WorldWideScience

Sample records for neutron physics experiments

  1. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  2. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  3. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  4. System of Modelling and Calculation Analysis of Neutron- Physical Experiments at Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Moiseyev, A.V. [SSC RF - IPPE, 1 Bondarenko Square, Obninsk, Kaluga Region 249033 (Russian Federation)

    2008-07-01

    There is an actual task on storage, processing and analysis of the unique experimental data received on power fast reactors for their subsequent use in projects of fast reactors of new (4.) generation. For modeling and carrying out analysis of experiments the integrated computing system MODEXSYS has been developed. In this system the mechanism for consecutive calculation of a fast reactor states with the detailed description of its components is created. The system includes the database describing fast reactor states, results of neutron-physical characteristics measurements at fast reactor, calculation and benchmark models of experiments and calculation results. In system convenient search means and the special graphics shell are provided. It has Interfaces for processing of calculation results and their analysis. MODEXSYS system has been applied for analysis of three types of experiments at fast reactor: k{sub eff}, control rod worth and energy release distribution. The most important results of this analysis are described. Application of MODEXSYS system will raise accuracy and reliability of forecasting of fast reactors neutron-physical characteristics; for BN-600 reactor recommended level of accuracy is resulted. (authors)

  5. Impact of Neutron Decay Experiments on non-Standard Model Physics

    CERN Document Server

    Konrad, G; Baeßler, S; Počanić, D; Glück, F

    2010-01-01

    This paper gives a brief overview of the present and expected future limits on physics beyond the Standard Model (SM) from neutron beta decay, which is described by two parameters only within the SM. Since more than two observables are accessible, the problem is over-determined. Thus, precise measurements of correlations in neutron decay can be used to study the SM as well to search for evidence of possible extensions to it. Of particular interest in this context are the search for right-handed currents or for scalar and tensor interactions. Precision measurements of neutron decay observables address important open questions of particle physics and cosmology, and are generally complementary to direct searches for new physics beyond the SM in high-energy physics. Free neutron decay is therefore a very active field, with a number of new measurements underway worldwide. We present the impact of recent developments.

  6. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences.

    Science.gov (United States)

    Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro

    2013-05-01

    Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients.

  7. Post-irradiation experiments on physical thermal and microstructural properties of neutron-irradiated ceramics. 2

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toyohiko [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1999-03-01

    Succeeding to the report on the post-irradiation experiments conducted in the previous year, this is a summary report on the post-irradiation experiments of physical, thermal and microstructural properties of neutron-irradiated various ceramics, which are expected to be applied to the in-core materials of an Advanced Fast Breeder Reactor in near future. Four candidate ceramics, Al{sub 2}O{sub 3}, AlN, SiC and Si{sub 3}N{sub 4} were fast-neutron-irradiated up to a fluence of 3.9x10{sup 26} n/m{sup 2}, different irradiation conditions from the previous report specimens, in the CMIR-4 rig in the JOYO experimental fast reactor in JNC. The following observations were performed: (1) Microstructural observation by means of transmission electron microscopy, (2) Measurement of swelling, (3) Measurement of thermal diffusivity by a laser-flash method, (4) Recovery of swelling by isochronal annealing, and (5) Recovery of thermal diffusivity by isochronal annealing. Obtained main results are summarized as follows. Macroscopic length changes by neutron irradiation of Al{sub 2}O{sub 3} and AlN were measured to be 1.8-2.0% and these of SiC and Si{sub 3}N{sub 4} to be 0.2-0.4%, respectively. Thermal diffusivities of all irradiated materials degraded to 0.03-0.05 cm{sup 2}/s, irrespective of materials which had large difference before irradiation. Microstructural observation of irradiated materials by TEM revealed that Al{sub 2}O{sub 3} contained high-density loops, microvoids in grains, and microcracking along grain boundaries, AlN contained high-density loops and microcracking along grain boundaries, SiC contained high-density loops, and Si{sub 3}N{sub 4} contained loops lying on the planes parallel to the c-axis, respectively. Macroscopic length of Al{sub 2}O{sub 3} and AlN started to recover at around 800deg or 1100degC, respectively, irrespective of irradiation temperature, and reduced quickly. Macroscopic length of SiC recovered gradually from near the irradiation temperature

  8. [Treatment with neutrons: hadrontherapy part II: physical basis and clinical experience].

    Science.gov (United States)

    Noël, G; Feuvret, L; Ferrand, R; Mazeron, J-J

    2003-10-01

    Neutrons have radiobiological characteristics, which differ from those of conventional radiotherapy beams (photons) and which offer a theoretical advantage over photons to fight radioresistance by the differential relative biological effect of them between normal and tumour tissues. Neutron therapy beneficed of great interest between 1975 and 1985. Many of phase III trials were conducted and indications have been definitively deducted of them. After briefly describing the properties of neutron beams, this review discusses the indication of neutron therapy on the basis of the clinical results. Salivary, prostate tumours and sarcomas are the main indications of neutron therapy. In concern to the prostate cancers, other alternative treatments reduce the neutron therapy field. For sarcomas, the lack of randomised trials limits the impact of the interest of neutrons. For other tumours, the ratio benefice/risk of neutron therapy is inferior to these obtained with photons and they could not be considered like classical indications.

  9. Physics of Neutron Star Crusts

    Directory of Open Access Journals (Sweden)

    Chamel Nicolas

    2008-12-01

    Full Text Available The physics of neutron star crusts is vast, involving many different research fields, from nuclear and condensed matter physics to general relativity. This review summarizes the progress, which has been achieved over the last few years, in modeling neutron star crusts, both at the microscopic and macroscopic levels. The confrontation of these theoretical models with observations is also briefly discussed.

  10. PLANS FOR A NEUTRON EDM EXPERIMENT AT SNS

    Energy Technology Data Exchange (ETDEWEB)

    ITO, TAKEYASU [Los Alamos National Laboratory

    2007-01-31

    The electric dipole moment of the neutron, leptons, and atoms provide a unique window to Physics Beyond the Standard Model. They are currently developing a new neutron EDM experiment (the nEDM Experiment). This experiment, which will be run at the 8.9 {angstrom} Neutron Line at the Fundamental Neutron Physics Beamline (FNPB) at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory, will search for the neutron EDM with a sensitivity two orders of magnitude higher than the present limit. In this paper, the motivation for the experiment, the experimental method, and the present status of the experiment are discussed.

  11. Basic physics with ultra cold neutrons; Physique fondamentale avec des neutrons ultra froids

    Energy Technology Data Exchange (ETDEWEB)

    Protasov, K. [Laboratoire de Physique Subatomique et de Cosmologie, CNRS-IN2P3, Universite Joseph Fourier, INPG, Grenoble (France)

    2007-07-01

    A short introduction to the physics of Ultra Cold Neutrons (UCN) is given. It covers different aspects from their discovery, their major properties as well as their using in the three experiments of fundamental physics: measurements of the neutron life time and of its electric dipole moment and studies of neutrons quantum states in the Earth's gravitational field. (author)

  12. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  13. Neutron Star Physics and EOS

    Directory of Open Access Journals (Sweden)

    Lattimer James M.

    2016-01-01

    Full Text Available Neutron stars are important because measurement of their masses and radii will determine the dense matter equation of state. They will constrain the nuclear matter symmetry energy, which controls the neutron star matter pressure and the interior composition, and will influence the interpretation of nuclear experiments. Astrophysical observations include pulsar timing, X-ray bursts, quiescent low-mass X-ray binaries, pulse profiles from millisecond pulsars, neutrino observations from gravitational collapse supernovae,and gravitational radiation from compact object mergers. These observations will also constrain the neutron star interior, including the properties of superfluidity there, and determine the existence of a possible QCD phase transition.

  14. 14 MeV neutrons physics and applications

    CERN Document Server

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  15. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  16. The neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Schreyer, Wolfgang [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    The neutron lifetime τ{sub n}=880.3±1.1 s is an important parameter in the Standard Model of particle physics and in Big Bang cosmology. Several systematic corrections of previously published results reduced the PDG world average by several σ in the last years and call for a new experiment with complementary systematics. The experiment PENeLOPE, currently under construction at the Physik-Department of Technische Universitaet Muenchen, aims to determine the neutron lifetime with a precision of 0.1 s. It will trap ultra-cold neutrons in a magneto-gravitational trap using a large superconducting magnet and will measure their lifetime by both neutron counting and online proton detection. This presentation gives an overview over the latest developments of the experiment.

  17. The Nuclear Physics of Neutron Stars

    CERN Document Server

    Piekarewicz, J

    2013-01-01

    We explore the unique and fascinating structure of neutron stars. Although neutron stars are of interest in many areas of Physics, our aim is to provide an intellectual bridge between Nuclear Physics and Astrophysics. We argue against the naive perception of a neutron star as a uniform assembly of neutrons packed to enormous densities. Rather, by focusing on the many exotic phases that are speculated to exist in a neutron star, we show how the reality is different and far more interesting.

  18. Nuclear physics with neutrons - fundamental and applied researches

    CERN Document Server

    Furman, V I

    2001-01-01

    The investigations in the field of the nuclear neutron physics in JINR are discussed briefly. The following problems are considered: realization of the project of a new source of resonance neutrons (IREN); development and testing the new perspective techniques for experiments at IREN; studying the symmetry breaking in fundamental interactions in nuclei and obtaining the actual technological nuclear data. The neutron energy is in the range of 10 sup - sup 9 eV-10 MeV

  19. Neutron storage time measurement for the neutron EDM experiment

    Science.gov (United States)

    Griffith, W. Clark; Ito, Takeyasu; Ramsey, John; Makela, Mark; Clayton, Steven; Hennings-Yeomans, Raul; Saidur Rahaman, M.; Currie, Scott; Womack, Todd; Sondheim, Walter; Cooper, Martin

    2010-11-01

    A new experiment to search for the neutron electric dipole moment (nEDM) is under development for installation at the Spallation Neutron Source (SNS) at Oakridge National Laboratory. The experiment will use ultra-cold neutrons (UCN) stored in superfluid helium, along with ^3He atoms acting as a neutron spin analyzer and comagnetometer. One crucial factor affecting the ultimate sensitivity of the experiment is the neutron storage time that can be obtained in the acrylic measurement cell. The acrylic cell walls will be coated with deuterated polystyrene (dPS), which is expected to give a wall loss factor of ˜room temperature and below 20 K.

  20. Spallation neutron experiment at SATURNE

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-11-01

    The double differential cross sections for (p,xn) reactions and the spectra of neutrons produced from the thick target have been measured at SATURNE in SACLAY from 1994 to 1997. The status of the experiment and the preliminary experimental results are presented. (author)

  1. Fundamental Neutron Physics: Theory and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir [South Carolina Research Foundation, Columbia, SC (United States)

    2016-10-31

    The goal of the proposal was to study the possibility of searching for manifestations of new physics beyond the Standard model in fundamental neutron physics experiments. This involves detailed theoretical analyses of parity and time reversal invariance violating processes in neutron induced reactions, properties of neutron β-decay, and the precise description of properties of neutron interactions with nuclei. To describe neutron-nuclear interactions, we use both the effective field theory approach and the theory of nuclear reaction with phenomenological nucleon potentials for the systematic description of parity and time reversal violating effects in the consistent way. A major emphasis of our research during the funding period has been the study of parity violation (PV) and time reversal invariance violation (TRIV) in few-body systems. We studied PV effects in non-elastic processes in three nucleon system using both ”DDH-like” and effective field theory (EFT) approaches. The wave functions were obtained by solving three-body Faddeev equations in configuration space for a number of realistic strong potentials. The observed model dependence for the DDH approach indicates intrinsic difficulty in the description of nuclear PV effects and it could be the reason for the observed discrepancies in the nuclear PV data analysis. It shows that the DDH approach could be a reasonable approach for analysis of PV effects only if exactly the same strong and weak potentials are used in calculating all PV observables in all nuclei. However, the existing calculations of nuclear PV effects were performed using different potentials; therefore, strictly speaking, one cannot compare the existing results of these calculations among themselves.

  2. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  3. Probing neutron star physics using accreting neutron stars

    Directory of Open Access Journals (Sweden)

    Patruno A.

    2010-10-01

    Full Text Available We give an obervational overview of the accreting neutron stars systems as probes of neutron star physics. In particular we focus on the results obtained from the periodic timing of accreting millisecond X-ray pulsars in outburst and from the measurement of X-ray spectra of accreting neutron stars during quiescence. In the first part of this overview we show that the X-ray pulses are contaminated by a large amount of noise of uncertain origin, and that all these neutron stars do not show evidence of spin variations during the outburst. We present also some recent developments on the presence of intermittency in three accreting millisecond X-ray pulsars and investigate the reason why only a small number of accreting neutron stars show X-ray pulsations and why none of these pulsars shows sub-millisecond spin periods. In the second part of the overview we introduce the observational technique that allows the study of neutron star cooling in accreting systems as probes of neutron star internal composition and equation of state. We explain the phenomenon of the deep crustal heating and present some recent developments on several quasi persistent X-ray sources where a cooling neutron star has been observed.

  4. Fundamental Problems of Neutron Physics at the Spallation Neutron Source at the ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Gudkov

    2008-07-16

    We propose to provide theoretical support for the experimental program in fundamental neutron physics at the SNS. This includes the study of neutron properties, neutron beta-decay, parity violation effects and time reversal violation effects. The main purpose of the proposed research is to work on theoretical problems related to experiments which have a high priority at the SNS. Therefore, we will make a complete analysis of beta-decay process including calculations of radiative corrections and recoil corrections for angular correlations for polarized neutron decay, with an accuracy better that is supposed to be achieved in the planning experiments. Based on the results of the calculations, we will provide analysis of sensitivity of angular correlations to be able to search for the possible extensions of the Standard model. Also we will help to plan other experiments to address significant problems of modern physics and will work on their theoretical support.

  5. Status report of the neutron lifetime experiment tau-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Karch, Jan Peter; Beck, Marcus; Dragisic, Simo; Haak, Jan; Heil, Werner; Kories, Fabian; Kunz, Simon; Stepanow, Dietmar [Institut fuer Physik, University of Mainz (Germany); Geppert, Christopher; Karpuk, Sergei [Institut fuer Kernchemie, University of Mainz (Germany); Sobolev, Yury [Institut fuer Physik, University of Mainz (Germany); Institut fuer Kernchemie, University of Mainz (Germany)

    2015-07-01

    The decay of the free neutron into a proton, electron and antineutrino is the prototype of the semi-leptonic weak decay and plays a key role in particle physics and astrophysics. Nowadays, the accuracy achieved is limited by systematic errors, mainly caused by anomalous losses during storage of neutrons (ultracold neutrons) in material vessels. The magnetic storage of neutrons aims to avoid these systematic limitations and is expected to reach an accuracy of 0.1-0.3 s in the lifetime of the neutron. In this talk, the magnetic spectrometer tau-SPECT is presented, which uses a combination of magnetic multipole fields for radial storage and the field configuration of the superconducting aSPECT magnet for longitudinal storage of ultracold neutrons. This storage experiment benefits greatly from the new ultracold neutron source at the pulsable TRIGA reactor Mainz. The talk gives an overview of the experimental status: Proton detection system and adiabatic fast passages device.

  6. Neutron Transport Simulations for NIST Neutron Lifetime Experiment

    Science.gov (United States)

    Li, Fangchen; BL2 Collaboration Collaboration

    2016-09-01

    Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.

  7. PREFACE: Neutrino physics at spallation neutron sources

    Science.gov (United States)

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories

  8. Comparison of ultracold neutron sources for fundamental physics measurements

    CERN Document Server

    Bison, G; Kirch, K; Lauss, B; Ries, D; Schmidt-Wellenburg, P; Zsigmond, G; Brenner, T; Geltenbort, P; Jenke, T; Zimmer, O; Beck, M; Heil, W; Kahlenberg, J; Karch, J; Ross, K; Eberhardt, K; Geppert, C; Karpuk, S; Reich, T; Siemensen, C; Sobolev, Y; Trautmann, N

    2016-01-01

    Ultracold neutrons (UCNs) are key for precision studies of fundamental parameters of the neutron and in searches for new CP violating processes or exotic interactions beyond the Standard Model of particle physics. The most prominent example is the search for a permanent electric dipole moment of the neutron (nEDM). We have performed an experimental comparison of the leading UCN sources currently operating. We have used a 'standard' UCN storage bottle with a volume of 32 liters, comparable in size to nEDM experiments, which allows us to compare the UCN density available at a given beam port.

  9. Magnetic field homogeneity for neutron EDM experiment

    Science.gov (United States)

    Anderson, Melissa

    2016-09-01

    The neutron electric dipole moment (nEDM) is an observable which, if non-zero, would violate time-reversal symmetry, and thereby charge-parity symmetry of nature. New sources of CP violation beyond those found in the standard model of particle physics are already tightly constrained by nEDM measurements. Our future nEDM experiment seeks to improve the precision on the nEDM by a factor of 30, using a new ultracold neutron (UCN) source that is being constructed at TRIUMF. Systematic errors in the nEDM experiment are driven by magnetic field inhomogeneity and instability. The goal field inhomogeneity averaged over the experimental measurement cell (order of 1 m) is 1 nT/m, at a total magnetic field of 1 microTesla. This equates to roughly 10-3 homogeneity. A particularly challenging aspect of the design problem is that nearby magnetic materials will also affect the magnetic inhomogeneity, and this must be taken into account in completing the design. This poster will present the design methodology and status of the main coil for the experiment where we use FEA software (COMSOL) to simulate and analyze the magnetic field. Natural Sciences and Engineering Research Council.

  10. Development of the methods for simulating the neutron spectrometers and neutron-scattering experiments

    Science.gov (United States)

    Manoshin, S. A.; Belushkin, A. V.; Ioffe, A. I.

    2016-07-01

    Reviewed are the results of simulating the neutron scattering instruments with the program package VITESS upgraded by the routines for treating the polarized neutrons, as developed by the authors. The reported investigations have been carried out at the Frank Laboratory for Neutron Physics at JINR in collaboration with the Juelich research center (Germany). The performance of the resonance and gradient adiabatic spin flippers, the Drabkin resonator, the classical and resonance spin-echo spectrometers, the spin-echo diffractometer for the small-angle neutron scattering, and the spin-echo spectrometer with rotating magnetic fields is successfully modeled. The methods for using the 3D map of the magnetic field from the input file, either mapped experimentally or computed using the finite-elements technique, in the VITESS computer code, are considered in detail. The results of neutron-polarimetry experiments are adequately reproduced by our simulations.

  11. Theoretical and experimental physical methods of neutron-capture therapy

    Science.gov (United States)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  12. Exploring fundamental physics with neutron stars

    CERN Document Server

    Pizzochero, Pierre M

    2016-01-01

    In this lecture, we give a first introduction to neutron stars, based on fundamental physical principles. After outlining their outstanding macroscopic properties, as obtained from observations, we infer the extreme conditions of matter in their interiors. We then describe two crucial physical phenomena which characterize compact stars, namely the gravitational stability of strongly degenerate matter and the neutronization of nuclear matter with increasing density, and explain how the formation and properties of neutron stars are a direct consequence of the extreme compression of matter under strong gravity. Finally, we describe how multi-wavelength observations of different external macroscopic features (e.g. maximum mass, surface temperature, pulsar glitches) can give invaluable information about the exotic internal microscopic scenario: super-dense, isospin-asymmetric, superfluid, bulk hadronic matter (probably deconfined in the most central regions) which can be found nowhere else in the Universe. Indeed,...

  13. Polarized (3) He Spin Filters for Slow Neutron Physics.

    Science.gov (United States)

    Gentile, T R; Chen, W C; Jones, G L; Babcock, E; Walker, T G

    2005-01-01

    Polarized (3)He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of (3)He spin filters for slow neutron physics. Besides the essential goal of maximizing the (3)He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize (3)He, but will focus on SE. We will discuss the recent demonstration of 75 % (3)He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping.

  14. Neutron detectors for scattering experiments at HANARO

    Indian Academy of Sciences (India)

    Myungkook Moon; Changhee Lee; Jongkyu Cheon; Younghyun Choi; Harkrho Kim; Shraddha S Desai

    2008-11-01

    Position sensitive detectors (PSD) measure the distribution of scattered neutrons and are essential tools for neutron scattering experiments. Various types of neutron detectors used at neutron diffractometers are conventional tube detectors, 1-D and 2-D PSDs. Korea Atomic Energy Research Institute (KAERI) has been developing various kinds of PSDs to improve the instrument performance and to develop new scattering instruments. Our development work is initiated with 1-D PSD for residual stress analysis spectrometer and finally the technology is extended to development of 2-D PSD with planar and curved geometry. All PSDs are based on multiwire grid assembly with delay line readout method for position encoding, as the response is faster than charge division method and enables higher count rate capability. Design details and operational characteristics of some of the PSDs developed, for application at neutron scattering instruments are presented.

  15. The muon-induced neutron indirect detection EXperiment, MINIDEX

    Science.gov (United States)

    Abt, I.; Caldwell, A.; Carissimo, C.; Gooch, C.; Kneißl, R.; Langford, J.; Liu, X.; Majorovits, B.; Palermo, M.; Schulz, O.; Vanhoefer, L.

    2017-04-01

    A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with a GEANT4-based package for two different sets of physics models of relevance for neutron production by muons is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo packages. In addition, the time evolution of the muon-induced signal is not well described by the simulations.

  16. Hospital based superconducting cyclotron for neutron therapy: Medical physics perspective

    Science.gov (United States)

    Yudelev, M.; Burmeister, J.; Blosser, E.; Maughan, R. L.; Kota, C.

    2001-12-01

    The neutron therapy facility at the Gershenson Radiation Oncology Center, Harper University Hospital in Detroit has been operational since September 1991. The d(48.5)+Be beam is produced in a gantry mounted superconducting cyclotron designed and built at the National Superconducting Cyclotron Laboratory (NSCL). Measurements were performed in order to obtain the physical characteristics of the neutron beam and to collect the data necessary for treatment planning. This included profiles of the dose distribution in a water phantom, relative output factors and the design of various beam modifiers, i.e., wedges and tissue compensators. The beam was calibrated in accordance with international protocol for fast neutron dosimetry. Dosimetry and radiobiology intercomparions with three neutron therapy facilities were performed prior to clinical use. The radiation safety program was established in order to monitor and reduce the exposure levels of the personnel. The activation products were identified and the exposure in the treatment room was mapped. A comprehensive quality assurance (QA) program was developed to sustain safe and reliable operation of the unit at treatment standards comparable to those for conventional photon radiation. The program can be divided into three major parts: maintenance of the cyclotron and related hardware; QA of the neutron beam dosimetry and treatment delivery; safety and radiation protection. In addition the neutron beam is used in various non-clinical applications. Among these are the microdosimetric characterization of the beam, the effects of tissue heterogeneity on dose distribution, the development of boron neutron capture enhanced fast neutron therapy and variety of radiobiology experiments.

  17. Upgrade of detectors of neutron instruments at Neutron Physics Laboratory in Řež

    Science.gov (United States)

    Litvinenko, E. I.; Ryukhtin, V.; Bogdzel, A. A.; Churakov, A. V.; Farkas, G.; Hervoches, Ch.; Lukas, P.; Pilch, J.; Saroun, J.; Strunz, P.; Zhuravlev, V. V.

    2017-01-01

    Three neutron instruments at the Neutron Physics Laboratory (NPL) in Řež near Prague - small-angle scattering (SANS) MAUD, strain scanner SPN-100 and strain diffractometer TKSN-400 - have been modernized recently with new 2D position-sensitive detectors (PSDs) from JINR, Dubna. Here we report on the progress made in relation to the possibilities of the diffractometers due to the improved performance of the detectors. The first part of the paper is dedicated to a detailed description of the hardware and software of the PSDs, as well as its integration with the in-house experimental control software. Then practical examples of neutron scattering experiments for each of the upgraded facilities are presented.

  18. Neutron Polarization Measurements with a 3He Spin Filter for the NPDGamma Experiment

    Science.gov (United States)

    Musgrave, Matthew

    2012-10-01

    The Fundamental Neutron Physics Beamline (FNPB) at the Spallation Neutron Source (SNS) provides a pulsed beam of polarized cold neutrons for the NPDGamma experiment which intends to measure the parity violating asymmetry in the emitted gamma rays from the capture of polarized neutrons on protons in a para-hydrogen target. The neutrons are polarized by a multi-channel super mirror polarizer, and the polarization of each neutron pulse can be flipped with an RF spin rotator. The accuracy of the NPDGamma experiment and various commissioning experiments is dependent on the polarization of the neutron beam and the efficiency of the RF spin rotator. These parameters are measured with a polarized 3He spin filter at multiple points in the beam cross section and with multiple 3He polarizations. The measured neutron polarization is compared to a McStas model to validate our results and our beam averaging technique. The analysis methods, background effects, and results will be discussed.

  19. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  20. Stochastic modeling and survival analysis of marginally trapped neutrons for a magnetic trapping neutron lifetime experiment

    CERN Document Server

    Coakley, K J; M.,; Huber, G; P.,; Huffman, R; C.,; Huffer, R; Marley, D E; Mumm, H P; O'Shaughnessy, M; K.,; Schelhammer, W; Thompson, A K; Yue, A T

    2015-01-01

    In a variety of neutron lifetime experiments, in addition to $\\beta-$decay, neutrons can be lost by other mechanisms including wall losses. Failure to account for these other loss mechanisms produces systematic measurement error and associated systematic uncertainties in neutron lifetime measurements. In this work, we develop a physical model for neutron wall losses and construct a competing risks survival analysis model to account for losses due to the joint effect of $\\beta-$decay losses, wall losses of marginally trapped neutrons, and an additional absorption mechanism. We determine the survival probability function associated with the wall loss mechanism by a Monte Carlo method. Based on a fit of the competing risks model to a subset of the NIST experimental data, we determine the mean lifetime of trapped neutrons to be approximately 700 s -- considerably less than the current best estimate of (880.1 $\\pm$ 1.1) s promulgated by the Particle Data Group [1]. Currently, experimental studies are underway to d...

  1. Fundamental physics research and neutron interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, A. [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1996-08-01

    The possibility of the use of an extremely sensitive neutron interferometry technique for the study of electromagnetic structure of the neutron and the parity non-conservative effects in neutron spin rotation is discussed. (author)

  2. Physics and technology of spallation neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.S.

    1998-08-01

    Next to fission and fusion, spallation is an efficient process for releasing neutrons from nuclei. Unlike the other two reactions, it is an endothermal process and can, therefore, not be used per se in energy generation. In order to sustain a spallation reaction, an energetic beam of particles, most commonly protons, must be supplied onto a heavy target. Spallation can, however, play an important role as a source of neutrons whose flux can be easily controlled via the driving beam. Up to a few GeV of energy, the neutron production is roughly proportional to the beam power. Although sophisticated Monte Carlo codes exist to compute all aspects of a spallation facility, many features can be understood on the basis of simple physics arguments. Technically a spallation facility is very demanding, not only because a reliable and economic accelerator of high power is needed to drive the reaction, but also, and in particular, because high levels of radiation and heat are generated in the target which are difficult to cope with. Radiation effects in a spallation environment are different from those commonly encountered in a reactor and are probably even more temperature dependent than the latter because of the high gas production rate. A commonly favored solution is the use of molten heavy metal targets. While radiation damage is not a problem in this case, except for the container, a number of other issues are discussed. (author)

  3. Physical Environment of Accreting Neutron Stars

    Directory of Open Access Journals (Sweden)

    J. Wang

    2016-01-01

    Full Text Available Neutron stars (NSs powered by accretion, which are known as accretion-powered NSs, always are located in binary systems and manifest themselves as X-ray sources. Physical processes taking place during the accretion of material from their companions form a challenging and appealing topic, because of the strong magnetic field of NSs. In this paper, we review the physical process of accretion onto magnetized NS in X-ray binary systems. We, firstly, give an introduction to accretion-powered NSs and review the accretion mechanism in X-ray binaries. This review is mostly focused on accretion-induced evolution of NSs, which includes scenario of NSs both in high-mass binaries and in low-mass systems.

  4. Exotic physics by-products of neutron edm searches

    Science.gov (United States)

    Franke, Beatrice

    2016-09-01

    The search for the neutron electric dipole moment (edm) is a highly sensitive precision measurement. There are several efforts world-wide in order to search for this elusive quantity: predictions by the standard model of particle physics are 10-32 e cm. However, beyond standard model theories (BSM) predict much larger neutron edms, resulting from additional CP violating processes necessary to better understand the strong CP problem and in particular the baryon asymmetry observed in our universe. Some predictions are very close to the current upper limit of 3 .10-26 e cm, and within ``arm's reach'' of ongoing experimental efforts. The involved highly sensitive setups also give access to investigate other intriguing beyond standard model predictions, as has been shown previously for mirror neutron oscillations, Lorentz violation, and axion-like particle searches, among others. A brief overview shall be given of what has been achieved so far in different experiments, as well as show which of those investigations could be of interest for upcoming neutron edm spectrometers.

  5. The Muon-Induced Neutron Indirect-Detection EXperiment. MINIDEX

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Matteo

    2016-06-06

    A new experiment to measure muon-induced neutrons is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, is presented and its installation and commissioning in the Tuebingen Shallow Underground Laboratory are described. Results from its first data taking period, run I, are presented. Muon-induced neutrons are not only an interesting physics topic by itself, but they are also an important source of background in searches for possible new rare phenomena like neutrinoless double beta decay or directly observable interactions of dark matter. These subjects are of great importance to understand the development of the early universe. Therefore, a new generation of ton-scale experiments which require extremely low background levels is under consideration. Reliable Monte Carlo simulations are needed to design such future experiments and estimate their background levels and sensitivities. The background due to muon-induced neutrons is hard to estimate, because of inconsistencies between different experimental results and discrepancies between measurements and Monte Carlo predictions. Especially for neutron production in high-Z materials, more experimental data and related simulation studies are clearly needed. MINIDEX addresses exactly this subject. Already the first five months of data taking provided valuable data on neutron production, propagation and interaction in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions are presented. In particular, the predictions of two Monte Carlo packages, based on GEANT4, are compared to the data. The data show an overall 70-100% higher rate of muon-induced events than predicted by the Monte Carlo packages. These packages also predict a faster time evolution of the muon-induced signal than observed in the data. Nevertheless, the time until the signal from the muon-induced events is completely collected was correctly predicted by the Monte Carlos. MINIDEX is foreseen

  6. Future flavour physics experiments

    Science.gov (United States)

    2015-01-01

    The current status of flavour physics and the prospects for present and future experiments will be reviewed. Measurements in B‐physics, in which sensitive probes of new physics are the CKM angle γ, the Bs mixing phase ϕs, and the branching ratios of the rare decays B(s)0→μ+μ− , will be highlighted. Topics in charm and kaon physics, in which the measurements of ACP and the branching ratios of the rare decays K→πνν¯ are key measurements, will be discussed. Finally the complementarity of the future heavy flavour experiments, the LHCb upgrade and Belle‐II, will be summarised. PMID:26877543

  7. Proton detection in the neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, Christian [Technische Universitaet Muenchen, Physik Department E18 (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    Although neutron lifetime plays an important role in the Standard Model of particle physics, τ{sub n} is not very precisely know and often discussed. The official PDG mean value has been lowered during the last years by more than 6σ to the new value of 880.3 ± 1.1 s. The new precision experiment PENeLOPE, which is currently developed at Technische Universitaet Muenchen, will help to clear this up. Ultra-cold neutrons are lossless stored in a magneto-gravitational trap, formed by superconducting coils. The combined determination of τ{sub n} by counting the surviving neutrons after each storage cycle on one side and in-situ detection of the decay protons on the other side together with a very good handle on systematic errors leads to an unprecedented precision of the neutron lifetime value of 0.1s. This contribution will give an overview of the challenges concerning proton detection under the exceptional requirements of this experiment. The developed concept of using avalanche photodiodes for direct proton detection will be presented as well as results from first measurements with a prototype detector read out by particular developed electronics.

  8. Tutorial on Neutron Physics in Dosimetry

    CERN Document Server

    Pomp, S

    2009-01-01

    Almost since the time of the discovery of the neutron more than 70 years ago, efforts have been made to understand the effects of neutron radiation on tissue and, eventually, to use neutrons for cancer treatment. In contrast to charged particle or photon radiations which directly lead to release of electrons, neutrons interact with the nucleus and induce emission of several different types of charged particles such as protons, alpha particles or heavier ions. Therefore, a fundamental understanding of the neutron-nucleus interaction is necessary for dose calculations and treatment planning with the needed accuracy. We will discuss the concepts of dose and kerma, neutron-nucleus interactions and have a brief look at nuclear data needs and experimental facilities and set-ups where such data are measured.

  9. Detector for advanced neutron capture experiments at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J. L. (John L.); Reifarth, R. (Rene); Haight, Robert C.; Hunt, L. F. (Lloyd F.); O' Donnell, J. M.; Bredeweg, T. A. (Todd A); Wilhelmy, J. B. (Jerry B.); Fowler, Malcolm M.; Vieira, D. J. (David J.); Wouters, J. M. (Jan Marc); Strottman, D.; Kaeppeler, F. (Franz K.); Heil, M.; Chamberlin, E. P. (Edwin P.)

    2002-01-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 159-element 4x barium fluoride array designed to study neutron capture on small quantities, 1 mg or less, of radioactive nuclides. It is being built on a 20 m neutron flight path which views the 'upper tier' water moderator at the Manuel J. Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center. The detector design is based on Monte Carlo calculations which have suggested ways to minimize backgrounds due to neutron scattering events. A data acquisition system based on fast transient digitizers is bcing implemented

  10. Efimov Physics around the neutron rich Calcium-60 isotope

    CERN Document Server

    Hagen, G; Hammer, H -W; Platter, L

    2013-01-01

    We calculate the neutron-Calcium-60 S-wave scattering phase shifts using state of the art coupled-cluster theory combined with modern ab initio interactions derived from chiral effective theory. Effects of three-nucleon forces are included schematically as density dependent nucleon-nucleon interactions. This information is combined with halo effective field theory in order to investigate the Calcium-60-neutron-neutron system. We predict correlations between different three-body observables and the two-neutron separation energy of Calcium-62. This provides evidence of Efimov physics along the Calcium isotope chain. Experimental key observables that facilitate a test of our findings are discussed.

  11. Efimov physics around the neutron-rich 60Ca isotope.

    Science.gov (United States)

    Hagen, G; Hagen, P; Hammer, H-W; Platter, L

    2013-09-27

    We calculate the neutron-60Ca S-wave scattering phase shifts using state of the art coupled-cluster theory combined with modern ab initio interactions derived from chiral effective theory. Effects of three-nucleon forces are included schematically as density dependent nucleon-nucleon interactions. This information is combined with halo effective field theory in order to investigate the 60Ca-neutron-neutron system. We predict correlations between different three-body observables and the two-neutron separation energy of 62Ca. This provides evidence of Efimov physics along the calcium isotope chain. Experimental key observables that facilitate a test of our findings are discussed.

  12. Application of Diamond Nanoparticles in Low-Energy Neutron Physics

    Directory of Open Access Journals (Sweden)

    Alexander Strelkov

    2010-03-01

    Full Text Available Diamond, with its exceptionally high optical nuclear potential and low absorption cross-section, is a unique material for a series of applications in VCN (very cold neutron physics and techniques. In particular, powder of diamond nanoparticles provides the best reflector for neutrons in the complete VCN energy range. It allowed also the first observation of quasi-specular reflection of cold neutrons (CN from disordered medium. Effective critical velocity for such a quasi-specular reflection is higher than that for the best super-mirror. Nano-diamonds survive in high radiation fluxes; therefore they could be used, under certain conditions, in the vicinity of intense neutron sources.

  13. Neutron physics at the JINR: 60 years of the I M Frank Laboratory of Neutron Physics

    Science.gov (United States)

    Lychagin, E. V.; Kozlenko, D. P.; Sedyshev, P. V.; Shvetsov, V. N.

    2016-03-01

    26 March 2016 marked 60 years since the Joint Institute for Nuclear Research was founded in 1956 and within which the Laboratory of Neutron Physics was established. Already four years later, in 1960, the world's first pulsed fast reactor (known by its Russian acronym as IBR) operating in the periodic mode was put into operation, followed in 1984 by IBR-2. The research achievements over the last decade are summarized, the state-of-the-art laboratory hardware is discussed, and the prospects for the future are reviewed.

  14. Polarized 3 He Spin Filters for Slow Neutron Physics

    OpenAIRE

    Gentile, T. R.; W.C. Chen; Jones, G. L.; Babcock, E.; Walker, T. G.

    2005-01-01

    Polarized 3He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neut...

  15. New applications of neutron noise theory in power reactor physics

    Energy Technology Data Exchange (ETDEWEB)

    Arzhanov, Vasiliy

    2000-04-01

    The present thesis deals with neutron noise theory as applied to three comparatively different topics (or problems) in power reactor physics. Namely they are: theoretical investigation of the possibility to use a newly proposed current-flux (C/F) detector in Pressurized Water Reactors (PWRs) for the localisation of anomalies; both definition and studies on the point kinetic and adiabatic approximations for the relatively recently proposed Accelerator Driven Systems (ADS); development of the general theory of linear reactor kinetics and neutron noise in systems with varying size. One important practical problem is to detect and localise a vibrating control rod pin. The significance comes from the operational experience which indicates that individual pins can execute excessive mechanical vibrations that may lead to damage. Such mechanical vibrations induce neutron noise that can be detected. While the detection is relatively easy, the localisation of a vibrating control rod is much more complicated because only one measuring position is available and one needs to have at least three measured quantities. Therefore it has currently been proposed that the fluctuations of the neutron current vector, called the current noise, can be used in addition to the scalar noise in reactor diagnostic problems. The thesis investigates the possibility of the localization of a vibrating control rod pin in a PWR control assembly by using the scalar neutron noise and the 2-D radial current noise as measured at one central point in the control assembly. An explicit localisation technique is elaborated in which the searched position is determined as the absolute minimum of a minimisation function. The technique is investigated in numerical simulations. The results of the simulation tests show the potential applicability of the method. By design accelerator-driven systems would operate in a subcritical mode with a strong external source. This calls for a revision of many concepts and

  16. A quest for new physics inside the neutron

    CERN Document Server

    Kerbikov, B O

    2016-01-01

    The lecture presents an overview of the quest for the new physics in low energy neutron phenomena. In addition to the traditional topics the quantum damping of $n$ $\\bar{n}$ oscillations is discussed.

  17. High pressure gas vessels for neutron scattering experiments

    CERN Document Server

    Done, R; Evans, B E; Bowden, Z A

    2010-01-01

    The combination of high pressure techniques with neutron scattering proves to be a powerful tool for studying the phase transitions and physical properties of solids in terms of inter-atomic distances. In our report we are going to review a high pressure technique based on a gas medium compression. This technique covers the pressure range up to ~0.7GPa (in special cases 1.4GPa) and typically uses compressed helium gas as the pressure medium. We are going to look briefly at scientific areas where high pressure gas vessels are intensively used in neutron scattering experiments. After that we are going to describe the current situation in high pressure gas technology; specifically looking at materials of construction, designs of seals and pressure vessels and the equipment used for generating high pressure gas.

  18. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  19. Underground physics and the barometric pumping effect observed for thermal neutron flux underground

    Science.gov (United States)

    Stenkin, Yu. V.; Alekseenko, V. V.; Gromushkin, D. M.; Sulakov, V. P.; Shchegolev, O. B.

    2017-05-01

    It is known that neutron background is a major problem for low-background experiments carrying out underground, such as dark matter search, double-beta decay searches and other experiments known as Underground Physics. We present here some results obtained with the en-detector of 0.75 m2, which is running for more than 4 years underground at a depth of 25 m water equivalent in Skobeltsyn Institute of Nuclear Physics, Moscow State University. Some spontaneous increases in thermal neutron flux up to a factor of 3 were observed in delayed anti-correlation with barometric pressure. The phenomenon can be explained by the radon barometric pumping effect resulting in similar effect in neutron flux being produced in (α, n)-reactions by alpha-decays of radon and its daughters in surrounding rock. This is the first demonstration of the barometric pumping effect observed in thermal neutron flux underground.

  20. An Improved Neutron Electric Dipole Moment Experiment

    CERN Document Server

    Kuźniak, M; Ban, G; Bison, G; Bodek, K; Burghoff, M; Daum, M; Eberhardt, K; Fierlinger, P; Gutsmiedl, E; Hampel, G; Heil, W; Henneck, R; Khomutov, N; Kirch, K; Kistryn, St; Knappe-Grueneberg, S; Knecht, A; Knowles, P; Kratz, J V; Lauer, T; Lauss, B; Lefort, T; Mtchedlishvili, A; Naviliat-Cuncic, O; Paul, S; Pazgalev, A S; Petzold, G; Plonka-Spehr, C; Quéméner, G; Rebreyend, D; Roccia, S; Rogel, G; Sander-Thoemmes, T; Schnabel, A; Severijns, N; Sobolev, Yu; Stoepler, R; Trahms, L; Weis, A; Wiehl, N; Zejma, J; Zsigmond, G

    2008-01-01

    A new measurement of the neutron EDM, using Ramsey's method of separated oscillatory fields, is in preparation at the new high intensity source of ultra-cold neutrons (UCN) at the Paul Scherrer Institute, Villigen, Switzerland (PSI). The existence of a non-zero nEDM would violate both parity and time reversal symmetry and, given the CPT theorem, might lead to a discovery of new CP violating mechanisms. Already the current upper limit for the nEDM (|d_n|<2.9E-26 e.cm) constrains some extensions of the Standard Model. The new experiment aims at a two orders of magnitude reduction of the experimental uncertainty, to be achieved mainly by (1) the higher UCN flux provided by the new PSI source, (2) better magnetic field control with improved magnetometry and (3) a double chamber configuration with opposite electric field directions. The first stage of the experiment will use an upgrade of the RAL/Sussex/ILL group's apparatus (which has produced the current best result) moved from Institut Laue-Langevin to PSI. ...

  1. Neutronic aspects of a DHCE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, I.C.; Tsai, H.; Smith, D.L. [Argonne National Lab., IL (United States)

    1998-03-01

    The DHCE (Dynamic Helium Charging Experiment) irradiation experiment was conceived to simulate fusion-relevant helium production in a fission reactor irradiation. The main objective is to maintain the Helium-to-DPA ratio at, roughly, the same level as expected in a fusion environment. The problem in fission reactor irradiation is that Helium production is very low, because the fission neutrons, for basically all structural materials relevant for fusion applications, do not have enough energy to trigger the Helium producing reactions. A DHCE experiment involves the decay of Tritium to Helium-3 to produce the required Helium during irradiation. This paper describes an analysis of the most important aspects of a DHCE experiment and compares different types of fission reactors and their suitability for performing such an experiment. It is concluded that DHCE experiments are feasible in a certain class of mixed-spectrum fission reactors, but a careful and detailed evaluation, for each facility and condition, must be performed to ensure the success of the experiment.

  2. Comparison of fast neutron rates for the NEOS experiment

    Science.gov (United States)

    Ko, Y. J.; Jang, C. H.; Siyeon, Kim; Kim, J. Y.; Kim, H. S.; Seo, K. M.; Han, B. Y.; Sun, G. M.; Jeon, E. J.; Lee, Jaison; Lee, M. H.; Oh, Y. M.; Park, K. S.; Joo, K. K.; Kim, B. R.; Kim, H. J.; Lee, J. Y.; Kim, Y. D.; Park, H. K.; Park, H. S.

    2016-12-01

    The fast neutron rates are compared at the site of the NEOS (Neutrino Experiment Oscillation Short baseline) experiment, a short-baseline neutrino experiment located in a tendon gallery of a commercial nuclear power plant using a 0.78-liter liquid scintillator detector. A pulse shape discrimination technique is used to identify neutron signals. The measurements are performed during the nuclear reactor-on and -off periods, and the fast neutron rates are found to be consistent with each other. The fast neutron rate is also measured at an overground site with a negligible overburden and is found to be 100 times higher than that at the site of the NEOS experiment.

  3. Plasma physics of accreting neutron stars

    Science.gov (United States)

    Ghosh, Pranab; Lamb, Frederick K.

    1991-01-01

    Plasma concepts and phenomena that are needed to understand X- and gamma-ray sources are discussed. The capture of material from the wind or from the atmosphere or envelope of a binary companion star is described and the resulting types of accretion flows discussed. The reasons for the formation of a magnetosphere around the neutron star are explained. The qualitative features of the magnetospheres of accreting neutron stars are then described and compared with the qualitative features of the geomagnetosphere. The conditions for stable flow and for angular and linear momentum conservation are explained in the context of accretion by magnetic neutron stars and applied to obtain rough estimates of the scale of the magnetosphere. Accretion from Keplerian disks is then considered in some detail. The radial structure of geometrically thin disk flows, the interaction of disk flows with the neutron star magnetosphere, and models of steady accretion from Keplerian disks are described. Accretion torques and the resulting changes in the spin frequencies of rotating neutron stars are considered. The predicted behavior is then compared with observations of accretion-powered pulsars. Magnetospheric processes that may accelerate particles to very high energies, producing GeV and, perhaps, TeV gamma-rays are discussed. Finally, the mechanisms that decelerate and eventually stop accreting plasma at the surfaces of strongly magnetic neutron stars are described.

  4. Measurements of fusion neutrons from Magnetized Liner Inertial Fusion Experiments on the Z accelerator

    Science.gov (United States)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E. C.; Awe, T. J.; Torres, J. A.; Jones, B.; Bur, J. A.; Cooper, G. W.; Styron, J. D.; Glebov, V. Yu.

