data Exchange (ETDEWEB)
Elmaghraby, Elsayed K., E-mail: e.m.k.elmaghraby@gmail.com
2017-05-01
Highlights: • Neutron induced atomic displacements was investigated based on scattering of energy of neutron. • Model for cascade function (multiplication of displacements with increasing energy transfer) was proposed and justified. • Parameterizations for the dpa induced in all elements were performed. • Table containing all necessary parameters to calculate the displacement density induced by neutron is given. • Contribution of non resonance displacement and resonant-neutron induced displacements are distinguished. - Abstract: A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.
Resonant Impulsive Stimulated Raman Scattering
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, A; Chesnoy, J
1988-03-15
Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.
Resonant Impulsive Stimulated Raman Scattering
International Nuclear Information System (INIS)
Mokhtari, A.; Chesnoy, J.
1988-01-01
Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution
Instruments and accessories for neutron scattering research
International Nuclear Information System (INIS)
Ishii, Yoshinobu; Morii, Yukio
2000-04-01
This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)
Current status of neutron scattering in Thailand
International Nuclear Information System (INIS)
Ampornrat, Pantip
1999-01-01
Thailand's neutron spectrometer has been installed soon after the startup of the reactor. The neutron scattering experiments have been done continuously, although there were some problems involving the neutron intensity and instruments. Development program has been planned for better experimental result. This paper reports the past and present status of neutron scattering equipment and experiments in Thailand. In addition, installation of a HRPD (High Resolution Powder Diffraction) system is included within the scope of the Ongkharak Nuclear Research Center project. (author)
Neutron scattering studies in the actinide region
International Nuclear Information System (INIS)
Beghian, L.E.; Kegel, G.H.R.
1991-08-01
During the report period we have investigated the following areas: Neutron elastic and inelastic scattering measurements on 14 N, 181 Ta, 232 Th, 238 U and 239 Pu; Prompt fission spectra for 232 Th, 235 U, 238 U and 239 Pu; Theoretical studies of neutron scattering; Neutron filters; New detector systems; and Upgrading of neutron target assembly, data acquisition system, and accelerator/beam-line apparatus
Assessment of Coulomb shifts in nucleon scattering resonances on light nuclei at low energies
International Nuclear Information System (INIS)
Takibaev, N.Zh.; Uzakova, Zh.; Abdanova, L.
2003-01-01
The assessments of the Coulomb forces contribution to position and width of the resonances at nucleons scattering on light nuclei within low energy field are given. In particular the shifts of resonances in amplitudes arising in the processes protons scattering on light nuclei relatively neutrons scattering resonance characteristics on these nuclei are considered
Nuclear magnetic resonance scattering
International Nuclear Information System (INIS)
Young, I.R.
1985-01-01
A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)
Lectures on neutron scattering techniques: 1
International Nuclear Information System (INIS)
Carlile, C.J.
1988-08-01
The lecture on the production of neutrons was presented at a Summer School on neutron scattering, Rome, 1986. A description is given of the production of neutrons by natural radioactive sources, fission, and particle accelerator sources. Modern neutron sources with high intensities are discussed including the ISIS pulsed neutron source at the Rutherford Appleton Laboratory and the High Flux Reactor at the Institut Laue Langevin. (U.K.)
Application of neutron scattering in polymers
International Nuclear Information System (INIS)
Han, C.C.
2003-01-01
Full text: Neutron scattering offers many opportunities in sciences and technology. This is particularly true in the field of polymer sciences and materials. It is mainly because that the scattering length scales (q -1 ) and scattering contrast (scattering cross-sections) makes neutron a perfect tool for polymer studies. Several examples will be used to illustrate the importance of the small angle neutron scattering and the neutron reflection studies in polymer physics. These include the determination of phase diagram, interaction parameter, and spinodal decomposition kinetics by SANS. In the dynamics area, examples will be given to illustrate the critical temperature shift and mixing of polymer blends under shear flow. Also, the confinement effect on the phase separated structure of polymer blend films will be used to demonstrate the importance of the neutron reflectivity measurement
American Conference on Neutron Scattering 2014
International Nuclear Information System (INIS)
Dillen, J. Ardie
2014-01-01
Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics - confirming the great diversity of science that is enabled by neutron scattering.
Inelastic neutron scattering from superconducting rings
International Nuclear Information System (INIS)
Agafonov, A.I.
2010-01-01
For the first time the differential cross section for the inelastic magnetic neutron scattering by superconducting rings is derived taking account of the interaction of the neutron magnetic moment with the magnetic field generated by the superconducting current. Calculations of the scattering cross section are carried out for cold neutrons and thin film rings from type-II superconductors with the magnetic fields not exceeding the first critical field.
American Conference on Neutron Scattering 2014
Energy Technology Data Exchange (ETDEWEB)
Dillen, J. Ardie [Materials Research Society, Warrendale, PA (United States)
2014-12-31
Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.
Neutron scattering and models: molybdenum
International Nuclear Information System (INIS)
Smith, A.B.
1999-01-01
A comprehensive interpretation of the fast-neutron interaction with elemental and isotopic molybdenum at energies of le 30 MeV is given. New experimental elemental-scattering information over the incident energy range 4.5 r a rrow 10 MeV is presented. Spherical, vibrational and dispersive models are deduced and discussed, including isospin, energy-dependent and mass effects. The vibrational models are consistent with the ''Lane potential''. The importance of dispersion effects is noted. Dichotomies that exist in the literature are removed. The models are vehicles for fundamental physical investigations and for the provision of data for applied purposes. A ''regional'' molybdenum model is proposed. Finally, recommendations for future work are made
Neutron scattering equipments in JAERI. Current status
International Nuclear Information System (INIS)
Hamaguchi, Yoshikazu; Minakawa, Nobuaki
2003-01-01
24 neutron scattering instruments are installed in the JRR-3M research reactor. Among them JAERI has 12 neutron scattering instruments. Those instruments are HRPD for high-resolution structural analysis, TAS-1 and TAS-2 for elastic and inelastic scattering and for magnetic scattering measurements by the polarized neutron, LTAS for elastic and inelastic scattering measurement at a low energy region, and for neutron device development, PNO for topography and for very small angle scattering measurement in a small Q range, NRG for neutron radiography, RESA for internal strain measurements, SANS for the molecule and semi-macroscopic magnetic structural analysis, BIX-2 and BIX-3 for the biological structural analysis research, and PGA for the research of prompt gamma-ray analysis. The university groups have 12 neutron scattering instruments. Since those instruments were installed at the period when JRR-3M was completed, about 10 years have passed. In order to match the old control systems with the progress of recent computer technologies, and peripheral equipment, numbers of instruments are being renewed. In the neutron guide hall of JRR-3M, the Ni mirror guide tube was replaced by a super mirror guide tube to increase neutron flux. The intensity of 2A flux was increased by a factor of about two. (J.P.N.)
German neutron scattering conference. Programme and abstracts
Energy Technology Data Exchange (ETDEWEB)
Brueckel, Thomas (ed.)
2012-07-01
The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.
German neutron scattering conference. Programme and abstracts
International Nuclear Information System (INIS)
Brueckel, Thomas
2012-01-01
The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.
Neutron spin echo scattering angle measurement (SESAME)
International Nuclear Information System (INIS)
Pynn, R.; Fitzsimmons, M.R.; Fritzsche, H.; Gierlings, M.; Major, J.; Jason, A.
2005-01-01
We describe experiments in which the neutron spin echo technique is used to measure neutron scattering angles. We have implemented the technique, dubbed spin echo scattering angle measurement (SESAME), using thin films of Permalloy electrodeposited on silicon wafers as sources of the magnetic fields within which neutron spins precess. With 30-μm-thick films we resolve neutron scattering angles to about 0.02 deg. with neutrons of 4.66 A wavelength. This allows us to probe correlation lengths up to 200 nm in an application to small angle neutron scattering. We also demonstrate that SESAME can be used to separate specular and diffuse neutron reflection from surfaces at grazing incidence. In both of these cases, SESAME can make measurements at higher neutron intensity than is available with conventional methods because the angular resolution achieved is independent of the divergence of the neutron beam. Finally, we discuss the conditions under which SESAME might be used to probe in-plane structure in thin films and show that the method has advantages for incident neutron angles close to the critical angle because multiple scattering is automatically accounted for
VLAD for epithermal neutron scattering experiments at large energy transfers
International Nuclear Information System (INIS)
Tardocchi, M; Gorini, G; Perelli-Cippo, E; Andreani, C; Imberti, S; Pietropaolo, A; Senesi, R; Rhodes, N R; Schooneveld, E M
2006-01-01
The Very Low Angle Detector (VLAD) bank will extend the kinematical region covered by today's epithermal neutron scattering experiments to low momentum transfer ( -1 ) together with large energy transfer 0 -4 0 . In this paper the design of VLAD is presented together with Montecarlo simulations of the detector performances. The results of tests made with prototype VLAD detectors are also presented, confirming the usefulness of the Resonance Detector for measurements at very low scattering angles
Neutron scattering from quantum liquids
International Nuclear Information System (INIS)
Cowley, R.A.
1976-01-01
Recent neutron scattering measurements on the quantum liquids 4 He and 3 He are described. In the Bose superfluid there is a well-defined excitation for wave vectors less than 3.6 A -1 . In the Fermi liquid measurements are much more difficult because of the large absorption cross section, but measurements at the Institute Laue-Langevin have shown that there are no well-defined excitations at 0.63 0 K for wave vectors between 1.0 and 2.6 A -1 . The difference between these results is due to the existence of particle-hole excitations in the Fermi liquid into which collective excitations can decay. Because of the simplicity of the excitations in 4 He, it has become a testing ground for the effects of the interactions between the excitations. Measurements are described which show that while roton-roton interactions are attractive at small wave vectors they are repulsive at larger wave vectors. The scattering at large momentum transfer in 4 He has been measured, but its interpretation is still open to question
Neutron and resonant x-ray scattering studies of RNi2B2C (R = rare earth) single crystals
International Nuclear Information System (INIS)
Stassis, C.; Goldman, A.I.; Iowa State Univ., Ames, IA
1996-01-01
This family of intermetallic compounds is ideal for the study of the interplay between superconductivity and magnetism since, in several of these compounds (Ho, Er, Tm, Dy), superconductivity coexists with magnetic ordering. The most important findings of the scattering studies are (a) in the Ho-compound, a complex magnetic structure characterized by two incommensurate wave vectors, rvec k a = 0.585 rvec a* and rvec k c = 0.915 rvec c*, exists in the vicinity of 5 K, where the almost reentrant behavior of this compound occurs; (b) an incommensurate magnetic structure with wave vector along rvec a*, close to the zone boundary, is observed in several of these compounds; and (c) pronounced soft-phonon behavior was observed for both the acoustic and first optical Δ 4 [ξ00] branches in the superconducting Lu and Ho compounds, a behavior characteristic of strongly coupled conventional superconductors. Furthermore, these phonon anomalies occur at wave vectors close to those of the incommensurate magnetically ordered structures observed in the magnetic compounds of this family. This observation suggests that both the magnetic ordering and phonon softening originate from common nesting features of the Fermi surfaces of these compounds. Band theoretical calculations are in qualitative agreement with these results
La nouvelle vague in polarized neutron scattering
International Nuclear Information System (INIS)
Mezei, F.
1986-01-01
Polarized neutron research, like many other subjects in neutron scattering developed in the footsteps of Cliff Shull. The classical polarized neutron technique he pioneered was generalized around 1970 to vectorial beam polarizations and this opened up the way to a ''nouvelle vague'' of neutron scattering experiments. In this paper I will first reexamine the old controversy on the question whether the nature of the neutron magnetic moment is that of a microscopic dipole or of an Amperian current loop. The problem is not only of historical interest, but also of relevance to modern applications. This will be followed by a review of the fundamentals on spin coherence effects in neutron beams and scattering, which are the basis of vectorial beam polarization work. As an example of practical importance, paramagnetic scattering will be discussed. The paper concludes with some examples of applications of the vector polarization techniques, such as study of ferromagnetic domains by neutron beam depolarization and Neutron Spin Echo high resolution inelastic spectroscopy. The sample results presented demonstrate the new opportunities this novel approach opened up in neutrons scattering research. (orig.)
Neutron scattering in Indonesia. Country report
Energy Technology Data Exchange (ETDEWEB)
Ikram, Abarrul [Neutron Scattering Laboratory, R and D Center for Materials Science and Technology, National Nuclear Energy Agency, Serpong (Indonesia)
2000-10-01
Neutron scattering in Indonesia is still alienated due to some reasons and conditions which are discussed. The reactor and its latest operation mode are also described. The neutron beam facilities which include one diffractometer for residual stress measurement, one diffractometer for single crystal structural determination and texture measurement, one high resolution powder diffractometer, one neutron radiography facility, one triple axis spectrometer, one small angle neutron scattering spectrometer and one high resolution small angle neutron scattering spectrometer were presented briefly together with improvements of neutron intensities at some spectrometers in connection with the setting of main beam shutter position. Special attention is given for four instruments mostly related to this workshop. Their performances and problems faced in the past 9 months are presented as well as the future plan for refurbishment and development. (author)
Neutrons scattering studies in the actinide region
International Nuclear Information System (INIS)
Kegel, G.H.R.; Egan, J.J.
1992-09-01
During the report period were investigated the following areas: prompt fission neutron energy spectra measurements; neutron elastic and inelastic scattering from 239 Pu; neutron scattering in 181 Ta and 197 Au; response of a 235 U fission chamber near reaction thresholds; two-parameter data acquisition system; ''black'' neutron detector; investigation of neutron-induced defects in silicon dioxide; and multiple scattering corrections. Four Ph.D. dissertations and one M.S. thesis were completed during the report period. Publications consisted of three journal articles, four conference papers in proceedings, and eleven abstracts of presentations at scientific meetings. There are currently four Ph.D. and one M.S. candidates working on dissertations directly associated with the project. In addition, three other Ph.D. candidates are working on dissertations involving other aspects of neutron physics in this laboratory
Scattering of fast neutrons from elemental molybdenum
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1982-11-01
Differential broad-resolution neutron-scattering cross sections of elemental molybdenum were measured at 10 to 20 scattering angles distributed between 20 and 160 degrees and at incident-neutron energy intervals of approx. = 50 to 200 keV from 1.5 to 4.0 MeV. Elastically-scattered neutrons were fully resolved from inelastic events. Lumped-level inelastic-neutron-scattering cross sections were determined corresponding to observed excitation energies of; 789 +- 23, 195 +- 23, 1500 +- 34, 1617 +- 12, 1787, 1874, 1991, 2063 +- 24, 2296, 2569 and 2802 keV. An optical-statistical model was deduced from the measured elastic-scattering results. The experimental values were compared with the respective quantities given in ENDF/B-V
Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert
2014-04-24
Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic
Very High Energy Neutron Scattering from Hydrogen
International Nuclear Information System (INIS)
Cowley, R A; Stock, C; Bennington, S M; Taylor, J; Gidopoulos, N I
2010-01-01
The neutron scattering from hydrogen in polythene has been measured with the direct time-of flight spectrometer, MARI, at the ISIS facility of the Rutherford Appleton Laboratory with incident neutron energies between 0.5 eV and 600 eV. The results of experiments using the spectrometer, VESUVIO, have given intensities from hydrogen containing materials that were about 60% of the intensity expected from hydrogen. Since VESUVIO is the only instrument in the world that routinely operates with incident neutron energies in the eV range we have chosen to measure the scattering from hydrogen at high incident neutron energies with a different type of instrument. The MARI, direct time-of-flight, instrument was chosen for the experiment and we have studied the scattering for several different incident neutron energies. We have learnt how to subtract the gamma ray background, how to calibrate the incident energy and how to convert the spectra to an energy plot . The intensity of the hydrogen scattering was independent of the scattering angle for scattering angles from about 5 degrees up to 70 degrees for at least 3 different incident neutron energies between 20 eV and 100 eV. When the data was put on an absolute scale, by measuring the scattering from 5 metal foils with known thicknesses under the same conditions we found that the absolute intensity of the scattering from the hydrogen was in agreement with that expected to an accuracy of ± 5.0% over a wide range of wave-vector transfers between 1 and 250 A -1 . These measurements show that it is possible to measure the neutron scattering with incident neutron energies up to at least 100 eV with a direct geometry time-of-flight spectrometer and that the results are in agreement with conventional scattering theory.
Neutron scattering studies of solid electrolytes
International Nuclear Information System (INIS)
Shapiro, S.M.
1976-01-01
The role which neutron scattering can play in determining the nature of the disorder and the conducting mechanism in the solid electrolytes is discussed. First, some of the general formalism for elastic and inelastic neutron scattering is reviewed, and the quantities which can be measured are pointed out. Then the application of neutron scattering to the studies of three different problems is examined; the anion disorder in the fluorite system, the dynamical behavior in beta-alumina, and the cation diffusion in αAgI are discussed. 8 figures
Techniques in high pressure neutron scattering
Klotz, Stefan
2013-01-01
Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea
Monte Carlo simulations of neutron scattering instruments
International Nuclear Information System (INIS)
Aestrand, Per-Olof; Copenhagen Univ.; Lefmann, K.; Nielsen, K.
2001-01-01
A Monte Carlo simulation is an important computational tool used in many areas of science and engineering. The use of Monte Carlo techniques for simulating neutron scattering instruments is discussed. The basic ideas, techniques and approximations are presented. Since the construction of a neutron scattering instrument is very expensive, Monte Carlo software used for design of instruments have to be validated and tested extensively. The McStas software was designed with these aspects in mind and some of the basic principles of the McStas software will be discussed. Finally, some future prospects are discussed for using Monte Carlo simulations in optimizing neutron scattering experiments. (R.P.)
Current status of neutron scattering in Thailand
International Nuclear Information System (INIS)
Kornduangkaeo, Areeratt; Pongkasem, Somchai; Putchar, Suriya; Ampornrat, Pantip; Kajornrith, Varavuth; Chamchang, Jipawat
2006-01-01
The current neutron powder diffractometer at the Thai Research Reactor-1/Modification 1 (TRR-1/M1) has been modified from the obsolete neutron diffractometer which had been used during 1968-1975. The upgraded diffractometer has medium resolution and is appropriate for studying samples with small unit cell dimensions and training university students in the field of neutron scattering. This paper describes the current activities of neutron scattering research in Thailand, the current status of a new research reactor project at Ongkarak for enlarging the perspectives of its utilization in the future as well as the organizational reformation of the Office of Atomic Energy for Peace (OAEP). (author)
Current status of neutron scattering in Thailand
International Nuclear Information System (INIS)
Kornduangkaeo, Areeratt; Pongkasem, Somchai; Putchar, Suriya; Ampornrat, Pantip; Kajornrith, Varavuth; Sangariyavanich, Archara
2003-01-01
The current neutron powder diffractometer at the Thai Research Reactor-1/M1 (TRR-1/M1) has been modified from the obsolete neutron diffractometer which had been used during 1968-1975. The upgraded diffractometer has medium resolution and is appropriate for studying samples with small unit cell dimensions and training university students in the field of neutron scattering. This paper describes the current activities of neutron scattering research in Thailand as well as a new research reactor for enlarging the perspectives of its utilization in the future. (author)
Studies of the dynamic properties of materials using neutron scattering
International Nuclear Information System (INIS)
Lovesey, S.W.; Windsor, C.G.
1985-09-01
The dynamic properties of materials using the neutron scattering technique is reviewed. The basic properties of both nuclear scattering and magnetic scattering are summarized. The experimental methods used in neutron scattering are described, along with access to neutron sources, and neutron inelastic instruments. Applied materials science using inelastic neutron scattering; rotational tunnelling of a methyl group; molecular diffusion from quasi-elastic scattering; and the diffusion of colloidal particles and poly-nuclear complexes; are also briefly discussed. (U.K.)
Advantages of neutron scattering for biological structure analysis
International Nuclear Information System (INIS)
Schoenborn, B.P.
1975-01-01
The advantages and disadvantages of neutron scattering for protein crystallography, scattering from oriented systems, and solution scattering are summarized. Techniques for minimizing the disadvantages are indicated
Hadron scattering, resonances, and QCD
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Anomalous neutron scattering and feroelectric modes
International Nuclear Information System (INIS)
Viswanathan, K.S.
1977-01-01
It is suggested that anomalous neutron scattering could prove a powerful experimental tool in studying ferroelectric phase transition, the sublattice displacements of the soft modes as well as their symmetry characteristics. (author)
Thermal-neutron multiple scattering: critical double scattering
International Nuclear Information System (INIS)
Holm, W.A.
1976-01-01
A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer
Neutron Scattering studies of magnetic molecular magnets
International Nuclear Information System (INIS)
Chaboussant, G.
2009-01-01
This work deals with inelastic neutron scattering studies of magnetic molecular magnets and focuses on their magnetic properties at low temperature and low energies. Several molecular magnets (Mn 12 , V 15 , Ni 12 , Mn 4 , etc.) are reviewed. Inelastic neutron scattering is shown to be a perfectly suited spectroscopy tool to -a) probe magnetic energy levels in such systems and -b) provide key information to understand the quantum tunnel effect of the magnetization in molecular spin clusters. (author)
Progress report on neutron scattering at JAERI
Energy Technology Data Exchange (ETDEWEB)
Morii, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-10-01
In the first half of fiscal year 1997, JRR-3M was operated for 97 days followed by a long term shut down for its annual maintenance. Three days were lost out of 100 scheduled operation days, due to a trouble in irradiation facility. Neutron scattering research activities at the JRR-3M have been extended from that of fiscal year 1996. In the Research Group for Quantum Condensed Matter System, experimental study under high pressures, low temperatures and high fields as well as coupling of these conditions were planned to find new quantum condensed matter systems. And, obtained experimental results were immediately provided to theorists for their investigations. In cooperation with new group, Research Group for Neutron Scattering of Strongly Correlated Electron Systems and Research Group for Neutron Scattering at Ultralow Temperatures were carrying neutron scattering experiments at JRR-3M. Research Group for Neutron Crystallography in Biology had opened a way for investigating biomatter neutron diffraction research with high experimental accuracy by growing a millimeter-class large single crystal. In fiscal year 1997, 39 research projects were conducted by these four groups and other staffs in JAERI, 27 projects collaborated with university researchers and 3 projects collaborated with private enterprises were also conducted as complementary researches. 2117 days of machine times were requested to use 8 neutron scattering instruments this year, which corresponded to 1.51 times larger than those planned at its beginning. (G.K.)
Scattering of Neutrons by an Anharmonic Crystal
Energy Technology Data Exchange (ETDEWEB)
Hoegberg, T; Bohlin, L; Ebbsjoe, I
1967-04-15
Numerical calculations have been performed for the anharmonic effects in neutron scattering. The phonon frequency widths and shifts have been calculated as a function of neutron frequency at different wave numbers and temperatures for a potential with central symmetry and for a face-centered cubic lattice.
Status and neutron scattering experiments at KENS
International Nuclear Information System (INIS)
Watanabe, N.; Sasaki, H.; Ishikawa, Y.; Endoh, Y.; Inoue, K.
1983-01-01
This paper reports present status of the KENS facility, progress in neutron scattering experiments and instrumental developments, and status of the KENS-I' program. A design study of a high intensity rapid-cycle 800 MeV proton synchrotron for proposed new pulsed neutron (KENS-II) and meson source is also descirbed
Lectures on magnetism and neutron scattering
International Nuclear Information System (INIS)
Gunn, J.M.F.
1983-12-01
The paper contains six lectures given to the Neutron Division of the Rutherford Appleton laboratory in 1983. The aim was to explain fundamental physics of neutron scattering and basic magnetism to the non-specialist scientist. The text includes: origin of neutron's magnetic moment and spin-dependent interactions with electrons and nuclei, why are solids magnetic, magnetic anistropy and domain structure, phenomenological spin waves, magnetic phase transitions and electronic excitations in magnets. (U.K.)
Ramsauer effect in triplet neutron-neutron scattering
International Nuclear Information System (INIS)
Pupyshev, V.V.; Solovtsova, O.P.
1995-01-01
As we show, due to interplay of pure nuclear and magnetic moment interactions, the total cross section of triplet neutron-neutron scattering should possess a non-zero limit at E cm = 0 and a local minimum at ∼ 20 keV. 17 refs., 1 fig
Introduction to neutron scattering. Lecture notes of the introductory course
International Nuclear Information System (INIS)
Furrer, A.
1996-01-01
These proceedings enclose ten papers presented at the 1. European Conference on Neutron scattering (ECNS '96). The aim of the Introductory Course was fourfold: - to learn the basic principles of neutron scattering, - to get introduced into the most important classes of neutron scattering instruments, -to learn concepts and their transformation into neutron scattering experiments in various fields of condensed matter research, - to recognize the limitations of the neutron scattering technique as well as to the complementarity of other methods. figs., tabs., refs
Neutron scattering by normal liquids
Energy Technology Data Exchange (ETDEWEB)
Gennes, P.G. de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
Neutron data on motions in normal liquids well below critical point are reviewed and classified according to the order of magnitude of momentum transfers {Dirac_h}q and energy transfers {Dirac_h}w. For large momentum transfers a perfect gas model is valid. For smaller q and incoherent scattering, the major effects are related to the existence of two characteristic times: the period of oscillation of an atom in its cell, and the average lifetime of the atom in a definite cell. Various interpolation schemes covering both time scales are discussed. For coherent scattering and intermediate q, the energy spread is expected to show a minimum whenever q corresponds to a diffraction peak. For very small q the standard macroscopic description of density fluctuations is applicable. The limits of the various (q) and (w) domains and the validity of various approximations are discussed by a method of moments. The possibility of observing discrete transitions due to internal degrees of freedom in polyatomic molecules, in spite of the 'Doppler width' caused by translational motions, is also examined. (author) [French] L'auteur examine les donnees neutroniques sur les mouvements dans les liquides normaux, bien au-dessous du point critique, et les classe d'apres l'ordre de grandeur des transferts de quantite de mouvement {Dirac_h}q et des transferts d'energie {Dirac_h}w. Pour les grands transferts de, quantite de mouvement, un modele de gaz parfait est valable. En ce qui concerne les faibles valeurs de q et la diffussion incoherente, les principaux effets sont lies a l'existence de deux temps caracteristiques: la periode d'oscillation d'un atome dans sa cellule et la duree moyenne de vie de l'atome dans une cellule determinee. L'auteur etudie divers systemes d'interpolation se rapportant aux deux echelles de temps. Pour la diffusion coherente et les valeurs intermediaires de q, on presume que le spectre d'energie accuse un minimum chaque fois que q correspond a un pic de
Neutron Scattering from 36Ar and 4He Films
DEFF Research Database (Denmark)
Carneiro, K.
1977-01-01
Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...
Parity violation in neutron resonances
International Nuclear Information System (INIS)
Mitchell, G.E.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Crawford, B.E.; Delheij, P.P.J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Masuda, Y.
1997-01-01
The observation of very large parity violation in neutron resonances has led to a new approach to the study of symmetry breaking in nuclei. The origin of the enhancement of parity violation is discussed, as well as the new (statistical) analysis approach. The TRIPLE experimental system and analysis methods, their improvements are described. Sign correlation and results from recent parity violation experiments are presented and discussed. (author)
Neutron Scattering in Biology Techniques and Applications
Fitter, Jörg; Katsaras, John
2006-01-01
The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.
Diffuse neutron scattering signatures of rough films
International Nuclear Information System (INIS)
Pynn, R.; Lujan, M. Jr.
1992-01-01
Patterns of diffuse neutron scattering from thin films are calculated from a perturbation expansion based on the distorted-wave Born approximation. Diffuse fringes can be categorised into three types: those that occur at constant values of the incident or scattered neutron wavevectors, and those for which the neutron wavevector transfer perpendicular to the film is constant. The variation of intensity along these fringes can be used to deduce the spectrum of surface roughness for the film and the degree of correlation between the film's rough surfaces
Fast-neutron scattering from elemental cadmium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1982-07-01
Neutron differential-elastic-scattering cross sections of elemental cadmium are measured from approx. = 1.5 to 4.0 MeV at incident-neutron energy intervals of 50 to 200 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Concurrently, lumped-level neutron inelastic-excitation cross sections are measured. The experimental results are used to deduce parameters of an optical-statistical model that is descriptive of the observables and are compared with corresponding quantities given in ENDF/B-V
Neutron scattering instruments for the Spallation Neutron Source (SNS)
International Nuclear Information System (INIS)
Crawford, R.K.; Fornek, T.; Herwig, K.W.
1998-01-01
The Spallation Neutron Source (SNS) is a 1 MW pulsed spallation source for neutron scattering planned for construction at Oak Ridge National Laboratory. This facility is being designed as a 5-laboratory collaboration project. This paper addresses the proposed facility layout, the process for selection and construction of neutron scattering instruments at the SNS, the initial planning done on the basis of a reference set of ten instruments, and the plans for research and development (R and D) to support construction of the first ten instruments and to establish the infrastructure to support later development and construction of additional instruments
Small angle neutron scattering by polymer solutions
International Nuclear Information System (INIS)
Farnoux, B.; Jannink, G.
1980-08-01
Small angle neutron scattering is an experimental technique introduced since about 10 years for the observation of the polymer conformation in all the concentration range from dilute solution to the melt. After a brief recall of the elementary relations between scattering amplitude, index of refraction and scattered intensity, two concepts related to this last quantity (the contrast and the pair correlation function) are discussed in details
Inelastic neutron scattering from cerium under pressure
International Nuclear Information System (INIS)
Rainford, B.D.; Buras, B.; Lebech, B.
1976-01-01
Inelastic neutron scattering from Ce metal at 300K was studied both below and above the first order γ-α phase transition, using a triple axis spectrometer. It was found that (a) there is no indication of any residual magnetic scattering in the collapsed α phase and (b) the energy width of the paramagnetic scattering in the γ-phase increases with pressure. (Auth.)
Neutron resonance parameters of CM isotopes
International Nuclear Information System (INIS)
Belanova, T.S.; Kolesov, A.G.; Poruchikov, V.A.
1977-01-01
The total neutron cross sections of isotopes 244, 245, 246, 248 Curium have been measured on reactor CM-2 using the time-of-flight method. Single-level Breit-Wigner resonance parameters: energy E 0 , neutron width 2g GITAn, total width GITA, total neutron cross section in resonance sigma 0 have been obtained by the shape and area methods
Neutron strength functions: the link between resolved resonances and the optical model
International Nuclear Information System (INIS)
Moldauer, P.A.
1980-01-01
Neutron strength functions and scattering radii are useful as energy and channel radius independent parameters that characterize neutron scattering resonances and provide a connection between R-matrix resonance analysis and the optical model. The choice of R-matrix channel radii is discussed, as are limitations on the accuracies of strength functions. New definitions of the p-wave strength function and scattering radius are proposed. For light nuclei, where strength functions display optical model energy variations over the resolved resonances, a doubly reduced partial neutron width is introduced for more meaningful statistical analyses of widths. The systematic behavior of strength functions and scattering radii is discussed
Zeeman splitting of surface-scattered neutrons
International Nuclear Information System (INIS)
Felcher, G.P.; Adenwalla, S.; De Haan, V.O.; Van Well, A.A.
