WorldWideScience

Sample records for neutron multiplication problems

  1. Fission neutron multiplicity calculations

    International Nuclear Information System (INIS)

    Maerten, H.; Ruben, A.; Seeliger, D.

    1991-01-01

    A model for calculating neutron multiplicities in nuclear fission is presented. It is based on the solution of the energy partition problem as function of mass asymmetry within a phenomenological approach including temperature-dependent microscopic energies. Nuclear structure effects on fragment de-excitation, which influence neutron multiplicities, are discussed. Temperature effects on microscopic energy play an important role in induced fission reactions. Calculated results are presented for various fission reactions induced by neutrons. Data cover the incident energy range 0-20 MeV, i.e. multiple chance fission is considered. (author). 28 refs, 13 figs

  2. Neutron source multiplication method

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1985-01-01

    Extensive use has been made of neutron source multiplication in thousands of measurements of critical masses and configurations and in subcritical neutron-multiplication measurements in situ that provide data for criticality prevention and control in nuclear materials operations. There is continuing interest in developing reliable methods for monitoring the reactivity, or k/sub eff/, of plant operations, but the required measurements are difficult to carry out and interpret on the far subcritical configurations usually encountered. The relationship between neutron multiplication and reactivity is briefly discussed and data presented to illustrate problems associated with the absolute measurement of neutron multiplication and reactivity in subcritical systems. A number of curves of inverse multiplication have been selected from a variety of experiments showing variations observed in multiplication during the course of critical and subcritical experiments where different methods of reactivity addition were used, with different neutron source detector position locations. Concern is raised regarding the meaning and interpretation of k/sub eff/ as might be measured in a far subcritical system because of the modal effects and spectrum differences that exist between the subcritical and critical systems. Because of this, the calculation of k/sub eff/ identical with unity for the critical assembly, although necessary, may not be sufficient to assure safety margins in calculations pertaining to far subcritical systems. Further study is needed on the interpretation and meaning of k/sub eff/ in the far subcritical system

  3. Some problems of neutron source multiplication method for site measurement technology in nuclear critical safety

    International Nuclear Information System (INIS)

    Shi Yongqian; Zhu Qingfu; Hu Dingsheng; He Tao; Yao Shigui; Lin Shenghuo

    2004-01-01

    The paper gives experiment theory and experiment method of neutron source multiplication method for site measurement technology in the nuclear critical safety. The measured parameter by source multiplication method actually is a sub-critical with source neutron effective multiplication factor k s , but not the neutron effective multiplication factor k eff . The experiment research has been done on the uranium solution nuclear critical safety experiment assembly. The k s of different sub-criticality is measured by neutron source multiplication experiment method, and k eff of different sub-criticality, the reactivity coefficient of unit solution level, is first measured by period method, and then multiplied by difference of critical solution level and sub-critical solution level and obtained the reactivity of sub-critical solution level. The k eff finally can be extracted from reactivity formula. The effect on the nuclear critical safety and different between k eff and k s are discussed

  4. Neutron multiplication and shielding problems in PWR spent-fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.

    1976-01-01

    In order to evaluate the degree of accuracy of computational methods used for the shield design of spent-fuel shipping casks, comparisons were made between biological dose rate calculations and measurements at the surface of a cask carrying three PWR fuel assemblies (the fuel being successively wet and dry). The experimental methods used provide ksub(eff) with an accuracy of 0.024. Neutron multiplication coefficients provided by the APOLLO and DOT-3 codes are located within the uncertainty range of the experimentally derived values. The APOLLO plus DOT codes for neutron source calculations and ANISN plus DOT codes for neutron transmission calculations provide neutron dose rate predictions in agreement with measurements to within 10%. The PEPIN 76 code used for deriving fission product γ-rays and the point kernel code MERCURE 4 treating the γ-ray transmission give γ dose rate predictions that generally differ from measurements by less than 25%

  5. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  6. Neutron multiplication and shielding problems in pressurized water reactor spent fuel shipping casks

    International Nuclear Information System (INIS)

    Devillers, C.; Blum, P.

    1977-01-01

    To evaluate the degree of accuracy of computational methods used in the shield design of spent fuel shipping casks, comparisons have been made between biological dose-rate calculations and measurements at the surface of a cask carrying three pressurized water reactor fuel assemblies. Neutron dose-rate measurements made with the fuel-carrying region successively wet and dry are also used to derive an experimental value of the k/sub eff/ of the wet fuel assemblies. Results obtained by this method are shown to be consistent with criticality calculations, taking into account fuel depletion

  7. Neutron multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1983-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  8. Passive neutron-multiplication measurements

    International Nuclear Information System (INIS)

    Zolnay, A.S.; Barnett, C.S.; Spracklen, H.P.

    1982-01-01

    We have developed an instrument to measure neutron multiplication by statistical analysis of the timing of neutrons emitted from fissionable material. This instrument is capable of repeated analysis of the same recorded data with selected algorithms, graphical displays showing statistical properties of the data, and preservation of raw data on disk for future comparisons. In our measurements we have made a comparison of the covariance to mean and Feynman variance to mean analysis algorithms to show that the covariance avoids a bias term and measures directly the effect due to the presence of neutron chains. A spherical assembly of enriched uranium shells and acrylic resin reflector/moderator components used for the measurements is described. Preliminary experimental results of the Feynman variance to mean measurements show the expected correlation with assembly multiplication

  9. Neutron multiplicity of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrahman, Y S [Physics department, mu` rah university Al-Karak, (Jordan)

    1995-10-01

    The total average neutron multiplicity of the fission fragments produced by the spontaneous fission of {sup 248} Cm has been measured. This measurement has been done by using a new experimental technique. This technique mainly depends on {gamma}-{gamma} coincidence using a very high resolution high purity germanium (HPGe) detector. 2 figs.

  10. Problems and prospects of neutron imaging

    International Nuclear Information System (INIS)

    Kobayashi, Hisao

    2008-01-01

    Technical problems and future prospects of neutron imaging and neutron radiography are reviewed and discussed for further development. For technical problems, neutron sources together with cold neutron, ultra-cold neutron, epithermal and fast-neutron beams, energy converters, and the intensity of neutron beam, dynamic range associated with imaging procedure, etc, are reviewed. As standardization, such indicators as beam purity, sensitivity, image quality, and beam quality are discussed and limitation of neutron radiography is also presented. As neutron imaging has developed as a nondestructive testing technique in industrial applications, further problems and prospects of quality control and qualification to perform neutron radiography, standardization and international cooperation of neutron imaging are discussed. (S. Ohno)

  11. Neutron multiplication in lead in the experiments with neutron generators

    International Nuclear Information System (INIS)

    Markovskij, D.V.

    1989-01-01

    A calculational analysis of neutron multiplication in lead, including the estimates of multiplication limits for the standard ENDF/BIV data set and the effects of various changes in the data themselves is performed. 10 refs, 5 figs

  12. Neutron recognition in the LAND detector for large neutron multiplicity

    Energy Technology Data Exchange (ETDEWEB)

    Pawlowski, P., E-mail: piotr.pawlowski@ifj.edu.pl [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); Brzychczyk, J. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Leifels, Y.; Trautmann, W. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Adrich, P. [National Centre for Nuclear Research, PL-00681 Warsaw (Poland); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Bacri, C.O. [Institut de Physique Nucleaire, IN2P3-CNRS et Universite, F-91406 Orsay (France); Barczyk, T. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Bassini, R. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Bianchin, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boiano, C. [Istituto di Scienze Fisiche, Universita degli Studi and INFN, I-20133 Milano (Italy); Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Boudard, A. [IRFU/SPhN, CEA/Saclay, F-91191 Gif-sur-Yvette (France); Chbihi, A. [GANIL, CEA et IN2P3-CNRS, F-14076 Caen (France); Cibor, J.; Czech, B. [Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342 Krakow (Poland); De Napoli, M. [Dipartimento di Fisica e Astronomia-Universita and INFN-CT and LNS, I-95123 Catania (Italy); and others

    2012-12-01

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  13. Inventory verification measurements using neutron multiplicity counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Foster, L.A.; Harker, W.C.; Krick, M.S.; Langner, D.G.

    1998-01-01

    This paper describes a series of neutron multiplicity measurements of large plutonium samples at the Los Alamos Plutonium Facility. The measurements were corrected for bias caused by neutron energy spectrum shifts and nonuniform multiplication, and are compared with calorimetry/isotopics. The results show that multiplicity counting can increase measurement throughput and yield good verification results for some inventory categories. The authors provide recommendations on the future application of the technique to inventory verification

  14. Experiment of neutron multiplication in lead

    International Nuclear Information System (INIS)

    Jiang Wenmian; Chen Yuan; Liu Rong; Guo Haiping; Shen Jian

    1994-01-01

    The experiments of neutron multiplication in bulk lead have been performed with a total absorption detector (TAD). A hollow polyethylene sphere is used as neutron moderator and absorber of the TAD, which inner and outer diameters are 56 cm and 138 cm respectively. Slow neutron density in TAD is detected with a 6 Li glass scintillator. For Pb thicknesses of 5, 10, 15, 19.6 and 23.1 cm, the neutron multiplications are 1.301, 1.492, 1.599, 1.713 and 1.745 respectively. Overall experimental error is 2.7%. The calculational neutron multiplications with the 1-D ANISN code and ENDF/B-VI file are agreed with experimental ones within experimental error. Moreover, some factors of systematic error of TAD were investigated experimentally, but obvious factors have not been observed yet. (author)

  15. Neutron-multiplication measurement instrument

    Energy Technology Data Exchange (ETDEWEB)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results.

  16. Neutron-multiplication measurement instrument

    International Nuclear Information System (INIS)

    Nixon, K.V.; Dowdy, E.J.; France, S.W.; Millegan, D.R.; Robba, A.A.

    1982-01-01

    The Advanced Nuclear Technology Group of the Los Alamos National Laboratory is now using intelligent data-acquisition and analysis instrumentation for determining the multiplication of nuclear material. Earlier instrumentation, such as the large NIM-crate systems, depended on house power and required additional computation to determine multiplication or to estimate error. The portable, battery-powered multiplication measurement unit, with advanced computational power, acquires data, calculates multiplication, and completes error analysis automatically. Thus, the multiplication is determined easily and an available error estimate enables the user to judge the significance of results

  17. NEUTRON SPECTRUM MEASUREMENTS USING MULTIPLE THRESHOLD DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, William W.; Duffey, Dick

    1963-11-15

    From American Nuclear Society Meeting, New York, Nov. 1963. The use of threshold detectors, which simultaneously undergo reactions with thermal neutrons and two or more fast neutron threshold reactions, was applied to measurements of the neutron spectrum in a reactor. A number of different materials were irradiated to determine the most practical ones for use as multiple threshold detectors. These results, as well as counting techniques and corrections, are presented. Some materials used include aluminum, alloys of Al -Ni, aluminum-- nickel oxides, and magesium orthophosphates. (auth)

  18. Neutron multiplicity measurements with 3He alternative: Straw neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sanjoy [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Wolff, Ronald [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Detwiler, Ryan [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Maurer, Richard [Arnold Avenue Andrews AFB, Joint Base Andrews, MD (United States); Mitchell, Stephen [National Security Technologies, LLC, Las Vegas, NV (United States); Guss, Paul [Remote Sensing Lab. - Nellis, Las Vegas, NV (United States); Lacy, Jeffrey L. [Proportional Technologies, Inc., Houston, TX (United States); Sun, Liang [Proportional Technologies, Inc., Houston, TX (United States); Athanasiades, Athanasios [Proportional Technologies, Inc., Houston, TX (United States)

    2015-01-27

    Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and

  19. Neutron reflection effect on total absorption detector method used in SWINPC neutron multiplication experiment for beryllium

    International Nuclear Information System (INIS)

    Tian Dongfeng; Ho Yukun; Yang Fujia

    2001-01-01

    The SWINPC integral experiment on neutron multiplication in bulk beryllium showed that there were marked discrepancies between experimental data and calculated values with the ENDF/B-VI data. The calculated values become higher than experimental ones as the sample thickness increases. Several works had been devoted to find problems existing in the experiment. This paper discusses the neutron reflection effect on the total absorption detector method which was used in the experiment to measure the neutron leakage from samples. One systematic correction is suggested to make the experimental values agree with the calculated ones with the ENDF/B-VI data within experimental errors. (author)

  20. Prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Madland, D.G.; Nix, J.R.

    1983-01-01

    We present a new method for calculating the prompt fission neutron spectrum N(E) and average prompt neutron multiplicity anti nu/sub p/ as functions of the fissioning nucleus and its excitation energy. The method is based on standard nuclear evaporation theory and takes into account (1) the motion of the fission fragments, (2) the distribution of fission-fragment residual nuclear temperature, (3) the energy dependence of the cross section sigma/sub c/ for the inverse process of compound-nucleus formation, and (4) the possibility of multiple-chance fission. We use a triangular distribution in residual nuclear temperature based on the Fermi-gas model. This leads to closed expressions for N(E) and anti nu/sub p/ when sigma/sub c/ is assumed constant and readily computed quadratures when the energy dependence of sigma/sub c/ is determined from an optical model. Neutron spectra and average multiplicities calculated with an energy-dependent cross section agree well with experimental data for the neutron-induced fission of 235 U and the spontaneous fission of 252 Cf. For the latter case, there are some significant inconsistencies between the experimental spectra that need to be resolved. 29 references

  1. Solving the uncommon reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1980-01-01

    The common reactor core neutronics problems have fundamental neutron space, energy spectrum solutions. Typically the most positive eigenvalue is associated with an all-positive flux for the pseudo-steady-state condition (k/sub eff/), or the critical state is to be effected by selective adjustment of some variable such as the fuel concentration. With sophistication in reactor analysis has come the demand for solutions of other, uncommon neutronics problems. Importance functionss are needed for sensitivity and uncertainty analyses, as for ratios of intergral reaction rates such as the fuel conversion (breeding) ratio. The dominant higher harmonic solution is needed in stability analysis. Typically the desired neutronics solution must contain negative values to qualify as a higher harmonic or to satisfy a fixed source containing negative values. Both regular and adjoint solutions are of interest as are special integrals of the solutions to support analysis

  2. High count problems in elemental analysis using pulsed neutron inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D; Wielopolski, L; Ellis, K J; Cohn, S H [Brookhaven National Lab., Upton, NY (USA). Medical Dept.

    1983-03-01

    Elemental analysis by neutron inelastic scattering using a miniature intense pulsed neutron source ('Zetatron') was evaluated. The particular problems associated with detector pulse-pile-up during the neutron burst and the limited ability of the analyzer to process on average more than one detector pulse per neutron burst were examined. The severity of these problems is described and a solution using a multiple ADC system is proposed.

  3. The relationship between neutron multiplication and keff

    International Nuclear Information System (INIS)

    Brewer, R.W.

    1995-01-01

    In recent years the International Criticality Safety Benchmark Evaluation Project under the sponsorship of the Department of Energy has undertaken the task of evaluating past critical experiments. Many of the experiments involving metals were subcritical with extrapolation to some critical characteristic dimension. The metal experiments were commonly limited to a maximum multiplication of 100 for obvious safety considerations. Also many critical experiments often used subcritical measurements to obtain the critical specifications, e.g. Jezebel used subcritical measurements to assess the magnitude of neutron reflection from the surrounding structures. Therefore, the task of evaluating the experimentally derived critical configuration often involves evaluating the subcritical measurements made by the experimentalist. The purpose of past experiments was to determine critical configurations. Many of the modem computer codes (KENO, MCNP, and ONEDANT) calculate values of k eff . However, the subcritical measurements made during the course of the experiment are usually measurements of the neutron multiplication. To evaluate the subcritical experiments, a link was established between the neutronic theory and the practical application of such when using subcritical measurements to establish the critical characteristic dimension. A more in depth derivation of the relationship between k eff and neutron multiplication will be shown along with comparisons between calculated and measured multiplications

  4. The MARVEL assembly for neutron multiplication

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Mathew T. Kinlaw

    2013-10-01

    A new multiplying test assembly is under development at Idaho National Laboratory to support research, validation, evaluation, and learning. The item is comprised of three stacked, highly-enriched uranium (HEU) cylinders, each 11.4 cm in diameter and having a combined height of up to 11.7 cm. The combined mass of all three cylinders is 20.3 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >3.5 (keff=0.72). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising the assembly's multiplication level to greater than 10. This paper describes simulations performed to assess the assembly's multiplication level under different conditions and describes the resources available at INL to support the use of these materials. We also describe some preliminary calculations and test activities using the assembly to study neutron multiplication.

  5. Monte Carlo method for neutron transport problems

    International Nuclear Information System (INIS)

    Asaoka, Takumi

    1977-01-01

    Some methods for decreasing variances in Monte Carlo neutron transport calculations are presented together with the results of sample calculations. A general purpose neutron transport Monte Carlo code ''MORSE'' was used for the purpose. The first method discussed in this report is the method of statistical estimation. As an example of this method, the application of the coarse-mesh rebalance acceleration method to the criticality calculation of a cylindrical fast reactor is presented. Effective multiplication factor and its standard deviation are presented as a function of the number of histories and comparisons are made between the coarse-mesh rebalance method and the standard method. Five-group neutron fluxes at core center are also compared with the result of S4 calculation. The second method is the method of correlated sampling. This method was applied to the perturbation calculation of control rod worths in a fast critical assembly (FCA-V-3) Two methods of sampling (similar flight paths and identical flight paths) are tested and compared with experimental results. For every cases the experimental value lies within the standard deviation of the Monte Carlo calculations. The third method is the importance sampling. In this report a biased selection of particle flight directions discussed. This method was applied to the flux calculation in a spherical fast neutron system surrounded by a 10.16 cm iron reflector. Result-direction biasing, path-length stretching, and no biasing are compared with S8 calculation. (Aoki, K.)