    2015-11-01

    Strong evidence of thermonuclear neutron production has been observed during Magnetized Liner Inertial Fusion (MagLIF) experiments on the Z accelerator. So far, these experiments have utilized deuterium fuel and produced primary DD fusion neutron yields up to 2e12 with electron and ion stagnation temperatures in the 2-3 keV range. We present MagLIF neutron measurements and compare to other data and implosion simulations. In addition to primary DD and secondary DT yields and ion temperatures, other complex physics regarding the degree of fuel magnetization and liner density are elucidated by the neutron measurements. Neutron diagnostic development for deuterium and future deuterium-tritium fuel experiments are also discussed. Sandia is sponsored by the U.S. DOE's NNSA under contract DE-AC04-94AL85000.

  5. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Serebrov, A. P., E-mail: serebrov@pnpi.spb.ru; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M. [National Research Centre “Kurchatov Institute”, Petersburg Nuclear Physics Institute (Russian Federation); Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Geltenbort, P.; Ivanov, S. N.; Zimmer, O. [Institut Max von Laue–Paul Langevin (France)

    2016-01-15

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  6. Neutron electric dipole moment and possibilities of increasing accuracy of experiments

    Science.gov (United States)

    Serebrov, A. P.; Kolomenskiy, E. A.; Pirozhkov, A. N.; Krasnoshchekova, I. A.; Vasiliev, A. V.; Polyushkin, A. O.; Lasakov, M. S.; Murashkin, A. N.; Solovey, V. A.; Fomin, A. K.; Shoka, I. V.; Zherebtsov, O. M.; Aleksandrov, E. B.; Dmitriev, S. P.; Dovator, N. A.; Geltenbort, P.; Ivanov, S. N.; Zimmer, O.

    2016-01-01

    The paper reports the results of an experiment on searching for the neutron electric dipole moment (EDM), performed on the ILL reactor (Grenoble, France). The double-chamber magnetic resonance spectrometer (Petersburg Nuclear Physics Institute (PNPI)) with prolonged holding of ultra cold neutrons has been used. Sources of possible systematic errors are analyzed, and their influence on the measurement results is estimated. The ways and prospects of increasing accuracy of the experiment are discussed.

  7. Neutron Stars: Laboratories for Fundamental Physics Under Extreme Astrophysical Conditions

    Science.gov (United States)

    Bandyopadhyay, Debades

    2017-09-01

    We discuss different exotic phases and components of matter from the crust to the core of neutron stars based on theoretical models for equations of state relevant to core collapse supernova simulations and neutron star merger. Parameters of the models are constrained from laboratory experiments. It is observed that equations of state involving strangeness degrees of freedom such as hyperons and Bose-Einstein condensates are compatible with 2{M}_{solar} neutron stars. The role of hyperons is explored on the evolution and stability of the protoneutron star in the context of SN1987A. Moment of inertia, mass and radius which are direct probes of neutron star interior are computed and their observational consequences are discussed. We continue our study on the dense matter under strong magnetic fields and its application to magnetoelastic oscillations of neutron stars.

  8. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Stoyer, M. A.; Wu, C. Y.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Couture, A.; Haight, R. C.; Haslett, R. J.; Henderson, R. A.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2009-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  9. Neutron Capture Experiments on Unstable Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jon M. Schwantes; Ralf Sudowe; Heino Nitsche; Darleane C. Hoffman

    2003-12-16

    A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. The information obtained will also be important in astrophysical modeling of nucleosynthesis. During this reporting period, the emphasis has been on preparing a radioactive target of {sup 155}Eu (half-life = 4.7 years), and several stable targets, including isotopically separated {sup 154}Sm, {sup 151}Eu, and {sup 153}Eu. Measurements of their neutron capture cross sections will be conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the Detector for Advanced Neutron Capture Experiments (DANCE). A suitable backing material (beryllium) for the targets has been selected after careful calculations of its contribution to the background of the measurements. In addition, a high voltage plating procedure has been developed and optimized. Stable targets of {sup 151}Eu and {sup 153}Eu and a target of natural Eu ({approx}50% {sup 151}Eu and {approx}50% {sup 153}Eu) have each been plated to a mass thickness of >1 mg/cm{sup 2} and delivered to the DANCE collaboration at Los Alamos National Laboratory (LANL). Natural Eu targets will be tested first to confirm that the target dimensions and backing are appropriate prior to performing measurements on the extremely valuable targets of separated isotopes. In order to prepare a target of the radioactive {sup 155}Eu, it must first be separated from the {sup 154}Sm target material that was irradiated in a very high neutron flux of 1.5x1015 neutrons/cm{sup 2}/s for 50 days. The reaction is {sup 154}Sm (n,f){sup 155}Sm (half-life = 22 minutes) {sup 155}Eu. Considerable progress has been made in developing a suitable high-yield and high-purity separation method for separating Eu from targets

  10. Simulations towards optimization of a neutron/anti-neutron oscillation experiment at the European Spallation Source

    Science.gov (United States)

    Frost, Matthew; Kamyshkov, Yuri; Castellanos, Luis; Klinkby, Esben; US NNbar Collaboration

    2015-04-01

    The observation of Neutron/Anti-neutron oscillation would prove the existence of Baryon Number Violation (BNV), and thus an explanation for the dominance of matter over anti-matter in the universe. The latest experiments have shown the oscillation time to be greater than 8.6 x 107 seconds, whereas current theoretical predictions suggest times on the order of 108 to 109 seconds. A neutron oscillation experiment proposed at the European Spallation Source (ESS) would provide sensitivity of more than 1000 times previous experiments performed, thus providing a result well-suited to confirm or deny current theory. A conceptual design of the proposed experiment will be presented, as well as the optimization of key experiment components using Monte-Carlo simulation methods, including the McStas neutron ray-trace simulation package. This work is supported by the Organized Research Units Program funded by The University of Tennessee, Knoxville Office of Research and Engagement.

  11. Results from neutron imaging of ICF experiments at NIF

    Science.gov (United States)

    Merrill, F. E.; Danly, C. R.; Fittinghoff, D. N.; Grim, G. P.; Guler, N.; Volegov, P. L.; Wilde, C. H.

    2016-03-01

    In 2011 a neutron imaging diagnostic was commissioned at the National Ignition Facility (NIF). This new system has been used to collect neutron images to measure the size and shape of the burning DT plasma and the surrounding fuel assembly. The imaging technique uses a pinhole neutron aperture placed between the neutron source and a neutron detector. The detection system measures the two-dimensional distribution of neutrons passing through the pinhole. This diagnostic collects two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically one image measures the distribution of the 14 MeV neutrons, and the other image measures the distribution of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core. Images have been collected for the majority of the experiments performed as part of the ignition campaign. Results from this data have been used to estimate a burn-averaged fuel assembly as well as providing performance metrics to gauge progress towards ignition. This data set and our interpretation are presented.

  12. Enhancing the Detector for Advanced Neutron Capture Experiments

    Directory of Open Access Journals (Sweden)

    Couture A.

    2015-01-01

    Full Text Available The Detector for Advanced Neutron Capture Experiments (DANCE has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  13. Neutron-scattering experiment on solid 3He

    Science.gov (United States)

    Mat'aš, S.; Bat'ko, I.; Boyko, V.; Schöttl, S.; Siemensmeyer, K.; Raasch, S.; Radulov, I.; Adams, E. D.; Scherline, T. E.

    The central aim of our work is the characterisation of magnetic and crystallographic properties of solid 3He on a microscopic scale. This can only be achieved using neutron-diffraction techniques. The potential of neutron methods in magnetism and their application to nuclear magnetism is well known. They were very successful in the recent investigation of spontaneous nuclear order in copper and silver. The high neutron absorption cross section makes the application of neutron diffraction in solid 3He very difficult - but a careful feasibility study of diffraction experiments shows that new results of fundamental importance in the field of magnetism may be gained.

  14. Neutron calibration sources in the Daya Bay experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J., E-mail: jianglai.liu@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Carr, R. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Dwyer, D.A. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Gu, W.Q. [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Li, G.S., E-mail: lgs1029@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai (China); McKeown, R.D. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics, College of William and Mary, Williamsburg, VA (United States); Qian, X. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States); Tsang, R.H.M. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Wu, F.F. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Zhang, C. [Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, CA (United States); Brookhaven National Laboratory, Upton, NY (United States)

    2015-10-11

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.

  15. Neutron Calibration Sources in the Daya Bay Experiment

    CERN Document Server

    Liu, J; Dwyer, D A; Gu, W Q; Li, G S; McKeown, R D; Qian, X; Tsang, R H M; Wu, F F; Zhang, C

    2015-01-01

    We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.

  16. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    Science.gov (United States)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krtička, M.; Bečvář, F.

    2009-03-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  17. Measurement of Fast Neutron Rate for NEOS Experiment

    CERN Document Server

    Ko, Y J; Han, B Y; Jang, C H; Jeon, E J; Joo, K K; Kim, B R; Kim, H J; Kim, H S; Kim, Y D; Lee, Jaison; Lee, J Y; Lee, M H; Oh, Y M; Park, H K; Park, H S; Park, K S; Seo, K M; Siyeon, Kim; Sun, G M

    2016-01-01

    The fast neutron rate is measured at the site of NEOS experiment, a short baseline neutrino experiment located in a tendon gallery of a commercial nuclear power plant, using a 0.78-liter liquid scintillator detector. A pulse shape discrimination technique is used to identify neutron signals. The measurements are performed during the nuclear reactor-on and off periods and found to be ~20 per day for both periods. The fast neutron rate is also measured at an overground site with a negligible overburden and is found to be ~100 times higher than that at the NEOS experiment site.

  18. High-Energy Neutron Backgrounds for Underground Dark Matter Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Syracuse Univ., NY (United States)

    2016-01-01

    Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed

  19. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  20. A physics investigation of deadtime losses in neutron counting at low rates with Cf252

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [CANBERRA INDUSTRIES, INC.

    2009-01-01

    {sup 252}Cf spontaneous fission sources are used for the characterization of neutron counters and the determination of calibration parameters; including both neutron coincidence counting (NCC) and neutron multiplicity deadtime (DT) parameters. Even at low event rates, temporally-correlated neutron counting using {sup 252}Cf suffers a deadtime effect. Meaning that in contrast to counting a random neutron source (e.g. AmLi to a close approximation), DT losses do not vanish in the low rate limit. This is because neutrons are emitted from spontaneous fission events in time-correlated 'bursts', and are detected over a short period commensurate with their lifetime in the detector (characterized by the system die-away time, {tau}). Thus, even when detected neutron events from different spontaneous fissions are unlikely to overlap in time, neutron events within the detected 'burst' are subject to intrinsic DT losses. Intrinsic DT losses for dilute Pu will be lower since the multiplicity distribution is softer, but real items also experience self-multiplication which can increase the 'size' of the bursts. Traditional NCC DT correction methods do not include the intrinsic (within burst) losses. We have proposed new forms of the traditional NCC Singles and Doubles DT correction factors. In this work, we apply Monte Carlo neutron pulse train analysis to investigate the functional form of the deadtime correction factors for an updating deadtime. Modeling is based on a high efficiency {sup 3}He neutron counter with short die-away time, representing an ideal {sup 3}He based detection system. The physics of dead time losses at low rates is explored and presented. It is observed that new forms are applicable and offer more accurate correction than the traditional forms.

  1. Basic Physics Data: Measurement of Neutron Multiplicity from Induced Fission

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara [Univ. of Michigan, Ann Arbor, MI (United States); Haight, Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-04

    From October 1 to October 17 a team of researchers from UM visited the LANSCE facility for an experiment during beam-time allotted from October 4 to October 17. A total of 24 detectors were used at LANSCE including liquid organic scintillation detectors (EJ-309), NaI scintillation detectors, and Li-6 enriched glass detectors. It is a double time-offlight (TOF) measurement using spallation neutrons generated by a target bombarded with pulsed high-energy protons. The neutrons travel to an LLNL-manufactured parallel plate avalanche chamber (PPAC) loaded with thin U-235 foils in which fission events are induced. The generated fission neutrons and photons are then detected in a detector array designed and built at UM and shipped to LANSCE. Preparations were made at UM, where setup and proposed detectors were tested. The UM equipment was then shipped to LANSCE for use at the 15L beam of the weapons neutron research (WNR) facility.

  2. Washing Up with Hot and Cold Running Neutrons: Tests of Fundamental Physical Laws

    Science.gov (United States)

    Lamoreaux, Steve K.

    2005-05-01

    The properties of the Neutron and its interactions with matter have been long applied to tests of fundamental physical principles. An example of such an application is a test of the stability of the fundamental constants of physics based on possible changes in low energy absorption resonances and the isotopic composition of a prehistoric natural reactor that operated two billion years ago in equatorial Africa. A recent re-analysis of this event indicates that some fundamental constants have changed. The focus of the presentation will be on the uses of cold and ultracold neutrons (UCNs), and in particular, the experimental search for the neutron electric dipole moment (EDM) which would be evidence for time reversal asymmetry in the microscopic interactions within the neutron. Ultracold neutrons are neutrons with kinetic energy sufficiently low that they can be reflected from material surfaces for all angles of incidence, allowing UCNs to be stored in material bottles for times approaching the beta decay lifetime of the neutron. Vagaries associated with the production, transport, and storage of UCNs will be described, and an overview progress on development of a new neutron EDM experiment to be operated at LANSCE will be presented. This new experiment has potential to improve the measurement sensitivity by a factor of 100. Although an EDM has not be observed for any elementary particle, experimental limits have been crucial for testing extensions to the so-called Standard Model of Electroweak Interactions. Our anticipated sensitivity will be sufficient to address questions regarding the observed matter-antimatter asymmetry in the Universe.

  3. Expression of Interest: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    CERN Document Server

    Anghel, I; Bergevin, M; Davies, G; Di Lodovico, F; Elagin, A; Frisch, H; Hill, R; Jocher, G; Katori, T; Learned, J; Northrop, R; Pilcher, C; Ramberg, E; Sanchez, M C; Smy, M; Sobel, H; Svoboda, R; Usman, S; Vagins, M; Varner, G; Wagner, R; Wetstein, M; Winslow, L; Yeh, M

    2014-01-01

    Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Wate...

  4. Letter of Intent: The Atmospheric Neutrino Neutron Interaction Experiment (ANNIE)

    CERN Document Server

    Anghel, I; Bergevin, M; Blanco, C; Catano-Mur, E; Di Lodovico, F; Elagin, A; Frisch, H; Griskevich, J; Hill, R; Jocher, G; Katori, T; Krennrich, F; Learned, J; Malek, M; Northrop, R; Pilcher, C; Ramberg, E; Repond, J; Sacco, R; Sanchez, M C; Smy, M; Sobel, H; Svoboda, R; Usman, S M; Vagins, M; Varner, G; Wagner, R; Weinstein, A; Wetstein, M; Winslow, L; Xia, L; Yeh, M

    2015-01-01

    Neutron tagging in Gadolinium-doped water may play a significant role in reducing backgrounds from atmospheric neutrinos in next generation proton-decay searches using megaton-scale Water Cherenkov detectors. Similar techniques might also be useful in the detection of supernova neutrinos. Accurate determination of neutron tagging efficiencies will require a detailed understanding of the number of neutrons produced by neutrino interactions in water as a function of momentum transferred. We propose the Atmospheric Neutrino Neutron Interaction Experiment (ANNIE), designed to measure the neutron yield of atmospheric neutrino interactions in gadolinium-doped water. An innovative aspect of the ANNIE design is the use of precision timing to localize interaction vertices in the small fiducial volume of the detector. We propose to achieve this by using early production of LAPPDs (Large Area Picosecond Photodetectors). This experiment will be a first application of these devices demonstrating their feasibility for Wate...

  5. High-quality single crystals for neutron experiments

    Indian Academy of Sciences (India)

    Geetha Balakrishnan

    2008-10-01

    To make headway on any problem in physics, high-quality single crystals are required. In this talk, special emphasis will be placed on the crystal growth of various oxides (superconductors and magnetic materials), borides and carbides using the image furnaces at Warwick. The floating zone method of crystal growth used in these furnaces produces crystals of superior quality, circumventing many of the problems associated with, for example, flux growth from the melt. This method enables the growth of large volumes of crystal, a prerequisite especially for experiments using neutron beams. Some examples of experimental results from crystals grown at Warwick, selected from numerous in-house studies and our collaborative research projects with other UK and international groups will be discussed.

  6. Probing the braneworld hypothesis with a neutron-shining-through-a-wall experiment

    Science.gov (United States)

    Sarrazin, Michaël; Pignol, Guillaume; Lamblin, Jacob; Petit, Fabrice; Terwagne, Guy; Nesvizhevsky, Valery V.

    2015-04-01

    The possibility for our visible world to be a 3-brane embedded in a multidimensional bulk is at the heart of many theoretical edifices in high-energy physics. Probing the braneworld hypothesis is thus a major experimental challenge. Following recent theoretical works showing that matter swapping between braneworlds can occur, we propose a neutron-shining-through-a-wall experiment. We first show that an intense neutron source such as a nuclear reactor core can induce a hidden neutron flux in an adjacent hidden braneworld. We then describe how a low-background detector can detect neutrons arising from the hidden world and quantify the expected sensitivity to the swapping probability. As a proof of concept, a constraint is derived from previous experiments.

  7. Is There a Crisis in Neutron Star Physics?

    CERN Document Server

    Horvath, J E

    2013-01-01

    We shall show in this report that the theoretical evolution of a particular class of systems containing a neutron star, the so-called "black widow" binaries, suggest masses above the $\\sim 2 M_{\\odot}$, a fact that would bring serious concerns about the right description of the equation of state above the saturation density. Moreover, so far the actual determinations of masses for these systems consistently give values above $2 M_{\\odot}$, reinforcing the quandary. In this sense, and given that the confirmation of these ideas would create problems for the microphysical description, we argue that a crisis could be "in the works" in neutron star physics.

  8. Measurement of gamma-ray production from thermal neutron capture on gadolinium for neutrino experiments

    Science.gov (United States)

    Yano, Takatomi

    2017-02-01

    Recently, several scientific applications of gadolinium are found in neutrino physics experiments. Gadolinium-157 is the nucleus, which has the largest thermal neutron capture cross-section among all stable nuclei. Gadolinium-155 also has the large cross-section. These neutron capture reactions provide the gamma-ray cascade with the total energy of about 8 MeV. This reaction is applied for several neutrino experiments, e.g. reactor neutrino experiments and Gd doped large water Cherenkov detector experiments, to recognize inverse-beta-decay reaction. A good Gd(n,γ) simulation model is needed to evaluate the detection efficiency of the neutron capture reaction, i.e. the efficiency of IBD detection. In this presentation, we will report the development and study status of a Gd(n,γ) calculation model and comparison with our experimental data taken at ANNRI/MLF beam line, J-PARC.

  9. Benchmark experiment on vanadium assembly with D-T neutrons. Leakage neutron spectrum measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kokooo; Murata, I.; Nakano, D.; Takahashi, A. [Osaka Univ., Suita (Japan); Maekawa, F.; Ikeda, Y.

    1998-03-01

    The fusion neutronics benchmark experiments have been done for vanadium and vanadium alloy by using the slab assembly and time-of-flight (TOF) method. The leakage neutron spectra were measured from 50 keV to 15 MeV and comparison were done with MCNP-4A calculations which was made by using evaluated nuclear data of JENDL-3.2, JENDL-Fusion File and FENDL/E-1.0. (author)

  10. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  11. Simulation of a complete inelastic neutron scattering experiment

    DEFF Research Database (Denmark)

    Edwards, H.; Lefmann, K.; Lake, B.;

    2002-01-01

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared...

  12. 2012 Next Generation Experiments to Measure the Neutron Lifetime Workshop

    CERN Document Server

    2014-01-01

    There is a great interest in improving the limits on neutron lifetime to the level of a precision of 0.1 s. The neutron lifetime is both an important fundamental quantity as well as a parameter influencing important processes such as nucleosynthesis (Helium production in the early universe) and the rate of energy production in the Sun. Aiming to create a roadmap of R&D for a next generation neutron lifetime experiment that can be endorsed by the North American neutron community, the focus of the workshop was on experiments using traps that utilize ultracold neutrons and confinement by a combination of magnetic and/or gravitational interaction in order to avoid systematic uncertainties introduced by neutron interactions with material walls. The papers in this volume summarize the limitations of present experiments, the discussion of new experiments in planning stage, and the discussion of systematic effects that must be addressed to achieve a lifetime measurement at an accuracy of 0.1 second.

  13. Neutron fluctuations a treatise on the physics of branching processes

    CERN Document Server

    Pazsit, Imre; Pzsit, Imre

    2007-01-01

    The transport of neutrons in a multiplying system is an area of branching processes with a clear formalism. This book presents an account of the mathematical tools used in describing branching processes, which are then used to derive a large number of properties of the neutron distribution in multiplying systems with or without an external source. In the second part of the book, the theory is applied to the description of the neutron fluctuations in nuclear reactor cores as well as in small samples of fissile material. The question of how to extract information about the system under study is discussed. In particular the measurement of the reactivity of subcritical cores, driven with various Poisson and non-Poisson (pulsed) sources, and the identification of fissile material samples, is illustrated. The book gives pragmatic information for those planning and executing and evaluating experiments on such systems. - Gives a complete treatise of the mathematics of branching particle processes, and in particular n...

  14. Neutron Transmission through Sapphire Crystals: Experiments and Simulations

    OpenAIRE

    Rantsiou, Emmanouela; Filges, Uwe; Panzner, Tobias; Klinkby, Esben Bryndt

    2013-01-01

    Sapphire crystals are excellent filters of fast neutrons, while at the same time exhibit moderate to very little absorption at smaller energies. We have performed an extensive series of measurements in order to quantify the above effect. Alongside our experiments, we have performed a series of simulations, in order to reproduce the transmission of cold neutrons through sapphire crystals. Thosesimulations were part of the effort of validating and improving the newly developed interface between...

  15. Sensitivity of experiment on search for neutron-antineutron oscillations on the projected ultracold neutron source at the WWR-M reactor

    Science.gov (United States)

    Serebrov, A. P.; Fomin, A. K.; Kamyshkov, Yu. A.

    2016-01-01

    An experiment on search for neutron-antineutron oscillations is proposed based on the storage of ultracold neutrons (UCNs) in a material trap. The main factors influencing sensitivity of the experiment are the trap size and the amount of UCNs trapped. A high-intensity UCN source will be created at the WWR-M reactor of Petersburg Nuclear Physics Institute, which must provide an UCN density two to three orders of magnitude higher than that in the existing sources. The results of simulations of the experiment for detecting neutron-antineutron oscillations with the new source show that the sensitivity can be increased by ~20-80 times compared to existing depending on the model of neutron reflection from walls.

  16. Event-based simulation of neutron interferometry experiments

    CERN Document Server

    De Raedt, Hans; Michielsen, Kristel

    2012-01-01

    A discrete-event approach, which has already been shown to give a cause-and-effect explanation of many quantum optics experiments, is applied to single-neutron interferometry experiments. The simulation algorithm yields a logically consistent description in terms of individual neutrons and does not require the knowledge of the solution of a wave equation. It is shown that the simulation method reproduces the results of several single-neutron interferometry experiments, including experiments which, in quantum theoretical language, involve entanglement. Our results demonstrate that classical (non-Hamiltonian) systems can exhibit correlations which in quantum theory are associated with interference and entanglement, also when all particles emitted by the source are accounted for.

  17. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  18. The Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX

    CERN Document Server

    Abt, I; Carissimo, C; Gooch, C; Kneissl, R; Langford, J; Liu, X; Majorovits, B; Palermo, M; Schulz, O; Vanhoefer, L

    2016-01-01

    A new experiment to quantitatively measure neutrons induced by cosmic-ray muons in selected high-Z materials is introduced. The design of the Muon-Induced Neutron Indirect Detection EXperiment, MINIDEX, and the results from its first data taking period are presented as well as future plans. Neutron production in high-Z materials is of particular interest as such materials are used for shielding in low-background experiments. The design of next-generation large-scale experiments searching for neutrinoless double beta decay or direct interactions of dark matter requires reliable Monte Carlo simulations of background induced by muon interactions. The first five months of operation already provided a valuable data set on neutron production and neutron transport in lead. A first round of comparisons between MINIDEX data and Monte Carlo predictions obtained with two GEANT4- based packages is presented. The rate of muon-induced events is overall a factor three to four higher in data than predicted by the Monte Carlo...

  19. Simulation of a complete inelastic neutron scattering experiment

    Science.gov (United States)

    Edwards, H.; Lefmann, K.; Lake, B.; Nielsen, K.; Skaarup, P.

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La2-xSrxCuO4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial.

  20. Spin flip loss in magnetic confinement of ultracold neutrons for neutron lifetime experiments

    CERN Document Server

    Steyerl, A; Kaufman, C; Müller, G; Malik, S S

    2016-01-01

    We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional field model used previously by Steyerl $\\textit{et al.}$ [Phys.Rev.C $\\mathbf{86}$, 065501 (2012)] to two dimensions for cylindrical multipole fields. We also develop a general analysis applicable to three dimensions. Here we apply it to multipole fields and to the bowl-type field configuration used for the Los Alamos UCN$\\tau$ experiment. In all cases considered the spin flip loss calculated exceeds the Majorana estimate by many orders of magnitude but can be suppressed sufficiently by applying a holding field of appropriate magnitude to allow high-precision neutron lifetime measurements, provided other possible sources of systematic error are under control.

  1. Neutron Generation Simulations of Collisionless Shock Experiments on NIF

    Science.gov (United States)

    Wilks, S. C.; Higginson, D. P.; Weber, S. V.; Ryutov, D. D.; Ross, J. S.; Park, H.-S.; Fiuza, F.

    2015-11-01

    A series of simulations that model recent collisionless shock experiments at the NIF will be presented. In these experiments, two opposing CD plasmas flow into each other, both plasmas arising from lasers hitting planar CD targets separated by 6, 8, and 10mm. Where the plasma flows overlap, a symmetric peak of neutron generation was observed about the mid-plane. When one of the CD foils was replaced by CH, neutron generation was still observed, but with an asymmetry about the mid-plane. The hybrid PIC code LSP is used to model this interaction. Neutron yields, temporal profiles and burn widths obtained from simulation compare favorably with experimental measurements from NTOF and PTOF diagnostics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675193.

  2. Complete Monte Carlo Simulation of Neutron Scattering Experiments

    Science.gov (United States)

    Drosg, M.

    2011-12-01

    In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of 3He(n,n)3He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the

  3. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  4. Characterization of compact accelerator DD neutron source for in situ calibration experiment on neutron measurement at LHD

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Yasunari; Iguchi, Tetsuo; Ogata, Tomohiro; Umemura, Norihiro; Asai, Keisuke; Kawarabayashi, Jun [Nagoya Univ., Nagoya, Aichi (Japan); Sasao, Mamiko [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2003-07-01

    A compact Cockcroft-Walton type accelerator DD neutron source has been developed for in situ calibration experiments on neutron measurements at LHD. The equipment mainly consists of three parts; a deuterium (D) reservoir/ion source, a self-loaded deuterium target and a 100 kV high voltage power supply, all of which are contained in a compact cylindrical stainless steel (SUS) tube of 70 mm in diameter and 780 mm in length. About one hour steady operation was performed under the acceleration voltage of 80 keV and the ion beam current of {approx}60 {mu}A, corresponding to the DD neutron yield of around 10{sup 5} n/s. The neutron emission profile and energy spectrum were measured with an NE213 scintillator and a {sup 3}He gas proportional counter. Preliminary neutronic calculations with a Monte Carlo neutron transport code MCNP' were also executed for simulating the in situ calibration experiment for neutron detectors that will be installed on LHD. Through the experiments and the calculations, it is shown that the present DD neutron source is valid for in situ calibration on threshold type detectors used for neutron emission profile monitoring and neutron spectrometry at DD plasma experiments. (author)

  5. Radio Pulsars: The Neutron Star Population & Fundamental Physics

    CERN Document Server

    Kaspi, Victoria M

    2016-01-01

    Radio pulsars are unique laboratories for a wide range of physics and astrophysics. Understanding how they are created, how they evolve and where we find them in the Galaxy, with or without binary companions, is highly constraining of theories of stellar and binary evolution. Pulsars' relationship with a recently discovered variety of apparently different classes of neutron stars is an interesting modern astrophysical puzzle which we consider in Part I of this review. Radio pulsars are also famous for allowing us to probe the laws of nature at a fundamental level. They act as precise cosmic clocks and, when in a binary system with a companion star, provide indispensable venues for precision tests of gravity. The different applications of radio pulsars for fundamental physics will be discussed in Part II. We finish by making mention of the newly discovered class of astrophysical objects, the Fast Radio Bursts, which may or may not be related to radio pulsars or neutron stars, but which were discovered in obser...

  6. Neutron data experiments for transmutation. Annual Report 2007/2008

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; al-Adili, A.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M. (Uppsala Univ. (Sweden). Div. of Applied Nuclear Physics)

    2008-08-15

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Dept. of Physics and Astronomy. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: - The SCANDAL facility has been upgraded. - One PhD student has successfully defended her thesis. - Two PhD students have been accepted. - Vasily Simutkin has been selected as one of the top 12 PhD students within the European Nuclear Education Network. He has accordingly been invited to present his work at the ENEN PhD event held in connection with the PHYSOR conference in Interlaken, Switzerland, September 2008. - A research collaboration with the dedicated EU laboratory for nuclear data research has been established. - A well-attended workshop on nuclear data for ADS and Gen-IV has been organized as part of the EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren. - Several experiments have been performed at TSL, with beamtime funded through the EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren. - Nuclear power education has reached all-time high at Uppsala University. In particular, industry education has increased significantly. - IAEA has visited Uppsala University to investigate the industry-related nuclear power education, as part of a safety culture review of the Forsmark nuclear power plant

  7. Analysing neutron scattering data using McStas virtual experiments

    DEFF Research Database (Denmark)

    Udby, L.; Willendrup, Peter Kjær; Bergbäck Knudsen, Erik

    2011-01-01

    With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were...... carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1–3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample...

  8. Simulation of a complete inelastic neutron scattering experiment

    CERN Document Server

    Edwards, H; Nielsen, K; Skaarup, P; Lake, B

    2002-01-01

    A simulation of an inelastic neutron scattering experiment on the high-temperature superconductor La sub 2 sub - sub x Sr sub x CuO sub 4 is presented. The complete experiment, including sample, is simulated using an interface between the experiment control program and the simulation software package (McStas) and is compared with the experimental data. Simulating the entire experiment is an attractive alternative to the usual method of convoluting the model cross section with the resolution function, especially if the resolution function is nontrivial. (orig.)

  9. Sustained Spheromak Physics Experiment, SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B.

    1997-05-15

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T{sub e} = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ``gun`` into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T{sub e} measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T{sub e} of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime.

  10. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  11. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    Science.gov (United States)

    Negoita, F.; Gugiu, M.; Petrascu, H.; Petrone, C.; Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; Risca, M.; Toma, M.; Turcu, E.; Ursescu, D.

    2015-02-01

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr3(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  12. Determining Absolute Polarization of Ultracold Neutrons in the UCNA Experiment

    Science.gov (United States)

    Dees, Eric; UCNA Collaboration

    2016-09-01

    The UCNA experiment uses the decay of trapped ultracold neutrons (UCN) to measure the angular correlation A between the emitted electron's momentum and the direction of the neutron's spin. For a precision measurement of A, a similarly precise determination of the equilibrium neutron polarization is required. By utilizing UCN, transport through a large (7T) B field provides 100 % polarization, and a spin flipper allows state selection during loading phases. This spin flipper also measures the equilibrium polarization of the UCN population present in the spectrometer, after each hour-long beta-counting cycle. By including a neutron reflecting shutter the leading uncertainty in polarimetry measurements prior to 2011, resulting from the residual background population, was reduced to near zero. However, this modification also introduces new systematic corrections, requiring new run types to quantify. Among these corrections are effects from the spin flipper efficiency, spectral velocity conditioning, and depolarization feeding. We will review the analytic underpinning for these contributions, discuss additional measurements required to quantify these parameters, and present a Monte-Carlo analysis to determine the corrected depolarized fraction, and associated uncertainty. Supported by NSF and DOE.

  13. Design basis neutronics calculations for NRU-LOCA experiments

    Energy Technology Data Exchange (ETDEWEB)

    Heaberlin, S.W.; Jenquin, U.P.; McNair, G.W.; Perry, R.T.; Trapp, T.J.; Zimmerman, M.G.

    1979-08-01

    The report describes the neutronics analysis for the LOCA simulation experiments in the NRU reactor. The experimental program will provide greater understanding of nuclear fuel assembly behavior during the heatup, reflood and quench sequence of a hypothetical LOCA. The decay heat and stored heat, which are the energy source in a LOCA will be simulated by fission heat provided by the NRU reactor. The reactor, the test and test operation are described.

  14. Physical Processes in Strong Magnetic Fields of Neutron Stars

    CERN Document Server

    Harding, A K

    2003-01-01

    Neutron stars have inferred surface magnetic fields of up to 10^{14} Gauss, in the case of radio pulsars, and up to possibly 10^{15} Gauss, in the case of Soft Gamma-Ray Repeaters and Anomalous X-ray Pulsars. In fields this high, QED effects will profoundly change the characteristics of continuum radiation processes such as synchrotron emission and Compton scattering and will also allow the possibility of additional physical processes such as one-photon pair production, vacuum polarization and photon splitting. Atomic line processes will also be significantly affected by the presence of strong fields. I will review some of the properties of radiation processes in strong magnetic fields that are most relevant to pulsars, SGRs and AXPs and the role they play in models for these sources.

  15. Pulsar H(alpha) Bowshocks probe Neutron Star Physics

    Science.gov (United States)

    Romani, Roger W.

    2014-08-01

    We propose a KOALA/AAOmega study of southern pulsar bow shocks. These rare, Balmer-dominated, non-radiative shocks provide an ideal laboratory to study the interaction of the relativistic pulsar wind with the ISM. We will cover H(alpha) at high spectral resolution to measure the kinematics of the upstream ISM and the post-shock flow, while the blue channel measures the Balmer decrement and probes for a faint cooling component. These data, with MHD models, allow us to extract the 3D flow geometry and the orientation and asymmetry of the pulsar wind. These data can also measure the pulsar spindown power, thus estimating the neutron star moment of inertia and effecting a fundamental test of dense matter physics.

  16. The neutron a tool and an object in nuclear and particle physics

    CERN Document Server

    Börner, Hans G

    2012-01-01

    The reactor-based laboratory at the Institut Laue-Langevin is recognized as the world's most productive and reliable source of slow neutrons for the study of low energy particle and nuclear physics. The book highlightsthe impact of about 600 very diverse publications about work performedin these fields during the pastmore than 30 years of reactor operation at this institute.On one hand neutronsare used as a tool to generate nuclei in excited states for studying their structure and decay, in particular fission. Uniquely sensitive experiments can tell us a great deal about the symmetry character

  17. The Manuel Lujan Jr. Neutron Scattering Center (LANSCE) experiment reports 1993 run cycle. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Farrer, R.; Longshore, A. [comps.

    1995-06-01

    This year the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) ran an informal user program because the US Department of Energy planned to close LANSCE in FY1994. As a result, an advisory committee recommended that LANSCE scientists and their collaborators complete work in progress. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and a associated Proton Storage Ring (PSR), which can Iter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory (LANL) may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. This year, a total of 127 proposals were submitted. The proposed experiments involved 229 scientists, 57 of whom visited LANSCE to participate in measurements. In addition, 3 (nuclear physics) participating research teams, comprising 44 scientists, carried out experiments at LANSCE. Instrument beam time was again oversubscribed, with 552 total days requested an 473 available for allocation.

  18. A monochromatized chopped beam of cold neutrons for low background experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussiere, A. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Grivot, P. (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Kossakowski, R. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Liaud, P. (Lab. de Physique des Particules, 74 - Annecy le Vieux (France)); Saintignon, P. de (Inst. des Sciences Nucleaires, 38 - Grenoble (France)); Schreckenbach, K. (Inst. Laue-Langevin, 38 - Grenoble (France))

    1993-07-15

    The design and performance of a monochromatized, chopped beam of cold neutrons are described. The beam is particularly suited for experiments where a low level of gamma ray and diffused neutron background is required. (orig.)

  19. Physics Results of the LHCf Experiment

    CERN Document Server

    Tricomi, Alessia

    2014-01-01

    The LHCf experiment has been designed to precisely measure very forward neutral particle spec- tra produced in the high energy hadron-hadron collisions at LHC up to an energy of 14 TeV in the center of mass system. These measurements are of fundamental importance to calibrate the Monte Carlo models widely used in the high energy cosmic ray (HECR) field, up to an equivalent laboratory energy of the order of 10 17 eV. The experiment has taken data in p-p collisions at √ s = 0 . 9 TeV, √ s = 2 . 76 TeV and √ s = 7 TeV as well as in p-Pb collisions at √ s = 5 TeV. In this paper the most up-to-date results on the inclusive photon spectra, π 0 and neutron spectra measured by LHCf are reported. Comparison of these spectra with the model expectations and the impact on high energy cosmic ray (HECR) Physics are discussed. In addition, perspectives for future analyses as well as the program for the next data taking period will be discussed.

  20. The neutron Electric Dipole Moment experiment at the Paul Scherrer Institute

    Directory of Open Access Journals (Sweden)

    Hélaine V.

    2014-06-01

    Full Text Available The neutron Electric Dipole Moment (nEDM is a probe for physics beyond the Standard Model. A report on the nEDM measurement performed at the Paul Scherrer Institute (Switzerland is given. A neutron spin analyzer designed to simultaneously detect both neutron spin states is presented.

  1. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    Science.gov (United States)

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-01

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ∼2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner∼1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  2. Fission neutrons experiments, evaluation, modeling and open problems

    CERN Document Server

    Kornilov, Nikolay

    2014-01-01

    Although the fission of heavy nuclei was discovered over 75 years ago, many problems and questions still remain to be addressed and answered. The reader will be presented with an old, but persistent problem of this field: The contradiction between Prompt Fission Neutron (PFN) spectra measured with differential (microscopic) experiments and integral (macroscopic and benchmark) experiments (the Micro-Macro problem). The difference in average energy is rather small ~3% but it is stable and we cannot explain the difference due to experimental uncertainties. Can we measure the PFN spectrum with hig

  3. Comparison of the neutron ambient dose equivalent and ambient absorbed dose calculations with different GEANT4 physics lists

    Science.gov (United States)

    Ribeiro, Rosane Moreira; Souza-Santos, Denison

    2017-10-01

    A comparison between neutron physics lists given by GEANT4, is made in the calculation of the ambient dose equivalent, and ambient absorbed dose, per fluence conversion coefficients (H* (10) / ϕ and D* (10) / ϕ) for neutrons in the range of 10-9 MeV to 15 MeV. Physics processes are included for neutrons, photons and charged particles, and calculations are made for neutrons and secondary particles. Results obtained for QBBC, QGSP_BERT, QGSP_BIC and Neutron High Precision physics lists are compared with values published in ICRP 74 and previously published articles. Neutron high precision physics lists showed the best results in the studied energy range.

  4. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    Energy Technology Data Exchange (ETDEWEB)

    G. Youinou; G. Palmiotti; M. Salvatorre; G. Imel; R. Pardo; F. Kondev; M. Paul

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL’s Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A < 100, there has been recent progress in extending AMS to heavier isotopes – even to A > 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  5. Neutron Interactions in the CUORE Neutrinoless Double Beta Decay Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, Michelle Jean [Univ. of California, Berkeley, CA (United States)

    2008-10-01

    Neutrinoless double beta decay (0vDBD) is a lepton-number violating process that can occur only for a massive Majorana neutrino. The search for 0vDBD is currently the only practical experimental way to determine whether neutrinos are identical to their own antiparticles (Majorana neutrinos) or have distinct particle and anti-particle states (Dirac neutrinos). In addition, the observation of 0vDBD can provide information about the absolute mass scale of the neutrino. The Cuoricino experiment was a sensitive search for 0vDBD, as well as a proof of principle for the next generation experiment, CUORE. CUORE will search for 0vDBD of 130Te with a ton-scale array of unenriched TeO2 bolometers. By increasing mass and decreasing the background for 0vDBD, the half-life sensitivity of CUORE will be a factor of twenty better than that of Cuoricino. The site for both of these experiments is the Laboratori Nazionali del Gran Sasso, an underground laboratory with 3300 meters water equivalent rock overburden and a cosmic ray muon attenuation factor of 10-6. Because of the extreme low background requirements for CUORE, it is important that all potential sources of background in the 0vDBD peak region at 2530 keV are well understood. One potential source of background for CUORE comes from neutrons, which can be produced underground both by (α,n) reactions and by fast cosmic ray muon interactions. Preliminary simulations by the CUORE collaboration indicate that these backgrounds will be negligible for CUORE. However, in order to accurately simulate the expected neutron background, it is important to understand the cross sections for neutron interactions with detector materials. In order to help refine these simulations, I have measured the gamma-ray production cross sections for interactions of neutrons on the abundant stable isotopes of Te using the GEANIE detector array at the Los Alamos Neutron Science Center. In addition, I have used the GEANIE

  6. Utilization of low voltage D-T neutron generators in neutron physics studies

    Energy Technology Data Exchange (ETDEWEB)

    Singkarat, S.

    1995-08-01

    In a small nuclear laboratory of a developing country a low voltage D-T neutron generator can be a very useful scientific apparatus. Such machines have been used successfully for more than 40 years in teaching and scientific research. The original continuous mode 150-kV D-T neutron generator has been modified to have also a capability of producing 2-ns pulsed neutrons. Together with a carefully designed 10 m long flight path collimator and shielding of a 25 cm diameter {center_dot} 10 cm thick BC-501 neutron detector, the pulsing system was successfully used for measuring the double differential cross-section (DDX) of natural iron for 14.1-MeV neutron from the angle of 30 deg to 150 deg in 10 deg steps. In order to extend the utility of the generator, two methods for converting the almost monoenergetic 14-MeV neutrons to monoenergetic neutrons of lower energy were proposed and tested. The first method uses a pulsed neutron generator and the second method uses an ordinary continuous mode generator. The latter method was successfully used to measure the scintillation light output of a 1.4 cm diameter spherical NE-213 scintillation detector. The neutron generator has also been used in the continuous search for improved neutron detection techniques. There is a proposal, based on Monte Carlo calculations, of using a scintillation fiber for a fast neutron spectrometer. Due to the slender shape of the fiber, the pattern of produced light gives a peak in the pulse height spectrum instead of the well-known rectangular-like distribution, when the fiber is bombarded end-on by a beam of 14-MeV neutrons. Experimental investigations were undertaken. Detailed investigations on the light transportation property of a short fiber were performed. The predicted peak has not yet been found but the fiber detector may be developed as a directional discrimination fast neutron detector. 18 refs.

  7. Analysing neutron scattering data using McStas virtual experiments

    Science.gov (United States)

    Udby, L.; Willendrup, P. K.; Knudsen, E.; Niedermayer, Ch.; Filges, U.; Christensen, N. B.; Farhi, E.; Wells, B. O.; Lefmann, K.

    2011-04-01

    With the intention of developing a new data analysis method using virtual experiments we have built a detailed virtual model of the cold triple-axis spectrometer RITA-II at PSI, Switzerland, using the McStas neutron ray-tracing package. The parameters characterising the virtual instrument were carefully tuned against real experiments. In the present paper we show that virtual experiments reproduce experimentally observed linewidths within 1-3% for a variety of samples. Furthermore we show that the detailed knowledge of the instrumental resolution found from virtual experiments, including sample mosaicity, can be used for quantitative estimates of linewidth broadening resulting from, e.g., finite domain sizes in single-crystal samples.

  8. Topics in the physics and astrophysics of neutron stars

    Science.gov (United States)

    Postnikov, Sergey

    In this dissertation, four topics related to the physics and astrophysics of neutron stars are studied. Two first topics deal with microscopical physics processes in the star outer crust and the last two with macroscopical properties of a star, such as mass and radius. In the first topic, the thermodynamical and transport properties of a dilute gas in which particles interact through a delta-shell potential are investigated. Through variations of a single parameter related to the strength and size of the delta-shell potential, the scattering length and effective range that determine the low-energy elastic scattering cross sections can be varied over wide ranges including the case of the unitary limit (infinite scattering length). It is found that the coefficients of shear viscosity, thermal conductivity and diffusion all decrease when the scattering length becomes very large and also when resonances occur as the temperature is increased. The calculated ratios of the shear viscosity to entropy density as a function of temperature for various interaction strengths (and therefore scattering lengths) were found to lie well above the recently suggested minimal value of (4pi)-1h/kB. A new result is the value of (4/5) for the dimensionless ratio of the energy density times the diffusion coefficient to viscosity for a dilute gas in the unitary limit. Whether or not this ratio changes upon the inclusion of more than two-body interactions is an interesting avenue for future investigations. These investigations shed pedagogical light on the issue of the thermal and transport properties of an interacting system in the unitary limit, of much current interest in both atomic physics and nuclear physics in which very long scattering lengths feature prominently at very low energies. In the second topic, the shear viscosity of a Yukawa liquid, a model for the outer crust of a neutron star, is calculated in both the classical and quantum regimes. Results of semi-analytic calculations

  9. Neutron Measurements in Small MagLIF Experiments on OMEGA

    Science.gov (United States)

    Glebov, V. Yu.; Barnak, D. H.; Davies, J. R.; Knauer, J. P.; Betti, R.; Regan, S. P.; Sangster, T. C.; Campbell, E. M.