1995-01-01
If a beam of slow neutrons impinges on a solid at grazing incidence, the neutrons reflected can be used to probe the composition and magnetization of the solid near its surface. In this process, the incident and reflected neutrons generally have identical kinetic energies. Here we report the results of an experiment in which subtle inelastic scattering processes are revealed as relatively large deviations in scattering angle. The neutrons are scattered from a ferromagnetic surface in the presence of a strong ambient magnetic field, and exhibit a small but significant variation in kinetic energy as a function of the reflection angle. This effect is attributable to the Zeeman splitting of the energies of the neutron spin states due to the ambient magnetic field: some neutrons flip their spins upon reflection from the magnetized surface, thereby exchanging kinetic energy for magnetic potential energy. The subtle effects of Zeeman splitting are amplified by the extreme sensitivity of grazing-angle neutron scattering, and might also provide a useful spectroscopic tool if significant practical obstacles (such as low interaction cross-sections) can be overcome. (author)
Neutron Brillouin scattering in dense fluids
Energy Technology Data Exchange (ETDEWEB)
Verkerk, P [Technische Univ. Delft (Netherlands); FINGO Collaboration
1997-04-01
Thermal neutron scattering is a typical microscopic probe for investigating dynamics and structure in condensed matter. In contrast, light (Brillouin) scattering with its three orders of magnitude larger wavelength is a typical macroscopic probe. In a series of experiments using the improved small-angle facility of IN5 a significant step forward is made towards reducing the gap between the two. For the first time the transition from the conventional single line in the neutron spectrum scattered by a fluid to the Rayleigh-Brillouin triplet known from light-scattering experiments is clearly and unambiguously observed in the raw neutron data without applying any corrections. Results of these experiments are presented. (author).
Polarized neutron scattering research: the beginning
International Nuclear Information System (INIS)
Mezei, F.
2005-01-01
The visionary idea of using neutron scattering for the study of magnetic phenomena in condensed matter was proposed by Bloch in 1936, mere 4 years after the neutron was discovered. It was based on one of the surprises the neutron presented the scientific community with: it is neutral, yet it has a magnetic moment, which latter was then not yet directly observed though. Although the first results proved to be mathematically wrong, due to a non-trivial ambiguity of classical electromagnetism theory, which could only be settled by neutron beam experiments 15 years later, the recognition lead to the advent of a most productive area of modern research, which culminated in the development of the powerful and sophisticated techniques of polarized neutron scattering. This recollection traces the early milestones of the development of the field in strong interaction between theory and experiment
BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION
International Nuclear Information System (INIS)
Pynn, Roger; Baker, Shenda Mary; Louca, Despo A.; McGreevy, Robert L.; Ekkebus, Allen E.; Kszos, Lynn A.; Anderson, Ian S.
2008-01-01
In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering education. A
BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION
Energy Technology Data Exchange (ETDEWEB)
Pynn, Roger [ORNL; Baker, Shenda Mary [ORNL; Louca, Despo A [ORNL; McGreevy, Robert L [ORNL; Ekkebus, Allen E [ORNL; Kszos, Lynn A [ORNL; Anderson, Ian S [ORNL
2008-10-01
In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreach program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron
Ideal Gas Resonance Scattering Kernel Routine for the NJOY Code
International Nuclear Information System (INIS)
Rothenstein, W.
1999-01-01
In a recent publication an expression for the temperature-dependent double-differential ideal gas scattering kernel is derived for the case of scattering cross sections that are energy dependent. Some tabulations and graphical representations of the characteristics of these kernels are presented in Ref. 2. They demonstrate the increased probability that neutron scattering by a heavy nuclide near one of its pronounced resonances will bring the neutron energy nearer to the resonance peak. This enhances upscattering, when a neutron with energy just below that of the resonance peak collides with such a nuclide. A routine for using the new kernel has now been introduced into the NJOY code. Here, its principal features are described, followed by comparisons between scattering data obtained by the new kernel, and the standard ideal gas kernel, when such comparisons are meaningful (i.e., for constant values of the scattering cross section a 0 K). The new ideal gas kernel for variable σ s 0 (E) at 0 K leads to the correct Doppler-broadened σ s T (E) at temperature T
Current status of neutron scattering in Thailand
International Nuclear Information System (INIS)
Ampornrat, Pantip
2000-01-01
The neutron scattering experiments in Thailand have been done continuously since the start up of the reactor. In 1977, Thai research reactor was modified into TRIGA MARK III core. After that, the neutron spectrometer was installed again under a development program. Installation of upgrading spectrometer was delayed because of some problems involving the neutron intensity and instruments. However, these problems were solved and the setup is almost completed. The paper reports the current status of neutron spectrometer, the problems and plans for the experiments. (author)
Electron-volt spectroscopy at a pulsed neutron source using a resonance detector technique
Andreani, C; Senesi, R; Gorini, G; Tardocchi, M; Bracco, A; Rhodes, N; Schooneveld, E M
2002-01-01
The effectiveness of the neutron resonance detector spectrometer for deep inelastic neutron scattering measurements has been assessed by measuring the Pb scattering on the eVS spectrometer at ISIS pulsed neutron source and natural U foils as (n,gamma) resonance converters. A conventional NaI scintillator with massive shielding has been used as gamma detector. A neutron energy window up to 90 eV, including four distinct resonance peaks, has been assessed. A net decrease of the intrinsic width of the 6.6 eV resonance peak has also been demonstrated employing the double difference spectrum technique, with two uranium foils of different thickness.
International Nuclear Information System (INIS)
Svare, I.; Fimland, B.O.; Janik, J.A.; Janik, J.M.; Mikuli, E.; Migdal-Mikuli, A.
1980-01-01
Proton magnetic relaxation measurements carried out for [Mg(H 2 O)XL6](CLO 4 ) 2 revealed two processes responsible for T 1 vs temperature dependence: one connected with H 2 O 180deg flips about the symmetry axes and second connected with a tumbling of the complex cation. Quasielastic neutron scattering measurements gave another evidence of H 2 O 180deg flips. The reorientational corelation times, which in the 273 K - 325 K region are of the order of picoseconds, as derived from NMR coincide perfectly well with those derived from QNS. (author)
Neutron Inelastic Scattering Study of Liquid Argon
Energy Technology Data Exchange (ETDEWEB)
Skoeld, K; Rowe, J M; Ostrowski, G [Solid State Science Div., Argonne National Laboratory, Argonne, Illinois (US); Randolph, P D [Nuclear Technology Div., Idaho Nuclear Corporation, Idaho Falls, Idaho (US)
1972-02-15
The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models
The basic physics of neutron scattering experiments
International Nuclear Information System (INIS)
Mezei, F.
1999-01-01
The basic physical principles behind the well-established but also developing practice of neutron scattering experiments are presented. A few examples are given either to illustrate the physical principles or to give an idea of the variety, importance or magnitude of various phenomena. The evolution of neutron scattering experimental techniques is investigated from a special aspect: the increasing capability of taking into account more and more important and sometimes decisive finer details by using more and more realistic mathematical models of the evolution of the neutrons from birth do death, eventually passing by the sample and being scattered more than one times. Working with such numerical 'virtual instruments' one will have to go far beyond notions like resolution function, convolution etc, and actually eliminate a large number of approximations currently in use. (K.A.)
Neutron Scattering and High Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stone, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2014-11-01
The workshop “Neutron Scattering and High Magnetic Fields” was held September 4-5, 2014 at the Oak Ridge National Laboratory (ORNL). The workshop was held in response to a recent report by the National Research Council of the National Academy of Sciences entitled “High Magnetic Field Science and Its Application in the United States: Current Status and Future Directions.”1 This report highlights the fact that neutron scattering measurements carried out in high magnetic fields provide important opportunities for new science. The workshop explored the range of the scientific discoveries that could be enabled with neutron scattering measurements at high fields (25 Tesla or larger), the various technologies that might be utilized to build specialized instruments and sample environment equipment to enable this research at ORNL, and possible routes to funding and constructing these facilities and portable high field sample environments.
Material classification by fast neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Buffler, A. E-mail: abuffler@physci.uct.ac.za; Brooks, F.D. E-mail: brooks@physci.uct.ac.za; Allie, M.S.; Bharuth-Ram, K.; Nchodu, M.R
2001-02-01
The scattering of a beam of fast monoenergetic neutrons is used to determine elemental compositions of bulk samples (0.2-0.8 kg) of materials composed from one or more of the elements H, C, N, O, Al, S, Fe and Pb. Scattered neutrons are detected by liquid scintillators placed at forward and at backward angles. Different elements are identified by their characteristic scattering signatures derived either from a combination of time-of-flight and pulse height measurements, or from pulse height measurements alone. Scattering signatures measured for multi-element samples are analysed to determine atom fractions for H, C, N, O and other elements in the sample. Atom fractions determined from scattering signatures are insensitive to neutron interactions in material surrounding the scattering sample, provided the amount of material is not excessive. The atom fraction data are used to classify scattering material into categories including 'explosives', 'illicit drugs' and 'other materials' for the purpose of contraband detection.
Determination of contraband using fast neutron resonance technique
Energy Technology Data Exchange (ETDEWEB)
Bae, J.; Whang, J. [Kyunghee Univ., Dept. of Nuclear Engineering, Yongin-shi, Kyongki-do (Korea, Republic of)
2004-07-01
'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)
Determination of contraband using fast neutron resonance technique
International Nuclear Information System (INIS)
Bae, J.; Whang, J.
2004-01-01
'Full-text:' Resonance technique with monoenergetic fast neutron beam is able to map features in bulk samples in a way that is sensitive to their elemental composition. It has a number of potential applications, for example, in mining and in the detection of contraband materials such as illicit drugs and explosives. By moving around the neutron detector experiences neutrons in the form of narrow line beam with different energies as the angle to the neutron source changes. Projection data was obtained using the Monte Carlo code MCNP4C. Therefore the fast neutrons scattered from an unknown object are used to determine the elemental content of the object and hence lead to its identification. Scattered features simulated for various test materials are analyzed using the HEPRO program system (PTB, Braunschweig) to determine the atom weight fractions for H. C. N, O and other elements in the materials. Atom weight fractions determined from scattering features are insensitive to neutron interactions in interfering materials surrounding the object. The simulations demonstrate that the fast neutron resonance technique (FNRT) provides reliable elemental characterization of bulk materials and has the necessary sensitivity to distinguish between drugs, explosives and other materials. (author)
Inelastic neutron scattering from glass formers
International Nuclear Information System (INIS)
Buchenau, U.
1997-01-01
Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO 2 . That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived. (author)
Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
Seeger, P.A.
1995-01-01
A library of Monte Carlo subroutines has been developed for the purpose of design of neutron scattering instruments. Using small-angle scattering as an example, the philosophy and structure of the library are described and the programs are used to compare instruments at continuous wave (CW) and long-pulse spallation source (LPSS) neutron facilities. The Monte Carlo results give a count-rate gain of a factor between 2 and 4 using time-of-flight analysis. This is comparable to scaling arguments based on the ratio of wavelength bandwidth to resolution width
Analytic scattering kernels for neutron thermalization studies
International Nuclear Information System (INIS)
Sears, V.F.
1990-01-01
Current plans call for the inclusion of a liquid hydrogen or deuterium cold source in the NRU replacement vessel. This report is part of an ongoing study of neutron thermalization in such a cold source. Here, we develop a simple analytical model for the scattering kernel of monatomic and diatomic liquids. We also present the results of extensive numerical calculations based on this model for liquid hydrogen, liquid deuterium, and mixtures of the two. These calculations demonstrate the dependence of the scattering kernel on the incident and scattered-neutron energies, the behavior near rotational thresholds, the dependence on the centre-of-mass pair correlations, the dependence on the ortho concentration, and the dependence on the deuterium concentration in H 2 /D 2 mixtures. The total scattering cross sections are also calculated and compared with available experimental results
Larmor-precession based neutron scattering instrumentation
International Nuclear Information System (INIS)
Ioffe, Alexander
2009-01-01
The Larmor precession of the neutron spin in a magnetic field allows the attachment of a Larmor clock to every neutron. Such Larmor labelling opens the possibility for the development of unusual neutron scattering techniques, where the energy (momentum) resolution does not require the initial and final states to be well selected. This principally allows for achievement of very high energy (momentum) resolution that is not feasible at all with conventional neutron scattering techniques, because the required neutron beam monochromatization (collimation) will result in intolerable intensity losses. Such decoupling of resolution and collimation allows, for example, for a significant increase in the luminosity of small-angle scattering or high-resolution diffractometers; the fact that opens new perspectives for their implementation at middle flux neutron sources. Different kinds of Larmor clock-based instrumentation, particularly two alternative NSE techniques using rotating and time-gradient magnetic field arrangements, which can be considered as inexpensive and affordable alternatives to present day NSE techniques, will be discussed and results of simulations and first experiments will be presented. (author)
Small-angle neutron-scattering experiments
International Nuclear Information System (INIS)
Hardy, A.D.; Thomas, M.W.; Rouse, K.D.
1981-04-01
A brief introduction to the technique of small-angle neutron scattering is given. The layout and operation of the small-angle scattering spectrometer, mounted on the AERE PLUTO reactor, is also described. Results obtained using the spectrometer are presented for three materials (doped uranium dioxide, Magnox cladding and nitrided steel) of interest to Springfields Nuclear Power Development Laboratories. The results obtained are discussed in relation to other known data for these materials. (author)
Magnetism and magnetic materials probed with neutron scattering
International Nuclear Information System (INIS)
Velthuis, S.G.E. te; Pappas, C.
2014-01-01
Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains
Magnetism and magnetic materials probed with neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Velthuis, S.G.E. te, E-mail: tevelthuis@anl.gov [Materials Science Division, Argonne National Laboratory, 9700 S Cass Ave, Argonne, IL 60439 (United States); Pappas, C. [Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, NL-2629JB Delft (Netherlands)
2014-01-15
Neutron scattering techniques are becoming increasingly accessible to a broader range of scientific communities, in part due to the onset of next-generation, high-power spallation sources, high-performance, sophisticated instruments and data analysis tools. These technical advances also advantageously impact research into magnetism and magnetic materials, where neutrons play a major role. In this Current Perspective series, the achievements and future prospects of elastic and inelastic neutron scattering, polarized neutron reflectometry, small angle neutron scattering, and neutron imaging, are highlighted as they apply to research into magnetic frustration, superconductivity and magnetism at the nanoscale. - Highlights: • Introduction to Current Perspective series titled Magnetism and Magnetic Materials probed with Neutron Scattering. • Elastic and inelastic neutron scattering in systems with magnetic frustration and superconductivity. • Small angle neutron scattering and polarized neutron reflectometry in studying magnetism at the nanoscale. • Imaging of magnetic fields and domains.
Interesting results from neutron-scattering
International Nuclear Information System (INIS)
Woods, A.D.B.
Neutron scattering has been a useful tool in the determination of the lattice dynamics of metals, studies of the physics of magnetism in rare-earth systems, observing changes in the structure of DNA bases after ultraviolet irradiation, looking at plastic crystals, following structural phase changes in ferroelectric materials, and studying liquid He. Both low- and high-flux facilities are useful. (LL)
Some applications of polarized inelastic neutron scattering
Indian Academy of Sciences (India)
A brief account of applications of polarized inelastic neutron scattering in condensed matter research is given. ... the itinerant antiferromagnet chromium we demonstrate that the dynamics of the longitudinal and transverse excitations are very different, resolving a long standing puzzle concerning the slope of their dispersion.
Critical scattering of neutrons from terbium
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Dietrich, O.W.; Marshall, W.
1968-01-01
The inelasticity of the critical scattering of neutrons in terbium has been measured above the Neél temperature at the (0, 0, 2−Q) satellite position. The results show that dynamic slowing down of the fluctuations does occur in a second‐order phase transition in agreement with the general theory...
NEUTRON-SCATTERING STUDY OF DCN
DEFF Research Database (Denmark)
Mackenzie, Gordon A.; Pawley, G. S.
1979-01-01
Phonons in deuterium cyanide have been measured by neutron coherent inelastic scattering. The main subject of study was the transverse acoustic mode in the (110) direction polarised along (110) which is associated with the first-order structural phase transition at 160K. Measurements have shown...
Neutron scattering (progress report) January - December 1991
International Nuclear Information System (INIS)
Buehrer, W.; Fischer, P.; Furrer, A.
1992-02-01
Progress made by the Laboratory for Neutron Scattering of the Swiss Federal Institute of Technology during the year 1991 in the fields of high-T c superconductors, materials science, magnetism, structural research, lattice dynamics, phase transitions, instrumental and support activities is reported. figs., tabs., refs
Experimental technique of small angle neutron scattering
International Nuclear Information System (INIS)
Xia Qingzhong; Chen Bo
2006-03-01
The main parts of Small Angle Neutron Scattering (SANS) spectrometer, and their function and different parameters are introduced from experimental aspect. Detailed information is also introduced for SANS spectrometer 'Membrana-2'. Based on practical experiments, the fundamental requirements and working condition for SANS experiments, including sample preparation, detector calibration, standard sample selection and data preliminary process are described. (authors)
Neutron elastic scattering at very small angles
2002-01-01
This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...
Fingerprints of orbital physics in magnetic resonant inelastic X-ray scattering
Marra, Pasquale
2012-09-01
Orbital degrees of freedom play a major role in the physics of many strongly correlated transition metal compounds. However, they are still very difficult to access experimentally, in particular by neutron scattering. We propose here how to reveal orbital occupancies of the system ground state by magnetic resonant inelastic x-ray scattering (RIXS). This is possible because, unlike in neutron scattering, the intensity of the magnetic excitations in RIXS depends essentially on the symmetry of the orbitals where the spins are in.
2016 American Conference on Neutron Scattering (ACNS)
International Nuclear Information System (INIS)
Woodward, Patrick
2017-01-01
The 8th American Conference on Neutron Scattering (ACNS) was held July 10-14, 2016 in Long Beach California, marking the first time the meeting has been held on the west coast. The meeting was coordinated by the Neutron Scattering Society of America (NSSA), and attracted 285 attendees. The meeting was chaired by NSSA vice president Patrick Woodward (the Ohio State University) assisted by NSSA president Stephan Rosenkranz (Argonne National Laboratory) together with the local organizing chair, Brent Fultz (California Institute of Technology). As in past years the Materials Research Society assisted with planning, logistics and operation of the conference. The science program was divided into the following research areas: (a) Sources, Instrumentation, and Software; (b) Hard Condensed Matter; (c) Soft Matter; (d) Biology; (e) Materials Chemistry and Materials for Energy; (f) Engineering and Industrial Applications; and (g) Neutron Physics.
Fast neutron scattering near shell closures: Scandium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1992-08-01
Neutron differential elastic- and inelastic-scattering cross sections are measured from ∼ 1.5 to 10 MeV with sufficient detail to define the energy-averaged behavior of the scattering processes. Neutrons corresponding to excitations of 465 ± 23, 737 ± 20, 1017 ± 34, 1251 ± 20, 1432 ± 23 and 1692 ± 25 keV are observed. It is shown that the observables, including the absorption cross section, are reasonably described with a conventional optical-statistical model having energy-dependent geometric parameters. These energy dependencies are alleviated when the model is extended to include the contributions of the dispersion relationship. The model parameters are conventional, with no indication of anomalous behavior of the neutron interaction with 45 Sc, five nucleons from the doubly closed shell at 40 Ca
2016 American Conference on Neutron Scattering (ACNS)
Energy Technology Data Exchange (ETDEWEB)
Woodward, Patrick [Materials Research Society, Warrendale, PA (United States)
2017-02-09
The 8th American Conference on Neutron Scattering (ACNS) was held July 10-14, 2016 in Long Beach California, marking the first time the meeting has been held on the west coast. The meeting was coordinated by the Neutron Scattering Society of America (NSSA), and attracted 285 attendees. The meeting was chaired by NSSA vice president Patrick Woodward (the Ohio State University) assisted by NSSA president Stephan Rosenkranz (Argonne National Laboratory) together with the local organizing chair, Brent Fultz (California Institute of Technology). As in past years the Materials Research Society assisted with planning, logistics and operation of the conference. The science program was divided into the following research areas: (a) Sources, Instrumentation, and Software; (b) Hard Condensed Matter; (c) Soft Matter; (d) Biology; (e) Materials Chemistry and Materials for Energy; (f) Engineering and Industrial Applications; and (g) Neutron Physics.
Quantum entanglement and neutron scattering experiments
International Nuclear Information System (INIS)
Cowley, R A
2003-01-01
It is shown that quantum entanglement in condensed matter can be observed with scattering experiments if the energy resolution of the experiments enables a clear separation between the elastic scattering and the scattering from the excitations in the system. These conditions are not satisfied in recent deep inelastic neutron scattering experiments from hydrogen-containing systems that have been interpreted as showing the existence of quantum entanglement for short times in, for example, water at room temperature. It is shown that the theory put forward to explain these experiments is inconsistent with the first-moment sum rule for the Van Hove scattering function and we suggest that the theory is incorrect. The experiments were performed using the unique EVS spectrometer at ISIS and suggestions are made about how the data and their interpretation should be re-examined
Neutron scattering study of dilute supercritical solutions
International Nuclear Information System (INIS)
Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.
1994-01-01
Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast
The Manuel Lujan Jr. Neutron Scattering Center
International Nuclear Information System (INIS)
Goldstone, J.A.
1994-01-01
High in the northcentral mountains of Los Alamos, New Mexico, is the Manuel Lujan Jr. Neutron Scattering Center (LANSCE), a pulsed-spallation neutron source located at Los Alamos National Laboratory. At LANSCE, neutrons are produced by spallation when a pulsed 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by a linear accelerator and an associated Proton Storage Ring (PSR), which alters the intensity, time structure, and repetition rate of the pulses. In October 1986, LANSCE was designated a national user facility, with a formal user program initiated in 1988. In July 1989, the LANSCE facility was dedicated as the Manuel Lujan Jr. Neutron Scattering Center in honor of the long-term Congressman from New Mexico. At present, the PSR operates with a proton pulse width of 0.27 μs at 20 Hz and 80 μA, attaining the highest peak neutron flux in the world and close to its goal of 100 μA, which would yield a peak thermal neutron flux of 10 16 n/cm -2 s -1 . This paper discusses the target/moderator/reflector shield system, the LANSCE instruments, the facility improvement projects, and user programs
Impact of the Improved Resonance Scattering Kernel on HTR Calculations
International Nuclear Information System (INIS)
Becker, B.; Dagan, R.; Broeders, C.H.M.; Lohnert, G.
2008-01-01
The importance of an advanced neutron scattering model for heavy isotopes with strong energy dependent cross sections such as the pronounced resonances of U 238 has been discussed in various publications where the full double differential scattering kernel was derived. In this study we quantify the effect of the new scattering model for specific innovative types of High Temperature Reactor (HTR) systems which commonly exhibit a higher degree of heterogeneity and higher fuel temperatures, hence increasing the importance of the secondary neutron energy distribution. In particular the impact on the multiplication factor (k ∞ ) and the Doppler reactivity coefficient is presented in view of the packing factors and operating temperatures. A considerable reduction of k ∞ (up to 600 pcm) and an increased Doppler reactivity (up to 10%) is observed. An increase of up to 2.3% of the Pu 239 inventory can be noticed at 90 MWd/tHM burnup due to enhanced neutron absorption of U 238 . Those effects are more pronounced for design cases in which the neutron flux spectrum is hardened towards the resolved resonance range. (authors)
Neutron scattering on deformed nuclei
International Nuclear Information System (INIS)
Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.
1984-09-01
Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP
Neutron transfer with anisotropic scattering
International Nuclear Information System (INIS)
El Wakil, S.A.; Haggag, M.H.; Saad, E.A.
1979-01-01
The finite slab problem is reduced to a semi-infinite one by adding an infinitesimally thick layer such that both the added layer and the total layer are semi-infinite. The relation between the reflection and transmission functions for a finite slab and those for an infinite one are obtained in terms of an operator which satisfies a semigroup equation. The method is applied to anisotropic scattering with azimuthal dependence. Numerical calculations are made and the results compared with those of other workers. (author)
Proceedings of the workshop on neutron scattering instrumentation for SNQ
International Nuclear Information System (INIS)
Scherm, R.; Stiller, H.
1984-10-01
These proceedings contain the articles presented at the named workshop. These concern instrumentation for neutron diffraction with special regards to small angle scattering, diffuse scattering, inelastic scattering, high resolution spectroscopy, and special techniques. (HSI)
Applications of thermal neutron scattering in biology, biochemistry and biophysics
International Nuclear Information System (INIS)
Worcester, D.L.
1977-01-01
Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)
Theory of neutron scattering in disordered alloys
International Nuclear Information System (INIS)
Yussouff, M.; Mookerjee, A.
1984-08-01
A comprehensive theory of thermal neutron scattering in disordered alloys is presented here. We consider in detail the case of substitutional random binary alloy with random changes in mass and force constants; and for all values of the concentration. The cluster CPA formalism in argumented space developed here is free from analytical difficulties for the Green function, performs correct averaging over random atomic scattering lengths and employs a self-consistent medium for the calculations. For easy computation, we describe the graphical representation of the resolvent where the approximation steps can be depicted as closed paths in augmented space. Our results for scattering cross sections, both coherent and incoherent, include new types of terms and these lead to asymmetric line shapes for the coherent scattering. (author)
Development of resonant detectors for epithermal neutron spectroscopy at pulsed neutron sources
International Nuclear Information System (INIS)
Tardocchi, M.; Pietropaolo, A.; Senesi, R.; Andreani, C.; Gorini, G.
2004-01-01
New perspectives for epithermal neutron spectroscopy are opened by the development of new detectors for inverse geometry time of flight spectrometers at pulsed neutron sources. One example is the Very Low Angle Detector (VLAD) bank planned to be delivered, within the next 4 years, within the eVERDI project, on the neutron spectrometer VESUVIO, at the ISIS pulsed neutron source (UK). VLAD will extend the (q,ω) kinematical region for neutron scattering to low wavefactor transfer (q -1 ) still keeping energy transfer >1 eV, thus allowing the investigations of new experimental studies in condensed matter systems. The technique being developed for detection of epithermal neutrons, within this low q and high-energy transfer region, is the Resonance Detection Technique. In this work, the state of the detector development will be presented with special focus on the results obtained with some prototype detectors, namely YAP scintillators and cadmium-zinc-telluride semiconductors
Scattering of fast neutrons from 103Rh
International Nuclear Information System (INIS)
Barnard, E.; Reitmann, D.
1978-01-01
The scattering of fast neutrons from 103 Rh was studied by means of (n, n), (n, n') and (n, n'γ) measurements at neutron energies up to 2 MeV. More than fifty unknown γ-transitions were identified and a level scheme established which includes fifteen unreported excited states. Branching ratios, spins and parities for these levels were deduced, as well as the effective activation cross sections for the 103 Rh(n, n')sup(103m)Rh reaction. The results are compared with existing data and with calculations based on the optical and statistical models. (Auth.)
Quasielastic neutron scattering facility at Dhruva reactor
International Nuclear Information System (INIS)
Mukhopadhyay, R.; Mitra, S.; Paranjpe, S.K.; Dasannacharya, B.A.
2001-01-01
Quasi-elastic neutron scattering is a powerful experimental tool for studying the various dynamical motions in solids and liquids. In this paper, we have described the salient features of the quasi-elastic neutron spectrometer in operation at Dhruva reactor at Trombay, India. The design criteria have been such as to maximise the throughput by various means like closer approach to the source, focusing a larger beam on to a sample, and Multi-Angle Reflecting X-tal mode of energy analysis. Some results of molecular motions from recently studied systems using this spectrometer are also reported
A mechanical rotator for neutron scattering measurements
International Nuclear Information System (INIS)
Thaler, A.; Northen, E.; Aczel, A. A.; MacDougall, G. J.
2016-01-01
We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses and future extension possibilities.
Formalism for neutron cross section covariances in the resonance region using kernel approximation
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.
2010-04-09
We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).
The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering. Proceedings
International Nuclear Information System (INIS)
2016-03-01
The 7th Japan-Taiwan joint meeting on neutron and X-ray scattering in Kumatori is held bilaterally in Japan and Taiwan. This meeting provides the recent outstanding results in the fields of fundamental polymer and biological sciences and their applications as well. In the fields of the X-ray and/or neutron scattering, the methodological progress expands the research fields and gives us new scientific insights. This meeting invites the researchers developing new methodologies, such as dynamics measurement utilizing nuclear Bragg resonance, subunit-kinetics measurement with deuteration-assisted small-angle neutron scattering and so on. (J.P.N.)
Resonant neutrino scattering: An impossible experiment?
International Nuclear Information System (INIS)
Suzuki, D.; Sumikama, T.; Ogura, M.; Mittig, W.; Shiraki, A.; Ichikawa, Y.; Kimura, H.; Otsu, H.; Sakurai, H.; Nakai, Y.; Hussein, M.S.
2010-01-01
The experimental feasibility was investigated for the resonant scattering of monoenergetic neutrinos emitted in the two-body β decay. A simple general formula shows that the resonance cross section can be as large as of the order of 10 -17 cm 2 . The Moessbauer setup using a solid crystal was examined with a focus on the electronic structure of the emitter and the absorber. Based on realistic calculations, we show that interactions of valence electrons in the solid lead to a level broadening of the atomic ground state, which considerably suppresses the resonant scattering of neutrinos.
Alpha resonant scattering for astrophysical reaction studies
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)
2014-05-02
Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.
Alpha resonant scattering for astrophysical reaction studies
International Nuclear Information System (INIS)
Yamaguchi, H.; Kahl, D.; Nakao, T.; Wakabayashi, Y.; Kubano, S.; Hashimoto, T.; Hayakawa, S.; Kawabata, T.; Iwasa, N.; Teranishi, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. G.
2014-01-01
Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of 7 Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the 7 Be(α,γ) reaction, and proposed a new cluster band in 11 C
Neutron scattering from polarised proton domains
Van den Brandt, B; Kohbrecher, J; Konter, J A; Mango, S; Glattli, H; Leymarie, E; Grillo, I; May, R P; Jouve, H; Stuhrmann, H B; Stuhrmann, H B; Zimmer, O
2002-01-01
Time-dependent small-angle polarised neutron scattering from domains of polarised protons has been observed at the onset of dynamic nuclear polarisation in a frozen solution of 98% deuterated glycerol-water at 1 K containing a small concentration of paramagnetic centres (EHBA-Cr sup V). Simultaneous NMR measurements show that the observed scattering arises from protons around the Cr sup V -ions which are polarised to approx 10% in a few seconds, much faster than the protons in the bulk. (authors)
Photon scattering by the giant dipole resonance
International Nuclear Information System (INIS)
Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.
1979-01-01
Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables
Neutron scattering. Annual progress report 1997
International Nuclear Information System (INIS)
Allenspach, P.; Boeni, B.; Fischer, P.; Furrer, A.