  6. Research on neutron source multiplication method in nuclear critical safety

    International Nuclear Information System (INIS)

    Zhu Qingfu; Shi Yongqian; Hu Dingsheng

    2005-01-01

    The paper concerns in the neutron source multiplication method research in nuclear critical safety. Based on the neutron diffusion equation with external neutron source the effective sub-critical multiplication factor k s is deduced, and k s is different to the effective neutron multiplication factor k eff in the case of sub-critical system with external neutron source. The verification experiment on the sub-critical system indicates that the parameter measured with neutron source multiplication method is k s , and k s is related to the external neutron source position in sub-critical system and external neutron source spectrum. The relation between k s and k eff and the effect of them on nuclear critical safety is discussed. (author)

  7. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  8. Complex multiplication and lifting problems

    CERN Document Server

    Chai, Ching-Li; Oort, Frans

    2013-01-01

    Abelian varieties with complex multiplication lie at the origins of class field theory, and they play a central role in the contemporary theory of Shimura varieties. They are special in characteristic 0 and ubiquitous over finite fields. This book explores the relationship between such abelian varieties over finite fields and over arithmetically interesting fields of characteristic 0 via the study of several natural CM lifting problems which had previously been solved only in special cases. In addition to giving complete solutions to such questions, the authors provide numerous examples to illustrate the general theory and present a detailed treatment of many fundamental results and concepts in the arithmetic of abelian varieties, such as the Main Theorem of Complex Multiplication and its generalizations, the finer aspects of Tate's work on abelian varieties over finite fields, and deformation theory. This book provides an ideal illustration of how modern techniques in arithmetic geometry (such as descent the...

  9. The MARVEL assembly for neutron multiplication.

    Science.gov (United States)

    Chichester, David L; Kinlaw, Mathew T

    2013-10-01

    A new multiplying test assembly is under development at Idaho National Laboratory to support research, validation, evaluation, and learning. The item is comprised of three stacked, highly-enriched uranium (HEU) cylinders, each 11.4 cm in diameter and having a combined height of up to 11.7 cm. The combined mass of all three cylinders is 20.3 kg of HEU. Calculations for the bare configuration of the assembly indicate a multiplication level of >3.5 (k(eff)=0.72). Reflected configurations of the assembly, using either polyethylene or tungsten, are possible and have the capability of raising the assembly's multiplication level to greater than 10. This paper describes simulations performed to assess the assembly's multiplication level under different conditions and describes the resources available at INL to support the use of these materials. We also describe some preliminary calculations and test activities using the assembly to study neutron multiplication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Search Strategy of Detector Position For Neutron Source Multiplication Method by Using Detected-Neutron Multiplication Factor

    International Nuclear Information System (INIS)

    Endo, Tomohiro

    2011-01-01

    In this paper, an alternative definition of a neutron multiplication factor, detected-neutron multiplication factor kdet, is produced for the neutron source multiplication method..(NSM). By using kdet, a search strategy of appropriate detector position for NSM is also proposed. The NSM is one of the practical subcritical measurement techniques, i.e., the NSM does not require any special equipment other than a stationary external neutron source and an ordinary neutron detector. Additionally, the NSM method is based on steady-state analysis, so that this technique is very suitable for quasi real-time measurement. It is noted that the correction factors play important roles in order to accurately estimate subcriticality from the measured neutron count rates. The present paper aims to clarify how to correct the subcriticality measured by the NSM method, the physical meaning of the correction factors, and how to reduce the impact of correction factors by setting a neutron detector at an appropriate detector position

  11. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  12. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  13. Applications of neutrons for laboratory and industrial activation analysis problems

    International Nuclear Information System (INIS)

    Szabo, Elek; Bakos, Laszlo

    1986-01-01

    This chapter presents some particular applications and case studies of neutrons in activation analysis for research and industrial development purposes. The reactor neutrons have been applied in Hungarian laboratories for semiconductor research, for analysis of geological (lunar) samples, and for a special comparator measurement of samples. Some industrial applications of neutron generator and sealed sources for analytical problems are presented. Finally, prompt neutron activation analysis is outlined briefly. (R.P.)

  14. The problem of multiple carcinomas

    International Nuclear Information System (INIS)

    Kegel, W.; Schmieder, A.

    1982-01-01

    This retrospective study reports on the occurrence of multiple carcinomas among the patients of our Department of Radiotherapy. Examination of 1290 patients during 1978 to 1980 showed in 76 cases (5.8%) simultaneously or successively secondary or tertiary tumours. These multiple tumours were most frequent in the mammary gland, in the female genital organs and in the respiratory system. Women had an incidence which was double of that displayed by men. Diagnosis and therapy of malignant tumours must always consider the possibility of multiplicity of carcinomas, either simultaneously or succesively, appearing spontaneously or as a result of iatrogenic influences. This applies in particular to the multicentric and bilateral occurrence of the early types of cancer of the female breast. (orig.) [de

  15. The Multiple-markets Problem

    DEFF Research Database (Denmark)

    Frankel, Christian

    2015-01-01

    Only few studies in the field of new new economic sociology deal with a simultaneity of multiple markets in the analysis. One central explanation of this situation is limitations inherent in the new new economic sociology. In this review essay I address such limitations as a way to develop research...

  16. Subcritical Neutron Multiplication Measurements of HEU Using Delayed Neutrons as the Driving Source

    International Nuclear Information System (INIS)

    Hollas, C.L.; Goulding, C.A.; Myers, W.L.

    1999-01-01

    A new method for the determination of the multiplication of highly enriched uranium systems is presented. The method uses delayed neutrons to drive the HEU system. These delayed neutrons are from fission events induced by a pulsed 14-MeV neutron source. Between pulses, neutrons are detected within a medium efficiency neutron detector using 3 He ionization tubes within polyethylene enclosures. The neutron detection times are recorded relative to the initiation of the 14-MeV neutron pulse, and subsequently analyzed with the Feynman reduced variance method to extract singles, doubles and triples neutron counting rates. Measurements have been made on a set of nested hollow spheres of 93% enriched uranium, with mass values from 3.86 kg to 21.48 kg. The singles, doubles and triples counting rates for each uranium system are compared to calculations from point kinetics models of neutron multiplicity to assign multiplication values. These multiplication values are compared to those from MC NP K-Code calculations

  17. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    International Nuclear Information System (INIS)

    William Charlton

    2007-01-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions

  18. Active neutron multiplicity analysis and Monte Carlo calculations

    International Nuclear Information System (INIS)

    Krick, M.S.; Ensslin, N.; Langner, D.G.; Miller, M.C.; Siebelist, R.; Stewart, J.E.; Ceo, R.N.; May, P.K.; Collins, L.L. Jr

    1994-01-01

    Active neutron multiplicity measurements of high-enrichment uranium metal and oxide samples have been made at Los Alamos and Y-12. The data from the measurements of standards at Los Alamos were analyzed to obtain values for neutron multiplication and source-sample coupling. These results are compared to equivalent results obtained from Monte Carlo calculations. An approximate relationship between coupling and multiplication is derived and used to correct doubles rates for multiplication and coupling. The utility of singles counting for uranium samples is also examined

  19. Solving the uncommon nuclear reactor core neutronics problems

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.

    1983-01-01

    Calculational procedures have been implemented for solving importance and higher harmonic neutronics problems. Solutions are obtained routinely to support analysis of reactor core performance, treating up to three space coordinates with the multigroup diffusion theory approximation to neutron transport. The techniques used and some of the calculational difficulties are discussed

  20. Effects of neutron spectrum and external neutron source on neutron multiplication parameters in accelerator-driven system

    International Nuclear Information System (INIS)

    Shahbunder, Hesham; Pyeon, Cheol Ho; Misawa, Tsuyoshi; Lim, Jae-Yong; Shiroya, Seiji

    2010-01-01

    The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor k s , external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton-tungsten source in hard and soft neutron spectra cores and 14 MeV D-T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6-13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.

  1. Multiple order reflections in crystal neutron monochromators

    International Nuclear Information System (INIS)

    Fulfaro, R.

    1976-01-01

    A study of the higher order reflections in neutron crystal monochromators was made in order to obtain, for the IEA single crystal spectrometer, the operation range of 1,0eV to 0,01eV. Two crystals were studied, an Al(III) near 1,0eV and a Ge(III) in lower energies. For the Ge(III) case the higher order contaminations in the reflected beam were determined using as standard the gold total neutron cross section and performing the crystal reflectivity calculation for several orders of reflection. The knowledge of the contamination for each order as a function of neutron wavelength allows the optimization of the filter thickness in order to avoid higher order neutrons. The Ge(III) crystal was used because its second order reflections are theoretically forbidden, giving an advantage on other crystals, since measurements can be made until 0.02eV directly without filters. In the energy range 0.02 to 0.01eV, order contaminations higher than the second are present, therefore, either quartz filters are employed or calculated corrections are applied to the experimental data. The Al(III) crystal was used in order to estimate the second order contamination effect, in the iridium resonance measurements, at E 0 = 0.654eV. In that region, approximations can be made and it was not necessary to make the crystal reflectivity calculation for the filters thickness optimization. Since only the second order affects the results in that region, tellurium was used for the filtration, because this element has a resonance in the range of neutrons with energy 4E [pt

  2. Intermediate neutron spectrum problems and the intermediate neutron spectrum experiment

    International Nuclear Information System (INIS)

    Jaegers, P.J.; Sanchez, R.G.

    1996-01-01

    Criticality benchmark data for intermediate energy spectrum systems does not exist. These systems are dominated by scattering and fission events induced by neutrons with energies between 1 eV and 1 MeV. Nuclear data uncertainties have been reported for such systems which can not be resolved without benchmark critical experiments. Intermediate energy spectrum systems have been proposed for the geological disposition of surplus fissile materials. Without the proper benchmarking of the nuclear data in the intermediate energy spectrum, adequate criticality safety margins can not be guaranteed. The Zeus critical experiment now under construction will provide this necessary benchmark data

  3. Estimation of subcriticality by neutron source multiplication method

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Suzaki, Takenori; Arakawa, Takuya; Naito, Yoshitaka

    1995-03-01

    Subcritical cores were constructed in a core tank of the TCA by arraying 2.6% enriched UO 2 fuel rods into nxn square lattices of 1.956 cm pitch. Vertical distributions of the neutron count rates for the fifteen subcritical cores (n=17, 16, 14, 11, 8) with different water levels were measured at 5 cm interval with 235 U micro-fission counters at the in-core and out-core positions arranging a 252 C f neutron source at near core center. The continuous energy Monte Carlo code MCNP-4A was used for the calculation of neutron multiplication factors and neutron count rates. In this study, important conclusions are as follows: (1) Differences of neutron multiplication factors resulted from exponential experiment and MCNP-4A are below 1% in most cases. (2) Standard deviations of neutron count rates calculated from MCNP-4A with 500000 histories are 5-8%. The calculated neutron count rates are consistent with the measured one. (author)

  4. The isotope density inverse problem in multigroup neutron transport

    International Nuclear Information System (INIS)

    Zazula, J.M.

    1981-01-01

    The inverse problem for stationary multigroup anisotropic neutron transport is discussed in order to search for isotope densities in multielement medium. The spatial- and angular-integrated form of neutron transport equation, in terms of the flux in a group - density of an element spatial correlation, leads to a set of integral functionals for the densities weighted by the group fluxes. Some methods of approximation to make the problem uniquently solvable are proposed. Particularly P 0 angular flux information and the spherically-symetrical geometry of an infinite medium are considered. The numerical calculation using this method related to sooner evaluated direct problem data gives promising agreement with primary densities. This approach would be the basis for further application in an elemental analysis of a medium, using an isotopic neutron source and a moving, energy-dependent neutron detector. (author)

  5. FB-line neutron multiplicity counter operation manual

    International Nuclear Information System (INIS)

    Langner, D.G.; Sweet, M.R.; Salazar, S.D.; Kroncke, K.E.

    1998-01-01

    This manual describes the design features, performance, and operating characteristics for the FB-Line Neutron Multiplicity Counter (FBLNMC). The FBLNMC counts neutron multiplicities to quantitatively assay plutonium in many forms, including impure scrap and waste. Monte Carlo neutronic calculations were used to design the high-efficiency (57%) detector that has 113 3 H tubes in a high-density polyethylene body. The new derandomizer circuit is included in the design to reduce deadtime. The FBLNMC can be applied to plutonium masses in the range from a few tens of grams to 5 kg; both conventional coincidence counting and multiplicity counting can be used as appropriate. This manual gives the performance data and preliminary calibration parameters for the FBLNMC

  6. Simple and effective method of determining multiplicity distribution law of neutrons emitted by fissionable material with significant self -multiplication effect

    International Nuclear Information System (INIS)

    Yanjushkin, V.A.

    1991-01-01

    At developing new methods of non-destructive determination of plutonium full mass in nuclear materials and products being involved in uranium -plutonium fuel cycle by its intrinsic neutron radiation, it may be useful to know not only separate moments but the multiplicity distribution law itself of neutron leaving this material surface using the following as parameters - firstly, unconditional multiplicity distribution laws of neutrons formed in spontaneous and induced fission acts of the given fissionable material corresponding nuclei and unconditional multiplicity distribution law of neutrons caused by (α,n) reactions at light nuclei of some elements which compose this material chemical structure; -secondly, probability of induced fission of this material nuclei by an incident neutron of any nature formed during the previous fissions or(α,n) reactions. An attempt to develop similar theory has been undertaken. Here the author proposes his approach to this problem. The main advantage of this approach, to our mind, consists in its mathematical simplicity and easy realization at the computer. In principle, the given model guarantees any good accuracy at any real value of induced fission probability without limitations dealing with physico-chemical composition of nuclear material

  7. Measurement of neutron multiplication in Pb by Mn foils

    International Nuclear Information System (INIS)

    Chen Yuan; Liu Rong; Guo Haiping; Jiang Wenmian; Shen Jian

    1994-01-01

    The Leakage neutron multiplication in bulk lead has been measured using the total absorption detector and relative method. The polyethylene sphere of 138 cm in diameter is used as the moderator and total absorption detector. The measured results from 55 Mn foils and 6 Li glass are compared. The neutron multiplication is 1.74 with the lead shell of 23.1 cm thick. The measured result is consistent with the calculated one with ANISN code and ENDF/B-6 evaluated data within the experimental error. (4 figs., 3 tabs.)

  8. Expected precision of neutron multiplicity measurements of waste drums

    International Nuclear Information System (INIS)

    Ensslin, N.; Krick, M.S.; Menlove, H.O.

    1995-01-01

    DOE facilities are beginning to apply passive neutron multiplicity counting techniques to the assay of plutonium scrap and residues. There is also considerable interest in applying this new measurement technique to 208-liter waste drums. The additional information available from multiplicity counting could flag the presence of shielding materials or improve assay accuracy by correcting for matrix effects such as (α,n) induced fission or detector efficiency variations. The potential for multiplicity analysis of waste drums, and the importance of better detector design, can be estimated by calculating the expected assay precision using a Figure of Merit code for assay variance. This paper reports results obtained as a function of waste drum content and detector characteristics. We find that multiplicity analysis of waste drums is feasible if a high-efficiency neutron counter is used. However, results are significantly poorer if the multiplicity analysis must be used to solve for detection efficiency

  9. Prediction of the neutrons subcritical multiplication using the diffusion hybrid equation with external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil); Senra Martinez, Aquilino, E-mail: aquilino@lmp.ufrj.br [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-914, Rio de Janeiro (Brazil)

    2011-07-15

    Highlights: > We proposed a new neutron diffusion hybrid equation with external neutron source. > A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. > 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.

  10. Prediction of the neutrons subcritical multiplication using the diffusion hybrid equation with external neutron sources

    International Nuclear Information System (INIS)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino

    2011-01-01

    Highlights: → We proposed a new neutron diffusion hybrid equation with external neutron source. → A coarse mesh finite difference method for the adjoint flux and reactivity calculation was developed. → 1/M curve to predict the criticality condition is used. - Abstract: We used the neutron diffusion hybrid equation, in cartesian geometry with external neutron sources to predict the subcritical multiplication of neutrons in a pressurized water reactor, using a 1/M curve to predict the criticality condition. A Coarse Mesh Finite Difference Method was developed for the adjoint flux calculation and to obtain the reactivity values of the reactor. The results obtained were compared with benchmark values in order to validate the methodology presented in this paper.

  11. Neutron multiplicity for neutron induced fission of 235U, 238U, and 239Pu as a function of neutron energy

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Recent development in the theory and practice of neutron correlation (''coincidence'') counting require knowledge of the higher factorial moments of the P/sub ν/ distribution (the probability that (ν) neutrons are emitted in a fission) for the case where the fission is induced by bombarding neutrons of more than thermal energies. In contrast to the situation with spontaneous and thermal neutron induced fission, where with a few exceptions the P/sub ν/ is reasonably well known, in the fast neutron energy region, almost no information is available concerning the multiplicity beyond the average value, [ν], even for the most important nuclides. The reason for this is the difficulty of such experiments, with consequent statistically poor and physically inconsistent results

  12. To the problem of the coherence length of neutrons

    International Nuclear Information System (INIS)

    Varga, P.

    1992-11-01

    The challenge of the high accuracy of certain optical measurements, the long coherence length of light provokes one to search for possibilities to enlarge the neutron coherence length. A proposal is made to achieve this by using a five or a four plate Bonse-Hart interferometer. A further problem is, whether the neutron beam is composed of wave packets or of overlapping independent monochromatic waves; it is considered that the former is more likely. (author) 12 refs.; 3 figs

  13. Multiple small-angle neutron scattering studies of anisotropic materials

    CERN Document Server

    Allen, A J; Long, G G; Ilavsky, J

    2002-01-01

    Building on previous work that considered spherical scatterers and randomly oriented spheroidal scatterers, we describe a multiple small-angle neutron scattering (MSANS) analysis for nonrandomly oriented spheroids. We illustrate this with studies of the multi-component void morphologies found in plasma-spray thermal barrier coatings. (orig.)

  14. Assessment of uncertainties in Neutron Multiplicity Counting

    International Nuclear Information System (INIS)

    Peerani, P.; Marin Ferrer, M.