    2016-10-01

    The Laboratory for Laser Energetics (LLE) is participating in laser-driven magnetized linear inertial fusion (MagLIF) research on the OMEGA Laser System in partnership with Sandia as part of ARPA-E's ALPHA Program. In the current OMEGA setup, a CH cylindrical tube filled with D2 gas is compressed by 40 laser beams, preheated by one of the beams, and an axial magnetic field is applied to limit electron heat loss. Two copper coils provide 10-T magnetic fields. A neutron time-of-flight (nTOF) detector has been designed, fabricated, and calibrated to diagnose primary D-D fusion neutron yield in the range of 1 ×107 to 5 ×109 and ion temperature from 2 to 8 keV. The design details and calibration results of these nTOF detectors will be presented together with neutron measurement results from recent laser-driven MagLIF experiments on OMEGA. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000568, and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Neutron data experiments for transmutation. Annual Report 2006/2007

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, J.; Andersson, P.; Bevilacqua, R.; Nilsson, L.; Pomp, S.; Simutkin, V.; Oehrn, A.; Oesterlund, M. (Uppsala Univ. (SE). Dept. of Neutron Research)

    2007-10-15

    The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Department of Neutron Research, Uppsala University. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: The TSL neutron beam facility and the MEDLEY detector system have been upgraded. Funding for a major upgrade of the SCANDAL facility has been approved, and practical work has been initiated. Three new PhD students have been accepted. The Uppsala group contributed twelve accepted publications at the International Conference on Nuclear Data for Science and Technology, Nice, France, April 22-27, 2007. The EU project CANDIDE (Coordination Action on Nuclear Data for Industrial Development in Europe), coordinated by Jan Blomgren, started January 1, 2007. The EU project EFNUDAT (European Facilities for Nuclear Data research), partly coordinated by Jan Blomgren, started November 1, 2006. Nuclear power education has reached all-time high at Uppsala University. A contract with KSU (Nuclear Training and Safety Centre) on financing the increased volume of teaching for industry needs has been signed

  11. Fundamental neutron physics at a 1 MW long pulse spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.L.

    1995-12-31

    Modern neutron sources and modern neutron science share a common origin in mid twentieth century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for the study of condensed matter with modern neutron sources being primarily used (and primarily justified) as tools for condensed matter research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities carried out at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high flux neutron facilities. Future sources, particularly high power spallation sources, offer exciting possibilities for the continuation of this program of research.

  12. A highly-segmented neutron detector for the A1 experiment at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Schoth, Matthias [Institut fuer Kernphysik, Mainz (Germany); Collaboration: A1-Collaboration

    2015-07-01

    Electric and magnetic form factors of the neutron, are one of the defining properties to characterize its structure quantitatively. A planned physics program to improve the data base significantly requires high performance detection of relativistic neutrons. Exploiting the full potential of the high luminosity supplied by the MAMI accelerator, a novel neutron detector is being developed in the scope of the A1 collaboration. A large active detector volume of 0.96 m{sup 3} is required to achieve a high raw detection efficiency. The detector is subdivided into 2048 plastic scintillators to be able to cope with high background rates. The light is extracted via wavelength shifting fibres and then guided to multi anode photomultiplier. The signal is read out with FPGA based TDCs (TRBv3 developed at GSI). The energy of the signal is obtained via time over threshold information in combination with a suitable shaping and discriminating circuit. Prototype tests have been performed to optimize the choice of materials and geometry. The capability to detect neutrons in the relevant momentum range has been demonstrated using pion production. A Geant4 simulation using tracking algorithms evaluating the deposited energy is able to optimize key detector properties like particle id efficiency, multiplicity or the effective analyzing power for double polarized scattering experiments.

  13. Virtual experiments: Combining realistic neutron scattering instrument and sample simulations

    Science.gov (United States)

    Farhi, E.; Hugouvieux, V.; Johnson, M. R.; Kob, W.

    2009-08-01

    A new sample component is presented for the Monte Carlo, ray-tracing program, McStas, which is widely used to simulate neutron scattering instruments. The new component allows the sample to be described by its material dynamic structure factor, which is separated into coherent and incoherent contributions. The effects of absorption and multiple scattering are treated and results from simulations and previous experiments are compared. The sample component can also be used to treat any scattering material which may be close to the sample and therefore contaminates the total, measured signal.

  14. Neutron Time-Of-Flight (n_TOF) experiment

    CERN Multimedia

    Brugger, M; Jericha, E; Cortes rossell, G P; Riego perez, A; Baccomi, R; Laurent, B G; Palomo pinto, F R; Griesmayer, E; Leeb, H; Dressler, M; Cano ott, D; Variale, V; Ventura, A; Carrillo de albornoz trillo, A; Lo meo, S; Andrzejewski, J J; Pavlik, A F; Kadi, Y; Zanni vlastou, R; Krticka, M; Weiss, C; Kokkoris, M; Praena rodriguez, A J; Cortes giraldo, M A; Perkowski, J; Losito, R; Audouin, L; Tagliente, G; Wallner, A; Woods, P J; Mengoni, A; Guerrero sanchez, C G; Tain enriquez, J L; Vlachoudis, V; Calviani, M; Reifarth, R; Mendoza cembranos, E; Quesada molina, J M; Schumann, M D; Tsinganis, A; Saxena, A; Rauscher, T; Calvino tavares, F; Bondarenko, I; Mingrone, F; Gonzalez romero, E M; Colonna, N; Negret, A L; Leal cidoncha, E; Chiaveri, E; Milazzo, P M; Ferro pereira goncalves, I M; De almeida carrapico, C A; Castelluccio, D M

    The neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.

  15. Neutronic experiment planning for the Fuels Refabrication and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gore, B.F.; NcNeese, J.P.; Zimmerman, M.G.; Konzek, G.J.

    1979-12-01

    A program of experiments using /sup 233/UO/sub 2/ - ThO/sub 2/ fuel was proposed to provide new and improved neutronic and criticality data for thorium based nuclear fuels, in order to support the licensing of /sup 233/UO/sub 2/ - ThO/sub 2/ fuels in LWR cores. This would support the goal to develop technology for proliferation resistant fuel cycles to a point where fuel cycle choice is not limited by refabrication technology. The proposed experimental program is described in this document, along with initial planning and fuel acquisition activities undertaken during FY 1979. The program was terminated following notification that the DOE-sponsored denatured LWR Fuel Program which the experiments supported was to be discontinued.

  16. On the analysis of Deep Inelastic Neutron Scattering Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R. [Comision Nacional de Energia Atomica and CONICET, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    2001-03-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  17. Potassium tantalate substrates for neutron experiments on antiferromagnetic perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Christen, H M; MacDougall, G J; Kim, H-S; Kim, D H; Boatner, L A; Bennett, C J Callender; Zarestky, J L; Nagler, S E, E-mail: christenhm@ornl.gov

    2010-11-01

    For the study of antiferromagnetism in thin-film materials, neutron diffraction is a particularly important tool, especially since magnetometry experiments are often complicated by the substrate's strong diamagnetic or paramagnetic contribution. However, the substrate, by necessity, has a lattice parameter that is very similar to that of the film, and in most cases is over 1000 times more massive than the film. Therefore, even weak structural distortions in the substrate crystal may complicate the analysis of magnetic scattering from the film. Here we show that in contrast to most other perovskite substrates (including SrTiO{sub 3}, LaAlO{sub 3}, etc.), KTaO3 provides a uniquely appropriate substrate platform for magnetic diffraction experiments on epitaxial oxide films.

  18. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  19. Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments

    CERN Document Server

    Kaschuck, Y A; Trykov, L A; Semenov, V P

    2002-01-01

    Neutron spectrometry with NE213 liquid scintillators is commonly used in thermonuclear fusion experiments to measure the 2.45 and 14.1 MeV neutron flux. We present the unfolded neutron spectrum, which was accumulated during several ohmic deuterium plasma discharges in the Frascati Tokamak Upgrade using a 2''x2'' NE213 scintillator. In this paper, we review the application of organic scintillator neutron spectrometers to tokamaks, focusing in particular on the comparison between NE213 and stilbene scintillators. Various aspects of the calibration technique and neutron spectra unfolding procedure are considered in the context of their application for fusion neutron spectrometry. Testing and calibration measurements have been carried out using D-D and D-T neutron generator facilities with both NE213 and stilbene scintillators. The main result from these measurements is that stilbene scintillator has better neutron energy resolution than NE213. Our stilbene detector could be used for the determination of the ion ...

  20. The COHERENT Experiment at the Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Steven Ray [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)

    2015-09-30

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino- nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the N=2 dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.

  1. Design of Pre-collimator System for Neutronics Benchmark Experiment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to carry out evaluation of neutron nuclear data, in the last "Five-Year" period, China Institute of Atomic Energy has developed a set of neutron nuclear data benchmarking test system, and used the time-of-flight technique to measure the neutron

  2. Facility for parity and time reversal experiments with intense epithermal (eV) neutron beams

    Science.gov (United States)

    Bowman, C. D.; Bowman, J. D.; Herczeg, P.; Szymanski, J.; Yuan, V. W.; Anaya, J. M.; Mortensen, R.; Postma, H.; Delheij, P. P. J.; Baker, O. K.; Gould, C. R.; Haase, D. G.; Mitchell, G. E.; Roberson, N. R.; Zhu, X.; McDonald, A. B.; Benton, D.; Tippens, B.; Chupp, T. E.

    1988-12-01

    A facility for polarized epithermal neutrons of high intensity is set up at the Los Alamos National Laboratory for parityviolation and time reversal experiments at neutron resonances over a wide range of neutron energies. The beam is polarized with the aid of a polarized proton target used as a neutronspin filter. Total cross section measurements as well as capture gamma-ray experiments will be carried out. The main features of this system will be discussed.

  3. Experimental physics with polarized protons, neutrons and deuterons

    CERN Document Server

    Lehar, František; Wilkin, Colin

    2015-01-01

    The monograph gives a comprehensive overview of the diverse aspects of the experimental study of polarization phenomena in nucleon-nucleon and nucleon-deuteron collisions. The special nature of this volume is that it is based on the original physics results and knowledge gained by one of the authors (F. Lehar), who was a respected researcher in the field for nearly fifty years. The results of these experiments provide valuable information on the spin dependence of the forces acting between nucleons in atomic nuclei, of which all matter is ultimately composed. The fundamental importance of the results means that the subject will remain topical for years to come. The book is designed for teachers and students of natural sciences, espe - cially those with interests in nuclear and particle physics, as well as for ex - perimental physicists who are investigating polarization phenomena using accelerators of charged particles. The writing of the book was initiated by F. Lehar who was the driving force beh...

  4. Calibration of the neutron detectors for the cluster fusion experiment on the Texas Petawatt Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bang, W.; Quevedo, H. J.; Dyer, G.; Rougk, J.; Kim, I.; McCormick, M.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2012-06-15

    Three types of neutron detectors (plastic scintillation detectors, indium activation detectors, and CR-39 track detectors) were calibrated for the measurement of 2.45 MeV DD fusion neutron yields from the deuterium cluster fusion experiment on the Texas Petawatt Laser. A Cf-252 neutron source and 2.45 MeV fusion neutrons generated from laser-cluster interaction were used as neutron sources. The scintillation detectors were calibrated such that they can detect up to 10{sup 8} DD fusion neutrons per shot in current mode under high electromagnetic pulse environments. Indium activation detectors successfully measured neutron yields as low as 10{sup 4} per shot and up to 10{sup 11} neutrons. The use of a Cf-252 neutron source allowed cross calibration of CR-39 and indium activation detectors at high neutron yields ({approx}10{sup 11}). The CR-39 detectors provided consistent measurements of the total neutron yield of Cf-252 when a modified detection efficiency of 4.6 Multiplication-Sign 10{sup -4} was used. The combined use of all three detectors allowed for a detection range of 10{sup 4} to 10{sup 11} neutrons per shot.

  5. D-D Neutron Generator Calibrations and Hardware in the LUX-ZEPLIN Dark Matter Search Experiment

    Science.gov (United States)

    Taylor, Will; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) dark matter search experiment will be a two-phase liquid/gas xenon time projection chamber with 7 tonnes of active liquid xenon (LXe) located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. LZ will utilize an in-situ, absolute calibration of nuclear recoils (NR) in LXe using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used in the LUX detector to measured the NR charge yield in LXe (Qy) to 0.7 keV recoil energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keV - both of which were the lowest energy measurements achieved in the field. These absolute, ultra-low energy calibrations of the NR signal yields in LXe provide clear measurements of the detector response used for the WIMP search analysis. The improvements made for LZ will include shorter neutron pulse times, multiple neutron conduit configurations, and lower energy neutrons. The upgrades allow for even lower energy measurements of the nuclear recoil response in LXe and an independent measurement of Ly, as well as providing less uncertainty in energy reconstruction. In addition to discussing the physics of the neutron calibrations, I will describe the hardware systems used to implement them.

  6. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    Science.gov (United States)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  7. PREFACE: XX International School on Nuclear Physics, Neutron Physics and Applications (Varna2013)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina

    2014-09-01

    The present volume contains the lectures and short talks given at the XX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 16-22 September 2013 in 'Club Hotel Bolero' located in 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of Bulgarian Academy of Sciences. Co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Research - Dubna. Financial support was also provided by the Bulgarian Ministry of Education and Science. According to the long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year, 2013, we had the pleasure to welcome more than sixty distinguished scientists as lecturers. Additionally, twenty young colleagues received the opportunity to present a short contribution. Ninety-four participants altogether enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The program of the School ranged from latest results in fundamental areas such as nuclear structure and reactions to the hot issues of application of nuclear methods, reactor physics and nuclear safety. The main topics have been the following: Nuclear excitations at various energies. Nuclei at high angular moments and temperature. Structure and reactions far from stability. Symmetries and collective phenomena. Methods for lifetime measurements. Astrophysical aspects of nuclear structure. Neutron nuclear physics. Nuclear data. Advanced methods in

  8. PREFACE: XIX International School on Nuclear Physics, Neutron Physics and Applications (VARNA 2011)

    Science.gov (United States)

    Stoyanov, Chavdar; Dimitrova, Sevdalina; Voronov, Victor

    2012-05-01

    This volume contains the lectures and short talks given at the XIX International School on Nuclear Physics, Neutron Physics and Applications. The School was held from 19-25 September 2011 in 'Club Hotel Bolero' located in the 'Golden Sands' (Zlatni Pyasaci) Resort Complex on the Black Sea coast, near Varna, Bulgaria. The School was organized by the Institute for Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences. The co-organizer of the School was the Bulgarian Nuclear Regulatory Agency and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research - Dubna. According to long-standing tradition the School has been held every second year since 1973. The School's program has been restructured according to our enlarged new international links and today it is more similar to an international conference than to a classical nuclear physics school. This new image attracts many young scientists and students from around the world. This year - 2011, we had the pleasure of welcoming more than 50 distinguished scientists as lecturers. Additionally, 14 young colleagues received the opportunity to each present a short contribution. The program ranged from recent achievements in areas such as nuclear structure and reactions to the hot topics of the application of nuclear methods, reactor physics and nuclear safety. The 94 participants enjoyed the scientific presentations and discussions as well as the relaxing atmosphere at the beach and during the pleasant evenings. The main topics were as follows: Nuclear excitations at various energies Nuclei at high angular moments and temperature Structure and reactions far from stability Symmetries and collective phenomena Methods for lifetime measurements Astrophysical aspects of nuclear structure Neutron nuclear physics Nuclear data Advanced methods in nuclear waste treatment Nuclear methods for applications Several colleagues helped with the organization of the School. We would like

  9. Current experiments in particle physics, 1996

    CERN Document Server

    Lawrence Berkeley Nat. Laboratory. Berkeley; Lehár, F; Klioukhine, V I; Ryabov, Yu; Bilak, S V; Illarionova, N S; Khachaturov, B A; Strokovsky, E A; Hoffman, C M; Kettle, P R; Olin, A; Armstrong, F E

    1996-01-01

    Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.

  10. Current experiments in elementary particle physics, 1989

    CERN Document Server

    Lawrence Berkeley Nat. Laboratory. Berkeley; Armstrong, F E; Trippe, T G; Yost, G P; Oyanagi, Y; Dodder, D C; Ryabov, Yu G; Slabospitsky, S R; Frosch, R; Olin, A; Lehar, F; Klumov, I A; Ivanov, I I

    1989-01-01

    Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.

  11. The Manuel Lujan, Jr. Neutron Scattering Center, LANSCE experiment reports: 1990 Run Cycle

    Energy Technology Data Exchange (ETDEWEB)

    DiStravolo, M.A. (comp.)

    1991-10-01

    This year was the third in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each six-month LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred thirty-four proposals were submitted for unclassified research and twelve proposals for research of a programmatic nature to the Laboratory. Our definition of beam availability is when the proton current from the PSR exceeds 50% of the planned value. The PSR ran at 65{mu}A current (average) at 20 Hz for most of 1990. All of the scheduled experiments were performed and experiments in support of the LANSCE research program were accomplished during the discretionary periods.

  12. Numerical simulations of in-situ neutron detector calibration experiments on the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ku, L.P.; Hendel, H.W.; Liew, S.L.; Strachan, J.D.

    1990-02-01

    Accurate determinations of fusion neutron yields on the TFTR require that the neutron detectors be absolutely calibrated in-situ, using neutron sources of known strengths. For such calibrations, numerical simulations of neutron transport can be powerful tools in the design of experiments and the study of measurement results. On the TFTR, numerical calibration experiments' have been frequently used to complement actual detector calibrations. We present calculational approaches and transport models used in these numerical simulations, and summarize the results from simulating the calibration of {sup 235}U fission detectors carried out in December 1988. 12 refs., 9 figs., 6 tabs.

  13. Surface emission from neutron stars and implications for the physics of their interiors.

    Science.gov (United States)

    Ozel, Feryal

    2013-01-01

    Neutron stars are associated with diverse physical phenomena that take place in conditions characterized by ultrahigh densities as well as intense gravitational, magnetic and radiation fields. Understanding the properties and interactions of matter in these regimes remains one of the challenges in compact object astrophysics. Photons emitted from the surfaces of neutron stars provide direct probes of their structure, composition and magnetic fields. In this review, I discuss in detail the physics that governs the properties of emission from the surfaces of neutron stars and their various observational manifestations. I present the constraints on neutron star radii, core and crust composition, and magnetic field strength and topology obtained from studies of their broadband spectra, evolution of thermal luminosity, and the profiles of pulsations that originate on their surfaces.

  14. Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective

    Indian Academy of Sciences (India)

    Sushan Konar; Manjari Bagchi; Debades Bandyopadhyay; Sarmistha Banik; Dipankar Bhattacharya; Sudip Bhattacharyya; R. T. Gangadhara; A. Gopakumar; Yashwant Gupta; B. C. Joshi; Yogesh Maan; Chandreyee Maitra; Dipanjan Mukherjee; Archana Pai; Biswajit Paul; Alak K. Ray; Firoza K. Sutaria

    2016-12-01

    It is an exceptionally opportune time for astrophysics when a number of next-generation mega-instruments are poised to observe the Universe across the entire electromagnetic spectrum with unprecedented data quality. The Square Kilometre Array (SKA) is undoubtedly one of the major components of this scenario. In particular, the SKA is expected to discover tens of thousands of new neutron stars giving a major fillip to a wide range of scientific investigations. India has a sizeable community of scientists working on different aspects of neutron star physics with immediate access to both the uGMRT (an SKA pathfinder) and the recently launched X-ray observatory Astrosat. The current interests of the community largely centre around studies of (a) the generation of neutron stars and the SNe connection, (b) the neutron star population and evolutionary pathways, (c) the evolution of neutron stars in binaries and the magnetic fields, (d) the neutron star equation of state, (e) the radio pulsar emission mechanism, and (f) the radio pulsars as probes of gravitational physics. Most of these studies are the main goals of the SKA first phase, which is likely to be operational in the next four years. This article summarizes the science goals of the Indian neutron star community in the SKA era, with significant focus on coordinated efforts among the SKA and other existing/upcoming instruments.

  15. Neutron Star Physics in the Square Kilometre Array Era: An Indian Perspective

    Science.gov (United States)

    Konar, Sushan; Bagchi, Manjari; Bandyopadhyay, Debades; Banik, Sarmistha; Bhattacharya, Dipankar; Bhattacharyya, Sudip; Gangadhara, R. T.; Gopakumar, A.; Gupta, Yashwant; Joshi, B. C.; Maan, Yogesh; Maitra, Chandreyee; Mukherjee, Dipanjan; Pai, Archana; Paul, Biswajit; Ray, Alak K.; Sutaria, Firoza K.

    2016-12-01

    It is an exceptionally opportune time for astrophysics when a number of next-generation mega-instruments are poised to observe the Universe across the entire electromagnetic spectrum with unprecedented data quality. The Square Kilometre Array (SKA) is undoubtedly one of the major components of this scenario. In particular, the SKA is expected to discover tens of thousands of new neutron stars giving a major fillip to a wide range of scientific investigations. India has a sizeable community of scientists working on different aspects of neutron star physics with immediate access to both the uGMRT (an SKA pathfinder) and the recently launched X-ray observatory Astrosat. The current interests of the community largely centre around studies of (a) the generation of neutron stars and the SNe connection, (b) the neutron star population and evolutionary pathways, (c) the evolution of neutron stars in binaries and the magnetic fields, (d) the neutron star equation of state, (e) the radio pulsar emission mechanism, and (f) the radio pulsars as probes of gravitational physics. Most of these studies are the main goals of the SKA first phase, which is likely to be operational in the next four years. This article summarizes the science goals of the Indian neutron star community in the SKA era, with significant focus on coordinated efforts among the SKA and other existing/upcoming instruments.

  16. Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves

    CERN Document Server

    Llanes-Estrada, Felipe J

    2016-01-01

    The finding of Gravitational Waves by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f(R) gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.

  17. Constraining gravity with hadron physics: neutron stars, modified gravity and gravitational waves

    Science.gov (United States)

    Llanes-Estrada, Felipe J.

    2017-03-01

    The finding of Gravitational Waves (GW) by the aLIGO scientific and VIRGO collaborations opens opportunities to better test and understand strong interactions, both nuclear-hadronic and gravitational. Assuming General Relativity holds, one can constrain hadron physics at a neutron star. But precise knowledge of the Equation of State and transport properties in hadron matter can also be used to constrain the theory of gravity itself. I review a couple of these opportunities in the context of modified f (R) gravity, the maximum mass of neutron stars, and progress in the Equation of State of neutron matter from the chiral effective field theory of QCD.

  18. Neutron Background Characterization for a Coherent Neutrino-Nucleus Scattering experiment at SNS

    Science.gov (United States)

    Gerling, Mark

    2014-03-01

    Coherent Neutrino Nucleus Scattering (CNNS) is a theoretical well-grounded, but as-yet unverified process. The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) may provide an optimal platform for detection of CNNS, possibly with existing detector technology. A proto-collaboration of groups from several institutions has come together to investigate this option and propose an experiment for the first-time observation of CNNS. Currently, the largest risk to such an experiment comes from an unknown background of beam-induced high-energy neutrons that penetrate the existing SNS concrete shielding. We have deployed a neutron scatter camera at the SNS during beam operation and performed preliminary measurements of the neutron backgrounds at a promising experimental location. In order to measure neutrons as high as 100 MeV, we needed to make modifications to the neutron scatter camera and expand its capabilities beyond its standard operating range of 1-14MeV. We have identified sources of high-energy neutrons and continue to investigate other possible locations that may allow a successful CNNS experiment to go forward. The imaging capabilities of the neutron scatter camera will allow more optimal shielding designs that take into account neutron flux anisotropies at the selected experiment locations.

  19. Opportunities for Neutrino Physics at the Spallation Neutron Source (SNS)

    CERN Document Server

    Efremenko, Yu

    2008-01-01

    In this paper we discuss opportunities for a neutrino program at the Spallation Neutrons Source (SNS) being commissioning at ORNL. Possible investigations can include study of neutrino-nuclear cross sections in the energy rage important for supernova dynamics and neutrino nucleosynthesis, search for neutrino-nucleus coherent scattering, and various tests of the standard model of electro-weak interactions.

  20. Crucial Experiments in Quantum Physics.

    Science.gov (United States)

    Trigg, George L.

    The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…

  1. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Gaisbauer, Dominic; Steffen, Dominik [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2015-07-01

    The aim of PENeLOPE is a high-precision measurement of the neutron lifetime and thereby an increase of the parameter's precision by one order of magnitude. In order to achieve an increasingly higher accuracy, modern experiments naturally require state-of-the-art readout electronics, as well as high-performance data acquisition systems. This talk therefore presents the readout system for the neutron lifetime experiment PENeLOPE, which is currently being designed at the department of physics at Technische Universitaet Muenchen. The system's readout chain involves preamplifier, shaper, sampling ADC, and a data processing stage implemented on field programmable gate arrays (FPGAs). Due to the incorporated signal detection, the system is able to process data from 1,000 self-triggering channels, each of which is hit by 10 particles/sec. The corresponding data rate of 1.5 MB/sec is transferred to the outside of the experiment by a high-speed optical interface, which has been developed to meet the special experimental requirements of PENeLOPE. The main focus of the talk is set on the performance and tests of the trigger algorithm as well as on characteristics and properties of the optical interface.

  2. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Oshinowo, Babatunde O. [Fermilab; Izraelevitch, Federico [Buenos Aires U.

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  3. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  4. The Manuel Lujan, Jr. Neutron Scattering Center (LANSCE) experiment reports 1992 run cycle. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    DiStravolo, M.A. [comp.

    1993-09-01

    This year was the fifth in which LANSCE ran a formal user program. A call for proposals was issued before the scheduled run cycles, and experiment proposals were submitted by scientists from universities, industry, and other research facilities around the world. An external program advisory committee, which LANSCE shares with the Intense Pulsed Neutron Source (IPNS), Argonne National Laboratory, examined the proposals and made recommendations. At LANSCE, neutrons are produced by spallation when a pulsed, 800-MeV proton beam impinges on a tungsten target. The proton pulses are provided by the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator and an associated Proton Storage Ring (PSR), which can alter the intensity, time structure, and repetition rate of the pulses. The LAMPF protons of Line D are shared between the LANSCE target and the Weapons Neutron Research (WNR) facility, which results in LANSCE spectrometers being available to external users for unclassified research about 80% of each annual LAMPF run cycle. Measurements of interest to the Los Alamos National Laboratory may also be performed and may occupy up to an additional 20% of the available beam time. These experiments are reviewed by an internal program advisory committee. One hundred sixty-seven proposals were submitted for unclassified research and twelve proposals for research of a programmatic interest to the Laboratory; six experiments in support of the LANSCE research program were accomplished during the discretionary periods. Oversubscription for instrument beam time by a factor of three was evident with 839 total days requested and only 371 available for allocation.

  5. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  6. The COHERENT Experiment at the Spallation Neutron Source

    CERN Document Server

    Akimov, D; Awe, C; Barbeau, P S; Barton, P; Becker, B; Below, V; Bolozdynya, A; Burenkov, A; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Dean, D; Detwiler, J; Efremenko, Y; Elliott, S R; Fields, N; Fox, W; Galindo-Uribarri, A; Green, M; Heath, M; Hedges, S; Herman, N; Hornback, D; Iverson, E B; Kaufman, L; Klein, S R; Khromov, A; Konovalev, A; Kumpan, A; Leadbetter, C; Li, L; Lu, W; Melikyan, A; Markoff, D; Miller, K; Middlebrook, M; Mueller, P; Naumov, P; Newby, J; Parno, D; Penttila, S; Perumpilly, G; Radford, D; Ray, H; Raybern, J; Reyna, D; Rich, G C; Rimal, D; Rudik, D; Scholberg, K; Scholz, B; Snow, W M; Sosnovchev, A; Shakirov, A; Suchyta, S; Suh, B; Tayloe, R; Thornton, R T; Tolstukhin, A; Vetter, K; Yu, C H

    2015-01-01

    The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT...

  7. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  8. Physics at the new CERN neutron beam line

    CERN Document Server

    Guerrero, C

    2014-01-01

    A new neutron beam line (n_TOF EAR - 2) is being built at CERN within the n_TOF facility. Compared to the existing 185 meters long time - of - flight beam line, the new one (which will operate in parallel) will feature a shorter flight of 20 meters, providing a 2 7 times more intense neutron flux extending from thermal to 300 MeV. The scientific program is now bein g discussed and the first detailed proposals will be refereed by February 2014. This contribution is devoted to present and discuss the expected performance of the facility, briefly, and the details of some of the first measureme nts foreseen for 2014 and 2015.

  9. Physics of the TALE Experiment

    Science.gov (United States)

    Thomson, G. B.

    The Telescope Array Low Energy Extension (TALE) Experiment consists of three detectors which will extend the sensitivity in energy of the Telescope Array (TA) experiment by two orders of magnitude, from 18.5experiment at all energies, and double it at the highest energies. The aim of the experiment is to study the second knee, the ankle, and the galactic/extragalactic transition. The three detectors start with a set of fluorescence detectors deployed in such a way that they are paired with TA fluorescence detectors at a separation of 6 km. These stereo pairs are designed to study the ankle of the cosmic ray spectrum in an optimal way. The second of the three is a "tower" detector, which is a fluorescence detector designed to have increased coverage in elevation angle, up to 71 degrees. This detector is designed to study the second knee of the spectrum. The third detector is an infill array to be added to TA within the aperture of the tower detector. This will make possible hybrid observation with the tower detector, and provide greatly improved reconstruction of lower energy events in purely surface detector mode.

  10. Customized Laboratory Experience in Physical Chemistry

    Science.gov (United States)

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  11. Benchmark experiment on vanadium assembly with D-T neutrons. In-situ measurement

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Kasugai, Yoshimi; Konno, Chikara; Wada, Masayuki; Oyama, Yukio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murata, Isao; Kokooo; Takahashi, Akito

    1998-03-01

    Fusion neutronics benchmark experimental data on vanadium were obtained for neutrons in almost entire energies as well as secondary gamma-rays. Benchmark calculations for the experiment were performed to investigate validity of recent nuclear data files, i.e., JENDL Fusion File, FENDL/E-1.0 and EFF-3. (author)

  12. The Manuel Lujan, Jr. Neutron Scattering Center LANSCE experiment reports 1989 run cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hyer, D.K.; DiStravolo, M.A. (comps.)

    1990-10-01

    This report contains a listing and description of experiments carried on at the LANSCE neutron scattering facility in the following areas: High Density Powder Diffraction; Neutron Powder Diffractometer, (NPD); Single Crystal Diffractometer, (SCD); Low-Q Diffractometer, (LQD); Surface Profile Analysis Reflectometer, (SPEAR); Filter Difference Spectrometer, (FDS); and Constant-Q Spectrometer.

  13. Manifestation of the geometric phase in neutron spin-echo experiments

    NARCIS (Netherlands)

    Kraan, W.H.; Grigoriev, S.V.; Rekveldt, M.T.

    2010-01-01

    We show how the geometric (Berry’s) phase becomes manifest on adiabatic rotation of the polarization vector in the magnetic field configuration in the arms in a neutron spin echo (NSE) experiment.When the neutron beam used is monochromatic, a geometric phase collected in one spin-echo arm can be exa

  14. Landmark experiments in twentieth-century physics

    CERN Document Server

    Trigg, George L

    2011-01-01

    Physics is very much an experimental science, but too often, students at the undergraduate level are not exposed to the reality of experimental physics ― i.e., what was done in a given experiment, why it was done, the background of physics against which the experiment was carried out and the changes in theory and knowledge that resulted. In this hook, the author helps to remedy the situation by presenting a variety of ""landmark"" experiments that have brought about significant alterations in our ideas about some aspect of nature. Among these scientific milestones are discoveries about the wa

  15. Fundamental interactions involving neutrons and neutrinos: reactor-based studies led by Petersburg Nuclear Physics Institute (National Research Centre 'Kurchatov Institute') [PNPI (NRC KI)

    Science.gov (United States)

    Serebrov, A. P.

    2015-11-01

    Neutrons of very low energy ( ˜ 10-7 eV), commonly known as ultracold, are unique in that they can be stored in material and magnetic traps, thus enhancing methodical opportunities to conduct precision experiments and to probe the fundamentals of physics. One of the central problems of physics, of direct relevance to the formation of the Universe, is the violation of time invariance. Experiments searching for the nonzero neutron electric dipole moment serve as a time invariance test, and the use of ultracold neutrons provides very high measurement precision. Precision neutron lifetime measurements using ultracold neutrons are extremely important for checking ideas on the early formation of the Universe. This paper discusses problems that arise in studies using ultracold neutrons. Also discussed are the currently highly topical problem of sterile neutrinos and the search for reactor antineutrino oscillations at distances of 6-12 meters from the reactor core. The field reviewed is being investigated at multiple facilities globally. The present paper mainly concentrates on the results of PNPI-led studies at WWR-M PNPI (Gatchina), ILL (Grenoble), and SM-3 (Dimitrovgrad) reactors, and also covers the results obtained during preparation for research at the PIK reactor which is under construction.

  16. A simulation-based study of the neutron backgrounds for NaI dark matter experiments

    CERN Document Server

    Jeon, Eunju

    2015-01-01

    Among the direct search experiments for weakly interacting massive particle (WIMP) dark matter, the DAMA experiment observed an annual modulation signal interpreted as WIMP interactions with a significance of 9.2$\\sigma$. Recently, Jonathan Davis claimed that the DAMA modulation may be interpreted on the basis of the neutron scattering events induced by the muons and neutrinos together. We tried to simulate the neutron backgrounds at the Gran Sasso and Yangyang laboratory with and without the polyethylene shielding to quantify the effects of the ambient neutrons on the direct detection experiments based on the crystals.

  17. Experience of boron neutron capture therapy in Japan

    Science.gov (United States)

    Kanda, Keiji

    1997-02-01

    In Japan the boron neutron capture therapy has been applied to more than 200 patients, mostly brain tumors and some melanomas. For brain tumors, Kyoto University, Kyoto Prefectural University of Medicine, Tsukuba University and National Kagawa Children's Hospital accept patients, and for melanomas, Kobe University and Mishima Institute of Dermatological Research accept patients so far. Recently the heavy water facility of Kyoto University Reactor has been upgraded for epithermal neutron as well as thermal neutron irradiations, and for the patient treatment during the continuous operation of the KUR.

  18. A Complex-Geometry Validation Experiment for Advanced Neutron Transport Codes

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Anthony W. LaPorta; Joseph W. Nielsen; James Parry; Mark D. DeHart; Samuel E. Bays; William F. Skerjanc

    2013-11-01

    The Idaho National Laboratory (INL) has initiated a focused effort to upgrade legacy computational reactor physics software tools and protocols used for support of core fuel management and experiment management in the Advanced Test Reactor (ATR) and its companion critical facility (ATRC) at the INL.. This will be accomplished through the introduction of modern high-fidelity computational software and protocols, with appropriate new Verification and Validation (V&V) protocols, over the next 12-18 months. Stochastic and deterministic transport theory based reactor physics codes and nuclear data packages that support this effort include MCNP5[1], SCALE/KENO6[2], HELIOS[3], SCALE/NEWT[2], and ATTILA[4]. Furthermore, a capability for sensitivity analysis and uncertainty quantification based on the TSUNAMI[5] system has also been implemented. Finally, we are also evaluating the Serpent[6] and MC21[7] codes, as additional verification tools in the near term as well as for possible applications to full three-dimensional Monte Carlo based fuel management modeling in the longer term. On the experimental side, several new benchmark-quality code validation measurements based on neutron activation spectrometry have been conducted using the ATRC. Results for the first four experiments, focused on neutron spectrum measurements within the Northwest Large In-Pile Tube (NW LIPT) and in the core fuel elements surrounding the NW LIPT and the diametrically opposite Southeast IPT have been reported [8,9]. A fifth, very recent, experiment focused on detailed measurements of the element-to-element core power distribution is summarized here and examples of the use of the measured data for validation of corresponding MCNP5, HELIOS, NEWT, and Serpent computational models using modern least-square adjustment methods are provided.

  19. Experimental studies of keV energy neutron-induced reactions relevant to astrophysics and nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Shima, T.; Kii, T.; Kikuchi, T.; Okazaki, F.; Kobayashi, T.; Baba, T.; Nagai, Y. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Igashira, M.

    1997-03-01

    Nuclear reactions induced by keV energy neutrons provide a plenty of informations for studies of both astrophysics and nuclear physics. In this paper we will show our experimental studies of neutron- induced reactions of light nuclei in the keV energy region by means of a pulsed keV neutron beam and high-sensitivity detectors. Also we will discuss astrophysical and nuclear-physical consequences by using the obtained results. (author)

  20. Assessment of sensitivity of neutron-physical parameters of fast neutron reactor to purification of reprocessed fuel from minor actinides

    Science.gov (United States)

    Cherny, V. A.; Kochetkov, L. A.; Nevinitsa, A. I.

    2013-12-01

    The work is devoted to computational investigation of the dependence of basic physical parameters of fast neutron reactors on the degree of purification of plutonium from minor actinides obtained as a result of pyroelectrochemical reprocessing of spent nuclear fuel and used for manufacturing MOX fuel to be reloaded into the reactors mentioned. The investigations have shown that, in order to preserve such important parameters of a BN-800 type reactor as the criticality, the sodium void reactivity effect, the Doppler effect, and the efficiency of safety rods, it is possible to use the reprocessed fuel without separation of minor actinides for refueling (recharging) the core.

  1. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  2. Forward Physics at the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    Poster summarize forward physics at the ATLAS experiment. It aims to AFP project which is the project to install forward detectors at 220m (AFP220) and 420m (AFP420) around ATLAS for measurements at high luminosity.

  3. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  4. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  5. XYZ physics at BESIII experiment

    CERN Document Server

    Liu, Zhiqing

    2015-01-01

    With the ability to run above 4~GeV, the BESIII experiment located in the Beijing Electron Positron Collider (BEPCII), has becoming a pioneer in searching and studying charmoniumlike states ($XYZ$ particles). In 2013, BESIII Collaboration discovered a charged charmoniumlike state $Z_c(3900)$, which is confirmed immediately experimentally, and provides the best candidate for a four quark state by now. Continuous studies by BESIII Collaboration show new decay behavior of $Z_c(3900)$, and there are possible partner particle $Z_c(4020)/Z_c(4025)$ existing. By scanning above 4~GeV, BESIII also reveals the potential connection between $Y(4260)$ and $X(3872)$ for the first time, which may help us understand $XYZ$ particles in a new sight.

  6. Overview of Neutron Beta Correlation Parameter Analysis from the UCNA Experiment

    Science.gov (United States)

    Sun, Xuan; UCNA Collaboration

    2017-01-01

    The UCNA experiment, operated at the Ultracold Neutron Facility at the Los Alamos Neutron Science Center, uses ultracold neutrons (UCN) to measure the free-neutron β-decay correlation parameter, A, between the neutron spin direction and β momentum direction. Measurements of A presently provide the most precise value of gA /gV , the ratio of the axial-vector and vector coupling constants of the nucleon weak interaction. The UCNA experiment has previously analyzed and reported on a measurement of A from a 2010 dataset. Additional datasets were also taken in 2011-2012 and 2012-2013. Improvements in energy calibrations, polarimetry, and statistics are expected to provide a more precise measurement of A from the later datasets. We provide a review of the experimental apparatus and give an updated overview on the state of the 2011-2012 and 2012-2013 dataset analysis with respect to the A measurement.

  7. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  8. Order-of-magnitude physics of neutron stars. Estimating their properties from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Reisenegger, Andreas; Zepeda, Felipe S. [Pontificia Universidad Catolica de Chile, Instituto de Astrofisica, Facultad de Fisica, Macul (Chile)

    2016-03-15

    We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of ''everyday'' matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties. (orig.)

  9. Development and testing of neutron pulse time stamping data acquisition system for neutron noise experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajeev [Reactor Physics Design Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Yakub Ali, M [Radio Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Degweker, S.B. [Theoretical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Vishwasrao, S.C. [Product Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Jadhav, R.T. [Radio Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2015-01-11

    Statistical correlation techniques find applications in the analysis of zero power reactor noise and in passive neutron assay (PNA). A large number of apparently different techniques have been in use in these application areas and traditionally the electronics modules used for data acquisition and analysis is specific to the method used. In this paper we describe a data acquisition scheme developed by us, which is independent of the specific analysis method and can therefore be used for all of them. This is a neutron time stamping data acquisition system based on a timer card and an interface software to acquire and store the data in the required format. The system has been successfully tested with two statistically different types of neutron sources, namely a random Poisson source (Pu–Be) and a correlated source (a nuclear reactor)

  10. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    Energy Technology Data Exchange (ETDEWEB)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  11. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    Energy Technology Data Exchange (ETDEWEB)

    HOFF, L.T.

    2005-10-10

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  12. Neutron Star Physics in the Square Kilometer Array Era : An Indian Perspective

    CERN Document Server

    Konar, Sushan; Bandyopadhyay, Debades; Banik, Sarmistha; Bhattacharya, Dipankar; Bhattacharyya, Sudip; Gangadhara, R T; Gopakumar, A; Gupta, Yashwant; Joshi, B C; Maan, Yogesh; Maitra, Chandreyee; Mukherjee, Dipanjan; Pai, Archana; Paul, Biswajit; Ray, Alak K; Sutaria, Firoza K

    2016-01-01

    It is an exceptionally opportune time for Astrophysics when a number of next-generation mega-instruments are poised to observe the universe across the entire electromagnetic spectrum with unprecedented data quality. The Square Kilometre Array (SKA) is undoubtedly one of the major components of this scenario. In particular, the SKA is expected to discover tens of thousands of new neutron stars giving a major fillip to a wide range of scientific investigations. India has a sizeable community of scientists working on different aspects of neutron star physics with immediate access to both the uGMRT (an SKA pathfinder) and the recently launched X-ray observatory Astrosat. The current interests of the community largely centre around studies of - a) the generation of neutron stars and the SNe connection}, b) the neutron star population and evolutionary pathways}, c) the evolution of neutron stars in binaries and the magnetic fields}, d) the neutron star equation of state}, e) the radio pulsar emission mechanism}, an...

  13. Simulation experiments for gamma-ray mapping of planetary surfaces: Scattering of high-energy neutrons

    Science.gov (United States)

    Brueckner, J.; Englert, P.; Reedy, R. C.; Waenke, H.

    1986-01-01

    The concentration and distribution of certain elements in surface layers of planetary objects specify constraints on models of their origin and evolution. This information can be obtained by means of remote sensing gamma-ray spectroscopy, as planned for a number of future space missions, i.e., Mars, Moon, asteroids, and comets. To investigate the gamma-rays made by interactions of neutrons with matter, thin targets of different composition were placed between a neutron-source and a high-resolution germanium spectrometer. Gamma-rays in the range of 0.1 to 8 MeV were accumulated. In one set of experiments a 14-MeV neutron generator using the T(d,n) reaction as neutron-source was placed in a small room. Scattering in surrounding walls produced a spectrum of neutron energies from 14 MeV down to thermal. This complex neutron-source induced mainly neutron-capture lines and only a few scattering lines. As a result of the set-up, there was a considerable background of discrete lines from surrounding materials. A similar situation exists under planetary exploration conditions: gamma-rays are induced in the planetary surface as well as in the spacecraft. To investigate the contribution of neutrons with higher energies, an experiment for the measurement of prompt gamma radiation was set up at the end of a beam-line of an isochronous cyclotron.

  14. A drabkin energy filter for experiments at a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Parizzi, A.A.; Klose, F. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Felcher, G.P. [Materials Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2001-03-01

    We present a new approach for dynamic monochromatization of neutrons suitable for time-of-flight experiments at spallation neutron sources. The method requires polarized neutrons and is based on the Drabkin energy filter. In its initial application, this magnetic resonator device, consisting of a polarizer/analyzer system and a wavelength-dependent spin flipper, was proposed for extracting a narrow bandwidth from a broad bandwidth polarized neutron beam. At a spallation neutron source, wavelength is determined by time-of-flight (TOF) from the source to the detector. However, at each instant a spread of wavelengths is recorded due to the non-zero emission time-width of the source/moderator system. Particularly, high-intensity moderators for cold neutrons produce long 'tails' in the intensity/time distribution for all wavelengths, limiting the resolution of the experiments. The Drabkin energy filter can be used to cut the neutron tails for all wavelengths, by drifting the resonance condition in synchronization with the TOF. Calculations show that the method is viable, and that substantial resolution gains are obtainable by application to a TOF neutron reflectometer. (author)

  15. A Drabkin energy filter for experiments at a spallation neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Parizzi, A. A.; Felcher, G. P.; Klose, F.

    2000-11-21

    We present a new approach for dynamic monochromatization of neutrons suitable for time-of-flight experiments at spallation neutron sources. The method requires polarized neutrons and is based on the Drabkin energy filter. In its initial application, this magnetic resonator device, consisting of a polarizer/analyzer system and a wavelength-dependent spin flipper, was proposed for extracting a narrow bandwidth from a broad bandwidth polarized neutron beam. At a spallation neutron source, wavelength is determined by time-of-flight (TOF) from the source to the detector. However, at each instant a spread of wavelengths is recorded due to the non-zero emission time of the source/moderator system. Particularly, high-intensity moderators for cold neutrons produce long ''tails'' in the intensity/time distribution for all wavelengths, degrading the resolution of the experiments. The Drabkin energy filter can be used to cut the neutron tails for all wavelengths, by drifting the resonance condition in synchronization with the TOF. Calculations show that the method is viable, and that substantial resolution gains are obtained by application to a TOF neutron reflectometer.

  16. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    Science.gov (United States)

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  17. Energy Response and Physical Reoperties of NTA* Personnel NeutronDosimeter Nuclear Track Film

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, Richard L

    1961-03-13

    This paper reports the chemical and physical properties of the NTA film packet. It correlates with these properties the response of this packet to neutrons of various energies. In this correlation the concept of the track unit is introduced as a basic unit for reporting film-packet response.