1998-02-01
The present progress report describes the scientific and technical activities obtained by LNS staff members in 1997. It also includes the work performed by external groups at our CRG instruments D1A and IN3 at the ILL Grenoble. Due to the outstanding properties of neutrons and x-rays the research work covered many areas of science and materials research. The highlight of the year 1997 was certainly the production of neutrons at the new spallation neutron source SINQ. From July to November, SINQ was operating for typically two days/week and allowed the commissioning of four instruments at the neutron guide system: - the triple-axis spectrometer Druechal, - the powder diffractometer DMC, - the double-axis diffractometer TOPSI, the polarised triple-axis spectrometer TASP. These instruments are now fully operational and have already been used for condensed matter studies, partly in cooperation with external groups. Five further instruments are in an advanced state, and their commissioning is expected to occur between June and October 1998: - the high-resolution powder diffractometer HRPT, - the single-crystal diffractometer TriCS, - the time-of-flight spectrometer FOCUS, - the reflectometer AMOR, - the neutron optical bench NOB. Together with the small angle neutron scattering facility SANS operated by the spallation source department, all these instruments will be made available to external user groups in the future. (author) figs., tabs., refs
Specimen environments in thermal neutron scattering experiments
International Nuclear Information System (INIS)
Cebula, D.J.
1980-11-01
This report is an attempt to collect into one place outline information concerning the techniques used and basic design of sample environment apparatus employed in neutron scattering experiments. Preliminary recommendations for the specimen environment programme of the SNS are presented. The general conclusion reached is that effort should be devoted towards improving reliability and efficiency of operation of specimen environment apparatus and developing systems which are robust and easy to use, rather than achieving performance at the limits of technology. (author)
Summary of coherent neutron scattering length
International Nuclear Information System (INIS)
Rauch, H.
1981-07-01
Experimental values of neutron-nuclei bound scattering lengths for some 354 isotopes and elements and the various spin-states are compiled in a uniform way together with their error bars as quoted in the original literature. Recommended values are also given. The definitions of the relevant quantities presented in the data tables and the basic principles of measurements are explained in the introductory chapters. The data is also available on a magnetic tape
Chemical binding effects in resonance - potential interference scattering for harmonic crystals
International Nuclear Information System (INIS)
Kuwaifi, A.; Summerfield, G.C.
1991-01-01
The neutron scattering cross section which is the quantity directly measured in experiments is given by the absolute square of the scattering amplitude. For energies near a resonance, this yields three terms: potential, resonant and interference. In this paper we deal with the interference neutron scattering cross section which is written in terms of a three-point correlation function. This function is calculated for the ideal gas and harmonic crystal models. For short collision times, the interference result for harmonic crystals is the same as the ideal gas but it has an effective temperature. This is the same effective temperature as was previously found for absorption and pure resonant processes. Therefore, the interference scattering cross section can be treated in the same way as resonant scattering and absorption are treated using an ideal gas result with the usual effective temperature. (author)
Monte Carlo simulation of neutron scattering instruments
International Nuclear Information System (INIS)
Seeger, P.A.; Daemen, L.L.; Hjelm, R.P. Jr.
1998-01-01
A code package consisting of the Monte Carlo Library MCLIB, the executing code MC RUN, the web application MC Web, and various ancillary codes is proposed as an open standard for simulation of neutron scattering instruments. The architecture of the package includes structures to define surfaces, regions, and optical elements contained in regions. A particle is defined by its vector position and velocity, its time of flight, its mass and charge, and a polarization vector. The MC RUN code handles neutron transport and bookkeeping, while the action on the neutron within any region is computed using algorithms that may be deterministic, probabilistic, or a combination. Complete versatility is possible because the existing library may be supplemented by any procedures a user is able to code. Some examples are shown
Neutron scattering studies on frustrated magnets
International Nuclear Information System (INIS)
Arima, Taka-hisa
2013-01-01
A lot of frustrated magnetic systems exhibit a nontrivial magnetic order, such as long-wavelength modulation, noncollinear, or noncoplanar order. The nontrivial order may pave the way for the novel magnetic function of matter. Neutron studies are necessary to determine the magnetic structures in the frustrated magnetic systems. In particular, spin-polarized neutron scattering is a useful technique for the investigation of the novel physical properties relevant to the nontrivial spin arrangement. Here some neutron studies on a multiferroic perovskite manganese oxide system are demonstrated as a typical case. The frustrated magnetic systems may also a playground of novel types of local magnetic excitations, which behave like particles in contrast to the magnetic waves. It is becoming a good challenge to study such particle-type magnetic excitations relevant to the magnetic frustration. (author)
Neutron scattering cross sections of uranium-238
International Nuclear Information System (INIS)
Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.
1979-01-01
The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures
Study of material science by neutron scattering
International Nuclear Information System (INIS)
Kim, H.J.; Yoon, B.K.; Cheon, B.C.; Lee, C.Y.; Kim, C.S.
1980-01-01
To develop accurate methods of texture measurement in metallic materials by neutron diffraction, (100),(200),(111) and (310) pole figures have been measured for the oriented silicon steel sheet, and currently study of correction methods for neutron absorption and extinction effects are in progress. For quantitative analysis of texture of polycrystalline material with a cubic structure, a software has been developed to calculate inverse pole figures for arbitrary direction specified in the speciman as well as pole figures for arbitrary chosen crystallographic planes from three experimental pole figures. This work is to be extended for the calculation of three dimensional orientation distribution function and for the evaluation of errors in the quantitative analysis of texture. Work is also for the study of N-H...O hydrogen bond in amino acid by observing molecular motions using neutron inelastic scattering. Measurement of neutron inelastic scattering spectrum of L-Serine is completed at 100 0 K and over the energy transfer range of 20-150 meV. (KAERI INIS Section)
Modern quantum magnetism by means of neutron scattering
International Nuclear Information System (INIS)
Grenier, B.; Ziman, T.
2007-01-01
We review a selection of recent applications of neutron scattering to the field of quantum magnetism. We focus on systems where, because of quantum fluctuations enhanced by frustration and low dimension, there is no long range magnetic order in the ground state. We select two examples that we treat in more depth to show how neutron studies, in conjunction with the results of other experimental techniques, can give new insights. The first is the case of the spin ladder NaV 2 O 5 , where the origin of the spin gap at low temperature is now understood in detail. Apparent contradictions between quantitative measures of the charge order from neutron inelastic scattering, resonant X-ray scattering and NMR have been resolved giving interesting insights into the correlations. The second case is that of spin dimer system Cs 3 Cr 2 X 9 (X = Br, Cl), undergoing transitions to field induced transverse magnetic order. The Br compound is attractive as the critical fields are sufficiently low that a complete study, in different field directions, is possible. In addition, it is noteworthy in that the magnon that softens and condenses is incommensurable with the lattice. The common description in terms of Bose-Einstein condensation must be extended to include a continuous degeneracy and single ion anisotropy, and conclusions can be drawn by comparison with the Cl compound. (authors)
Spectral distortion due to scattered cold neutrons in beryllium filter
International Nuclear Information System (INIS)
Sakamoto, Yukio; Inoue, Kazuhiko
1980-01-01
Polycrystalline beryllium filters are used to discriminate the cold neutrons from the thermal neutrons with energies above Bragg cut-off energy. The cold neutron scattering cross section is very small, but the remaining cross section is not zero. Then the neutrons scattered once from the filter in the cold neutron energy region have chance of impinging on the outlet of filter. Those neutrons are almost upscattered and develop into thermal neutrons; thus the discriminated cold neutrons include a small spectral distortion due to the thermal neutrons. In the present work we have evaluated the effect on the cold neutron spectrum due to the repeatedly scattered and transmitted neutrons by using a Monte Carlo calculation method. (author)
YAP scintillators for resonant detection of epithermal neutrons at pulsed neutron sources
International Nuclear Information System (INIS)
Tardocchi, M.; Gorini, G.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N.; Schooneveld, E. M.
2004-01-01
Recent studies indicate the resonance detector (RD) technique as an interesting approach for neutron spectroscopy in the electron volt energy region. This work summarizes the results of a series of experiments where RD consisting of YAlO 3 (YAP) scintillators were used to detect scattered neutrons with energy in the range 1-200 eV. The response of YAP scintillators to radiative capture γ emission from a 238 U analyzer foil was characterized in a series of experiments performed on the VESUVIO spectrometer at the ISIS pulsed neutron source. In these experiments a biparametric data acquisition allowed the simultaneous measurements of both neutron time-of-flight and γ pulse height (energy) spectra. The analysis of the γ pulse height and neutron time of flight spectra permitted to identify and distinguish the signal and background components. These measurements showed that a significant improvement in the signal-to-background ratio can be achieved by setting a lower level discrimination on the pulse height at about 600 keV equivalent photon energy. Present results strongly indicate YAP scintillators as the ideal candidate for neutron scattering studies with epithermal neutrons at both very low (<5 deg.) and intermediate scattering angles
A neutron scattering study of DCN
International Nuclear Information System (INIS)
Mackenzie, G.A.; Pawley, G.S.
1979-01-01
Phonons in deuterium cyanide have been measured by neutron coherent inelastic scattering. The main subject of study was the transverse acoustic mode in the (110) direction polarised along (110) which is associated with the first-order structural phase transition at 160 K. Measurements have shown that the frequency decreases by about 25% between about 225 and 160 K as the transition temperature is approached. The other acoustic modes observable in the a*b* scattering plane have been measured and show no anomalous temperature dependence. Optic modes were unobservable because of the small size of the single-crystal sample which gave insufficient scattered intensity. Apart from the 'soft' mode, the measured frequencies are in good agreement with lattice dynamics calculations. (author)
Development of temperature related thermal neutron scattering database for MCNP
International Nuclear Information System (INIS)
Mei Longwei; Cai Xiangzhou; Jiang Dazhen; Chen Jingen; Guo Wei
2013-01-01
Based on ENDF/B-Ⅶ neutron library, the thermal neutron scattering library S(α, β) for molten salt reactor moderators was developed. The temperatures of this library were chose as the characteristic temperature of the molten salt reactor. The cross section of the thermal neutron scattering of ACE format was investigated, and this library was also validated by the benchmarks of ICSBEP. The uncertainties shown in the validation were in reasonable range when compared with the thermal neutron scattering library tmccs which included in the MCNP data library. It was proved that the thermal neutron scattering library processed in this study could be used in the molten salt reactor design. (authors)
Neutron scattering from adsorbed species
International Nuclear Information System (INIS)
Shuwang An
1998-01-01
Neutron reflection has been used to investigate the structure of layers of water-soluble diblock copolymers poly(2-(dimethylamino)ethyl methacrylate-block-methyl methacrylate (poly(DMAEMA-b-MMA)) (70 mol% DMAEMA, M n = 10k, 80 mol% DMAEMA, M n = 10k, and 70 mol% DMAEMA, M n = 20k) adsorbed at the air-liquid and solid-liquid interfaces. The surface tension behaviour of these copolymers at the air-liquid interface has also been investigated. The study of the structure of layers of poly(DMAEMA-b-MMA) adsorbed at the air-water interface forms the main part of the thesis. The surface structure, the effects of pH and ionic strength, and the effects of composition and molecular weight of the copolymers have been studied systematically. For the 70%-10k copolymer at pH 7.5, the adsorption isotherm shows that there is a surface phase transition. The concentration of copolymer at which the phase transition occurs is close to that at which micellar aggregation in the bulk solution also occurs. At low concentrations (below the CMC), the two blocks of the copolymer are approximately uniformly distributed in the direction normal to the interface and the layer is partially immersed in water. At high concentrations (above the CMC), the adsorbed layer has a cross-sectional structure resembling that expected for a micelle with the majority of the MMA blocks forming the core. The outer layers, comprising predominantly DMAEMA blocks, are not equivalent, being more highly extended on the aqueous side of the interface. The effects of pH and added electrolyte on the structure of layers of the 70%-10k copolymer show that the layered structure is promoted by any changes in the bulk solution that enhance the surface coverage but is inhibited by an increase in the fractional charge on the polyelectrolyte part of the copolymer. The effect of lowering the pH is to increase the positive charge on the weak polyelectrolyte block. Addition of electrolyte generally enhances the amount adsorbed and
Neutron scattering on equilibrium and nonequilibrium phonons, excitons and polaritons
International Nuclear Information System (INIS)
Broude, V.L.; Sheka, E.F.
1978-01-01
A number of problems of solid-state physics representing interest for neutron spectroscopy of future is considered. The development of the neutron inelastic scattering spectroscopy (neutron spectroscopy of equilibrium phonons) is discussed with application to nuclear dynamics of crystals in the thermodynamic equilibrium. The results of high-flux neutron source experiments on molecular crystals are presented. The advantages of neutron inelastic scattering over optical spectroscopy are discussed. The spectroscopy of quasi-equilibrium and non-equilibrium quasi-particles is discussed. In particular, the neutron scattering on polaritons, excitons in thermal equilibrium and production of light-excitons are considered. The problem of the possibility of such experiments is elucidated
Neutron scattering treatise on materials science and technology
Kostorz, G
1979-01-01
Treatise on Materials Science and Technology, Volume 15: Neutron Scattering shows how neutron scattering methods can be used to obtain important information on materials. The book discusses the general principles of neutron scattering; the techniques used in neutron crystallography; and the applications of nuclear and magnetic scattering. The text also describes the measurement of phonons, their role in phase transformations, and their behavior in the presence of crystal defects; and quasi-elastic scattering, with its special merits in the study of microscopic dynamical phenomena in solids and
Polarized neutron inelastic scattering experiments on spin dynamics
International Nuclear Information System (INIS)
Kakurai, Kazuhisa
2016-01-01
The principles of polarized neutron scattering are introduced and examples of polarized neutron inelastic scattering experiments on spin dynamics investigation are presented. These examples should demonstrate the importance of the polarized neutron utilization for the investigation of non-trivial magnetic ground and excited states in frustrated and low dimensional quantum spin systems. (author)
Neutron-scattering studies of chromatin
International Nuclear Information System (INIS)
Bradbury, E.M.; Baldwin, J.P.; Carpenter, B.G.; Hjelm, R.P.; Hancock, R.; Ibel, K.
1976-01-01
It is clear that a knowledge of the basic molecular structure of chromatin is a prerequisite for any progress toward an understanding of chromosome organization. With a two-component system, protein and nucleic acid, neutrons have a particularly powerful application to studies of the spatial arrangements of these components because of the ability, by contrast matching with H 2 O-D 2 O mixtures, to obtain neutron-scattering data on the individual components. With this approach it has been shown that the neutron diffraction of chromatin is consistent with a ''beads on a string'' model in which the bead consists of a protein core with DNA coiled on the outside. However, because chromatin is a gel and gives limited structural data, confirmation of such a model requires extension of the neutron studies by deuteration of specific chromatin components and the isolation of chromatin subunits. Although these studies are not complete, the neutron results so far obtained support the subunit model described above
Inelastic scattering in resonant tunneling
DEFF Research Database (Denmark)
Wingreen, Ned S.; Jacobsen, Karsten Wedel; Wilkins, John W.
1989-01-01
The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability or the esc......The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability...
Scattering of neutrons and critical phenomena in antiferromagnetic fermi liquid
International Nuclear Information System (INIS)
Akhiezer, I.A.; Barannik, E.A.
1980-01-01
The scattering of slow neutrons in an antiferromagnetic with collectivized magnetic electrons is considered and it is shown to significantly differ from the neutron scattering in an antiferromagnetic with localized magnetic electrons. The behaviour of scattering cross sections and fluctuation correlators near the Neel point is studied. These magnitudes are shown to increase with the critical index r=-1 [ru
Continuous neutron slowing down theory applied to resonances
International Nuclear Information System (INIS)
Segev, M.
1977-01-01
Neutronic formalisms that discretize the neutron slowing down equations in large numerical intervals currently account for the bulk effect of resonances in a given interval by the narrow resonance approximation (NRA). The NRA reduces the original problem to an efficient numerical formalism through two assumptions: resonance narrowness with respect to the scattering bands in the slowing down equations and resonance narrowness with respect to the numerical intervals. Resonances at low energies are narrow neither with respect to the slowing down ranges nor with respect to the numerical intervals, which are usually of a fixed lethargy width. Thus, there are resonances to which the NRA is not applicable. To stay away from the NRA, the continuous slowing down (CSD) theory of Stacey was invoked. The theory is based on a linear expansion in lethargy of the collision density in integrals of the slowing down equations and had notable success in various problems. Applying CSD theory to the assessment of bulk resonance effects raises the problem of obtaining efficient quadratures for integrals involved in the definition of the so-called ''moderating parameter.'' The problem was solved by two approximations: (a) the integrals were simplified through a rationale, such that the correct integrals were reproduced for very narrow or very wide resonances, and (b) the temperature-broadened resonant line shapes were replaced by nonbroadened line shapes to enable analytical integration. The replacement was made in such a way that the integrated capture and scattering probabilities in each resonance were preserved. The resulting formalism is more accurate than the narrow-resonance formalisms and is equally as efficient
The resonant detector and its application to epithermal neutron spectroscopy
International Nuclear Information System (INIS)
Gorini, G.; Perelli-Cippo, E.; Tardocchi, M.; Andreani, C.; D'Angelo, A.; Pietropaolo, A.; Senesi, R.; Imberti, S.; Bracco, A.; Previtali, E.; Pessina, G.; Rhodes, N.J.; Schooneveld, E.M.
2004-01-01
New perspectives for epithermal neutron spectroscopy are being opened by the development of the resonant detector (RD) and its use on inverse geometry time of flight spectrometers at spallation sources. The RD was first proposed in the 1980s and was recently brought to a performance level exceeding conventional neutron-sensitive Li-glass scintillator detectors. It features a photon counter coupled to a neutron analyzer foil. Resonant neutron absorption in the foil results in the emission of prompt gamma rays that are detected in the photon counter. The dimensions of the RD set the spatial resolution that can be achieved, ranging from a fraction of a cm to several cm. It can thus be tailored to the construction of detector arrays of different geometry. The main results of the research on this kind of detector are reported leading to the present optimized RD design based on a combination of YAP scintillation photon counter and uranium or gold analyzer foils. This detector has already been selected for application in the upgrade of the VESUVIO spectrometer on ISIS. A special application is the Very Low Angle Detector (VLAD) bank, which will extend the kinematical region for neutron scattering to low momentum transfer ( -1 ) whilst still keeping energy transfer >1 eV, thus allowing new experimental studies in condensed matter systems. The first results of tests made with prototype VLAD detectors are presented, confirming the usefulness of the RD for measurements at scattering angles as low as 2-5 deg
Quantum effects in deep inelastic neutron scattering
International Nuclear Information System (INIS)
Mayers, J.
1989-07-01
In the Impulse Approximation (IA), which is used to interpret deep inelastic neutron scattering (DINS) measurements, it is assumed both that the target system can be treated as a gas of free atoms and that the struck atom recoils freely after the collision with the neutron. Departures from the IA are generally attributed to final state effects (FSE), which are due to the inaccuracy of the latter assumption. However it is shown that even when FSE are neglected, significant departures from the IA occur at low temperatures due to inaccuracies in the former assumption. These are referred to as initial state effects (ISE) and are due to the quantum nature of the initial state. Comparison with experimental data and exactly soluble models shows that ISE largely account for observed asymmetries and peak shifts in the neutron scattering function S(q,ω), compared with the IA prediction. It is shown that when FSE are neglected, ISE can also be neglected when either the momentum transfer or the temperature is high. Finally it is shown that FSE should be negligible at high momentum transfers in systems other than quantum fluids and that therefore in this regime the IA is reached in such systems. (author)
Probing fine magnetic particles with neutron scattering
International Nuclear Information System (INIS)
Pynn, R.
1991-01-01
Because thermal neutrons are scattered both by nuclei and by unpaired electrons, they provide an ideal probe for studying the atomic and magnetic structures of fine-grained magnetic materials, including nanocrystalline solids, thin epitaxial layers, and colloidal suspensions of magnetic particles, known as ferrofluids. Diffraction, surface reflection, and small angle neutron scattering (SANS) are the techniques used. With the exception of surface reflection, these methods are described in this article. The combination of SANS with refractive-index matching and neutron polarisation analysis is particularly powerful because it allows the magnetic and atomic structures to be determined independently. This technique has been used to study both dilute and concentrated ferrofluid suspensions of relatively monodisperse cobalt particles, subjected to a series of applied magnetic fields. The size of the cobalt particle core and the surrounding surfactant layer were determined. The measured interparticle structure factor agrees well with a recent theory that allows correlations in binary mixtures of magnetic particles to be calculated in the case of complete magnetic alignment. When one of the species in such a binary mixture is a nonmagnetic, cyclindrical macromolecule, application of a magnetic field leads to some degree of alignment of the nonmagnetic species. This result has been demonstrated with tobacco mosaic virus suspended in a water-based ferrofluid
Incoherent quasielastic neutron scattering from plastic crystals
International Nuclear Information System (INIS)
Bee, M.; Amoureux, J.P.
1980-01-01
The aim of this paper is to present some applications of a method indicated by Sears in order to correct for multiple scattering. The calculations were performed in the particular case of slow neutron incoherent quasielastic scattering from organic plastic crystals. First, an exact calculation (up to second scattering) is compared with the results of a Monte Carlo simulation technique. Then, an approximation is developed on the basis of a rotational jump model which allows a further analytical treatment. The multiple scattering is expressed in terms of generalized structure factors (which can be regarded as self convolutions of first order structure factors taking into account the instrumental geometry) and lorentzian functions the widths of which are linear combinations of the jump rates. Three examples are given. Two of them correspond to powder samples while in the third we are concerned with the case of a single crystalline slab. In every case, this approximation is shown to be a good approach to the multiple scattering evaluation, its main advantage being the possibility of applying it without any preliminary knowledge of the correlation times for rotational jumps. (author)
Neutron Scattering Differential Cross Sections for 12C
Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.
2016-09-01
Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).
Neutron scatter studies of chromatin structures related to functions
International Nuclear Information System (INIS)
Bradbury, E.M.
1992-01-01
Despite of setbacks in the lack of neutrons for the proposed We have made considerable progress in chromatin reconstitution with the VLR histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized an intrinsically bent DNA region flanking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interatctions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin
Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS
Energy Technology Data Exchange (ETDEWEB)
Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)
2017-01-01
We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.
Scatterings and reactions by means of polarized neutron beam
International Nuclear Information System (INIS)
Koori, N.
1989-01-01
A high resolution polarized neutron beam should be prepared for nuclear physics, which will be planned with the new ring cyclotron at RCNP. Studies on scatterings and reactions by means of polarized neutron beams are reviewed briefly. Beam lines for polarized neutrons are summarized. An example of high resolution measurements of neutron induced reactions is described. (author)
Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS
Zaliznyak, Igor A; Savici, Andrei T.; Garlea, V. Ovidiu; Winn, Barry; Filges, Uwe; Schneeloch, John; Tranquada, John M.; Gu, Genda; Wang, Aifeng; Petrovic, Cedomir
2016-01-01
We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.
Annual report on neutron scattering studies in JAERI
International Nuclear Information System (INIS)
Sato, Masatoshi; Nishi, Masakazu; Fujishita, Hideshi; Iizumi, Masashi
1982-07-01
Neutron scattering studies carried out from September 1979 to August 1981 by Division of Physics, JAERI, and universities with JRR-2 and -3 neutron beam facilities are described: 61 summary reports, and a list of publications. (author)
Study of scattering in bi-dimensional neutron radiographic images
International Nuclear Information System (INIS)
Oliveira, K.A.M. de; Crispim, V.R.; Silva, F.C.
2009-01-01
The effect of neutron scattering frequently causes distortions in neutron radiographic images and, thus, reduces the quality. In this project, a type of filter, comprised of cadmium (a neutron absorber), was used in the form of a grid to correct this effect. This device generated image data in the discrete shadow bands of the absorber, components relative to neutron scattering on the test object and surroundings. Scattering image data processing, together with the original neutron radiographic image, resulted in a corrected image with improved edge delineation and, thus, greater definition in the neutron radiographic image of the test object. The objective of this study is to propose a theoretical/experimental methodology that is capable of eliminating the components relative to neutron scattering in neutron radiographic images, coming from the material that composes the test object and the materials that compose the surrounding area. (author)
Neutron scattering instrumentation for biology at spallation neutron sources
Energy Technology Data Exchange (ETDEWEB)
Pynn, R. [Los Alamos National Laboratory, NM (United States)
1994-12-31
Conventional wisdom holds that since biological entities are large, they must be studied with cold neutrons, a domain in which reactor sources of neutrons are often supposed to be pre-eminent. In fact, the current generation of pulsed spallation neutron sources, such as LANSCE at Los Alamos and ISIS in the United Kingdom, has demonstrated a capability for small angle scattering (SANS) - a typical cold- neutron application - that was not anticipated five years ago. Although no one has yet built a Laue diffractometer at a pulsed spallation source, calculations show that such an instrument would provide an exceptional capability for protein crystallography at one of the existing high-power spoliation sources. Even more exciting is the prospect of installing such spectrometers either at a next-generation, short-pulse spallation source or at a long-pulse spallation source. A recent Los Alamos study has shown that a one-megawatt, short-pulse source, which is an order of magnitude more powerful than LANSCE, could be built with today`s technology. In Europe, a preconceptual design study for a five-megawatt source is under way. Although such short-pulse sources are likely to be the wave of the future, they may not be necessary for some applications - such as Laue diffraction - which can be performed very well at a long-pulse spoliation source. Recently, it has been argued by Mezei that a facility that combines a short-pulse spallation source similar to LANSCE, with a one-megawatt, long-pulse spallation source would provide a cost-effective solution to the global shortage of neutrons for research. The basis for this assertion as well as the performance of some existing neutron spectrometers at short-pulse sources will be examined in this presentation.
Neutron scattering studies of the actinides
International Nuclear Information System (INIS)
Lander, G.H.
1979-01-01
The electronic structure of actinide materials presents a unique example of the interplay between localized and band electrons. Together with a variety of other techniques, especially magnetization and the Mossbauer effect, neutron studies have helped us to understand the systematics of many actinide compounds that order magnetically. A direct consequence of the localization of 5f electrons is the spin-orbit coupling and subsequent spin-lattice interaction that often leads to strongly anisotropic behavior. The unusual phase transition in UO 2 , for example, arises from interactions between quadrupole moments. On the other hand, in the monopnictides and monochalcogenides, the anisotropy is more difficult to understand, but probably involves an interaction between actinide and anion wave functions. A variety of neutron experiments, including form-factor studies, critical scattering and measurements of the elementary excitations have now been performed, and the conceptual picture emerging from these studies will be discussed
Resonant and nonresonant magnetic scattering (invited)
International Nuclear Information System (INIS)
McWhan, D.B.; Hastings, J.B.; Kao, C.; Siddons, D.P.
1992-01-01
The tunability and the polarization of synchrotron radiation open up new possibilities for the study of magnetism. Studies on magnetic materials performed at the National Synchrotron Light Source are reviewed, and they fall into four areas: structure, evolution of magnetic order, separation of L and S, and resonance effects. In the vicinity of atomic absorption edges, the Faraday effect, magnetic circular dichroism, and resonant magnetic scattering are all related resonance effects which measure the spin-polarized density of states. The production and analysis of polarized beams are discussed in the context of the study of magnetism with synchrotron radiation
International Nuclear Information System (INIS)
Perelli-Cippo, E.; Andreani, C.; Casalboni, M.; Dire, S.; Fernandez-Canoto, D.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Prosposito, P.; Schutzmann, S.; Senesi, R.; Tardocchi, M.
2006-01-01
High-energy inelastic neutron scattering (HINS) employing epithermal neutrons is a new technique under development at the VESUVIO spectrometer at ISIS, aiming to access the high-energy and low wave-vector transfer region in neutron scattering experiments at eV energies. New neutron detectors have been developed for HINS based on the resonant detector (RD). These make use of the detection of prompt gammas after neutron absorption in an analyzer foil. The RD is used in the very low angle detector (VLAD) bank, which will extend the explored kinematical region to momentum transfer -1 , whilst still keeping energy transfer >300 meV. The final VLAD will cover the scattering range 1-5 o and will be installed by the end of 2005. The results obtained with prototype VLAD detectors on polycrystalline ice and liquid water in silica xerogels provide a demonstration of the feasibility of the measurements under realistic conditions
Molecular dynamics using quasielastic neutron scattering
Mitra, S
2003-01-01
Quasielastic neutron scattering (QENS) technique is well suited to study the molecular motions (rotations and translations) in solids or liquids. It offers a unique possibility of analysing spatial dimensions of atomic or molecular processes in their development over time. We describe here some of the systems studied using the QENS spectrometer, designed, developed and commissioned at Dhruva reactor in Trombay. We have studied a variety of systems to investigate the molecular motion, for example, simple molecular solids, molecules adsorbed in confined medium like porous systems or zeolites, monolayer-protected nano-sized metal clusters, water in Portland cement as it cures with time, etc. (author)
Pygmy resonances probed with electron scattering
International Nuclear Information System (INIS)
Bertulani, C.A.
2007-01-01
Pygmy resonances in light nuclei excited in electron scattering are discussed. These collective modes will be explored in future electron-ion colliders such as ELISe/FAIR (spokesperson: Haik Simon - GSI). Response functions for direct breakup are explored with few-body and hydrodynamical models, including the dependence upon final state interactions
Neutron scattering on partially deuterated polybutadiene
Kahle, S; Monkenbusch, M; Richter, D; Arbe, A; Colmenero, J; Frick, B
2002-01-01
The molecular nature of the secondary relaxation (Johari-Goldstein relaxation) and its relationship with the alpha relaxation is in most cases still unknown. In order to access these processes on a molecular level, it is necessary to obtain spatial information of the relaxation. Through the momentum-transfer dependence of the dynamic structure factor S(Q,t), this information can be provided by quasielastic neutron scattering techniques. The large difference in scattering lengths between hydrogen and deuterium allows us to accentuate specific correlations between atoms in a polymer melt. Here, we report on recent results on a polybutadiene melt, where the double bond was hydrogeneous, while the methylene groups carried deuterons (d4h2-PB). In this way the correlations between the double bonds are emphasised. We will show that the double bond/double bond correlation function, generated in this way, shows the same temperature dependence as the viscosity at higher temperatures at the structure factor peak maximum...
Small-angle neutron scattering technique in liquid crystal studies
International Nuclear Information System (INIS)
Shahidan Radiman
2005-01-01
The following topics discussed: general principles of SAS (Small-angle Neutron Scattering), liquid crystals, nanoparticle templating on liquid crystals, examples of SAS results, prospects of this studies
Significance of collective motions in biopolymers and neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Go, Nobuhiro [Kyoto Univ. (Japan)
1996-05-01
Importance of collective variable description of conformational dynamics of biopolymers and the vital role that neutron inelastic scattering phenomena would play in its experimental determination are discussed. (author)
International Nuclear Information System (INIS)
Pascalon-Rozier, V.