    2008-01-01

    This paper describes a methodology for a complete and correct assessment of the errors coming from the uncertainty of each individual component on the final result. A general methodology accounting for all the main sources of error (both type-A and type-B) will be outlined. In order to better illustrate the method, a practical example applying it to the uncertainty estimation for a special case of multiplicity counter, the SNMC developed at JRC, will be given

  15. Resolvent-Techniques for Multiple Exercise Problems

    International Nuclear Information System (INIS)

    Christensen, Sören; Lempa, Jukka

    2015-01-01

    We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristics of the problems can be identified more explicitly. We illustrate the main results with explicit examples

  16. Resolvent-Techniques for Multiple Exercise Problems

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Sören, E-mail: christensen@math.uni-kiel.de [Christian–Albrechts-University in Kiel, Mathematical Institute (Germany); Lempa, Jukka, E-mail: jukka.lempa@hioa.no [Oslo and Akershus University College, School of business, Faculty of Social Sciences (Norway)

    2015-02-15

    We study optimal multiple stopping of strong Markov processes with random refraction periods. The refraction periods are assumed to be exponentially distributed with a common rate and independent of the underlying dynamics. Our main tool is using the resolvent operator. In the first part, we reduce infinite stopping problems to ordinary ones in a general strong Markov setting. This leads to explicit solutions for wide classes of such problems. Starting from this result, we analyze problems with finitely many exercise rights and explain solution methods for some classes of problems with underlying Lévy and diffusion processes, where the optimal characteristics of the problems can be identified more explicitly. We illustrate the main results with explicit examples.

  17. Effects of (α,n) contaminants and sample multiplication on statistical neutron correlation measurements

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Hansen, G.E.; Robba, A.A.; Pratt, J.C.

    1980-01-01

    The complete formalism for the use of statistical neutron fluctuation measurements for the nondestructive assay of fissionable materials has been developed. This formalism includes the effect of detector deadtime, neutron multiplicity, random neutron pulse contributions from (α,n) contaminants in the sample, and the sample multiplication of both fission-related and background neutrons

  18. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  19. Fundamental Problems of Neutron Physics at the Spallation Neutron Source at the ORNL

    International Nuclear Information System (INIS)

    Gudkov, Vladimir

    2008-01-01

    We propose to provide theoretical support for the experimental program in fundamental neutron physics at the SNS. This includes the study of neutron properties, neutron beta-decay, parity violation effects and time reversal violation effects. The main purpose of the proposed research is to work on theoretical problems related to experiments which have a high priority at the SNS. Therefore, we will make a complete analysis of beta-decay process including calculations of radiative corrections and recoil corrections for angular correlations for polarized neutron decay, with an accuracy better that is supposed to be achieved in the planning experiments. Based on the results of the calculations, we will provide analysis of sensitivity of angular correlations to be able to search for the possible extensions of the Standard model. Also we will help to plan other experiments to address significant problems of modern physics and will work on their theoretical support.

  20. Benchmarking time-dependent neutron problems with Monte Carlo codes

    International Nuclear Information System (INIS)

    Couet, B.; Loomis, W.A.

    1990-01-01

    Many nuclear logging tools measure the time dependence of a neutron flux in a geological formation to infer important properties of the formation. The complex geometry of the tool and the borehole within the formation does not permit an exact deterministic modelling of the neutron flux behaviour. While this exact simulation is possible with Monte Carlo methods the computation time does not facilitate quick turnaround of results useful for design and diagnostic purposes. Nonetheless a simple model based on the diffusion-decay equation for the flux of neutrons of a single energy group can be useful in this situation. A combination approach where a Monte Carlo calculation benchmarks a deterministic model in terms of the diffusion constants of the neutrons propagating in the media and their flux depletion rates thus offers the possibility of quick calculation with assurance as to accuracy. We exemplify this approach with the Monte Carlo benchmarking of a logging tool problem, showing standoff and bedding response. (author)

  1. Measurements of fusion neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Giese, H.; Kappler, F.; Tayama, R.; Moellendorff, U. von; Alevra, A.; Klein, H.

    1996-01-01

    New results of spherical-shell transmission measurements with 14-MeV neutrons on pure beryllium shells up to 17 cm thick are reported. The spectral flux above 3 MeV was measured using a liquid scintillation detector. At 17 cm thickness, also the total neutron multiplication was measured using a Bonner sphere system. The results agree well with calculations using beryllium nuclear data from the EFF-1 or the ENDF/B-Vi library. (author). 23 refs, 4 figs, 1 tab

  2. Genetic Algorithms for Multiple-Choice Problems

    Science.gov (United States)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  3. Solution of the multigroup neutron diffusion Eigenvalue problem in slab geometry by modified power method

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Rodrigo [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pós-Graduação em Matemática Aplicada; Petersen, Claudio Z.; Tavares, Matheus G., E-mail: rodrigozanette@hotmail.com, E-mail: claudiopetersen@yahoo.com.br, E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Programa de Pós-Graduação em Modelagem Matemática

    2017-07-01

    We describe in this work the application of the modified power method for solve the multigroup neutron diffusion eigenvalue problem in slab geometry considering two-dimensions for nuclear reactor global calculations. It is well known that criticality calculations can often be best approached by solving eigenvalue problems. The criticality in nuclear reactors physics plays a relevant role since establishes the ratio between the numbers of neutrons generated in successive fission reactions. In order to solve the eigenvalue problem, a modified power method is used to obtain the dominant eigenvalue (effective multiplication factor (K{sub eff})) and its corresponding eigenfunction (scalar neutron flux), which is non-negative in every domain, that is, physically relevant. The innovation of this work is solving the neutron diffusion equation in analytical form for each new iteration of the power method. For solve this problem we propose to apply the Finite Fourier Sine Transform on one of the spatial variables obtaining a transformed problem which is resolved by well-established methods for ordinary differential equations. The inverse Fourier transform is used to reconstruct the solution for the original problem. It is known that the power method is an iterative source method in which is updated by the neutron flux expression of previous iteration. Thus, for each new iteration, the neutron flux expression becomes larger and more complex due to analytical solution what makes propose that it be reconstructed through an polynomial interpolation. The methodology is implemented to solve a homogeneous problem and the results are compared with works presents in the literature. (author)

  4. On the solution of a few problems of multiple scattering by Monte Carlo method

    International Nuclear Information System (INIS)

    Bluet, J.C.

    1966-02-01

    Three problems of multiple scattering arising from neutron cross sections experiments, are reported here. The common hypothesis are: - Elastic scattering is the only possible process - Angular distributions are isotropic - Losses of particle energy are negligible in successive collisions. In the three cases practical results, corresponding to actual experiments are given. Moreover the results are shown in more general way, using dimensionless variable such as the ratio of geometrical dimensions to neutron mean free path. The FORTRAN codes are given together with to the corresponding flow charts, and lexicons of symbols. First problem: Measurement of sodium capture cross-section. A sodium sample of given geometry is submitted to a neutron flux. Induced activity is then measured by means of a sodium iodide cristal. The distribution of active nuclei in the sample, and the counter efficiency are calculated by Monte-Carlo method taking multiple scattering into account. Second problem: absolute measurement of a neutron flux using a glass scintillator. The scintillator is a use of lithium 6 loaded glass, submitted to neutron flux perpendicular to its plane faces. If the glass thickness is not negligible compared with scattering mean free path λ, the mean path e' of neutrons in the glass is different from the thickness. Monte-Carlo calculation are made to compute this path and a relative correction to efficiency equal to (e' - e)/e. Third problem: study of a neutron collimator. A neutron detector is placed at the bottom of a cylinder surrounded with water. A neutron source is placed on the cylinder axis, in front of the water shield. The number of neutron tracks going directly and indirectly through the water from the source to the detector are counted. (author) [fr

  5. [Supporting parenting in families with multiple problems].

    Science.gov (United States)

    Le Foll, Julie

    2015-01-01

    Supporting parenthood in families with multiple problems is a major early prevention challenge. Indeed, the factors of vulnerability, especially if they mount up, expose the child to an increased risk of a somatic pathology, developmental delays, learning difficulties and maltreatment. In order to limit the impact of these vulnerabilities on the health of mothers and infants, it is essential to act early, to adapt the working framework and to collaborate within a network. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    International Nuclear Information System (INIS)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-01-01

    An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  7. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    Science.gov (United States)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-07-01

    An extension of the point kinetics model is developed to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. The spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  8. Finite element method for solving neutron transport problems

    International Nuclear Information System (INIS)

    Ferguson, J.M.; Greenbaum, A.

    1984-01-01

    A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems

  9. Neutron targets of Moscow meson facility status, problems, prospects

    Energy Technology Data Exchange (ETDEWEB)

    Sidorkin, S.; Koptelov, E.; Perekrestenko, A.; Stavissky, Y.; Trushkin, V.; Sobolevsky, N. [Institute for Nuclear Research RAS, 60-th October Anniversary Prospect, Moscow (Russian Federation)

    2001-03-01

    The status, problems and possible perspectives of target complexes of the Moscow meson factory is described in the report. The results of test proton beam session to neutron source are analysed. Some technical features of targets and expected modes in the nearest sessions are stated. (author)

  10. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  11. Principles and problems in neutron nuclear data evaluation

    International Nuclear Information System (INIS)

    Schmidt, J.J.

    1967-01-01

    The history of neutron nuclear data evaluation is briefly summarized. The physical problems involved in nuclear data evaluation, such as discrepancies and inconsistencies between different experimental data sets and gaps in experimental information, are discussed. The discrepancies in the capture cross-section data for molybdenum and iron are chosen to illustrate the great difficulties in systematizing and automatizing the evaluation process. The technical problems of data evaluation, such as computer storage and the establishment of nuclear data files, are not discussed. (author)

  12. Research on amplification multiple of source neutron number for ADS

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qingbiao; Ding Dazhao

    1998-01-01

    NJOY-91.91 and MILER code systems was applied to process and generate 44 group cross sections in AMPX master library format from CENDL-2 and ENDF/B-6. It is important an ADS (Accelerator-Driven System) assembly spectrum is used as the weighting spectrum for generating multi-group constants. Amplification multiples of source neutron number for several fast assemblies were calculated

  13. Reducing neutron multiplicity counting bias for plutonium warhead authentication

    Energy Technology Data Exchange (ETDEWEB)

    Goettsche, Malte

    2015-06-05

    Confidence in future nuclear arms control agreements could be enhanced by direct verification of warheads. It would include warhead authentication. This is the assessment based on measurements whether a declaration that a specific item is a nuclear warhead is true. An information barrier can be used to protect sensitive information during measurements. It could for example show whether attributes such as a fissile mass exceeding a threshold are met without indicating detailed measurement results. Neutron multiplicity measurements would be able to assess a plutonium fissile mass attribute if it were possible to show that their bias is low. Plutonium measurements have been conducted with the He-3 based Passive Scrap Multiplicity Counter. The measurement data has been used as a reference to test the capacity of the Monte Carlo code MCNPX-PoliMi to simulate neutron multiplicity measurements. The simulation results with their uncertainties are in agreement with the experimental results. It is essential to use cross-sections which include neutron scattering with the detector's polyethylene molecular structure. Further MCNPX-PoliMi simulations have been conducted in order to study bias that occurs when measuring samples with large plutonium masses such as warheads. Simulation results of solid and hollow metal spheres up to 6000 g show that the masses are underpredicted by as much as 20%. The main source of this bias has been identified in the false assumption that the neutron multiplication does not depend on the position where a spontaneous fission event occurred. The multiplication refers to the total number of neutrons leaking a sample after a primary spontaneous fission event, taking induced fission into consideration. The correction of the analysis has been derived and implemented in a MATLAB code. It depends on four geometry-dependent correction coefficients. When the sample configuration is fully known, these can be exactly determined and remove this type of

  14. Measurements and applications of neutron multiple scattering in resonance region

    International Nuclear Information System (INIS)

    Ohkubo, Makio

    1977-02-01

    Capture yield of neutrons impinging on a thick material is complicated due to self-shielding and multiple scattering, especially in the resonance region. When the incident neutron energy is equal to a resonance energy of the material, capture probability of the neutron increases with sample thickness and reaches a saturation value P sub(CO). There is a simple relation between P sub(CO) and GAMMA sub(n)/GAMMA and the recoil energy by the Monte-Carlo calculation. To examine validity of the relation, P sub(CO) was measured for 19 resonances in 12 nuclides with thick samples, using a JAERI linac time-of-flight spectrometer with Moxon-Rae type gamma ray detector and transmission type neutron flux monitor. Results of the measurements confirmed the validity. With this relation, the GAMMA sub(n)/GAMMA or GAMMA sub(γ)/GAMMA value can be obtained from the measured P sub(CO), and also the level spins be determined by combining the transmission data. Because of the definition of P sub(CO), determination of the resonance parameters is not sensitive to the sample thickness as far as it is sufficiently thick. (auth.)

  15. Fission neutrons experiments, evaluation, modeling and open problems

    CERN Document Server

    Kornilov, Nikolay

    2014-01-01

    Although the fission of heavy nuclei was discovered over 75 years ago, many problems and questions still remain to be addressed and answered. The reader will be presented with an old, but persistent problem of this field: The contradiction between Prompt Fission Neutron (PFN) spectra measured with differential (microscopic) experiments and integral (macroscopic and benchmark) experiments (the Micro-Macro problem). The difference in average energy is rather small ~3% but it is stable and we cannot explain the difference due to experimental uncertainties. Can we measure the PFN spectrum with hig

  16. Geometry-based multiplication correction for passive neutron coincidence assay of materials with variable and unknown (α,n) neutron rates

    International Nuclear Information System (INIS)

    Langner, D.G.; Russo, P.A.

    1993-02-01

    We have studied the problem of assaying impure plutonium-bearing materials using passive neutron coincidence counting. We have developed a technique to analyze neutron coincidence data from impure plutonium samples that uses the bulk geometry of the sample to correct for multiplication in samples for which the (α,n) neutron production rate is unknown. This technique can be applied to any impure plutonium-bearing material whose matrix constituents are approximately constant, whose self-multiplication is low to moderate, whose plutonium isotopic composition is known and not substantially varying, and whose bulk geometry is measurable or can be derived. This technique requires a set of reference materials that have well-characterized plutonium contents. These reference materials are measured once to derive a calibration that is specific to the neutron detector and the material. The technique has been applied to molten salt extraction residues, PuF 4 samples that have a variable salt matrix, and impure plutonium oxide samples. It is also applied to pure plutonium oxide samples for comparison. Assays accurate to 4% (1 σ) were obtained for impure samples measured in a High-Level Neutron Coincidence Counter II. The effects on the technique of variations in neutron detector efficiency with energy and the effects of neutron capture in the sample are discussed

  17. The hydrogen anomaly problem in neutron Compton scattering

    Science.gov (United States)

    Karlsson, Erik B.

    2018-03-01

    Neutron Compton scattering (also called ‘deep inelastic scattering of neutrons’, DINS) is a method used to study momentum distributions of light atoms in solids and liquids. It has been employed extensively since the start-up of intense pulsed neutron sources about 25 years ago. The information lies primarily in the width and shape of the Compton profile and not in the absolute intensity of the Compton peaks. It was therefore not immediately recognized that the relative intensities of Compton peaks arising from scattering on different isotopes did not always agree with values expected from standard neutron cross-section tables. The discrepancies were particularly large for scattering on protons, a phenomenon that became known as ‘the hydrogen anomaly problem’. The present paper is a review of the discovery, experimental tests to prove or disprove the existence of the hydrogen anomaly and discussions concerning its origin. It covers a twenty-year-long history of experimentation, theoretical treatments and discussions. The problem is of fundamental interest, since it involves quantum phenomena on the subfemtosecond time scale, which are not visible in conventional thermal neutron scattering but are important in Compton scattering where neutrons have two orders of magnitude times higher energy. Different H-containing systems show different cross-section deficiencies and when the scattering processes are followed on the femtosecond time scale the cross-section losses disappear on different characteristic time scales for each H-environment. The last section of this review reproduces results from published papers based on quantum interference in scattering on identical particles (proton or deuteron pairs or clusters), which have given a quantitative theoretical explanation both regarding the H-cross-section reduction and its time dependence. Some new explanations are added and the concluding chapter summarizes the conditions for observing the specific quantum

  18. Fourier convergence analysis applied to neutron diffusion Eigenvalue problem

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Noh, Jae Man; Joo, Hyung Kook

    2004-01-01

    Fourier error analysis has been a standard technique for the stability and convergence analysis of linear and nonlinear iterative methods. Though the methods can be applied to Eigenvalue problems too, all the Fourier convergence analyses have been performed only for fixed source problems and a Fourier convergence analysis for Eigenvalue problem has never been reported. Lee et al proposed new 2-D/1-D coupling methods and they showed that the new ones are unconditionally stable while one of the two existing ones is unstable at a small mesh size and that the new ones are better than the existing ones in terms of the convergence rate. In this paper the convergence of method A in reference 4 for the diffusion Eigenvalue problem was analyzed by the Fourier analysis. The Fourier convergence analysis presented in this paper is the first one applied to a neutronics eigenvalue problem to the best of our knowledge

  19. Thermal-neutron multiple scattering: critical double scattering

    International Nuclear Information System (INIS)

    Holm, W.A.

    1976-01-01

    A quantum mechanical formulation for multiple scattering of thermal-neutrons from macroscopic targets is presented and applied to single and double scattering. Critical nuclear scattering from liquids and critical magnetic scattering from ferromagnets are treated in detail in the quasielastic approximation for target systems slightly above their critical points. Numerical estimates are made of the double scattering contribution to the critical magnetic cross section using relevant parameters from actual experiments performed on various ferromagnets. The effect is to alter the usual Lorentzian line shape dependence on neutron wave vector transfer. Comparison with corresponding deviations in line shape resulting from the use of Fisher's modified form of the Ornstein-Zernike spin correlations within the framework of single scattering theory leads to values for the critical exponent eta of the modified correlations which reproduce the effect of double scattering. In addition, it is shown that by restricting the range of applicability of the multiple scattering theory from the outset to critical scattering, Glauber's high energy approximation can be used to provide a much simpler and more powerful description of multiple scattering effects. When sufficiently close to the critical point, it provides a closed form expression for the differential cross section which includes all orders of scattering and has the same form as the single scattering cross section with a modified exponent for the wave vector transfer

  20. A set-up for measuring neutron cross sections and radiation multiplicity from neutron-nucleus interaction

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Ermakov, V.A.; Grigor'ev, Yu.V.