  18. Nuclear Physics meets Medicine and Biology: Boron Neutron Capture Therapy

    CERN Document Server

    F. Ballarini, F; S. Bortolussi, S; P. Bruschi, P; A.M. Clerici, A M; A. De Bari, A; P. Dionigi, P; C. Ferrari, C; M.A. Gadan, M A; N. Protti, N; S. Stella, S; C. Zonta, C; A. Zonta, A; S. Altieri, S

    2010-01-01

    BNCT is a tumour treatment based on thermal-neutron irradiation of tissues enriched with 10B, which according to the 10B(n, )7Li reaction produces particles with high Linear Energy Transfer and short range. Since this treatment can deliver a therapeutic tumour dose sparing normal tissues, BNCT represents an alternative for diffuse tumours and metastases, which show poor response to surgery and photontherapy. In 2001 and 2003, in Pavia BNCT was applied to an isolated liver, which was infused with boron, explanted, irradiated and re-implanted. A new project was then initiated for lung tumours, developing a protocol for Boron concentration measurements and performing organ-dose Monte Carlo calculations; in parallel, radiobiology studies are ongoing to characterize the BNCT effects down to cellular level. After a brief introduction, herein we will present the main activities ongoing in Pavia including the radiobiological ones, which are under investigation not only experimentally but also theoretically, basing on...

  19. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  20. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  1. The Neutron, a Tool and an Object for Fundamental and Nuclear Physics Studies

    CERN Document Server

    CERN. Geneva

    2004-01-01

    The Institut Laue-Langevin (ILL) is an international research institute which operates the currently most powerful source of neutrons in the world, a 58 MW reactor. The neutron beams provided by the reactor feed a broad range of instruments which are dedicated to a wide variety of research activities. The majority of instruments are dedicated to the study of solid-state physics, materials science, chemistry, the biosciences, and earth sciences. However, nuclear and low energy particle physics studies are also vigorously pursued with the aid of neutrons. The talk will mainly concentrate on this latter aspect. We make use of hot, thermal, cold, and ultra-cold neutrons with velocities of between a few kilometers and a few meters per second, corresponding to kinetic energies in the electronvolt-to-nanoelectronvolt range. It will be briefly discussed how thermal neutrons can be used to investigate the structure and behavior of nuclei by generating excited nuclear states. The main part of the talk will be dedicated...

  2. Monte Carlo studies on neutron interactions in radiobiological experiments.

    Science.gov (United States)

    Shahmohammadi Beni, Mehrdad; Hau, Tak Cheong; Krstic, D; Nikezic, D; Yu, K N

    2017-01-01

    Monte Carlo method was used to study the characteristics of neutron interactions with cells underneath a water medium layer with varying thickness. The following results were obtained. (1) The fractions of neutron interaction with 1H, 12C, 14N and 16O nuclei in the cell layer were studied. The fraction with 1H increased with increasing medium thickness, while decreased for 12C, 14N and 16O nuclei. The bulges in the interaction fractions with 12C, 14N and 16O nuclei were explained by the resonance spikes in the interaction cross-section data. The interaction fraction decreased in the order: 1H > 16O > 12C > 14N. (2) In general, as the medium thickness increased, the number of "interacting neutrons" which exited the medium and then further interacted with the cell layer increased. (3) The area under the angular distributions for "interacting neutrons" decreased with increasing incident neutron energy. Such results would be useful for deciphering the reasons behind discrepancies among existing results in the literature.

  3. Space experiment BTN-NEUTRON on INTERNATIONAL SPACE STATION - CURRENT STATUS and future stages

    Science.gov (United States)

    Tretyakov, V. I.; Kozyrev, A. S.; Laygushin, V. I.; Litvak, M. L.; Malakhov, A. V.; Mitrofanov, I. G.; Mokrousov, M. I.; Pronin, M. A.; Vostrukhin, A. A.; Sanin, A. B.

    2009-04-01

    Space experiment BTN (Board Telescope of Neutrons) was suggested in 1997 for the Russian segment of International Space Station. The first stage of this experiment was started in February 2007 with instrumentation BTN-M1, which contain two separate units: 1) the electronics unit for commanding and data handling, which is installed inside the Station; 2) the detector unit, which is installed at the outer surface of Russian Service Module "Zvezda". The total mass of this instrument without cables is about 15 kg and total power consumption is about 18 Watts. Detector unit of BTN-M1 has the set of four neutron detectors: three proportional counters of epithermal neutrons with 3He covered by cadmium shields and polyethylene moderators with different thickness and stylbene scintillator for fast neutrons at the energy range 0.4 Mev - 10 Mev. There are three sources of neutrons in the near-Earth space. Permanent flux of neutrons is produced due to interaction of energetic particles of galactic and solar cosmic rays with the upper atmosphere of the Earth ("natural neutrons") and with the body of the spacecraft ("technogenic neutrons"). The third transient sources of neutrons are active regions of the Sun, which may sporadically emit energetic neutrons during strong flares. Some of these particles have sufficiently high energy to neutrons cover the distance to the Earth before decay Data from BTN-M1 after 2 years of space operations is sufficient for preliminary estimation of neutron component of radiation environment in the near-Earth space. BTN-M1 detector unit is equal to the Russian instrument HEND, which also operates now onboard NASA's Mars Odyssey orbiter since May 2001. Simultaneous measurements of neutron radiation on orbits around Mars and Earth give the unique opportunity to compare neutron radiation environment around two planets. The technogenic component of neutron background may be estimated by analysis of data for different stages of flight. After evaluation

  4. Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment

    CERN Document Server

    Roca-Maza, X; Viñas, X; Warda, M

    2011-01-01

    A precise determination of the neutron skin thickness of a heavy nucleus sets a basic constraint on the nuclear symmetry energy. The parity radius experiment (PREX) may achieve it by model-independent parity-violating electron scattering on 208Pb. We investigate parity-violating electron scattering in nuclear mean field approach to allow the accurate extraction of the neutron skin thickness of 208Pb from the parity-violating asymmetry that the experiment measures. We demonstrate a close linear correlation between the parity-violating asymmetry and the neutron skin thickness in successful mean field forces as a best means to constrain the neutron skin of 208Pb from this innovative experiment. The quality of the correlation supports the commissioning of an improved PREX run to measure the parity-violating asymmetry more accurately. We study the consequences for constraining the density slope of the nuclear symmetry energy.

  5. Detection System for Neutron $\\beta$ Decay Correlations in the UCNB and Nab experiments

    CERN Document Server

    Broussard, L J; Adamek, E R; Baeßler, S; Birge, N; Blatnik, M; Bowman, J D; Brandt, A E; Brown, M; Burkhart, J; Callahan, N B; Clayton, S M; Crawford, C; Cude-Woods, C; Currie, S; Dees, E B; Ding, X; Fomin, N; Frlez, E; Fry, J; Gray, F E; Hasan, S; Hickerson, K P; Hoagland, J; Holley, A T; Ito, T M; Klein, A; Li, H; Liu, C -Y; Makela, M F; McGaughey, P L; Mirabal-Martinez, J; Morris, C L; Ortiz, J D; Pattie, R W; Penttilä, S I; Plaster, B; Počanić, D; Ramsey, J C; Salas-Bacci, A; Salvat, D J; Saunders, A; Seestrom, S J; Sjue, S K L; Sprow, A P; Tang, Z; Vogelaar, R B; Vorndick, B; Wang, Z; Wei, W; Wexler, J; Wilburn, W S; Womack, T L; Young, A R

    2016-01-01

    We describe a detection system designed for precise measurements of angular correlations in neutron $\\beta$ decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for $\\beta$ electron detection with energy thresholds below 10 keV, energy resolution of $\\sim$3 keV FWHM, and rise time of $\\sim$50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of $\\beta$ particles and recoil protons from neutron $\\beta$ decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments, to determine the neutron $\\beta$ decay parameters $B$, $a$, and $b$.

  6. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Holley, A. T.; Pattie, R. W.; Young, A. R. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States); Broussard, L. J. [Department of Physics, Duke University, Durham, North Carolina 27708 (United States); Davis, J. L.; Ito, T. M.; Lyles, J. T. M.; Makela, M.; Morris, C. L.; Mortensen, R.; Saunders, A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hickerson, K.; Mendenhall, M. P. [W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 (United States); Liu, C.-Y. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Mammei, R. R. [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States); Rios, R. [Department of Physics, Idaho State University, Pocatello, Idaho 83209 (United States)

    2012-07-15

    The UCNA collaboration is making a precision measurement of the {beta} asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be {epsilon}=0.9985(4).

  7. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Science.gov (United States)

    Broussard, L. J.; Zeck, B. A.; Adamek, E. R.; Baeßler, S.; Birge, N.; Blatnik, M.; Bowman, J. D.; Brandt, A. E.; Brown, M.; Burkhart, J.; Callahan, N. B.; Clayton, S. M.; Crawford, C.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Ding, X.; Fomin, N.; Frlez, E.; Fry, J.; Gray, F. E.; Hasan, S.; Hickerson, K. P.; Hoagland, J.; Holley, A. T.; Ito, T. M.; Klein, A.; Li, H.; Liu, C.-Y.; Makela, M. F.; McGaughey, P. L.; Mirabal-Martinez, J.; Morris, C. L.; Ortiz, J. D.; Pattie, R. W.; Penttilä, S. I.; Plaster, B.; Počanić, D.; Ramsey, J. C.; Salas-Bacci, A.; Salvat, D. J.; Saunders, A.; Seestrom, S. J.; Sjue, S. K. L.; Sprow, A. P.; Tang, Z.; Vogelaar, R. B.; Vorndick, B.; Wang, Z.; Wei, W.; Wexler, J.; Wilburn, W. S.; Womack, T. L.; Young, A. R.

    2017-03-01

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  8. Data Driven Study of Neutron Response Using Quasielastic Neutrino Scattering in the Minerva Experiment

    Science.gov (United States)

    Peters, Evan; Minerva Collaboration

    2016-09-01

    Understanding how particles behave in detectors is a critical part of analyzing data from neutrino experiments, but neutral particles are difficult to characterize. The purpose of this project was to calibrate the neutron response in Quasielastic antineutrino scattering (QE) events in the Minerva detector. We applied quasi-elastic assumptions to estimate the outgoing neutron kinematics in QE scattering, and then added modifications to improve the model's predictions for neutron response in data. We compared these kinematic predictions of neutron energy and angle to Monte Carlo simulations of QE scattering and to the behavior of reconstructed energy ``blobs'' that characterize neutral particle behavior in simulated and real Minerva data. Filtering events for neutron energy, angle, and distance from the interaction vertex, we derive calibration functions for both the simulation and real data. Future work will include potential changes to the blobbing algorithms and refinement of the calibration technique using rigorous statistical methods.

  9. Neutron irradiation of RPCs for the CMS experiment

    CERN Document Server

    Abbrescia, M; Belli, G; Bruno, G; Colaleo, A; Guida, R; Iaselli, G; Loddo, F; Maggi, M; Marangelli, B; Natali, S; Nuzzo, S; Pugliese, G; Ranieri, A; Romano, F

    2003-01-01

    All the CMS muon stations will be equipped with Resistive Plate Chambers (RPCs). They will be exposed to high neutron background environment during the LHC running. In order to verify the safe operation of these detectors, an irradiation test has been carried out with two RPCs at high neutron flux (about 10**8 n cm**-**2 s**- **1), integrating values of dose and fluence equivalent to 10 LHC- years. Before and after the irradiation, the performance of the detectors was studied with cosmic muons, showing no relevant aging effects. Moreover, no indication of damage or chemical changes were observed on the electrode surfaces.

  10. High-resolution neutron radiography with microchannel plates: Proof-of-principle experiments at PSI

    Science.gov (United States)

    Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Hull, J. S.; Feller, W. B.; Lehmann, E.

    2009-06-01

    With the appearance of highly collimated and intense neutron beamlines, the resolution of radiographic experiments is often limited by the parameters of the neutron imaging detector. Neutron-sensitive microchannel plates (MCPs) proved to be very efficient for conversion of a thermal or cold neutron into an electron pulse of up to 10 6 electrons preserving location of the neutron absorption within ˜15 μm. In this paper, we present the results of preliminary measurements performed with neutron-sensitive MCPs coupled with a Medipix2/Timepix active pixel sensor. A set of test objects was imaged at both thermal and cold neutron imaging beamlines of Paul Scherrer Institute. The spatial resolution of the detector operating at high counting rate mode was confirmed to be limited by the 55 μm pixel size of the Medipix2 readout. At the same time, event centroiding applied to the charge values measured with Timepix readout allowed individual neutron counting with spatial resolution on the scale of MCP pore spacing (11 μm in the present measurements). The ongoing improvement of the speed of the readout electronics should eliminate the low counting rate limitation of the latter high-resolution imaging.

  11. Design of a laboratory for experiments with a pulsed neutron source.

    Science.gov (United States)

    Memoli, G; Trusler, J P M; Ziver, A K

    2009-06-01

    We present the results of a neutron shielding design and optimisation study performed to reduce the exposure to radiological doses arising from a 14 MeV pulsed neutron generator (PNG) having a maximum emission strength of 2.0 x 10(8) neutrons s(-1). The source was intended to be used in a new irradiation facility for the realisation of an experiment on acoustical cavitation in liquids. This paper describes in detail how the facility was designed to reduce both neutron and gamma-ray dose rates to acceptable levels, taking into account the ALARP principle in following the steps of optimisation. In particular, this work compares two different methods of optimisation to assess neutron dose rates: the use of analytical methods and the use of Monte Carlo simulations (MCNPX 2.4). The activation of the surrounding materials during operation was estimated using the neutron spectra as input to the FISPACT 3.0 code. The limitations of a first-order analytical model to determine the neutron activation levels are highlighted. The impact that activation has on the choice of the materials to be used inside the laboratory and on the waiting time before anyone can safely enter the room after the neutron source is switched off is also discussed.

  12. Physics input for modelling superfluid neutron stars with hyperon cores

    CERN Document Server

    Gusakov, M E; Kantor, E M

    2014-01-01

    Observations of massive ($M \\approx 2.0~M_\\odot$) neutron stars (NSs), PSRs J1614-2230 and J0348+0432, rule out most of the models of nucleon-hyperon matter employed in NS simulations. Here we construct three possible models of nucleon-hyperon matter consistent with the existence of $2~M_\\odot$ pulsars as well as with semi-empirical nuclear matter parameters at saturation, and semi-empirical hypernuclear data. Our aim is to calculate for these models all the parameters necessary for modelling dynamics of hyperon stars (such as equation of state, adiabatic indices, thermodynamic derivatives, relativistic entrainment matrix, etc.), making them available for a potential user. To this aim a general non-linear hadronic Lagrangian involving $\\sigma\\omega\\rho\\phi\\sigma^\\ast$ meson fields, as well as quartic terms in vector-meson fields, is considered. A universal scheme for calculation of the $\\ell=0,1$ Landau Fermi-liquid parameters and relativistic entrainment matrix is formulated in the mean-field approximation. ...

  13. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    Science.gov (United States)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  14. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Lefmann, Kim; Abrahamsen, Asger Bech;

    2006-01-01

    to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging...

  15. Virtual experiments: the ultimate aim of neutron ray-tracing simulations

    DEFF Research Database (Denmark)

    Lefmann, Kim; Willendrup, Peter Kjær; Udby, Linda

    2008-01-01

    We define a virtual neutron experiment as a complete simulation of an experiment, from source over sample to detector. The virtual experiment (VE) will ideally interface with the instrument control software for the input and with standard data analysis packages for the virtual data output. Virtua...

  16. Current Experiments in Particle Physics. 1996 Edition.

    Energy Technology Data Exchange (ETDEWEB)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  17. X-ray Timing of Neutron Stars, Astrophysical Probes of Extreme Physics

    CERN Document Server

    Arzoumanian, Z; Cordes, J; Gendreau, K; Lai, D; Lattimer, J; Link, B; Lommen, A; Miller, C; Ray, P; Rutledge, R; Strohmayer, T; Wilson-Hodge, C; Wood, K

    2009-01-01

    The characteristic physical timescales near stellar-mass compact objects are measured in milliseconds. These timescales -- the free-fall time, the fastest stable orbital period, and stellar spin periods -- encode the fundamental physical properties of compact objects: mass, radius, and angular momentum. The characteristic temperature of matter in the vicinity of neutron stars is such that the principal electromagnetic window into their realms is the X-ray band. Because of these connections to the fundamental properties of neutron stars, X-ray timing studies remain today the most direct means of probing their structure and dynamics. While current X-ray observatories have revealed many relevant and fascinating phenomena, they lack the sensitivity to fully exploit them to uncover the fundamental properties of compact objects and their extreme physics. With this white paper, we summarize and highlight the science opportunities that will accompany an order-of-magnitude improvement in X-ray timing sensitivity, a go...

  18. Distributed data processing and analysis environment for neutron scattering experiments at CSNS

    Science.gov (United States)

    Tian, H. L.; Zhang, J. R.; Yan, L. L.; Tang, M.; Hu, L.; Zhao, D. X.; Qiu, Y. X.; Zhang, H. Y.; Zhuang, J.; Du, R.

    2016-10-01

    China Spallation Neutron Source (CSNS) is the first high-performance pulsed neutron source in China, which will meet the increasing fundamental research and technique applications demands domestically and overseas. A new distributed data processing and analysis environment has been developed, which has generic functionalities for neutron scattering experiments. The environment consists of three parts, an object-oriented data processing framework adopting a data centered architecture, a communication and data caching system based on the C/S paradigm, and data analysis and visualization software providing the 2D/3D experimental data display. This environment will be widely applied in CSNS for live data processing.

  19. Data processing of the active neutron experiment DAN for a Martian regolith investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sanin, A.B., E-mail: sanin@mx.iki.rssi.ru [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Mitrofanov, I.G.; Litvak, M.L.; Lisov, D.I. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Starr, R. [Catholic University of America, Washington, DC (United States); Boynton, W. [University of Arizona, Tucson, AZ (United States); Behar, A.; DeFlores, L. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Fedosov, F.; Golovin, D. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Hardgrove, C. [University of Tennessee, Knoxville, TN (United States); Harshman, K. [University of Arizona, Tucson, AZ (United States); Jun, I. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Kozyrev, A.S. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Kuzmin, R.O. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Vernadsky Institute for Geochemistry and Analytical Chemistry, Moscow (Russian Federation); Malakhov, A. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); Milliken, R. [Brown University, Providence, RI (United States); Mischna, M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA (United States); Moersch, J. [University of Tennessee, Knoxville, TN (United States); Mokrousov, M.I. [Space Research Institute (IKI), RAS, Moscow (Russian Federation); and others

    2015-07-21

    Searching for water in the soil of Gale Crater is one of the primary tasks for the NASA Mars Science Laboratory rover named Curiosity. The primary task of the Dynamic Albedo of Neutrons (DAN) experiment on board the rover is to investigate and qualitatively characterize the presence of water along the rover’s traverse across Gale Crater. The water depth distribution may be found from measurements of neutrons generated by the Pulsing Neutron Generator (PNG) included in the DAN instrument, scattered by the regolith and returned back to the detectors. This paper provides a description of the data processing of such measurements and data products of DAN investigation.

  20. Development of Self-TOF neutron detector and its application to concrete and iron shielding experiments

    CERN Document Server

    Sasaki, M; Nunomiya, T; Fukumura, A; Nakamura, T; Shibata, T

    2002-01-01

    A new type detector, called 'Self-TOF detector', has been developed for high energy neutron spectrometry behind a shield. The detector consists of a veto counter, a set of radiators with 20 thin detectors, a start counter and a stop counter of nine segments. The measurement of the detector response function for high energy neutrons and the concrete and iron shielding experiments were done at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) of National Institute of Radiological Sciences (NIRS), Japan. By using the response functions, neutron spectra behind shield were obtained by unfolding and the results were compared with the LAHET Code System (LCS).

  1. Evaluation of (alpha,n) Induced Neutrons as a Background for Dark Matter Experiments

    CERN Document Server

    Mei, D -M; Hime, A

    2008-01-01

    Neutrons from ($\\alpha$,n) reaction through thorium and uranium decays are important sources of background for direct dark matter detection. Neutron yield and energy spectrum from a range of materials that are used to build dark matter detectors are calculated and tabulated. In addition to thorium and uranium decays, we found that $\\alpha$ particles from samarium that is often doped in the window material of photomultiplier (PMT) are also an important source of neutron yield. The results in this paper can be used as the input in the Monte Carlo simulation for many materials that will be used for next generation experiments.

  2. Data collection of fusion neutronics benchmark experiment conducted at FNS/JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Konno, Chikara; Kasugai, Yoshimi; Oyama, Yukio; Ikeda, Yujiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-08-01

    Fusion neutronics benchmark experimental data have been continued at the Fusion Neutronics Source (FNS) facility in JAERI. This report compiles unpublished results of the in-situ measurement experiments conducted by the end of 1996. Experimental data of neutron spectra in entire energy range, dosimetry reaction rates, gamma-ray spectrum and gamma-ray heating rates are acquired for five materials of beryllium, vanadium, iron, copper and tungsten. These experimental data along with data previously reported are effective for validating cross section data stored in evaluated nuclear data files such as JENDL. (author)

  3. Gamma-ray lines from neutron stars as probes of fundamental physics

    Science.gov (United States)

    Brecher, K.

    1978-01-01

    The detection of gamma-ray lines produced at the surface of neutron stars will serve to test both the strong and gravitational interactions under conditions unavailable in terrestrial laboratories. Observation of a single redshifted gamma-ray line, combined with an estimate of the mass of the star will serve as a strong constraint on allowable equations of state of matter at supernuclear densities. Detection of two redshifted lines arising from different physical processes at the neutron star surface can provide a test of the strong principle of equivalence. Expected fluxes of nuclear gamma-ray lines from accreting neutron stars were calculated, including threshold, radiative transfer and redshift effects. The most promising probes of neutron star structure are the deuterium formation line and the positron annihilation line. Detection of sharp redshifted gamma-ray lines from X-ray sources such as Cyg X-1 would argue strongly in favor of a neutron star rather than black hole identification for the object.

  4. Distributed data processing and analysis environment for neutron scattering experiments at CSNS

    CERN Document Server

    Tian, H L; Yan, L L; Tang, M; Hu, L; Zhao, D X; Qiu, Y X; Zhang, H Y; Zhuang, J; Du, R

    2016-01-01

    China Spallation Neutron Source (CSNS) is the first high performance pulsed neutron source in China, which will meet the increasing fundamental research and technique applications demands in the domestic and oversea. A new distributed data processing and analysis environment has been developed, which has generic functionalities for neutron scattering experiments. The environment consists of three parts, an object-oriented data processing framework adopting a data centered architecture, a communication and data caching system based on C/S paradigm, and a data analysis and visualization software providing the 2D/3D experimental data display. This environment will be widely applied in CSNS for live data processing and virtual neutron scattering experiments based on Monte Carlo methods.

  5. Verification of the weak equivalence principle with Laue diffracting neutrons: Test experiment

    Science.gov (United States)

    Vezhlev, E. O.; Voronin, V. V.; Kuznetsov, I. A.; Semenikhin, S. Yu.; Fedorov, V. V.

    2013-07-01

    We propose a novel experiment to test the weak equivalence principle (WEP) for the Laue diffracting neutron. Our experiment is based on an essential magnification of an external affect on neutron diffracting by Laue for the Bragg angles close to the right one in couple with additional enhancement factor which exists due to the delay of the Laue diffracting neutron at such Bragg angles. This enhancement phenomena is proposed to be utilized for measuring the force which deviates from zero if WEP is violated. The accuracy of measuring inertial to gravitational neutron masses ratio for the introduced setup can reach ˜10-5, which is more than one order superior to the best present-day result.

  6. VVER-440 Ex-Core Neutron Transport Calculations by MCNP-5 Code and Comparison with Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Borodkin, Pavel; Khrennikov, Nikolay [Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS) Malaya Krasnoselskaya ul., 2/8, bld. 5, 107140 Moscow (Russian Federation)

    2008-07-01

    Ex-core neutron transport calculations are needed to evaluate radiation loading parameters (neutron fluence, fluence rate and spectra) on the in-vessel equipment, reactor pressure vessel (RPV) and support constructions of VVER type reactors. Due to these parameters are used for reactor equipment life-time assessment, neutron transport calculations should be carried out by precise and reliable calculation methods. In case of RPVs, especially, of first generation VVER-440s, the neutron fluence plays a key role in the prediction of RPV lifetime. Main part of VVER ex-core neutron transport calculations are performed by deterministic and Monte-Carlo methods. This paper deals with precise calculations of the Russian first generation VVER-440 by MCNP-5 code. The purpose of this work was an application of this code for expert calculations, verification of results by comparison with deterministic calculations and validation by neutron activation measured data. Deterministic discrete ordinates DORT code, widely used for RPV neutron dosimetry and many times tested by experiments, was used for comparison analyses. Ex-vessel neutron activation measurements at the VVER-440 NPP have provided space (in azimuth and height directions) and neutron energy (different activation reactions) distributions data for experimental (E) validation of calculated results. Calculational intercomparison (DORT vs. MCNP-5) and comparison with measured values (MCNP-5 and DORT vs. E) have shown agreement within 10-15% for different space points and reaction rates. The paper submits a discussion of results and makes conclusions about practice use of MCNP-5 code for ex-core neutron transport calculations in expert analysis. (authors)

  7. A microscopic T-violating optical potential implications for neutron-transmission experiments

    CERN Document Server

    Engel, J; Hnizdo, V

    1994-01-01

    We derive a T-violating P-conserving optical potential for neutron-nucleus scattering, starting from a uniquely determined two-body \\rho-exchange interaction with the same symmetry. We then obtain limits on the T-violating \\rho-nucleon coupling \\overline{g}_{\\rho} from neutron-transmission experiments in ^{165}Ho. The limits may soon compete with those from measurements of atomic electric-dipole moments.

  8. The physics of solid-state neutron detector materials and geometries.

    Science.gov (United States)

    Caruso, A N

    2010-11-10

    Detection of neutrons, at high total efficiency, with greater resolution in kinetic energy, time and/or real-space position, is fundamental to the advance of subfields within nuclear medicine, high-energy physics, non-proliferation of special nuclear materials, astrophysics, structural biology and chemistry, magnetism and nuclear energy. Clever indirect-conversion geometries, interaction/transport calculations and modern processing methods for silicon and gallium arsenide allow for the realization of moderate- to high-efficiency neutron detectors as a result of low defect concentrations, tuned reaction product ranges, enhanced effective omnidirectional cross sections and reduced electron-hole pair recombination from more physically abrupt and electronically engineered interfaces. Conversely, semiconductors with high neutron cross sections and unique transduction mechanisms capable of achieving very high total efficiency are gaining greater recognition despite the relative immaturity of their growth, lithographic processing and electronic structure understanding. This review focuses on advances and challenges in charged-particle-based device geometries, materials and associated mechanisms for direct and indirect transduction of thermal to fast neutrons within the context of application. Calorimetry- and radioluminescence-based intermediate processes in the solid state are not included.

  9. Determination of neutron energy spectrum at KAMINI shielding experiment location.

    Science.gov (United States)

    Sen, Sujoy; Bagchi, Subhrojit; Prasad, R R; Venkatasubramanian, D; Mohanakrishnan, P; Keshavamurty, R S; Haridas, Adish; Arul, A John; Puthiyavinayagam, P

    2016-09-01

    The neutron spectrum at KAMINI reactor south beam tube end has been determined using multifoil activation method. This beam tube is being used for characterizing neutron attenuation of novel shield materials. Starting from a computed guess spectrum, the spectrum adjustment/unfolding procedure makes use of minimization of a modified constraint function representing (a) least squared deviations between the measured and calculated reaction rates, (b) a measure of sharp fluctuations in the adjusted spectrum and (c) the square of the deviation of adjusted spectrum from the guess spectrum. The adjusted/unfolded spectrum predicts the reaction rates accurately. The results of this new procedure are compared with those of widely used SAND-II code.

  10. Thermal Sensitive Foils in Physics Experiments

    Science.gov (United States)

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  11. Progress towards a high-precision Aharonov-Casher experiment with neutrons highlighting its topological nature

    Energy Technology Data Exchange (ETDEWEB)

    Cimmino, A. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)]. E-mail: albertoc@unimelb.edu.au; Klein, A.G. [School of Physics, University of Melbourne, Melbourne, Victoria 3010 (Australia)

    2006-11-15

    A neutral magnetic dipole diffracting around a lineal charge distribution experiences a force-free interaction and undergoes a phase shift as predicted by Aharonov and Casher [Phys. Rev. Lett. 53 (1984) 319]. The experiment performed by the Melbourne-Missouri collaboration [A. Cimmino, G.I. Opat, A.G. Klein, H. Kaiser, S.A. Werner, M. Arif, R. Clothier, Phys. Rev. Lett. 63 (1989) 380] confirmed the effect in sign and magnitude using a neutron interferometer. Higher accuracy has since been claimed by other groups using atom interferometry, based on the three orders of magnitude larger value of the Bohr magneton compared with the nuclear magneton. However, the geometry of these experiments does not reproduce the essential topological nature of the effect as in our experiment with neutrons. We describe a larger neutron interferometer designed to increase the size of the effect and a reconfigurable electrode assembly simulating a lineal charge distribution movable within the interference loop.

  12. Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hatarik, R., E-mail: hatarik1@llnl.gov; Sayre, D. B.; Caggiano, J. A.; Phillips, T.; Eckart, M. J.; Bond, E. J.; Cerjan, C.; Grim, G. P.; Hartouni, E. P.; Mcnaney, J. M.; Munro, D. H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-11-14

    Neutron time-of-flight diagnostics have long been used to characterize the neutron spectrum produced by inertial confinement fusion experiments. The primary diagnostic goals are to extract the d + t → n + α (DT) and d + d → n + {sup 3}He (DD) neutron yields and peak widths, and the amount DT scattering relative to its unscattered yield, also known as the down-scatter ratio (DSR). These quantities are used to infer yield weighted plasma conditions, such as ion temperature (T{sub ion}) and cold fuel areal density. We report on novel methodologies used to determine neutron yield, apparent T{sub ion}, and DSR. These methods invoke a single temperature, static fluid model to describe the neutron peaks from DD and DT reactions and a spline description of the DT spectrum to determine the DSR. Both measurements are performed using a forward modeling technique that includes corrections for line-of-sight attenuation and impulse response of the detection system. These methods produce typical uncertainties for DT T{sub ion} of 250 eV, 7% for DSR, and 9% for the DT neutron yield. For the DD values, the uncertainties are 290 eV for T{sub ion} and 10% for the neutron yield.

  13. Ship Effect Neutron Measurements And Impacts On Low-Background Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Siciliano, Edward R.

    2013-10-01

    The primary particles entering the upper atmosphere as cosmic rays create showers in the atmosphere that include a broad spectrum of secondary neutrons, muons and protons. These cosmic-ray secondaries interact with materials at the surface of the Earth, yielding prompt backgrounds in radiation detection systems, as well as inducing long-lived activities through spallation events, dominated by the higher-energy neutron secondaries. For historical reasons, the multiple neutrons produced in spallation cascade events are referred to as “ship effect” neutrons. Quantifying the background from cosmic ray induced activities is important to low-background experiments, such as neutrino-less double beta decay. Since direct measurements of the effects of shielding on the cosmic-ray neutron spectrum are not available, Monte Carlo modeling is used to compute such effects. However, there are large uncertainties (orders of magnitude) in the possible cross-section libraries and the cosmic-ray neutron spectrum for the energy range needed in such calculations. The measurements reported here were initiated to validate results from Monte Carlo models through experimental measurements in order to provide some confidence in the model results. The results indicate that the models provide the correct trends of neutron production with increasing density, but there is substantial disagreement between the model and experimental results for the lower-density materials of Al, Fe and Cu.

  14. LENDA: A low energy neutron detector array for experiments with radioactive beams in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Perdikakis, G., E-mail: perdikak@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Sasano, M.; Austin, Sam M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Caesar, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Cannon, S. [Hastings College, Hastings, NE 68901 (United States); Deaven, J.M.; Doster, H.J.; Guess, C.J.; Hitt, G.W. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Marks, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Meharchand, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Nguyen, D.T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Peterman, D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); and others

    2012-09-11

    The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Laboratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p,n) charge-exchange reactions at intermediate energies (>100MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV to 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neutron energy threshold of <150keV, an intrinsic time (position) resolution of {approx} 400 ps ({approx} 6 cm) and an efficiency >20% for neutrons below 4 MeV have been obtained.

  15. Life and Death of a Free Neutron

    Science.gov (United States)

    Fomin, Nadia

    2016-09-01

    Modern neutron sources provide extraordinary opportunities to study a wide variety of physics topics, including the physical system of the neutron itself. One of the processes under the microscope, neutron beta decay, is an archetype for all semi-leptonic charged-current weak processes. Precise measurements of the correlation parameters in neutron beta decay as well as the neutron lifetime itself are required for tests of the Standard Model and for searches of new physics. The state of the field will be presented and a program of current and future experiments and potential impacts explored.

  16. Neutron dosimetry and damage calculation for the JP-10, 11, 13, and 16 experiments in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Ratner, R.T.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint U.S./Japanese experiments JP-10, 11, 13, and 16 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL). These experiments were irradiated at 85 MW for 238.5 EFPD. The maximum fast neutron fluence >0.1 MeV was about 2.1E + 22 n/cm{sup 2} for all of the experiments resulting in about 17.3 dpa in 316 stainless steel.

  17. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing.

    CERN Document Server

    Abánades, A; Andriamonje, Samuel A; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Arnould, H; Belle, E; Bompas, C A; Brozzi, Delecurgo; Bueno, J; Buono, S; Carminati, F; Casagrande, Federico; Cennini, P; Collar, J I; Cerro, E; Del Moral, R; Díez, S; Dumps, Ludwig; Eleftheriadis, C; Embid, M; Fernández, R; Gálvez, J; García, J; Gelès, C; Giorni, A; González, E; González, O; Goulas, I; Heuer, R D; Hussonnois, M; Kadi, Y; Karaiskos, P; Kitis, G; Klapisch, Robert; Kokkas, P; Lacoste, V; Le Naour, C; Lèpez, C; Loiseaux, J M; Martínez-Val, J M; Méplan, O; Nifenecker, H; Oropesa, J; Papadopoulos, I M; Pavlopoulos, P; Pérez-Enciso, E; Pérez-Navarro, A; Perlado, M; Placci, A; Poza, M; Revol, Jean Pierre Charles; Rubbia, Carlo; Rubio, J A; Sakelliou, L; Saldaña, F; Savvidis, E; Schussler, F; Sirvent, C; Tamarit, J; Trubert, D; Tzima, A; Viano, J B; Vieira, S L; Vlachoudis, V; Zioutas, Konstantin; CERN. Geneva. SPS and LEP Division

    2000-01-01

    The results of the TARC experiment are summarized herewith, whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons, produced by spallation at relatively high energy (En * 1 MeV), slow down quasi adiabatically, with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 GeV/c and 3.5 GeV/c protons) slowing down in a 3.3 m x 3.3 m x 3 m lead volume and of neutron capture rates on LLFFs 99Tc, 129I, and several other elements were performed. An appropriate formalism and appropriate computational t...

  18. Physics design for the Brookhaven Medical Research Reactor epithermal neutron source.

    Science.gov (United States)

    Wheeler, F J; Parsons, D K; Nigg, D W; Wessol, D E; Miller, L G; Fairchild, R G

    1990-01-01

    A collaborative effort by researchers at the Idaho National Engineering Laboratory and the Brookhaven National Laboratory has resulted in the design and implementation of an epithermal-neutron source at the Brookhaven Medical Research Reactor (BMRR). Large aluminum containers, filled with aluminum oxide tiles and aluminum spacers, were tailored to pre-existing compartments on the animal side of the reactor facility. A layer of cadmium was used to minimize the thermal-neutron component. Additional bismuth was added to the pre-existing bismuth shield to minimize the gamma component of the beam. Lead was also added to reduce gamma streaming around the bismuth. The physics design methods are outlined in this paper. Information available to date shows close agreement between calculated and measured beam parameters. The neutron spectrum is predominantly in the intermediate energy range (0.5 eV - 10 keV). The peak flux intensity is 6.4E + 12 n/(m2.s.MW) at the center of the beam on the outer surface of the final gamma shield. The corresponding neutron current is 3.8E + 12 n/(m2.s.MW). Presently, the core operates at a maximum of 3 MW. The fast-neutron KERMA is 3.6E-15 cGy/(n/m2) and the gamma KERMA is 5.0E-16 cGY/(n/m2) for the unperturbed beam. The neutron intensity falls off rapidly with distance from the outer shield and the thermal flux realized in phantom or tissue is strongly dependent on the beam-delimiter and target geometry.

  19. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  20. Results from the TARC experiment: spallation neutron phenomenology in lead and neutron-driven nuclear transmutation by adiabatic resonance crossing

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A.; Aleixandre, J.; Andriamonje, S.; Angelopoulos, A.; Apostolakis, A.; Arnould, H.; Belle, E.; Bompas, C.A.; Brozzi, D.; Bueno, J.; Buono, S.; Carminati, F.; Casagrande, F.; Cennini, P.; Collar, J.I.; Cerro, E.; Moral, R. Del; Diez, S.; Dumps, L.; Eleftheriadis, C.; Embid, M.; Fernandez, R.; Galvez, J.; Garcia, J.; Geles, C.; Giorni, A.; Gonzalez, E.; Gonzalez, O.; Goulas, I.; Heuer, D.; Hussonnois, M.; Kadi, Y.; Karaiskos, P.; Kitis, G.; Klapisch, R.; Kokkas, P.; Lacoste, V.; Naour, C. Le; Lopez, C.; Loiseaux, J.M.; Martinez-Val, J.M.; Meplan, O.; Nifenecker, H.; Oropesa, J.; Papadopoulos, I.; Pavlopoulos, P.; Perez-Enciso, E.; Perez-Navarro, A.; Perlado, M.; Placci, A.; Poza, M.; Revol, J.-P. E-mail: jean-pierre.revol@cern.ch; Rubbia, C.; Rubio, J.A.; Sakelliou, L.; Saldana, F.; Savvidis, E.; Schussler, F.; Sirvent, C.; Tamarit, J.; Trubert, D.; Tzima, A.; Viano, J.B.; Vieira, S.; Vlachoudis, V.; Zioutas, K

    2002-02-11

    We summarize here the results of the TARC experiment whose main purpose is to demonstrate the possibility of using Adiabatic Resonance Crossing (ARC) to destroy efficiently Long-Lived Fission Fragments (LLFFs) in accelerator-driven systems and to validate a new simulation developed in the framework of the Energy Amplifier programme. An experimental set-up was installed in a CERN PS proton beam line to study how neutrons produced by spallation at relatively high energy (E{sub n}{>=}1 MeV) slow down quasi-adiabatically with almost flat isolethargic energy distribution and reach the capture resonance energy of an element to be transmuted where they will have a high probability of being captured. Precision measurements of energy and space distributions of spallation neutrons (using 2.5 and 3.5 GeV/c protons) slowing down in a 3.3 mx3.3 mx3 m lead volume and of neutron capture rates on LLFFs {sup 99}Tc, {sup 129}I, and several other elements were performed. An appropriate formalism and appropriate computational tools necessary for the analysis and understanding of the data were developed and validated in detail. Our direct experimental observation of ARC demonstrates the possibility to destroy, in a parasitic mode, outside the Energy Amplifier core, large amounts of {sup 99}Tc or {sup 129}I at a rate exceeding the production rate, thereby making it practical to reduce correspondingly the existing stockpile of LLFFs. In addition, TARC opens up new possibilities for radioactive isotope production as an alternative to nuclear reactors, in particular for medical applications, as well as new possibilities for neutron research and industrial applications.

  1. Event-by-event simulation of single-neutron experiments to test uncertainty relations

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.

    2014-01-01

    Results from a discrete-event simulation of a recent single-neutron experiment that tests Ozawa's generalization of Heisenberg's uncertainty relation are presented. The event-based simulation algorithm reproduces the results of the quantum theoretical description of the experiment but does not requi

  2. Integral Data Test of HENDL1.0/MG and VisualBUS with Neutronics Shielding Experiments (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    高纯静; 许德政; 李静惊; 吴宜灿; 邓铁如

    2004-01-01

    HENDL1.0/MG, a multi-group working library of the Hybrid Evaluated Nuclear Data Library, was home-developed by the FDS Team of ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) on the basis of several national data libraries. To validate and qualify the process of producing HENDL1.0/MG, simulating calculations of a series of existent spherical shell benchmark experiments (Al, Mo, Co, Ti, Mn, W, Be and V) have been performed with HENDL1.0/MG and the multifunctional neutronics code system named VisualBUS home-developed also by FDS Team.

  3. ELECTRON SCATTERING EXPERIMENTS ON THE NEUTRON AND PROTON

    Energy Technology Data Exchange (ETDEWEB)

    Berkelman, Karl

    1963-06-15

    The electric and magnetic helicity form factors of the proton are measured at 4-momentum transfers (squared) of 25 to 45 f/sup -2/, by means of electron scattering by protons at high energies. The results are combined with other e/sup -/--p and e/sup -/--d experimental findings in order to show the proton form fuctors from 0 to 45 f/sup -2/ and the neutron form factors from 0 to 25 f/sup -2/. (T.F.H.)

  4. A fast-neutron generator for experiments; Um dispositivo gerador de neutrons rapidos para experimentacao

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Charles F.; Souza, Manuel Jorge M.T. de; Campos, Tarcisio P.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br

    2005-07-01

    The present article presents an irradiation device of fast neutrons generated by sealed sources of AmBe, placed diametrically opposed to a central channel. The paper addresses the project, the shield calculations using the nuclear code MCNP5, and radioprotection issues. Considerations of the assembly of the device will be presented. The device is in a licensing phase. A cylinder of 30 cm diameter and 200 cm length are positioned buried 200 cm deep, whose opening is in the level of the floor Six sealed sources are available for the load of the irradiator. The sources will be positioned inside of the irradiator, receiving a double cast, a polyethylene one and another made of a steel tube. In the bottom and top of the cylinder there are paraffin shielding and in the center a central channel exists for lifting down samples to the irradiation position. In the central channel of this irradiator, a guide tube holds safely the sample close to 60 mm at center distance from sources, diametrically placed. The system is built-in into the soil, with the opening in the floor and all stamped against humidity. The sample's space to be irradiated has 20cm{sup 3} and it receives irradiation of fast to thermal neutrons. At vertical level, the sources will be shielded with 120 cm of boronate paraffin. A solid cylinder of 10 cm of diameter is positioned internally in the irradiator. The cylinder receives a restraint so that it cannot be removed unaware. In the half middle of the cylinder an opening of 8 cm length exists, in the form of a camera. Puling over the cylinder in a meter height liberates the camera at the level of the floor for placement of samples, at the same time in that shields the hole with a meter of boronate paraffin. The sample is placed inside of the camera of steel. After going down the cylinder at level of sources the sample is irradiated. Radioprotection aspects will be presented. The neutron flux at camera position is close to 10{sup 8}n/cm{sup 2}.seg. at 6

  5. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  6. A highly efficient neutron time-of-flight detector for inertial confinement fusion experiments

    Science.gov (United States)

    Izumi, N.; Yamaguchi, K.; Yamagajo, T.; Nakano, T.; Kasai, T.; Urano, T.; Azechi, H.; Nakai, S.; Iida, T.

    1999-01-01

    We have developed the highly efficient neutron detector system MANDALA for the inertial-confinement-fusion experiment. The MANDALA system consists of 842 elements plastic scintillation detectors and data acquisition electronics. The detection level is the yield of 1.2×105 for 2.5 MeV and 1×105 for 14.1 MeV neutrons (with 100 detected hits). We have calibrated the intrinsic detection efficiencies of the detector elements using a neutron generator facility. Timing calibration and integrity test of the system were also carried out with a 60Co γ ray source. MANDALA system was applied to the implosion experiments at the GEKKO XII laser facility. The integrity test was carried out by implosion experiments.

  7. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) Front Anti-Coincidence Counter (FACC) Testing

    Science.gov (United States)

    Chen, Mingqian

    The searching for proton decay (PDK) is going on current Water Cherenkov (WCh) detectors such as Super-Kamiokande. However, PDK-like backgrounds produced by the neutrino interactions will limit the sensitivity of the detectors. The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is going to measure the neutron yield of neutrino interactions in gadolinium-loaded water by the Booster Neutrino Beam (BNB) with known characteristics. In this thesis, neutrino, neutrino oscillations, Dirac neutrino and Majorana neutrino and neutrino interactions are introduced. ANNIE experiment is also introduced. And two modes of proton decays are discussed. The ANNIE experiment requires detection of the neutrons produced by the BNB interactions with water. However, dirt muons produced by the interaction of the BNB with the rock and dirt upstream of the ANNIE hall will cause a correlated background. Therefore, the Front Anti-Coincidence Counter (FACC) was built to measure the rock muons. This thesis details the design, installation, and commissioning of the ANNIE FACC.

  8. Constraining fundamental physics with future CMB experiments

    Science.gov (United States)

    Galli, Silvia; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Sherwin, Blake D.; Spergel, David N.

    2010-12-01

    The Planck experiment will soon provide a very accurate measurement of cosmic microwave background anisotropies. This will let cosmologists determine most of the cosmological parameters with unprecedented accuracy. Future experiments will improve and complement the Planck data with better angular resolution and better polarization sensitivity. This unexplored region of the CMB power spectrum contains information on many parameters of interest, including neutrino mass, the number of relativistic particles at recombination, the primordial helium abundance, and the injection of additional ionizing photons by dark matter self-annihilation. We review the imprint of each parameter on the CMB and forecast the constraints achievable by future experiments by performing a Monte Carlo analysis on synthetic realizations of simulated data. We find that next generation satellite missions such as CMBPol could provide valuable constraints with a precision close to that expected in current and near future laboratory experiments. Finally, we discuss the implications of this intersection between cosmology and fundamental physics.