1997-01-01
In inelastic heavy ion scattering, to angles near to the grazing angle, giant resonances (GR) are excited with very large differential cross sections. It has been shown that multiphonon states, states built with several GR quanta, can also been excited. These states can be revealed through the measurement of their decay by light particle emission. In this thesis, we report on the study of inelastic scattering of 36 Ar at 44 MeV/u on target of 90 Zr and 94 Zr, measured in coincidence with neutrons detected with the EDEN multidetector. The analysis of the inelastic spectra show evidence for a structure at high excitation energy, exhibiting characteristics compatible with a two-photon excitation. The construction of missing energy spectra allows us to the study of the GR and the high energy structure. In both nuclei, the GR presents a direct decay branch of 8%, which yields informations on the microscopic structure of the resonance. A two phonon state, interpreted as two weakly coupled GR's, built on one top of the other, and each phonon is expected to exhibit the same direct decay pattern as the GR. Such a simple decay is observed in the data, proving that the structure observed is due to the excitation of the two phonon state in both nuclei studied. Finally, we present a theoretical development based on Random Phase Approximation calculation, predicting that the two phonon state should be very harmonic. This result is in agreement with experimental studies of double phonon states over a large range of nuclei (from A = 12 to 208) carried out with several different probes. (author)
Dynamic properties of electrons in solids by neutron scattering
International Nuclear Information System (INIS)
Lovesey, S.W.
1980-12-01
Illustrative cases of the use of neutron scattering in the study of the electronic properties of materials discussed here include scattering by localised electrons, narrow band materials and electron plasmas. (U.K.)
Magnetic scattering of neutrons by atoms
International Nuclear Information System (INIS)
Stassis, C.; Deckman, H.W.
1976-01-01
The magnetic scattering of neutrons by an atom or ion possessing both a spin and orbital magnetic moment is examined. For an atom in the 1sup(n) electronic configuration the magnetic scattering amplitude is determined by matrix elements of even-order electric and odd-order magnetic multipoles, whose order of multipolarity k is less than or equal to 21 + 1. The calculation of the matrix elements of these multipoles is separated into evaluating radial matrix elements and matrix elements of the Racah tensors Wsup(0,k) and Wsup(1,k') where k is an even integar less than or equal to 21. The calculation of the matrix elements of these tensors is considerably simplified by selection rules based on the groups Sp(41 + 2), R(21 + 1), R(3) and in the case of f-electrons, the special group G 2 . It is shown that, in the case of elastic scattering by an atom or an ion whose state is a single Russell-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(q)qsub(m).sigma. General expressions for the amplitude p(q) as well as the elastic magnetic form factor are obtained. The evaluation of the coherent magnetic scattering amplitude by an atom in a magnetic field is discussed, and the small-q approximation to the elastic magnetic scattering is considered. The formation is illustrated for the important case of d- and f-electrons. The generalization of the formalism to the case of mixed atomic configurations is examined in some detail. (author)
Resonances in the proton-6Li scattering
International Nuclear Information System (INIS)
Haller, M.
1986-01-01
The differential cross section and the analyzing power of the p+ 6 Li scattering were measured in the laboratory energy range from 1.6 respectively 2.8 MeV to 10 MeV at 45 respectively 40 energies in full angular distributions. The data were subjected both to an analysis in the optical model which yielded already hints to resonance effects and to a comphrehensive scattering-phase analysis for L=0, 1, and 2 under inclusion of channel spin and orbital angular momentum mixings. The consistent description of all data required the assumption of broad resonance structures. An approximate parametrization by a Breit-Wigner formula allowed the estimation of the resonance parameters. (orig./HSI) [de
Eighth International Conference on Neutron Scattering ICNS2005. Final Programme and Abstract Book
International Nuclear Information System (INIS)
2005-01-01
Full text: This conference encompassed a very wide range of neutron-related research. Topics addressed ranged from almost all applications of neutron scattering and diffraction like discovering magnetic ordering, magnetic properties and structural analysis, negative thermal expansion, spin states, proton dynamics, crystal structure, phase transitions and phase morphology, neutron spin echo to neutron powder diffraction studies and new generation neutron analysis methods as well as x-ray reflectivity versus neutron reflectivity, neutron resonance, cold and thermal neutron studies and spectrometers. Areas of research covered bacteria, DNA, drugs targeting, enzyme arrangement, structure of cholesterol, lung surfactant action, nanocapsules, disease, muscles, lipids, liquids, crystals, industrial gauges, metals, rare earths, shielding and geopolymers. Not all abstracts are included in this input; there exists an emphasis on Australian contributions and those from ANSTO
Symmetry effects in neutron scattering from isotopically enriched Se isotopes
Energy Technology Data Exchange (ETDEWEB)
Lachkar, J.; Haouat, G.; McEllistrem, M. T.; Patin, Y.; Sigaud, J.; Cocu, F.
1975-06-01
Differential cross sections for neutron elastic and inelastic scattering from {sup 76}Se, {sup 78}Se, {sup 80}Se and {sup 82}Se, have been measured at 8-MeV incident neutron energy and from {sup 76}Se and {sup 82}Se at 6- and 10-MeV incident energies. The differences observed in the elastic scattering cross sections are interpretable as the effects of isospin term in the scattering potentials. A full analysis of the elastic scattering data are presented.
Magnetic Dynamics of Fine Particles Studied by Inelastic Neutron Scattering
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen
2000-01-01
We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted antiferro......We give an introduction to inelastic neutron scattering and the dynamic scattering function for magnetic nanoparticles. Differences between ferromagnetic and antiferromagnetic nanoparticles are discussed and we give a review of recent results on ferromagnetic Fe nanoparticles and canted...
Current status and future development of neutron scattering in CIAE
International Nuclear Information System (INIS)
Chen, D.F.; Gou, C.; Ye, C.T.; Guo, L.P.; Sun, K.
2003-01-01
Currently, the 15 MW Heavy Water Research Reactor (HWRR) at China Institute of Atomic Energy (CIAE) in Beijing is the only neutron source available for neutron scattering experiments in China. A 60 MW tank-in-pool inverse neutron trap-type research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. According to design, the maximum unperturbed thermal neutron flux would be expected to be 8x10 14 n/cm 2 .s in the reflector region. Seven out of nine tangential horizontal beam tubes will be dedicated for neutron scattering experiments. A cold source, a hot source and a 30x60 m 2 guide tube hall will also be constructed. In this paper, a brief introduction of HWRR, the existing neutron scattering facilities and research activities at HWRR, CARR, and the facilities to be built at CARR are presented. (author)
Scattering processes and resonances from lattice QCD
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Soller collimators for small angle neutron scattering
International Nuclear Information System (INIS)
Crawford, R.K.; Epperson, J.E.; Thiyagarajan, P.
1989-01-01
The neutron beam transmitted through the soller collimators on the SAD (Small Angle Diffractometer) instrument at IPNS (Intense Pulsed Neutron Source) showed wings about the main beam. These wings were quite weak, but were sufficient to interfere with the low-Q scattering data. General considerations of the theory of reflection from homogeneous absorbing media, combined with the results from a Monte Carlo simulation, suggested that these wings were due to specular reflection of neutrons from the absorbing material on the surfaces of the collimator blades. The simulations showed that roughness of the surface was extremely important, with wing background variations of three orders of magnitude being observed with the range of roughness values used in the simulations. Based on the results of these simulations, new collimators for SAD were produced with a much rougher 10 B-binder surface coating on the blades. These new collimators were determined to be significantly better than the original SAD collimators. This work suggests that any soller collimators designed for use with long wavelengths should be fabricated with such a rough surface coating, in order to eliminate (or at least minimize) the undesirable reflection effects which otherwise seem certain to occur. 4 refs., 6 figs
The TUNL neutron-neutron scattering length experiment
International Nuclear Information System (INIS)
Trotter, D.E.G.; Tornow, W.; Howell, C.R.
1995-01-01
Since an accurate value for the neutron-neutron (nn) scattering length a nn is of fundamental interest, its determination should not rely on one source of experimental information only. Besides the π d capture reaction, the nd breakup reaction has been the classical reaction used for determining a nn . However, none of the published values for a nn obtained from kinematically complete nd → n+n+p breakup data are based on a rigorous treatment of the three-nucleon continuum. In addition, the scale uncertainty associated with the existing nd breakup cross-section data in the region of the nn final-state interaction peak is too large to allow for a meaningful reanalysis. Therefore, a new kinematically complete nd breakup experiment is underway at TUNL at an incident neutron energy of 13 MeV. State-of-the-art three-nucleon continuum calculations will be used to analyze the data. In order to investigate the possible influence of three-nucleon force effects, a nn will be determined from data taken at four production angles of the nn pair between 20.5 degrees and 43 degrees (lab)
Electron inelastic scattering by compound nuclei and giant multipole resonances
International Nuclear Information System (INIS)
Dzhavadov, A.V.; Mukhtarov, A.I.; Mirabutalybov, M.M.
1980-01-01
Multipole giant resonances in heavy nuclei have been investigated with the application of the Danos-Greiner dynamic collective theory to the Tassi model. The monopole giant resonance has been studied in 158 Gd, 166 Er, 184 W, 232 Th and 238 V nuclei at the incident electron energy E=200 MeV. Dependences of the form factor square of electron scattering by a 166 Er nucleus on the scattering angle obtained in the distorted-wave high-energy approximation (DWHEA) are presented. Giant dipole and quadrupole resonances in 60 Ni and 90 Zr nuclei have been studied. A comparison has been made of theoretical results obtained in the DWHEA for the dependence of the form factor square on the effective momentum transfer with the experimental data. The analysis of the obtained results led to the following conclusions. To draw a conclusion about the validity of one or another nuclear model and methods for calculating form factors, it is necessary to investigate, both theoretically and experimentally, electron scattering at great angles (THETA>=70 deg). To obtain a good agreement it is necessary to take account of the actual proton and neutron distributions in the ground state and their dynamic properties in an excited state [ru
Excitation of giant resonances through inelastic scattering
International Nuclear Information System (INIS)
Kailas, S.
1981-01-01
In the last few years, exciting developments have taken place in the study of giant resonances (GR). In addition to the already well known gjant dipole resonance (GDR), the presence of at least two more new GRs viz. giant quadrupole resonance (GQR) and giant monopole resonance (GMR) has been experimentally established. The systematics covering these GRs is found to be consistent with the theoretical expectation. Though the existence of higher multipoles has been predjcted by theory, so far only some of these have been found to be excited experimentally. Various probe particles - electrons, protons (polarized and unpolarized), light and heavy ions and pions - at different bombarding energies have been used to excite the GR region, primarily through the inelastic scattering process. Detailed experiments, looking at the decay modes of GR region, have also been performed. These studies have contributed significantly to a better understanding of the phenomenon of nuclear collective excitation. In this report, the current status of 'GR' research is reviewed. (author)
Energy Technology Data Exchange (ETDEWEB)
Korenev, Sergey E-mail: sergey_korenev@steris.com; Sikolenko, Vadim
2004-10-01
The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.
Korenev, Sergey; Sikolenko, Vadim
2004-09-01
The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.
Next generation neutron scattering at Neutron Science Center project in JAERI
International Nuclear Information System (INIS)
Yamada, Yasusada; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Aizawa, Kazuya; Suzuki, Jun-ichi; Koizumi, Satoshi; Osakabe, Toyotaka.
1997-01-01
Japan Atomic Energy Research Institute (JAERI) has promoted neutron scattering researches by means of research reactors in Tokai Research Establishment, and proposes 'Neutron Science Research Center' to develop the future prospect of the Tokai Research Establishment. The scientific fields which will be expected to progress by the neutron scattering experiments carried out at the proposed facility in the Center are surveyed. (author)
Density of Resonance Neutrons in Hydrogenous Media Near the Source
Energy Technology Data Exchange (ETDEWEB)
Broda, E.
1944-07-01
This report was written by D.V. Booker, E. Broda and L. Kowarski at the Cavendish Laboratory (Cambridge) in January 1944 and is about the density of resonance neutrons in hydrogenous media near the source. Neutron-absorbing properties of a medium sometimes cannot be studied by the usual density integration technique because the amount of medium, or the intensity far from the source is insufficient. In such cases many useful deductions can be made from single-point activation measurements in a medium of known behaviour provided the differences between the scattering properties of the two media are negligible, insofar as they influence the observed activations, or can be allowed for. The relevant properties of a hydrogenous medium are discussed in this report and the activation of resonance detectors in H{sub 3}BO{sub 3} is compared to the activation in C{sub 10}H{sub 8}, used as a reference medium. (nowak)
Wines: water inelastic neutron scattering experimental study
International Nuclear Information System (INIS)
Risch, P.; Ait Abderrahim, H.; D'hondt, P.; Malabu, E.
1997-01-01
An intercomparison of calculated fast neutron flux (E > 1 MeV) traverse through a very thick water zone obtained using both S N , (DORT) and Monte-Carlo (TRIPOLI and MCBEND) codes in combination with different cross-sections libraries (based on ENDF/B-III, IV, V and VI), showed small discrepancies either between S N , and Monte-Carlo results or even between S N , or Monte-Carlo results when we consider different cross-sections libraries except for S N , calculation when using P 0 , cross-sections. In order to validate our calculations we looked for experimental data. Unfortunately no experiment, dedicated for the fast neutron transport in large thickness of water, was found in the literature. Therefore SCK-CEN and EDF decided to launch the WINES experiment which is dedicated to study this phenomenon. WINES sands for Water Inelastic Neutron scattering Experimental Study. The aim of this experiment is to provide-experimental data for validation of neutron transport codes and nuclear cross-sections libraries used for LWR surveillance dosimetry analysis. The experimental device is made of 1 m 3 cubic plexiglass container filled with demineralized water. At one face of this cube, a 235 U neutron fission source system is screwed. The source device is made of a 235 U (93 % weight enriched) 18.55 x 16 cm 2 plate cladded with aluminium which is inserted in neutron beam emerging from the graphite gas-cooled BR1 reactor. Fission chambers ( 238 U(n,f), 232 Th(n,f), 237 Np(n,f) and 235 U(n,f)) are used to measure the flux traverses on the central axis of the water cube perpendicular to the fission sources. In this paper we will compare the experimental data to the calculated results using the S N , transport code DORT with the P 3 , ELXSIR library, based on ENDF/B-V, and the P 7 -BUGLE-93 library, based on ENDF/B-VI as well as the Monte-Carlo transport code TRIPOLI with a cross-section library based on ENDF/B IV and ENDF/B-VI. (authors)
Inelastic neutron scattering and lattice dynamics of minerals
Indian Academy of Sciences (India)
We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in ...
Inelastic neutron scattering and lattice dynamics of minerals
Indian Academy of Sciences (India)
Abstract. We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their ...
Ten year's activity in the field of neutron scattering workshop
International Nuclear Information System (INIS)
Hamaguchi, Yoshikazu
2003-01-01
'Neutron scattering' is in the frame of the 'Utilization of Research Reactor's of the FNCA (Forum for Nuclear Cooperation in Asia) project, which held the workshops from FY 1992. This report is a summary of the results and activities of neutron scattering workshops and sub-workshops since the start in FY 1992. (author)
Progress in small angle neutron scattering activities in Malaysia
Energy Technology Data Exchange (ETDEWEB)
Mohamed, Abudl Aziz Bin [Industrial Technology Division, Malaysian Institute for Nuclear Technology Research (MINT) (Indonesia)
2000-10-01
Research activities by use of small angle neutron scattering in Malaysia are briefly reported. Scattered neutron data are displayed in two or three-dimensional isometric view by the data acquisition system. Visual Basic is utilized for data acquisition and MathCad for data processing and analyses. (Y. Kazumata)
Progress in small angle neutron scattering activities in Malaysia
International Nuclear Information System (INIS)
Mohamed, Abudl Aziz Bin
2000-01-01
Research activities by use of small angle neutron scattering in Malaysia are briefly reported. Scattered neutron data are displayed in two or three-dimensional isometric view by the data acquisition system. Visual Basic is utilized for data acquisition and MathCad for data processing and analyses. (Y. Kazumata)
Neutron cross sections in the unresolved resonance region
International Nuclear Information System (INIS)
Janeva, N.; Lukyanov, A.; Koyumdjieva, N.; Volev, K.
2005-01-01
In this work a development of the characteristic function model, created to reveal the resonance cross section structure in the unresolved resonance region is presented. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. To determine average values of the cross sections and their functionals the function of joint statistical distribution of the R-matrix real and imaginary parts should be used. The characteristic function of such distribution is determined and the resonance ladder for the unresolved region is optimized to calculate the group averaged functionals in the same way as it is in the resolved resonance region. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. The neutron width energy dependence leads to some deformation in the shape of resonances. This deformation is most apparent near the inelastic scattering threshold. For the case when the inelastic channel momentum is zero we present the formula for level shape bellow and over the inelastic threshold and the calculated resonance deformation in dependence of the position of the resonance in respect to the threshold. (authors)
Resonance neutron capture in 23Na and 27Al from 3 to 600 keV
International Nuclear Information System (INIS)
Musgrove, A.R. de L.; Allen, B.J.; Macklin, R.L.
1978-01-01
The radiative capture cross sections of 23 Na and 27 Al were measured with the high resolution facility at the 40 m station of the Oak Ridge Electron Linear Accelerator. Resonance parameters for the individual resonances below 600 keV are given. Particular care was taken to correct the data for prompt neutron scattering effects by Monte Carlo methods
The contribution of neutron scattering to molecular biology
International Nuclear Information System (INIS)
Stuhrmann, H.B.
1983-01-01
About half of the atoms of living cells are hydrogens, and nearly all biological applications of neutron scattering rely on the well-known difference in the scattering lengths of the proton and the deuteron. This introduces us to a wide variety of biological problems, which are related with hydrogen in water, proteins, nucleic acids and lipids. Neutron scattering gives an answer to both structural and dynamical aspects of the system in question. With deuterium labelled samples unambiguous information about molecular structure and motion becomes accessible. The architecture of viruses, cell membranes and gene expressing molecules has become a lot clearer with neutron scattering. (author)
Neutron scattering studies of the heavy Fermion superconductors
International Nuclear Information System (INIS)
Goldman, A.I.
1985-01-01
Recent neutron scattering measurements of the heavy Fermion superconductors are described. Those materials offer an exciting opportunity for neutron scattering since the f-electrons, which couple directly to magnetic scattering measurements, seem to be the same electrons which form the superconducting state below T/sub c/. In addition, studies of the magnetic fluctuations in these, and other heavy Fermion systems, by inelastic magnetic neutron scattering can provide information about the nature of the low temperature Fermi liquid character of these novel compounds
Debye-Waller Factor in Neutron Scattering by Ferromagnetic Metals
Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I.
2018-04-01
We obtain an expression for the neutron scattering cross section in the case of an arbitrary interaction of the neutron with the crystal. We give a concise, simple derivation of the Debye-Waller factor as a function of the scattering vector and the temperature. For ferromagnetic metals above the Curie temperature, we estimate the Debye-Waller factor in the range of scattering vectors characteristic of polarized magnetic neutron scattering experiments. In the example of iron, we compare the results of harmonic and anharmonic approximations.
Neutron resonance spectroscopy at n-TOF at CERN
International Nuclear Information System (INIS)
Gunsing, F.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.
2008-01-01
Neutron resonance spectroscopy plays an important role in the investigation of neutron induced reaction cross sections and nuclear structure in the MeV excitation range. Neutron time-of-flight facilities are the most used installations to explore neutron resonances. In this paper we describe the basic features of neutron resonance spectroscopy together with recent results from the time-of-flight facility n-TOF at CERN. (authors)
Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis
International Nuclear Information System (INIS)
Cussen, L.D.; Goossens, D.J.
2002-01-01
The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature
Optimising polarised neutron scattering measurements--XYZ and polarimetry analysis
Cussen, L D
2002-01-01
The analytic optimisation of neutron scattering measurements made using XYZ polarisation analysis and neutron polarimetry techniques is discussed. Expressions for the 'quality factor' and the optimum division of counting time for the XYZ technique are presented. For neutron polarimetry the optimisation is identified as analogous to that for measuring the flipping ratio and reference is made to the results already in the literature.
Slow neutron scattering by water molecules
Energy Technology Data Exchange (ETDEWEB)
Stancic, V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)
1970-07-01
In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)
Lattice Waves, Spin Waves, and Neutron Scattering
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Neutron scattering applied to environmental waste containment
International Nuclear Information System (INIS)
Elcombe, M.M.; Studer, A.J.; Waring, C.L.
1998-01-01
Full text: A major environmental problem in Australia occurs at mine sites, where rock dumps and tailings dams are still causing problems many years after the mines have ceased operation. ANSTO has developed a method of producing a neutral barrier in-situ, which reduces water flow through the waste material. This in turn prevents water carrying waste products out into the wider environment. Both the loose grained sand substrate and the Neutral Barrier produced are crystalline and therefore amenable to diffraction techniques. In recent laboratory experiments neutron scattering has been used to confirm the presence of the barrier and measure the amount of calcite forming the barrier, at centimetre depths below the surface. The results of these measurements will be presented
Inelastic Neutron Scattering Study of Mn
Energy Technology Data Exchange (ETDEWEB)
Zhong, Y.; Sarachik, M.P.; Friedman, J.R.; Robinson, R.A.; Kelley, T.M.; Nakotte, H.; Christianson, A.C.; Trouw, F.; Aubin, S.M.J.; Hendrickson, D.N.
1998-11-09
The authors report zero-field inelastic neutron scattering experiments on a 14-gram deuterated sample of Mn{sub 12}-Acetate consisting of a large number of identical spin-10 magnetic clusters. Their resolution enables them to see a series of peaks corresponding to transitions between the anisotropy levels within the spin-10 manifold. A fit to the spin Hamiltonian H = {minus}DS{sub z}{sup 2} + {mu}{sub B}B{center_dot}g{center_dot}S-BS{sub z}{sup 4} + C(S{sub +}{sup 4} + S{sub {minus}}{sup 4}) yields an anisotropy constant D = (0.54 {+-} 0.02) K and a fourth-order diagonal anisotropy coefficient B = (1.2 {+-} 0.1) x 10{sup {minus}3}K. Unlike EPR measurements, their experiments do not require a magnetic field and yield parameters that do not require knowledge of the g-value.
Neutron Compton scattering from selectively deuterated acetanilide
Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.
With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.
Slow neutron scattering by water molecules
International Nuclear Information System (INIS)
Stancic, V.
1970-01-01
In this work some new, preliminary formulae for slow neutron scattering cross section calculation by heavy and light water molecules have been done. The idea was to find, from the sum which exists in well known Nelkin model, other cross sections in a more simple analytical form, so that next approximations may be possible. In order to sum a series it was starting from Euler-Mclaurin formula. Some new summation formulae have been derived there, and defined in two theorems. Extensive calculations, especially during the evaluation of residues, have been made at the CDC 3600 computer. validation of derived formulae was done by comparison with the BNL-325 results. Good agreement is shown. (author)
Energy Technology Data Exchange (ETDEWEB)
Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)
2009-02-11
The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.
International Nuclear Information System (INIS)
Trotter, D.E. Gonzalez; Meneses, F. Salinas; Tornow, W.; Crowell, A.S.; Howell, C.R.; Schmidt, D.; Walter, R.L.
2009-01-01
The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the 1 S 0 neutron-neutron and neutron-proton scattering lengths a nn and a np , respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E n =13MeV.
Overlapping β decay and resonance neutron spectroscopy
International Nuclear Information System (INIS)
Raman, S.; Fogelberg, B.
1984-01-01
By carrying out a detailed study of 87 Kr levels, we have shown that delayed neutron spectroscopy can be a viable method for studying individual levels and that a broad resonance-like structure is present in the β-strength distribution. 12 refs., 1 fig
Neutron slowing down in the resonance region
International Nuclear Information System (INIS)
Matausek, M.V.
1971-01-01
This paper describes the procedure for solving space, lethargy and angular dependent transport equation for resonant neutrons in cylindrical infinite reactor lattice cell. The procedure is suitable for practical application on its own or in combination with some more complex procedure
Energy Technology Data Exchange (ETDEWEB)
Schoenborn, B P [ed.
1976-01-01
Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.
Introduction to the theory of thermal neutron scattering
Squires, G L
2012-01-01
Since the advent of the nuclear reactor, thermal neutron scattering has proved a valuable tool for studying many properties of solids and liquids, and research workers are active in the field at reactor centres and universities throughout the world. This classic text provides the basic quantum theory of thermal neutron scattering and applies the concepts to scattering by crystals, liquids and magnetic systems. Other topics discussed are the relation of the scattering to correlation functions in the scattering system, the dynamical theory of scattering and polarisation analysis. No previous knowledge of the theory of thermal neutron scattering is assumed, but basic knowledge of quantum mechanics and solid state physics is required. The book is intended for experimenters rather than theoreticians, and the discussion is kept as informal as possible. A number of examples, with worked solutions, are included as an aid to the understanding of the text.
Neutron scattering investigations of frustated magnets
Fennell, Tom
This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated
Multiple small-angle neutron scattering studies of anisotropic materials
Allen, A J; Long, G G; Ilavsky, J
2002-01-01
Building on previous work that considered spherical scatterers and randomly oriented spheroidal scatterers, we describe a multiple small-angle neutron scattering (MSANS) analysis for nonrandomly oriented spheroids. We illustrate this with studies of the multi-component void morphologies found in plasma-spray thermal barrier coatings. (orig.)
Dynamics of liquid N2 studied by neutron inelastic scattering
DEFF Research Database (Denmark)
Pedersen, Karen Schou; Carneiro, Kim; Hansen, Flemming Yssing
1982-01-01
Neutron inelastic-scattering data from liquid N2 at wave-vector transfer κ between 0.18 and 2.1 Å-1 and temperatures ranging from T=65-77 K are presented. The data are corrected for the contribution from multiple scattering and incoherent scattering. The resulting dynamic structure factor S (κ,ω)...
DISCUS, Neutron Single to Double Scattering Ratio in Inelastic Scattering Experiment by Monte-Carlo
International Nuclear Information System (INIS)
Johnson, M.W.
1993-01-01
1 - Description of problem or function: DISCUS calculates the ratio of once-scattered to twice-scattered neutrons detected in an inelastic neutron scattering experiment. DISCUS also calculates the flux of once-scattered neutrons that would have been observed if there were no absorption in the sample and if, once scattered, the neutron would emerge without further re-scattering or absorption. Three types of sample geometry are used: an infinite flat plate, a finite flat plate or a finite length cylinder. (The infinite flat plate is included for comparison with other multiple scattering programs.) The program may be used for any sample for which the scattering law is of the form S(/Q/, omega). 2 - Method of solution: Monte Carlo with importance sampling is used. Neutrons are 'forced' both into useful angular trajectories, and useful energy bins. Biasing of the collision point according to the point of entry of the neutron into the sample is also utilised. The first and second order scattered neutron fluxes are calculated in independent histories. For twice-scattered neutron histories a square distribution in Q-omega space is used to sample the neutron coming from the first scattering event, whilst biasing is used for the second scattering event. (A square distribution is used so as to obtain reasonable inelastic-inelastic statistics.) 3 - Restrictions on the complexity of the problem: Unlimited number of detectors. Max. size of (Q, omega) matrix is 39*149. Max. number of points in momentum space for the scattering cross section is 199
Neutron scattering and the search for mechanisms of superconductivity
DEFF Research Database (Denmark)
Aeppli, G.; Bishop, D.J.; Broholm, C.
1999-01-01
Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors. The remai......Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors....... The remainder of the article gives examples of neutron results with impact on the search for the mechanism of superconductivity in more recently discovered, 'exotic', materials, namely the heavy fermion compounds and the layered cuprates, (C) 1999 Elsevier Science B.V. All rights reserved....
Neutron scatter studies of chromatin structures related to functions
International Nuclear Information System (INIS)
Bradbury, E.M.
1992-01-01
We have made considerable progress in chromatin reconstitution with very lysine rich histone H1/H5 and in understanding the dynamics of nucleosomes. A ferromagnetic fluid was developed to align biological molecules for structural studies using small-angle-neutron-scattering. We have also identified and characterized in intrinsically bent DNA region flaking the RNA polymerase I binding site of the ribosomal RNA gene in Physarum Polycephalum. Finally projects in progress are in the areas of studying the interactions of histone H4 amino-terminus peptide 1-23 and acetylated 1-23 peptide with DNA using thermal denaturation; study of GGAAT repeats found in human centromeres using high resolution Nuclear Magnetic Resonance and nuclease sentivity assay; and the role of histones and other sperm specific proteins with sperm chromatin
Interference scattering effects on intermediate resonance absorption at operating temperatures
International Nuclear Information System (INIS)
Goldstein, R.
1975-01-01
Resonance integrals may be accurately calculated using the intermediate resonance (IR) approximation. Results are summarized for the case of an absorber with given potential scattering cross sections and interference scattering parameter admixed with a non absorbing moderator of given cross section and located in a narrow resonance moderating medium. From the form of the IR solutions, it is possible to make some general observations about effects of interference scattering on resonance absorption. 2 figures
Elements of slow-neutron scattering basics, techniques, and applications
Carpenter, J M
2015-01-01
Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron scattering instrumentation and techniques, and applications in materials phenomena. Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.
Proton compton scattering in the resonance region
International Nuclear Information System (INIS)
Ishii, Takanobu.
1979-12-01
Differential cross sections of the proton Compton scattering have been measured in the energy range between 400 and 1150 MeV at CMS angles of 130 0 , 100 0 and 70 0 . The recoil proton was detected with a magnetic spectrometer using multi-wire proportional chambers and wire spark chambers. In coincidence with the proton, the scattered photon was detected with a lead glass Cerenkov counter of the total absorption type with a lead plate converter, and horizontal and vertical scintillation counter hodoscopes. The background due to the neutral pion photoproduction, was subtracted by using the kinematic relations between the scattered photon and the recoil proton. Theoretical calculations based on an isobar model with two components, that is, the resonance plus background, were done, and the photon couplings of the second resonance region were determined firstly from the proton Compton data. The results are that the helicity 1/2 photon couplings of P 11 (1470) and S 11 (1535), and the helicity 3/2 photon coupling of D 13 (1520) are consistent with those determined from the single pion photoproduction data, but the helicity 1/2 photon coupling of D 13 (1520) has a somewhat larger value than that from the single pion photoproduction data. (author)
Dynamically Polarized Sample for Neutron Scattering At the Spallation Neutron Source
International Nuclear Information System (INIS)
Pierce, Josh; Zhao, J. K.; Crabb, Don
2009-01-01
The recently constructed Spallation Neutron Source at the Oak Ridge National Laboratory is quickly becoming the world's leader in neutron scattering sciences. In addition to the world's most intense pulsed neutron source, we are continuously constructing state of the art neutron scattering instruments as well as sample environments to address today and tomorrow's challenges in materials research. The Dynamically Polarized Sample project at the SNS is aimed at taking maximum advantage of polarized neutron scattering from polarized samples, especially biological samples that are abundant in hydrogen. Polarized neutron scattering will allow us drastically increase the signal to noise ratio in experiments such as neutron protein crystallography. The DPS project is near completion and all key components have been tested. Here we report the current status of the project.
Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments
International Nuclear Information System (INIS)
MJ Trbovich; DP Barry; RE Slovacck; Y Danon; RC Block; JA Burke; NJ Drindak; G Leinweber; RV Ballad
2004-01-01
The focus of this work is to determine resonance parameters for stable hafnium isotopes in the 0.005-200 eV region, with special emphasis on the overlapping 176 Hf and 178 Hf resonances near 8 eV. The large neutron cross section of hafnium, combined with its corrosion resistance and excellent mechanical properties, make it a useful material for controlling nuclear reactions. Experiments measuring neutron capture and transmission were performed at the Rensselaer Polytechnic Institute (RPI) electron linear accelerator (LINAC) using the time of flight method. 6 Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m. Capture experiments were done using a sixteen section NaI(Tl) multiplicity detector at a flight path length of 25 m. These experiments utilized various thicknesses of metallic and isotopically-enriched liquid samples. The liquid samples were designed to provide information on the 176 Hf and 178 Hf contributions to the 8 eV doublet without saturation. Data analysis was done using the R-matrix Bayesian code SAMMY version M6 beta. SAMMY is able to account for experimental resolution effects for each of the experimental setups at the RPI LINAC, and also can correct for multiple scattering effects in neutron capture yield data. The combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005-200 eV. Resonance integrals were calculated along with errors for each hafnium isotope using the NJOY [1] and INTER [2] codes. The isotopic resonance integrals calculated were significantly different than previously published values; however the calculated elemental hafnium resonance integral changed very little
Neutron total scattering cross sections of elemental antimony
Energy Technology Data Exchange (ETDEWEB)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-11-01
Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V.
On the theory of ultracold neutrons scattering by Davydov solitons
International Nuclear Information System (INIS)
Brizhik, L.S.
1984-01-01
Elastic coherent scattering of ultracold neutrons by Davydov solitons in one-dimensional periodic molecular chains without account of thermal oscillations of chain atoms is studied. It is shown that the expression for the differential cross section of the elastic neutron scattering by Davydov soliton breaks down into two components. One of them corresponds to scattering by a resting soliton, the other is proportional to the soliton velocity and has a sharp maximum in the direction of mirror reflection of neutrons from the chain
Local-field refinement of neutron scattering lengths
Energy Technology Data Exchange (ETDEWEB)
Sears, V F
1985-06-01
We examine the way in which local field effects in the neutron refractive index affect the values of coherent scattering lengths determined by various kinds of neutron optical measurements. We find that under typical experimental conditions these effects are negligible for interferometry measurements but that they are significant for gravity refractometry measurements, producing changes in the effective scattering length of as much as two or three standard deviations in some cases. Refined values of the scattering length are obtained for the thirteen elements for which data are presently available. The special role of local field effects in neutron transmission is also discussed.
Local-field refinement of neutron scattering lengths
International Nuclear Information System (INIS)
Sears, V.F.
1985-01-01
We examine the way in which local field effects in the neutron refractive index affect the values of coherent scattering lengths determined by various kinds of neutron optical measurements. We find that under typical experimental conditions these effects are negligible for interferometry measurements but that they are significant for gravity refractometry measurements, producing changes in the effective scattering length of as much as two or three standard deviations in some cases. Refined values of the scattering length are obtained for the thirteen elements for which data are presently available. The special role of local field effects in neutron transmission is also discussed. (orig.)
New statistical model of inelastic fast neutron scattering
International Nuclear Information System (INIS)
Stancicj, V.
1975-07-01
A new statistical model for treating the fast neutron inelastic scattering has been proposed by using the general expressions of the double differential cross section in impuls approximation. The use of the Fermi-Dirac distribution of nucleons makes it possible to derive an analytical expression of the fast neutron inelastic scattering kernel including the angular momenta coupling. The obtained values of the inelastic fast neutron cross section calculated from the derived expression of the scattering kernel are in a good agreement with the experiments. A main advantage of the derived expressions is in their simplicity for the practical calculations
Neutron total scattering cross sections of elemental antimony
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-11-01
Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V
Inelastic magnetic scattering of polarized neutrons by a superconducting ring
International Nuclear Information System (INIS)
Agafonov, A. I.
2011-01-01
The inelastic scattering of cold neutrons by a ring leads to quantum jumps of a superconducting current which correspond to a decrease in the fluxoid quantum number by one or several units while the change in the ring energy is transferred to the kinetic energy of the scattered neutron. The scattering cross sections of transversely polarized neutrons have been calculated for a thin type-II superconductor ring, the thickness of which is smaller than the field penetration depth but larger than the electron mean free path.
Application of Van Hove theory to fast neutron inelastic scattering
International Nuclear Information System (INIS)
Stanicicj, V.
1974-11-01
The Vane Hove general theory of the double differential scattering cross section has been used to derive the particular expressions of the inelastic fast neutrons scattering kernel and scattering cross section. Since the considered energies of incoming neutrons being less than 10 MeV, it enables to use the Fermi gas model of nucleons. In this case it was easy to derive an analytical expression for the time-dependent correlation function of the nucleus. Further, by using an impulse approximation and a short-collision time approach, it was possible to derive the analytical expression of the scattering kernel and scattering cross section for the fast neutron inelastic scattering. The obtained expressions have been used for Fe nucleus. It has been shown a surprising agreement with the experiments. The main advantage of this theory is in its simplicity for some practical calculations and for some theoretical investigations of nuclear processes
LANSCE '90: the Manuel Lujan Jr. Neutron Scattering Center
International Nuclear Information System (INIS)
Pynn, Roger
1991-01-01
This paper describes progress that has been made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) during the past two years. Presently, LANSCE provides a higher peak neutron flux than any other pulsed spallation neutron source. There are seven spectrometers for neutron scattering experiments that are operated for a national user program sponsored by the U.S. Department of Energy. Two more spectrometers are under construction. Plans have been made to raise the number of beam holes available for instrumentation and to improve the efficiency of the target/moderator system. (author)
LANSCE '90: The Manuel Lujan Jr. Neutron Scattering Center
International Nuclear Information System (INIS)
Pynn, R.
1990-01-01
This paper describes progress that has been made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) during the past two years. Presently, LANSCE provides a higher peak neutron flux than any other pulsed spallation neutron source. There are seven spectrometers for neutron scattering experiments that are operated for a national user program sponsored by the US Department of Energy. Two more spectrometers are under construction. Plans have been made to raise the number of beam holes available for instrumentation and to improve the efficiency of the target/moderator system. 9 refs., 4 figs
Early history of neutron scattering at Oak Ridge
International Nuclear Information System (INIS)
Wilkinson, M.K.
1985-07-01
Most of the early development of neutron scattering techniques utilizing reactor neutrons occurred at the Oak Ridge National Laboratory during the years immediately following World War II. C.G. Shull, E.O. Wollan, and their associates systematically established neutron diffraction as a quantitative research tool and then applied this technique to important problems in nuclear physics, chemical crystallography, and magnetism. This article briefly summarizes the very important research at ORNL during this period, which laid the foundation for the establishment of neutron scattering programs throughout the world. 47 refs., 10 figs
Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments
Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.
2005-11-01
New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1∘500 meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20 Å-11 eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.
Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.
2010-08-03
We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.
Resonances, scattering theory and rigged Hilbert spaces
International Nuclear Information System (INIS)
Parravicini, G.; Gorini, V.; Sudarshan, E.C.G.
1979-01-01
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free, in, and out eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian; the singularities of the out eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of complete sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the out eigenvectors. The free, in and out eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee-Friedrichs model. 48 references
The resonance neutron fission on heavy nuclei
International Nuclear Information System (INIS)
Kopach, Yu.N.; Popov, A.B.; Furman, V.I.; Alfimenkov, V.P.; Lason', L.; Pikel'ner, L.B.; ); Gonin, N.N.; Kozlovskij, L.K.; Tambovtsev, D.I.; Gagarskij, A.M.; Petrov, G.A.; Sokolov, V.E.
2001-01-01
A new approach to the description of the fission, similar to the well-known reaction theory and based on the helicity representation for the exit fission channels, is briefly summarized. This approach allows one to connect the multimodal fission representation with A. Bohr's concept of the fission transition states and to obtain formulae for the partial and differential fission cross sections. The formulae are used for analysis of the angular anisotropy of fragments in the neutron resonance induced fission of aligned 235 U nuclei and of the P-even angular forward-backward and right-left correlations of fragments oe the P-odd correlations caused by the interference of s- and p-wave neutron resonances [ru
Neutron resonance radiography: Report of a workshop, Los Alamos, NM: July 27-29, 1987
International Nuclear Information System (INIS)
1988-07-01
Neutron resonance radiography is a new technique with great potential for non-destructive analysis and testing. This technique has been under research and development in a number of major research laboratories for some time. Unlike thermal neutron radiography, which is primarily oriented towards imaging hydrogen and a number of other highly neutron-absorptive materials without necessarily distinguishing between them, neutron resonance radiography has the capability of uniquely identifying many kinds of chemical elements and their individual isotopes. It also has the potential for temperature imaging in materials containing heavy elements and for certain dynamic features such as stroboscopic imaging. Although neutron resonance radiography has not yet been taken up in a systematic way for technological applications, significant development of ideas and instrumentation at the research level has blossomed. There have also been major developments in the availability of powerful pulsed-neutron sources. In light of these developments, the Los Alamos Neutron Scattering Center sponsored a workshop with the general aims of reviewing scientific and technical progress, discussing and highlighting future developments, and stimulating interest in technological exploitation of the methods. In addition to the techniques and instrumentation required for the field, the applications of neutron resonance radiography in some of the following industrial and manufacturing areas were discussed: nuclear fuel assay; nuclear safeguards in general; aerospace development (aeroengine blade temperature, stroboscopic techniques); diagnostics; non-nuclear industry (especially metallurgy); temperature imaging; use of mobile pulsed-neutron sources; and practical use of major pulsed-neutron facilities
Neutron scattering study of yttrium iron garnet
Shamoto, Shin-ichi; Ito, Takashi U.; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato; Akatsu, Mitsuhiro; Kodama, Katsuaki; Nakao, Akiko; Moyoshi, Taketo; Munakata, Koji; Ohhara, Takashi; Nakamura, Mitsutaka; Ohira-Kawamura, Seiko; Nemoto, Yuichi; Shibata, Kaoru
2018-02-01
The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R 3 ¯ . The highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16 a (octahedral) and 24 d (tetrahedral) sites, Ja a, Ja d, and Jd d, which are estimated to be 0.00 ±0.05 , -2.90 ±0.07 , and -0.35 ±0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of q -integrated dynamical spin susceptibility χ″(E ) exhibits a square-root energy dependence at low energies. The magnon density of state is estimated from χ″(E ) obtained on an absolute scale. The value is consistent with the single chirality mode for the magnon branch expected theoretically.
Inelastic neutron scattering of amorphous ice
International Nuclear Information System (INIS)
Fukazawa, Hiroshi; Ikeda, Susumu; Suzuki, Yoshiharu
2001-01-01
We measured the inelastic neutron scattering from high-density amorphous (HDA) and low-density amorphous (LDA) ice produced by pressurizing and releasing the pressure. We found a clear difference between the intermolecular vibrations in HDA and those in LDA ice: LDA ice has peaks at 22 and 33 meV, which are also seen in the spectrum of lattice vibrations in ice crystal, but the spectrum of HDA ice does not have these peaks. The excitation energy of librational vibrations in HDA ice is 10 meV lower than that in LDA ice. These results imply that HDA ice includes 2- and 5-coordinated hydrogen bonds that are created by breakage of hydrogen bonds and migration of water molecules into the interstitial site, while LDA ice contains mainly 4-coordinated hydrogen bonds and large cavities. Furthermore, we report the dynamical structure factor in the amorphous ice and show that LDA ice is more closely related to the ice crystal structure than to HDA ice. (author)
Small-angle neutron scattering studies of sodium butyl benzene
Indian Academy of Sciences (India)
Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope ...
Spectrum of ferromagnetic transition metal magnetic excitations and neutron scattering
International Nuclear Information System (INIS)
Kuzemskij, A.L.
1979-01-01
Quantum statistical models of ferromagnetic transition metals as well as methods of their solutions are reviewed. The correspondence of results on solving these models and the data on scattering thermal neutrons in ferromagnetic is discussed
Life at extreme conditions: Neutron scattering studies of biological
Indian Academy of Sciences (India)
Extremophile bacteria; molecular adaptation; halophile; water dynamics; protein dynamics. ... Results of neutron scattering measurements on the dynamics of proteins ... The experiments were performed on a halophilic protein, and membrane ...
Analysis of inelastic neutron scattering results on model compounds ...
Indian Academy of Sciences (India)
Vibrational spectroscopy; nitrogenous bases; inelastic neutron scattering. PACS No. ... obtain good quality, high resolution results in this region. Here the .... knowledge of the character of each molecular transition as well as the calculated.
3rd AINSE neutron scattering conference, Lucas Heights -AINSE Theatre
International Nuclear Information System (INIS)
1986-01-01
Abstracts of papers, the conference program and general information is included in the conference handbook. The program is divided into the following sessions: hydrogeneous and biological materials, industrial applications, phase transitions, magnetism, small angle neutron scattering and new developments
Applications of neutron scattering in molecular biological research
International Nuclear Information System (INIS)
Nierhaus, K.H.
1984-01-01
The study of the molecular structure of biological materials by neutron scattering is described. As example the results of the study of the components of a ribosome of Escherichia coli are presented. (HSI) [de
An empirical formula for scattered neutron components in fast neutron radiography
International Nuclear Information System (INIS)
Dou Haifeng; Tang Bin
2011-01-01
Scattering neutrons are one of the key factors that may affect the images of fast neutron radiography. In this paper, a mathematical model for scattered neutrons is developed on a cylinder sample, and an empirical formula for scattered neutrons is obtained. According to the results given by Monte Carlo methods, the parameters in the empirical formula are obtained with curve fitting, which confirms the logicality of the empirical formula. The curve-fitted parameters of common materials such as 6 LiD are given. (authors)
Inelastic scattering of 275 keV neutrons by silver
International Nuclear Information System (INIS)
Litvinsky, L.L.; Zhigalov, Ya.A.; Krivenko, V.G.; Purtov, O.A.; Sabbagh, S.
1997-01-01
Neutron total, elastic and inelastic scattering cross-scattering of Ag at the E n = 275 KeV neutron energy were measured by using the filtered neutron beam of the WWR-M reactor in Kiev. The d-neutron strength function S n2 of Ag was determined from the analysis of all available data in the E n ≤ keV energy region on neutron inelastic scattering cross-sections with excitation of the first isomeric levels I π m = 7/2 + , E m ∼ 90 keV of 107,109 Ag: S n2 = (1.03 ± 0.19) · 10 -4 . (author). 10 refs, 3 figs
Some thoughts on the future of neutron scattering
International Nuclear Information System (INIS)
Egelstaff, P.A.
1991-01-01
Attendance of ICANS meetings believe that neutron scattering has a bright future, but critics of neutron scattering argue that its practitioners are an aging group, that they use a few, very expensive neutron sources and that the interesting science may be done by other techniques. The ICANS committee asked me to comment on the future of neutron scattering in the light of this contrast. Some comments will be made on the age distribution, on the proper distribution of sources, on the convenient availability of neutron instruments and methods, on the expansion into new areas of science, on applications to industry and on the probable impact of synchrotron sources. It is hoped that these comments will lead to an outward looking discussion on the future. (author)
Research of isolated resonances using the average energy shift method for filtered neutron beam
International Nuclear Information System (INIS)
Gritzay, O.O.; Grymalo, A.K.; Kolotyi, V.V.; Mityushkin, O.O.; Venediktov, V.M.
2010-01-01
This work is devoted to detailed description of one of the research directions in the Neutron Physics Department (NPD), namely, to research of resonance parameters of isolated nuclear level at the filtered neutron beam on the horizontal experimental channel HEC-8 of the WWR-M reactor. Research of resonance parameters is an actual problem nowadays. This is because there are the essential differences between the resonance parameter values in the different evaluated nuclear data library (ENDL) for many nuclei. Research of resonance parameter is possible due to the set of the neutron cross sections received at the same filter, but with the slightly shifted filter average energy. The shift of the filter average energy is possible by several processes. In this work this shift is realized by neutron energy dependence on scattering angle. This method is provided by equipment.
Set of thermal neutron-scattering experiments for the Weapons Neutron Research Facility
International Nuclear Information System (INIS)
Brugger, R.M.
1975-12-01
Six classes of experiments form the base of a program of thermal neutron scattering at the Weapons Neutron Research (WNR) Facility. Three classes are to determine the average microscopic positions of atoms in materials and three are to determine the microscopic vibrations of these atoms. The first three classes concern (a) powder sample neutron diffraction, (b) small angle scattering, and (c) single crystal Laue diffraction. The second three concern (d) small kappa inelastic scattering, (e) scattering surface phonon measurements, and (f) line widths. An instrument to couple with the WNR pulsed source is briefly outlined for each experiment
The dynamics of physisorbed layers studied by neutron scattering
International Nuclear Information System (INIS)
Nielsen, M.; McTague, J.P.
1978-01-01
We discuss the neutron scattering technique applied to the study of adsorbed thin films. Despite the fact that neutrons are scattered very weakly by surfaces, recent studies have shown that both structural and dynamical information can be obtained even for submonolayer coverages. Results will be shown for films of Ar, D 2 , H 2 , and O 2 adsorbed on (001) surfaces of graphite and for H 2 molecules adsorbed on activated alumina. (orig.) [de
Neutron scattering research at JAERI reactors - past, present and future -
International Nuclear Information System (INIS)
Funahashi, Satoru; Morii, Yukio; Minakawa, Nobuaki
1992-01-01
It was in 1961 that the first neutron scattering experiment was performed in Japan at JRR-2. The start of JRR-3 in 1964 accelerated the neutron scattering activities in Japan. The research in this field in Japan grew up by using these two research reactors. Among them JRR-2 has played an important role because its neutron flux was about seven times higher than that of the old JRR-3. The completion of the new JRR-3M in 1990 made an epoch to the neutron scattering activities in Japan. The long-waited JRR-3M came up to the expectations of the scientists of Japan. It is a realization of the ideal reactor with tangential beam holes, cold source and neutron guides in a large guide hall. The flux at the neutron scattering instruments is about five times higher than that of JRR-2. Utilization of JRR-3M has just started. Twelve neutron scattering machines are running there. The number will increase up to close twenty in a couple of years. (author)
Small Angle Neutron Scattering instrument at Malaysian TRIGA reactor
Energy Technology Data Exchange (ETDEWEB)
Mohd, Shukri; Kassim, Razali; Mahmood, Zal Uyun [Malaysian Inst. for Nuclear Technology Research (MINT), Bangi, Kajang (Malaysia); Radiman, Shahidan
1998-10-01
The TRIGA MARK II Research reactor at the Malaysian Institute for Nuclear Research (MINT) was commissioned in July 1982. Since then various works have been performed to utilise the neutrons produced from this steady state reactor. One of the project involved the Small Angle Neutron Scattering (SANS). (author)
A high pressure sample facility for neutron scattering
International Nuclear Information System (INIS)
Carlile, C.J.; Glossop, B.H.
1981-06-01
Commissioning tests involving deformation studies and tests to destruction as well as neutron diffraction measurements of a standard sample have been carried out on the SERC high pressure sample facility for neutron scattering studies. A detailed description of the pressurising equipment is given. (author)
Spectrometer for neutron inelastic scattering investigations of microsamples
International Nuclear Information System (INIS)
Balagurov, A.M.; Kozlenko, D.P.; Platonov, S.L.; Savenko, B.N.; Glazkov, V.P.; Krasnikov, Yu.M.; Naumov, I.V.; Pukhov, A.V.; Somenkov, V.A.; Syrykh, G.F.
1997-01-01
A new neutron spectrometer for investigation of inelastic neutron scattering on polycrystal microsamples under high pressure in sapphire and diamond anvils cells is described. The spectrometer is operating at the IBR-2 pulsed reactor in JINR. Parameters and methodical peculiarities of the spectrometer and the examples of experimental studies are given. (author)
Applications of neutron scattering to the study of magnetic materials
International Nuclear Information System (INIS)
Koehler, W.C.
1976-01-01
The types of interactions that neutrons undergo with condensed matter are reviewed and those properties of neutrons that make them an ideal probe for the study of magnetism on a microscopic scale are discussed. Following a very brief survey of experimental methods, a few illustrative examples of specific investigations are described in sufficient detail to illustrate the power of the techniques. Views as to the future directions that may be taken by neutron scattering are presented
Neutron scattering: history, present state and perspectives
International Nuclear Information System (INIS)
Belushkin, A.V.
1999-01-01
The paper reminds some milestones in development of condensed matter research with neutrons. Present status of the investigations in this field is briefly outlined. An analysis is given on the situation and future prospects in different neutron sources development in Russia and in the world. The next generation neutron sources projects in Japan, USA and Europe are reviewed
Partial radiative capture of resonance neutrons
International Nuclear Information System (INIS)
Samour, C.
1969-01-01
The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. 195 Pt + n and 183 W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of γ i > with E γ . The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in 195 Pt + n, 197 Au + n and 59 Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [fr
A Stochastic Proof of the Resonant Scattering Kernel and its Applications for Gen IV Reactors Type
International Nuclear Information System (INIS)
Becker, B.; Dagan, R.; Broeders, C.H.M.; Lohnert, G.
2008-01-01
Monte Carlo codes such as MCNP are widely accepted as almost-reference for reactor analysis. The Monte Carlo Code should therefore use as few as possible approximations in order to produce 'experimental-level' calculations. In this study we deal with one of the most problematic approximations done in MCNP in which the resonances are ignored for the secondary neutron energy distribution, namely the change of the energy and angular direction of the neutron after interaction with a heavy isotope with pronounced resonances. The endeavour of exploiting the influence of the resonances on the scattering kernel goes back to 1944 where E. Wigner and J. Wilkins developed the first temperature dependent scattering kernel. However only in 1998, the full analytical solution for the double differential resonant dependent scattering kernel was suggested by W. Rothenstein and R. Dagan. An independent stochastic approach is presented for the first time to confirm the above analytical kernel with a complete different methodology. Moreover, by manipulating in a subtle manner the scattering subroutine COLIDN of MCNP, it is proven that this very subroutine is, to some extent, inappropriate as well as the relevant explanation in the MCNP manual. The impact of this improved resonance dependent scattering kernel on diverse types of reactors, in particular for the Generation IV innovative core design HTR, is shown to be significant. (authors)
Collective Excitations in Liquid Hydrogen Observed by Coherent Neutron Scattering
DEFF Research Database (Denmark)
da Costa Carneiro, Kim; Nielsen, M.; McTague, J. P.
1973-01-01
Coherent scattering of neutrons by liquid parahydrogen shows the existence of well-defined collective excitations in this liquid. Qualitative similarity with the scattering from liquid helium is found. Furthermore, in the range of observed wave vectors, 0.7 Å-1 ≤κ≤3.1 Å-1, extending from the firs...
Inelastic neutron scattering for materials science and engineering
International Nuclear Information System (INIS)
Shapiro, S.M.
1995-01-01
The neutron is the ideal probe for studying the positions and motions of atoms in condensed matter. The main advantage of the neutron in inelastic scattering results from its heavy mass when compared to other particles which are used to probe materials such as the photon (light, x-rays, or γ-rays) or the electron. The author discusses the application of neutron scattering to study a number of different materials related problems, including, hard magnets, shape memory effects, and hydrogen distribution in metals
A combined neutron scattering and simulation study on bioprotectant systems
Energy Technology Data Exchange (ETDEWEB)
Affouard, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR 8024, Universite Lille I - 59655 Villeneuve d' Ascq cedex (France); Bordat, P. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR 8024, Universite Lille I - 59655 Villeneuve d' Ascq cedex (France); Descamps, M. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR 8024, Universite Lille I - 59655 Villeneuve d' Ascq cedex (France); Lerbret, A. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR 8024, Universite Lille I - 59655 Villeneuve d' Ascq cedex (France); Magazu, S. [Dipartimento di Fisica and INFM, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy); Migliardo, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires UMR 8024, Universite Lille I - 59655 Villeneuve d' Ascq cedex (France); Dipartimento di Fisica and INFM, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy)], E-mail: fmigliardo@unime.it; Ramirez-Cuesta, A.J. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom); Telling, M.F.T. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot (United Kingdom)
2005-10-31
The present work shows quasi elastic neutron scattering, neutron spin echo and inelastic neutron scattering results on a class of bioprotectant systems, such as homologous disaccharides (i.e., trehalose and sucrose)/water solutions, as a function of temperature. The whole set of findings indicates a noticeable 'kosmotrope' character of the disaccharides, and in particular of trehalose, which is able to strongly modify both the structural and dynamical properties of water. This superior capability of trehalose can be linked to its higher bioprotective effectiveness in respect with the other disaccharides.
Superfluidity, Bose condensation and neutron scattering in liquid 4He
International Nuclear Information System (INIS)
Silver, R.N.
1997-01-01
The relation between superfluidity and Bose condensation in 4 He provides lessons that may be valuable in understanding the strongly correlated electron system of high T c superconductivity. Direct observation of a Bose condensate in the superfluid by deep inelastic neutron scattering measurements has been attempted over many years. But the impulse approximation, which relates momentum distributions to neutron scattering structure functions, is broadened by final state effects. Nevertheless, the excellent quantitative agreement between ab initio quantum many body theory and high precision neutron experiments provides confidence in the connection between superfluidity and Bose condensation
Introduction of sample environment equipment for neutron scattering experiments
International Nuclear Information System (INIS)
Shimojo, Yutaka; Ihata, Yoshiaki; Kaneko, Koji; Takeda, Masayasu
2013-02-01
Neutron scattering experiments have been frequently performed under variety of sample conditions, such as various temperatures, pressures, magnetic fields and stresses, and those complex conditions to fully utilize superior properties of neutron. To this aim, a number of sample environment equipment, refrigerators, furnaces, pressure cells, superconducting magnets are equipped in JRR-3 to be used for experiments. In this document, all available sample environment equipment in both JRR-3 reactor and guide halls are summarized. We hope this document would help neutron scattering users to perform effective and excellent experiments. (author)
The hydrogen anomaly problem in neutron Compton scattering
Karlsson, Erik B.
2018-03-01
Neutron Compton scattering (also called ‘deep inelastic scattering of neutrons’, DINS) is a method used to study momentum distributions of light atoms in solids and liquids. It has been employed extensively since the start-up of intense pulsed neutron sources about 25 years ago. The information lies primarily in the width and shape of the Compton profile and not in the absolute intensity of the Compton peaks. It was therefore not immediately recognized that the relative intensities of Compton peaks arising from scattering on different isotopes did not always agree with values expected from standard neutron cross-section tables. The discrepancies were particularly large for scattering on protons, a phenomenon that became known as ‘the hydrogen anomaly problem’. The present paper is a review of the discovery, experimental tests to prove or disprove the existence of the hydrogen anomaly and discussions concerning its origin. It covers a twenty-year-long history of experimentation, theoretical treatments and discussions. The problem is of fundamental interest, since it involves quantum phenomena on the subfemtosecond time scale, which are not visible in conventional thermal neutron scattering but are important in Compton scattering where neutrons have two orders of magnitude times higher energy. Different H-containing systems show different cross-section deficiencies and when the scattering processes are followed on the femtosecond time scale the cross-section losses disappear on different characteristic time scales for each H-environment. The last section of this review reproduces results from published papers based on quantum interference in scattering on identical particles (proton or deuteron pairs or clusters), which have given a quantitative theoretical explanation both regarding the H-cross-section reduction and its time dependence. Some new explanations are added and the concluding chapter summarizes the conditions for observing the specific quantum
Four-wave neutron-resonance spin echo
International Nuclear Information System (INIS)
Grigoriev, S.V.; Kraan, W.H.; Rekveldt, M.Th.
2004-01-01
We develop a technique of scattering from many-body systems. It is based on the principle of the neutron spin echo (SE), where a neutron wave in the magnetic field splits into two waves, which are separated in space or in time after propagation in this field. The neutron thus prepared as a probe passes through the sample to test its properties on a space R or time t scale. This separation in space or in time can be measured using coherence of these two waves as a phase shift φ between them. These two waves are collected or focused and compensated by the SE technique in order to compare their phases after interaction with the sample. In this way one studies interference between these waves and thus can directly measure the pair-correlation function in space or in time. Instead of two-wave SE we propose to realize the four-wave neutron-resonance spin-echo (NRSE). In our experiments, spin precession produced by a couple of the neutron-resonance coils in one arm is compensated by an identical couple of other NR coils in a second arm of a spin-echo machine. The neutron spin-flip probability ρ in the resonance coils is a key parameter of the NRSE arm. The limiting cases, ρ=0 and ρ=1, provide, in quantum terms, a two-level-two-wave k splitting of the neutron and result in the separation of the split waves into two different lengths in space (R 1 ,R 2 ) or in time (t 1 ,t 2 ). These two cases correspond to Larmor precession with phase φ 1 in the static magnetic fields of the NR flippers or to NRSE precession with φ 2 , respectively. The intermediate case, 0 1 ,R 2 ,R 3 ) or in time (t 1 ,t 2 ,t 3 ). The interference of each pair of waves after compensation results in three different echos with phases φ 1 , φ 2 , and φ 3 =(φ 1 +φ 2 )/2. Focusing or compensating all four waves into a single point of the phase-of-waves diagram produces quantum interference of all newly created waves. This task of focusing is experimentally performed. Different options for the
Neutron resonance spins of 159Tb from experiments with polarized neutrons and polarized nuclei
International Nuclear Information System (INIS)
Alfimenkov, V.P.; Ivanenko, A.I.; Lason', L.; Mareev, Yu.D.; Ovchinnikov, O.N.; Pikel'ner, L.B.; Sharapov, Eh.I.
1976-01-01
Spins of 27 neutron resonances of 159 Tb with energies up to 114 eV have been measured using polarized neutrons and nuclei beams in the modernized time-of-flight spectrometer of the IBR-30 pulse reator. The direct measurements of the terbium resonances spins performed using polarized neutrons reaffirm the conclusion that there are no unstationary effects in the behaviour of 159 Tb neutron resonances in the energy range
Fast Neutron Elastic and Inelastic Scattering of Vanadium
Energy Technology Data Exchange (ETDEWEB)
Holmqvist, B; Johansson, S G; Lodin, G; Wiedling, T
1969-11-15
Fast neutron scattering interactions with vanadium were studied using time-of-flight techniques at several energies in the interval 1.5 to 8.1 MeV. The experimental differential elastic scattering cross sections have been fitted to optical model calculations and the inelastic scattering cross sections have been compared with Hauser-Feshbach calculations, corrected for the fluctuation of compound-nuclear level widths.