    1988-01-01

    A multiplicity detector of the ''Romashka'' type has been used on the 500 m flight part of the IBR-30 pulsed reactor. The detector consists of 16 independent sections with NaJ(Tl) crystals with a total volume of 36 liters. The geometric efficiency of single-ray detection is ∼ 80%. The gamma-ray to neutron detection efficiency ratio is ≥600 for neutrons with energies below 200 keV. This detector allows one to perform neutron capture and fission cross section measurements and to study gamma-ray multiplicity and resonance selfabsorption effects in the 20 eV-200keV neutron energy range

  1. Criticality problems in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1979-01-01

    The criticality problem is considered for energy dependent neutron transport in an isotropically scattering, homogeneous slab. Under a positivity assumption on the scattering kernel, an expression can be found relating the thickness of the slab to a parameter characterizing production by fission. This is accomplished by exploiting the Perron-Frobenius-Jentsch characterization of positive operators (i.e. those leaving invariant a normal, reproducing cone in a Banach space). It is pointed out that those techniques work for classes of multigroup problems were the Case singular eigenfunction approach is not as feasible as in the one-group theory, which is also analyzed

  2. MCRTOF, Multiple Scattering of Resonance Region Neutron in Time of Flight Experiments

    International Nuclear Information System (INIS)

    Ohkubo, Mako

    1984-01-01

    1 - Description of program or function: Multiple scattering of neutrons in the resonance energy region impinging on a disk with an arbitrary angle. 2 - Method of solution: The Monte Carlo method is employed to simulate the path of an incident neutron in a medium for which macroscopic cross sections are determined by resonance parameters. By tracing a large number of neutrons, probabilities for capture, transmission, front-face scattering, rear-face scattering and side-face scattering are determined and printed out as function of incident neutron energy. Optionally, the distribution of capture locations in the disk can be printed. The incident neutron energy is swept to fit a situation as encountered in time-of-flight experiments. 3 - Restrictions on the complexity of the problem: The cross section file is constructed from input resonance parameters with a single- level Breit-Wigner formula. The following restrictions and simplifications apply: - The maximum number of resonances is five. - Reactions other than capture and scattering are neglected. - The angular scattering distribution in the center-of-mass system is assumed to be uniform. - Chemical binding effects are neglected

  3. Domain decomposition methods for the neutron diffusion problem

    International Nuclear Information System (INIS)

    Guerin, P.; Baudron, A. M.; Lautard, J. J.

    2010-01-01

    The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, simplified transport (SPN) or diffusion approximations are often used. The MINOS solver developed at CEA Saclay uses a mixed dual finite element method for the resolution of these problems. and has shown his efficiency. In order to take into account the heterogeneities of the geometry, a very fine mesh is generally required, and leads to expensive calculations for industrial applications. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose here two domain decomposition methods based on the MINOS solver. The first approach is a component mode synthesis method on overlapping sub-domains: several Eigenmodes solutions of a local problem on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is an iterative method based on a non-overlapping domain decomposition with Robin interface conditions. At each iteration, we solve the problem on each sub-domain with the interface conditions given by the solutions on the adjacent sub-domains estimated at the previous iteration. Numerical results on parallel computers are presented for the diffusion model on realistic 2D and 3D cores. (authors)

  4. Nodal methods for problems in fluid mechanics and neutron transport

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1985-01-01

    A new high-accuracy, coarse-mesh, nodal integral approach is developed for the efficient numerical solution of linear partial differential equations. It is shown that various special cases of this general nodal integral approach correspond to several high efficiency nodal methods developed recently for the numerical solution of neutron diffusion and neutron transport problems. The new approach is extended to the nonlinear Navier-Stokes equations of fluid mechanics; its extension to these equations leads to a new computational method, the nodal integral method which is implemented for the numerical solution of these equations. Application to several test problems demonstrates the superior computational efficiency of this new method over previously developed methods. The solutions obtained for several driven cavity problems are compared with the available experimental data and are shown to be in very good agreement with experiment. Additional comparisons also show that the coarse-mesh, nodal integral method results agree very well with the results of definitive ultra-fine-mesh, finite-difference calculations for the driven cavity problem up to fairly high Reynolds numbers

  5. Neutron magnetic multiple diffraction in a natural magnetite crystal

    International Nuclear Information System (INIS)

    Mazzocchi, V.L.; Parente, C.B.R.

    1988-09-01

    Neutron multiple diffraction has been employed in the study of the magnetism in magnetite (Fe 3 O 4 ). Magnetite has a crystallographic structure of an inverted spinel with tetrahedral A sites occupied solely by trivalent Fe 3+ ions and octahedral B sites occupied both by divalent Fe 2+ ions and the remaining Fe 3+ ions in random distribution. At room temperature magnetite is a Neel A-B ferrimagnet where the ions on the A, B sites are coupled antiferromagneticaly. This coupling disappears at T sup c approx. or approx.= 580 0 C. Employing a natural single crystal of magnetite experimental neutron multiple diffraction patterns were obtained for the primary reflection 111 at room temperature and 703 0 C. This reflection is almost entirely magnetic in origin resulting in 'Aufhellung' patterns below T c and mixed 'Aufhellung-Umweganregung' patterns above T c . Theoretical patterns were calculated employing the iterative method for the approximation of intensities by a Taylor series and compared to the experimental results. (author) [pt

  6. Finite element based composite solution for neutron transport problems

    International Nuclear Information System (INIS)

    Mirza, A.N.; Mirza, N.M.

    1995-01-01

    A finite element treatment for solving neutron transport problems is presented. The employs region-wise discontinuous finite elements for the spatial representation of the neutron angular flux, while spherical harmonics are used for directional dependence. Composite solutions has been obtained by using different orders of angular approximations in different parts of a system. The method has been successfully implemented for one dimensional slab and two dimensional rectangular geometry problems. An overall reduction in the number of nodal coefficients (more than 60% in some cases as compared to conventional schemes) has been achieved without loss of accuracy with better utilization of computational resources. The method also provides an efficient way of handling physically difficult situations such as treatment of voids in duct problems and sharply changing angular flux. It is observed that a great wealth of information about the spatial and directional dependence of the angular flux is obtained much more quickly as compared to Monte Carlo method, where most of the information in restricted to the locality of immediate interest. (author)

  7. Radiation problems expected for the German spallation neutron source

    International Nuclear Information System (INIS)

    Goebel, K.

    1981-01-01

    The German project for the construction of a Spallation Neutron Source with high proton beam power (5.5 MW) will have to cope with a number of radiation problems. The present report describes these problems and proposes solutions for keeping exposures for the staff and release of activity and radiation into the environment as low as reasonably achievable. It is shown that the strict requirements of the German radiation protection regulations can be met. The main problem will be the exposure of maintenance personnel to remanent gamma radiation, as is the case at existing proton accelerators. Closed ventilation and cooling systems will reduce the release of (mainly short-lived) activity to acceptable levels. Shielding requirements for different sections are discussed, and it is demonstrated by calculations and extrapolations from experiments that fence-post doses well below 150 mrem/y can be obtained at distances of the order of 100 metres from the principal source points. The radiation protection system proposed for the Spallation Neutron Source is discussed, in particular the needs for monitor systems and a central radiation protection data base and alarm system. (orig.)

  8. Neutron generators with size scalability, ease of fabrication and multiple ion source functionalities

    Science.gov (United States)

    Elizondo-Decanini, Juan M

    2014-11-18

    A neutron generator is provided with a flat, rectilinear geometry and surface mounted metallizations. This construction provides scalability and ease of fabrication, and permits multiple ion source functionalities.

  9. On the problem of bound states of pions and neutrons

    International Nuclear Information System (INIS)

    Gudima, K.K.; Karnaukhov, V.A.

    1992-01-01

    The problem of existence of the bound states of negative pions and neutrons has been widely discussed for the last years. It is considered possibilities of the experimental observation of pion-neutron clusters, if they do exist, in nucleus-nucleus collisions. The yields of exotic fragments π -Z n A in the interactions of 12 C and 56 Fe with 208 Pb at the energies from 0.3 to 3.7 GeV per nucleon are calculated. For 40 Ar+ 238 U and 139 La+ 238 U collisions the calculations were performed at the energied of 1.8 GeV and 1.3 GeV per nucleon, respectively. These calculations were performed in the framework of the coalescence mechanism with the differential cross sections for pion and neutron production generated by firestreak model. The differential cross sections for production of π -1 n -2 , π -2 N 2 , π - n 4 , π -4 n 6 , and π -12 n 6 were calculated. It is shown that the use of very heavy projectiles like 56 Fe and 139 La has a great advantage in the experimental search for the exotic clusters. 20 refs.; 8 figs

  10. Parallel preconditioned conjugate gradient algorithm applied to neutron diffusion problem

    International Nuclear Information System (INIS)

    Majumdar, A.; Martin, W.R.

    1992-01-01

    Numerical solution of the neutron diffusion problem requires solving a linear system of equations such as Ax = b, where A is an n x n symmetric positive definite (SPD) matrix; x and b are vectors with n components. The preconditioned conjugate gradient (PCG) algorithm is an efficient iterative method for solving such a linear system of equations. In this paper, the authors describe the implementation of a parallel PCG algorithm on a shared memory machine (BBN TC2000) and on a distributed workstation (IBM RS6000) environment created by the parallel virtual machine parallelization software

  11. Matrix-type multiple reciprocity boundary element method for solving three-dimensional two-group neutron diffusion equations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1997-01-01

    The multiple reciprocity boundary element method has been applied to three-dimensional two-group neutron diffusion problems. A matrix-type boundary integral equation has been derived to solve the first and the second group neutron diffusion equations simultaneously. The matrix-type fundamental solutions used here satisfy the equation which has a point source term and is adjoint to the neutron diffusion equations. A multiple reciprocity method has been employed to transform the matrix-type domain integral related to the fission source into an equivalent boundary one. The higher order fundamental solutions required for this formulation are composed of a series of two types of analytic functions. The eigenvalue itself is also calculated using only boundary integrals. Three-dimensional test calculations indicate that the present method provides stable and accurate solutions for criticality problems. (author)

  12. Scram device having a multiplicity of neutron absorbing masses

    International Nuclear Information System (INIS)

    Giuggio, N.; Noyes, R.C.

    1981-01-01

    An apparatus is described for holding, releasing, and resetting a multiplicity of neutron-absorbing balls within a safety assembly of a liquid metal reactor. Vertically-hinged trap doors rest on the shoulders of a generally cylindrical release valve which is actuated by either the regular or by the self-actuated scram actuator. The doors and the valve shoulder provide a floor for the balls to be suspended above the reactor core during normal operation. When the actuator displaces the release valve, the doors lose their support and swing downward, permitting the poison balls to drop into the core. In the reset mode of operation, a platform at the bottom of the core is raised to lift the balls and swing the trap doors upward until the balls are above the door hinges. The release valve is reset to support the doors and the platform is lowered to the bottom of the safety assembly

  13. Entrance channel systematics of pre-scission neutron multiplicities

    International Nuclear Information System (INIS)

    Shareef, M.; Prasad, E.; Chatterjee, A.

    2016-01-01

    Statistical model analysis has been performed for the available neutron multiplicity (ν_p_r_e) data in the literature. Larger ν_p_r_e values for more symmetric reactions have been observed in comparison with asymmetric reactions forming the same compound nucleus, in most cases. A reverse trend has also been noticed in a few cases. A systematic entrance channel dependence of fission timescale is brought out in this work. Fission timescales calculated using the experimental ν_p_r_e values fall into two distinct groups according to the entrance channel mass asymmetry of the reaction with respect to the Businaro-Gallone critical mass asymmetry. The difference in the delay between these two groups ranges between 20 and 100 zs, which is larger than that reported in some cases. (orig.)

  14. A linear multiple balance method for discrete ordinates neutron transport equations

    International Nuclear Information System (INIS)

    Park, Chang Je; Cho, Nam Zin

    2000-01-01

    A linear multiple balance method (LMB) is developed to provide more accurate and positive solutions for the discrete ordinates neutron transport equations. In this multiple balance approach, one mesh cell is divided into two subcells with quadratic approximation of angular flux distribution. Four multiple balance equations are used to relate center angular flux with average angular flux by Simpson's rule. From the analysis of spatial truncation error, the accuracy of the linear multiple balance scheme is ο(Δ 4 ) whereas that of diamond differencing is ο(Δ 2 ). To accelerate the linear multiple balance method, we also describe a simplified additive angular dependent rebalance factor scheme which combines a modified boundary projection acceleration scheme and the angular dependent rebalance factor acceleration schme. It is demonstrated, via fourier analysis of a simple model problem as well as numerical calculations, that the additive angular dependent rebalance factor acceleration scheme is unconditionally stable with spectral radius < 0.2069c (c being the scattering ration). The numerical results tested so far on slab-geometry discrete ordinates transport problems show that the solution method of linear multiple balance is effective and sufficiently efficient

  15. The effect of albedo neutrons on the neutron multiplication of small plutonium oxide samples in a PNCC chamber

    CERN Document Server

    Bourva, L C A; Weaver, D R

    2002-01-01

    This paper describes how to evaluate the effect of neutrons reflected from parts of a passive neutron coincidence chamber on the neutron leakage self-multiplication, M sub L , of a fissile sample. It is shown that albedo neutrons contribute, in the case of small plutonium bearing samples, to a significant part of M sub L , and that their effect has to be taken into account in the relationship between the measured coincidence count rates and the sup 2 sup 4 sup 0 Pu effective mass of the sample. A simple one-interaction model has been used to write the balance of neutron gains and losses in the material when exposed to the re-entrant neutron flux. The energy and intensity profiles of the re-entrant flux have been parameterised using Monte Carlo MCNP sup T sup M calculations. This technique has been implemented for the On Site Laboratory neutron/gamma counter within the existing MEPL 1.0 code for the determination of the neutron leakage self-multiplication. Benchmark tests of the resulting MEPL 2.0 code with MC...

  16. Performance modeling of parallel algorithms for solving neutron diffusion problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Kirk, B.L.

    1995-01-01

    Neutron diffusion calculations are the most common computational methods used in the design, analysis, and operation of nuclear reactors and related activities. Here, mathematical performance models are developed for the parallel algorithm used to solve the neutron diffusion equation on message passing and shared memory multiprocessors represented by the Intel iPSC/860 and the Sequent Balance 8000, respectively. The performance models are validated through several test problems, and these models are used to estimate the performance of each of the two considered architectures in situations typical of practical applications, such as fine meshes and a large number of participating processors. While message passing computers are capable of producing speedup, the parallel efficiency deteriorates rapidly as the number of processors increases. Furthermore, the speedup fails to improve appreciably for massively parallel computers so that only small- to medium-sized message passing multiprocessors offer a reasonable platform for this algorithm. In contrast, the performance model for the shared memory architecture predicts very high efficiency over a wide range of number of processors reasonable for this architecture. Furthermore, the model efficiency of the Sequent remains superior to that of the hypercube if its model parameters are adjusted to make its processors as fast as those of the iPSC/860. It is concluded that shared memory computers are better suited for this parallel algorithm than message passing computers

  17. Improving neutron multiplicity counting for the spatial dependence of multiplication: Results for spherical plutonium samples

    Energy Technology Data Exchange (ETDEWEB)

    Göttsche, Malte, E-mail: malte.goettsche@physik.uni-hamburg.de; Kirchner, Gerald

    2015-10-21

    The fissile mass deduced from a neutron multiplicity counting measurement of high mass dense items is underestimated if the spatial dependence of the multiplication is not taken into account. It is shown that an appropriate physics-based correction successfully removes the bias. It depends on four correction coefficients which can only be exactly determined if the sample geometry and composition are known. In some cases, for example in warhead authentication, available information on the sample will be very limited. MCNPX-PoliMi simulations have been performed to obtain the correction coefficients for a range of spherical plutonium metal geometries, with and without polyethylene reflection placed around the spheres. For hollow spheres, the analysis shows that the correction coefficients can be approximated with high accuracy as a function of the sphere's thickness depending only slightly on the radius. If the thickness remains unknown, less accurate estimates of the correction coefficients can be obtained from the neutron multiplication. The influence of isotopic composition is limited. The correction coefficients become somewhat smaller when reflection is present.

  18. Neutronic modelling of the Harwell MTR's: some recent problems

    International Nuclear Information System (INIS)

    Taylor, N.P.

    1984-01-01

    Use of the Harwell Materials Testing Reactors for the irradiation of experimental rigs gives rise to a number of requirements for calculations of neutron fluxes. In addition photon fluxes are required for estimates of nuclear heating rates. A range of calculational methods are employed, from simple cell to whole reactor models, and the latter have been extended for preliminary design studies for the next generation of MTR to replace DIDO and PLUTO. The technique used for these various models are described in this note, with emphasis on the areas in which modelling problems are encountered. The applications divide into three distinct areas: calculations concerning rigs irradiated within the reactor core, those for rigs positioned in the D 2 O reflector surrounding the core, and design studies for a replacement reactor. (Auth.)

  19. Describing function theory as applied to thermal and neutronic problems

    International Nuclear Information System (INIS)

    Nassersharif, B.