  9. Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's

    Directory of Open Access Journals (Sweden)

    Hernandez-Solis Augusto

    2017-01-01

    Full Text Available The novel design of the renewable boiling water reactor (RBWR allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC method is used to propagate the different neutron-reactions (as well as angular distributions covariances that are part of the TENDL-2014 nuclear data (ND library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.

  10. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Dominik [Technische Universitaet Muenchen (Germany); Collaboration: PENeLOPE-Collaboration

    2014-07-01

    Modern experiments permanently improve the precision of parameters in nuclear and particle physics. Besides high-performance detectors, state-of-the-art readout electronics and recent data acquisition systems contribute substantially to the increasingly better accuracy. This talk therefore presents the readout system, which is being designed for the neutron lifetime experiment PENeLOPE, currently under construction at Technische Universitaet Muenchen. The system*s readout chain involves preamplifier, shaper, sampling ADC, and a data processing stage implemented on field programmable gate arrays (FPGAs). The FPGAs perform the task of online data analysis and formatting and are able to transfer data to a computer via a high-speed Ethernet connection. An advanced algorithm enables them to calculate the pedestal for every single channel online, and to reliably detect all signals above noise. Due to this incorporated signal detection, the triggerless system is able to process and to format pulse shapes from around 1,000 channels simultaneously, each of which is hit by 10 particles/sec. This corresponds to a data rate of 1.5 MB/sec, which is read out to a computer where the pulse shapes are available for further analysis. In the talk, performance and first tests of this readout system are presented in detail.

  11. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    CERN Document Server

    Bolozdynya, A; Efremenko, Y; Garvey, G T; Gudkov, V; Hatzikoutelis, A; Hix, W R; Louis, W C; Link, J M; Markoff, D M; Mills, G B; Patton, K; Ray, H; Scholberg, K; Van de Water, R G; Virtue, C; White, D H; Yen, S; Yoo, J

    2012-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  12. Underground Muon Physics with the MACRO experiment

    CERN Document Server

    Sioli, M

    2000-01-01

    Underground muon events detected by the MACRO experiment at Gran Sasso havebeen studied for different purposes. The studies include the vertical muonintensity measurement, multiplicity distribution, lateral and angular muondistribution and searches for substructures inside muon bundles. These analyseshave contributed to bring new insights in cosmic ray physics, in particular inthe framework of primary cosmic ray composition studies. Moreover, thisactivity allows the testing and tuning of Monte Carlo simulations, inparticular for aspects associated with models of hadronic interactions and muonpropagation through the rock.

  13. Flavour Physics with High-Luminosity Experiments

    CERN Document Server

    2016-01-01

    With the first dedicated B-factory experiments BaBar (USA) and BELLE (Japan) Flavour Physics has entered the phase of precision physics. LHCb (CERN) and the high luminosity extension of KEK-B together with the state of the art BELLE II detector will further push this precision frontier. Progress in this field always relied on close cooperation between experiment and theory, as extraction of fundamental parameters often is very indirect. To extract the full physics information from existing and future data, this cooperation must be further intensified. This MIAPP programme aims in particular to prepare for this task by joining experimentalists and theorists in the various relevant fields, with the goal to build the necessary tools in face of the challenge of new large data sets. The programme will begin with a focus on physics with non-leptonic final states, continued by semileptonic B meson decays and Tau decays, and on various aspects of CP symmetry violation closer to the end. In addition, in the final ...

  14. A Physical Model of Pulsars as Gravitational Shielding and Oscillating Neutron Stars

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2015-04-01

    Full Text Available Pulsars are thought to be fast rotating neutron stars, synchronously emitting periodic Dirac-delta-shape radio-frequency pulses and Lorentzian-shape oscillating X-rays. The acceleration of charged particles along the magnetic field lines of neutron stars above the magnetic poles that deviate from the rotating axis initiates coherent beams of ra- dio emissions, which are viewed as pulses of radiation whenever the magnetic poles sweep the viewers. However, the conventional lighthouse model of pulsars is only con- ceptual. The mechanism through which particles are accelerated to produce coherent beams is still not fully understood. The process for periodically oscillating X-rays to emit from hot spots at the inner edge of accretion disks remains a mystery. In addition, a lack of reflecting X-rays of the pulsar by the Crab Nebula in the OFF phase does not support the lighthouse model as expected. In this study, we develop a physical model of pulsars to quantitatively interpret the emission characteristics of pulsars, in accor- dance with the author’s well-developed five-dimensional fully covariant Kaluza-Klein gravitational shielding theory and the physics of thermal and accelerating charged par- ticle radiation. The results obtained from this study indicate that, with the significant gravitational shielding by scalar field, a neutron star nonlinearly oscillates and produces synchronous periodically Dirac-delta-shape radio-frequency pulses (emitted by the os- cillating or accelerating charged particles as well as periodically Lorentzian-shape os- cillating X-rays (as the thermal radiation of neutron stars whose temperature varies due to the oscillation. This physical model of pulsars broadens our understanding of neu- tron stars and develops an innovative mechanism to model the emissions of pulsars.

  15. Characterization of electron detectors by time-of-flight in neutron \\b{eta} decay experiments

    CERN Document Server

    Dubbers, Dirk

    2016-01-01

    Progress in neutron decay experiments requires better methods for the characterization of electron detectors. I show that for such \\b{eta}-decay studies, electron time-of-flight can be used for in-situ calibration of electron detectors. Energy resolution down to a few keV can be reached for the lower part of the electron spectrum in neutron decay, where conventional calibration methods come to their limit. Novel time-of-flight methods can also be used to perform a complete experiment on electron backscattering from their detectors.

  16. Neutron dosimetry and damage calculations for the JP-17, 18 and 19 experiments in HFIR

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, L.R.; Baldwin, C.A.

    1996-04-01

    Neutron fluence measurements and radiation damage calculations are reported for the joint US-Japanese experiments JP-17, 18, and 19 in the target of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). These experiments were irradiated at 85 MW for two cycles resulting in 43.55 EFPD for JP-17 and 42.06 EFPD for JP-18 and 19. The maximum fast neutron fluence > 0.1 MeV was about 3.7E + 21 n/cm{sup 2} for all three irradiations, resulting in about 3 dpa in 316 stainless steel.

  17. Simulations of the muon-induced neutron background of the EDELWEISS-II experiment for Dark Matter search

    Energy Technology Data Exchange (ETDEWEB)

    Horn, O.M.

    2007-12-21

    In modern astroparticle physics and cosmology, the nature of Dark Matter is one of the central problems. Particle Dark Matter in form of WIMPs is favoured among many proposed candidates. The EDELWEISS direct Dark Matter search uses Germanium bolometers to detect these particles by nuclear recoils. Here, the use of two signal channels on an event-by-event basis, namely the heat and ionisation signal, enables the detectors to discriminate between electron and nuclear recoils. This technique leaves neutrons in the underground laboratory as the main background for the experiment. Besides ({alpha},n) reactions of natural radioactivity, neutrons are produced in electromagnetic and hadronic showers induced by cosmic ray muons in the surrounding rock and shielding material of the Germanium crystals. To reach high sensitivities, the EDELWEISS-II experiment, as well as other direct Dark Matter searches, has to efficiently suppress this neutron background. The present work is devoted to study the muon-induced neutron flux in the underground laboratory LSM and the interaction rate within the Germanium crystals by using the Monte Carlo simulation toolkit Geant4. To ensure reliable results, the implemented physics in the toolkit regarding neutron production is tested in a benchmark geometry and results are compared to experimental data and other simulation codes. Also, the specific energy and angular distribution of the muon flux in the underground laboratory as a consequence of the asymmetric mountain overburden is implemented. A good agreement of the simulated muon flux is shown in a comparison to preliminary experimental data obtained with the EDELWEISS-II muon veto system. Furthermore, within a detailed geometry of the experimental setup, the muon-induced background rate of nuclear recoils in the bolometers is simulated. Coincidences of recoil events in the Germanium with an energy deposit of the muoninduced shower in the plastic scintillators of the veto system are studied

  18. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  19. Fluence measurement at the neutron time of flight experiment at CERN

    CERN Document Server

    Weiss, Christina; Jericha, Erwin

    At the neutron time of flight facility n_TOF at CERN a new spallation target was installed in 2008. In 2008 and 2009 the commissioning of the new target took place. During the summer 2009 a fission chamber of the Physikalisch Technische Bundesanstalt (PTB) Braunschweig was used for the neutron fluence measurement. The evaluation of the data recorded with this detector is the primary topic of this thesis. Additionally a neutron transmission experiment with air has been performed at the TRIGA Mark II reactor of the Atomic Institute of the Austrian Universities (ATI). The experiment was implemented to clarify a question about the scattering cross section of molecular gas which could not be answered clearly via the literature. This problem came up during the evaluations for n_TOF.

  20. Analysis of multiple scattering and multiphonon contributions in inelastic neutron scattering experiments

    CERN Document Server

    Dawidowski, J; Koza, M M; Blostein, J J; Aurelio, G; Fernández-Guillermet, A; Donato, P G

    2002-01-01

    We present a method of analysis of inelastic neutron scattering (INS) experiments aiming at obtaining the density of phonon states in an absolute scale, as well as a reliable value of the mean-square displacement of the atoms. This method requires the measurement of the neutron total cross section of the sample as a function of energy, which provides a normalization condition for the INS experiment, as well as a value of the mean-square displacement. The method is applied in the case of an incoherent neutron scattering system, viz. the Ti-52wt.% Zr alloy. The applicability of this method to the study of metal alloys and other systems is discussed.

  1. Shielding experiment of heavy-ion produced neutrons using a tissue-equivalent proportional counter.

    Science.gov (United States)

    Nunomiya, T; Yonai, S; Takada, M; Fukumura, A; Nakamura, T

    2003-01-01

    A shielding experiment was performed at the HIMAC (Heavy Ion Medical Accelerator in Chiba), of National Institute of Radiological Sciences (NIRS), to measure neutron dose using a spherical TEPC (tissue-equivalent proportional counter) of 12.55 cm inner diameter. Neutrons are produced from a 5 cm thick stopping length Cu target bombarded by 400 MeV/nucleon C6+ ions and penetrate concrete or iron shields of various thicknesses at 0 degree to the beam direction. From this shielding experiment. y-distribution, mean lineal energy, absorbed dose, dose equivalent and mean-quality factor were obtained behind the shield as a function of shield thickness. The neutron dose attenuation lengths were also obtained as 126 g cm(-2) for concrete and 211 g cm(-2) for iron. The measured results were compared with the calculated results using the MARS Monte Carlo code.

  2. Copper benchmark experiment at the Frascati Neutron Generator for nuclear data validation

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it; Flammini, D.; Loreti, S.; Moro, F.; Pillon, M.; Villari, R.

    2016-11-01

    Highlights: • A benchmark experiment was performed using pure copper with 14 MeV neutrons. • The experiment was performed at the Frascati Neutron Generator (FNG). • Activation foils, thermoluminescent dosimeters and scintillators were used to measure reactions rates (RR), nuclear heating and neutron spectra. • The paper presents the RR measurements and the post analysis using MCNP5 and JEFF-3.1.1, JEFF-3.2 and FENDL-3.1 libraries. • C/Es are presented showing the need for deep revision of Cu cross sections. - Abstract: A neutronics benchmark experiment on a pure Copper block (dimensions 60 × 70 × 60 cm{sup 3}), aimed at testing and validating the recent nuclear data libraries for fusion applications, was performed at the 14-MeV Frascati Neutron Generator (FNG) as part of a F4E specific grant (F4E-FPA-395-01) assigned to the European Consortium on Nuclear Data and Experimental Techniques. The relevant neutronics quantities (e.g., reaction rates, neutron flux spectra, doses, etc.) were measured using different experimental techniques and the results were compared to the calculated quantities using fusion relevant nuclear data libraries. This paper focuses on the analyses carried-out by ENEA through the activation foils techniques. {sup 197}Au(n,γ){sup 198}Au, {sup 186}W(n,γ){sup 187}W, {sup 115}In(n,n′){sup 115}In, {sup 58}Ni(n,p){sup 58}Co, {sup 27}Al(n,α){sup 24}Na, {sup 93}Nb(n,2n){sup 92}Nb{sup m} activation reactions were used. The foils were placed at eight different positions along the Cu block and irradiated with 14 MeV neutrons. Activation measurements were performed by means of High Purity Germanium (HPGe) detector. Detailed simulation of the experiment was carried-out using MCNP5 Monte Carlo code and the European JEFF-3.1.1 and 3.2 nuclear cross-sections data files for neutron transport and IRDFF-v1.05 library for the reaction rates in activation foils. The calculated reaction rates (C) were compared to the experimental quantities (E) and

  3. Statistical Physics Experiments Using Dusty Plasmas

    Science.gov (United States)

    Goree, John

    2016-10-01

    Compared to other areas of physics research, Statistical Physics is heavily dominated by theory, with comparatively little experiment. One reason for the lack of experiments is the impracticality of tracking of individual atoms and molecules within a substance. Thus, there is a need for a different kind of experimental system, one where individual particles not only move stochastically as they collide with one another, but also are large enough to allow tracking. A dusty plasma can meet this need. A dusty plasma is a partially ionized gas containing small particles of solid matter. These micron-size particles gain thousands of electronic charges by collecting more electrons than ions. Their motions are dominated by Coulomb collisions with neighboring particles. In this so-called strongly coupled plasma, the dust particles self-organize in much the same way as atoms in a liquid or solid. Unlike atoms, however, these particles are large and slow, so that they can be tracked easily by video microscopy. Advantages of dusty plasma for experimental statistical physics research include particle tracking, lack of frictional contact with solid surfaces, and avoidance of overdamped motion. Moreover, the motion of a collection of dust particles can mimic an equilibrium system with a Maxwellian velocity distribution, even though the dust particles themselves are not truly in thermal equilibrium. Nonequilibrium statistical physics can be studied by applying gradients, for example by imposing a shear flow. In this talk I will review some of our recent experiments with shear flow. First, we performed the first experimental test to verify the Fluctuation Theorem for a shear flow, showing that brief violations of the Second Law of Thermodynamics occur with the predicted probabilities, for a small system. Second, we discovered a skewness of a shear-stress distribution in a shear flow. This skewness is a phenomenon that likely has wide applicability in nonequilibrium steady states

  4. James Chadwick Nobel Prize for Physics 1935. Discovery of the neutron; James Chadwick Premio Nobel de Fisica 1935. Descubrimiento del neutron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    James Chadwick (1981-1974) was a key figure in the field of nuclear science. Through his studies, he researched the disintegration of atoms by bombarding alpha particles and proved the existence of neutrons. For this discovery, he was awarded the Nobel Prize for physics in 1935. (Author)

  5. Hydrostatic pressure cells development for X-ray and neutrons experiments

    Energy Technology Data Exchange (ETDEWEB)

    Passamai Junior, Jose Luis; Pinheiro, Christiano J.G.; Orlando, Marcos Tadeu D.; Passos, Carlos A.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Dept. de Fisica; Correa, Hamilton P.S. [Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Rossi, Jesualdo L.; Mazzocchi, Vera L.; Parente, Carlos B.R.; Mestnik Filho, Jose; Martinez, Luis G., E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Melo, Francisco C.L. de, E-mail: frapi@iae.cta.br [Centro Tecnologico da Aeronautica (CTA), Sao Jose dos Campos, SP (Brazil). Dept. de Ciencia e Tecnologia Aeroespacial

    2011-07-01

    A set of hydrostatic pressure cells was specially developed in order to be applied in X-ray diffraction, X-ray absorption and neutron diffraction experiments. For the experiments where X-rays are used, the pressure cells are built in a CuBe alloy body with two B{sub 4}C anvils in order to allow the low absorption of the radiation. The B{sub 4}C anvils were specially prepared in CTA - Centro Tecnico Aeroespacial - Sao Jose dos Campos - Brazil, in order to present enhanced X-ray transparency and high hardness. One of the advantage of the CuBe-body cell with B{sub 4}C anvil is that it can be also used under magnetic fields, for instance for measurements of AC magnetic susceptibility under high hydrostatic pressures. The X-ray cells work in transmission mode and present a 2 mm diameter hole for the beam path. The X-ray beam pass through the hole and outgoing to the detector positioned in front of the pressure cell. A second type of pressure cell was developed in order to be used in neutron elastic scattering experiments, especially in neutron diffraction experiments. The neutron cell pressure cell was constructed in Zirconium alloy reinforced with carbon fibers composite in order to improve the mechanical resistance of his cylindrical geometry. The B{sub 4}C pressure cells are available to users of the techniques of X-ray diffraction and absorption in the Brazilian National Synchrotron Laboratory - LNLS, at Campinas City. The neutron pressure cell is available to users at the neutron powder diffraction facility installed at the Nuclear and Energy Research Institute - IPEN, Sao Paulo. In this work will be shown details and drawings of the two types of hydrostatic pressure cells. (author)

  6. Physics Potential of Long-Baseline Experiments

    Directory of Open Access Journals (Sweden)

    Sanjib Kumar Agarwalla

    2014-01-01

    Full Text Available The discovery of neutrino mixing and oscillations over the past decade provides firm evidence for new physics beyond the Standard Model. Recently, θ13 has been determined to be moderately large, quite close to its previous upper bound. This represents a significant milestone in establishing the three-flavor oscillation picture of neutrinos. It has opened up exciting prospects for current and future long-baseline neutrino oscillation experiments towards addressing the remaining fundamental questions, in particular the type of the neutrino mass hierarchy and the possible presence of a CP-violating phase. Another recent and crucial development is the indication of non-maximal 2-3 mixing angle, causing the octant ambiguity of θ23. In this paper, I will review the phenomenology of long-baseline neutrino oscillations with a special emphasis on sub-leading three-flavor effects, which will play a crucial role in resolving these unknowns. First, I will give a brief description of neutrino oscillation phenomenon. Then, I will discuss our present global understanding of the neutrino mass-mixing parameters and will identify the major unknowns in this sector. After that, I will present the physics reach of current generation long-baseline experiments. Finally, I will conclude with a discussion on the physics capabilities of accelerator-driven possible future long-baseline precision oscillation facilities.

  7. Physics prospects of the Jinping neutrino experiment

    Science.gov (United States)

    Beacom, John F.; Chen, Shaomin; Cheng, Jianping; Doustimotlagh, Sayed N.; Gao, Yuanning; Gong, Guanghua; Gong, Hui; Guo, Lei; Han, Ran; He, Hong-Jian; Huang, Xingtao; Li, Jianmin; Li, Jin; Li, Mohan; Li, Xueqian; Liao, Wei; Lin, Guey-Lin; Liu, Zuowei; McDonough, William; Šrámek, Ondřej; Tang, Jian; Wan, Linyan; Wang, Yuanqing; Wang, Zhe; Wang, Zongyi; Wei, Hanyu; Xi, Yufei; Xu, Ye; Xu, Xun-Jie; Yang, Zhenwei; Yao, Chunfa; Yeh, Minfang; Yue, Qian; Zhang, Liming; Zhang, Yang; Zhao, Zhihong; Zheng, Yangheng; Zhou, Xiang; Zhu, Xianglei; Zuber, Kai

    2017-02-01

    The China Jinping Underground Laboratory (CJPL), which has the lowest cosmic-ray muon flux and the lowest reactor neutrino flux of any laboratory, is ideal to carry out low-energy neutrino experiments. With two detectors and a total fiducial mass of 2000 tons for solar neutrino physics (equivalently, 3000 tons for geo-neutrino and supernova neutrino physics), the Jinping neutrino experiment will have the potential to identify the neutrinos from the CNO fusion cycles of the Sun, to cover the transition phase for the solar neutrino oscillation from vacuum to matter mixing, and to measure the geo-neutrino flux, including the Th/U ratio. These goals can be fulfilled with mature existing techniques. Efforts on increasing the target mass with multi-modular neutrino detectors and on developing the slow liquid scintillator will increase the Jinping discovery potential in the study of solar neutrinos, geo-neutrinos, supernova neutrinos, and dark matter. Supported by the National Natural Science Foundation of China (11235006, 11475093, 11135009, 11375065, 11505301, and 11620101004), the Tsinghua University Initiative Scientific Research Program (20121088035, 20131089288, and 20151080432), the Key Laboratory of Particle & Radiation Imaging (Tsinghua University), the CAS Center for Excellence in Particle Physics (CCEPP), U.S. National Science Foundation Grant PHY-1404311 (Beacom), and U.S. Department of Energy under contract DE-AC02-98CH10886 (Yeh).

  8. Calibration of a neutron time-of-flight multidetector system for an intensity interferometry experiment

    NARCIS (Netherlands)

    Ghetti, R; Colonna, N; Helgesson, J; Avdeichikov, [No Value; Golubev, P; Jakobsson, B; Tagliente, G; Brandenburg, S; Kravchuk, VL; Wilschut, HW; Kopecky, S; Anderson, EW; Nadel-Turonski, P; Westerberg, L; Bellini, [No Value; Sperduto, ML; Sutera, C

    2004-01-01

    We present the details of an experiment on light particle interferometry. In particular, we focus on a time-of-flight technique which uses a cyclotron RF signal as a start and a liquid scintillator time signal as a stop, to measure neutron energy in the range of En approximate to 1.8-150 MeV. This d

  9. A prototype vector magnetic field monitoring system for a neutron electric dipole moment experiment

    CERN Document Server

    Nouri, N; Brown, M A; Carr, R; Filippone, B; Osthelder, C; Plaster, B; Slutsky, S; Swank, C

    2015-01-01

    We present results from a first demonstration of a magnetic field monitoring system for a neutron electric dipole moment experiment. The system is designed to reconstruct the vector components of the magnetic field in the interior measurement region solely from exterior measurements.

  10. 20 years experience in radiobiology of neutron, and 10 years experience of neutron therapy in Obninsk, Russia. (Neutrons against cancer - the new methods in radiation therapy of tumors using nuclear reactor neutron beams)

    Energy Technology Data Exchange (ETDEWEB)

    Mardinsky, Y.S.; Oulianenko, S.E.; Obaturov, G.M. [Medical Radiological Research Center of Russian Academy of Medical Sciences, Obninsk (Russian Federation)] [and others

    1997-12-31

    New technology of radiation therapy, developed in Obninsk, is based on newly acquired knowledge in biological effects of neutrons. Detailed studies have been made of antitumor effectiveness of neutrons and of radiomodification factors action. Up till now more then 250 patients with tumors have been treated using reactor neutrons. Integral analysis of 5-year survival rates indicated a higher efficiency of neutron and mixed gamma-neutron therapy as compared with conventional radiation treatment. The survival rates were 89% for larynx cancer and 67% for breast cancer after neutron irradiation; the corresponding values were 65% and 46% after conventional radiation. The advantages of neutrons have been demonstrated both in loco-regional control and in overcoming of recurrences and metastasis

  11. Heavy flavor physics with the CMS experiment

    Directory of Open Access Journals (Sweden)

    Chiochia Vincenzo

    2012-07-01

    Full Text Available Thanks to the excellent tracking and muon identification performance, combined with a flexible trigger system, the CMS experiment at the Large Hadron Collider is conducting a rich and competitive program of measurements in the field of heavy flavor physics. We review the status of b-quark production cross section measurements in inclusive and exclusive final states, the measurement of B hadron angular correlations, the search for rare Bs0 and B0 decays to dimuons, and the observation of the X(3872 resonance.

  12. Discrete-event simulation of uncertainty in single-neutron experiments

    Directory of Open Access Journals (Sweden)

    Hans eDe Raedt

    2014-03-01

    Full Text Available A discrete-event simulation approach which provides a cause-and-effect description of manyexperiments with photons and neutrons exhibiting interference and entanglement is applied to a recentsingle-neutron experiment that tests (generalizations of Heisenberg's uncertainty relation.The event-based simulation algorithm reproduces the results of thequantum theoretical description of the experimentbut does not require the knowledge of the solution of a wave equation nor does itrely on concepts of quantum theory.In particular, the data satisfies uncertainty relations derived in the context of quantum theory.

  13. The Low Temperature Microgravity Physics Experiments Project

    Science.gov (United States)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; hide

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  14. Atomic physics experiments with cooled stored ions

    Science.gov (United States)

    Schuch, Reinhold

    2004-10-01

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10-3-10-2 eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  15. Atomic physics experiments with cooled stored ions

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, Reinhold E-mail: schuch@physto.se

    2004-10-11

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10{sup -3}-10{sup -2} eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  16. Neutron capture reactions at DANCE

    Science.gov (United States)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  17. Comparison of Different INC Physical Models of MCNPX to Compute Spallation Neutronics of LBE Target

    Science.gov (United States)

    Feghhi, Seyed Amir Hossein; Gholamzadeh, Zohreh; Tenreiro, Claudio; Alipoor, Zahra

    2015-04-01

    Spallation particles can utilize in different fields such as neutron scattering studies, external source for burning spent fuel as well as running subcritical reactors. Different computational particle transport codes are widely used to model spallation process into the heavy targets. Among these codes, MCNPX 2.6.0 comprises various intra nuclear cascade models for spallation calculations. Impact of different intra nuclear cascade models on calculation of neutronic parameters of LBE target has been evaluated in this work. Escaped neutron yield, energy deposition and residual nuclei production in the spallation target has been calculated using the physical models. A comparison between the computational and experimental has been carried out to validate the computational data. The simulation data showed there is a good conformity between the obtained data from Bertini/Drenser and Isabel/Drenser. The data achieved by Bertini/Abla and Isabel/Abla models are close to each other for the studied parameters as well. Among the studied models, CEM showed more discrepancies with experimental and other computational data. According to the obtained data, INCL4/Drenser, INCL4/Abla and Isabel/Drenser models can meet more agreements with experimental data.

  18. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Guler Nevzat

    2013-11-01

    Full Text Available Inertial Confinement Fusion experiments at the National Ignition Facility (NIF are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT filled cryogenic plastic (CH capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13–15 MeV and downscattered (10–12 MeV neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  19. Radioactive beam EXperiments at ISOLDE : Coulomb excitation and neutron transfer reactions of exotic nuclei.

    CERN Multimedia

    Kugler, E; Ratzinger, U; Wenander, F J C

    2002-01-01

    % IS347 \\\\ \\\\We propose to perform a pilot experiment to study very neutron rich (A<32) Na-Mg and (A<52) K-Ca isotopes in the region around the neutron shell closures of N=20 and N=28 after Coulomb excitation and neutron transfer, and to demonstrate highly efficient and cost-effective ways to bunch, charge-state breed and accelerate already existing mass-separated singly-charged radioactive ion beams. \\\\ \\\\To do this we plan to accelerate the ISOLDE beams up to 2~MeV/u by means of a novel acceleration scheme and to install an efficient $\\gamma$-ray array for low-multiplicity events around the target position.

  20. FENDL-3 benchmark test with neutronics experiments related to fusion in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Chikara, E-mail: konno.chikara@jaea.go.jp; Ohta, Masayuki; Takakura, Kosuke; Ochiai, Kentaro; Sato, Satoshi

    2014-10-15

    Highlights: •We have benchmarked FENDL-3.0 with integral experiments with DT neutron sources in Japan. •The FENDL-3.0 is as accurate as FENDL-2.1 and JENDL-4.0 or more. •Some data in FENDL-3.0 may have some problems. -- Abstract: The IAEA supports and promotes the gathering of the best data from evaluated nuclear data libraries for each nucleus involved in fusion reactor applications and compiles these data as FENDL. In 2012, the IAEA released a major update to FENDL, FENDL-3.0, which extends the neutron energy range from 20 MeV to greater than 60 MeV for 180 nuclei. We have benchmarked FENDL-3.0 versus in situ and TOF experiments using the DT neutron source at FNS at the JAEA and TOF experiments using the DT neutron source at OKTAVIAN at Osaka University in Japan. The Monte Carlo code MCNP-5 and the ACE file of FENDL-3.0 supplied from the IAEA were used for the calculations. The results were compared with measured ones and those obtained using the previous version, FENDL-2.1, and the latest version, JENDL-4.0. It is concluded that FENDL-3.0 is as accurate as or more so than FENDL-2.1 and JENDL-4.0, although some data in FENDL-3.0 may be problematic.

  1. Neutron skin of (208)Pb, nuclear symmetry energy, and the parity radius experiment.

    Science.gov (United States)

    Roca-Maza, X; Centelles, M; Viñas, X; Warda, M

    2011-06-24

    A precise determination of the neutron skin Δr(np) of a heavy nucleus sets a basic constraint on the nuclear symmetry energy (Δr(np) is the difference of the neutron and proton rms radii of the nucleus). The parity radius experiment (PREX) may achieve it by electroweak parity-violating electron scattering (PVES) on (208)Pb. We investigate PVES in nuclear mean field approach to allow the accurate extraction of Δr(np) of (208)Pb from the parity-violating asymmetry A(PV) probed in the experiment. We demonstrate a high linear correlation between A(PV) and Δr(np) in successful mean field forces as the best means to constrain the neutron skin of (208)Pb from PREX, without assumptions on the neutron density shape. Continuation of the experiment with higher precision in A(PV) is motivated since the present method can support it to constrain the density slope of the nuclear symmetry energy to new accuracy.

  2. LENDA, a Low Energy Neutron Detector Array for experiments with radioactive beams in inverse kinematics

    CERN Document Server

    Perdikakis, G; Austin, Sam M; Bazin, D; Caesar, C; Cannon, S; Deaven, J M; Doster, H J; Guess, C J; Hitt, G W; Marks, J; Meharchand, R; Nguyen, D T; Peterman, D; Prinke, A; Scott, M; Shimbara, Y; Thorne, K; Valdez, L; Zegers, R G T

    2011-01-01

    The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Lab- oratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p, n) charge-exchange reactions at intermediate energies (> 100 MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV - 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neut...

  3. Neutron Physics. A Revision of I. Halpern's notes on E. Fermi's lectures in 1945

    Science.gov (United States)

    Beckerley, J.G.

    1951-10-16

    In the Fall of 1945 a course in Neutron Physics was given by Professor Fermi as part of the program of the Los Alamos University. The course consisted of thirty lectures most of which were given by Fermi. In his absence R.F. Christy and E. Segre gave several lectures. The present revision is based upon class notes prepared by I. Halpern with some assistance by B.T. Feld and issued first as document LADC 255 and later with wider circulation as MDDC 320.

  4. Physical scale experiments on torrential filter structures

    Science.gov (United States)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  5. Development of a High- Brightness, Quasi- Monoenergetic Neutron Source at LLNL for Nuclear Physics Applications

    Science.gov (United States)

    Johnson, M. S.; Anderson, S. G.; Bleuel, D.; Fitsos, P. J.; Gibson, D.; Hall, J. M.; Marsh, R.; Rusnak, B.

    2016-09-01

    Lawrence Livermore National Laboratory is developing a high-brightness, quasi-monoenergetic neutron source. The intensity of the neutron source is expected to be 1011 n/s/sr with energies between 7 MeV and 10 MeV at 5% bandwidth at 0-degrees. This energy region is important for the study of neutron-induced reactions, nuclear astrophysics, and nuclear structure. For example, for neutrons between 1 and 10 MeV, the capturing states are below the GDR in many nuclei and the dominant reactions are compound and direct capture. The intensity and energy selection of the source makes it appealing for measurements of sparse targets at specific energies. We will present an array of nuclear physics measurements that will benefit from this source. The source is also of interest to generating activated targets for decay-out studies or for target production for other reaction-based measurements, e.g. fusion-evaporation reactions. Other usage examples include practical applications for imaging of very dense objects such as machine parts. For this presentation, we will discuss our method to use (d,n) production reaction on deuterium in a windowless gas target system. This approach is required because of the large power of the 7 MeV, 300 μA deuteron beams. We will discuss our facility and its capabilities. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Neutronics analysis of the DHCE experiment in ATR-ITV

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, I.C.; Smith, D.L.; Tsai, H. [Argonne National Lab., IL (United States)

    1997-08-01

    The preliminary analysis of the DHCE experiments in the ITV and ATR was performed and its was concluded that such a vehicle is suitable for this kind of experiment. It is recommended to place an extra filter material in the thermocouple sleeve (such as B-10), to improve the helium to dpa ratio profile during irradiation. Also, it was concluded that a preliminary estimation of period of time for replacement of the external filter would be around 5 dps`s.

  7. Validation of multigroup neutron cross sections and calculational methods for the advanced neutron source against the FOEHN critical experiments measurements

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.A.; Gallmeier, F.X. [Oak Ridge Institute for Science and Energy, TN (United States); Gehin, J.C. [Oak Ridge National Lab., TN (United States)] [and others

    1995-05-01

    The FOEHN critical experiment was analyzed to validate the use of multigroup cross sections and Oak Ridge National Laboratory neutronics computer codes in the design of the Advanced Neutron Source. The ANSL-V 99-group master cross section library was used for all the calculations. Three different critical configurations were evaluated using the multigroup KENO Monte Carlo transport code, the multigroup DORT discrete ordinates transport code, and the multigroup diffusion theory code VENTURE. The simple configuration consists of only the fuel and control elements with the heavy water reflector. The intermediate configuration includes boron endplates at the upper and lower edges of the fuel element. The complex configuration includes both the boron endplates and components in the reflector. Cross sections were processed using modules from the AMPX system. Both 99-group and 20-group cross sections were created and used in two-dimensional models of the FOEHN experiment. KENO calculations were performed using both 99-group and 20-group cross sections. The DORT and VENTURE calculations were performed using 20-group cross sections. Because the simple and intermediate configurations are azimuthally symmetric, these configurations can be explicitly modeled in R-Z geometry. Since the reflector components cannot be modeled explicitly using the current versions of these codes, three reflector component homogenization schemes were developed and evaluated for the complex configuration. Power density distributions were calculated with KENO using 99-group cross sections and with DORT and VENTURE using 20-group cross sections. The average differences between the measured values and the values calculated with the different computer codes range from 2.45 to 5.74%. The maximum differences between the measured and calculated thermal flux values for the simple and intermediate configurations are {approx} 13%, while the average differences are < 8%.

  8. International research work experience of young females in physics

    OpenAIRE

    Choi, Serene H. -J.; Funk, Maren; Roelofs, Susan H.; Alvarez-Elizondo, Martha B.; Nieminen, Timo A.

    2011-01-01

    International research work for young people is common in physics. However, work experience and career plan of female workers in physics are little studied. We explore them by interviewing three international female workers in physics.

  9. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    the expression 'CSC studies' ('computing system commissioning'), which is occasionally referred to in these volumes. The work reported does generally assume that the detector is fully operational, and in this sense represents an idealised detector: establishing the best performance of the ATLAS detector with LHC proton-proton collisions is a challenging task for the future. The results summarised here therefore represent the best estimate of ATLAS capabilities before real operational experience of the full detector with beam. Unless otherwise stated, simulations also do not include the effect of additional interactions in the same or other bunch-crossings, and the effect of neutron background is neglected. Thus simulations correspond to the low-luminosity performance of the ATLAS detector. This report is broadly divided into two parts: firstly the performance for identification of physics objects is examined in detail, followed by a detailed assessment of the performance of the trigger system. This part is subdivided into chapters surveying the capabilities for charged particle tracking, each of electron/photon, muon and tau identification, jet and missing transverse energy reconstruction, b-tagging algorithms and performance, and finally the trigger system performance. In each chapter of the report, there is a further subdivision into shorter notes describing different aspects studied. The second major subdivision of the report addresses physics measurement capabilities, and new physics search sensitivities. Individual chapters in this part discuss ATLAS physics capabilities in Standard Model QCD and electroweak processes, in the top quark sector, in b-physics, in searches for Higgs bosons, supersymmetry searches, and finally searches for other new particles predicted in more exotic models.

  10. Integrated circuits for particle physics experiments

    CERN Document Server

    Snoeys, W; Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, Pierre; Kloukinas, Kostas C; Marchioro, A; Moreira, P; Toifl, Thomas H; Wyllie, Ken H

    2000-01-01

    High energy particle physics experiments investigate the nature of matter through the identification of subatomic particles produced in collisions of protons, electrons, or heavy ions which have been accelerated to very high energies. Future experiments will have hundreds of millions of detector channels to observe the interaction region where collisions take place at a 40 MHz rate. This paper gives an overview of the electronics requirements for such experiments and explains how data reduction, timing distribution, and radiation tolerance in commercial CMOS circuits are achieved for these big systems. As a detailed example, the electronics for the innermost layers of the future tracking detector, the pixel vertex detector, is discussed with special attention to system aspects. A small-scale prototype (130 channels) implemented in standard 0.25 mu m CMOS remains fully functional after a 30 Mrad(SiO/sub 2/) irradiation. A full-scale pixel readout chip containing 8000 readout channels in a 14 by 16 mm/sup 2/ ar...

  11. The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field

    Directory of Open Access Journals (Sweden)

    Simakov S.P.

    2010-10-01

    Full Text Available The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109  n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n, (n,3n, (n,4n, (n,He3, (n,α and (n,2nα are studied. The cross-sections data of the (n,4n and (n,2nα are obtained for the first time. The cross-sections of (n,2n and (n,α reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.

  12. Hadron Physics at the COMPASS Experiment

    CERN Document Server

    Krinner, Fabian

    2015-01-01

    Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98\\% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The COMPASS experiment at the CERN Super Proton Synchrotron has acquired large da...

  13. Upgrade Physics Prospects with the ATLAS Experiment

    CERN Document Server

    Martin, Victoria Jane; The ATLAS collaboration

    2016-01-01

    The High Luminosity run of the Large Hadron Collider (LHC) will start in 2026 and aims to collect $3000\\;\\mathrm{fb}^{-1}$ of proton-proton collisions by 2037. This enormous dataset will increase the discovery potential of the LHC and allow precision measurements of Standard Model processes. However, the very high instantaneous luminosity of $5-7 \\times 10^{34}\\;\\mathrm{cm^{-}2 s^{-1}}$ poses serious challenges in terms of high “pile-up” of 140 or 200 overlapping proton-proton collisions per bunch crossing inside the ATLAS detector. In this talk, I will summarise the planned ATLAS detector upgrades and the analysis techniques, including pile-up mitigation, for High Luminosity-LHC running. I will also present the physics prospects for the ATLAS experiment, including results for precision measurements of the $125\\;\\mathrm{GeV}$ Higgs boson and the top quark, for vector boson scattering and the physics reach for supersymmetric and other beyond-the-Standard-Models.

  14. A data readout approach for physics experiments

    Institute of Scientific and Technical Information of China (English)

    HUANG Xi-Ru; CAO Ping; GAO Li-Wei; ZHENG Jia-Jun

    2015-01-01

    With increasing physical event rates and the number of electronic channels,traditional readout schemes meet the challenge of improving readout speed caused by the limited bandwidth of the crate backplane.In this paper,a high-speed data readout method based on the Ethernet is presented to make each readout module capable of transmitting data to the DAQ.Features of exPlicitly parallel data transmitting and distributed network architecture give the readout system the advantage of adapting varying requirements of particle physics experiments.Furthermore,to guarantee the readout performance and flexibility,a standalone embedded CPU system is utilized for network protocol stack processing.To receive the customized data format and protocol from front-end electronics,a field programmable gate array (FPGA) is used for logic reconfiguration.To optimize the interface and to improve the data throughput between CPU and FPGA,a sophisticated method based on SRAM is presented in this paper.For the purpose of evaluating this high-speed readout method,a simplified readout module is designed and implemented.Test results show that this module can support up to 70 Mbps data throughput from the readout module to DAQ.

  15. Infrasound Generation from the Source Physics Experiments

    Science.gov (United States)

    Preston, L. A.; Schramm, K. A.; Jones, K. R.

    2015-12-01

    Understanding the acoustic and infrasound source generation mechanisms from underground explosions is of great importance for usage of this unique data type in non-proliferation activities. One of the purposes of the Source Physics Experiments (SPE), a series of underground explosive shots at the Nevada National Security Site (NNSS), is to gain an improved understanding of the generation and propagation of physical signals, such as seismic and infrasound, from the near to far field. Two of the SPE shots (SPE-1 and SPE-4') were designed to be small "Green's Function" sources with minimal spall or permanent surface deformation. We analyze infrasound data collected from these two shots at distances from ~300 m to ~1 km and frequencies up to 20 Hz. Using weather models based upon actual observations at the times of these sources, including 3-D variations in topography, temperatures, pressures, and winds, we synthesized full waveforms using Sandia's moving media acoustic propagation simulation suite. Several source mechanisms were simulated and compared and contrasted with observed waveforms using full waveform source inversion. We will discuss results of these source inversions including the relative roll of spall from these small explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Precision Measurement of Parity Violation in Polarized Cold Neutron Capture on the Proton the NPD $\\gamma$ Experiment

    CERN Document Server

    Lauss, Bernhard; Carlini, R D; Chupp, T E; Chen, W; Corvig, S; Dabaghyan, M; Desai, D; Freedman, S J; Gentile, T R; Gericke, M T; Gillis, R C; Greene, G L; Hersman, F W; Ino, T; Ito, T; Jones, G L; Kandes, M; Leuschner, M; Lozowski, B; Mahurin, R; Mason, M; Masuda, Y; Mei, J; Mitchell, G S; Muto, S; Nann, H; Page, S A; Penttila, S I; Ramsay, W D; Santra, S; Seo, P -N; Sharapov, E I; Smith, T B; Snow, W M; Wilburn, W S; Yuan, V; Zhu, H; Bernhard, Lauss

    2006-01-01

    The NPDGamma experiment at the Los Alamos Neutron Science Center (LANSCE) is dedicated to measure with high precision the parity violating asymmetry in the $\\gamma$ emission after capture of spin polarized cold neutrons in para-hydrogen. The measurement will determine unambiguously the weak pion-nucleon-nucleon ($\\pi NN$) coupling constant {\\it f$^1_{\\pi}$}

  17. Physical Design of Critical Experiment Facility for Verifying Characteristics and Effects of Coupling Between Reactor and Spallation Target of ADS

    Institute of Scientific and Technical Information of China (English)

    YIN; Sheng-gui; ZHOU; Qi; LI; Yan

    2013-01-01

    For the purpose of studying and verifying characteristics and effects of coupling between reactor and spallation target of ADS,based on the critical experimental facility design criteria and the availableexperiment condition,physical design of a critical experiment facility with lead coolant is completed,using critical calculation code MONK-9A.The contents of physical designs mainly include nuclear fuel,array of fuel rods,neutron source

  18. Chain Experiment competition inspires learning of physics

    Science.gov (United States)

    Dziob, Daniel; Górska, Urszula; Kołodziej, Tomasz

    2017-05-01

    The Chain Experiment is an annual competition which originated in Slovenia in 2005 and later expanded to Poland in 2013. For the purpose of the event, each participating team designs and builds a contraption that transports a small steel ball from one end to the other. At the same time the constructed machine needs to use a number of interesting phenomena and physics laws. In the competition’s finale, all contraptions are connected to each other to form a long chain transporting steel balls. In brief, they are all evaluated for qualities such as: creativity and advance in theoretical background, as well as the reliability of the constructed machine to work without human help. In this article, we present the contraptions developed by students taking part in the competition in order to demonstrate the advance in theoretical basis together with creativity in design and outstanding engineering skills of its participants. Furthermore, we situate the Chain Experiment in the context of other group competitions, at the same time demonstrating that—besides activating numerous group work skills—it also improves the ability to think critically and present one’s knowledge to a broader audience. We discussed it in the context of problem based learning, gamification and collaborative testing.

  19. Photocatalysis - a physical chemistry laboratory experiment

    Energy Technology Data Exchange (ETDEWEB)

    Langham, B.L.; Gravelle, S.J. [Saint Vincent College, Latrobe, PA (United States)

    1995-12-01

    A Physical Chemistry Laboratory experiment was created that examines photocatalytic decomposition of organic compounds. Photocatalytic decomposition is a technique in which a solution containing a semiconducting material is irradiated with UV light, and the compounds in the solution are decomposed. This technique is commonly used for the destruction of environmentally detrimental compounds. In this experiment, the students study the photocatalytic, reduction of 1,4-benzoquinone, and the photocatalytic oxidation of 2-chlorophenol. The students examine the effect of different catalysts, the rate of the reaction, and the formation of intermediates and products. Each catalyst has a different effect on the rate of decomposition, depending on the oxidation and reduction potential of the compound and the band gap of the catalyst. The UV/Vis spectrometer will he used to study the affect of different catalysts on the initial rate of decomposition of 1,4-benzoquinone and 2-chlorophenol. The products and intermediates of each reaction are examined by High Performance Liquid Chromatography.