The world’s first pelletized cold neutron moderator at a neutron scattering facility
Energy Technology Data Exchange (ETDEWEB)
Ananiev, V.; Belyakov, A.; Bulavin, M.; Kulagin, E.; Kulikov, S.; Mukhin, K.; Petukhova, T.; Sirotin, A.; Shabalin, D.; Shabalin, E.; Shirokov, V.; Verhoglyadov, A., E-mail: verhoglyadov_al@mail.ru
2014-02-01
In July 10, 2012 cold neutrons were generated for the first time with the unique pelletized cold neutron moderator CM-202 at the IBR-2M reactor. This new moderator system uses small spherical beads of a solid mixture of aromatic hydrocarbons (benzene derivatives) as the moderating material. Aromatic hydrocarbons are known as the most radiation-resistant hydrogenous substances and have properties to moderate slow neutrons effectively. Since the new moderator was put into routine operation in September 2013, the IBR-2 research reactor of the Frank Laboratory of Neutron Physics has consolidated its position among the world’s leading pulsed neutron sources for investigation of matter with neutron scattering methods.
Resonant x-ray Raman scattering from atoms and molecules
International Nuclear Information System (INIS)
Cowan, P.L.
1992-01-01
Inelastic x-ray scattering and elastic x-ray scattering are fundamentally related processes. When the x-ray photon energy is near the ionization threshold for an inner shell, the inelastic channel is dominated by resonant x-ray Raman scattering. Studies of this emission not only illuminate the resonant scattering process in general, they also point to new opportunities for spectral studies of electronic structure using x-rays. Atoms in the form of a free gas provide an ideal target for testing the current theoretical understanding of resonant x-ray Raman scattering. In addition, x-ray scattering from molecular gases demonstrates the effect of bonding symmetry on the polarization and angular distribution of the scattered x-rays. Comparisons of experimental data with theory demonstrate both the successes and limitations of simple, single-electron interpretations of the scattering process
Quasielastic Neutron Scattering by Superionic Strontium Chloride
DEFF Research Database (Denmark)
Dickens, M. H.; Hutchings, M. T.; Kjems, Jørgen
1978-01-01
The scattering, from powder and single crystal samples, appears only above the superionic transition temperature, 1000K. The integrated intensity is found to be strongly dependent on the direction and magnitude of the scattering vector, Q, (which suggests the scattering is coherent) but does not ...
International Nuclear Information System (INIS)
Belier, G.; Roig, O.; Meot, V.; Daugas, J.M.; Aupiais, J.; Jutier, Ch.; Le Petit, G.; Veyssiere, Ch.
2008-01-01
When neutrons interact with isomers, these isomers can de-excite and in such a reaction the outgoing neutron has an energy greater than the in-going one. This process is referred as Inelastic Neutron Acceleration or Super-elastic Scattering. Up to now this process was observed for only two nucleus, 152m Eu and 180m Hf by measuring the number of fast neutrons produced by isomeric targets irradiated with thermal neutrons. In these experiments the energies of the accelerated neutrons were not measured. This report presents an indirect measurement of inelastic neutron acceleration on 177m Lu, based on the burn-up and the radiative capture cross sections measurements. Since at thermal energies the inelastic scattering and the radiative capture are the only processes that contribute to the isomer burn-up, the inelastic cross section can be deduced from the difference between the two measured quantities. Applying this method for the 177 Lu isomer with different neutron fluxes we obtained a value of (257 ± 50) barns (for a temperature of 323 K) and determined that there is no integral resonance for this process. In addition the radiative capture cross section on 177g Lu was measured with a much better accuracy than the accepted value. Since the acceleration cross section is quite high, a direct measurement of this process was undertaken, sending thermal neutrons and measuring the fast neutrons. The main goal now is to measure the outgoing neutron energies in order to identify the neutron transitions in the exit channel. In particular the K conservation question can be addressed by such a measurement. (author)
Small Angle Neutron Scattering From Iron. Vol. 2
Energy Technology Data Exchange (ETDEWEB)
Adib, M; Abdel-Kawy, A; Naguib, K; Habib, N; Kilany, M [Reactor and Neutron Physics Dept., Nuclear Research Centre, AEA, Cairo, (Egypt); Wahba, M [Faculty of Engineering, ain Shams University, Cairo, (Egypt); Ashry, A [Faculty of Education, Ain Shams University, Cairo, (Egypt)
1996-03-01
The total neutron cross-section measurements have been carried out for iron in both metallic and powder forms in the wavelengths band 0.35 nm to 0.52 nm. The measurements were performed using the TOF spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The observed behavior for the small-angle neutron scattering cross-section of iron powder was analyzed in terms of its particle diameter, incident neutron wavelength and beam divergence. It was found that for iron particles of diameter 25 {mu}m the small-angle neutron scattering is only due to refraction of neutron wave traversing the particles. A method was established to determine the particle size of iron powders within an accuracy of 8% which is higher than that obtained by mesh analysis. 4 figs., 1 tab.
New era of neutron scattering research on advanced materials
International Nuclear Information System (INIS)
Ikeda, Susumu
2001-01-01
The projects of the next generation of pulsed spallation neutron source are planed in USA, Europe and Japan. They are one order of magnitude more powerful than the most powerful existing neutron source, ISIS in UK. They offer the exciting prospects for the future, and will open the new era of neutron scattering research on advanced materials. The Japanese project is named as the 'Joint project' between JAERI and KEK on high-intensity proton accelerators. The details of the neutron science facility in the 'Joint project' and the sciences to be developed are summarized. (author)
2010 American Conference on Neutron Scattering (ACNS 2010)
Energy Technology Data Exchange (ETDEWEB)
Billinge, Simon
2011-06-17
The ACNS provides a focal point for the national neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as “would-be” neutron users. The American Conference on Neutron Scattering thus serves a dual role as a national user meeting and a scientific meeting. As a venue for scientific exchange, the ACNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. As a “super-user” meeting, the ACNS fulfills the main objectives of users' meetings previously held periodically at individual national neutron facilities, with the advantage of a larger and more diverse audience. To this end, each of the major national neutron facilities (NIST, LANSCE, HFIR and SNS) have an opportunity to exchange information and update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities. For many of the national facilities, this super-user meeting should obviate the need for separate user meetings that tax the time, energy and budgets of facility staff and the users alike, at least in years when the ACNS is held. We rely upon strong participation from the national facilities. The NSSA intends that the American Conference on Neutron Scattering (ACNS) will occur approximately every two years, but not in years that coincide with the International or European Conferences on Neutron Scattering. The ACNS is to be held in association with one of the national neutron centers in a rotating sequence, with the host facility providing local
Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source
International Nuclear Information System (INIS)
Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.
1981-01-01
The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed
Experimental studies of the critical scattering of neutrons for large scattering vectors
International Nuclear Information System (INIS)
Ciszewski, R.
1972-01-01
The most recent results concerned with the critical scattering of neutrons are reviewed. The emphasis is on the so-called thermal shift, that is the shift of the main maximum in the intensity of critically scattered neutrons with temperature changes. Four theories of this phenomenon are described and their shortcomings are shown. It has been concluded that the situation is involved at present and needs further theoretical and experimental study. (S.B.)
International Nuclear Information System (INIS)
Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.
1978-01-01
An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity
Toward a new polyethylene scattering law determined using inelastic neutron scattering
International Nuclear Information System (INIS)
Lavelle, C.M.; Liu, C.-Y.; Stone, M.B.
2013-01-01
Monte Carlo neutron transport codes such as MCNP rely on accurate data for nuclear physics cross-sections to produce accurate results. At low energy, this takes the form of scattering laws based on the dynamic structure factor, S(Q,E). High density polyethylene (HDPE) is frequently employed as a neutron moderator at both high and low temperatures, however the only cross-sections available are for ambient temperatures (∼300K), and the evaluation has not been updated in quite some time. In this paper we describe inelastic neutron scattering measurements on HDPE at 5 and 294 K which are used to improve the scattering law for HDPE. We review some of the past HDPE scattering laws, describe the experimental methods, and compare computations using these models to the measured S(Q,E). The total cross-section is compared to available data, and the treatment of the carbon secondary scatterer as a free gas is assessed. We also discuss the use of the measurement itself as a scattering law via the one phonon approximation. We show that a scattering law computed using a more detailed model for the Generalized Density of States (GDOS) compares more favorably to this experiment, suggesting that inelastic neutron scattering can play an important role in both the development and validation of new scattering laws for Monte Carlo work. -- Highlights: ► Polyethylene at 5 K and 300 K is measured using inelastic neutron scattering (INS). ► Measurements conducted at the Wide Angular-Range Chopper Spectrometer at SNS. ► Several models for Polyethylene are compared to measurements. ► Improvements to existing models for the polyethylene scattering law are suggested. ► INS is shown to be highly valuable tool for scattering law development
Status of thermal neutron scattering data for graphite
International Nuclear Information System (INIS)
Mattes, M.; Keinert, J.
2005-07-01
At thermal neutron energies, the binding of the scattering nucleus in a solid, liquid, or gas affects the cross sections and the angular and energy distributions of the scattered neutrons. These effects are described in the thermal sub-library of evaluated files in File 7 of the ENDF-6 format. A re-evaluation of thermal neutron scattering data for carbon bound in graphite has been performed to investigate the impact of models (e.g., generalised frequency distributions) based on different experimental and theoretical data for the generation of scattering law data files S(α,β,T) and coherent elastic scattering data. Two phonon frequency distributions of graphite published in 2002 and 2004 were considered and the results compared with those based on the phonon spectra from Koppel et al. (published in 1968), on which the evaluations of ENDF/B-VI and JEFF-3.1 are based. The new frequency distributions were partly derived from ab initio simulations. Detailed comparisons with measurements of differential and integral neutron cross sections and other relevant data are reported. In addition, thermal MCNP data sets for use in the continuous Monte Carlo codes MCNP and MCNPX were generated from these evaluations for different temperatures. Calculated neutron spectra were found to be in good agreement with the measurements. (author)
Neutron scattering at the high-flux isotope reactor
International Nuclear Information System (INIS)
Cable, J.W. Chakoumakos, B.C.; Dai, P.
1995-01-01
The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials
Critical magnetic scattering of polarized neutrons on iron
International Nuclear Information System (INIS)
Hetzelt, M.
1975-01-01
A new spectrometer has been built and tested. The instrument was designed particularly for small angle scattering of polarized neutrons whereby the degree of polarisation of the scattered neutrons can be measured. The use of polarizing neutron pipes as polarizer and analyser allows the performence with a very broad wavelength spectrum (2 A 7 n/cm 2 sec) with good collimation (Δ theta approximately 0.2 0 ). The instrument is applied for the measurement of the critical magnetic scattering of polarized neutrons on an iron single crystal. For this purpose a special oven with an appropriate magnetic field configuration and a high precision in temperature has been constructed. The measured intensity distributions are in good agreement with other experiments. The critical exponent of the correlation range xi results in 0.65 +- 0.06. Angle and temperature dependence of the scattered neutron polarisation could be determined with good precision. The measurements are partly in extreme contradiction to the only hitherto existing experiment of this kind of Drabkin et al, and to assumptions in the theoretical evaluation. This contradiction is shown to be caused by the influence of multiple scattering. (orig./HPOE) [de
Studies on biological macromolecules by neutron inelastic scattering
International Nuclear Information System (INIS)
Fujiwara, Satoru; Nakagawa, Hiroshi
2013-01-01
Neutron inelastic scattering techniques, including quasielastic and elastic incoherent neutron scattering, provide unique tools to directly measure the protein dynamics at a picosecond time scale. Since the protein dynamics at this time scale is indispensable to the protein functions, elucidation of the protein dynamics is indispensable for ultimate understanding of the protein functions. There are two complementary directions of the protein dynamics studies: one is to explore the physical basis of the protein dynamics using 'model' proteins, and the other is more biology-oriented. Examples of the studies on the protein dynamics with neutron inelastic scattering are described. The examples of the studies in the former direction include the studies on the dynamical transitions of the proteins, the relationship between the protein dynamics and the hydration water dynamics, and combined analysis of the protein dynamics with molecular dynamics simulation. The examples of the studies in the latter direction include the elastic incoherent and quasielastic neutrons scattering studies of actin. Future prospects of the studies on the protein dynamics with neutron scattering are briefly described. (author)
Auger vs resonance neutralization in low energy He+ ion scattering
International Nuclear Information System (INIS)
Woodruff, D.P.
1983-01-01
He + ions incident on a metal surface can neutralize either by an Auger or resonant charge exchange. While the Auger process has always been thought to be dominant, recent theoretical interest in the simpler one-electron resonance process has led to suggestions that this alone can account for the neutralization seen in low energy He + ion scattering. In this paper this assertion is analysed by looking at the wider information available on charge exchange processes for He + ion scattering through comparison with Li + ion scattering, the importance of multiple scattering in both these scattering experiments and the results of ion neutralization spectroscopy. These lead to the conclusion that while resonance neutralization to produce metastable He* may well occur at a substantial rate in He + ion scattering, the dominant process leading to loss of ions from the final scattered signal is Auger neutralization as originally proposed. (author)
Development of new methods for studying nanostructures using neutron scattering
International Nuclear Information System (INIS)
Pynn, Roger
2016-01-01
The goal of this project was to develop improved instrumentation for studying the microscopic structures of materials using neutron scattering. Neutron scattering has a number of advantages for studying material structure but suffers from the well-known disadvantage that neutrons' ability to resolve structural details is usually limited by the strength of available neutron sources. We aimed to overcome this disadvantage using a new experimental technique, called Spin Echo Scattering Angle Encoding (SESAME) that makes use of the neutron's magnetism. Our goal was to show that this innovation will allow the country to make better use of the significant investment it has recently made in a new neutron source at Oak Ridge National Laboratory (ORNL) and will lead to increases in scientific knowledge that contribute to the Nation's technological infrastructure and ability to develop advanced materials and technologies. We were successful in demonstrating the technical effectiveness of the new method and established a baseline of knowledge that has allowed ORNL to start a project to implement the method on one of its neutron beam lines.
Theoretical evaluation of self-shielding factors due to scattering resonances in foils
International Nuclear Information System (INIS)
Selander, W.N.
1960-06-01
A semi-analytical method is given for evaluating self-shielding factors for activation measurements which use thin foils having neutron scattering resonances. The energy loss by scattering in the foil is taken into account. The energy-dependent neutron angular distribution is expanded as a double series, the coefficients of which are (energy dependent) solutions of an infinite set of coupled integral equations. These are truncated in some suitable manner and solved numerically. The leading term of the series is proportional to the average, or effective flux in the activation sample. The product of this terra and the neutron capture cross-section is integrated numerically over the resonance to give the resonance self-shielding correction. Figure 4 shows resonance self-shielding factors derived in this mariner for the 132ev resonance in Co-59 and figure 5 shows similar results for the two Mn-55 resonances at 337ev and 1080ev. Self-shielding factors for 1/v capture are not significantly different from unity. (author)
The Inward Dispersion of the Neutron Scattering Experiments in HTSC Cuprates
Dayan, Moshe
2016-01-01
The theory of the high temperature superconducting cuprates, which is based on the condensation of holes into strings in checker-board geometry, was successful to explain the elastically scattered Neutrons by spin waves. Here it is extended to analyze the inward dispersion curve of its inelastic counterpart, up to the resonance energy- . This extension is done by applying the perturbation theory of the linear response to the condensed strings. The approximated susceptibility is derived by mea...
Background determination for the neutron-neutron scattering experiment at the reactor YAGUAR
Energy Technology Data Exchange (ETDEWEB)
Muzichka, A.Yu. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Furman, W.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Lychagin, E.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Krylov, A.R. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Nekhaev, G.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Sharapov, E.I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Shvetsov, V.N. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Strelkov, A.V. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Levakov, B.G. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Lyzhin, A.E. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Chernukhin, Yu.I. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Kandiev, Ya.Z. [Russian Federal Nuclear Center-All-Russian Research Institute of Technical Physics, PO Box 245, 456770 Snezhinsk (Russian Federation); Howell, C.R. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Mitchell, G.E. [North Carolina State University, Raleigh, NC 27695-8202 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crawford, B.E. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States); Stephenson, S.L. [Gettysburg College, Box 405, Gettysburg, PA 17325 (United States)]. E-mail: sstephen@gettysburg.edu; Tornow, W. [Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)
2007-06-01
The motivation and design is outlined for the experiment to measure the neutron-neutron singlet scattering length directly with thermal neutrons at the pulsed reactor YAGUAR. A statistical accuracy of 3% can be reached, though achieving the goal of an overall accuracy of 3-5% for the nn-scattering length depends on the background level. Possible sources of background are discussed in depth and the results of extensive modeling of the background are presented. Measurements performed at YAGUAR to test these background calculations are described. The experimental results indicate an anticipated background level up to 30% relative to the expected nn effect at the maximal energy burst of the reactor. The conclusion is made that the nn experiment at YAGUAR is feasible to produce the first directly measured value for the neutron-neutron scattering length.
Small angle neutron scattering and small angle X-ray scattering ...
Indian Academy of Sciences (India)
Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...
International Nuclear Information System (INIS)
Bell, H.G.
1976-07-01
The energy spectra of Ne studied under different temperatures and pressures with the aid of inelastic, coherent neutron scattering can be described by a scattering law derived from the basic hydrodynamic equations. The Brillouin lines found with very small momentum transfer 0.06 A -1 -1 are interpreted as collective, adiabatic pressure fluctuations. (orig./WL) [de
Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments
Energy Technology Data Exchange (ETDEWEB)
Imberti, S. [Universita degli Studi di Roma Tre, Dipartimento di Fisica ' E.Amaldi' , Rome (Italy) and CNR-INFM, Rome (Italy)]. E-mail: silvia.imberti@roma2.infn.it; Andreani, C. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Garbuio, V. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Gorini, G. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy); Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica, Roma 60133 (Italy); CNR-INFM, Rome (Italy); Tardocchi, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Fisica ' G.Occhialini' , Milan (Italy); CNR-INFM, Milan (Italy)
2005-11-01
New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1 deg. <2{theta}<5 deg. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,{omega}) kinematical region at low wavevector (q<10A{sup -1}) and high energy (unlimited) transfer -bar {omega}>500meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20A{sup -1}1eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.
Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons
Energy Technology Data Exchange (ETDEWEB)
Schmidt, D.; Siebert, B.R.L.
1993-06-01
The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in [sup 12]C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)
Monte Carlo simulation of fast neutron scattering experiments including DD-breakup neutrons
International Nuclear Information System (INIS)
Schmidt, D.; Siebert, B.R.L.
1993-06-01
The computational simulation of the deuteron breakup in a scattering experiment has been investigated. Experimental breakup spectra measured at 16 deuteron energies and at 7 angles for each energy served as the data base. Analysis of these input data and of the conditions of the scattering experiment made it possible to reduce the input data. The use of one weighted breakup spectrum is sufficient to simulate the scattering spectra at one incident neutron energy. A number of tests were carried out to prove the validity of this result. The simulation of neutron scattering on carbon, including the breakup, was compared with measured spectra. Differences between calculated and measured spectra were for the most part within the experimental uncertainties. Certain significant deviations can be attributed to erroneous scattering cross sections taken from an evaluation and used in the simulation. Scattering on higher-lying states in 12 C can be analyzed by subtracting the simulated breakup-scattering from the experimental spectra. (orig.)
Fragility of complexity biophysical systems by neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Magazu, Salvatore [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy)]. E-mail: smagazu@unime.it; Migliardo, Federica [Dipartimento di Fisica, Universita di Messina, P.O. Box 55, I-98166 Messina (Italy); Bellocco, Ersilia [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Lagana, Giuseppina [Dipartimento di Chimica Organica e Biologica, Universita di Messina, I-98166 Messina (Italy); Mondelli, Claudia [CNR-INFM OGG and CRS-SOFT, c/o ILL, 6 Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France)
2006-11-15
Neutron scattering is an exceptional tool to investigate structural and dynamical properties of systems of biophysical interest, such as proteins, enzymes, lipids and sugars. Moreover, elastic neutron scattering enhances the investigation of atomic motions in hydrated proteins in a wide temperature range and on the picosecond timescale. Homologous disaccharides, such as trehalose, maltose and sucrose, are cryptobiotic substances, since they allow to many organisms to undergo in a 'suspended life' state, known as cryptobiosis in extreme environmental conditions. The present paper is aimed to discuss the fragility degree of disaccharides, as evaluated of the temperature dependence of the mean square displacement by elastic neutron scattering, in order to link this feature with their bioprotective functions.
Software for simulation and design of neutron scattering instrumentation
DEFF Research Database (Denmark)
Bertelsen, Mads
designed using the software. The Union components uses a new approach to simulation of samples in McStas. The properties of a sample are split into geometrical and material, simplifying user input, and allowing the construction of complicated geometries such as sample environments. Multiple scattering...... from conventional choices. Simulation of neutron scattering instrumentation is used when designing instrumentation, but also to understand instrumental effects on the measured scattering data. The Monte Carlo ray-tracing package McStas is among the most popular, capable of simulating the path of each...... neutron through the instrument using an easy to learn language. The subject of the defended thesis is contributions to the McStas language in the form of the software package guide_bot and the Union components.The guide_bot package simplifies the process of optimizing neutron guides by writing the Mc...
Small angle neutron scattering (SANS) under non-equilibrium conditions
International Nuclear Information System (INIS)
Oberthur, R.C.
1984-01-01
The use of small angle neutron scattering (SANS) for the study of systems under non-equilibrium conditions is illustrated by three types of experiments in the field of polymer research: - the relaxation of a system from an initial non-equilibrium state towards equilibrium, - the cyclic or repetitive installation of a series of non-equilibrium states in a system, - the steady non-equilibrium state maintained by a constant dissipation of energy within the system. Characteristic times obtained in these experiments with SANS are compared with the times obtained from quasi-elastic neutron and light scattering, which yield information about the equilibrium dynamics of the system. The limits of SANS applied to non-equilibrium systems for the measurement of relaxation times at different length scales are shown and compared to the limits of quasielastic neutron and light scattering
Scattering of 14.6 MeV neutrons from Fe and evidence for structure in the emitted neutron spectra
International Nuclear Information System (INIS)
Gul, K.; Anwar, M.; Ahmad, M.; Saleem, S.M.; Khan, N.A.
1984-06-01
Structure in the spectra of neutrons emitted from iron on bombardment with 14.6 MeV neutrons has been investigated and explained in terms of excitation of levels in iron 56. The energies of scattered neutrons have been measured by the time-of-flight technique based on the associated particle method. The observed excitations have been correlated with the reported levels in a satisfactory manner. Evidence for new excitations at 8.8 +- 0.02, 9.8 +- 0.1, 10.2 +- 0.1, 12.44 +- 0.03 and 12.52 +- 0.03 MeV has been obtained. The excitation of possible components of Ml giant resonance in iron 56 is discussed. (author)
Neutron scattering in soft matter physics and chemistry
International Nuclear Information System (INIS)
White, J.W.
1999-01-01
Recent experiments area of soft matter science show that self assembly on the micron scale as well as the nanometer scale can be directed chemically. This lecture illustrates how such processes can be studied using the contrast variation available in neutron scattering through isotopic replacement and the techniques of neutron small angle scattering and neutron reflectivity. Related dynamical information at nanometer resolution and on time scales between a nanosecond and a few tenths of a picosecond will become accessible with brighter neutron sources. The examples presented concern the template induced crystallisation of zeolites, the liquid crystal template induced synthesis of mesoporous materials and the structure of thin films at the air water interface. (J.P.N.)
Spin dynamics above the Curie temperature studied by neutron scattering
International Nuclear Information System (INIS)
Steinsvoll, O.; Riste, T.
1986-01-01
Neutron scattering can in principle give information about magnetic fluctuations over the entire atomic space and time domain. The weakness of the neutron-matter interaction renders this information undistorted by the neutron probe, but at the same time puts intensity limitations on the method. A considerable number of studies on the magnetism of 3d metals have been performed at some of the larger reactor laboratories. In the regions of overlap the experimental results from the different laboratories are consistent, but the interpretations are along different lines. Among the controversial issues are itinerancy versus localization, the degree of order above T C . In our talk we shall give an introduction to the neutron scattering method, including some of the sophisticated polarized beam methods. In the rest of the talk we shall review recent experimental results and some of the theoretical models used in their interpretation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.; Landen, O. L.; Spears, B. K.; Fittinghoff, D. N.; Field, J. E.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Volegov, P. L.; Merrill, F. E. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2016-11-15
The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.
High energy neutron recoil scattering from liquid 4He
International Nuclear Information System (INIS)
Holt, R.S.; Needham, L.M.; Paoli, M.P.
1987-10-01
The neutron recoil scattering from liquid 4 He at 4.2 K and 1.6 K has been observed for a momentum transfer of 150 A -1 using the Electron Volt Spectrometer on the pulsed neutron source, ISIS. The experiment yielded mean atomic kinetic energy values = 14.8 +- 3 K at 4.2 K and = 14.6 +- 3.2 K at 1.6 K in good agreement with values obtained at lower momentum transfers. (author)
Inelastic scattering of neutrons by spin waves in terbium
DEFF Research Database (Denmark)
Bjerrum Møller, Hans; Houmann, Jens Christian Gylden
1966-01-01
Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals which...... does not have very high thermal-neutron capture cross section, so that inelastic neutron scattering experiments can give satisfactory information on magnon dispersion relations....
Thermal neutron scattering studies of condensed matter under high pressures
International Nuclear Information System (INIS)
Carlile, C.J.; Salter, D.C.
1978-01-01
Although temperature has been used as a thermodynamic variable for samples in thermal neutron scattering experiments since the inception of the neutron technique, it is only in the last decade that high pressures have been utilised for this purpose. In the paper the problems particular to this field of work are outlined and a review is made of the types of high-pressure cells used and the scientific results obtained from the experiments. 103 references. (author)
Scattering and depolarization of polarized neutrons in ferrofluids
International Nuclear Information System (INIS)
Balasoiu, M.; Dokukin, E.B.; Kozhevnikov, S.V.; Nikitenko, Y.V.
1999-01-01
On the SPN - 1 polarized neutron spectrometer at IBR -2 high - flux pulsed rector there were carried out preliminary measurements on transmission and polarization of a neutron beam passing through a magnetic colloidal system of Fe 3 O 4 particles in transformer oil and dodecane carriers. It was found that in the ferrofluids with magnetite particles exist, dependent on the particle volume concentration and the magnitude of the external magnetic field, effects of depolarization and nuclear - magnetic small angle scattering. (author)
Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field
Energy Technology Data Exchange (ETDEWEB)
Yoshida, Tadayoshi; Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Oyanagi, Katsumi [Japan Radiation Engineering Co., Ltd., Hitachi, Ibaraki (Japan)
2002-09-01
Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, {sup 241}Am-Be and {sup 252}Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)
Evaluation of room-scattered neutrons at the JNC Tokai neutron reference field
International Nuclear Information System (INIS)
Yoshida, Tadayoshi; Tsujimura, Norio
2002-01-01
Neutron reference fields for calibrating neutron-measuring devices in JNC Tokai Works are produced by using radionuclide neutron sources, 241 Am-Be and 252 Cf sources. The reference field for calibration includes scattered neutrons from the material surrounding sources, wall, floor and ceiling of the irradiation room. It is, therefore, necessary to evaluate the scattered neutrons contribution and their energy spectra at reference points. Spectral measurements were performed with a set of Bonner multi-sphere spectrometers and the reference fields were characterized in terms of spectral composition and the fractions of room-scattered neutrons. In addition, two techniques stated in ISO 10647, the shadow-cone method and the polynomial fit method, for correcting the contributions from the room-scattered neutrons to the readings of neutron survey instruments were compared. It was found that the two methods gave an equivalent result within a deviation of 3.3% at a source-to-detector distance from 50cm to 500cm. (author)
The neutron spin-echo spectrometer: a new high resolution technique in neutron scattering
International Nuclear Information System (INIS)
Nicholson, L.K.
1981-01-01
The neutron spin-echo (NSE) spectrometer provides the highest energy resolution available in neutron scattering experiments. The article describes the principles behind the first NSE spectrometer (at the Institute Laue-Langevin, Grenoble, France) and, as an example of one of its applications, some recent results on polymer chain dynamics are presented. (author)
Resonant scattering of surface plasmon polaritons by dressed quantum dots
Energy Technology Data Exchange (ETDEWEB)
Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)
2014-06-23
The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.
NRSC, Neutron Resonance Spectrum Calculation System
International Nuclear Information System (INIS)
Leszczynski, Francisco
2004-01-01
1 - Description of program or function: The NRSC system is a package of four programs for calculating detailed neutron spectra and related quantities, for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening and unresolved resonance level. 2 - Methods: NRSC consists of four programs: GEXSCO, RMET21, ALAMBDA and WLUTIL. GEXSCO prepares the nuclear data from ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening or unresolved resonance level for RMET21 input. RMET21 calculates spectra and related quantities for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using slowing-down algorithms and, in the case of pin cells, the collision probability method. ALAMBDA obtains lambda factors (Goldstein-Cohen intermediate resonance factors in the formalism of WIMSD code) of different isotopes for including on WIMSD-type multigroup libraries for WIMSD or other cell-codes, from output of RMET21 program. WLUTIL is an auxiliary program for extracting tabulated parameters related with RMET21 program calculations from WIMSD libraries for comparisons, and for producing new WIMSD libraries with parameters calculated with RMET21 and ALAMBDA programs. 3 - Restrictions on the complexity of the problem: GEXSCO program has fixed array dimensions that are suitable for processing all reasonable outputs from nuclear data pre-processing programs. RMET21 program uses variable dimension method from a fixed general array. ALAMBDA and WLUTIL programs have fixed arrays that are adapted to standard WIMSD libraries. All programs can be easily modified to adapt to special requirements
Thermal neutron scattering cross sections of beryllium and magnesium oxides
International Nuclear Information System (INIS)
Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah
2016-01-01
Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.
Neutron scattering lengths of molten metals determined by gravity refractometry
International Nuclear Information System (INIS)
Reiner, G.; Waschkowski, W.; Koester, L.
1990-01-01
Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532±0.002 fm, b(Pb)=9.405±0.003 fm, b(Tl)=8.776±0.005 fm, b(Sn)=6.225±0.002 fm and b(Ga)=7.288±0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.)
Neutron scattering lengths of molten metals determined by gravity refractometry
Energy Technology Data Exchange (ETDEWEB)
Reiner, G; Waschkowski, W; Koester, L [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik
1990-10-01
Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).