    1983-01-01

    Describing functions have traditionally been used to obtain the solutions of systems of ordinary differential equations. In this work the describing function concept has been extended to include nonlinear, distributed parameter partial differential equations. A three-stage solution algorithm is presented which can be applied to any nonlinear partial differential equation. Two generalized integral transforms were developed as the T-transform for the time domain and the B-transform for the spatial domain. The thermal diffusion describing function (TDDF) is developed for conduction of heat in solids and a general iterative solution along with convergence criteria is presented. The proposed solution method is used to solve the problem of heat transfer in nuclear fuel rods with annular fuel pellets. As a special instance the solid cylindrical fuel pellet is examined. A computer program is written which uses the describing function concept for computing fuel pin temperatures in the radial direction during reactor transients. The second problem investigated was the neutron diffusion equation which is intrinsically different from the first case. Although, for most situations, it can be treated as a linear differential equation, the describing function method is still applicable. A describing function solution is derived for two possible cases: constant diffusion coefficient and variable diffusion coefficient. Two classes of describing functions are defined for each case which portray the leakage and absorption phenomena. For the specific case of a slab reactor criticality problem the comparison between analytical and describing function solutions revealed an excellent agreement

  20. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: jonathan_mueller@ncsu.edu; Mattingly, J.

    2016-07-21

    There is a significant and well-known anisotropy between the prompt neutrons emitted from a single fission event; these neutrons are most likely to be observed at angles near 0° or 180° relative to each other. However, the propagation of this anisotropy through different generations of a fission chain reaction has not been previously studied. We have measured this anisotropy in neutron–neutron coincidences from a subcritical highly-multiplying assembly of plutonium metal. The assembly was a 4.5 kg α-phase plutonium metal sphere composed of 94% {sup 239}Pu and 6% {sup 240}Pu by mass. Data were collected using two EJ-309 liquid scintillators and two EJ-299 plastic scintillators. The angular distribution of neutron–neutron coincidences was measured at 90° and 180° and found to be largely isotropic. Simulations were performed using MCNPX-PoliMi of similar plutonium metal spheres of varying sizes and a correlation between the neutron multiplication of the assembly and the anisotropy of neutron–neutron coincidences was observed. In principle, this correlation could be used to assess the neutron multiplication of an unknown assembly.

  1. Variable dead time counters. 1 - theoretical responses and the effects of neutron multiplication

    International Nuclear Information System (INIS)

    Lees, E.W.; Hooton, B.W.

    1978-10-01

    A theoretical expression is derived for calculating the response of any variable dead time counter (VDC) used in the passive assay of plutonium by neutron counting of the natural spontaneous fission activity. The effects of neutron multiplication in the sample arising from interactions of the original spontaneous fission neutrons is shown to modify the linear relationship between VDC signal and Pu mass. Numerical examples are shown for the Euratom VDC and a systematic investigation of the various factors affecting neutron multiplication is reported. Limited comparisons between the calculations and experimental data indicate provisional validity of the calculations. (author)

  2. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  3. Study of gamma ray multiplicity spectra for radiative capture of neutrons in 113,115In

    International Nuclear Information System (INIS)

    Georgiev, G.P.; Fajkov-Stanchik, Kh.; Grigor'ev, Yu.V.; Muradyan, G.V.; Yaneva, N.B.

    1997-08-01

    Neutron radiative capture measurements were performed for the enriched isotopes 113 In and 115 In on the neutron spectrometer at the Neutron Physics Laboratory of the Joint Institute for Nuclear Research employing the gamma ray multiplicity technique and using a ''Romashka'' multi-sectional 4p detector on the 500 m time base of the IBR-30 booster. The gamma multiplicity spectra of resolved resonances were obtained for the 20-500 eV energy range. The mean gamma ray multiplicity was determined for each resonance. The dependence of the ratio S of the low-energy coincidence multiplicity spectrum to the high-energy coincidence multiplicity spectrum on resonance energy exhibits a non-statistical structure. This structure was found to correlate with the local neutron strength function. (author). 10 refs, 6 figs, 2 tabs

  4. Determination of shell correction energies at saddle point using pre-scission neutron multiplicities

    International Nuclear Information System (INIS)

    Golda, K.S.; Saxena, A.; Mittal, V.K.; Mahata, K.; Sugathan, P.; Jhingan, A.; Singh, V.; Sandal, R.; Goyal, S.; Gehlot, J.; Dhal, A.; Behera, B.R.; Bhowmik, R.K.; Kailas, S.

    2013-01-01

    Pre-scission neutron multiplicities have been measured for 12 C + 194, 198 Pt systems at matching excitation energies at near Coulomb barrier region. Statistical model analysis with a modified fission barrier and level density prescription have been carried out to fit the measured pre-scission neutron multiplicities and the available evaporation residue and fission cross sections simultaneously to constrain statistical model parameters. Simultaneous fitting of the pre-scission neutron multiplicities and cross section data requires shell correction at the saddle point

  5. Non-destructive assay of fissile materials by detection and multiplicity analysis of spontaneous neutrons

    International Nuclear Information System (INIS)

    Prosdocimi, A.

    1979-01-01

    A method for determining the absolute reaction rate of nuclear events giving rise to neutron emission, according to their neutron multiplicity, is proposed. A typical application is the measurement of the (α, n) and spontaneous fission rates in a fissile material sample, particularly of Pu oxide composition. An analysis of random and correlated neutron pulses is carried out on the basis of sequential order without requiring any time interval analysis, then the primary nuclear events are sorted versus their neutron multiplicity. Suitable theoretical relationships enable to derive the absolute (α, n) and SF reaction rates when the physical parameters of the neutron detector and the multiplicity spectrumm of pulses are known. A typical device is described and the results of experiments leading to Pu-239 and Pu-240 assay are given

  6. Finite element method for neutron diffusion problems in hexagonal geometry

    International Nuclear Information System (INIS)

    Wei, T.Y.C.; Hansen, K.F.

    1975-06-01

    The use of the finite element method for solving two-dimensional static neutron diffusion problems in hexagonal reactor configurations is considered. It is investigated as a possible alternative to the low-order finite difference method. Various piecewise polynomial spaces are examined for their use in hexagonal problems. The central questions which arise in the design of these spaces are the degree of incompleteness permissible and the advantages of using a low-order space fine-mesh approach over that of a high-order space coarse-mesh one. There is also the question of the degree of smoothness required. Two schemes for the construction of spaces are described and a number of specific spaces, constructed with the questions outlined above in mind, are presented. They range from a complete non-Lagrangian, non-Hermite quadratic space to an incomplete ninth order space. Results are presented for two-dimensional problems typical of a small high temperature gas-cooled reactor. From the results it is concluded that the space used should at least include the complete linear one. Complete spaces are to be preferred to totally incomplete ones. Once function continuity is imposed any additional degree of smoothness is of secondary importance. For flux shapes typical of the small high temperature gas-cooled reactor the linear space fine-mesh alternative is to be preferred to the perturbation quadratic space coarse-mesh one and the low-order finite difference method is to be preferred over both finite element schemes

  7. Application of neutron backscatter techniques to level measurement problems

    International Nuclear Information System (INIS)

    Leonardi-Cattolica, A.M.; McMillan, D.H.; Telfer, A.; Griffin, L.H.; Hunt, R.H.

    1982-01-01

    We have designed and built portable level detectors and fixed level monitors based on neutron scattering and detection principles. The main components of these devices, which we call neutron backscatter gauges, are a neutron emitting radioisotope, a neutron detector, and a ratemeter. The gauge is a good detector for hydrogen but is much less sensitive to most other materials. This allows level measurements of hydrogen bearing materials, such as hydrocarbons, to be made through the walls of metal vessels. Measurements can be made conveniently through steel walls which are a few inches thick. We have used neutron backscatter gauges in a wide variety of level measurement applications encountered in the petrochemical industry. In a number of cases, the neutron techniques have proven to be superior to conventional level measurement methods, including gamma ray methods

  8. Neutron dosimetry program at Mound - problems and solutions

    International Nuclear Information System (INIS)

    Winegardner, M.K.

    1991-01-01

    The Mound personnel neutron dosimetry program utilizes TLD albedo technology. The neutron dosimeter design incorporates a two-element spectrometer for site-specific neutron quality determination and empirical application of field neutron calibration factors. Design elements feature two Li(6)F (TLD- 600) chips for neutron detection and one Li(7)F (TLD-700) chip for gamma compensation of the TLD- 600 chips. One TLD-600 chip is Cadmium shielded on the front side of the dosimeter, the other is Cadmium shielded from the back side. Tin filters are placed opposite of the Cadmium shield on each of the TLD-600 chips and on both sides of the TLD-700 chip for symmetrically equivalent gamma absorption characteristics. Neutron quality determination is accomplished by the albedo neutron-to- incident thermal neutron response ratio above the Cadmium cutoff. This front Cadmium shielded-to-back Cadmium shielded response ratio, compensated for the presence of gamma radiation, provides the basis for neutron energy calibration via the albedo response curve

  9. Yields of correlated fragment pairs and neutron multiplicity in spontaneous fission of {sup 242}Pu

    Energy Technology Data Exchange (ETDEWEB)

    Veselsky, M.; Kliman, J.; Morhaccaron, M. [Institute of Physics of Slovak Academy of Sciences, Dubravska 9, 84228 Bratislava (Slovakia); Ramayya, A.V.; Kormicki, J.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville (United States)] Rasmussen, J.O. [Lawrence Berkeley National Laboratory, Berkeley (United States)] Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore (United States); Daniel, A.V.; Popeko, G.S.; Oganessian, Yu. Ts. [Joint Institute for Nuclear Research, Dubna (Russia)] Greiner, W. [Institut fur Theoretische Physik, J. W. Goethe Universitaet, Frankfurt a. M. (Germany); Aryaeinejad, R. [Idaho National Engineering Laboratory, Idaho Falls (United States)

    1998-10-01

    Yields of correlated fragment pairs were obtained in spontaneous fission of {sup 242}Pu. Charge, mass and neutron multiplicity distributions of fragment pairs were determined and compared to available data. The yield of cold fission without neutron emission was determined to about 10{percent} for the set of observed correlated fragment pairs. {copyright} {ital 1998 American Institute of Physics.}

  10. Definition of neutron multiplication in a reception capacity of radioactive waste shop

    International Nuclear Information System (INIS)

    Dulin, V.A.; Dulin, V.V.; Pavlova, O.N.

    2006-01-01

    To determine neutrons multiplication the measurements and calculations of spatial distributions of neutron counting and absolute fission rates in a reception capacity of IPPE radioactive waste shop have been carried out and analyzed. A content of fissionable medium was unknown. The approach developed has allowed implementing a calculation analysis of the experimental data on determination of the most probable spatial distributions of basic parameters of the fissionable medium of unknown content. It has allowed determining the neutrons multiplication factor in a reception capacity of a tank No. 17. It has been found that the value of neutrons multiplication factor in a tank is 1.07 ± 0.03. The developed measurement method and calculation analysis used for experimental data also can be applied in other cases when the multiplication medium content is unknown [ru

  11. Manual for the Epithermal Neutron Multiplicity Detector (ENMC) for Measurement of Impure MOX and Plutonium Samples

    International Nuclear Information System (INIS)

    Menlove, H. O.; Rael, C. D.; Kroncke, K. E.; DeAguero, K. J.

    2004-01-01

    We have designed a high-efficiency neutron detector for passive neutron coincidence and multiplicity counting of dirty scrap and bulk samples of plutonium. The counter will be used for the measurement of impure plutonium samples at the JNC MOX fabrication facility in Japan. The counter can also be used to create working standards from bulk process MOX. The detector uses advanced design "3He tubes to increase the efficiency and to shorten the neutron die-away time. The efficiency is 64% and the die-away time is 19.1 ?s. The Epithermal Neutron Multiplicity Counter (ENMC) is designed for high-precision measurements of bulk plutonium samples with diameters of less than 200 mm. The average neutron energy from the sample can be measured using the ratio of the inner ring of He-3 tubes to the outer ring. This report describes the hardware, performance, and calibration for the ENMC.

  12. On the solution of a few problems of multiple scattering by Monte Carlo method; Sur la solution de quelques problemes de diffusions multiples par la methode de Monte-Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Bluet, J C [Commissariat a l' Energie Atomique, Cadarache (France)

    1966-02-01

    Three problems of multiple scattering arising from neutron cross sections experiments, are reported here. The common hypothesis are: - Elastic scattering is the only possible process - Angular distributions are isotropic - Losses of particle energy are negligible in successive collisions. In the three cases practical results, corresponding to actual experiments are given. Moreover the results are shown in more general way, using dimensionless variable such as the ratio of geometrical dimensions to neutron mean free path. The FORTRAN codes are given together with to the corresponding flow charts, and lexicons of symbols. First problem: Measurement of sodium capture cross-section. A sodium sample of given geometry is submitted to a neutron flux. Induced activity is then measured by means of a sodium iodide cristal. The distribution of active nuclei in the sample, and the counter efficiency are calculated by Monte-Carlo method taking multiple scattering into account. Second problem: absolute measurement of a neutron flux using a glass scintillator. The scintillator is a use of lithium 6 loaded glass, submitted to neutron flux perpendicular to its plane faces. If the glass thickness is not negligible compared with scattering mean free path {lambda}, the mean path e' of neutrons in the glass is different from the thickness. Monte-Carlo calculation are made to compute this path and a relative correction to efficiency equal to (e' - e)/e. Third problem: study of a neutron collimator. A neutron detector is placed at the bottom of a cylinder surrounded with water. A neutron source is placed on the cylinder axis, in front of the water shield. The number of neutron tracks going directly and indirectly through the water from the source to the detector are counted. (author) [French] On traite dans ce rapport de trois problemes avec les hypotheses communes suivantes: 1.- Le seul processus de collision possible est la diffusion electrique. 2.- La distribution angulaire est

  13. THE MULTIPLE CHOICE PROBLEM WITH INTERACTIONS BETWEEN CRITERIA

    Directory of Open Access Journals (Sweden)

    Luiz Flavio Autran Monteiro Gomes

    2015-12-01

    Full Text Available ABSTRACT An important problem in Multi-Criteria Decision Analysis arises when one must select at least two alternatives at the same time. This can be denoted as a multiple choice problem. In other words, instead of evaluating each of the alternatives separately, they must be combined into groups of n alternatives, where n = 2. When the multiple choice problem must be solved under multiple criteria, the result is a multi-criteria, multiple choice problem. In this paper, it is shown through examples how this problemcan be tackled on a bipolar scale. The Choquet integral is used in this paper to take care of interactions between criteria. A numerical application example is conducted using data from SEBRAE-RJ, a non-profit private organization that has the mission of promoting competitiveness, sustainable developmentand entrepreneurship in the state of Rio de Janeiro, Brazil. The paper closes with suggestions for future research.

  14. Non-destructive isotopic uranium assay by multiple delayed neutron measurements

    International Nuclear Information System (INIS)

    Papadopoulos, N.N.; Tsagas, N.F.

    1991-01-01

    The high accuracy and precision required in nuclear safeguards measurements can be achieved by an improved neutron activation technique based on multiple delayed fission neutron counting under various experimental conditions. For the necessary ultrahigh counting statistics required, cyclic activation of multiple subsamples has been applied. The home-made automated flexible analytical system with neutron flux and spectrum differentiation by irradiation position adjustment and cadmium screening, permits the non-destructive determination of the U235 abundance and the total U element concentration needed in nuclear safeguards sample analysis, with a high throughout and a low operational cost. Careful experimental optimization led to considerable improvement of the results

  15. An application of reactor noise techniques to neutron transport problems in a random medium

    International Nuclear Information System (INIS)

    Sahni, D.C.

    1989-01-01

    Neutron transport problems in a random medium are considered by defining a joint Markov process describing the fluctuations of one neutron population and the random changes in the medium. Backward Chapman-Kolmogorov equations are derived which yield an adjoint transport equation for the average neutron density. It is shown that this average density also satisfied the direct transport equation as given by the phenomenological model. (author)

  16. Problems in the neutron dynamics of source-driven systems

    International Nuclear Information System (INIS)

    Ravetto, P.

    2001-01-01

    The present paper presents some neutronic features of source-driven neutron multiplying systems, with special regards to dynamics, discussing the validity and limitations of classical methods, developed for systems in the vicinity of criticality. Specific characteristics, such as source dominance and the role of delayed neutron emissions are illustrated. Some dynamic peculiarities of innovative concepts proposed for accelerator-driven systems, such as fluid-fuel, are also discussed. The second portion of the work formulates the quasi-static methods for source-driven systems, evidencing its novel features and presenting some numerical results. (author)

  17. Three-dimensional multiple reciprocity boundary element method for one-group neutron diffusion eigenvalue computations

    International Nuclear Information System (INIS)

    Itagaki, Masafumi; Sahashi, Naoki.

    1996-01-01

    The multiple reciprocity method (MRM) in conjunction with the boundary element method has been employed to solve one-group eigenvalue problems described by the three-dimensional (3-D) neutron diffusion equation. The domain integral related to the fission source is transformed into a series of boundary-only integrals, with the aid of the higher order fundamental solutions based on the spherical and the modified spherical Bessel functions. Since each degree of the higher order fundamental solutions in the 3-D cases has a singularity of order (1/r), the above series of boundary integrals requires additional terms which do not appear in the 2-D MRM formulation. The critical eigenvalue itself can be also described using only boundary integrals. Test calculations show that Wielandt's spectral shift technique guarantees rapid and stable convergence of 3-D MRM computations. (author)

  18. Special Features of the Air to Space Neutron Transport Problem

    Science.gov (United States)

    2017-09-14

    an atmosphere model. Radioactive Decay Free neutrons are not stable elementary particles. They decay radioactively with a half- life of around ten...milliseconds to seconds, so that radioactive decay of neutrons is negligible. (The probability of decay in 100 milliseconds with a 10 minute half- life is...the bottom and top of a layer are 1bZ - and bZ respectively. The methods developed here apply to any planet with an atmosphere and an orbiting

  19. The Multiple Pendulum Problem via Maple[R

    Science.gov (United States)

    Salisbury, K. L.; Knight, D. G.

    2002-01-01

    The way in which computer algebra systems, such as Maple, have made the study of physical problems of some considerable complexity accessible to mathematicians and scientists with modest computational skills is illustrated by solving the multiple pendulum problem. A solution is obtained for four pendulums with no restriction on the size of the…

  20. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Science.gov (United States)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    The feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved a 36% neutron detection efficiency (ɛ) and an 11 . 7 μs neutron die-away time (τ) for a doubles figure-of-merit (ɛ2 / τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.