  20. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Benage, John F. [Los Alamos National Laboratory; Albright, Brian J. [Los Alamos National Laboratory; Fernandez, Juan C. [Los Alamos National Laboratory

    2012-09-04

    , and contribute to the Campaign milestone in 2018. Given their interdisciplinary nature, it is not surprising that these research needs are not being addressed by the other excellent high-energy density physics (HEDP) facilities coming on line, facilities aimed squarely at more established fields and missions. Although energy rich, these facilities deliver radiation (e.g., particle beams for isochoric heating) over a timescale that is too slow in these unit physics experiments to eliminate hydrodynamic evolution of the target plasma during the time it is being created. A theme shared by all of these experiments is the need to quickly create a quasi-homogeneous 'initial state' whose properties and evolution we wish to study. Otherwise, we cannot create unit experiments to isolate the physics of interest and validate the models in our codes, something that cannot be done with the integrated experiments often done in HED. Moreover, these experiments in some cases involve combinations of solid and plasmas, or matter in the warm-dense matter state, where neither the theoretical approximations of solid state or of fully-ionized weakly-coupled plasmas can be used. In all cases, the capability of 'isochoric heating' ('flash' heating at constant density) is important. In some cases, the ability to selectively heat to different degrees different species within a target, whether mixed or adjacent to each other, is critical for the experiment. This capability requires the delivery of very high power densities, which require the conversion of the laser into very short and intense pulses of secondary radiation (electrons, ions, neutrons, x-rays). Otherwise, there is no possibility of a clean experiment to constrain the models, in the cases there are any, or inform the creation of one. Another typical requirement of these experiments is the ability to probe these exotic extreme conditions of matter with flexible and diverse sources of secondary radiation

  1. Physics Experiments at the Agesta Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Apelqvist, G. [State Power Board, Stockholm (Sweden); Bliselius, P. Aa.; Blomberg, P.E.; Jonsson, E.; Aakerhielm, F. [AB Atomenergi, Nykoeping (Sweden)

    1966-09-15

    Part A. Dynamic measurements have been performed at the Aagesta reactor at power levels from 0.3 to 65 MW(th). The purposes of the experiments have been both to develop experimental methods and equipment for the dynamic studies and to measure the dynamic characteristics of the reactor in order to check the dynamic model. The experiments have been performed with four different perturbation functions: trapezoidal and step functions and two types of periodic multifrequency signals. Perturbations were introduced in the reactivity and in the load. The recordings were made of the responses of nuclear power, coolant inlet and outlet temperature and control rod position. The results are presented as step responses and transfer functions (Bode diagrams). Inmost cases the relative accuracy is {+-} 0.5 dB in amplitude and {+-} 5 deg in phase. The results from the experiments in general show rather good agreement with the results obtained from a dynamic model, which successively has been improved. Experience on reactor noise analysis based on measurements in the Agesta power reactor is discussed. It is shown that the noise measurements have given complementary dynamic information of the reactor. Part B. Static measurements of the physics parameters in the Agesta reactor are carried out to confirm theoretical methods for reactor calculations and to form a good basis for safe operation of the reactor. The reactivity worth of groups of control rods are determined with different methods and compared with calculations with the three-dimensional code HETERO. The excess reactivity as a function of burn up is obtained from the control rod positions. The temperature coefficient of the moderator is measured by lowering the moderator temperature at constant power and observing the change in control rod insertion. As burn up increases the experiments are repeated in order to follow the changes in the coefficient. The xenon poisoning effects are measured by changing the power level and

  2. Preparation and characterisation of magnetic nanostructured samples for inelastic neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzpaintner, Wolfgang

    2010-06-22

    Recent advances in thin-film structuring techniques have generated significant interest in the dynamics of spin waves in magnetic nanostructures and the possible use of inelastic neutron scattering (INS) for their investigation. This thesis describes the design and implementation, at GKSS Research Centre, of equipment for preparation of large and laterally submicron and nanometre structured magnetic samples for such future INS experiments. After a brief resume on spin waves in nanostructures, the development work on new purpose-designed equipment, including high vacuum (HV) argon ion beam milling and ultra high vacuum (UHV) e-beam evaporation setups, is described. Ni nanodot as well as Ni and novel Gd nanowire samples were prepared using combinations of sputter deposition, laser interference lithography, argon ion beam milling, e-beam evaporation and self organisation techniques. With reference to sample preparation, epitaxial growth studies for Ni on Si(100) substrate were performed, resulting in the development of a new deposition process, which by thermal tuning allows for the direct epitaxial growth of Ni on Si with unprecedented crystalline quality. The results of various characterisation experiments on the prepared nanostructured samples, including Scanning Electron Microscopy (SEM), microprobe analysis, Atomic and Magnetic Force Microscopy (AFM/MFM), Vibrating Sample Magnetometry (VSM), X-ray Diffraction (XRD) and Reflectivity (XRR), unpolarised and Polarised Neutron Scattering (PNR) and off-specular scattering by X-rays and neutrons using rocking scans and Time-Of-Flight Grazing Incidence Small Angle Neutron Scattering (TOF-GISANS), together with various analysis procedures such as Distorted-Wave Born Approximation (DWBA), are reported. The analysis of a Gd nanowire sample by TOF-GISANS led to a novel evaluation technique which in comparison with single wavelength methods allows portions of reciprocal space to be scanned without changing the angle of

  3. AGS experiments in nuclear/QCD physics at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  4. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    Science.gov (United States)

    Gaisbauer, D.; Konorov, I.; Steffen, D.; Paul, S.

    2016-07-01

    The aim of PENeLOPE (Precision Experiment on Neutron Lifetime Operating with Proton Extraction) at the Forschungsreaktor München II is a high-precision measurement of the neutron lifetime and thereby an improvement of the parameter's precision by one order of magnitude. In order to achieve a higher accuracy, modern experiments naturally require state-of-the-art readout electronics, as well as high-performance data acquisition systems. This paper presents the self-triggering readout system designed for PENeLOPE which features a continuous pedestal tracking, configurable signal detection logic, floating ground up to 30 kV, cryogenic environment and the novel Switched Enabling Protocol (SEP). The SEP is a time-division multiplexing transport level protocol developed for a star network topology.

  5. Self-triggering readout system for the neutron lifetime experiment PENeLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Gaisbauer, D., E-mail: d.gaisbauer@tum.de [Technische Universität München, Garching (Germany); Konorov, I. [Technische Universität München, Garching (Germany); Steffen, D. [CERN, Geneva (Switzerland); Paul, S. [Technische Universität München, Garching (Germany)

    2016-07-11

    The aim of PENeLOPE (Precision Experiment on Neutron Lifetime Operating with Proton Extraction) at the Forschungsreaktor München II is a high-precision measurement of the neutron lifetime and thereby an improvement of the parameter's precision by one order of magnitude. In order to achieve a higher accuracy, modern experiments naturally require state-of-the-art readout electronics, as well as high-performance data acquisition systems. This paper presents the self-triggering readout system designed for PENeLOPE which features a continuous pedestal tracking, configurable signal detection logic, floating ground up to 30 kV, cryogenic environment and the novel Switched Enabling Protocol (SEP). The SEP is a time-division multiplexing transport level protocol developed for a star network topology.

  6. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Retieseweg 111, B-2440 Geel (Belgium); Zeynalov, Sh. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Mosow region (Russian Federation)

    2016-09-11

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in {sup 235}U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  7. Studies of the Production and Transport of Highly Polarized Ultracold Neutrons for the UCNA Experiment

    Science.gov (United States)

    Holley, A. T.

    2007-10-01

    The goal of the UCNA experiment is to determine the angular correlation between the electron momentum and the neutron spin (the beta-asymmetry) in neutron decay using polarized ultracold neutrons (UCN). The experimental strategy is to transport UCN into a decay volume through a 7T static magnetic field using the magnetic potential to polarize the UCN. The initial UCN spin can then be reversed via an rf adiabatic spin-flipper in a 1T field region whose gradient is tailored to optimize the adiabatic spin-flipper's performance. The spin-flipper, which also allows in situ measurement of the UCN depolarization rate, is a resonant `bird-cage' cavity capable of producing rf fields in excess of 5G at 30Mhz. In order to minimize the UCN depolarization rate, UCN guides are constructed of diamond-like carbon films on quartz tubing, a technology which has been demonstrated to produce less than 3x10-3 depolarizations per bounce. The performance of this system will be described, and compared to expectations from detailed Monte Carlo transport models. The implications for high precision measurements of polarized ultracold neutrons will also be discussed.

  8. A position-sensitive twin ionization chamber for fission fragment and prompt neutron correlation experiments

    Science.gov (United States)

    Göök, A.; Geerts, W.; Hambsch, F.-J.; Oberstedt, S.; Vidali, M.; Zeynalov, Sh.

    2016-09-01

    A twin position-sensitive Frisch grid ionization chamber, intended as a fission fragment detector in experiments to study prompt fission neutron correlations with fission fragment properties, is presented. Fission fragment mass and energies are determined by means of the double kinetic energy technique, based on conservation of mass and linear momentum. The position sensitivity is achieved by replacing each anode plate in the standard twin ionization chamber by a wire plane and a strip anode, both readout by means of resistive charge division. This provides information about the fission axis orientation, which is necessary to reconstruct the neutron emission process in the fully accelerated fragment rest-frame. The energy resolution compared to the standard twin ionization chamber is found not to be affected by the modification. The angular resolution of the detector relative to an arbitrarily oriented axis is better than 7° FWHM. Results on prompt fission neutron angular distributions in 235U(n,f) obtained with the detector in combination with an array of neutron scintillation detectors is presented as a proof of principle.

  9. Angular Correlations Between Fragment Spin and Prompt Neutron Evaporation in Spontaneous Fission of 252Cf: CORA-Demon Experiment

    Science.gov (United States)

    Prokhorova, E.; Gönnenwein, F.; Kopatch, Yu.; Mutterer, M.; Hanappe, F.; Kinnard, V.; Stuttgé, L.; Dorvaux, O.; Wollersheim, H.-J.

    2007-05-01

    A novel method to search for the anisotropic emission of prompt neutrons in the center-of-mass system of fission fragments is presented. The anisotropy is conjectured to be due to the large spins of fission fragments are known to carry. Triple neutron- neutron-fragment correlations in spontaneous fission of 252Cf were investigated in an exploratory experiment dubbed CORA-DEMON experiment. Fission fragments were intercepted in a double ionization chamber while neutrons were spotted in 2 two-dimensional cylindrical walls of Demon detectors with the target on the vertical cylinder axis. A new method of analysis of triple angular correlations between 2 neutrons and a fission fragment was applied. Preliminary results are reported.

  10. Physics Potential of Long-Baseline Experiments

    CERN Document Server

    Agarwalla, Sanjib Kumar

    2014-01-01

    The discovery of neutrino mixing and oscillations over the past decade provides firm evidence for new physics beyond the Standard Model. Recently, theta13 has been determined to be moderately large, quite close to its previous upper bound. This represents a significant milestone in establishing the three-flavor oscillation picture of neutrinos. It has opened up exciting prospects for current and future long-baseline neutrino oscillation experiments towards addressing the remaining fundamental questions, in particular the type of the neutrino mass hierarchy and the possible presence of a CP-violating phase. Another recent and crucial development is the indication of non-maximal 2-3 mixing angle, causing the octant ambiguity of theta23. In this paper, I will review the phenomenology of long-baseline neutrino oscillations with a special emphasis on sub-leading three-flavor effects, which will play a crucial role in resolving these unknowns. First, I will give a brief description of neutrino oscillation phenomeno...

  11. Hadron physics at the COMPASS experiment

    Science.gov (United States)

    Krinner, Fabian

    2015-05-01

    Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420), is observed with a mass and width in the ranges m = 1412 - 1422MeV/c2 and Γ = 130 - 150MeV/c2.

  12. New physical model design for Vapex experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, A.; Maini, B.B. [Calgary Univ., AB (Canada)

    2004-07-01

    Solvent extraction is gaining much attention as an in-situ recovery method for difficult to produce heavy oil and tar sand deposits. Vapour extraction (VAPEX) is similar to the steam assisted gravity drainage (SAGD) process used in heavy oil production. In VAPEX, vaporized solvents are used instead of high temperature steam and the viscosity of the oil is reduced in situ. VAPEX is well suited for formations that are thin and where heat losses are unavoidable. It can be applied in the presence of overlying gas caps; bottom water aquifers; low thermal conductivity; high water saturation; clay swelling; and, formation damage. Modelling studies that use rectangular shaped models are limited at high reservoir pressures. This study presents a new design of physical models that overcomes this limitation. The annular space between two cylindrical pipes is used for developing slice-type and sand-filled models. This newly developed model is more compatible with high pressure. This paper compares results of VAPEX experiments using the cylindrical models and the rectangular models. The stabilized drainage rates from the newly developed cylindrical models are in very good agreement with those from the rectangular models. 16 refs., 3 tabs., 11 figs.

  13. High energy fast neutrons from the Harwell variable energy cyclotron. I. Physical characteristics.

    Science.gov (United States)

    Goodhead, D T; Berry, R J; Bance, D A; Gray, P; Stedeford, J B

    1977-10-01

    A high energy fast neutron beam potentially suitable for radiotherapy was built at the Harwell variable energy cyclotron. The beam line is described and results are given of physical measurements on the fast neutron beams produced by 42 MeV deuterons on thick (4 mm) and thin (2 mm) beryllium targets. With 20 muA beam current the entrance dose rate in a phantom 150 cm from the target was about 130 rad min-1 with the thick target and about 60 rad min-1 with the thin target. Therefore, it is possible to use both the thin target and the relatively large target-skin distance of 150 cm to improve depth dose for radiotherapy or radiobiology. With this arrangement the dose rate decreased to 50% at depths in the phantom of 11.3-15.4 cm, depending on the field size. The use of primarily hydrogenous materials for shielding and collimation provided beam edge definition similar to that of 60Co teletherapy units, and off-axis radiation levels of approximately 1% which compare favorably with 14 MeV deuteron-tritium generators. The copper backing of the thin target became highly radioactive and an alterative material may be preferable. Biologic characteristics of the beam are described in a companion paper.

  14. Nuclear reaction modeling, verification experiments, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, F.S.

    1995-10-01

    This presentation summarized the recent accomplishments and future promise of the neutron nuclear physics program at the Manuel Lujan Jr. Neutron Scatter Center (MLNSC) and the Weapons Neutron Research (WNR) facility. The unique capabilities of the spallation sources enable a broad range of experiments in weapons-related physics, basic science, nuclear technology, industrial applications, and medical physics.

  15. Performance of an elliptically tapered neutron guide

    Science.gov (United States)

    Mühlbauer, Sebastian; Stadlbauer, Martin; Böni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-11-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  16. Performance of an elliptically tapered neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany)]. E-mail: sebastian.muehlbauer@frm2.tum.de; Stadlbauer, Martin [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Schanzer, Christan [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Stahn, Jochen [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Filges, Uwe [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland)

    2006-11-15

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  17. Ultracold neutron detection with {sup 6}Li-doped glass scintillators. NANOSC: A fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute

    Energy Technology Data Exchange (ETDEWEB)

    Ban, G.; Lefort, T.; Lemiere, Y.; Naviliat-Cuncic, O.; Pierre, E.; Quemener, G.; Rogel, G. [Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Bison, G.; Chowdhuri, Z.; Henneck, R.; Lauss, B.; Mtchedlishvili, A.; Schmidt-Wellenburg, P.; Zsigmond, G. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Bodek, K.; Zejma, J. [Jagiellonian University, Marian Smoluchowski Institute of Physics, Cracow (Poland); Geltenbort, P. [Institut Laue-Langevin, Grenoble (France); Griffith, W.C.; Musgrave, M. [University of Sussex, Falmer, Department of Physics and Astronomy, Brighton (United Kingdom); Helaine, V. [Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, Caen (France); Paul Scherrer Institute, Villigen-PSI (Switzerland); Kasprzak, M.; Koss, P.A.; Severijns, N.; Wursten, E. [Katholieke Universiteit Leuven, Instituut voor Kernen Stralingsfysica, Leuven (Belgium); Kermaidic, Y.; Pignol, G.; Rebreyend, D. [LPSC, Universite Grenoble Alpes, CNRS/IN2P3, Grenoble (France); Kirch, K.; Komposch, S.; Krempel, J.; Ries, D. [Paul Scherrer Institute, Villigen-PSI (Switzerland); Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Kozela, A. [Henryk Niedwodniczanski Institute for Nuclear Physics, Cracow (Poland); Piegsa, F.M.; Rawlik, M. [Institute for Particle Physics, ETH Zuerich, Zuerich (Switzerland); Roccia, S. [CSNSM, Universite Paris Sud, CNRS/IN2P3, Orsay (France)

    2016-10-15

    This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with {sup 6}Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200μm, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a {sup 6}Li-depleted glass bonded to a {sup 6}Li-enriched glass. The technique of optical contact bonding is used between the two glasses in order to eliminate the need for optical glue or grease between them. Relative to a {sup 3}He Strelkov gas detector, the scintillator's detection efficiency is lower for UCN energies close to the scintillator's Fermi potential (85-100 neV), but becomes larger at higher UCN energies. Coupled to a digital data acquisition system, counting rates up to a few 10{sup 5} counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for routine runs of the neutron electric dipole moment experiment is presented. (orig.)

  18. Ultracold neutron detection with 6Li-doped glass scintillators, NANOSC: a fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute

    CERN Document Server

    Ban, G; Bodek, K; Chowdhuri, Z; Geltenbort, P; Griffith, W C; Hélaine, V; Henneck, R; Kasprzak, M; Kermaidic, Y; Kirch, K; Komposch, S; Koss, P A; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cuncic, O; Piegsa, F M; Pierre, E; Pignol, G; Quéméner, G; Rawlik, M; Ries, D; Rebreyend, D; Roccia, S; Rogel, G; Schmidt-Wellenburg, P; Severijns, N; Wursten, E; Zejma, J; Zsigmond, G

    2016-01-01

    This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with 6Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200 micrometer, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a 6Li-depleted glass bonded to a 6Li-enriched glass. The optical contact bonding is used between the scintillators in order to obtain a perfect optical contact. The scintillator's detection efficiency is similar to that of a 3He Strelkov gas detector. Coupled to a digital data acquisition system, counting rates up to a few 10^5 counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for the regular runs of the neutron electric dipole moment experiment is presented.

  19. Ultracold neutron detection with 6Li-doped glass scintillators. NANOSC: A fast ultracold neutron detector for the nEDM experiment at the Paul Scherrer Institute

    Science.gov (United States)

    Ban, G.; Bison, G.; Bodek, K.; Chowdhuri, Z.; Geltenbort, P.; Griffith, W. C.; Hélaine, V.; Henneck, R.; Kasprzak, M.; Kermaidic, Y.; Kirch, K.; Komposch, S.; Koss, P. A.; Kozela, A.; Krempel, J.; Lauss, B.; Lefort, T.; Lemière, Y.; Mtchedlishvili, A.; Musgrave, M.; Naviliat-Cuncic, O.; Piegsa, F. M.; Pierre, E.; Pignol, G.; Quéméner, G.; Rawlik, M.; Ries, D.; Rebreyend, D.; Roccia, S.; Rogel, G.; Schmidt-Wellenburg, P.; Severijns, N.; Wursten, E.; Zejma, J.; Zsigmond, G.

    2016-10-01

    This paper summarizes the results from measurements aiming to characterize ultracold neutron detection with 6Li-doped glass scintillators. Single GS10 or GS20 scintillators, with a thickness of 100-200μm, fulfill the ultracold neutron detection requirements with an acceptable neutron-gamma discrimination. This discrimination is clearly improved with a stack of two scintillators: a 6Li-depleted glass bonded to a 6Li-enriched glass. The technique of optical contact bonding is used between the two glasses in order to eliminate the need for optical glue or grease between them. Relative to a 3He Strelkov gas detector, the scintillator's detection efficiency is lower for UCN energies close to the scintillator's Fermi potential (85-100 neV), but becomes larger at higher UCN energies. Coupled to a digital data acquisition system, counting rates up to a few 105 counts/s can be handled. A detector based on such a scintillator stack arrangement was built and has been used in the neutron electric dipole moment experiment at the Paul Scherrer Institute since 2010. Its response for routine runs of the neutron electric dipole moment experiment is presented.

  20. Comparison and Physical Interpretation of MCNP and TART Neutron and Gamma Monte Carlo Shielding Calculations for a Heavy-Ion ICF System

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, E.; Premuda, F.; Lee, E.

    2002-07-01

    For heavy-ion beam driven inertial fusion ''liquid-protected'' reactor designs such as HYLIFE-II, a mixture of molten salts made of F{sup 10}, Li{sup -6}, Li{sup 7} and Be{sup 9} (called flibe) allows small chambers and final-focus magnets closer to the target with superconducting coils suffering higher radiation damage, though they can stand only a certain amount of energy deposited before quenching. This work has been primarily focusing on verifying that total energy deposited by fusion neutrons and induced gamma rays remain under such limit values and the final purpose is the optimization of the shielding of the magnetic lens system from the points of view of the geometrical configuration and of the physical nature of the materials adopted. The system is analyzed in terms of six geometrical models going from simplified up to much more realistic representations of a system of 192 beam lines, each focused by six magnets. A 3-D transport calculation of the radiation penetrating through ducts, that takes into account the complexity of the system, requires Monte Carlo methods. The quantities analyzed, using the two codes MCNP and TART include: neutron mean free path and total path length dependence on energy, energy deposited by neutrons and gamma photons, values of the total fluence integrated in the whole energy range, and the neutron spectrum in different zones of the system. The technical nature of the design problem and the methodology followed were presented in a previous paper by summarizing briefly the results for the deposited energy distribution on the six focal magnets. Now a much more extensive comparison of the performances of the two codes for different configurations of the system is discussed, separating the n and {gamma} contributions, in the light of the physical interpretation of the results in terms of first flight and of scattered neutron fluxes, of primary {gamma} and of secondary {gamma} generated by inelastically scattered

  1. Quality of the neutron probe calibration curve; Qualidade da curva de calibracao da sonda de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Libardi, Paulo Leonel; Moraes, Sergio Oliveira [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Fisica e Meteorologia. E-mail: pllibardi@mandi.esalq.usp.br; somoraes@mandi.esalq.usp.br

    1997-07-01

    An experiment of neutron probe calibration has been performed, involving various volume size samples and collected at various distances from the access tubes. The experiment aimed to give some answers to questions such as suitable sample physical volume, always use of the same volume and sample distance from the neutron probe access tube.

  2. Multi-messenger observations of neutron rich matter

    CERN Document Server

    Horowitz, C J

    2011-01-01

    Neutron rich matter is central to many fundamental questions in nuclear physics and astrophysics. Moreover, this material is being studied with an extraordinary variety of new tools such as the Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that uses parity violating electron scattering to measure the neutron radius in $^{208}$Pb. This has important implications for neutron stars and their crusts. We discuss X-ray observations of neutron star radii. These also have important implications for neutron rich matter. Gravitational waves (GW) open a new window on neutron rich matter. They come from sources such as neutron star mergers, rotating neutron star mountains, and collective r-mode oscillations. Using large scale molecular dynamics simulations, we find neutron star crust to be very strong. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally...

  3. Physical processes in the strong magnetic fields of accreting neutron stars

    Science.gov (United States)

    Meszaros, P.

    1984-01-01

    Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.

  4. Game Port Physics Introductory Experiments in Linear Dynamics.

    Science.gov (United States)

    McInerney, Michael

    1984-01-01

    Describes physics experiments (including speed, acceleration, and acceleration due to gravity) in which students write programs to obtain and manipulate experimental data using the Atari microcomputer game port. The approach emphasizes the essential physics of the experiments while affording students useful experience of automatic data collection.…

  5. Calibration of a neutron time-of-flight multidetector system for an intensity interferometry experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ghetti, R. E-mail: roberta.ghetti@nuclear.lu.se; Colonna, N.; Helgesson, J.; Avdeichikov, V.; Golubev, P.; Jakobsson, B.; Tagliente, G.; Brandenburg, S.; Kravchuk, V.L.; Wilschut, H.W.; Kopecky, S.; Anderson, E.W.; Nadel-Turonski, P.; Westerberg, L.; Bellini, V.; Sperduto, M.L.; Sutera, C

    2004-01-11

    We present the details of an experiment on light particle interferometry. In particular, we focus on a time-of-flight technique which uses a cyclotron RF signal as a start and a liquid scintillator time signal as a stop, to measure neutron energy in the range of E{sub n}{approx}1.8-150 MeV. This dynamic range (up to 300 ns) is much larger than the beam bunch separation (54 ns) of the AGOR cyclotron (KVI). However, the problem of a short burst period is overcome by using the time information obtained from a fast projectile fragment phoswich detector. The complete analysis procedure to extract the final neutron kinetic energy spectra, is discussed.

  6. Feasibility study of a sup 3 He-magnetometer for neutron electric dipole moment experiments

    CERN Document Server

    Borisov, Y; Leduc, M; Lobashev, V; Otten, E W; Sobolev, Y

    2000-01-01

    We report on a sup 3 He-magnetometer capable of detecting tiny magnetic field fluctuations of less than 10 sup - sup 1 sup 4 T in experiments for measuring the electric dipole moment (EDM) of the neutron. It is based on the Ramsey technique of separated oscillating fields and uses nuclear spin-polarized sup 3 He gas which is stored in two vessels of V approx =10 l in a sandwich-type arrangement around the storage bottle for ultra-cold neutrons (UCN). The gas is polarized by means of optical pumping in a separate, small discharge cell at pressures around 0.5 mbar and is then expanded into the actual magnetometer volume. To detect the polarization of sup 3 He gas at the end of the storage cycle the gas is pumped out by means of an oil-diffusion pump and compressed again into the discharge cell where optical detection of nuclear polarization is used.

  7. Neutron-capture experiment on {sup 78}Se with EXOGAM at ILL Grenoble

    Energy Technology Data Exchange (ETDEWEB)

    John, Robert; Massarczyk, Ralph; Schwengner, Ronald [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany); Blanc, Aurelien; Jentschel, Michael; Koester, Ulli; Mutti, Paolo; Urban, Waldemar [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France); Belgya, Tamas [IKI Budapest (Hungary); Valenta, Stanislav [Karlova Univ., Prague (Czech Republic)

    2013-07-01

    We present first results of a neutron-capture study of {sup 78}Se. The experiment was carried out with cold neutrons at the reactor of the Institut Laue-Langevin (ILL) at Grenoble. Gamma rays following the {sup 77}Se(n, γ) reaction were measured with eight EXOGAM clover detectors, one clover detector taken from the Lohengrin setup and six GASP detectors. This setup enabled the measurement of two- and three-fold γ-ray coincidences as well as of angular correlations of the γ rays with high efficiency. The aim of the analysis is to gain detailed information about the deexcitation patterns of the capture state and lower-lying excited states. These may be used as a test for statistical simulations of γ-ray cascades and their inputs, such as γ-ray strength functions and level densities.

  8. $\\Xi ^{-}$ Production by $\\Sigma ^{-}$,$\\pi^{-}$ and Neutrons in the Hyperon Beam Experiment at CERN

    CERN Document Server

    Adamovich, M I; Barberis, D; Beck, M; Bérat, C; Beusch, Werner; Boss, M; Brons, S; Brückner, W; Buénerd, M; Busch, C; Büscher, C; Charignon, F; Chauvin, J; Chudakov, E A; Dersch, U; Dropmann, F; Engelfried, J; Faller, F; Fournier, A; Gerassimov, S G; Godbersen, M; Grafström, P; Haller, T; Heidrich, M; Hubbard, E L; Hurst, R B; Königsmann, K C; Konorov, I; Keller, N; Martens, K; Martin, P; Masciocchi, S; Michaels, R; Müller, U; Neeb, H; Newbold, D; Newsom, C R; Paul, S; Pochodzalla, J; Potashnikova, I K; Povh, B; Ren, Z; Epherre-Rey-Campagnolle, Marcelle; Rosner, G; Rossi, L; Rudolph, H; Scheel, C V; Schmitt, L; Siebert, Hans-Wolfgang; Simon, A; Smith, V; Thilmann, O; Trombini, A; Vesin, E; Volkemer, B; Vorwalter, K; Walcher, T; Wälder, G; Werding, R; Wittmann, E; Zavertyaev, M V

    1997-01-01

    Inclusive cross sections for \\ximin\\ hyperon production in high-energy \\sigmamin, \\pimin\\ and neutron induced interactions were measured by the experiment WA89 at CERN. Secondary \\sigmamin\\ and \\pimin\\ beams with average momenta of 345~\\gevc1 and a neutron beam of average momentum 65~\\gevc1 were produced by primary protons of 450~\\gevc1\\ from the CERN SPS. Both single and double differential cross sections are presented as a function of the transverse momentum and the Feynman variable $x_F$. A strong leading effect for \\ximin\\ produced by \\sigmamin\\ is observed. The influence of the target mass on the \\ximin\\ cross section is explored by comparing reactions on copper and carbon nuclei.

  9. Heavy ion physics with the ALICE experiment at LHC

    CERN Document Server

    Zampolli, Chiara

    2007-01-01

    ALICE is the experiment at the LHC collider at CERN dedicated to heavy ion physics. In this report, the ALICE detector will be presented, together with its expected performance as far as some selected physics topics are concerned.

  10. Pulsed power accelerator for material physics experiments

    Directory of Open Access Journals (Sweden)

    D. B. Reisman

    2015-09-01

    Full Text Available We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM, circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  11. Thermal and neutron-physical features of the nuclear reactor for a power pulsation plant for space applications

    Science.gov (United States)

    Gordeev, É. G.; Kaminskii, A. S.; Konyukhov, G. V.; Pavshuk, V. A.; Turbina, T. A.

    2012-05-01

    We have explored the possibility of creating small-size reactors with a high power output with the provision of thermal stability and nuclear safety under standard operating conditions and in emergency situations. The neutron-physical features of such a reactor have been considered and variants of its designs preserving the main principles and approaches of nuclear rocket engine technology are presented.

  12. Arrangement of high-energy neutron irradiation field and shielding experiment using 4 m concrete at KENS.

    Science.gov (United States)

    Nakao, N; Yashima, H; Kawai, M; Oishi, K; Nakashima, H; Masumoto, K; Matsumura, H; Sasaki, S; Numajiri, M; Sanami, T; Wang, Q; Toyoda, A; Takahashi, K; Iijima, K; Eda, K; Ban, S; Hirayama, H; Muto, S; Nunomiya, T; Yonai, S; Rasolonjatovo, D R H; Terunuma, K; Yamauchi, K; Sarkar, P K; Kim, E; Nakamura, T; Maruhashi, A

    2005-01-01

    An irradiation field of high-energy neutrons produced in the forward direction from a thick tungsten target bombarded by 500 MeV protons was arranged at the KENS spallation neutron source facility. In this facility, shielding experiment was performed with an ordinary concrete shield of 4 m thickness assembled in the irradiation room, 2.5 m downstream from the target centre. Activation detectors of bismuth, aluminium, indium and gold were inserted into eight slots inside the shield and attenuations of neutron reaction rates were obtained by measurements of gamma-rays from the activation detectors. A MARS14 Monte Carlo simulation was also performed down to thermal energy, and comparisons between the calculations and measurements show agreements within a factor of 3. This neutron field is useful for studies of shielding, activation and radiation damage of materials for high-energy neutrons, and experimental data are useful to check the accuracies of the transmission and activation calculation codes.

  13. Ukraine experimental neutron source facility.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Bolshinsky, I.; Nekludov, I.; Karnaukhov, I. (Nuclear Engineering Division); (INL); (Kharkov Institute of Physics and Technology)

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an experimental neutron source facility. The facility has been developed for producing medical isotopes, training young nuclear professionals, supporting the Ukraine nuclear industry, providing capability for performing reactor physics, material research, and basic science experiments. Argonne National Laboratory (ANL) of USA is collaborating with KIPT on developing this facility. A driven subcritical assembly utilizing the KIPT electron accelerator with a target assembly is used to generate the neutron source. The target assembly utilizes tungsten or uranium for neutron production through photonuclear reactions with 100-KW of electron beam power. The neutron source intensity, spectrum, and spatial distribution have been studied to maximize the neutron yield and satisfy different engineering requirements. The subcritical assembly is designed to obtain the highest possible neutron flux intensity with a subcriticality of 0.98. Low enrichment uranium is used for the fuel material because it enhances the neutron source performance. Safety, reliability, and environmental considerations are included in the facility conceptual design. Horizontal neutron channels are incorporated for performing basic research including cold neutron source. This paper describes the conceptual design and summarizes some of the related analyses.

  14. Study of the neutron background noise generated by muons in the Edelweiss-2 experiment; Etude du bruit de fond neutron induit par les muons dans l'experience EDELWEISS-2

    Energy Technology Data Exchange (ETDEWEB)

    Chabert, L

    2004-07-01

    This thesis contributes to the Edelweiss experiment whose aim is to detect interactions between neutralinos and target nuclei. Bolometers used in Edelweiss combine the detection of phonons with the detection of electric charges generated by the energy deposition. This double detection enables us to discard background signals due to electronic interactions and soon detection sensitivity of the experiment will be limited by the neutron background noise due to residual cosmic muons. This work is dedicated to a detailed study of muon inelastic interactions and the consequent production of neutrons. Simulations show that the expected neutron flux is so high that the direct detection of muons is required in order to link it to the neutron signal issued by the bolometer. Results from simulations show that plastic scintillators might be the main components of the muon detector.

  15. The Influence of Hands On Physics Experiments on Scientific Process Skills According to Prospective Teachers' Experiences

    Science.gov (United States)

    Hirça, Necati

    2013-01-01

    In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…

  16. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  17. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  18. The Physics of Bird Flight: An Experiment

    Science.gov (United States)

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  19. Development of the large neutron imaging system for inertial confinement fusion experiments.

    Science.gov (United States)

    Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C

    2012-03-01

    Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.

  20. Development of the large neutron imaging system for inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2012-03-15

    Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.

  1. Quantum Dots: An Experiment for Physical or Materials Chemistry

    Science.gov (United States)

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  2. Forward physics at the ATLAS experiment

    CERN Document Server

    Ruzicka, Pavel; The ATLAS collaboration

    2010-01-01

    This contribution describes forward physics measurements possible to make with current ATLAS forward detectors including the upgrade project AFP. The aim of AFP is to tag very forward going protons at high luminosities.

  3. Current experiments in elementary particle physics, 1976-87

    CERN Document Server

    Lawrence Berkeley Nat. Laboratory. Berkeley

    Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.

  4. Simulation of complete neutron scattering experiments: from model systems to liquid germanium; Simulation complete d'une experience de diffusion de neutrons: des systemes modeles au germanium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Hugouvieux, V

    2004-11-15

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  5. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    Science.gov (United States)

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  6. An Experiment on a Physical Pendulum and Steiner's Theorem

    Science.gov (United States)

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  7. Whispering gallery states of neutrons and anti-hydrogen atoms and their applications to fundamental and surface physics

    Science.gov (United States)

    Nesvizhevsky, Valery

    2013-03-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It is intensively used and explored due to its numerous crucial applications. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for neutrons and (anti)atoms. For (anti)matter waves, it includes a new feature: a massive particle is settled in quantum states, with parameters depending on its mass. In this talk, we present the first observation of the quantum whispering-gallery effect for matter particles (cold neutrons) 1-2. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to recently discovered gravitational quantum states of neutrons3. These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a quantum state. Deeply bound long-living states are weakly sensitive to surface potential; highly excited short-living states are very sensitive to the wall nuclear potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects. Analogous phenomena could be measured with atoms and anti-atoms 4-5.

  8. Physics of gamma-ray bursts and multi-messenger signals from double neutron star mergers

    Science.gov (United States)

    Gao, He

    My dissertation includes two parts: Physics of Gamma-Ray Bursts (GRBs): Gamma-ray bursts are multi-wavelength transients, with both prompt gamma-ray emission and late time afterglow emission observed by telescopes in different wavelengths. I have carried out three investigations to understand GRB prompt emission and afterglow. Chapter 2 develops a new method, namely, "Stepwise Filter Correlation" method, to decompose the variability components in a light curve. After proving its reliability through simulations, we apply this method to 266 bright GRBs and find that the majority of the bursts have clear evidence of superposition of fast and slow variability components. Chapter 3 gives a complete presentation of the analytical approximations for synchrotron self-compton emission for all possible orders of the characteristic synchrotron spectral breaks (nua, nu m, and nuc). We identify a "strong absorption" regime whennua > nuc, and derive the critical condition for this regime. The external shock theory is an elegant theory to model GRB afterglows. It invokes a limit number of model parameters, and has well predicted spectral and temporal properties. Chapter 4 gives a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes. This complete reference will serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data and identify new physics when the models fail. Milti-messenger signals from double neutron star merger: As the multi-messenger era of astronomy ushers in, the second part of the dissertation studies the possible electromagnetic (EM) and neutrino emission counterparts of double neutron star mergers. Chapter 6 suggests that if double neutron star mergers leave behind a massive magnetar rather than a black hole, the magnetar wind could push the ejecta launched during the merger process, and under

  9. Experimental research in neutron physic and thermal-hydraulic at the CDTN Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Souza, Rose Mary G.P.; Ferreira, Andrea V.; Pinto, Antonio J.; Costa, Antonio C.L.; Rezende, Hugo C., E-mail: amir@cdtn.b, E-mail: souzarm@cdtn.b, E-mail: avf@cdtn.b, E-mail: ajp@cdtn.b, E-mail: aclc@cdtn.b, E-mail: hcr@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The IPR-R1 TRIGA (Training, Research, Isotopes production, General Atomics) at Nuclear Technology Development Center (CDTN) is a pool type reactor cooled by natural circulation of light water and an open surface. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world and characterized by inherent safety. The IPR-R1 is the only Brazilian nuclear research reactor available and able to perform experiments in which interaction between neutronic and thermal-hydraulic areas occurs. The IPR-R1 has started up on November 11th, 1960. At that time the maximum thermal power was 30 kW. The present forced cooling system was built in the 70th and the power was upgraded to 100 kW. Recently the core configuration and instrumentation was upgraded again to 250 kW at steady state, and is awaiting the license of CNEN to operate definitely at this new power. This paper describes the experimental research project carried out in the IPR-R1 reactor that has as objective evaluate the behaviour of the reactor operational parameters, and mainly to investigate the influence of temperature on the neutronic variables. The research was supported by Research Support Foundation of the State of Minas Gerais (FAPEMIG) and Brazilian Council for Scientific and Technological Development (CNPq). The research project meets the recommendations of the IAEA, for safety, modernization and development of strategic plan for research reactors utilization. This work is in line with the strategic objectives of Brazil, which aims to design and construct the Brazilian Multipurpose research Reactor (RMB). (author)

  10. Current experiments in elementary particle physics. Revision 1-85

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  11. Preliminary approach to neutron instrument selection at ESS-Bilbao based on experience at ISIS molecular spectroscopy group

    Energy Technology Data Exchange (ETDEWEB)

    Vicente Bueno, J. P. de

    2014-07-01

    Collaborative efforts between the Neutronics and Target Design Group at the Instituto de Fusion Nuclear and the Molecular Spectroscopy Group at the ISIS Pulsed Neutron and Muon Source date back to 2012 in the context of the ESS-Bilbao project. The rationale for these joint activities was twofold, namely: to assess the realm of applicability of the low-energy neutron source proposed by ESS-Bilbao; and to explore instrument capabilities for pulsed-neutron techniques in the range 0.05-3 ms, a time range where ESS-Bilbao and ISIS could offer a significant degree of synergy and complementarity. As part of this collaboration, J.P. de Vicente has spent a three-month period within the ISIS Molecular Spectroscopy Group, to gain hands-on experience on the practical aspects of neutron-instrument design and the requisite neutron-transport simulations. Building upon these previous works, the primary aim of this report is to provide a self contained discussion of general criteria for instrument selection at ESS-Bilbao, the first accelerator-driven, low-energy neutron source designed in Spain. (Author)

  12. Nuclear Physics Experiments with Ion Storage Rings

    CERN Document Server

    Litvinova, Yu A; Blaum, K; Bosch, F; Brandau, C; Chen, L X; Dillmann, I; Egelhof, P; Geissel, H; Grisenti, R E; Hagmann, S; Heil, M; Heinz, A; Kalantar-Nayestanaki, N; Knöbel, R; Kozhuharov, C; Lestinsky, M; Ma, X W; Nilsson, T; Nolden, F; Ozawa, A; Raabe, R; Reed, M W; Reifarth, R; Sanjari, M S; Schneider, D; Simon, H; Steck, M; Stöhlker, T; Sun, B H; Tu, X L; Uesaka, T; Walker, P M; Wakasugi, M; Weick, H; Winckler, N; Woods, P J; Xu, H S; Yamaguchi, T; Yamaguchi, Y; Zhang, Y H

    2013-01-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  13. Neutronics experiments, radiation detectors and nuclear techniques development in the EU in support of the TBM design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Angelone, M., E-mail: maurizio.angelone@enea.it [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Fischer, U. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Flammini, D. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Jodlowski, P. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Klix, A. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kodeli, I. [Jožef Stefan Institute, Ljubljana (Slovenia); Kuc, T. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Leichtle, D. [Fusion for Energy, C/Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Lilley, S. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Majerle, M.; Novák, J. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); Ostachowicz, B. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Packer, L.W. [Culham Centre for Fusion Energy, Culham, OX14 3DB (United Kingdom); Pillon, M. [ENEA UT-FUS C.R. Frascati, via E. Fermi, 45-00044 Frascati (Italy); Pohorecki, W. [AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Radulović, V. [Jožef Stefan Institute, Ljubljana (Slovenia); Šimečková, E. [Nuclear Physics Institute of the ASCR, Řež 130, 250 68 Řež (Czech Republic); and others

    2015-10-15

    Highlights: • A number of experiments and tests are ongoing to develop detectors and methods for HCLL and HCPM ITER-TBM. • Experiments for measuring gas production relevant to IFMIF are also performed using a cyclotron. • A benchmark experiment with a Cu block is performed to validate copper cross sections. • Experimental techniques to measure tritium in TBM are presented. • Experimental verification of activation cross sections for a Neutron Activation System for TBM is addressed. - Abstract: The development of high quality nuclear data, radiation detectors and instrumentation techniques for fusion technology applications in Europe is supported by Fusion for Energy (F4E) and conducted in a joint and collaborative effort by several European research associations (ENEA, KIT, JSI, NPI, AGH, and CCFE) joined to form the “Consortium on Nuclear Data Studies/Experiments in Support of TBM Activities”. This paper presents the neutronics activities carried out by the Consortium. A selection of available results are presented. Among then a benchmark experiment on a pure copper block to study the Cu cross sections at neutron energies relevant to fusion, the fabrication of prototype neutron detectors able to withstand harsh environment and temperature >200 °C (artificial diamond and self-powered detectors) developed for operating in ITER-TBM as well as measurement of relevant activation and integral gas production cross-sections. The latter measured at neutron energies relevant to IFMIF (>14 MeV) and the development of innovative experimental techniques for tritium measurement in TBM.

  14. Neutron metrology in the HFR

    Energy Technology Data Exchange (ETDEWEB)

    Voorbraak, W.P.; Freudenreich, W.E.; Stecher-Rasmussen, F.; Verhagen, H.W.

    1991-10-01

    Neutron fluence rate and gamma dose data are presented for the first series of experiments at the filtered HFR beam HB11 at full reactor power. Measurements were performed on two beagle dogs and one cylindrical phantom. The main results for thermal and epithermal fluence rates, physical neutron dose and gamma dose are presented in the tables 1 and 2. (author). 10 refs.; 9 figs.; 8 tabs.

  15. Interfering with the neutron spin

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Veer Chand Rakhecha

    2004-07-01

    Charge neutrality, a spin $\\dfrac{1}{2}$ and an associated magnetic moment of the neutron make it an ideal probe of quantal spinor evolutions. Polarized neutron interferometry in magnetic field Hamiltonians has thus scored several firsts such as direct verification of Pauli anticommutation, experimental separation of geometric and dynamical phases and observation of non-cyclic amplitudes and phases. This paper provides a flavour of the physics learnt from such experiments.

  16. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  17. Learning Physics by Creating Problems: An Experiment

    CERN Document Server

    Kolarkar, Ameya S

    2016-01-01

    We investigated the effects of student-generated problems on exams. The process was gradual with some training throughout the semester. Initial results were highly positive with the students involved performing significantly better, and showing statistically significant improvement (t = 5.04) compared to the rest of the class, on average. Overall, performance improved when students generated problems. Motivation was a limiting factor. There is significant potential for improving student learning of physics and other problem-based topics.

  18. Designing Flight Experiments for Hypersonic Flow Physics

    OpenAIRE

    Longo, J.M.A.; Eggers, Th.; Gülhan, A.; Turner, J.; Weihs, H.

    2005-01-01

    A major problem of concen for the success of physical-modelling resides in the availability of experimental data for model validation, particularly in the hot hypersonic regime. In the past, validation data have been achieved as secondary product of expensive space-transportation programs. Since in the last ten years there has been almost no successfull program due to lack of investment, no new experimental data are available. According, a new trend is emerging for low cost technology vali...

  19. Neutron background at the Canfranc Underground Laboratory and its contribution to the IGEX-DM dark matter experiment

    CERN Document Server

    Carmona, J M; García, E; Irastorza, I G; Luzón, G; Morales, A; Morales, J; De Solorzano, A O; Puimedón, J; Sarsa, M L; Villar, J A

    2004-01-01

    A quantitative study of the neutron environment in the Canfranc Underground Laboratory has been performed. The analysis is based on a complete set of simulations and, particularly, it is focused on the IGEX-DM dark matter experiment. The simulations are compared to the IGEX-DM low energy data obtained with different shielding conditions. The results of the study allow us to conclude, with respect to the IGEX-DM background, that the main neutron population, coming from radioactivity from the surrounding rock, is practically eliminated after the implementation of a suitable neutron shielding. The remaining neutron background (muon-induced neutrons in the shielding and in the rock) is substantially below the present background level thanks to the muon veto system. In addition, the present analysis gives us a further insight on the effect of neutrons in other current and future experiments at the Canfranc Underground Laboratory. The comparison of simulations with the body of data available has allowed to set the ...