Neutron scattering lengths of molten metals determined by gravity refractometry
Energy Technology Data Exchange (ETDEWEB)
Reiner, G.; Waschkowski, W.; Koester, L. (Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik)
1990-10-01
Very accurate values of the coherent neutron scattering lengths of the heavy elements Bi and Pb are important quantities for the investigation of the electric interactions of neutrons with atoms. We performed, therefore, a series of experiments to determine accurate scattering lengths by means of neutron gravity refractometry on liquid mirrors of molten metals. The possible perturbations of the necessary reflection measurements have been discussed in details. After taking into account the uncertainties and corrections associated with observable perturbations we obtained the following values for bound atoms: b(Bi)=8.532{plus minus}0.002 fm, b(Pb)=9.405{plus minus}0.003 fm, b(Tl)=8.776{plus minus}0.005 fm, b(Sn)=6.225{plus minus}0.002 fm and b(Ga)=7.288{plus minus}0.002 fm. These data are corrected for the local field effect occuring in the reflection on liquids. The recently reported results for the neutron's electric polarizability and the neutron-electron scattering length are supported by the Bi- and Pb-scattering length of this work. (orig.).
Activity report on neutron scattering research. V. 1, 1994
International Nuclear Information System (INIS)
Fujii, Y.; Oohara, Y.
1994-09-01
In April, 1993, the Neutron Scattering Laboratory attached to the Institute for Solid State Physics, University of Tokyo, was newly established in Tokai, Ibaraki Prefecture, to promote nationwide users' programs for utilizing the university-owned neutron instruments installed at the JRR-3M reactor of Japan Atomic Energy Research Institute. This upgraded reactor (20 MW, the cold source is installed) has drastically expanded the number of users and research areas since 1990 when it became operational. Currently 8 and 3 out of 18 new spectrometers in total at the JRR-3M are owned by ISSP and Tohoku University, respectively, while the remaining 7 spectrometers belong to JAERI. In addition, 3 conventional spectrometers in the 30 years old JRR-2 reactor (10 MW) have also supported research activities. This is the first issue of 'Activity report on neutron scattering research', and it is to be published annually. In this report, the brief history of neutron scattering research, the users' programs, the committees, the neutron scattering instruments available at the JRR-3M and the JRR-2M, the activity reports on structures and excitation, magnetism, superconductors, liquid and glass, material science, polymers, biology and instrumentation, and publication list are reported. (K.I.)
Quasielastic neutron scattering in biology: Theory and applications.
Vural, Derya; Hu, Xiaohu; Lindner, Benjamin; Jain, Nitin; Miao, Yinglong; Cheng, Xiaolin; Liu, Zhuo; Hong, Liang; Smith, Jeremy C
2017-01-01
Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of this in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Finally, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016 Elsevier B.V. All rights reserved.
Nuclear resonant scattering beamline at SPring-8
Energy Technology Data Exchange (ETDEWEB)
Harami, Taikan [Japan Atomic Energy Research Inst., Kamigori, Hyogo (Japan). Kansai Research Establishment
1996-04-01
Mainly by Japan Atomic Energy Research Institute, the Institute of Physical and Chemical Research and Japan Synchrotron Radiation Research Institute, the construction of the Super Photon ring-8 GeV (SPring-8) which is the large scale synchrotron radiation facility for a high luminance light source placing emphasis on short wavelength region (shorter than about 1 nm) is in progress at the Harima Science Park City, Hyogo Prefecture. The features of the SPring-8 are the high luminance of light, the good parallelism and directionality of light, the quasi-monochromatic light with variable wavelength, and the possibility of design from straight polarization to circular polarization. The injection system that accelerates electrons up to 8 GeV and the storage ring storing the 8 GeV electrons for long hours, and 61 beamlines are explained. The manufacture of the nuclear resonant scattering beamline as the beamline for joint utilization was begun. Its transport channel and the experiment hutch are shown. By the features of undulator synchrotron radiation, the research on the matters with small recoilless fraction such as biological substances, liquid, gas and others and the research on time-dependent phenomena become feasible anew. The research on the dynamic structural analysis of heme protein is planned. (K.I.)
Data reduction for neutron scattering from plutonium samples. Final report
International Nuclear Information System (INIS)
Seeger, P.A.
1997-01-01
An experiment performed in August, 1993, on the Low-Q Diffractometer (LQD) at the Manual Lujan Jr. Neutron Scattering Center (MLNSC) was designed to study the formation and annealing of He bubbles in aged 239 Pu metal. Significant complications arise in the reduction of the data because of the very high total neutron cross section of 239 Pu, and also because the sample are difficult to make uniform and to characterize. This report gives the details of the data and the data reduction procedures, presents the resulting scattering patterns in terms of macroscopic cross section as a function of momentum transfer, and suggests improvements for future experiments
Spin observables in proton-neutron scattering at intermediate energy
International Nuclear Information System (INIS)
Spinka, H.
1986-05-01
A summary of np elastic scattering spin measurements at intermediate energy is given. Preliminary results from a LAMPF experiment to measure free neutron-proton elastic scattering spin-spin correlation parameters are presented. A longitudinally polarized proton target was used. These measurements are part of a program to determine the neutron-proton amplitudes in a model independent fashion at 500, 650, and 800 MeV. Some new proton-proton total cross sections in pure helicity states (Δσ/sub L/(pp)) near 3 GeV/c are also given. 37 refs., 2 figs
The lineshape of inelastic neutron scattering in the relaxor ferroelectrics
International Nuclear Information System (INIS)
Ivanov, M.A.; Kozlovski, M.; Piesiewicz, T.; Stephanovich, V.A.; Weron, A.; Wymyslowski, A.
2005-01-01
The possibilities of theoretical and experimental investigations of relaxor ferroelectrics by inelastic neutron scattering method are considered. The simple model to description of the peculiarities of inelastic neutron scattering lineshapes in ferroelectric relaxors is suggested. The essence of this model is to consider the interaction of the phonon subsystem of relaxor ferroelectrics with the ensemble of defects and impurities. The modification of the Latin Hypercube Sampling (LHS) method is presented. The optimization of planning of experiment by the modified LHS method is considered [ru
An inelastic neutron scattering study of hematite nanoparticles
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Klausen, Stine Nyborg; Lefmann, K
2003-01-01
We have studied the magnetic dynamics in nanocrystalline hematite by inelastic neutron scattering at the high-resolution time-of-flight spectrometer IRIS at ISIS. Compared to previous inelastic neutron scattering experiments an improvement of the resolution function is achieved and more detailed...... moment at the antiferromagnetic Bragg reflection. We have studied different weightings of the particle size distribution. The data and their temperature dependence can with good agreement be interpreted on the basis of the Neel-Brown theory for superparamagnetic relaxation and a model for the collective...
Fast-neutron total and scattering cross sections of niobium
Energy Technology Data Exchange (ETDEWEB)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-07-01
Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V.
Anomalous neutron Compton scattering cross section in zirconium hydride
International Nuclear Information System (INIS)
Abdul-Redah, T.; Krzystyniak, M.; Mayers, J.; Chatzidimitriou-Dreismann, C.A.
2005-01-01
In the last few years we observed a shortfall of intensity of neutrons scattered from protons in various materials including metal hydrogen systems using neutron Compton scattering (NCS) on the VESUVIO instrument (ISIS, UK). This anomaly has been attributed to the existence of short-lived quantum entangled states of protons in these materials. Here we report on results of very recent NCS measurements on ZrH 2 at room temperature. Also here an anomalous shortfall of scattering intensity due to protons is observed. In contrast to previous experiments on NbH 0.8 , the anomalies found in ZrH 2 are independent of the scattering angle (or momentum transfer). These different results are discussed in the light of recent criticisms and experimental tests related to the data analysis procedure on VESUVIO
Fast-neutron total and scattering cross sections of niobium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-07-01
Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V
Modeling the neutron spin-flip process in a time-of-flight spin-resonance energy filter
Parizzi, A A; Klose, F
2002-01-01
A computer program for modeling the neutron spin-flip process in a novel time-of-flight (TOF) spin-resonance energy filter has been developed. The software allows studying the applicability of the device in various areas of spallation neutron scattering instrumentation, for example as a dynamic TOF monochromator. The program uses a quantum-mechanical approach to calculate the local spin-dependent spectra and is essential for optimizing the magnetic field profiles along the resonator axis. (orig.)
Neutron scattering studies of biological molecules suggest
Indian Academy of Sciences (India)
tions of temperature, pressure or solvent environment for survival. ... scale that depends on the scattering vector range and energy resolution of the in- .... the structures) are good indicators of global evolutionary adaptation mechanisms.
Ultra-small-angle neutron scattering. History, developments and applications
International Nuclear Information System (INIS)
Koizumi, Satoshi; Yamaguchi, Daisuke
2011-01-01
Ultra-small-angle neutron scattering (USANS), which is a scattering method observing in a q-region of q=10 -3 nm -1 , was initiated by double crystal (Bonse-Hart) method. Recently, a focusing USANS method was developed by combining a pin-hole type spectrometer and focusing lenses. These two methods, which are complementary to each other, were employed to achieve wide q-observations on microbial cellulose, actin cytoskeleton, tire, and membrane-electrolyte assembly of fuel cell. (author)
Small angle neutron scattering from hydrated cement pastes
International Nuclear Information System (INIS)
Sabine, T.M.; Bertram, W.K.; Aldridge, L.P.
1996-01-01
Small angle neutron scattering (SANS) was used to study the microstructure of hydrating cement made with, and without silica fume. Some significant differences were found between the SANS spectra of pastes made from OPC (ordinary Portland cement) and DSP (made with silica fume and superplasticiser). The SANS spectra are interpreted in terms of scattering from simple particles. Particle growth was monitored during hydration and it was found that the growth correlated with the heat of hydration of the cement
Development of neutron detectors for neutron scattering experiments
Energy Technology Data Exchange (ETDEWEB)
Moon, Myungkook; Kim, Jongyul; Kim, Jeong ho; Lee, Suhyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Changhwy [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)
2015-10-15
Various kinds of detectors are used in accordance with the experimental purpose, such as zero dimensional detector, 1-D or 2-D position-sensitive detectors. Most of neutron detectors use He-3 gas because of its high neutron sensitivity. Since the He-3 supply shortage took place in early 2010, various He-3 alternative detectors have been developed even for the other neutron application. We have developed a new type alternative detector on the basis of He-3 detector technology. Although B- 10 has less neutron detection efficiency compared with He-3, it can be covered by the use of multiple B-10 layers. In this presentation, we would like to introduce the neutron detectors under development and developed detectors. Various types of detector were successfully developed and result of the technical test performance is promising. Even though the detection efficiency of the B-10 detector lower than He-3 one, the continuous research and development is needed for currently not available He-3.
Resonances in the potential scattering and decay of metastable states
International Nuclear Information System (INIS)
Batsch, J.
1975-04-01
The analytic properties of the S-matrix in the complex energy plane are reviewed for potential scattering with particular attention to resonance scattering and decay of metastable states. For a one dimensional model potential with a potential barrier and a repulsive core exact formulas are derived for the energy and width of a resonance in terms of the scattering amplitudes of the barrier and the repulsive core alone. For narrow resonances simple and intuitive results are obtained, which are applied to semiclassical cases where the WKB approximation is valid. (orig.) [de
Resonance scattering of Rayleigh waves by a mass defect
International Nuclear Information System (INIS)
Croitoru, M.; Grecu, D.
1978-06-01
The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)
Resonant inelastic scattering by use of geometrical optics.
Schulte, Jörg; Schweiger, Gustav
2003-02-01
We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.
Theory of neutron resonance cross sections for safety applications
International Nuclear Information System (INIS)
Froehner, F.H.
1992-09-01
Neutron resonances exert a strong influence on the behaviour of nuclear reactors, especially on their response to the temperature changes accompanying power excursions, and also on the efficiency of shielding materials. The relevant theory of neutron resonance cross sections including the practically important approximations is reviewed, both for the resolved and the unresolved resonance region. Numerical techniques for Doppler broadening of resonances are presented, and the construction of group constants and especially of self-shielding factors for neutronics calculations is outlined. (orig.) [de
Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation
DEFF Research Database (Denmark)
Holm, Sonja Lindahl
are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons...... contains antiferromagnetically coupled Cu2+ S = 1=2 ions forming truncated 24-spin cube clusters of linked triangles. The clusters in boleite afford a situation intermediate between molecular and bulk magnetism, accessible to both experiment and numerical theory, in which a spin liquid can be studied...... the impact of the time structure (pulse length and repetition frequency) choice for ESS are appended. McStas simulations of a low resolution cold powder diffractometer and high resolution thermal powder diffractometer with wavelength frame multiplication have been carried out for 20 different settings...
Kartini Research Reactor prospective studies for neutron scattering application
International Nuclear Information System (INIS)
Widarto
1999-01-01
The Kartini Research Reactor (KRR) is located in Yogyakarta Nuclear Research Center, Yogyakarta - Indonesia. The reactor is operated for 100 kW thermal power used for research, experiments and training of nuclear technology. There are 4 beam ports and 1 column thermal are available at the reactor. Those beam ports have thermal neutron flux around 10 7 n/cm 2 s each other and used for sub critical assembly, neutron radiography studies and Neutron Activation Analysis (NAA). Design of neutron collimator has been done for piercing radial beam port and the calculation result of collimated neutron flux is around 10 9 n/cm 2 s. This paper describes experiment facilities and parameters of the Kartini research reactor, and further more the prospective studies for neutron scattering application. The purpose of this paper is to optimize in utilization of the beam ports facilities and enhance the manpower specialty. The special characteristic of the beam ports and preliminary studies, pre activities regarding with neutron scattering studies for KKR is presented. (author)
Shape dependent resonance light scattering properties of gold nanorods
International Nuclear Information System (INIS)
Zhu Jian; Huang Liqing; Zhao Junwu; Wang Yongchang; Zhao Yanrui; Hao Limei; Lu Yimin
2005-01-01
Suspended gold nanorods with mean aspect ratio 2.5 have been synthesized via electrochemical method. Resonance scattering properties have been studied. Two scattering peaks fixed at 400 and 640 nm are due to the scattering of the gold nanorods via coupling to the transverse and longitudinal surface plasmon resonance. The quasi-static calculation results indicate that with the increasing aspect ratio of the nanorods, the longer wavelength scattering peak red shifts linearly and the shorter wavelength peak blue shifts non-linearly. When aspect ratio a/b = 1.0, ellipse degenerate to sphere and the two peaks unite into one peak at 450 nm
Neutron detection in the frame of spatial magnetic spin resonance
Energy Technology Data Exchange (ETDEWEB)
Jericha, Erwin, E-mail: jericha@ati.ac.at [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Bosina, Joachim [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Austrian Academy of Sciences, Stefan Meyer Institute, Boltzmanngasse 3, 1090 Wien (Austria); Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Geltenbort, Peter [Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Hino, Masahiro [Kyoto University, Research Reactor Institute, Kumatori, Osaka 590-0494 (Japan); Mach, Wilfried [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Oda, Tatsuro [Kyoto University, Department of Nuclear Engineering, Kyoto 615-8540 (Japan); Badurek, Gerald [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria)
2017-02-11
This work is related to neutron detection in the context of the polarised neutron optics technique of spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential of this method. A combination of spatially and temporally resolving neutron detection allowed us to characterize a prototype neutron resonator. With this detector we were able to record neutron time-of-flight spectra, assess and minimise neutron background and provide for normalisation of the spectra owing to variations in reactor power and ambient conditions at the same time.
Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science
International Nuclear Information System (INIS)
Ioffe, Alexander
2013-01-01
Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)
International Nuclear Information System (INIS)
Sueyoshi, Hitoshi; Ishikawa, Nobuyuki; Yamada, Katsumi; Sato, Kaoru; Nakagaito, Tatsuya; Matsuda, Hiroshi; Arakaki, Yu; Tomota, Yo
2014-01-01
Recently, the neutron beam techniques have been applied for steel researches and industrial applications. In particular, the neutron diffraction is a powerful non-destructive method that can analyze phase transformation and residual stress inside the steel. The small-angle neutron scattering is also an effective method for the quantitative evaluation of microstructures inside the steel. In this study, in-situ neutron diffraction measurements during tensile test and heat treatment were conducted in order to investigate the deformation and transformation behaviors of TRIP steels. The small-angle neutron scattering measurements of TRIP steels were also conducted. Then, the neutron diffraction analysis was conducted on the high strength steel weld joint in order to investigate the effect of the residual stress distribution on the weld cracking. (author)
Grazing incidence polarized neutron scattering in reflection ...
Indian Academy of Sciences (India)
journal of. January 2012 physics pp. 1–58. Grazing incidence polarized ..... atomic distances, the neutron has an energy which is low compared to molecular binding ...... cores and that of the Co ions in the AF oxide coatings. ...... [32] C Leighton, M R Fitzsimmons, P Yashar, A Hoffmann, J Nogus, J Dura, C F Majkrzak and.
Neutron-scattering studies of magnetic superconductors
International Nuclear Information System (INIS)
Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.A.; Pringle, O.A.
1982-01-01
Results obtained in the last few years obtained by neutron diffraction on the nature of the magnetic ordering in magnetic superconductors are reviewed. Emphasis is given to studies of the complex intermediate phase in ferromagnetic superconductors where both superconductivity and ferromagnetism appear to coexist
Optics for Advanced Neutron Imaging and Scattering
International Nuclear Information System (INIS)
Moncton, David E.; Khaykovich, Boris
2016-01-01
During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.
Investigation of static and dynamic properties of condensed matter by using neutron scattering
International Nuclear Information System (INIS)
Davidovic, M.
1997-01-01
Possibilities of using neutron scattering for investigating microscopic properties of materials are analyzed. Basic neutron scattering theory is presented and its use in structure and dynamics analyses of condense systems. (author)
Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem
International Nuclear Information System (INIS)
William Charlton
2007-01-01
Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions
Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer
International Nuclear Information System (INIS)
Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.
2003-01-01
The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6 Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the (n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6 Li-glass neutron detector and γ detector configurations
Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer
Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.
2003-02-01
The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.
Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer
Energy Technology Data Exchange (ETDEWEB)
Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A. E-mail: antonino.pietropaolo@roma2.infn.it; Senesi, R
2003-02-01
The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH{sub 2} samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing {sup 6}Li-glass neutron detectors and NaI {gamma} detectors revealing the {gamma}-ray cascade from the (n,{gamma}) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both {sup 6}Li-glass neutron detector and {gamma} detector configurations.
Anomalous neutron scattering in nuclear-polarized media
International Nuclear Information System (INIS)
Bashkin, E.P.
1989-01-01
A novel inelastic scattering exchange mechanism involving spin flip is considered for slow neutrons moving through a nuclear-polarized medium. The scattering is accompanied by the emission or absorption of thermal fluctuations of the transverse magnetization of the medium. The main role in the fluctuations is played by weakly decaying Larmor precession of the nuclear spins in an external magnetic field. Under 'giant opalescence' conditions the effect is enormous and the respective cross sections exceed significantly those for ordinary elastic scattering. Thus, for 29 Si and 3 He in typical experimental conditions the cross sections for the inelastic processes are of the order of 10 5 -10 6 barn
A Neutron Scattering Study of Collective Excitations in Superfluid Helium
DEFF Research Database (Denmark)
Graf, E. H.; Minkiewicz, V. J.; Bjerrum Møller, Hans
1974-01-01
Extensive inelastic-neutron-scattering experiments have been performed on superfluid helium over a wide range of energy and momentum transfers. A high-resolution study has been made of the pressure dependence of the single-excitation scattering at the first maximum of the dispersion curve over...... of the multiexcitation scattering was also studied. It is shown that the multiphonon spectrum of a simple Debye solid with the phonon dispersion and single-excitation cross section of superfluid helium qualitatively reproduces these data....
Neutron scattering facilities at China Institute of Atomic Energy. Present and future situations
International Nuclear Information System (INIS)
Ye, C.T.; Gou, C.; Yang, T.H.
2001-01-01
The 15 MW Heavy Water Research Reactor (HWRR) at CIAE in Beijing is the only neutron source available for neutron scattering experiments in China at present. So far totally 5 neutron scattering spectrometers are installed at 4 beam tubes. A 60 MW new research reactor, China Advanced Research Reactor (CARR), now is being built at CIAE to meet the increasing demand of neutron scattering research in China. A brief description of HWRR, the presently existing neutron scattering equipments at HWRP, CARR, and the neutron scattering facilities to be installed at CARR are presented. (J.P.N.)
Small angle neutron scattering studies of mixed micelles of sodium
Indian Academy of Sciences (India)
The aqueous solutions of sodium cumene sulphonate (NaCS) and its mixtures with each of cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) are characterized by small angle neutron scattering (SANS). NaCS when added to CTAB solution leads to the formation of long rod-shaped micelles with ...
Spin-Echo Small-Angle Neutron Scattering Development
Uca, O.
2003-01-01
Spin-Echo Small-Angle Neutron Scattering (SESANS) instrument is a novel SANS technique which enables one to characterize distances from a few nanometers up to the micron range. The most striking difference between normal SANS and SESANS is that in SESANS one gets information in real space, whereas
Neutron transport in two dissimilar media anisotropic scattering
International Nuclear Information System (INIS)
Burkart, A.R.; Ishiguro, Y.; Siewert, C.E.
1976-01-01
The elementary solution of the one-speed neutron-transport equation with linearly anisotropic scattering are used in conjunction with Chandrasekhar's invariance principles to solve in a concise manner the Milne problem for two adjoining half-spaces and the critical reactor problem for a reflected slab
Inelastic Neutron Scattering Investigations of the Magnetic Excitations
DEFF Research Database (Denmark)
Feile, R; Kjems, Jørgen; Hauser, A.
1984-01-01
The magnetic excitations perpendicular to the antiferromagnetic chains in CsVX3 (X = Cl, Br, I) have been measured in the ordered state by inelastic neutron scattering. The dispersion relations and intensity distributions are those expected for ordinary spin waves in a triangular xy-model....
Small-angle neutron scattering studies on water soluble complexes ...
Indian Academy of Sciences (India)
... by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCP-SDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were ...
One-phonon scattering of ultra cold neutrons in copper
International Nuclear Information System (INIS)
Holas, A.
1977-01-01
Experiments with ultra cold neutrons (UCN) showed that their lifetime in a closed vessel is much smaller than expected. In order to explain this phenomenon, many different mechanisms leading to heating of UCN were proposed, among other things one-phonon coherent inelastic scattering (with phonon absorption). This paper shows quantitatively the contribution of this process to the total heating of UCN
Spin-wave and critical neutron scattering from chromium
DEFF Research Database (Denmark)
Als-Nielsen, Jens Aage; Axe, J.D.; Shirane, G.
1971-01-01
Chromium and its dilute alloys are unique examples of magnetism caused by itinerant electrons. The magnetic excitations have been studied by inelastic neutron scattering using a high-resolution triple-axis spectrometer. Spin-wave peaks in q scans at constant energy transfer ℏω could, in general...
A national facility for small angle neutron scattering
International Nuclear Information System (INIS)
Buyers, W.J.L.; Katsaras, J.; Mellors, W.; Potter, M.M.; Powell, B.M.; Rogge, R.B.; Root, J.H.; Tennant, D.C.; Tun, Z.
1995-01-01
A world-class small angle neutron scattering (SANS) facility is proposed for Canada. It will provide users from the fields of biology, chemistry, physics, materials science and engineering with a uniquely powerful tool for investigating microstructural properties whose length scales lie in the optical to atomic range. (author). 7 refs
Neutron scattering and the 1994 Nobel Physics Prize
International Nuclear Information System (INIS)
Sun Xiangdong
1995-01-01
Neutron scattering is an efficient method for detecting the microstructure of matter by which we can study, for example, details of the phonon spectrum in solids, and the isotopic effect. Bertram N. Brockhouse and Clifford G. Shull earned the Nobel Physics Prize in 1994 for their significant contributions in this domain
Benchmarking the inelastic neutron scattering soil carbon method
The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...
Characterization of alumina using small angle neutron scattering (SANS)
International Nuclear Information System (INIS)
Megat Harun Al Rashidn Megat Ahmad; Abdul Aziz Mohamed; Azmi Ibrahim; Che Seman Mahmood; Edy Giri Rachman Putra; Muhammad Rawi Muhammad Zin; Razali Kassim; Rafhayudi Jamro
2007-01-01
Alumina powder was synthesized from an aluminium precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was high purity and highly crystalline αphase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder. (Author)
Studies of magnetism with inelastic scattering of cold neutrons
International Nuclear Information System (INIS)
Jacrot, B.
1964-01-01
Inelastic scattering of cold neutrons can be used to study some aspects of magnetism: spins waves, exchange integrals, vicinity of Curie point. After description of the experimental set-up, several experiments, in the fields mentioned above, are analysed. (author) [fr
Progress in small angle neutron scattering activities in Malaysia
International Nuclear Information System (INIS)
Abdul Aziz Bin Mohamed; Azali Bin Muhamad; Shukri Bin Mohd
1999-01-01
The current status of SANS (Small Angle Neutron Scattering facility) activities in Malaysia has been presented. Many works need to be done for system improvement before the system can be confidently used as one of effective quality control tools in materials production and engineering sectors. (author)
Neutron-proton elastic scattering at high energies
Energy Technology Data Exchange (ETDEWEB)
Saleem, M.; Fazal-e-Aleem (Punjab Univ., Lahore (Pakistan). Dept. of Physics)
1980-09-06
The most recent measurements of the differential and total cross sections of neutron-proton elastic scattering from 70 to 400 GeV/c have been explained by using rho as a simple pole and pomeron as a dipole. The predictions are also made regarding the energy dependence of dip and bump structure in angular distribution.
A national facility for small angle neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Buyers, W J.L.; Katsaras, J; Mellors, W; Potter, M M; Powell, B M; Rogge, R B; Root, J H; Tennant, D C; Tun, Z [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Epand, R; Gaulin, B D [McMaster Univ., Hamilton, ON (Canada)
1995-09-15
A world-class small angle neutron scattering (SANS) facility is proposed for Canada. It will provide users from the fields of biology, chemistry, physics, materials science and engineering with a uniquely powerful tool for investigating microstructural properties whose length scales lie in the optical to atomic range. (author). 7 refs.
High energy spin waves in iron measured by neutron scattering
International Nuclear Information System (INIS)
Boothroyd, A.T.; Paul, D.M.; Mook, H.A.
1991-01-01
We present new results for the spin were dispersion relation measured along the [ζζ0] direction in bcc iron (12% silicon) by time-of-flight, neutron inelastic scattering. The excitations were followed to the zone boundary, where they are spread over a range of energies around 300meV. 6 refs., 2 figs
Small angle neutron scattering studies on the interaction of cationic
Indian Academy of Sciences (India)
The structure of the protein–surfactant complex of bovine serum albumin (BSA) and cationic surfactants has been studied by small angle neutron scattering. At low concentrations, the CTAB monomers are observed to bind to the protein leading to an increase in its size. On the other hand at high concentrations, surfactant ...
Small-angle neutron scattering studies of nonionic surfactant: Effect
Indian Academy of Sciences (India)
Micellar solution of nonionic surfactant -dodecyloligo ethyleneoxide surfactant, decaoxyethylene monododecyl ether [CH3(CH2)11(OCH2CH2)10OH], C12E10 in D2O solution have been analysed by small-angle neutron scattering (SANS) at different temperatures (30, 45 and 60°C) both in the presence and absence of ...
Lattice dynamics of solid deuterium by inelastic neutron scattering
DEFF Research Database (Denmark)
Nielsen, Mourits; Bjerrum Møller, Hans
1971-01-01
The dispersion relations for phonons in solid ortho-deuterium have been measured at 5 °K by inelastic neutron scattering. The results are in good agreement with recent calculations in which quantum effects are taken into account. The data have been fitted to a third-neighbor general force model...
Dynamics of Magnetic Nanoparticles Studied by Neutron Scattering
DEFF Research Database (Denmark)
Hansen, Mikkel Fougt; Bødker, Franz; Mørup, Steen
1997-01-01
We present the first triple-axis neutron scattering measurements of magnetic fluctuations in nanoparticles using an antiferromagnetic reflection. Both the superparamagnetic relaxation and precession modes in similar to 15 nm hematite particles are: observed. The results have been consistently...... analyzed on the basis of a simple model with uniaxial anisotropy and the Neel-Brown theory for the relaxation....
Spin dynamics in Tb studied by critical neutron scattering
DEFF Research Database (Denmark)
Dietrich, O. W.; Als-Nielsen, Jens Aage
1971-01-01
The inelasticity of the critical neutron scattering in Tb was measured at and above the Neel temperature. In the hydrodynamic region the line width Gamma (q=0, kappa 1)=C kappa z1, with z=1.4+or-0.1 and c=4.3+or-0.3 meVAAz. This result deviates from the conventional theory, which predicts...
Diffuse neutron scattering from anion-excess strontium chloride
DEFF Research Database (Denmark)
Goff, J.P.; Clausen, K.N.; Fåk, B.
1992-01-01
The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The a...
Inelastic neutron scattering from non-framework species within zeolites
International Nuclear Information System (INIS)
Newsam, J.M.; Brun, T.O.; Trouw, F.; Iton, L.E.; Curtiss, L.A.
1990-01-01
Inelastic and quasielastic neutron scattering have special advantages for studying certain of the motional properties of protonated or organic species within zeolites and related microporous materials. In this paper these advantages and various experimental methods are outlined, and illustrated by measurements of torsional vibrations and rotational diffusion of tetramethylammonium (TMA) cations occluded within zeolites TMA-sodalite, omega, ZK-4 and SAPO-20
Neutron Scattering from fcc Pr and Pr3Tl
DEFF Research Database (Denmark)
Birgeneau, R. J.; Als-Nielsen, Jens Aage; Bucher, E.
1972-01-01
Elastic-neutron-scattering measurements on the singlet-ground-state ferromagnets fcc Pr and Pr3 Tl are reported. Both exhibit magnetic phase transitions, possibly to a simple ferromagnetic state at 20 and 11.6 °K, respectively. The transitions appear to be of second order although that in fcc Pr...
Small-angle neutron scattering in materials science - an introduction
International Nuclear Information System (INIS)
Fratzl, P.
1996-01-01
The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs
Small-angle neutron scattering from colloidal dispersions
International Nuclear Information System (INIS)
Ottewill, R.H.
1991-01-01
A survey is given of recent work on the use of small-angle neutron scattering to examine colloidal dispersions. Particular attention is given to the determination of particle size and polydispersity, the determination of particle morphology and the behaviour of concentrated colloidal dispersions, both at rest and under the influence of an applied shear field. (orig.)
Inelastic neutron scattering from synthetic and biological polymers
International Nuclear Information System (INIS)
White, J.W.