  1. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on each end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.

  2. RDANN a new methodology to solve the neutron spectra unfolding problem

    International Nuclear Information System (INIS)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R.

    2006-01-01

    The optimization processes known as Taguchi method and DOE methodology are applied to the design, training and testing of Artificial Neural Networks in the neutron spectrometry field, which offer potential benefits in the evaluation of the behavior of the net as well as the ability to examine the interaction of the weights and neurons inside the same one. In this work, the Robust Design of Artificial Neural Networks methodology is used to solve the neutron spectra unfolding problem, designing, training and testing an ANN using a set of 187 neutron spectra compiled by the International Atomic Energy Agency, to obtain the better neutron spectra unfolded from the Bonner spheres spectrometer's count rates. (Author)

  3. On multiple level-set regularization methods for inverse problems

    International Nuclear Information System (INIS)

    DeCezaro, A; Leitão, A; Tai, X-C

    2009-01-01

    We analyze a multiple level-set method for solving inverse problems with piecewise constant solutions. This method corresponds to an iterated Tikhonov method for a particular Tikhonov functional G α based on TV–H 1 penalization. We define generalized minimizers for our Tikhonov functional and establish an existence result. Moreover, we prove convergence and stability results of the proposed Tikhonov method. A multiple level-set algorithm is derived from the first-order optimality conditions for the Tikhonov functional G α , similarly as the iterated Tikhonov method. The proposed multiple level-set method is tested on an inverse potential problem. Numerical experiments show that the method is able to recover multiple objects as well as multiple contrast levels

  4. Energy dependence of the neutron multiplicity P/sub nu/ in fast neutron induced fission of /sup 235,238/U and 239Pu

    International Nuclear Information System (INIS)

    Zucker, M.S.; Holden, N.E.

    1986-01-01

    Certain applications require knowledge of the higher moments of the neutron multiplicity probability. It can be shown that the second factorial moment is proportional to the fission rate in the sample, and that the third factorial moment can be of use in disentangling spontaneous fission from induced fission. Using a source of unpublished work in which neutron multiplicities were derived for the fast neutron induced fission of U-235, U-238, and Pu-239, the multiplicity probability has been calculated as a function of neutron energy for the energy range 0 to 10 MeV

  5. The single-collision thermalization approximation for application to cold neutron moderation problems

    International Nuclear Information System (INIS)

    Ritenour, R.L.

    1989-01-01

    The single collision thermalization (SCT) approximation models the thermalization process by assuming that neutrons attain a thermalized distribution with only a single collision within the moderating material, independent of the neutron's incident energy. The physical intuition on which this approximation is based is that the salient properties of neutron thermalization are accounted for in the first collision, and the effects of subsequent collisions tend to average out statistically. The independence of the neutron incident and outscattering energy leads to variable separability in the scattering kernel and, thus, significant simplification of the neutron thermalization problem. The approximation also addresses detailed balance and neutron conservation concerns. All of the tests performed on the SCT approximation yielded excellent results. The significance of the SCT approximation is that it greatly simplifies thermalization calculations for CNS design. Preliminary investigations with cases involving strong absorbers also indicates that this approximation may have broader applicability, as in the upgrading of the thermalization codes

  6. Computational methods for the nuclear and neutron matter problems: Final report

    International Nuclear Information System (INIS)

    Kalos, M.H.; Chen, J.M.C.

    1988-01-01

    This paper discusses the following topics: variational Monte Carlo study of oxygen 16; microscopic calculations of alpha-neutron scattering; exact Monte Carlo treatment of the fermion problem; and random field method

  7. Proton impurity in the neutron matter: a nuclear polaron problem

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, M [Institute of Nuclear Physics, Cracow (Poland); Wojcik, W [Politechnika Krakowska, Cracow (Poland)

    1992-10-01

    We study interactions of a proton impurity with density oscillations of the neutron matter in a Debye approximation. The proton-phonon coupling is of the deformation-potential type at long wavelengths. It is weak at low density and increases with the neutron matter density. We calculate the proton`s effective mass perturbatively for a weak coupling, and use a canonical transformation technique for stronger couplings. The proton`s effective mass grows significantly with density, and at higher densities the proton impurity can be localized. This behaviour is similar to that of the polaron in solids. We obtain properties of the localized proton in the strong coupling regime from variational calculations, treating the neutron in the Thomas-Fermi approximation. (author). 14 refs, 8 figs.

  8. Simulation of neutron transport equation using parallel Monte Carlo for deep penetration problems

    International Nuclear Information System (INIS)

    Bekar, K. K.; Tombakoglu, M.; Soekmen, C. N.

    2001-01-01

    Neutron transport equation is simulated using parallel Monte Carlo method for deep penetration neutron transport problem. Monte Carlo simulation is parallelized by using three different techniques; direct parallelization, domain decomposition and domain decomposition with load balancing, which are used with PVM (Parallel Virtual Machine) software on LAN (Local Area Network). The results of parallel simulation are given for various model problems. The performances of the parallelization techniques are compared with each other. Moreover, the effects of variance reduction techniques on parallelization are discussed

  9. Calculation of neutron and gamma transport at the FOA:type of problems and calculation methods

    International Nuclear Information System (INIS)

    Lefvert, T.

    1975-11-01

    Protection against the effects of nuclear warfare involves the analysis of the forms of results of a nuclear charge explosion producing neutron and gamma radiation. It brings out problems leading to the calculation of criticality, leakage, and deep transmission. Methods have been developed for various kinds of particle transport problems. Applications to radiation therapy, storage of fissile materials, and fast reactors are discussed. A list (with brief description) of all neutron and gamma transport programmes of the FOA is given. (J.S.)

  10. Application of neutron multiplicity counting to waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Pickrell, M.M.; Ensslin, N. [Los Alamos National Lab., NM (United States); Sharpe, T.J. [North Carolina State Univ., Raleigh, NC (United States)

    1997-11-01

    This paper describes the use of a new figure of merit code that calculates both bias and precision for coincidence and multiplicity counting, and determines the optimum regions for each in waste assay applications. A {open_quotes}tunable multiplicity{close_quotes} approach is developed that uses a combination of coincidence and multiplicity counting to minimize the total assay error. An example is shown where multiplicity analysis is used to solve for mass, alpha, and multiplication and tunable multiplicity is shown to work well. The approach provides a method for selecting coincidence, multiplicity, or tunable multiplicity counting to give the best assay with the lowest total error over a broad spectrum of assay conditions. 9 refs., 6 figs.

  11. Measurements of 14 MeV neutron multiplication in spherical beryllium shells

    International Nuclear Information System (INIS)

    Moellendorff, U. von; Alevra, A.V.; Giese, H.; Kappler, F.; Klein, H.; Klein, H.; Tayama, R.

    1995-01-01

    New results of spherical-shell transmission measurements with 14MeV neutrons on pure beryllium shells up to 17cm thick are reported. The total leakage neutron multiplications were measured using a Bonner sphere system. Independently, the leakage neutron spectra were measured over the entire energy range, 15MeV to thermal energies, by proton-recoil and time-of-flight methods. The total leakage multiplications are in excellent agreement with three-dimensional Monte Carlo calculations using beryllium nuclear data based on the Young and Stewart evaluation. The leakage in the evaporation energy window confirms the Be(n,2n) cross-section of the Young and Stewart evaluation rather than that used in the ENDF/B-VI library. At energies below 1keV, a surplus of leakage neutrons over the calculation is found for smaller beryllium thicknesses. (orig.)

  12. A Hybrid Genetic Algorithm for the Multiple Crossdocks Problem

    Directory of Open Access Journals (Sweden)

    Zhaowei Miao

    2012-01-01

    Full Text Available We study a multiple crossdocks problem with supplier and customer time windows, where any violation of time windows will incur a penalty cost and the flows through the crossdock are constrained by fixed transportation schedules and crossdock capacities. We prove this problem to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based on the problem structure, we propose a hybrid genetic algorithm (HGA integrating greedy technique and variable neighborhood search method to solve the problem. Extensive experiments under different scenarios were conducted, and results show that HGA outperforms CPLEX solver, providing solutions in realistic timescales.

  13. MADNIX a code to calculate prompt fission neutron spectra and average prompt neutron multiplicities

    International Nuclear Information System (INIS)

    Merchant, A.C.

    1986-03-01

    A code has been written and tested on the CDC Cyber-170 to calculate the prompt fission neutron spectrum, N(E), as a function of both the fissioning nucleus and its excitation energy. In this note a brief description of the underlying physical principles involved and a detailed explanation of the required input data (together with a sample output for the fission of 235 U induced by 14 MeV neutrons) are presented. Weisskopf's standard nuclear evaporation theory provides the basis for the calculation. Two important refinements are that the distribution of fission-fragment residual nuclear temperature and the cooling of the fragments as neutrons are emitted approximately taken into account, and also the energy dependence of the cross section for the inverse process of compound nucleus formation is included. This approach is then used to calculate the average number of prompt neutrons emitted per fission, v-bar p . At high excitation energies, where fission is still possible after neutron emission, the consequences of the competition between first, second and third chance fission on N(E) and v-bar p are calculated. Excellent agreement with all the examples given in the original work of Madland and Nix is obtained. (author) [pt

  14. Observation of multiple Bragg reflections of neutrons in bent perfect crystals

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Seong, B. S.; Moon, MK.

    2011-01-01

    Roč. 634, č. 1 (2011), S108-S111 ISSN 0168-9002. [International Workshop on Neutron Optics. Grenoble, 17.03.2010-19.03.2010] R&D Projects: GA ČR GAP204/10/0654 Institutional research plan: CEZ:AV0Z10480505 Keywords : Neutron diffraction * Bent perfect crystal * Multiple reflections Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.207, year: 2011

  15. Solid-State Neutron Multiplicity Counting System Using Commercial Off-the-Shelf Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvenskyy, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm2 of active detector area.

  16. Neutron multiplicities as a measure for scission time scales and reaction violences

    International Nuclear Information System (INIS)

    Knoche, K.; Scobel, W.; Sprute, L.

    1991-01-01

    We discuss the temporal evolution of the fusion-fission reactions 32 S + 197 Au, 232 Th measured for 838 MeV projectiles by means of the neutron clock method. The results confirm existent precision lifetime versus fissility data. The total neutron multiplicity as a measure of the initial excitation energy E * is compared with the folding angle method. (author). 13 refs, 8 figs

  17. An efficient method for generalized linear multiplicative programming problem with multiplicative constraints.

    Science.gov (United States)

    Zhao, Yingfeng; Liu, Sanyang

    2016-01-01

    We present a practical branch and bound algorithm for globally solving generalized linear multiplicative programming problem with multiplicative constraints. To solve the problem, a relaxation programming problem which is equivalent to a linear programming is proposed by utilizing a new two-phase relaxation technique. In the algorithm, lower and upper bounds are simultaneously obtained by solving some linear relaxation programming problems. Global convergence has been proved and results of some sample examples and a small random experiment show that the proposed algorithm is feasible and efficient.

  18. Multiple scattering problems in heavy ion elastic recoil detection analysis

    International Nuclear Information System (INIS)

    Johnston, P.N.; El Bouanani, M.; Stannard, W.B.; Bubb, I.F.; Cohen, D.D.; Dytlewski, N.; Siegele, R.

    1998-01-01

    A number of groups use Heavy Ion Elastic Recoil Detection Analysis (HIERDA) to study materials science problems. Nevertheless, there is no standard methodology for the analysis of HIERDA spectra. To overcome this deficiency we have been establishing codes for 2-dimensional data analysis. A major problem involves the effects of multiple and plural scattering which are very significant, even for quite thin (∼100 nm) layers of the very heavy elements. To examine the effects of multiple scattering we have made comparisons between the small-angle model of Sigmund et al. and TRIM calculations. (authors)

  19. Theoretical description of prompt neutron multiplicity and spectra

    International Nuclear Information System (INIS)

    Manailescu, C.

    2013-02-01

    The present work concerns two of successful models used today: PbP (Point by Point) and the Monte-Carlo approaches for providing all quantities characterizing the prompt neutron and gamma-ray emission. Therefore the thesis is structured as described below. The description of the PbP model and of the extended Los Alamos model for higher energies that takes into account the secondary chains and ways is given in Chapter II. In this chapter are detailed also examples of PbP and most probable fragmentation approach calculations for various quantities which characterize prompt emission: multi-parametric matrices [meaning different quantities as a function of fragment and of TKE (Total Kinetic Energy of the fission fragments)], quantities as a function of fragment mass, quantities as a function of the TKE and total average quantities, for different spontaneous and neutron induced fissioning systems. Special care was given to the TXE (Total Excitation Energy) partition between the fully accelerated fission fragments, two partition methods used in the PbP model being discussed in details. In Chapter III is given the description of the Monte Carlo treatment included in the FIFRELIN code. Only those aspects that differ from the PbP treatment are emphasized, namely the treatment of the moment of inertia entering the rotational energy calculation and the TXE partition method based on a mass dependent temperature ratio law. A special attention is given to the latest developments of the code concerning the inclusion of the energy dependent compound nucleus cross-section of the inverse process of neutron evaporation from fragments. In this chapter examples of calculation with the FIFRELIN code for the case of the standard fissioning system 252 Cf (SF) are given. Original results for several plutonium spontaneous fissioning systems ( 236,238,240,242,244 Pu) and one neutron induced fissioning system ( 239 Pu(nth,f)) obtained with both PbP and Monte-Carlo treatments are given in

  20. Solution of neutron slowing down equation including multiple inelastic scattering

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Saad, A.E.

    1977-01-01

    The present work is devoted the presentation of an analytical method for the calculation of elastically and inelastically slowed down neutrons in an infinite non absorbing homogeneous medium. On the basis of the Central limit theory (CLT) and the integral transform technique the slowing down equation including inelastic scattering in terms of the Green function of elastic scattering is solved. The Green function is decomposed according to the number of collisions. A formula for the flux at any lethargy O (u) after any number of collisions is derived. An equation for the asymptotic flux is also obtained

  1. Application of Walsh functions to neutron transport problems. I. Theory

    International Nuclear Information System (INIS)

    Seed, T.J.; Albrecht, R.W.

    1976-01-01

    An approximation to the neutron transport equation is made by representing the angular flux with an expansion of the angular dependence in the orthogonal, complete, and binary valued sets of Walsh function. The Walsh approximation is applied to the one-speed, isotropic-scattering, rectangular-geometry form of the neutron transport equation. Sets of partial differential equations for the expansion coefficients are derived along with appropriate boundary conditions for their solution. The sets of the Walsh expansion to one- and two-dimensional forms of the transport equation are also obtained. The two-dimensional expansion coefficient equations are shown to be not only hyperbolic but also transformable to a set of S/sub N/-like equations that are coupled only through the scattering term. Such transformal sets of equations are termed Walsh-derived quadrature sets

  2. A study on the effect of stainless steel plate position on neutron multiplication factor in spent fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong

    2012-02-15

    In spent fuel storage racks, which are just composed of stainless steel plates without neutron absorbing materials, neutron multiplication factors are investigated as the variation of the water gap that exists between the fuel assembly and the stainless steel plates. The stainless steel plate has a low moderating power compared with water because it has a lower elastic scattering cross section, as well as far less change of lethargy in an elastic collision than water. Thus, if stainless steel plates are installed around the fuel assembly instead of water, it is hard for neutrons to be thermalized properly. Therefore, the neutron multiplication factor can be decreased because the thermal neutron fluence and the total neutron production rate in fuel rods are decreased. A stainless steel plate has also has a thermal neutron absorption cross section. Thus, it can absorb thermal neutrons around the fuel assembly. The dominant factor which can cause a decrease in the neutron multiplication factor is the interruption of neutron moderation by stainless steel plates. Therefore, the neutron multiplication factor should always be kept at its lowest point, if stainless steel plates are installed on the specific position where interruptions of the neutron moderation occur most often, allowing for thermal neutrons to be absorbed. The stainless steel plate position is 7 mm away from the outermost surface of the fuel assembly with a pitch of 280mm. The specific position appearing the lowest neutron multiplication factor as the pitch variation from 260mm to 290mm with 10mm interval is also investigated. The lowest neutron multiplication factor also occurs 7mm or 8mm away from the outermost surface of the fuel assembly

  3. A study on the effect of stainless steel plate position on neutron multiplication factor in spent fuel storage racks

    International Nuclear Information System (INIS)

    Sohn, Hee Dong

    2012-02-01

    In spent fuel storage racks, which are just composed of stainless steel plates without neutron absorbing materials, neutron multiplication factors are investigated as the variation of the water gap that exists between the fuel assembly and the stainless steel plates. The stainless steel plate has a low moderating power compared with water because it has a lower elastic scattering cross section, as well as far less change of lethargy in an elastic collision than water. Thus, if stainless steel plates are installed around the fuel assembly instead of water, it is hard for neutrons to be thermalized properly. Therefore, the neutron multiplication factor can be decreased because the thermal neutron fluence and the total neutron production rate in fuel rods are decreased. A stainless steel plate has also has a thermal neutron absorption cross section. Thus, it can absorb thermal neutrons around the fuel assembly. The dominant factor which can cause a decrease in the neutron multiplication factor is the interruption of neutron moderation by stainless steel plates. Therefore, the neutron multiplication factor should always be kept at its lowest point, if stainless steel plates are installed on the specific position where interruptions of the neutron moderation occur most often, allowing for thermal neutrons to be absorbed. The stainless steel plate position is 7 mm away from the outermost surface of the fuel assembly with a pitch of 280mm. The specific position appearing the lowest neutron multiplication factor as the pitch variation from 260mm to 290mm with 10mm interval is also investigated. The lowest neutron multiplication factor also occurs 7mm or 8mm away from the outermost surface of the fuel assembly

  4. Heuristic for Solving the Multiple Alignment Sequence Problem

    Directory of Open Access Journals (Sweden)

    Roman Anselmo Mora Gutiérrez

    2011-03-01

    Full Text Available In this paper we developed a new algorithm for solving the problem of multiple sequence alignment (AM S, which is a hybrid metaheuristic based on harmony search and simulated annealing. The hybrid was validated with the methodology of Julie Thompson. This is a basic algorithm and and results obtained during this stage are encouraging.