  20. Solution Calorimetry Experiments for Physical Chemistry.

    Science.gov (United States)

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  1. Development of a system for simultaneously generating triple extreme conditions for neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Shigeju [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We have developed new system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of : (1) a liquid-helium cryostat which enables the sample temperature range of 1.7 K to 200 K, (2) a superconducting magnet providing a vertical field up to 5 Tesla with antisymmetric split-coil geometry for polarized-beam experiments, and (3) a non-magnetic clamping high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 Gpa. In the workshop, we will report the outline of the system and some results of performance tests using the system at JRR-3M of JAERI. (author)

  2. Test experiment to search for a neutron EDM by the Laue diffraction method

    CERN Document Server

    Fedorov, V V; Lelievre-Berna, E; Nesvizhevsky, V V; Petoukhov, A; Semenikhin, S Y; Soldner, T; Tasset, F; Voronin, V V

    2005-01-01

    A prototype experiment to measure the neutron electric dipole moment (nEDM) by spin-rotation in a non-centrosymmetric crystal in Laue geometry was carried out in order to investigate the statistical sensitivity and systematic effects of the method. The statistical sensitivity to the nEDM was about $6\\cdot 10^{-24}$ e$\\cdot $cm per day and can be improved by one order of magnitude for the full scale setup. Systematics was limited by the homogeneity of the magnetic field in the crystal region and by a new kind of spin rotation effect. We attribute this effect to a difference of the two Bloch waves amplitudes in the crystal, which is caused by the presence of a small crystal deformation due to a temperature gradient. In a revised scheme of the experiment, this effect could be exploited for a purposeful manipulation of the Bloch waves.

  3. Shifting standards experiments in particle physics in the twentieth century

    CERN Document Server

    Franklin, Allan

    2013-01-01

    In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and...

  4. Physics with photons at the ATLAS experiment

    CERN Document Server

    Pérez-Réale, V

    2008-01-01

    ATLAS is a general-purpose detector due to start operation next year at the Large Hadron Collider (LHC). The LHC will collide pairs of protons at a centre-of-mass energy of 14 TeV, with a bunch-crossing frequency of 40 MHz, and luminosities up to L = 10^34 cm^-2s^-1. The identification of photons is crucial for the study of a number of physics channels, including the search for a Higgs boson decaying to photon pairs, and measurements of direct production of single photons and photon pairs. Events containing true high-p_T photons must be selected with high efficiency, while rejecting the bulk of high-p_T jet events produced with enormously larger rate through QCD processes. The photon--photon and photon--jet channels are interesting in their own right, allowing the study of QCD at high energy. It is also essential to understand these proceses as the dominant background in the search for certain new physics processes, notably the production and decay of Higgs bosons to photon pairs. There are large uncertaintin...

  5. Measurement of Neutron Field Characteristics at Nuclear-Physics Instalations for Personal Radiation Monitoring

    CERN Document Server

    Alekseev, A G; Britvich, G I; Kosyanenko, E V; Pikalov, V A; Gomonov, I P

    2003-01-01

    n this work the observed data of neutron spectra on Rostov NEP, Kursk NEP and Smolensk NEP and on the reactor IRT MIPHI are submitted. For measurement of neutron spectra two types of spectrometer were used: SHANS (IHEP design ) and SDN-MS01 (FEI design). The comparison of the data measurements per-formed by those spectrometers above one-type cells on the reactor RBMK is submitted. On the basis of the 1-st horizontal experimental channel HEC-1 of the IRT reactor 4 reference fields of neutrons are investigated. It is shown, that spectra of neutrons of reference fields can be used for imitation of neutron spectra for conditions of NEP with VVER and RBMK type reactors.

  6. Silicon burning; 1, neutronization and the physics of quasi-equilibrium

    CERN Document Server

    Hix, W R

    1995-01-01

    As the ultimate stage of stellar nucleosynthesis, and the source of the iron peak nuclei, silicon burning is important to our understanding of the evolution of massive stars and supernovae. Our reexamination of silicon burning, using results gleaned from simulation work done with a large nuclear network (299 nuclei and more than 3000 reactions) and from independent calculations of equilibrium abundance distributions, offers new insights into the quasi-equilibrium mechanism and the approach to nuclear statistical equilibrium. We find that the degree to which the matter has been neutronized is of great importance, not only to the final products but also to the rate of energy generation and the membership of the quasi-equilibrium groups. A small increase in the global neutronization results in much larger free neutron fluences, increasing the abundances of more neutron-rich nuclei. As a result, incomplete silicon burning results in neutron richness among the isotopes of the iron peak much larger than the global ...

  7. Dynamics of functionalized single wall carbon nanotubes in solution studied by incoherent neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Urbina, A; Miguel, C [Departamento Electronica, Universidad Politecnica de Cartagena, Plaza Hospital 1, 30202 Cartagena (Spain); Delgado, J L; Langa, F [Facultad de Ciencias del Medio Ambiente, Universidad de Castilla-La Mancha, 45071, Toledo (Spain); DIaz-Paniagua, C [Centro Espanol de MetrologIa, 28760 Madrid (Spain); Jimenez, M [Institut Laue-Langevin, 39042 Grenoble Cedex (France); Batallan, F [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain)], E-mail: antonio.urbina@upct.es

    2008-03-12

    We have studied, by incoherent neutron scattering experiments, the dynamics of a colloidal suspension of functionalized single wall carbon nanotubes (SWNTs). The nanotubes have been functionalized with pentyl ester groups attached at the ends and suspended in deuterated toluene with a concentration of 2.6 mg SWNT/1 ml of deuterated toluene. The experimental techniques were incoherent elastic neutron scattering (IENS) and incoherent quasielastic neutron scattering (IQNS). In the temperature range between 4 K and 300 K, three phases were observed by IENS measurements: a solid phase for TT{sub m}. Furthermore, in the high temperature range of the undercooled liquid phase, hysteresis loops in the heating and cooling scans were observed. The lower limit of the hysteresis loop defines the critical crossover temperature T{sub c}. IQNS measurements in the liquid phase and a cooling scan of the undercooled liquid phase were performed. Three different quasielastic peaks were identified, two in the liquid phase and another one in the undercooled liquid phase. The widths of the quasielastic peaks are discussed as a generalized diffusion function which can be factorized as a temperature dependent diffusion function and a Q dependent structure function. From the comparison of the diffusion function with the viscosity of toluene, we conclude that two components are in the long-time range Brownian motion and the other one in the short-time range Brownian motion.

  8. Study of Neutron Cross Talk Rejection Based on Testing Experiment and Simulation

    Institute of Scientific and Technical Information of China (English)

    游海波; 宋玉收; 肖军; 叶沿林

    2012-01-01

    Experimental data analysis and simulation calculations were performed in order to evaluate the cross-talk rejection performance of a typical neutron detection array. For very closely packed scintillation bars, the CT rejection may rely on the position relation between the two signals. The criteria |△x|≤ 15 cm and |△y|≤12 cm are currently proposed for a rejection rate higher than 90%. For signals coming from distanced bars, the energy conservation relationship can be applied to reject the CT events with a similar performance. In both cases the results of simulation agree very well with the experimental data, assuring their applicability to other detection systems and physics problems.

  9. Learning Physics by Experiment: I. Falling Objects

    Science.gov (United States)

    Shaibani, Saami J.

    2014-03-01

    As a rule, students enjoy conducting experiments in which the practical aspects are straightforward and well-defined. This also applies even when there is no anticipated result for students to ``prove.'' A laboratory exercise with such properties was created for students to undertake in a completely blind manner, and they happily proceeded without any knowledge at all of what they might expect to find. The philosophy developed for the research in this paper expands the pioneering approach formulated some half century ago and successfully employed more recently. In the present era of differentiated instruction (DI) being implemented in a diversity of educational settings, the design of the subject experiment is especially significant for its inclusive nature and for the positive outcomes it produces for less academically capable students. All students benefit from such an environment because it preempts the wasted effort of undue manipulation and it removes the need to contrive agreement with a textbook via irregular attempts at reverse engineering.

  10. Smashing physics inside the world's biggest experiment

    CERN Document Server

    Butterworth, Jon

    2014-01-01

    The discovery of the Higgs boson made headlines around the world. Two scientists, Peter Higgs and Francois Englert, whose theories predicted its existence, shared a Nobel Prize. The discovery was the culmination of the largest experiment ever run, the ATLAS and CMS experiments at CERN's Large Hadron Collider. But what really is a Higgs boson and what does it do? How was it found? And how has its discovery changed our understanding of the fundamental laws of nature? And what did it feel like to be part of it? Jon Butterworth is one of the leading physicists at CERN and this book is the first popular inside account of the hunt for the Higgs. It is a story of incredible scientific collaboration, inspiring technological innovation and ground-breaking science. It is also the story of what happens when the world's most expensive experiment blows up, of neutrinos that may or may not travel faster than light, and the reality of life in an underground bunker in Switzerland. This book will also leave you with a working...

  11. Status Report on Scoping Reactor Physics and Sensitivity/Uncertainty Analysis of LR-0 Reactor Molten Salt Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Mueller, Donald E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Patton, Bruce W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-08-31

    Experiments are being planned at Research Centre Rež (RC Rež) to use the FLiBe (2 7LiF-BeF2) salt from the Molten Salt Reactor Experiment (MSRE) to perform reactor physics measurements in the LR-0 low power nuclear reactor. These experiments are intended to inform on neutron spectral effects and nuclear data uncertainties for advanced reactor systems utilizing FLiBe salt in a thermal neutron energy spectrum. Oak Ridge National Laboratory (ORNL) is performing sensitivity/uncertainty (S/U) analysis of these planned experiments as part of the ongoing collaboration between the United States and the Czech Republic on civilian nuclear energy research and development. The objective of these analyses is to produce the sensitivity of neutron multiplication to cross section data on an energy-dependent basis for specific nuclides. This report provides a status update on the S/U analyses of critical experiments at the LR-0 Reactor relevant to fluoride salt-cooled high temperature reactor (FHR) and liquid-fueled molten salt reactor (MSR) concepts. The S/U analyses will be used to inform design of FLiBe-based experiments using the salt from MSRE.

  12. Experiments on the thermalization of slow neutrons by liquid hydrogen (1962); Experience de thermalisation de neutrons lents par de l'hydrogene liquide (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Cribier, D.; Jacrot, B.; Lacaze, A.; Roubeau, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Institut Fourier, 38 - Grenoble (France)

    1962-07-01

    In order to increase the flux of neutrons of long wave-length ({lambda} > 4 A) emerging from a channel in the EL-3, a liquid hydrogen device was introduced into a channel of the reactor (Channel H{sub 1}). The principle of the device is simple. A volume of liquid hydrogen is introduced as close as possible to the reactor core into a region of intense isotropic flux. This hydrogen slows down the slow neutrons; because of the very small mean free diffusion path of slow in hydrogen, this slowing down is considerable even in a small volume of liquid hydrogen, and the spectrum temperature of neutrons emerging from the volume of liquid hydrogen can therefore be shifted. The intensity gain for neutrons with a wave length {lambda}, is a G ({lambda}) function which, for perfect thermalization and ignoring capture, is expressed by: G ({lambda}) = 225 exp (- 45.3/{lambda}{sup 2}), assuming a temperature of 300 deg. K for the neutrons before cooling and is 20 deg. K after cooling. For a wave-length of 5 A, the theoretical maximum gain of thus about 37. (authors) [French] Dans le but d'accroitre le flux des neutrons de grande longueur d'onde ({lambda} > 4 A) sortant d'un canal de la pile EL-3, un dispositif a hydrogene liquide a ete introduit dans un canal de la pile (canal H{sub 1}). Le principe du dispositif est simple. Un volume d'hydrogene liquide est introduit le plus pres possible du coeur de ia pile dans une region de flux intense et isotrope. Les neutrons lents sont ralentis par cet hydrogene; a cause du tres faible libre parcours moyen de diffusion des neutrons lents dans l'hydrogene, ce ralentissement est important meme dans un faible volume d'hydrogene liquide et l'on peut ainsi deplacer la temperature du spectre des neutrons sortant du volume d'hydrogene liquide. Le gain en intensite des neutrons de longueur d'onde {lambda} est une fonction G ({lambda}) qui pour une thermalisation parfaite et en negligeant la capture, s

  13. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  14. Top quark physics with the CMS experiment

    Directory of Open Access Journals (Sweden)

    Cuevas Javier

    2014-04-01

    Full Text Available An overview of recent top quark measurements in proton-proton collisions at √s = 7 and 8 TeV in data collected with the CMS experiment at the LHC, using a data sample collected during the years 2011 and 2012 is presented. Measurements of top quark pair production cross sections in several top quark final states are reported, as well as electroweak production of single top quarks in both t-and tW-channels. The mass of the top quark is estimated by different methods.

  15. Hadron physics at the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Krinner Fabian

    2015-01-01

    The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420, is observed with a mass and width in the ranges m = 1412 − 1422MeV/c2 and Γ = 130 − 150MeV/c2.

  16. Hadron physics at the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Krinner Fabian

    2015-01-01

    The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420, is observed with a mass and width in the ranges m = 1412 − 1422MeV/c2 and Γ = 130 − 150MeV/c2.

  17. APPLICATION OF INTERACTIVE ONLINE SIMULATIONS FOR DEMONSTRATION EXPERIMENT IN PHYSICS

    Directory of Open Access Journals (Sweden)

    Nina P. Dementievska

    2014-06-01

    Full Text Available Development of modern school physics experiment is related to the extensive use of ICT not only for data processing and visualization. Interactive computer simulation for processes and phenomena, developed by scientists and methodologists by the site Phet, helps to improve the physical demonstration experiment with the support of modern pedagogical technologies that change the traditional procedure to form students' understanding of the processes and phenomena, active cognitive activity. To study the influence of methods to integrate interactive computer simulations for better understanding the students' physical processes, phenomena and laws of the international community, teachers and Ukrainian scientists and teachers of physics have been involved. The aim of the article is to introduce the research results in the development and testing of individual components of educational technology in performing a physical experiment in secondary school.

  18. Proposal for a New Integrated Circuit and Electronics Neutron Experiment Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Phillip D [ORNL

    2009-01-01

    Government and customer specifications increasingly require assessments of the single event effects probability in electronics from atmospheric neutrons. The accelerator that best simulates this neutron spectrum is the WNR facility (Los Alamos), but it is underfunded and oversubscribed for present and future needs. A new beam-line is proposed at the Oak Ridge National Laboratory, as part of the Spallation Neutron Source (SNS).

  19. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)

    2013-07-01

    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  20. Sterile neutrinos facing kaon physics experiments

    Science.gov (United States)

    Abada, A.; Bečirević, D.; Sumensari, O.; Weiland, C.; Funchal, R. Zukanovich

    2017-04-01

    We discuss weak kaon decays in a scenario in which the Standard Model is extended by massive sterile fermions. After revisiting the analytical expressions for leptonic and semileptonic decays we derive the expressions for decay rates with two neutrinos in the final state. By using a simple effective model with only one sterile neutrino, compatible with all current experimental bounds and general theoretical constraints, we conduct a thorough numerical analysis which reveals that the impact of the presence of massive sterile neutrinos on kaon weak decays is very small, less than 1% on decay rates. The only exception is B (KL→ν ν ) , which can go up to O (10-10), thus possibly within the reach of the KOTO, NA62 and SHIP experiments. Plans have also been proposed to search for this decay at the NA64 experiment. In other words, if all the future measurements of weak kaon decays turn out to be compatible with the Standard Model predictions, this will not rule out the existence of massive light sterile neutrinos with non-negligible active-sterile mixing. Instead, for a sterile neutrino of mass below mK, one might obtain a huge enhancement of B (KL→ν ν ), otherwise negligibly small in the Standard Model.

  1. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1996-09-30

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution`s concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the `Poisoned Tube Tank` because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service.

  2. I-Love-Q Relations in Neutron Stars and their Applications to Astrophysics, Gravitational Waves and Fundamental Physics

    CERN Document Server

    Yagi, Kent

    2013-01-01

    The exterior gravitational field of a slowly-rotating neutron star can be characterized by its multipole moments, the first few being the neutron star mass, moment of inertia, and quadrupole moment. In principle, all of these quantities depend on the neutron star's internal structure, and thus, on unknown nuclear physics at supra-nuclear energy densities. We here find relations between the moment of inertia, the Love numbers and the quadrupole moment (I-Love-Q relations) that do not depend sensitively on the neutron star's internal structure. Such universality may arise for two reasons: (i) these relations depend most sensitively on the internal structure far from the core, where all realistic equations of state mostly approach each other; (ii) as the NS compactness increases, the I-Love-Q trio approaches that of a BH, which does not have an internal-structure dependence. Three important consequences derive from these I-Love-Q relations. On an observational astrophysics front, the measurement of a single memb...

  3. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  4. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  5. Current experiments in elementary-particle physics - March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

  6. A "Medical Physics" Course Based Upon Hospital Field Experience

    Science.gov (United States)

    Onn, David G.

    1972-01-01

    Describes a noncalculus, medical physics'' course with a basic element of direct hospital field experience. The course is intended primarily for premedical students but may be taken by nonscience majors. (Author/PR)

  7. Simple Experiments on the Physics of Vision: The Retina

    Science.gov (United States)

    Cortel, Adolf

    2005-01-01

    Many simple experiments can be performed in the classroom to explore the physics of vision. Students can learn of the two types of receptive cells (rods and cones), their distribution on the retina and the existence of the blind spot.

  8. Experiments at the GELINA facility for the validation of the self-indication neutron resonance densitometry technique

    Directory of Open Access Journals (Sweden)

    Rossa Riccardo

    2017-01-01

    Full Text Available Self-Indication Neutron Resonance Densitometry (SINRD is a passive non-destructive method that is being investigated to quantify the 239Pu content in a spent fuel assembly. The technique relies on the energy dependence of total cross sections for neutron induced reaction. The cross sections show resonance structures that can be used to quantify the presence of materials in objects, e.g. the total cross-section of 239Pu shows a strong resonance close to 0.3 eV. This resonance will cause a reduction of the number of neutrons emitted from spent fuel when 239Pu is present. Hence such a reduction can be used to quantify the amount of 239Pu present in the fuel. A neutron detector with a high sensitivity to neutrons in this energy region is used to enhance the sensitivity to 239Pu. This principle is similar to self-indication cross section measurements. An appropriate detector can be realized by surrounding a 239Pu-loaded fission chamber with appropriate neutron absorbing material. In this contribution experiments performed at the GELINA time-of-flight facility of the JRC at Geel (Belgium to validate the simulations are discussed. The results confirm that the strongest sensitivity to the target material was achieved with the self-indication technique, highlighting the importance of using a 239Pu fission chamber for the SINRD measurements.

  9. Creative Turbulence: Experiments in Art and Physics

    Science.gov (United States)

    Fonda, Enrico; Dubois, R. Luke; Camnasio, Sara; Porfiri, Maurizio; Sreenivasan, Katepalli R.; Lathrop, Daniel P.; Serrano, Daniel; Ranjan, Devesh

    2016-11-01

    Effective communication of basic research to non-experts is necessary to inspire the public and to justify support for science by the taxpayers. The creative power of art is particularly important to engage an adult audience, who otherwise might not be receptive to standard didactic material. Interdisciplinarity defines new trends in research, and works at the intersection of art and science are growing in popularity, even though they are often isolated experiments. We present a public-facing collaboration between physicists/engineers performing research in fluid dynamics, and audiovisual artists working in cutting-edge media installation and performance. The result of this collaboration is a curated exhibition, with supporting public programming. We present the artworks, the lesson learned from the interactions between artists and scientists, the potential outreach impact and future developments. This project is supported by the APS Public Outreach Mini Grant.

  10. Physical Adsorption: Experiment, Theory and Application

    DEFF Research Database (Denmark)

    Marcussen, Lis; Kjær, Ulla Dorte; Nielsen, Peter A.

    INTRODUCTION: Volatile Organic Compounds (VOCs) and health. VOCs, present in the indoor air and adsorbed on/desorbed from solid surfaces, are suspected to contribute significantly to a number of health problems by respiration of air and polluted dust and by direct contact with the skin.VOC Sources.ADSORPTION....../DESORPTION IN BUILDING MATERIALS: Short description of our research project which deals with lab size and full scale experiments, mathematical modelling and development of a standard test method for characterization of the sorption properties of indoor materials.STUDIES OF ADSORPTION/DESORPTION IN DUST......:Collection and description of dust, experimental setup and procedure for measuring equilibria and kinetics. Experimental results for adsorption/desorption of a gaseous mixture of synthetic air, 2-butoxyethanol and water on different dust samples....

  11. Physics Potential and Prospects for CUORE and CUORICINO experiments

    OpenAIRE

    Irastorza, I. G.; Morales, A.; Scopel, S.; Cebrian, S

    2001-01-01

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment projects to construct and operate an array of 1000 cryogenic thermal detectors of a mass of 760 g each to investigate rare events physics, in particular, double beta decay and non baryonic particle dark matter. A first step towards CUORE is CUORICINO, an array of 56 of such bolometers, currently being installed in the Gran Sasso. In this paper we report the physics potential of both stages of the experiment regarding neu...

  12. Distributed System of Processing of Data of Physical Experiments

    Science.gov (United States)

    Nazarov, A. A.; Moiseev, A. N.

    2014-11-01

    Complication of physical experiments and increasing volumes of experimental data necessitate the application of supercomputer and distributed computing systems for data processing. Design and development of such systems, their mathematical modeling, and investigation of their characteristics and functional capabilities is an urgent scientific and practical problem. In the present work, the characteristics of operation of such distributed system of processing of data of physical experiments are investigated using the apparatus of theory of queuing networks.

  13. Search for mirror dark matter in a laboratory experiment with ultracold neutrons

    CERN Document Server

    Serebrov, A P; Dovator, N A; Dmitriev, S P; Fomin, A K; Geltenbort, P; Kharitonov, A G; Krasnoschekova, I A; Lasakov, M S; Murashkin, A N; Shmelev, G E; Varlamov, V E; Vassiljev, A V; Zherebtsov, O M; Zimmer, O

    2008-01-01

    Mirror matter is considered as a candidate for dark matter. To investigate this possibility an experimental search for neutron - mirror neutron transitions has been carried out using storage of ultracold neutrons in a trap with different magnetic fields. As a result, a new limit for the neutron - mirror neutron oscillation time tau_osc has been obtained, tau_osc >= 448 s (90% C.L.). As a side result, some restriction of the presence of a mirror magnetic field in the range 0 - 1200 nT has been obtained.

  14. Calibration of High Precision Robot Arm for the Crafting of Magnets for Use in Neutron Experiments

    Science.gov (United States)

    Riley, Benjamin; Crawford, Christopher

    2017-01-01

    The magnetic scalar potential can be used to design precision magnetic fields with surface currents in arbitrary geometry. We are using this technique to design holding field coils for spin transport of neutrons and 3He atoms into the measurement cell of the SNS EDM experiment. We construct holding field coils as three-dimensional printed circuits boards using a Staubli RX130 6-axis industrial robotic arm to etch the circuit. While the arm has a 35-micron repeatability position, the absolute accuracy depends on calibration of transformation matrices between each link, characterized by Denavit-Hartenberg parameters. After factors such as coordinate system degeneracies and free parameters are taken into account, there are 29 parameters that must be calibrated. The robot model, calibration method, and results are presented in this poster.

  15. Fractal approach in petrology: Small-angle neutron scattering experiments with volcanic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lucido, G.; Triolo, R.; Caponetti, E.

    1988-11-01

    Following Mandelbrot's pioneering work in 1977, we attempt to use the concept of fractal dimension in petrology. Fractal dimension is an intensive property of matter which offers a quantitative measure of the degree of surface roughness. Neutron scattering experiments have been performed on 18 volcanic rocks from different localities. The scattered intensity as a function of the momentum transfer obeys a power law whose exponent varies, for the rock samples presented, between -3 and -4. We conclude that, at the molecular level, our volcanic rocks are not fractal volumes. With regard to the particle-matrix interface, it is not possible to provide a determination at the present stage of research. Our findings suggest it is feasible to verify the degree of surface irregularity at a resolution which is relevant to many aspects of petrology.

  16. First Measurement of \\theta_13 from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Barriere, J C; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Erickson, A; Etenko, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fernandes, S M; Fischer, V; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodenough, L; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Habib, S; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castaño, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Meyer, M; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Pronost, G; Reichenbacher, J; Reinhold, B; Remoto, A; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shimojima, S; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yermia, F; Zimmer, V

    2013-01-01

    The Double Chooz experiment has determined the value of the neutrino oscillation parameter $\\theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds $\\sin^2 2\\theta_{13}=0.097\\pm 0.034(stat.) \\pm 0.034 (syst.)$, excluding the no-oscillation hypothesis at 2.0 \\sigma. This result is consistent with previous measurements of $\\sin^2 2\\theta_{13}$.

  17. Nobel Prize in Physics 1994 "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter" : Bertram N. Brockhouse and Clifford G. Shull

    CERN Document Server

    1995-01-01

    Prof. C. G. Shull presents "Early development of neutron scattering". A description of the early experiments and instrumentation problems starting in 1946 that led to the use of neutron scattering as a tool in augmenting and extending x-ray scattering from materials.

  18. An analysis of the parity violating asymmetry of polarized neutron capture in hydrogen from the NPDgamma experiment

    Science.gov (United States)

    Tang, Elise

    The NPDgamma Experiment is used to study the n[special character omitted] + p → d + gamma reaction for the purpose of examining the hadronic weak interaction. The nucleon-nucleon interaction is overwhelmingly mediated by the strong force, however, the weak part can be extracted by a study of its parity violating manifestations. When neutrons are incident on protons, deuterons and 2.2 MeV gamma rays are produced. If the incoming neutrons are polarized, the parity violating weak interaction gives rise to a measured spatial asymmetry, A , in the outgoing gamma rays, as sigma[special character omitted] n · k[special character omitted] gamma is parity odd. At low energies, the weak nucleon-nucleon interaction can be modeled as meson exchange and characterized with six parameters. NPDgamma is sensitive to one of these parameters, hpi. Previous measurements that extrapolate hpi from more complicated interactions disagree, and disagree with the theoretical reasonable range. Additionally, a previous iteration of the NPDgamma Experiment performed at Los Alamos National Lab was statistics limited in its measurement of Agamma. For this reason, a new measurement was performed at the high neutron flux Spallation Neutron Source at Oak Ridge National Lab. In the experiment, a high ux of cold neutrons was polarized to ˜95% by a supermirror polarizer, the spins flipped in a defined sequence by a radio-frequency spin rotator, and then the neutrons captured on a 16L liquid para-hydrogen target, which emits gamma-rays asymmetrically upon capture. The gamma-rays are detected in a 3pi array of 48 CsI crystal detectors. This thesis discusses the NPDgamma Experiment in detail, and includes an analysis of subset of the NPDgamma data that has unique timing and data acquisition properties that preclude it being analyzed with the combined data set. Agamma was extracted with a result of (6.254 +/- 37.694) x 10-9.

  19. Calculation of intermediate neutron flux in the radial reflectors of graphite reactors, comparison with experiments; Calcul du flux de neutrons intermediaires dans les reflecteurs lateraux des piles a graphite. Comparaison avec l'experience

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Vergnaud, T.; Oceraies, Y

    1967-12-01

    In a graphite pile, EDF or Inca type reactor, it is necessary to know the value of the intermediate neutron flux at the output of the lateral reflector in order to determine more precisely the neutron flux at the level of ionisation chambers. A sub critical pile of graphite and natural uranium was built, allowing to reconstitute the geometry of the radiation sources and the disposition of inferior and lateral protections of these piles. This pile is supplied with thermal neutrons coming from the Nereide light water type reactor. Some measurements of intermediate neutron flux have been made in this pile in order to establish a formalism for neutron flux calculation in slowing down in a whole core-lateral reflector, from the distribution of the thermal neutrons flux in the core. The flux calculation is done by age theory in three dimensions, in two homogenous media, separated by an axially semi infinite and laterally finite plane. One of these media includes a distribution of source. The constants are modified in order to take into account the presence of empty channels in the stacking. These calculations are done by the Malaga code. The checking of the formalism has been made in a greater complex geometry of these reactors that introduces an uncertainty factor in the comparison of results. We can however tell that we estimate correctly the variation of the intermediate neutrons flux in the core as well as its descending in a holed lateral reflector. The ratio between the calculation and the experiment is inferior to 2 or 3. Most of the time to a factor 2. [French] Dans une pile a graphite, du type EdF ou Inca, il est necessaire de connaitre la valeur du flux de neutrons intermediaires a la sortie du reflecteur lateral, afin de determiner avec plus de precision le flux de neutrons au niveau des chambres d'ionisation. Il a ete construit un empilement sous-critique, graphite uranium naturel, qui permet de reconstituer la geometrie des sources de rayonnement et la

  20. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Day, T. H.; Herrmann, H.; Kim, Y. H.; Martinez, J. I.; Merrill, F. E.; Schmidt, D. W.; Simpson, R. A.; Volegov, P. L.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  1. Water diffusion through compacted clays analyzed by neutron scattering and tracer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Sanchez, F

    2007-11-15

    samples using various methodologies to better interpret the dynamic results. Parameters such as particle size, layer spacing, chemical composition, external and total surfaces and porosity were determined. The fundamental transport processes in compacted clay systems were studied over a broad range of temperatures, combining microscopic diffusion experiments (T {approx} 98 to -23 {sup o}C) with macroscopic measurements (T {approx} 70 to 0 {sup o}C). Moreover, the freezing behaviour of water in compacted clays and its dynamical properties in the supercooled regime were also investigated using microscopic techniques such as neutron scattering, time of flight and backscattering techniques. Such knowledge contributes to develop simplified models for water (and possibly also solute) transport through clays, as they will be used to assess the performance of radioactive waste repositories. From this point of view, it can be beneficial for the safety of radioactive waste repositories and thus the protection of the environment.

  2. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    Science.gov (United States)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  3. Reference Physics Design for 1 GeV Injector Linac and Accumulator Ring for Indian Spallation Neutron Source

    CERN Document Server

    Sharma, Amalendu; Patidar, Chirag Bhai; Pal, Mukesh Kumar; Kulkarni, Nita; Goyal, Pradeep Kumar; Jana, Prasanta Kumar; Gaur, Rahul; Prakash, Ram; Dhingra, Rinky; Singh, Urmila; Kumar, Vinit

    2016-01-01

    As a part of the ongoing plan project titled 'R&D activities for high energy proton linac based spallation neutron source', the work on physics design of various subsystems of the injector linac and accumulator ring has been taken up. For the 1 GeV H- injector linac, physics design studies of individual systems have been completed, and the end to end beam dynamics simulation studies have been performed to ensure that the stringent beam dynamics criteria are satisfied for the optimized lattice. Physics design studies to optimize the linear lattice of the accumulator ring have also been completed. The design studies for the beam transport lines from the injector linac to the accumulator ring, and from the accumulator ring to target are currently in progress. This report describes the physics design of various systems of the injector linac and the accumulator ring.

  4. Autonomy and the Student Experience in Introductory Physics

    Science.gov (United States)

    Hall, Nicholas Ron

    2013-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…

  5. Bicycle Freewheeling with Air Drag as a Physics Experiment

    Science.gov (United States)

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…

  6. Physical assessment experience in a problem-based learning course.

    Science.gov (United States)

    Sherman, Justin J; Riche, Daniel M; Stover, Kayla R

    2011-10-10

    To evaluate the impact of a physical-assessment learning experience implemented in the problem-based learning (PBL) format of the third year of a doctor of pharmacy (PharmD) program. Students enrolled in a PBL course completed survey instruments to measure knowledge and confidence before and after participating in the learning experience. A simulation stethoscope was used to teach students abnormal pulmonary and cardiovascular sounds in 1-hour sessions for each of 12 PBL groups. The 92 students enrolled in the PBL course completed pre- and post-experience survey instruments. Students' scores on knowledge questions increased significantly (p experience questions. Students scored a median of 3 or 4 on a 5-point Likert scale after a learning experience on questions measuring confidence. Use of a simulation stethoscope in a physical-assessment learning experience increased pharmacy students' knowledge in performing pulmonary and cardiovascular assessment techniques.

  7. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  8. Early results of the LHCf Experiment and their contribution to Ultra-High-Energy Cosmic Ray Physics

    CERN Document Server

    Adriani, O; Bongi, M; Castellini, G; D'Alessandro, R; Faus, A; Fukatsu, K; Haguenauer, M; Itow, Y; Kasahara, K; Macina, D; Mase, T; Masuda, K; Matsubara, Y; Menjo, H; Mitsuka, G; Muraki, Y; Nakai, M; Noda, K; Papini, P; Perrot, A L; Ricciarini, S; Sako, T; Suzuki, K; Suzuki, T; Shimizu, Y; Taki, K; Tamura, T; Torii, S; Tricomi, A; Velasco, J; Turner, W C; Yoshida, K

    2011-01-01

    LHCf is an experiment dedicated to the measurement of neutral particles emitted in the very forward region of LHC collisions. The physics goal is to provide data for calibrating hadron interaction models that are used in the study of Extremely High-Energy Cosmic-Rays. The LHCf experiment acquired data from April to July 2010 during commissioning time of LHC operations at low luminosity. Production spectra of photons and neutrons emitted in the very forward region ($\\eta>$ 8.4) have been obtained. In this paper preliminary results of the photon spectra taken at $\\sqrt{s}$ = 7TeV are reported.

  9. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  10. EXCALIBUR-at-CALIBAN: a neutron transmission experiment for {sup 238}U(n,n'{sub continuum}γ) nuclear data validation

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, David; Leconte, Pierre; Destouches, Christophe [CEA, DEN, DER, SPRC et SPEX, Cadarache F-13108 SAINT-PAUL-LEZ-DURANCE (France); Casoli, Pierre; Chambru, Laurent; Chanussot, Didier; Chateauvieux, Herve; Gevrey, Gaetan; Guilbert, Frederique; Lereuil, Hugues; Rousseau, Guillaume; Schaub, Muriel [CEA, DAM, Valduc F-21120 IS-SUR-TILLE (France); Heusch, Murielle; Meplan, Olivier; Ramdhane, Mourad [CNRS/IN2P3, 53 rue des Martyrs, F-38026 Grenoble, Cedex (France)

    2015-07-01

    Two recent papers justified a new experimental program to give a new basis for the validation of {sup 238}U nuclear data, namely neutron induced inelastic scattering and transport codes at neutron fission energies. The general idea is to perform a neutron transmission experiment through natural uranium material. As shown by Hans Bethe, neutron transmissions measured by dosimetric responses are linked to inelastic cross sections. This paper describes the principle and the results of such an experience called EXCALIBUR performed recently (January and October 2014) at the CALIBAN reactor facility. (authors)

  11. Three Online Neutron Beam Experiments Based on the iLab Shared Architecture

    OpenAIRE

    Yakov Ostrocsky; Philip Bailey; Gordon Kohse; James Hardison; V. Judson Harward; Kimberly DeLong

    2011-01-01

    Students at MIT have traditionally executed certain experiments in the containment building of the MIT nuclear reactor as part of courses in Nuclear Engineering and the third year laboratory course for Physics majors. A joint team of faculty and research staff from the MIT Nuclear Reactor Laboratory (MIT-NRL) and MIT’s Center for Educational Computing Initiatives have implemented online versions of three classic experiments; (a) a determination of MIT reactor coolant temperature through measu...

  12. Gender, experience, and self-efficacy in introductory physics

    Science.gov (United States)

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men's and women's physics self-efficacy, which comprises students' thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women's self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM). We used ESM to collect multiple samples of university students' feelings of self-efficacy during four types of activity for two one-week periods: (i) an introductory IE physics course, (ii) students' other introductory STEM courses, (iii) their non-STEM courses, and (iv) their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women's self-efficacy was not reliably different from men's. We therefore concluded that the experience of physics instruction in the IE physics course depressed women's self-efficacy. Using complementary measures showing the IE physics course to be similar to

  13. Gender, experience, and self-efficacy in introductory physics

    Directory of Open Access Journals (Sweden)

    Jayson M. Nissen

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men’s and women’s physics self-efficacy, which comprises students’ thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women’s self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM. We used ESM to collect multiple samples of university students’ feelings of self-efficacy during four types of activity for two one-week periods: (i an introductory IE physics course, (ii students’ other introductory STEM courses, (iii their non-STEM courses, and (iv their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women’s self-efficacy was not reliably different from men’s. We therefore concluded that the experience of physics instruction in the IE physics course depressed women’s self-efficacy. Using complementary measures showing the IE

  14. Spin-density correlations in the dynamic spin-fluctuation theory: Comparison with polarized neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, N.B., E-mail: melnikov@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Reser, B.I., E-mail: reser@imp.uran.ru [Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Paradezhenko, G.V., E-mail: gparadezhenko@cs.msu.su [Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2016-08-01

    To study the spin-density correlations in the ferromagnetic metals above the Curie temperature, we relate the spin correlator and neutron scattering cross-section. In the dynamic spin-fluctuation theory, we obtain explicit expressions for the effective and local magnetic moments and spatial spin-density correlator. Our theoretical results are demonstrated by the example of bcc Fe. The effective and local moments are found in good agreement with results of polarized neutron scattering experiment over a wide temperature range. The calculated short-range order is small (up to 4 Å) and slowly decreases with temperature.

  15. Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction

    CERN Document Server

    Lee, Clarissa Ai Ling

    2014-01-01

    The dissertation brings together approaches across the fields of physics, critical theory, literary studies, philosophy of physics, sociology of science, and history of science to synthesize a hybrid approach for instigating more rigorous and intense cross-disciplinary interrogations between the sciences and the humanities. There are two levels of conversations going on in the dissertation; at the first level, the discussion is centered on a critical historiography and philosophical implications of the discovery Higgs boson in relation to its position at the intersection of old (current) and the potential for new possibilities in quantum physics; I then position my findings on the Higgs boson in connection to the double-slit experiment that represents foundational inquiries into quantum physics, to demonstrate the bridge between fundamental physics and high energy particle physics. The conceptualization of the variants of the double-slit experiment informs the aforementioned critical comparisons. At the secon...

  16. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  17. Charge-injection-device performance in the high-energy-neutron environment of laser-fusion experiments.

    Science.gov (United States)

    Marshall, F J; DeHaas, T; Glebov, V Yu

    2010-10-01

    Charge-injection devices (CIDs) are being used to image x rays in laser-fusion experiments on the University of Rochester's OMEGA Laser System. The CID cameras are routinely used up to the maximum neutron yields generated (∼10(14) DT). The detectors are deployed in x-ray pinhole cameras and Kirkpatrick-Baez microscopes. The neutron fluences ranged from ∼10(7) to ∼10(9) neutrons/cm(2) and useful x-ray images were obtained even at the highest fluences. It is intended to use CID cameras at the National Ignition Facility (NIF) as a supporting means of recording x-ray images. The results of this work predict that x-ray images should be obtainable on the NIF at yields up to ∼10(15), depending on distance and shielding.

  18. GEANT simulations of neutron capture experiments with a 4p BaF2 detector

    CERN Document Server

    Heil, M; Kaeppeler, F; Wisshak, K; Voss, F; Ullmann, J L; Haight, R C; Seabury, E H; Wilhelmy, J B; Rundberg, R S; Fowler, M M

    2004-01-01

    The goal of this research project is to give quantitative information useful for the design of a g-ray detector to investigate neutron capture (n, g) reactions on radioactive nuclei at the Manuel Lujan Jr. Neutron Scattering Center (MLNSC) moderated neutron source at LANSCE. Data for neutron energies from thermal up to approximately 500 keV are desired. The radioactive nuclei can have half-lives as short as a few months. With the sample sizes foreseen, typically 1 mg, the radioactive decay rate can exceed tens of Curies (Ci).

  19. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

  20. Design of High-Neutron-Yield, Polar-drive targets for diagnostic activation experiments on the NIF

    Energy Technology Data Exchange (ETDEWEB)

    McKenty, P W; Craxton, R S; Marshall, F J; Sangster, T C; Marozas, J A; Cok, A M; Bonino, M J; Harding, D R; Meyerhofer, D D; McCrory, R L [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, NY 14623 (United States); Kilkenny, J D; Nikroo, A; Fooks, J; Hoppe, M L [General Atomics Corporation, La Jolla, CA (United States); Edwards, J M; MacKinnon, A J; Munro, D H; Wallace, R J, E-mail: pmck@lle.rochester.ed [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2010-08-01

    Polar-drive (PD) target implosions have been designed for neutron diagnostic development on the NIF. These experiments use thin, room-temperature glass shells filled with low pressures of DT. Initial target implosions on the NIF will produce DT yields in the range of a few 10{sup 14} neutrons. The predicted yields are consistent with earlier data (10{sup 14} neutrons at 30 kJ) and recent PD scoping experiments performed on OMEGA. The experiments will use existing x-ray-drive phase plates with judicious repointing and defocusing to drive the implosions as uniformly as possible. These implosions have been modeled with three codes: LILAC, to optimize the 1-D design; SAGE, to optimize the pointing uniformity; and DRACO, to predict the yield from 2-D implosion simulations. Current simulation results indicate that the required yields will be obtained using up to 200-kJ UV light formed into a 1500-ps Gaussian pulse. Large-diameter glass shells ({approx}1500-{mu}m OD) are under development and fabrication at General Atomics. As tritium and environmental conditions evolve, similar target designs, with larger diameters and higher laser energies, are expected to produce thermonuclear yields approaching 10{sup 16} neutrons.

  1. Black holes, white dwarfs, and neutron stars the physics of compact objects

    CERN Document Server

    Shapiro, Stuart Louis

    1983-01-01

    This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed

  2. The Belle II experiment: fundamental physics at the flavor frontier

    CERN Document Server

    de la Cruz, Ivan Heredia

    2016-01-01

    After the major success of B-factories to establish the CKM mechanism and its proven potential to search for new physics, the Belle II experiment will continue exploring the physics at the flavor frontier over the next years. Belle II will collect 50 times more data than its predecessor, Belle, and allow for various precision measurements and searches of rare decays and particles. This paper introduces the B-factory concept and the flavor frontier approach to search for new physics. It then describes the SuperKEKB accelerator and the Belle II detector, as well as some of the physics that will be analyzed in Belle II, concluding with the experiment status and schedule.

  3. Low Temperature and Neutron Physics Studies: Final Progress Report, March 1, 1986--May 31, 1987

    Science.gov (United States)

    Shull, C.G.

    1989-07-27

    A search for a novel coupling interaction between the Pendelloesung periodicity which is formed in a diffracting crystal and the Larmor precession of neutrons in a magnetic field has been carried out. This interaction is expected to exhibit a resonant behavior when the two spatial periodicities become matched upon scanning the magnetic field being applied to the crystal. Observations on a diffracting, perfect crystal of silicon with neutrons of wavelength 1 Angstrom show the expected resonant action but some discrepancy between the observed magnitude of the resonance effects remains for interpretation.

  4. A fast and flexible reactor physics model for simulating neutron spectra and depletion in fast reactors

    Science.gov (United States)

    Recktenwald, Geoff; Deinert, Mark

    2010-03-01

    Determining the time dependent concentration of isotopes within a nuclear reactor core is central to the analysis of nuclear fuel cycles. We present a fast, flexible tool for determining the time dependent neutron spectrum within fast reactors. The code (VBUDS: visualization, burnup, depletion and spectra) uses a two region, multigroup collision probability model to simulate the energy dependent neutron flux and tracks the buildup and burnout of 24 actinides, as well as fission products. While originally developed for LWR simulations, the model is shown to produce fast reactor spectra that show high degree of fidelity to available fast reactor benchmarks.

  5. Probing TeV scale physics via ultra cold neutron decays and calculating non-standard baryon matrix elements

    CERN Document Server

    Gupta, Rajan; Joseph, Anosh; Lin, Huey-Wen; Cohen, Saul D

    2012-01-01

    We motivate undertaking precision analyses of neutron decays to look for signatures of new scalar and tensor interactions that can arise in extensions of the Standard Model at the TeV scale. The key ingrediant needed to connect experimental data with theoretical analysis are high-precision calculations of matrix elements of isovector bilinear operators between the decaying neutron and final state proton. We describe the status of our Lattice QCD program of using valence clover fermions on dynamical N_f=2+1+1 HISQ configurations generated by the MILC Collaboration. On the theoretical side we use the effective field theory method and provide both model independent and dependent analyses to obtain bounds on possible scalar and tensor interactions, both from low energy experiments and LHC data.

  6. Physics Experiments Planned for the National Ignition Facility

    Science.gov (United States)

    Verdon, Charles P.

    1998-11-01

    This talk will review the current status and plans for high energy density physics experiments to be conducted on the National Ignition Facility (NIF). The NIF a multi-laboratory effort, presently under construction at the Lawrence Livermore National Laboratory, is a 192 beam solid state glass laser system designed to deliver 1.8MJ (at 351nm) in temporal shaped pulses. This review will begin by introducing the NIF in the context of its role in the overall United States Stockpile Stewardship Program. The major focus of this talk will be to describe the physics experiments planned for the NIF. By way of introduction to the experiments a short review of the NIF facility design and projected capabilities will be presented. In addition the current plans and time line for the activation of the laser and experimental facilities will also be reviewed. The majority of this talk will focus on describing the national inertial confinement fusion integrated theory and experimental target ignition plan. This national plan details the theory and experimental program required for achieving ignition and modest thermonuclear gain on the NIF. This section of the presentation will include a status of the current physics basis, ignition target designs, and target fabrication issues associated with the indirect-drive and direct-drive approaches to ignition. The NIF design provides the capabilities to support experiments for both approaches to ignition. Other uses for the NIF, including non ignition physics relevant to the national security mission, studies relevant to Inertial Fusion Energy, and basic science applications, will also be described. The NIF offers the potential to generate new basic scientific understanding about matter under extreme conditions by making available a unique facility for research into: astrophysics and space physics, hydrodynamics, condensed matter physics, material properties, plasma physics and radiation sources, and radiative properties. Examples of

  7. Tritium removal from various lithium aluminates irradiated by fast and thermal neutrons (COMPLIMENT experiment)

    Science.gov (United States)

    Alvani, C.; Carconi, P. L.; Casadio, S.; Moauro, A.