1976-01-01
Neutron elastic and inelastic scattering measurements have provided many unique insights into structure, and by reviewing progress on synthetics, important differences likely to arise in biological systems are identified and a direction for studies of the latter is suggested. By neutron inelastic scattering it is possible to measure the frequency of thermally excited interatomic and intermolecular vibrations in crystals. With perfect organic and inorganic crystals the technique is now classical and has given great insight into the crystal forces responsible for the observed structures as well as the phase transitions they undergo. The study of polymer crystals immediately presents two problems of disorder: (1) Macroscopic disorder arises because the sample is a mixture of amorphous and crystalline fractions, and it may be acute enough to inhibit growth of a single crystal large enough for neutron studies. (2) Microscopic disorder in the packing of polymer chains in the ''crystalline'' regions is indicated by broadening of Bragg peaks. Both types of disorder problem arise in biological systems. The methods by which they were partially overcome to allow neutron measurements with synthetic polymers are described but first a classical example of the determination of interatomic forces by inelastic neutron scattering is given
A workshop on enhanced national capability for neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory
2009-01-01
This two-day workshop will engage the international neutron scattering community to vet and improve the Lujan Center Strategic Plan 2007-2013 (SP07). Sponsored by the LANL SC Program Office and the University of California, the workshop will be hosted by LANSCE Professor Sunny Sinha (UCSD). Endorsement by the Spallation Neutron Source will be requested. The discussion will focus on the role that the Lujan Center will play in the national neutron scattering landscape assuming full utilization of beamlines, a refurbished LANSCE, and a 1.4-MW SNS. Because the Lujan Strategic Plan is intended to set the stage for the Signature Facility era at LANSCE, there will be some discussion of the long-pulse spallation source at Los Alamos. Breakout groups will cover several new instrument concepts, upgrades to present instruments, expanded sample environment capabilities, and a look to the future. The workshop is in keeping with a request by BES to update the Lujan strategic plan in coordination with the SNS and the broader neutron community. Workshop invitees will be drawn from the LANSCE User Group and a broad cross section of the US, European, and Pacific Rim neutron scattering research communities.
Development of new methods for studying nanostructures using neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Pynn, Roger [Indiana Univ., Bloomington, IN (United States)
2016-03-18
The goal of this project was to develop improved instrumentation for studying the microscopic structures of materials using neutron scattering. Neutron scattering has a number of advantages for studying material structure but suffers from the well-known disadvantage that neutrons’ ability to resolve structural details is usually limited by the strength of available neutron sources. We aimed to overcome this disadvantage using a new experimental technique, called Spin Echo Scattering Angle Encoding (SESAME) that makes use of the neutron’s magnetism. Our goal was to show that this innovation will allow the country to make better use of the significant investment it has recently made in a new neutron source at Oak Ridge National Laboratory (ORNL) and will lead to increases in scientific knowledge that contribute to the Nation’s technological infrastructure and ability to develop advanced materials and technologies. We were successful in demonstrating the technical effectiveness of the new method and established a baseline of knowledge that has allowed ORNL to start a project to implement the method on one of its neutron beam lines.
Neutron-neutron quasifree scattering in nd breakup at 10 MeV
Directory of Open Access Journals (Sweden)
Malone R.C.
2016-01-01
We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.
Neutron Scattering at HIFAR—Glimpses of the Past
Directory of Open Access Journals (Sweden)
Margaret Elcombe
2017-04-01
Full Text Available This article attempts to give a description of neutron scattering down under for close on forty-six years. The early years describe the fledgling group buying parts and cobbling instruments together to its emergence as a viable neutron scattering group with up to ten working instruments. The second section covers the consolidation of this group, despite tough higher level management. The Australian Science and Technology Council (ASTEC enquiry in 1985 and the Government decision not to replace the HIgh Flux Australian Reactor (HIFAR, led to major expansion and upgrading of the existing neutron beam facilities during the 1990s. Finally, there were some smooth years of operation while other staff were preparing for the replacement reactor. It has concentrated on the instruments as they were built, modified, replaced with new ones, and upgraded at different times.
Diffuse scattering of neutrons and X-rays
International Nuclear Information System (INIS)
Novion, C.H. de
1978-01-01
Diffuse scattering is used to study defect concentrations of about 10 -4 in the case of X-rays and 10 -3 in the case of neutrons. The foundations of diffuse scattering formalism are given, some experimental devices described and a few applications discussed: study by diffraction on powders of defects in CeOsub(2-x); short-range order study by X-rays on Cusub(0.75) Ausub(0.25); short-range order study by neutrons on Cusub(0.435)Nisub(0.565); short-range order study by electrons TiOx; study of irradiation-induced self-interstitials in Al; study of holes created by neutrons in Al [fr
Long-Lifetime Low-Scatter Neutron Polarization Target
International Nuclear Information System (INIS)
Richardson, Jonathan M.
2004-01-01
Polarized neutrons scattering is an important technology for characterizing magnetic and other materials. Polarized helium three (P-3He) is a novel technology for creating polarized beams and, perhaps more importantly, for the analysis of polarization in highly divergent scattered beams. Analysis of scattered beams requires specialized targets with complex geometries to ensure accurate results. Special materials and handling procedures are required to give the targets a long useful lifetime. In most cases, the targets must be shielded from stray magnetic fields from nearby equipment. SRL has developed and demonstrated hybrid targets made from glass and aluminum. We have also developed and calibrated a low-field NMR system for measuring polarization lifetimes. We have demonstrated that our low-field system is able to measure NMR signals in the presence of conducting (metallic) cell elements. We have also demonstrated a non-magnetic valve that can be used to seal the cells. We feel that these accomplishments in Phase I are sufficient to ensure a successful Phase II program. The commercial market for this technology is solid. There are over nine neutron scattering centers in the US and Canada and over 22 abroad. Currently, the US plans to build a new $1.4B scattering facility called the Spallation Neutron Source (SNS). The technology developed in this project will allow SRL to supply targets to both existing and future facilities. SRL is also involved with the application of P-3He to medical imaging
Fast neutron scattering on actinide nuclei
International Nuclear Information System (INIS)
1982-01-01
More and more sophisticated neutron experiments have been carried out with better samples in several laboratories and it was necessary to intercompare them. In this respect, let us quote for example (n,n'e) and (n,n'#betta#) measurements. Moreover, high precision (p,p), (p,p') and (p,n) measurements have been made, thus supplementing neutron experiments in the determination of the parameters of the optical model, still widely used to describe the neutron-nucleus interaction. The optical model plays a major role and it is therefore essential to know it well. The spherical optical model is still very useful, especially because of its simplicity and of the relatively short calculation times, but is obviously insufficient to treat deformed nuclei such as actinides. For accurate calculations about these nuclei, it is necessary to use a deformed potential well and solve a set of coupled equations, hence long computational times. The importance of compound nucleus formation at low energy requires also a good knowledge of the statistical model together with that of all the reaction mechanisms which are involved, including fission for which an accurate barrier is necessary and, of course, well-adjusted level densities. The considerations form the background of the Scientific Programme set up by a Programme Committee whose composition is given further on in this book
Magnetic anisotropy and neutron scattering studies of some rare earth metals
International Nuclear Information System (INIS)
Day, R.
1978-08-01
The thesis is concerned with magnetic anisotropy of dysprosium and alloys of gadolinium: yttrium, and also neutron scattering studies of dysprosium. The experiments are discussed under the topic headings: magnetic anisotropy, rare earths, torque measurements, elastic neutron scattering, inelastic neutron scattering, dysprosium measurements, and results for the gadolinium: yttrium alloys. (U.K.)
Small-angle neutron scattering instrument at MINT
International Nuclear Information System (INIS)
Mohd Ali Sufi; Yusof Abdullah; Razali Kassim; Hamid; Shahidan Radiman; Mohammad Deraman; Abdul Ghaffar Ramli
1996-01-01
The Small Angle Neutron Scattering (SANS) Instrument has been developed at Malaysian Institute for Nuclear Technology Research (MINT) for studying structural properties of materials on the length scale 1 nm to 100 nm. This is the length scale which is relevant for many topics within soft condensed matter, like polymers, colloids, biological macromolecules, etc. The SANS is a complementary technique to X-ray and electron scattering. However, while these later techniques give information on structures near surface, SANS concerns the structure of the bulk. Samples studied by SANS technique are typically bulk materials of the sizes mm's to cm's, or materials dissolved in a liquid. This paper described the general characteristics of SANS instrument as well as the experimental formulation in neutron scattering. The preliminary results obtained by this instrument are shown
Fast-neutron scattering cross sections of elemental silver
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1982-05-01
Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160 0 . Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V
Incoherent neutron scattering in acetanilide and three deuterated derivatives
Barthes, Mariette; Almairac, Robert; Sauvajol, Jean-Louis; Moret, Jacques; Currat, Roland; Dianoux, José
1991-03-01
Incoherent-neutron-scattering measurements of the vibrational density of states of acetanilide and three deuterated derivatives are presented. These data allow one to identify an intense maximum, assigned to the N-H out-of-plane bending mode. The data display the specific behavior of the methyl torsional modes: large isotopic shift and strong low-temperature intensity; confirm our previous inelastic-neutron-scattering studies, indicating no obvious anomalies in the range of frequency of the acoustic phonons. In addition, the data show the existence of thermally activated quasielastic scattering above 100 K, assigned to the random diffusive motion of the methyl protons. These results are discussed in the light of recent theoretical models proposed to explain the anomalous optical properties of this crystal.
Slow neutron scattering in molecular crystals. 5-4
International Nuclear Information System (INIS)
Inoue, Kazuhiko
1976-01-01
The utilization of incoherent inelastic neutron scattering (INS) as a probe for molecular crystals is reviewed. In particular, some typical examples of the measurement of incoherent inelastic neutron scattering spectra (INSS) in molecular crystals are presented in the first section of this report. The results of measurement are shown for theta-xylene, benzene, polypropylene oxide, deuteride, and formic acid. The second section presents an equation for the incoherent scattering cross section of a crystal by dividing the molecular motion into the outer and inner modes. Phonon expansion is also used for the easy understanding of the relation between the INSS and the dynamic characteristics of molecular crystals. In the third section, the measured results are analyzed on the basis of the theory presented in the previous section. And the difference between the van der Waals bond and the hydrogen bond is shortly discussed. (Aoki, K.)
Resonant diffuse X-ray scattering from magnetic multilayers
International Nuclear Information System (INIS)
Spezzani, Carlo; Torelli, Piero; Delaunay, Renaud; Hague, C.F.; Petroff, Frederic; Scholl, Andreas; Gullikson, E.M.; Sacchi, Maurizio
2004-01-01
We have measured field-dependent resonant diffuse scattering from a magnetoresistive Co/Cu multilayer. We have observed that the magnetic domain size in zero field depends on the magnetic history of the sample. The results of the X-ray scattering analysis have been compared to PEEM images of the magnetic domains
International Nuclear Information System (INIS)
Witala, H.; Hueber, D.; Gloeckle, W.; Tornow, W.; Gonzalez Trotter, D.E.
1996-01-01
Data for the neutron-neutron final-state-interaction cross section obtained recently in a kinematically complete neutron-deuteron breakup experiment have been reanalyzed using rigorous solutions of the three-nucleon Faddeev equations with realistic nucleon-nucleon interactions. A discrepancy was found with respect to a recent analysis based on the W-matrix approximation to the Paris potential. We also estimate theoretical uncertainties in extracting the neutron-neutron scattering length resulting from the use of different nucleon-nucleon interactions and the possible action of the two pion-exchange three-nucleon force. We find that there exists a certain production angle for the interacting neutron-neutron pair where the uncertainties become minimal. (author)
Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet
DEFF Research Database (Denmark)
Lefmann, K.; Hedegård, P.
1994-01-01
In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...
The analysis and correction of neutron scattering effects in neutron imaging
International Nuclear Information System (INIS)
Raine, D.A.; Brenizer, J.S.
1997-01-01
A method of correcting for the scattering effects present in neutron radiographic and computed tomographic imaging has been developed. Prior work has shown that beam, object, and imaging system geometry factors, such as the L/D ratio and angular divergence, are the primary sources contributing to the degradation of neutron images. With objects smaller than 20--40 mm in width, a parallel beam approximation can be made where the effects from geometry are negligible. Factors which remain important in the image formation process are the pixel size of the imaging system, neutron scattering, the size of the object, the conversion material, and the beam energy spectrum. The Monte Carlo N-Particle transport code, version 4A (MCNP4A), was used to separate and evaluate the effect that each of these parameters has on neutron image data. The simulations were used to develop a correction algorithm which is easy to implement and requires no a priori knowledge of the object. The correction algorithm is based on the determination of the object scatter function (OSF) using available data outside the object to estimate the shape and magnitude of the OSF based on a Gaussian functional form. For objects smaller than 1 mm (0.04 in.) in width, the correction function can be well approximated by a constant function. Errors in the determination and correction of the MCNP simulated neutron scattering component were under 5% and larger errors were only noted in objects which were at the extreme high end of the range of object sizes simulated. The Monte Carlo data also indicated that scattering does not play a significant role in the blurring of neutron radiographic and tomographic images. The effect of neutron scattering on computed tomography is shown to be minimal at best, with the most serious effect resulting when the basic backprojection method is used
Neutron scattering from a substitutional mass defect
International Nuclear Information System (INIS)
Williams, R.D.; Lovesey, S.W.
1985-06-01
The dynamic structure factor is calculated for a low concentration of light mass scatterers substituted in a cubic crystal matrix. A new numerical method for the exact calculation is demonstrated. A local density of states for the low momentum transfer limit, and the shifts and widths of the oscillator peaks in the high momentum transfer limit are derived. The limitations of an approximation which decouples the defect from the lattice is discussed. (author)
International Nuclear Information System (INIS)
Vinhas, L.A.
1980-05-01
Molecular dynamics was studied in samples of tert-butanol, cyclohexanol and methanol, using neutron inelastic and quasi-elastic techniques. The frequency spectra of cyclohexanol in crystalline phase were interpreted by assigning individual energy peaks to hindered rotation of molecules, lattice vibration, hydrogen bond stretching and ring bending modes. Neutron quasi-elastic scattering measurements permitted the testing of models for molecular diffusion as a function of temperature. The interpretation of neutron incoherent inelastic scattering on methanol indicated the different modes of molecular dynamics in this material; individual inelastic peaks in the spectra could be assigned to vibrations of crystalline lattice, stretching of hydrogen bond and vibrational and torsional modes of CH 3 OH molecule. The results of the experimental work on tertbutanol indicate two distinct modes of motion in this material: individual molecular librations are superposed to a cooperative rotation diffusion which occurs both in solid and in liquid state
A thermal neutron scattering law for yttrium hydride
Zerkle, Michael; Holmes, Jesse
2017-09-01
Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.
International Nuclear Information System (INIS)
Grinev, V.G.; Kudinova, O.I.; Novokshonova, L.A.; Kuznetsov, S.P.; Udovenko, A.I.; Shelagin, A.V.
2006-01-01
Very cold neutrons (VCN) with the wavelength λ > 4.0 ran are convenient tool for investigating the super molecular structures of different nature. Using a Born approximation (BA) to the analysis of dependencies on the wavelength of the VCN scattering cross sections, it is possible to obtain information about average sizes (R) and concentrations of the scattering particles with R∼ λ. However, with an increasing the sizes of scatterers the conditions for BA applicability can be disrupted. In this work we investigated the possibilities of BA, eikonal and geometric-optical approximations for the analysis of VCN scattering on the spherical particles with R ≥ λ
Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments
International Nuclear Information System (INIS)
Dawidowski, J; Blostein, J J; Granada, J R
2006-01-01
Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis of the method is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined
Resonance magnetic x-ray scattering study of erbium
DEFF Research Database (Denmark)
Sanyal, M.K.; Gibbs, D.; Bohr, J.
1994-01-01
The magnetic phases of erbium have been studied by resonance x-ray-scattering techniques. When the incident x-ray energy is tuned near the L(III) absorption edge, large resonant enhancements of the magnetic scattering are observed above 18 K. We have measured the energy and polarization dependence...... of this magnetic scattering and analyzed it using a simple model based on electric dipole and quadrupole transitions among atomic orbitals. The line shapes can be fitted to a magnetic structure combining both c-axis-modulated and basal-plane components. Below 18 K, we have observed unusual behavior of the magnetic...
Neutron scattering investigation of magnetic excitations at high energy transfers
International Nuclear Information System (INIS)
Loong, C.K.
1984-01-01
With the advance of pulsed spallation neutron sources, neutron scattering investigation of elementary excitations in magnetic materials can now be extended to energies up to several hundreds of MeV. We have measured, using chopper spectrometers and time-of-flight techniques, the magnetic response functions of a series of d and f transition metals and compounds over a wide range of energy and momentum transfer. In PrO 2 , UO 2 , BaPrO 3 and CeB 6 we observed crystal-field transitions between the magnetic ground state and the excited levels in the energy range from 40 to 260 MeV. In materials exhibiting spin-fluctuation or mixed-valent character such as Ce 74 Th 26 , on the other hand, no sharp crystal-field lines but a broadened quasielastic magnetic peak was observed. The line width of the quasielastic component is thought to be connected to the spin-fluctuation energy of the 4f electrons. The significance of the neutron scattering results in relation to the ground state level structure of the magnetic ions and the spin-dynamics of the f electrons is discussed. Recently, in a study of the spin-wave excitations in itinerant magnetic systems, we have extended the spin-wave measurements in ferromagnetic iron up to about 160 MeV. Neutron scattering data at high energy transfers are of particular interest because they provide direct comparison with recent theories of itinerant magnetism. 26 references, 7 figures
US-Japan Cooperative Program on neutron scattering
International Nuclear Information System (INIS)
Wilkinson, M.K.; Blume, M.; Stevens, D.K.; Iizumi, M.; Yamada, Y.
1987-01-01
The US-Japan Cooperative Program on Neutron Scattering was implemented through arrangements by the United States Department of Energy with the Science and Technology Agency (STA) and the Ministry of Science, Education, and Culture (Monbusho) of Japan. It involves research collaboration in neutron scattering by Japanese scientists with scientists at Oak Ridge National Laboratory (ORNL) and Brookhaven National Laboratory (BNL) and the construction of new neutron scattering equipment at both laboratories with funds provided by the Japanese government. The United States provides neutrons in exchange for the new equipment, and other costs of the program are equally shared by the two countries. The assignments of Japanese scientists to ORNL and BNL vary in length, but they correspond to about two person years annually at each laboratory. An equal number of US scientists also participate in the research program. The main research collaboration is centered around the new equipment provided by the Japanese, but other facilities are utilized when they are needed. The new equipment includes a new type of wide-angle diffractometer and equipment for maintaining extreme sample environments at ORNL and a sophisticated polarized-beam triple-axis spectrometer at BNL. 13 refs., 3 figs
Photon detectors for epithermal neutron scattering at high-ω and low-q
International Nuclear Information System (INIS)
Pietropaolo, A.; Senesi, R.; Tardocchi, M.; Andreani, C.; Gorini, G.
2004-01-01
Inelastic epithermal neutron scattering at high energy (ℎω≥1 eV) and low wave vector (q≤10 A -1 ) transfers is the unique technique for the investigation of high-energy excitations in a variety of systems, ranging from magnetic materials to semiconductors. The key issue in order to make these measurements feasible on inverse geometry spectrometers, is to develop suitable detection systems for neutrons in the energy range 1-100 eV. The Resonance Detector Spectrometer configuration has to be considered as the most promising approach for electron Volt neutron spectroscopy. This configuration will be employed in the new low angle detector bank, VLAD, planned for VESUVIO spectrometer operating at ISIS source
Soil-Carbon Measurement System Based on Inelastic Neutron Scattering
International Nuclear Information System (INIS)
Orion, I.; Wielopolski, L.
2002-01-01
Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements
2009 International Conference on Neutron Scattering (ICNS 2009)
Energy Technology Data Exchange (ETDEWEB)
Gopal Rao, PhD; Gillespie, Donna
2010-08-05
The ICNS provides a focal point for the worldwide neutron user community to strengthen ties within this diverse group, while at the same time promoting neutron research among colleagues in related disciplines identified as would-be neutron users. The International Conference on Neutron Scattering thus serves a dual role as an international user meeting and a scientific meeting. As a venue for scientific exchange, the ICNS showcases recent results and provides forums for scientific discussion of neutron research in diverse fields such as hard and soft condensed matter, liquids, biology, magnetism, engineering materials, chemical spectroscopy, crystal structure, and elementary excitations, fundamental physics and development of neutron instrumentation through a combination of invited talks, contributed talks and poster sessions. Each of the major national neutron facilities (NIST, LANSCE, ANL, HFIR and SNS), along with their international counterparts, has an opportunity to exchange information with each other and to update users, and potential users, of their facility. This is also an appropriate forum for users to raise issues that relate to the facilities.
Neutron Cross section Covariances in the Resonance region: 50,53Cr, 54,57Fe and 60Ni
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho,Y.-S.; Mattoon,C.M.; Mughabghab,S.F.
2010-11-23
We evaluated covariances in the neutron resonance region for capture and elastic scattering cross sections on minor structural materials, {sup 50,53}Cr, {sup 54,57}Fe and {sup 60}Ni. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. Our results of most interest for advanced fuel cycle applications, elastic scattering cross section uncertainties at energies around 100 keV, are on the level of about 7-10%.
Neutron capture measurements and resonance parameters of dysprosium
Energy Technology Data Exchange (ETDEWEB)
Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)
2017-10-15
Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)
Activity report on neutron scattering research
International Nuclear Information System (INIS)
Nagao, M.; Tawata, N.; Fujii, Y.
1998-01-01
The experiments performed on the thirteen university-owned spectrometers installed at JRR-3M of JAERI in the fiscal year of 1997 were described in this report. The latest ''Neutron News'' (vol. 9, issue 3, 1998) has featured highlights of the activities based on the JRR-3M and its cover displays a graph showing an endless increase of the number of proposals to the users program in the fiscal 1997. The university-owned spectrometers are available for general users all over Japan. The users' requirement for a higher flux beam reactor became larger and larger with time. Thus, JAERI has refurbished JRR-3 to satisfy these demands. In 1997, a joint project between Chiba University and Institute for Solid State Physics (ISSP) started to build a new 4-cycle diffractometer for crystal physics/chemistry at T 2-2 beam port on a thermal guide. (M.N.)
Liquid dynamics and inelastic scattering of neutrons
Energy Technology Data Exchange (ETDEWEB)
De Gennes, P. G. [Commissariat a l' energie atomique et aux energies alternatives - CEA, CEN de Saclay, Gif sur Yvette (France)
1960-07-01
The energy transfers in one collision between a neutron and a liquid are computed by a method of moments. It is shown that for large momentum transfers a perfect gas model is correct. For small momentum transfers a macroscopic description of the density fluctuations in the liquid is applicable. It is in the intermediate region (where diffraction peaks are observed) that the method of moments is most useful. These different experimental situations are discussed for liquids where recoil and quantum effects are negligible, and numerical results are given for argon. An approximation for the so called autocorrelation function, valid for both long and short time scales and all distances, is also presented. Reprint of a paper published in Physica 25, 1959, p. 825-839.
Applications of neutron scattering to heterogeneous catalysis
International Nuclear Information System (INIS)
Parker, Stewart F; Lennon, David
2016-01-01
Historically, most studies of heterogeneous catalysts that have used neutron vibrational spectroscopy have employed indirect geometry instruments with a low (<40 cm -1 ) final energy. In this paper we examine the reasons why this has been the case and highlight the advantages and disadvantages of this approach. We then show how some of these may be overcome by the use of direct geometry spectrometers. We illustrate the use of direct geometry spectrometers with examples from reforming of methane to synthesis gas (CO + H 2 ) over Ni/Al 2 O 3 catalysts and an operando study of CO oxidation. We conclude with a proposal for a unique instrument that combines both indirect and direct geometry spectrometers. (paper)
Studies of Water by Scattering of Slow Neutrons
International Nuclear Information System (INIS)
Skoeld, K.; Pilcher, E.; Larsson, K.E.
1964-01-01
The quasielastic scattering peak in light water at room temperature has been studied with neutrons of energy ∼ 5x10 -3 eV. The width and shape of the peak has been determined by the time-of-flight technique at two scattering angles. If it is assumed that the broad inelastic spectrum is due to scattering by a monoatomic gas of mass 18, it is found that the quasielastic scattering is in good agreement with the predictions by the continuous diffusion model. Inelastic spectra were recorded up to 13x10 -3 eV. Indications of two discrete energy transfers (8 and 14x10 -4 eV) are observed in the 90 deg run. The results are discussed and compared with earlier observations
Studies of Water by Scattering of Slow Neutrons
Energy Technology Data Exchange (ETDEWEB)
Skoeld, K; Pilcher, E; Larsson, K E
1964-01-15
The quasielastic scattering peak in light water at room temperature has been studied with neutrons of energy {approx} 5x10{sup -3} eV. The width and shape of the peak has been determined by the time-of-flight technique at two scattering angles. If it is assumed that the broad inelastic spectrum is due to scattering by a monoatomic gas of mass 18, it is found that the quasielastic scattering is in good agreement with the predictions by the continuous diffusion model. Inelastic spectra were recorded up to 13x10{sup -3} eV. Indications of two discrete energy transfers (8 and 14x10{sup -4} eV) are observed in the 90 deg run. The results are discussed and compared with earlier observations.
Resonant inelastic scattering of quasifree electrons on ions
International Nuclear Information System (INIS)
Grabbe, S.
1994-01-01
Several studies of resonant-transfer excitation (RTE) have been reported in ion-atom collisions where the doubly excited autoionizing states are produced. Such a complex collision can be approximated as the scattering of quasifree electrons of the target from the projectile ion. Most of the investigations have been restricted to the deexcitation of the autoionizing states to the ground state by Auger electron emission. It has been shown that there is a strong interference between the elastic scattering amplitude and the resonance amplitude. The authors present here the cases where the corresponding interference is between the inelastic scattering and the resonance process. Recent work on 3 ell 3 ell ' resonances that decay predominantly to n=2 states will be presented for C 5+ -molecular hydrogen collisions
Optimization of virtual source parameters in neutron scattering instrumentation
International Nuclear Information System (INIS)
Habicht, K; Skoulatos, M
2012-01-01
We report on phase-space optimizations for neutron scattering instruments employing horizontal focussing crystal optics. Defining a figure of merit for a generic virtual source configuration we identify a set of optimum instrumental parameters. In order to assess the quality of the instrumental configuration we combine an evolutionary optimization algorithm with the analytical Popovici description using multidimensional Gaussian distributions. The optimum phase-space element which needs to be delivered to the virtual source by preceding neutron optics may be obtained using the same algorithm which is of general interest in instrument design.
Reports of the study group for neutron scattering
International Nuclear Information System (INIS)
1982-01-01
This report covers the activities from July 1980 to December 1981. Within this period, the project for reactor extension (including a thermal neutron source and a hall for the neutron guide), was worked out in detail. Like the Fritz-Haber Institute, the Institute for Crystallography of Tuebingen University decided to send a number of guest-scientists for studies at the Hahn-Meitner Institute on a permanent basis. The HMI also organized the 5th International Conference on Small-Angle Scattering, held in Berlin in October 1980. The scientific research work was mainly concerned with magnetic systems, molecular crystals, and the determination of electron densities. (orig.)
Progress report on JAERI-ORNL cooperative neutron scattering research
International Nuclear Information System (INIS)
Iizumi, Masashi
1985-08-01
One year activities done under the JAERI-DOE(ORNL) cooperative neutron scattering program are summarized. This period just followed the completion of the wide-angle neutron diffractometer dedicated to the cooperative research. The report contains results of the performance test of the instrument and early research activities. The latter part includes the time-resolved measurements of the transition kinetics in tin and Ni-Mn alloy as well as the single-crystal diffraction by the flat-cone method. (author)
Inelastic neutron scattering of H2 adsorbed in HKUST-1
International Nuclear Information System (INIS)
Liu, Y.; Brown, C.M.; Neumann, D.A.; Peterson, V.K.; Kepert, C.J.
2007-01-01
A series of inelastic neutron scattering (INS) investigations of hydrogen adsorbed in activated HKUST-1 (Cu 3 (1,3,5-benzenetricarboxylate) 2 ) result in INS spectra with rich features, even at very low loading ( 2 :Cu). The distinct inelastic features in the spectra show that there are three binding sites that are progressively populated when the H 2 loading is less than 2.0 H 2 :Cu, which is consistent with the result obtained from previous neutron powder diffraction experiments. The temperature dependence of the INS spectra reveals the relative binding enthalpies for H 2 at each site
DNS: Diffuse scattering neutron time-of-flight spectrometer
Directory of Open Access Journals (Sweden)
Yixi Su
2015-08-01
Full Text Available DNS is a versatile diffuse scattering instrument with polarisation analysis operated by the Jülich Centre for Neutron Science (JCNS, Forschungszentrum Jülich GmbH, outstation at the Heinz Maier-Leibnitz Zentrum (MLZ. Compact design, a large double-focusing PG monochromator and a highly efficient supermirror-based polarizer provide a polarized neutron flux of about 107 n cm-2 s-1. DNS is used for the studies of highly frustrated spin systems, strongly correlated electrons, emergent functional materials and soft condensed matter.
A quasi-elastic neutron scattering and neutron spin-echo study of hydrogen bonded system
Energy Technology Data Exchange (ETDEWEB)
Branca, C.; Faraone, A.; Magazu, S.; Maisano, G.; Mangione, A
2004-07-15
This work reports neutron spin echo results on aqueous solutions of trehalose, a naturally occurring disaccharide of glucose, showing an extraordinary bioprotective effectiveness against dehydration and freezing. We collected data using the SPAN spectrometer (BENSC, Berlin) on trehalose aqueous solutions at different temperature values. The obtained findings are compared with quasi-elastic neutron scattering results in order to furnish new results on the dynamics of the trehalose/water system on the nano and picoseconds scale.
International Nuclear Information System (INIS)
Stockmeyer, R.
1976-01-01
The intensity distribution of slow neutrons scattered by adsorbed hydrocarbon molecules contains information on the dynamics of the molecules. In this paper the scattering law for incoherently scattering molecules is derived taking into account the very different mobility perpendicular and parallel to the surface. In contrast to the well known scattering law of threedimensionally diffusing particles the scattering law for twodimensional diffusion diverges logarithmically at zero energy transfer. Conclusions relevant to the interpretation of neutron scattering data are discussed. (orig.) [de
Spatially resolved remote measurement of temperature by neutron resonance absorption
Energy Technology Data Exchange (ETDEWEB)
Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)
2015-12-11
Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.
Neutron spectral modulation as a new thermal neutron scattering technique. Pt. 1
International Nuclear Information System (INIS)
Ito, Y.; Nishi, M.; Motoya, K.
1982-01-01
A thermal neutron scattering technique is presented based on a new idea of labelling each neutron in its spectral position as well as in time through the scattering process. The method makes possible the simultaneous determination of both the accurate dispersion relation and its broadening by utilizing the resolution cancellation property of zero-crossing points in the cross-correlated time spectrum together with the Fourier transform scheme of the neutron spin echo without resorting to the echoing. The channel Fourier transform applied to the present method also makes possible the determination of the accurate direct energy scan profile of the scattering function with a rather broad incident neutron wavelength distribution. Therefore the intensity sacrifice for attaining high accurarcy is minimized. The technique is used with either a polarized or unpolarized beam at the sample position with no precautions against beam depolarization at the sample for the latter case. Relative time accurarcy of the order of 10 -3 to 10 -4 may be obtained for the general dispersion relation and for the quasi-elastic energy transfers using correspondingly the relative incident neutron wavelength spread of 10 to 1% around an incident neutron energy of a few meV. (orig.)