  5. Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs

    Directory of Open Access Journals (Sweden)

    Marco Calahorrano

    2004-04-01

    Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$

  6. Calculation of contribution of multiple interactions and efficiency of neutron detectors

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Kazakov, L.E.; Kononov, V.N.; Poletaev, E.D.

    1986-01-01

    Results of calculation of multiple neutron interactions contribution to efficiency of detectors with 6 Li glass and 10 B plate in the energy range of 0.01-1 MeV are given. The calculation was performed by the Monte-Carlo method using BRAND program complex. It is shown that a correction value for multiple neutron interaction in 6 Li glass of 1 mm thickness constitutes 4.5 % at energy of up to 100 keV and at higher energies has a complex energy dependence reaching 25 % at 440 keV

  7. Virtual sampling in variational processing of Monte Carlo simulation in a deep neutron penetration problem

    International Nuclear Information System (INIS)

    Allagi, Mabruk O.; Lewins, Jeffery D.

    1999-01-01

    In a further study of virtually processed Monte Carlo estimates in neutron transport, a shielding problem has been studied. The use of virtual sampling to estimate the importance function at a certain point in the phase space depends on the presence of neutrons from the real source at that point. But in deep penetration problems, not many neutrons will reach regions far away from the source. In order to overcome this problem, two suggestions are considered: (1) virtual sampling is used as far as the real neutrons can reach, then fictitious sampling is introduced for the remaining regions, distributed in all the regions, or (2) only one fictitious source is placed where the real neutrons almost terminate and then virtual sampling is used in the same way as for the real source. Variational processing is again found to improve the Monte Carlo estimates, being best when using one fictitious source in the far regions with virtual sampling (option 2). When fictitious sources are used to estimate the importances in regions far away from the source, some optimization has to be performed for the proportion of fictitious to real sources, weighted against accuracy and computational costs. It has been found in this study that the optimum number of cells to be treated by fictitious sampling is problem dependent, but as a rule of thumb, fictitious sampling should be employed in regions where the number of neutrons from the real source fall below a specified limit for good statistics

  8. Fast solution of neutron diffusion problem by reduced basis finite element method

    International Nuclear Information System (INIS)

    Chunyu, Zhang; Gong, Chen

    2018-01-01

    Highlights: •An extremely efficient method is proposed to solve the neutron diffusion equation with varying the cross sections. •Three orders of speedup is achieved for IAEA benchmark problems. •The method may open a new possibility of efficient high-fidelity modeling of large scale problems in nuclear engineering. -- Abstract: For the important applications which need carry out many times of neutron diffusion calculations such as the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate solutions of the neutron diffusion equation are demanding but necessary. In the present work, the certified reduced basis finite element method is proposed and implemented to solve the generalized eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built upon high-fidelity finite element approximations during the offline stage. During the online stage, both the k eff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering cross-sections treated as parameters.

  9. Influence of Number Size, Problem Structure and Response Mode on Children's Solutions of Multiplication Word Problems.

    Science.gov (United States)

    De Corte, E.; And Others

    One important finding from recent research on multiplication word problems is that children's performances are strongly affected by the nature of the multiplier (whether it is an integer, decimal larger than 1 or a decimal smaller than 1). On the other hand, the size of the multiplicand has little or no effect on problem difficulty. The aim of the…

  10. Practical adjoint Monte Carlo technique for fixed-source and eigenfunction neutron transport problems

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1981-01-01

    An adjoint Monte Carlo technique is described for the solution of neutron transport problems. The optimum biasing function for a zero-variance collision estimator is derived. The optimum treatment of an analog of a non-velocity thermal group has also been derived. The method is extended to multiplying systems, especially for eigenfunction problems to enable the estimate of averages over the unknown fundamental neutron flux distribution. A versatile computer code, FOCUS, has been written, based on the described theory. Numerical examples are given for a shielding problem and a critical assembly, illustrating the performance of the FOCUS code. 19 refs

  11. Measuring method for effective neutron multiplication factor upon containing irradiated fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Mitsuhashi, Ishi; Sasaki, Tomoharu.

    1993-01-01

    A portion of irradiated fuel assemblies at a place where a reactivity effect is high, that is, at a place where neutron importance is high is replaced with standard fuel assemblies having a known composition to measure neutron fluxes at each of the places. An effective composition at the periphery of the standard fuel assemblies is determined by utilizing a calibration curve determined separately based on the composition and neutron flux values of the standard assemblies. By using the calibration curve determined separately based on this composition and the known composition of the standard fuel assemblies, an effective neutron multiplication factor for the fuel containing portion containing the irradiated fuel assemblies is recognized. Then, subcriticality is ensured and critical safety upon containing the fuel assemblies can be secured quantitatively. (N.H.)

  12. Application of direct discrete method (DDM) to multigroup neutron transport problems

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Salehi, Ali Akbar; Shahriari, Majid

    2003-01-01

    The Direct Discrete Method (DDM), which produced excellent results for one-group neutron transport problems, has been developed for multigroup energy. A multigroup neutron transport discrete equation has been produced for a cylindrical shape fuel element with and without associated coolant regions with two boundary conditions. The calculations are illustrated for two-group energy by graphs showing the fast and thermal fluxes. The validity of the results are tested against the results obtained by the ANISN code. (author)

  13. Problem-solving with multiple interdependent criteria: better solution to complex problems

    International Nuclear Information System (INIS)

    Carlsson, C.; Fuller, R.

    1996-01-01

    We consider multiple objective programming (MOP) problems with additive interdependencies, this is when the states of some chosen objective are attained through supportive or inhibitory feed-backs from several other objectives. MOP problems with independent objectives (when the cause-effect relations between the decision variables and the objectives are completely known) will be treated as special cases of the MOP in which we have interdependent objectives. We illustrate our ideas by a simple three-objective real-life problem

  14. Multiplicity and energy of neutrons from {sup 233}U(n{sub th},f) fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Katsuhisa; Kimura, Itsuro; Nakagome, Yoshihiro [Kyoto Univ. (Japan)

    1998-03-01

    The correlation between fission fragments and prompt neutrons from the reaction {sup 233}U(n{sub th},f) was measured with improved accuracy. The results determined the neutron multiplicity and emission energy as a function of fragment mass and total kinetic energy. The average energy as a function of fragment mass followed a nearly symmetric distribution centered about the equal mass-split and formed a remarkable contrast with the saw-tooth distribution of the average neutron multiplicity. The neutron multiplicity from the specified fragment decreases linearly with total kinetic energy, and the slope of multiplicity with kinetic energy had the minimum value at about 130 u. The level density parameter versus mass determined from the neutron data showed a saw-tooth structure with the pronounced minimum at about 128 and generally followed the formula by Gilbert and Cameron, suggesting that the neutron emission process was very much affected by the shell-effect of the fission fragment. (author)

  15. Reduction of bias in neutron multiplicity assay using a weighted point model

    Energy Technology Data Exchange (ETDEWEB)

    Geist, W. H. (William H.); Krick, M. S. (Merlyn S.); Mayo, D. R. (Douglas R.)

    2004-01-01

    Accurate assay of most common plutonium samples was the development goal for the nondestructive assay technique of neutron multiplicity counting. Over the past 20 years the technique has been proven for relatively pure oxides and small metal items. Unfortunately, the technique results in large biases when assaying large metal items. Limiting assumptions, such as unifoh multiplication, in the point model used to derive the multiplicity equations causes these biases for large dense items. A weighted point model has been developed to overcome some of the limitations in the standard point model. Weighting factors are detemiined from Monte Carlo calculations using the MCNPX code. Monte Carlo calculations give the dependence of the weighting factors on sample mass and geometry, and simulated assays using Monte Carlo give the theoretical accuracy of the weighted-point-model assay. Measured multiplicity data evaluated with both the standard and weighted point models are compared to reference values to give the experimental accuracy of the assay. Initial results show significant promise for the weighted point model in reducing or eliminating biases in the neutron multiplicity assay of metal items. The negative biases observed in the assay of plutonium metal samples are caused by variations in the neutron multiplication for neutrons originating in various locations in the sample. The bias depends on the mass and shape of the sample and depends on the amount and energy distribution of the ({alpha},n) neutrons in the sample. When the standard point model is used, this variable-multiplication bias overestimates the multiplication and alpha values of the sample, and underestimates the plutonium mass. The weighted point model potentially can provide assay accuracy of {approx}2% (1 {sigma}) for cylindrical plutonium metal samples < 4 kg with {alpha} < 1 without knowing the exact shape of the samples, provided that the ({alpha},n) source is uniformly distributed throughout the

  16. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    NARCIS (Netherlands)

    Wilczynski, J; SiwekWilczynska, K; Wilschut, HW

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), Mr which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a

  17. On a possible use of multiple Bragg reflections for high-resolution monochromatization of neutrons

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Vrána, Miroslav; Wagner, V.

    2004-01-01

    Roč. 350, - (2004), e667-e670 ISSN 0921-4526 R&D Projects: GA ČR GA202/03/0891 Keywords : neutron diffraction * multiple reflections * higg-resolution monochromator Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.679, year: 2004

  18. A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM

    Directory of Open Access Journals (Sweden)

    F. NURIYEVA

    2017-06-01

    Full Text Available The Multiple Traveling Salesman Problem (mTSP is a combinatorial optimization problem in NP-hard class. The mTSP aims to acquire the minimum cost for traveling a given set of cities by assigning each of them to a different salesman in order to create m number of tours. This paper presents a new heuristic algorithm based on the shortest path algorithm to find a solution for the mTSP. The proposed method has been programmed in C language and its performance analysis has been carried out on the library instances. The computational results show the efficiency of this method.

  19. Multiple regression for physiological data analysis: the problem of multicollinearity.

    Science.gov (United States)

    Slinker, B K; Glantz, S A

    1985-07-01

    Multiple linear regression, in which several predictor variables are related to a response variable, is a powerful statistical tool for gaining quantitative insight into complex in vivo physiological systems. For these insights to be correct, all predictor variables must be uncorrelated. However, in many physiological experiments the predictor variables cannot be precisely controlled and thus change in parallel (i.e., they are highly correlated). There is a redundancy of information about the response, a situation called multicollinearity, that leads to numerical problems in estimating the parameters in regression equations; the parameters are often of incorrect magnitude or sign or have large standard errors. Although multicollinearity can be avoided with good experimental design, not all interesting physiological questions can be studied without encountering multicollinearity. In these cases various ad hoc procedures have been proposed to mitigate multicollinearity. Although many of these procedures are controversial, they can be helpful in applying multiple linear regression to some physiological problems.

  20. Nevada test site neutron dosimetry-problems/solutions

    International Nuclear Information System (INIS)

    Sygitowicz, L.S.; Bastian, C.T.; Wells, I.J.; Koch, P.N.

    1991-01-01

    Historically, neutron dosimetry at the NTS was done using NTA film and albedo LiF TLD's. In 1987 the dosimeter type was changed from the albedo TLD based system to a CR-39 track etch based system modeled after the program developed by D. Hankins at LLNL. Routine issue and return is performed quarterly for selected personnel using bar-code readers at permanent locations. The capability exists for work site issue as-needed. Issue data are transmitted by telephone to a central computer where it is stored until the dosimeter is returned, processed and read, and the dose calculation is performed. Dose equivalent calculations are performed using LOTUS 123 and the results are printed as a hard copy record. The issue and dose information are hand-entered into the Dosimetry database. An application is currently being developed to automate this sequence

  1. New computational methodology for large 3D neutron transport problems

    International Nuclear Information System (INIS)

    Dahmani, M.; Roy, R.; Koclas, J.

    2004-01-01

    We present a new computational methodology, based on 3D characteristics method, dedicated to solve very large 3D problems without spatial homogenization. In order to eliminate the input/output problems occurring when solving these large problems, we set up a new computing scheme that requires more CPU resources than the usual one, based on sweeps over large tracking files. The huge capacity of storage needed in some problems and the related I/O queries needed by the characteristics solver are replaced by on-the-fly recalculation of tracks at each iteration step. Using this technique, large 3D problems are no longer I/O-bound, and distributed CPU resources can be efficiently used. (authors)

  2. Warhead verification as inverse problem: Applications of neutron spectrum unfolding from organic-scintillator measurements

    Science.gov (United States)

    Lawrence, Chris C.; Febbraro, Michael; Flaska, Marek; Pozzi, Sara A.; Becchetti, F. D.

    2016-08-01

    Verification of future warhead-dismantlement treaties will require detection of certain warhead attributes without the disclosure of sensitive design information, and this presents an unusual measurement challenge. Neutron spectroscopy—commonly eschewed as an ill-posed inverse problem—may hold special advantages for warhead verification by virtue of its insensitivity to certain neutron-source parameters like plutonium isotopics. In this article, we investigate the usefulness of unfolded neutron spectra obtained from organic-scintillator data for verifying a particular treaty-relevant warhead attribute: the presence of high-explosive and neutron-reflecting materials. Toward this end, several improvements on current unfolding capabilities are demonstrated: deuterated detectors are shown to have superior response-matrix condition to that of standard hydrogen-base scintintillators; a novel data-discretization scheme is proposed which removes important detector nonlinearities; and a technique is described for re-parameterizing the unfolding problem in order to constrain the parameter space of solutions sought, sidestepping the inverse problem altogether. These improvements are demonstrated with trial measurements and verified using accelerator-based time-of-flight calculation of reference spectra. Then, a demonstration is presented in which the elemental compositions of low-Z neutron-attenuating materials are estimated to within 10%. These techniques could have direct application in verifying the presence of high-explosive materials in a neutron-emitting test item, as well as other for treaty verification challenges.

  3. The spectral element approach for the solution of neutron transport problems

    International Nuclear Information System (INIS)

    Barbarino, A.; Dulla, S.; Ravetto, P.; Mund, E.H.

    2011-01-01

    In this paper a possible application of the Spectral Element Method to neutron transport problems is presented. The basic features of the numerical scheme on the one-dimensional diffusion equation are illustrated. Then, the AN model for neutron transport is introduced, and the basic steps for the construction of a bi-dimensional solver are described. The AN equations are chosen for their structure, involving a system of coupled elliptic-type equations. Some calculations are carried out on typical benchmark problems and results are compared with the Finite Element Method, in order to evaluate their performances. (author)

  4. RDANN a new methodology to solve the neutron spectra unfolding problem

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz R, J.M.; Martinez B, M.R.; Vega C, H.R. [UAZ, Av. Ramon Lopez Velarde No. 801, 98000 Zacatecas (Mexico)

    2006-07-01

    The optimization processes known as Taguchi method and DOE methodology are applied to the design, training and testing of Artificial Neural Networks in the neutron spectrometry field, which offer potential benefits in the evaluation of the behavior of the net as well as the ability to examine the interaction of the weights and neurons inside the same one. In this work, the Robust Design of Artificial Neural Networks methodology is used to solve the neutron spectra unfolding problem, designing, training and testing an ANN using a set of 187 neutron spectra compiled by the International Atomic Energy Agency, to obtain the better neutron spectra unfolded from the Bonner spheres spectrometer's count rates. (Author)

  5. Study of the ferrimagnetic and paramagnetic phases of magnetite measured by multiple neutron diffraction

    International Nuclear Information System (INIS)

    Mazzocchi, V.L.

    1992-01-01

    Structural parameters of the ferrimagnetic and paramagnetic phases of magnetite have been refined from neutron multiple diffraction data. Experimental multiple diffraction patterns used in the refinement, were obtained by measuring the 111 primary reflection of a natural single crystal of this compound, at room temperature for the ferrimagnetic phase and 703 0 C for the paramagnetic phase. Corresponding theoretical patterns for both phases have been calculated by the program MULTI which uses the iterative method for the intensity calculations in neutron multiple diffraction. In this method intensities are calculated as Taylor series expansions summed up to a order sufficient for a good approximation. A step by step process has been used in the refinements according to the parameter-shift method. Both isotropic and anisotropic thermal parameters were used in the calculation of the temperature factor. (author)

  6. FOCUS, Neutron Transport System for Complex Geometry Reactor Core and Shielding Problems by Monte-Carlo

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1980-01-01

    1 - Description of problem or function: FOCUS enables the calculation of any quantity related to neutron transport in reactor or shielding problems, but was especially designed to calculate differential quantities, such as point values at one or more of the space, energy, direction and time variables of quantities like neutron flux, detector response, reaction rate, etc. or averages of such quantities over a small volume of the phase space. Different types of problems can be treated: systems with a fixed neutron source which may be a mono-directional source located out- side the system, and Eigen function problems in which the neutron source distribution is given by the (unknown) fundamental mode Eigen function distribution. Using Monte Carlo methods complex 3- dimensional geometries and detailed cross section information can be treated. Cross section data are derived from ENDF/B, with anisotropic scattering and discrete or continuous inelastic scattering taken into account. Energy is treated as a continuous variable and time dependence may also be included. 2 - Method of solution: A transformed form of the adjoint Boltzmann equation in integral representation is solved for the space, energy, direction and time variables by Monte Carlo methods. Adjoint particles are defined with properties in some respects contrary to those of neutrons. Adjoint particle histories are constructed from which estimates are obtained of the desired quantity. Adjoint cross sections are defined with which the nuclide and reaction type are selected in a collision. The energy after a collision is selected from adjoint energy distributions calculated together with the adjoint cross sections in advance of the actual Monte Carlo calculation. For multiplying systems successive generations of adjoint particles are obtained which will die out for subcritical systems with a fixed neutron source and will be kept approximately stationary for Eigen function problems. Completely arbitrary problems can

  7. On solution to the problem of reactor kinetics with delayed neutrons by Monte Carlo method

    International Nuclear Information System (INIS)

    Kyncl, Jan

    2013-07-01

    The initial value problem is addressed for the neutron transport equation and for the system of equations that describe the behaviour of emitters of delayed neutrons. Examination of the solution to this problem is based on several main assumptions concerning the behaviour of macroscopic effective cross-sections describing the reaction of the neutron with the medium, the temperature of medium and the remaining parameters of the equations. Formulation of these assumptions is adequately general and is in agreement with the properties of all known models of the physical quantities involved. Among others, the assumptions admit dependence of the macroscopic effective cross-sections and temperature on spatial coordinates and time that can be arbitrary to a great extent. The problem starts from a set of integro-differential equations. This problem is first transposed into the equivalent problem of solving a linear integral equation for neutron flux. This integral equation is solved by the method of successive iterations and its uniqueness is demonstrated. Numeric solution to the integral equation by Monte Carlo method consists in finding a functional of the exact solution. For this, a random process is set up and some random variables are proposed. Then it is demonstrated that each of these variables is an unbiased estimator of that functional. (author)

  8. Passive assay of plutonium metal plates using a fast-neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Di Fulvio, A., E-mail: difulvio@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Shin, T.H.; Jordan, T.; Sosa, C.; Ruch, M.L.; Clarke, S.D. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Chichester, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-05-21

    We developed a fast-neutron multiplicity counter based on organic scintillators (EJ-309 liquid and stilbene). The system detects correlated photon and neutron multiplets emitted by fission reactions, within a gate time of tens of nanoseconds. The system was used at Idaho National Laboratory to assay a variety of plutonium metal plates. A coincidence counting strategy was used to quantify the {sup 240}Pu effective mass of the samples. Coincident neutrons, detected within a 40-ns coincidence window, show a monotonic trend, increasing with the {sup 240}Pu-effective mass (in this work, we tested the 0.005–0.5 kg range). After calibration, the system estimated the {sup 240}Pu effective mass of an unknown sample ({sup 240}Pu{sub eff} >50 g) with an uncertainty lower than 1% in a 4-min assay time.