    1994-02-01

    Within the frame of the COMPLIMENT experiment, γ-LiAlO 2 specimens with different microstructures (grain size distributions) were tested in the same environmental conditions to compare the effects caused by 6Li(n, α)T reaction and by fast neutron scattering, the damaging dose being held at about the same level (1.6-1.8 dpa). The tritium retention times were obtained by the tritium removal of isothermal annealing under He + 0.1% H 2 sweeping gas. In spite of the different Li burnups (2.5% and 0.25%) and the residual tritium concentrations which were found in the irradiated specimens (4.3 Ci/g and 0.09 Ci/g, respectively, for specimens held at 450°C during the irradiations), the kinetics of tritium removal was not found to be discriminated by the two different irradiations. Moreover, the results were found to agree with those previously obtained by the "in-situ" TEQUILA experiment, performed on the same type of Li ceramics. Hence, the apparent first order desorption mechanism has been confirmed to control the kinetics of tritium removal from the porous fine grain γ-LiAlO 2 ceramics.

  8. Tritium removal from various lithium aluminates irradiated by fast and thermal neutrons (COMPLIMENT experiment)

    Energy Technology Data Exchange (ETDEWEB)

    Alvani, C. (ENEA CRE Casaccia, INN/NUMA, Rome (Italy)); Carconi, P.L. (ENEA CRE Casaccia, INN/NUMA, Rome (Italy)); Casadio, S. (ENEA CRE Casaccia, INN/NUMA, Rome (Italy)); Moauro, A. (ENEA CRE Casaccia, INN/NUMA, Rome (Italy))

    1994-02-01

    Within the frame of the COMPLIMENT experiment, [gamma]-LiAlO[sub 2] specimens with different microstructures (grain size distributions) were tested in the same environmental conditions to compare the effects caused by [sup 6]Li(n, [alpha])T reaction and by fast neutron scattering, the damaging dose being held at about the same level (1.6-1.8 dpa). The tritium retention times were obtained by the tritium removal of isothermal annealing under He + 0.1% H[sub 2] sweeping gas. In spite of the different Li burnups (2.5% and 0.25%) and the residual tritium concentrations which were found in the irradiated specimens (4.3 Ci/g and 0.09 Ci/g, respectively, for specimens held at 450 C during the irradiations), the kinetics of tritium removal was not found to be discriminated by the two different irradiations. Moreover, the results were found to agree with those previously obtained by the ''in-situ'' TEQUILA experiment, performed on the same type of Li ceramics. Hence, the apparent first order desorption mechanism has been confirmed to control the kinetics of tritium removal from the porous fine grain [gamma]-LiAlO[sub 2] ceramics. (orig.)

  9. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  10. Neutron Stars in the Laboratory

    CERN Document Server

    Graber, Vanessa; Hogg, Michael

    2016-01-01

    Neutron stars are astrophysical laboratories of many extremes of physics. Their rich phenomenology provides insights into the state and composition of matter at densities which cannot be reached in terrestrial experiments. Since the core of a mature neutron star is expected to be dominated by superfluid and superconducting components, observations also probe the dynamics of large-scale quantum condensates. The testing and understanding of the relevant theory tends to focus on the interface between the astrophysics phenomenology and nuclear physics. The connections with low-temperature experiments tend to be ignored. However, there has been dramatic progress in understanding laboratory condensates (from the different phases of superfluid helium to the entire range of superconductors and cold atom condensates). In this review, we provide an overview of these developments, compare and contrast the mathematical descriptions of laboratory condensates and neutron stars and summarise the current experimental state-o...

  11. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  12. Compilation of current high-energy-physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  13. Great experiments in physics firsthand accounts from Galileo to Einstein

    CERN Document Server

    1959-01-01

    From Galileo's famous experiments in accelerated motion to Einstein's revolutionary theory of relativity, the experiments recorded here trace the evolution of modern physics from its beginnings to the mid-20th century. Brought together for the first time in one volume are important source readings on 25 epochal discoveries that changed man's understanding of the physical world. The accounts, written by the physicists who made them, include:Issac Newton: The Laws of MotionHenry Cavendish: The Law of GravitationAugustin Fresnel: The Diffraction of LightHans Christian Oersted: ElecromagnetismH

  14. Physics Potential and Prospects for the CUORICINO and CUORE Experiments

    OpenAIRE

    CUORE Collaboration

    2003-01-01

    The CUORE experiment projects to construct and operate an array of 1000 cryogenic thermal detectors of TeO2, of a mass of 760 g each, to investigate rare events physics, in particular, double beta decay and non baryonic particle dark matter. A first step towards CUORE is CUORICINO, an array of 62 bolometers, currently being installed in the Gran Sasso Laboratory. In this paper we report the physics potential of both stages of the experiment regarding neutrinoless double beta decay of 130Te, W...

  15. Experience with fast neutron therapy for unresectable carcinoma of the pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abdulla, A.S.M. (Univ. of Texas Medical Branch, Galveston); Hussey, D.H.; Olson, M.H.; Wright, A.E.

    1981-02-01

    The records of 70 patients with adenocarcinoma of the pancreas treated with radiotherapy were reviewed. Fifteen were treated with 50-MeV/sub d ..-->.. Be/ neutrons or a combination of 50-MeV/sub d ..-->.. Be/ neutrons and 25 to 32 MeV photons (neutron group), 30 with external beam photons alone (photon group), and 25 with radioactive gold-grain implantation (/sup 198/Au-implant group). The 12-month survival rate was 40% (6/15) for the neutron group; three patients in this group were living at the time of analysis, 16, 19, and 42 months from the date of diagnosis. By comparison, the 12-month survival rate was 23% (7/30) for the photon group and 32% (8/25) or the /sup 198/Au-implant group. The actuarial survival curve for the neutron group was significantly better than the survival curve for the photon group (Wilcoxon test/sup 7/: p = 0.3). Although the difference between the survival curves for the neutron and /sup 198/Au-implant groups is not statistically significant, the neutron patients presented more advanced disease than those treated with radioactive gold-grain implants. No radiotherapy complications were observed in the neutron group, whereas 3% (1/30) of patients in the photon group and 24% (6/25) of patients in the /sup 198/Au-implant group developed major complications.

  16. Mantid - Data Analysis and Visualization Package for Neutron Scattering and $\\mu SR$ Experiments

    CERN Document Server

    Arnold, O; Borreguero, J M; Buts, A; Campbell, S I; Chapon, L; Doucet, M; Draper, N; Leal, R Ferraz; Gigg, M A; Lynch, V E; Markvardsen, A; Mikkelson, D J; Mikkelson, R L; Miller, R; Palmen, K; Parker, P; Passos, G; Perring, T G; Peterson, P F; Ren, S; Reuter, M A; Savici, A T; Taylor, J W; Taylor, R J; Tolchenov, R; Zhou, W; Zikovsky, J

    2014-01-01

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described.

  17. Mantid—Data analysis and visualization package for neutron scattering and μ SR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, O. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Tessella Ltd., Abingdon, Oxfordshire (United Kingdom); Bilheux, J.C.; Borreguero, J.M. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Buts, A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Campbell, S.I. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Chapon, L. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Institut Laue-Langevin, Grenoble (France); Doucet, M. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Draper, N. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Tessella Ltd., Abingdon, Oxfordshire (United Kingdom); Ferraz Leal, R. [Institut Laue-Langevin, Grenoble (France); Gigg, M.A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Tessella Ltd., Abingdon, Oxfordshire (United Kingdom); Lynch, V.E. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Markvardsen, A. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Mikkelson, D.J.; Mikkelson, R.L. [University of Wisconsin-Stout, Menomonie, WI (United States); Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Miller, R. [Computing and Computational Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Palmen, K.; Parker, P.; Passos, G.; Perring, T.G. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire (United Kingdom); Peterson, P.F. [Neutron Data Analysis and Visualization, Oak Ridge National Laboratory, Oak Ridge, TN (United States); and others

    2014-11-11

    The Mantid framework is a software solution developed for the analysis and visualization of neutron scattering and muon spin measurements. The framework is jointly developed by software engineers and scientists at the ISIS Neutron and Muon Facility and the Oak Ridge National Laboratory. The objectives, functionality and novel design aspects of Mantid are described.

  18. Modulating the Neutron Flux from a Mirror Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D D

    2011-09-01

    A 14-MeV neutron source based on a Gas-Dynamic Trap will provide a high flux of 14 MeV neutrons for fusion materials and sub-component testing. In addition to its main goal, the source has potential applications in condensed matter physics and biophysics. In this report, the author considers adding one more capability to the GDT-based neutron source, the modulation of the neutron flux with a desired frequency. The modulation may be an enabling tool for the assessment of the role of non-steady-state effects in fusion devices as well as for high-precision, low-signal basic science experiments favoring the use of the synchronous detection technique. A conclusion is drawn that modulation frequency of up to 1 kHz and modulation amplitude of a few percent is achievable. Limitations on the amplitude of modulations at higher frequencies are discussed.

  19. Standard Practice for Application and Analysis of Nuclear Research Emulsions for Fast Neutron Dosimetry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 Nuclear Research Emulsions (NRE) have a long and illustrious history of applications in the physical sciences, earth sciences and biological sciences (1,2) . In the physical sciences, NRE experiments have led to many fundamental discoveries in such diverse disciplines as nuclear physics, cosmic ray physics and high energy physics. In the applied physical sciences, NRE have been used in neutron physics experiments in both fission and fusion reactor environments (3-6). Numerous NRE neutron experiments can be found in other applied disciplines, such as nuclear engineering, environmental monitoring and health physics. Given the breadth of NRE applications, there exist many textbooks and handbooks that provide considerable detail on the techniques used in the NRE method. As a consequence, this practice will be restricted to the application of the NRE method for neutron measurements in reactor physics and nuclear engineering with particular emphasis on neutron dosimetry in benchmark fields (see Matrix E706). 1...

  20. Late time cooling of neutron star transients and the physics of the inner crust

    CERN Document Server

    Deibel, Alex; Brown, Edward F; Reddy, Sanjay

    2016-01-01

    An accretion outburst onto a neutron star transient heats the neutron star's crust out of thermal equilibrium with the core. After the outburst the crust thermally relaxes toward equilibrium with the neutron star core and the surface thermal emission powers the quiescent X-ray light curve. Crust cooling models predict that thermal equilibrium of the crust will be established $\\approx 1000 \\, \\mathrm{d}$ into quiescence. Recent observations of the cooling neutron star transient MXB 1659-29, however, suggest that the crust did not reach thermal equilibrium with the core on the predicted timescale and continued to cool after $\\approx 2500 \\, \\mathrm{d}$ into quiescence. Because the quiescent light curve reveals successively deeper layers of the crust, the observed late time cooling of MXB 1659-29 depends on the thermal transport in the inner crust. In particular, the observed late time cooling is consistent with a low thermal conductivity layer near the depth predicted for nuclear pasta that maintains a temperat...

  1. High Energy Physics Experiments In Grid Computing Networks

    Directory of Open Access Journals (Sweden)

    Andrzej Olszewski

    2008-01-01

    Full Text Available The demand for computing resources used for detector simulations and data analysis in HighEnergy Physics (HEP experiments is constantly increasing due to the development of studiesof rare physics processes in particle interactions. The latest generation of experiments at thenewly built LHC accelerator at CERN in Geneva is planning to use computing networks fortheir data processing needs. A Worldwide LHC Computing Grid (WLCG organization hasbeen created to develop a Grid with properties matching the needs of these experiments. Inthis paper we present the use of Grid computing by HEP experiments and describe activitiesat the participating computing centers with the case of Academic Computing Center, ACKCyfronet AGH, Kraków, Poland.

  2. Neutron Arm Study and Calibration for the GEn Experiment at Thomas Jefferson National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Timothy [California State Univ. (CalState), Los Angeles, CA (United States)

    2007-07-01

    The measurement of the neutron electric form factor, G$n\\atop{e}$, will allow us to solve indirectly for the quark charge distribution inside of the neutron. With the equipment at Jefferson Lab we have measured G$n\\atop{e}$ at four momentum transfer values of Q2 at 1.3, 2.4 and 3.4 (GeV/c)2 using a polarized electron beam and polarized Helium target. The scattered electrons off of the Helium target are detected in the BigBite spectrometer and the recoiling neutrons from the Helium are detected in the Neutron Arm, which is composed of an array of scintillators. The main focus of this thesis will be devoted to the geometry, timing and energy calibrations of the Neutron Arm.

  3. Low energy neutron background in deep underground laboratories

    CERN Document Server

    Best, Andreas; Junker, Matthias; Kratz, Karl-Ludwig; Laubenstein, Matthias; Long, Alexander; Nisi, Stefano; Smith, Karl; Wiescher, Michael

    2015-01-01

    The natural neutron background influences the maximum achievable sensitivity in most deep underground nuclear, astroparticle and double-beta decay physics experiments. Reliable neutron flux numbers are an important ingredient in the design of the shielding of new large-scale experiments as well as in the analysis of experimental data. Using a portable setup of He-3 counters we measured the thermal neutron flux at the Kimballton Underground Research Facility, the Soudan Underground Laboratory, on the 4100 ft and the 4850 ft levels of the Sanford Underground Research Facility, at the Waste Isolation Pilot Plant and at the Gran Sasso National Laboratory. Absolute neutron fluxes at these laboratories are presented.

  4. The accelerator neutron source for boron neutron capture therapy

    Science.gov (United States)

    Kasatov, D.; Koshkarev, A.; Kuznetsov, A.; Makarov, A.; Ostreinov, Yu; Shchudlo, I.; Sorokin, I.; Sycheva, T.; Taskaev, S.; Zaidi, L.

    2016-11-01

    The accelerator based epithermal neutron source for Boron Neutron Capture Therapy (BNCT) is proposed, created and used in the Budker Institute of Nuclear Physics. In 2014, with the support of the Russian Science Foundation created the BNCT laboratory for the purpose to the end of 2016 get the neutron flux, suitable for BNCT. For getting 3 mA 2.3 MeV proton beam, was created a new type accelerator - tandem accelerator with vacuum isolation. On this moment, we have a stationary proton beam with 2.3 MeV and current 1.75 mA. Generation of neutrons is carried out by dropping proton beam on to lithium target as a result of threshold reaction 7Li(p,n)7Be. Established facility is a unique scientific installation. It provides a generating of neutron flux, including a monochromatic energy neutrons, gamma radiation, alpha-particles and positrons, and may be used by other research groups for carrying out scientific researches. The article describes an accelerator neutron source, presents and discusses the result of experiments and declares future plans.

  5. Physical Activity Experiences of Boys with and without ADHD

    Science.gov (United States)

    Harvey, William J.; Reid, Greg; Bloom, Gordon A.; Staples, Kerri; Grizenko, Natalie; Mbekou, Valentin; Ter-Stepanian, Marina; Joober, Ridha

    2009-01-01

    Physical activity experiences of 12 age-matched boys with and without attention-deficit hyperactivity disorder (ADHD) were explored by converging information from Test of Gross Motor Development-2 assessments and semistructured interviews. The knowledge-based approach and the inhibitory model of executive functions, a combined theoretical lens,…

  6. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    Science.gov (United States)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…

  7. Selecting, Teaching and Assessing Physical Education Dance Experiences

    Science.gov (United States)

    Little, Stephanie; Hall, Tina

    2017-01-01

    Dance is a form of physical activity that can be enjoyed for a lifetime. Students at the elementary level benefit greatly from successful experiences in dance that lead to competency in various dance forms as well as an appreciation of personal expression through dance. Teaching dance, however, may not be comfortable or easy for beginning…

  8. Skylab Experiments, Volume I, Physical Science, Solar Astronomy.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The first volume is concerned with the solar astronomy program. The related fields are physics, electronics, biology, chemistry,…

  9. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    Science.gov (United States)

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  10. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    Science.gov (United States)

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  11. A pilot experience in physics laboratory for a professional school

    CERN Document Server

    Montalbano, Vera; Di Renzone, Simone; Frati, Serena

    2013-01-01

    The reform of the upper secondary school in Italy has recently introduced physics in the curricula of professional schools, in realities where it was previously absent. Many teachers, often with a temporary position, are obliged to teaching physics in schools where the absence of the laboratory is added to the lack of interest of students who feel this matter as very far from their personal interests and from the preparation for the work which could expect from a professional school. We report a leaning path for introducing students to the measurement of simple physical quantities, which continued with the study of some properties of matter (volume, mass, density) and ending with some elements of thermodynamics. Educational materials designed in order to involve students in an active learning, actions performed for improving the quality of laboratory experience and difficulties encountered are presented. Finally, we compare the active engagement of these students with a similar experience performed in a very ...

  12. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    Science.gov (United States)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  13. Mean square hydrogen fluctuations in chitosan/lecithin nanoparticles from elastic neutron scattering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sonvico, Fabio [Dipartimento di Farmacia, Universita di Parma and INFM, Parma I-43100 (Italy); Di Bari, Maria Teresa [Dipartimento di Fisica, Universita di Parma, INFM and CNISM, Parma I-43100 (Italy); Bove, Livia [INFM-OGG and CRS-SOFT, c/o Institue Laue-Langevin, 38042 Grenoble (France); Deriu, Antonio [Dipartimento di Fisica, Universita di Parma, INFM and CNISM, Parma I-43100 (Italy)]. E-mail: Antonio.Deriu@fis.unipr.it; Cavatorta, Fabrizio [Dipartimento di Fisica, Universita di Parma, INFM and CNISM, Parma I-43100 (Italy); Albanese, Gianfranco [Dipartimento di Fisica, Universita di Parma, INFM and CNISM, Parma I-43100 (Italy)

    2006-11-15

    Recently, we have started a systematic study of the structure and dynamics of nano- and microparticles of interest as highly biocompatible drug carriers. For these particles, that are composed of polymeric and lipid material, a detailed understanding of the particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of elastic neutron scattering (ENS) investigations on lecithin/chitosan nanoparticles. They were first prepared by autoassembling the two components in aqueous solution; the samples were then freeze-dried and re-hydrated in a D{sub 2}O atmosphere. The experiments were performed in the temperature range of 20-50 K using the backscattering spectrometer IN13 at ILL (Grenoble, France). The comparison of samples in the dry state with similar ones at an hydration level of about 0.3-0.4 (g D{sub 2}O/g hydrated sample), indicates that the presence of an outer chitosan 'coating' reduces the mean square fluctuations of the hydrogens in the lipid component, leading thus to a stiffer nanoparticle structure.

  14. Investigation of a 129Xe magnetometer for the Neutron Electric Dipole Moment Experiment at TRIUMF

    Science.gov (United States)

    Lang, Michael; Nedm At Triumf Collaboration

    2016-03-01

    A non-zero neutron electric dipole moment (nEDM) would signify a previously unknown source of CP (or T) violation. New sources of CP violation are believed to be required to explain the baryon asymmetry of the universe. Employing a newly developed high-density UCN source, an experiment at TRIUMF aims to measure the nEDM to the level of 10-27 e . cm in its initial phase. Precession frequency differences for UCN stored in a bottle subject to parallel and anti-parallel E and B fields signify a permanent nEDM. Magnetic field instability and inhomogeneity, as well as field changes resulting from leakage currents (correlated with E fields) are the dominant systematic effects in nEDM measurements. To address this, passive and active magnetic shielding are in development along with a dual species (129Xe and 199Hg) atomic comagnetometer. Simultaneously introducing both atomic species into the UCN cell, the comagnetometer can mitigate false EDMs. 199Hg precession will be detected by Faraday rotation spectroscopy, and 129Xe precession will measured via two-photon excitation and emission. The present comagnetometer progress will be discussed, with focus on polarized 129Xe production and delivery. Work supported by the Natural Sciences and Engineering Research Council of Canada.

  15. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    Science.gov (United States)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  16. From Talk to Experience: Transforming the Preservice Physics Methods Course

    Directory of Open Access Journals (Sweden)

    Tom Russell

    2010-07-01

    Full Text Available This report of a collaborative self-study describes and interprets our pedagogical approach at the beginning of a preservice physics methods course and outlines the strategy that we used to create a context for productive learning. We focus on our attempt to engage teacher candidates in dialogue about learning physics and learning to teach physics by engaging them in brief teaching experiences in the first month of a preservice teacher education program, before the first practicum placement. Self-study methodologies are used to frame and reframe our perceptions of teaching and learning as we enacted a pedagogy of teacher education that was unfamiliar both to us and to our teacher candidates.Keywords: self-study of teacher education practices, lesson study, teacher education, physics, curriculum methods

  17. Neutron-rich Λ-Hypernuclei study with the FINUDA experiment

    Directory of Open Access Journals (Sweden)

    Botta E.

    2014-03-01

    Full Text Available The FINUDA experiment at DAΦNE, Frascati, has found evidence for the neutron-rich hypernucleus HΛ6${}_ \\wedge ^6{\\rm{H}}$ studying (π+, π− pairs in coincidence from the Kstop−+L6i→HΛ6+π+$K_{{\\rm{stop}}}^ - + {}^{\\rm{6}}{\\rm{Li}} \\to {}_ \\wedge ^6{\\rm{H}} + {\\pi ^ + }$ production reaction followed by HΛ6→H6e +π−${}_ \\wedge ^6{\\rm{H}} \\to {}^6{\\rm{He + }}{\\pi ^ - }$ weak decay. The production rate of HΛ6${}_ \\wedge ^6{\\rm{H}}$ undergoing this two-body π− decay has been found to be (2.9±2.0⋅10−6/Kstop−$(2.9 \\pm 2.0 \\cdot {10^{ - 6}}/K_{{\\rm{stop}}}^ - $. Its binding energy has been evaluated to be BΛ(HΛ6=(4.0±1.1${B_ \\wedge }({}_ \\wedge ^6H = (4.0 \\pm 1.1$ MeV with respect to (H5+Λ$({}^5{\\rm{H}} + \\Lambda $, jointly from production and decay. A systematic difference of (0.98 ± 0.74 MeV between BΛ values derived separately from decay and from production has been tentatively assigned to the HΛ6 0g.s.+→1+${}_\\Lambda ^6{\\rm{H 0}}_{{\\rm{g}}{\\rm{.s}}{\\rm{.}}}^ + \\to {1^ + }$ excitation. A similar investigation has been carried out for the neutron-rich hypernucleus HΛ9e${}_\\Lambda ^9{\\rm{He}}$ studying the Kstop−+B9e→HΛ9e+π+$K_{{\\rm{stop}}}^ - + {}_{}^{\\rm{9}}{\\rm{Be}} \\to {}_\\Lambda ^9{\\rm{He}} + {\\pi ^ + }$ reaction in coincidence with the H Λ 9e→ L 9i +  π −${}_\\Lambda ^9{\\rm{He}} \\to {}_{}^{\\rm{9}}{\\rm{Li + }}{\\pi ^ - }$ weak decay; an upper limit for the production rate of HΛ9e${}_\\Lambda ^9{\\rm{He}}$ undergoing the two-body π− decay has been found to be 4.2⋅10 −6 /K stop− $4.2 \\cdot {10^{ - 6}}/{\\rm{K}}_{stop}^ - $ (90% C.L..

  18. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzler, R.; Monkenbusch, M. [Research Centre Juelich, D-52425 Juelich (Germany)

    1998-07-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  19. Neutron activation analysis: Modelling studies to improve the neutron flux of Americium-Beryllium source

    Energy Technology Data Exchange (ETDEWEB)

    Didi, Abdessamad; Dadouch, Ahmed; Tajmouati, Jaouad; Bekkouri, Hassane [Advanced Technology and Integration System, Dept. of Physics, Faculty of Science Dhar Mehraz, University Sidi Mohamed Ben Abdellah, Fez (Morocco); Jai, Otman [Laboratory of Radiation and Nuclear Systems, Dept. of Physics, Faculty of Sciences, Tetouan (Morocco)

    2017-06-15

    Americium–beryllium (Am-Be; n, γ) is a neutron emitting source used in various research fields such as chemistry, physics, geology, archaeology, medicine, and environmental monitoring, as well as in the forensic sciences. It is a mobile source of neutron activity (20 Ci), yielding a small thermal neutron flux that is water moderated. The aim of this study is to develop a model to increase the neutron thermal flux of a source such as Am-Be. This study achieved multiple advantageous results: primarily, it will help us perform neutron activation analysis. Next, it will give us the opportunity to produce radio-elements with short half-lives. Am-Be single and multisource (5 sources) experiments were performed within an irradiation facility with a paraffin moderator. The resulting models mainly increase the thermal neutron flux compared to the traditional method with water moderator.

  20. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.

    Science.gov (United States)

    Esposito, J; Rosi, G; Agosteo, S

    2007-01-01

    A new thermal neutron irradiation facility, devoted to carry out both dosimetric and radiobiological studies on boron carriers, which are being developed in the framework of INFN BNCT project, has been installed at the ENEA Casaccia TAPIRO research fast reactor. The thermal column, based on an original, hybrid, neutron spectrum shifter configuration, has been recently become operative. In spite of its low power (5 kW), the new facility is able to provide a high thermal neutron flux level, uniformly distributed inside the irradiation cavity, with a quite low gamma background. The main features and preliminary benchmark measurements of the Beam-shaping assembly are here presented and discussed.

  1. Observation, experiment and hypothesis in modern physical science

    CERN Document Server

    Hannaway, Owen

    1985-01-01

    These original contributions by philosophers and historians of science discuss a range of issues pertaining to the testing of hypotheses in modern physics by observation and experiment. Chapters by Lawrence Sklar, Dudley Shapere, Richard Boyd, R. C. Jeffrey, Peter Achinstein, and Ronald Laymon explore general philosophical themes with applications to modern physics and astrophysics. The themes include the nature of the hypothetico-deductive method, the concept of observation and the validity of the theoretical-observation distinction, the probabilistic basis of confirmation, and the testing of idealizations and approximations.The remaining four chapters focus on the history of particular twentieth-century experiments, the instruments and techniques utilized, and the hypotheses they were designed to test. Peter Galison reviews the development of the bubble chamber; Roger Stuewer recounts a sharp dispute between physicists in Cambridge and Vienna over the interpretation of artificial disintegration experiments;...

  2. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  3. Statistical estimates and physics of close binary systems (CBS) of neutron stars.

    Science.gov (United States)

    Callegari, G.; Bregola, M.; Ferrario, C.; Passerini, A.

    After some statistical considerations about the number of CBSs with one neutron star in our galaxy, the authors study the possible kinds of emission of CBSs with two neutron stars. They give considerations on the dimension of such a system at the moment of its formation. From the comparison of different kinds of power emitted they deduce that the orbital gravitational emission Pgo dominates. The dynamical evolution of the orbital elements a and e is determined by Pgo and by tidal friction, which produce opposite effects. The quantitative comparison between Pgo and Ptf (work made per unit time by tidal torque) says that Pgo > Ptf. Therefore the authors conclude that a < 0 and e < 0; that is the evolution of the systems is towards collapse.

  4. Physics reach of the XENON1T dark matter experiment

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arazi, L; Arneodo, F; Balan, C; Barrow, P; Baudis, L; Bauermeister, B; Berger, T; Breur, P; Breskin, A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Contreras, H; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Duchovni, E; Fattori, S; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Galloway, M; Garbini, M; Geis, C; Goetzke, L W; Greene, Z; Grignon, C; Gross, E; Hampel, W; Hasterok, C; Itay, R; Kaether, F; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Calloch, M Le; Levy, C; Lindemann, S; Lindner, M; Lopes, J A M; Lyashenko, A; Macmullin, S; Manfredini, A; Undagoitia, T Marrodán; Masbou, J; Massoli, F V; Mayani, D; Fernandez, A J Melgarejo; Meng, Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Oberlack, U; Orrigo, S E A; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Santos, J M F dos; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Simgen, H; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; von Sivers, M; Wall, R; Wang, H; Weber, M; Wei, Y; Weinheimer, C; Wulf, J; Zhang, Y

    2015-01-01

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \\pm 0.15) \\cdot 10^{-4}$ ($\\rm{kg} \\cdot day \\cdot keV)^{-1}$, mainly due to the decay of $^{222}\\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \\pm 0.1)$ ($\\rm{t} \\cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \\pm 0.3) \\cdot 10^{-2}$ ($\\rm{t} \\cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\\rm{t} \\cdot y)^{-1}$ from...

  5. Accessing interior magnetic field vector components in neutron electric dipole moment experiments via exterior measurements, I. Boundary-value techniques

    CERN Document Server

    Plaster, B

    2013-01-01

    We propose a new concept for determining the interior magnetic field vector components in neutron electric dipole moment experiments. If a closed three-dimensional boundary surface surrounding the fiducial volume of an experiment can be defined such that its interior encloses no currents or sources of magnetization, each of the interior vector field components and the magnetic scalar potential will satisfy a Laplace equation. Therefore, if either the vector field components or the normal derivative of the scalar potential can be measured on the surface of this boundary, thus defining a Dirichlet or Neumann boundary-value problem, respectively, the interior vector field components or the scalar potential (and, thus, the field components via the gradient of the potential) can be uniquely determined via solution of the Laplace equation. We discuss the applicability of this technique to the determination of the interior magnetic field components during the operating phase of neutron electric dipole moment experim...

  6. Experience of the Indirect Neutron Radiography Method Based on the X-ray Imaging Plate at CARR

    Science.gov (United States)

    Wei, Guohai; Han, Songbai; Wang, Hongli; He, Linfeng; Wang, Yu; Wu, Meimei; Liu, Yuntao; Chen, Dongfeng

    Indirect neutron radiography (INR) experiments by X-ray imaging plate were carried out at the China Advanced Research Reactor (CARR). The key experiment parameters were optimized, especially the exposure time of the neutron converter andimaging plate. The optimized total exposure time is 37.25 min, it is two-fifths of the timebased on the film method under the same experimental conditions. The qualitative and quantitativeinspections were tested with dummy nuclear fuel rods and a water temperaturesensor ofa motor vehicle. The spring in the sensor and the defects of the dummy fuel rod's pellets can be qualitatively detected. The thickness of the tape at one position on the cladding of the dummy nuclear fuel rodwas quantitatively calculated to be 9.57 layers with the relative error of ±4.3%.

  7. Fluid physics, thermodynamics, and heat transfer experiments in space

    Science.gov (United States)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  8. Silicon Burning I: The Importance of Neutronization to the Physics of Quasi-Equilibrium

    Science.gov (United States)

    Hix, W. R.; Thielemann, F.-K.

    1995-12-01

    As the most tightly bound nuclei, the `Iron Peak' nuclei are the culmination of nuclear energy generation in astrophysical environments and the result of Nuclear Statistical Equilibrium (NSE). Our re-examination of silicon burning, the mechanism by which the nuclei of the iron peak are produced, has revealed a number of potential improvements to our understanding of this ultimate stage of astrophysical nuclear energy generation. We will discuss results gleaned from simulation work done with a large nuclear network (300 nuclei and 3000 reactions) and from independent calculations of equilibrium abundance distributions, which offer new insights into the quasi-equilibrium mechanism and the approach to NSE. We find that the degree to which the matter has been neutronized is of great importance, not only to the final products, but also to the rate of energy generation and the membership of the quasi-equilibrium groups. Furthermore, we find that, as a result of quasi-equilibrium, incomplete silicon burning results in neutron richness among the isotopes of the iron group much larger than the global neutronization would indicate. In light of our findings, we will also discuss the applicability of approximations for silicon burning commonly employed in hydrodynamic simulations.

  9. The study of physics and thermal characteristics for in-hospital neutron irradiator (IHNI).

    Science.gov (United States)

    Ke, Guotu; Sun, Ziyong; Shen, Feng; Liu, Tiancai; Li, Yiguo; Zhou, Yongmao

    2009-07-01

    The IHNI is designed for boron neutron capture therapy (BNCT) based on miniature neutron source reactor (MNSR). The reactor with thermal power 30 kW is an undermoderated reactor of pool-tank type, and UO(2) as fuel, light water as coolant and moderator, and metallic beryllium as reflector. The fission heat produced by the reactor is removed by the natural convection. The paper gives the calculating results of critical mass and the worths of central control rod, auxiliary control rod, reactivity regulator and neutron beam equipments. The parameters at thermal and small thermal ports and at epithermal port were calculated by optimizing combination of kinds of material by MCNP code. The dynamic feature research was done by RELAP5 code when the reactivities of 3, 4.5 and 6 mK were inserted, respectively. The results show that the reactor power can be limited to safe level by itself owing to the Doppler effect of fuel element and moderator negative temperature effect when the 6 mK reactivity was inserted into the reactor.

  10. Use of a Boron Doped Spherical Phantom for the Investigation of Neutron Directional Properties: Comparison Between Experiment and MCNP Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Drake, P.; Kierkegaard, J

    1999-07-01

    A boron doped 19 cm diameter spherical phantom was constructed to give information on the direction of neutrons inside the Ringhals 4 containment. The phantom was made of 40% paraffin and 60% boric acid. 10B contributes 2% of the total phantom weight. The phantom was tested for its angular sensitivity to neutrons. The response was tested with a {sup 252}Cf source and with a Monte Carlo calculation (MCNP) simulating a {sup 252}Cf source. In these investigations the phantom showed a strong directional response. However, there was only a fair correspondence between the experiment and the simulation. The discrepancies are, at least in part, due to the difference in energy and angular response of the dosemeters as compared with the idealised response characteristics in the MCNP calculation. In the MCNP calculation the experimental conditions were not fully simulated. The investigations also showed that the addition of boron to the phantom reduces the leakage of thermalised neutrons from the phantom, and the production of neutron induced photons in the phantom to insignificant levels. (author)

  11. Early clinical experience of boron neutron capture therapy for glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Bergland, R.; Capala, J. [and others

    1995-12-31

    Boron neutron capture therapy (BNCT) is a binary treatment modality that can selectively irradiate tumor tissue. BNCT uses drugs containing a stable isotope of boron. {sup 10}B, to sensitize tumor cells to irradiation by low energy (thermal) neutrons. The interaction of the {sup 10}B with a thermal neutron (neutron capture) causes the {sup 10}B nucleus to split, releasing an alpha particle and a lithium nucleus. These products of the {sup 10}B(n, {alpha}){sup 7}Li reaction are very damaging to cells but have a combined path length in tissue of approximately 14 {mu}m, or roughly the diameter of one or two cells. Thus, most of the ionizing energy imparted to tissue is localized to {sup 10}B-loaded cells.

  12. Development of polarized {sup 3}He filter for polarized neutron experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K.; Sato, H.; Yoshimi, A.; Asahi, K. [Tokyo Inst. of Tech. (Japan). Faculty of Science; Masuda, Y.; Muto, S.; Ishimoto, S.; Morimoto, K.

    1996-08-01

    A high-pressure polarized {sup 3}He gas cell, pumped with two diode lasers, has been developed at KEK for use as a polarizer and a spin analyzer for low energy neutrons. The polarization attained of {sup 3}He was determined through the measurement of the transmission of the unpolarized neutrons through the {sup 3}He cell. So far we obtained P{sub He}=18% at 10 atm and P{sub He}=12% at 20 atm. (author)

  13. Neutron-capture experiment on 77Se with EXILL at ILL Grenoble

    Directory of Open Access Journals (Sweden)

    Lorenz Ch.

    2015-01-01

    Full Text Available The neutron capture reaction at 77Se has been studied with cold neutrons in the course of the EXILL campaign at the high-flux reactor of the Institut Laue-Langevin Grenoble. A simulation of the detector array with Geant4 has been accomplished and evaluated. The detector response has been deduced and measured spectra were unfolded, which have been compared with simulations using γDex to determine strength functions.

  14. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    Science.gov (United States)

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  15. Neutron-capture experiment on 77Se with EXILL at ILL Grenoble

    Science.gov (United States)

    Lorenz, Ch.; John, R.; Massarczyk, R.; Schwengner, R.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Urban, W.; Valenta, S.; Belgya, T.

    2015-05-01

    The neutron capture reaction at 77Se has been studied with cold neutrons in the course of the EXILL campaign at the high-flux reactor of the Institut Laue-Langevin Grenoble. A simulation of the detector array with Geant4 has been accomplished and evaluated. The detector response has been deduced and measured spectra were unfolded, which have been compared with simulations using γDex to determine strength functions.

  16. Neutron-antineutron transition as a test-bed for dynamical CPT violations

    Science.gov (United States)

    Addazi, Andrea

    2016-05-01

    We show a simple mechanism for a dynamical CPT violation in the neutron sector. In particular, we show a CPT-violating see-saw mechanism, generating a Majorana mass and a CPT-violating mass for the neutron. CPT-violating see-saw involves a sterile partner of the neutron, living in a hidden sector, in which CPT is spontaneously broken. In particular, neutrons (antineutrons) can communicate with the hidden sector through nonperturbative quantum gravity effects called exotic instantons. Exotic instantons dynamically break R-parity, generating one effective vertex between the neutron and its sterile partner. In this way, we show how a small CPT-violating mass term for the neutron is naturally generated. This model can be tested in the next generation of experiments in neutron-antineutron physics. This strongly motivates researches of CPT-violating effects in neutron-antineutron physics as a test-bed for dynamical CPT-violations in SM.

  17. Large Hadron Collider physics program Compact Muon Solenoid experiment

    CERN Document Server

    Singh, J B

    2000-01-01

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal supersymmetric model and well adapted to searches for SUSY particles, new massive vector bosons, CP-violation in the B-system, search for substructure of quarks and leptons, etc. In the LHC heavy ion collisions the energy density would be well above the threshold for the possible formation of quark-gluon plasma. (15 refs).

  18. Large hadron collider physics program: Compact muon solenoid experiment

    Indian Academy of Sciences (India)

    J B Singh

    2000-04-01

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal supersymmetric model and well adapted to searches for SUSY particles, new massive vector bosons, CP-violation in -system, search for substructure of quarks and leptons, etc. In the LHC heavy ion collisions the energy density would be well above the threshold for the possible formation of quark–gluon plasma.

  19. LHCf experiment: forward physics at LHC for cosmic rays study

    Directory of Open Access Journals (Sweden)

    Del Prete M.

    2016-01-01

    Full Text Available The LHCf experiment, optimized for the study of forward physics at LHC, completes its main physics program in this year 2015, with the proton-proton collisions at the energy of 13 TeV. LHCf gives important results on the study of neutral particles at extreme pseudo-rapidity, both for proton-proton and for proton-ion interactions. These results are an important reference for tuning the models of the hadronic interaction currently used for the simulation of the atmospheric showers induced by very high energy cosmic rays. The results of this analysis and the future perspective are presented in this paper.

  20. The experiment PANDA: physics with antiprotons at FAIR

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2015-01-01

    The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1–2 % at 1 GeV/c in the central region; secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons; a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  1. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    Energy Technology Data Exchange (ETDEWEB)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  2. A system for designing and simulating particle physics experiments

    Science.gov (United States)

    Żelazny, Roman; Strzałkowski, Piotr

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of a greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing.

  3. Symmetry and aesthetics in introductory physics: An experiment in interdisciplinary physics and fine arts education

    Science.gov (United States)

    van der Veen, Janet Krause

    In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.

  4. Experiences of physical violence by women living with intimate partners

    Directory of Open Access Journals (Sweden)

    F.C. Madzimbalale

    2010-09-01

    Full Text Available Intimate partner violence directed towards females by male partners is a common significant global public health problem. Most victims of physical aggression such as women and children are subjected to multiple acts of violence over extended periods of time, suffering from more than one type of abuse, for example physical which is more symbolic and evidenced by scars. The purpose of this study is to increase understanding of the symbols of physical violence as experienced by women who live with intimate partners in the Vhembe district of the Limpopo Province. The research design of this study was qualitative, exploratory and descriptive in nature. The accessible population was those participants who used the trauma unit A in a particular hospital. Seven women comprised the sample of the study. In-depth individual interviews were conducted exploring the women’s experiences in the context of physical violence. From the data collected all seven participants experienced some form of physical violence which resulted in permanent deformity. They experienced some form of battering such as kicking, stabbing, burning, fracturing, strangling and choking. Recommendations were made that health care providers are encouraged to implement screening for physical violence, to provide appropriate interventions if assault is identified and to provide appropriate education regarding, employment opportunities, legal literacy, and rights to inheritance. Human rights education and information regarding domestic violence should be provided to them because this is their absolute right (UNICEF, 2000:14.

  5. Observing SU(2) phases with neutrons

    Indian Academy of Sciences (India)

    Veer Chand Rakhecha; Apoorva G Wagh

    2001-02-01

    We present an overview of polarized neutron experiments observing SU(2) phases. The first experimental separation of geometric and dynamical phases, the explicit verification of Pauli anticommutation and the first observation of interference amplitudes and phases in noncyclic evolutions are described. These experiments elucidate the physics of phases and phase jumps propounded by the Pancharatnam connection.

  6. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  7. Cleaners' experiences with group-based workplace physical training

    DEFF Research Database (Denmark)

    Kirkelund, Lasse; Mortensen, Ole Steen; Holtermann, Andreas

    2012-01-01

    This study investigates how work-site health promotion intervention, by involving group-based physical coordination training, may increase participants’ social awareness of new ways to use the body. Purpose: We investigated cleaners’ experiences with a one-year health promotion intervention...... involving group-based physical coordination training (PCT) during working hours. Design: We conducted a qualitative evaluation using method triangulation; continuous unfocused participant observation during the whole intervention, semi-structured focus group interview, and individual written evaluations one...... for implementation seem to be important for sustained effects of health-promotion interventions in the workplace. Originality: The social character of the physical training facilitated a community of practice, which potentially supported the learning of new competencies, and how to improve the organization...

  8. Compendium of quantum physics concepts, experiments, history and philosophy

    CERN Document Server

    Hentschel, Klaus; Weinert, Friedel

    2009-01-01

    With contributions by many of today's leading quantum physicists, philosophers and historians, including three Nobel laureates, this comprehensive A to Z of quantum physics provides a lucid understanding of the key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional topics and newer areas such as quantum information and its relatives. The central concepts that have shaped contemporary understanding of the quantum world are clearly defined, with illustrations where helpful, and discussed at a level suitable for undergraduate and graduate students of physics, history of science, and philosophy of physics. All articles share three main aims: (1) to provide a clear definition and understanding of the term concerned; (2) where possible, to trace the historical origins of the concept; and (3) to provide a small but optimal selection of references to the most relevant literature, including pertinent historical studies. Also discussed are th...

  9. Forward Physics with the CMS Experiment at LHC

    CERN Document Server

    Sunar Cerci, Deniz

    2016-01-01

    Forward physics measurements with the Compact Muon Solenoid (CMS) experiment, one of the two large multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, cover a wide range of physics subjects. The forward calorimeters of CMS, HF and CASTOR, are used to collect data up to a pseudo-rapidity of 6.6. These detectors provide sensitivity to a large part of the total inelastic cross section, including diffractive events that produce particles only at forward rapidity, with the exception of very low mass diffraction. The results obtained with a centre-of-mass energy of 13 TeV are presented. The measurements are compared to model predictions and provide valuable input for tuning of Monte Carlo models used to describe high-energy hadronic interactions.

  10. Compilation of current high energy physics experiments - Sept. 1978

    Energy Technology Data Exchange (ETDEWEB)

    Addis, L.; Odian, A.; Row, G. M.; Ward, C. E. W.; Wanderer, P.; Armenteros, R.; Joos, P.; Groves, T. H.; Oyanagi, Y.; Arnison, G. T. J.; Antipov, Yu; Barinov, N.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)

  11. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  12. Tevatron End-of-Run Beam Physics Experiments

    CERN Document Server

    Valishev, A; Miyamoto, R; White, S; Schmidt, F; Qiang, J

    2012-01-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beambeam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  13. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    Science.gov (United States)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics

  14. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  15. Physics Results from the Argo-YBJ Experiment

    CERN Document Server

    Di Sciascio, G

    2008-01-01

    The ARGO-YBJ experiment has been in stable data taking since November 2007 at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l.). In this paper we report a few selected results in Gamma-Ray Astronomy (Crab Nebula and Mrk421 observations, search for high energy tails of GRBs) and Cosmic Ray Physics (Moon and Sun shadow observations, proton-air cross section and antiproton/proton preliminary measurements).

  16. Can There BE Physics Without Experiments? Challenges and Pitfalls

    Science.gov (United States)

    't Hooft, Gerard

    2014-03-01

    Physicists investigating space, time and matter at the Planck scale will probably have to work with much less guidance from experimental input than has ever happened before in the history of Physics. This may imply that we should insist on much higher demands of logical and mathematical rigour than before. Working with long chains of arguments linking theories to experiment, we must be able to rely on logical precision when and where experimental checks cannot be provided.

  17. Search for New Physics in reactor and accelerator experiments

    Science.gov (United States)

    Di Iura, A.; Girardi, I.; Meloni, D.

    2016-01-01

    We consider two scenarios of New Physics: the Large Extra Dimensions (LED), where sterile neutrinos can propagate in a (4+d) -dimensional space-time, and the Non Standard Interactions (NSI), where the neutrino interactions with ordinary matter are parametrized at low energy in terms of effective flavour-dependent complex couplings \\varepsilon_{αβ} . We study how these models have an impact on oscillation parameters in reactor and accelerator experiments.

  18. A simple digital delay for nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J.G., E-mail: jmarques@ctn.ist.utl.pt [C2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS (Portugal); Cruz, C. [LATR, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS (Portugal)

    2014-05-01

    A simple high precision digital delay for nuclear physics experiments was developed using fast ECL electronics. The circuit uses an oscillator synchronized with the signal to be delayed and a presettable counter. It is capable of delaying a negative NIM signal by 2 µs with a precision better than 50 ps. The circuit was developed for use in slow-fast coincidence units for Perturbed Angular Correlation spectrometers but it is not limited to this application.

  19. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  20. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...