  9. Domain decomposition methods for the mixed dual formulation of the critical neutron diffusion problem

    International Nuclear Information System (INIS)

    Guerin, P.

    2007-12-01

    The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, diffusion approximation is often used. For this problem, the MINOS solver based on a mixed dual finite element method has shown his efficiency. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose in this dissertation two domain decomposition methods for the resolution of the mixed dual form of the eigenvalue neutron diffusion problem. The first approach is a component mode synthesis method on overlapping sub-domains. Several Eigenmodes solutions of a local problem solved by MINOS on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is a modified iterative Schwarz algorithm based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, the problem is solved on each sub domain by MINOS with the interface conditions deduced from the solutions on the adjacent sub-domains at the previous iteration. The iterations allow the simultaneous convergence of the domain decomposition and the eigenvalue problem. We demonstrate the accuracy and the efficiency in parallel of these two methods with numerical results for the diffusion model on realistic 2- and 3-dimensional cores. (author)

  10. Tritium solid targets for intense D-T neutron production and its related problems

    International Nuclear Information System (INIS)

    Sumita, Kenji

    1988-01-01

    This review paper is divided into three parts. Firstly, to attain an intense neutron production rate, the construction of a design with a higher tritium-containing surface and an effective cooling system like a rotating target device are discussed. The maximum attainable intensity based on tritium solid targets shall be estimated regarding planning for future D-T sources. Secondly, on the way to carry out some experiments, an absolute intensity calibration and an angular dependent neutron energy spectrum of the neutron source are essential parameters to analyse the results of the experiments. Sometimes the space dependent neutron spectrum is required as well as the space dependent neutron flux near the targets and irradiation samples. The measurement methods and their examples are reviewed for tritium solid targets. The third part is devoted to discuss the protection to tritium contamination problems due to unavoidable release of tritium gas from targets. Performance and effectiveness of tritium collection systems for intense D-T neutron sources shall be discussed in some examples. Tritium contamination incidents due to the faulted film powder of target surface are also reported in some real incident cases. (author). Abstract only

  11. The multiple disk chopper neutron time-of-flight spectrometer at NIST

    International Nuclear Information System (INIS)

    Altorfer, F.B.; Cook, J.C.; Copley, J.R.D.

    1995-01-01

    A highly versatile multiple disk chopper neutron time-of-flight spectrometer is being installed at the Cold Neutron Research Facility of the National institute of Standards and Technology. This new instrument will fill an important gap in the portfolio of neutron inelastic scattering spectrometers in North America. It will be used for a wide variety of experiments such as studies of magnetic and vibrational excitations, tunneling spectroscopy, and quasielastic neutron scattering investigations of local and translational diffusion. The instrument uses disk choppers to monochromate and pulse the incident beam, and the energy changes of scattered neutrons are determined from their times-of-flight to a large array of detectors. The disks and the guide have been designed to make the instrument readily adaptable to the specific performance requirements of experimenters. The authors present important aspects of the design, as well as estimated values of the flux at the sample and the energy resolution for elastic scattering. The instrument should be operational in 1996

  12. Image Based Solution to Occlusion Problem for Multiple Robots Navigation

    Directory of Open Access Journals (Sweden)

    Taj Mohammad Khan

    2012-04-01

    Full Text Available In machine vision, occlusions problem is always a challenging issue in image based mapping and navigation tasks. This paper presents a multiple view vision based algorithm for the development of occlusion-free map of the indoor environment. The map is assumed to be utilized by the mobile robots within the workspace. It has wide range of applications, including mobile robot path planning and navigation, access control in restricted areas, and surveillance systems. We used wall mounted fixed camera system. After intensity adjustment and background subtraction of the synchronously captured images, the image registration was performed. We applied our algorithm on the registered images to resolve the occlusion problem. This technique works well even in the existence of total occlusion for a longer period.

  13. Single-sphere multiple-detector neutron spectrometer. Final report on Phase 1

    International Nuclear Information System (INIS)

    Sinclair, F.; Stern, I.; Hahn, R.W.; Entine, G.

    1987-07-01

    To address the problem of accurate, timely estimates of the neutron spectral flux, researchers are developing a monitoring instrument based on a single moderating sphere with a large number of independent sensors. Such a single-sphere spectrometer would allow easy measurement of quality factors. This is made possible by the recent development of a novel digital sensor which detects radiation induced errors in a dynamic random-access memory. During Phase I of the SBIR program, researchers constructed a first prototype of the single-sphere spectrometer, measured its response in a neutron flux from an isotopic Am-Be source in several geometries, and compared these with the results of Monte Carlo simulations of neutron transport. The preliminary results show that the approach is feasible and relatively straightforward

  14. Simulation of neutron multiplicity measurements using Geant4. Open source software for nuclear arms control

    Energy Technology Data Exchange (ETDEWEB)

    Kuett, Moritz

    2016-07-07

    Nuclear arms control, including nuclear safeguards and verification technologies for nuclear disarmament typically use software as part of many different technological applications. This thesis proposes to use three open source criteria for such software, allowing users and developers to have free access to a program, have access to the full source code and be able to publish modifications for the program. This proposition is presented and analyzed in detail, together with the description of the development of ''Open Neutron Multiplicity Simulation'', an open source software tool to simulate neutron multiplicity measurements. The description includes physical background of the method, details of the developed program and a comprehensive set of validation calculations.

  15. Determination of the hexagonal network parameters of the quartz β using neutron multiple diffraction

    International Nuclear Information System (INIS)

    Campos, L.C.; Parente, C.B.R.; Mazzocchi, V.L.; Helene, O.

    2000-01-01

    In this work, neutron multiple diffraction is employed for the determination of the parameters a and c of the β-quartz hexagonal cell. This crystalline phase of silica (SiO 2 ) occurs in temperatures between ca. 846 and 1143 K. A β-quartz neutron multiple diffraction pattern has been used in the determinations. This pattern was obtained with a natural quartz single crystal heated to 1003 K. During the indexing of the pattern it was verified that most of the pairs of secondary reflections, which are responsible for the formation of peaks, could be classified as 'good for the determination of a' or 'good for the determination of c'. With this classification, it became possible to employ an iterative method for the determination of both parameters. After 8 cycles of iteration the values found for the parameters were a = 4.9964 +- 0.0018 and c = 5.46268 +- 0.00052 A. (author)

  16. UN Method For The Critical Slab Problem In One-Speed Neutron Transport Theory

    International Nuclear Information System (INIS)

    Oeztuerk, Hakan; Guengoer, Sueleyman

    2008-01-01

    The Chebyshev polynomial approximation (U N method) is used to solve the critical slab problem in one-speed neutron transport theory using Marshak boundary condition. The isotropic scattering kernel with the combination of forward and backward scattering is chosen for the neutrons in a uniform finite slab. Numerical results obtained by the U N method are presented in the tables together with the results obtained by the well-known P N method for comparison. It is shown that the method converges rapidly with its easily executable equations.

  17. Integrated Production-Distribution Scheduling Problem with Multiple Independent Manufacturers

    Directory of Open Access Journals (Sweden)

    Jianhong Hao

    2015-01-01

    Full Text Available We consider the nonstandard parts supply chain with a public service platform for machinery integration in China. The platform assigns orders placed by a machinery enterprise to multiple independent manufacturers who produce nonstandard parts and makes production schedule and batch delivery schedule for each manufacturer in a coordinate manner. Each manufacturer has only one plant with parallel machines and is located at a location far away from other manufacturers. Orders are first processed at the plants and then directly shipped from the plants to the enterprise in order to be finished before a given deadline. We study the above integrated production-distribution scheduling problem with multiple manufacturers to maximize a weight sum of the profit of each manufacturer under the constraints that all orders are finished before the deadline and the profit of each manufacturer is not negative. According to the optimal condition analysis, we formulate the problem as a mixed integer programming model and use CPLEX to solve it.

  18. Can a large neutron excess help solve the baryon loading problem in gamma-Ray burst fireballs?

    Science.gov (United States)

    Fuller; Pruet; Abazajian

    2000-09-25

    We point out that the baryon loading problem in gamma-ray burst (GRB) models can be ameliorated if a significant fraction of the baryons which inertially confine the fireball is converted to neutrons. A high neutron fraction can result in a reduced transfer of energy from relativistic light particles in the fireball to baryons. The energy needed to produce the required relativistic flow in the GRB is consequently reduced, in some cases by orders of magnitude. A high neutron-to-proton ratio has been calculated in neutron star-merger fireball environments. Significant neutron excess also could occur near compact objects with high neutrino fluxes.

  19. Development of an asymmetric multiple-position neutron source (AMPNS) method to monitor the criticality of a degraded reactor core

    International Nuclear Information System (INIS)

    Kim, S.S.; Levine, S.H.

    1985-01-01

    An analytical/experimental method has been developed to monitor the subcritical reactivity and unfold the k/sub infinity/ distribution of a degraded reactor core. The method uses several fixed neutron detectors and a Cf-252 neutron source placed sequentially in multiple positions in the core. Therefore, it is called the Asymmetric Multiple Position Neutron Source (AMPNS) method. The AMPNS method employs nucleonic codes to analyze the neutron multiplication of a Cf-252 neutron source. An optimization program, GPM, is utilized to unfold the k/sub infinity/ distribution of the degraded core, in which the desired performance measure minimizes the error between the calculated and the measured count rates of the degraded reactor core. The analytical/experimental approach is validated by performing experiments using the Penn State Breazeale TRIGA Reactor (PSBR). A significant result of this study is that it provides a method to monitor the criticality of a damaged core during the recovery period

  20. Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Dawidowski, J; Blostein, J J; Granada, J R

    2006-01-01

    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis of the method is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined

  1. Sensitivity analysis of physical/operational parameters in neutron multiplicity counting

    International Nuclear Information System (INIS)

    Peerani, P.; Marin Ferrer, M.

    2007-01-01

    In this paper, we perform a sensitivity study on the influence of various physical and operational parameters on the results of neutron multiplicity counting. The purpose is to have a better understanding of the importance of each component and its contribution to the measurement uncertainty. Then we will be able to determine the optimal conditions for the operational parameters and for detector design and as well to point out weaknesses in the knowledge of critical fundamental nuclear data

  2. Learning of Rule Ensembles for Multiple Attribute Ranking Problems

    Science.gov (United States)

    Dembczyński, Krzysztof; Kotłowski, Wojciech; Słowiński, Roman; Szeląg, Marcin

    In this paper, we consider the multiple attribute ranking problem from a Machine Learning perspective. We propose two approaches to statistical learning of an ensemble of decision rules from decision examples provided by the Decision Maker in terms of pairwise comparisons of some objects. The first approach consists in learning a preference function defining a binary preference relation for a pair of objects. The result of application of this function on all pairs of objects to be ranked is then exploited using the Net Flow Score procedure, giving a linear ranking of objects. The second approach consists in learning a utility function for single objects. The utility function also gives a linear ranking of objects. In both approaches, the learning is based on the boosting technique. The presented approaches to Preference Learning share good properties of the decision rule preference model and have good performance in the massive-data learning problems. As Preference Learning and Multiple Attribute Decision Aiding share many concepts and methodological issues, in the introduction, we review some aspects bridging these two fields. To illustrate the two approaches proposed in this paper, we solve with them a toy example concerning the ranking of a set of cars evaluated by multiple attributes. Then, we perform a large data experiment on real data sets. The first data set concerns credit rating. Since recent research in the field of Preference Learning is motivated by the increasing role of modeling preferences in recommender systems and information retrieval, we chose two other massive data sets from this area - one comes from movie recommender system MovieLens, and the other concerns ranking of text documents from 20 Newsgroups data set.

  3. A neutron multiplicity analysis method for uranium samples with liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hao, E-mail: zhouhao_ciae@126.com [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China); Lin, Hongtao [Xi' an Reasearch Institute of High-tech, Xi' an, Shaanxi 710025 (China); Liu, Guorong; Li, Jinghuai; Liang, Qinglei; Zhao, Yonggang [China Institute of Atomic Energy, P.O.BOX 275-8, Beijing 102413 (China)

    2015-10-11

    A new neutron multiplicity analysis method for uranium samples with liquid scintillators is introduced. An active well-type fast neutron multiplicity counter has been built, which consists of four BC501A liquid scintillators, a n/γdiscrimination module MPD-4, a multi-stop time to digital convertor MCS6A, and two Am–Li sources. A mathematical model is built to symbolize the detection processes of fission neutrons. Based on this model, equations in the form of R=F*P*Q*T could be achieved, where F indicates the induced fission rate by interrogation sources, P indicates the transfer matrix determined by multiplication process, Q indicates the transfer matrix determined by detection efficiency, T indicates the transfer matrix determined by signal recording process and crosstalk in the counter. Unknown parameters about the item are determined by the solutions of the equations. A {sup 252}Cf source and some low enriched uranium items have been measured. The feasibility of the method is proven by its application to the data analysis of the experiments.

  4. Software tool for resolution of inverse problems using artificial intelligence techniques: an application in neutron spectrometry

    International Nuclear Information System (INIS)

    Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; Sousa L, M. A.

    2016-10-01

    The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)

  5. Generalization of the Fourier Convergence Analysis in the Neutron Diffusion Eigenvalue Problem

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Noh, Jae Man; Joo, Hyung Kook

    2005-01-01

    Fourier error analysis has been a standard technique for the stability and convergence analysis of linear and nonlinear iterative methods. Lee et al proposed new 2- D/1-D coupling methods and demonstrated several advantages of the new methods by performing a Fourier convergence analysis of the methods as well as two existing methods for a fixed source problem. We demonstrated the Fourier convergence analysis of one of the 2-D/1-D coupling methods applied to a neutron diffusion eigenvalue problem. However, the technique cannot be used directly to analyze the convergence of the other 2-D/1-D coupling methods since some algorithm-specific features were used in our previous study. In this paper we generalized the Fourier convergence analysis technique proposed and analyzed the convergence of the 2-D/1-D coupling methods applied to a neutron diffusion Eigenvalue problem using the generalized technique

  6. Environmental protection problems from the standpoint of regeneration of fast neutron reactor fuel

    International Nuclear Information System (INIS)

    Gedeonov, L.I.; Lazarev, L.N.; Suprunenko, A.N.

    The discussion of the problem of environmental protection is based on two principles: a strict observance of legislatively established standards for permissible concentrations of radionuclides in objects of the environment and for dose loads for the population; all possible steps to reduce the contamination to a level justified in practice. Environmental protection steps are considered from the points of view of a systematic analysis. A survey of the environmental protection system near sources of radioactive discharges is given. The basic interactions and feedbacks are indicated. Characteristics differentiating the discharges of the fuel cycle of fast neutron breeder reactors from discharges of the slow neutron cycle are discussed. It is shown that it is necessary to study the overall regional and global interactions of discharges of the atomic power industry. The characteristics of situations at nuclear fuel cycle facilities of fast neutron reactors are discussed. The necessity of additional technical steps to prevent accidents and eliminate their effects if they take place is emphasized

  7. The importance of anisotropic scattering in high energy neutron transport problems

    International Nuclear Information System (INIS)

    Prillinger, G.; Mattes, M.

    1984-01-01

    To describe the highly anisotropic scattering of very fast neutrons adequately the transport code ANISN has been improved. Fokker-Planck terms have been introduced into the transport equation which accurately describe the small changes in energy and angle. The new code has been tested for a d(50)-Be neutron source in a deep penetration iron problem. The influence of the forward peaked elastic scattering on the fast neutron spectrum is shown to be significant and can be handled efficiently in the new ANISN version. Since common cross-section libraries are limited by Legendre expansion, or by their upper energy boundary, or exclude elastic scattering above 20 MeV a special library has been created. (Auth.)

  8. The Development of Advanced Processing and Analysis Algorithms for Improved Neutron Multiplicity Measurements

    International Nuclear Information System (INIS)

    Santi, P.; Favalli, A.; Hauck, D.; Henzl, V.; Henzlova, D.; Ianakiev, K.; Iliev, M.; Swinhoe, M.; Croft, S.; Worrall, L.

    2015-01-01

    One of the most distinctive and informative signatures of special nuclear materials is the emission of correlated neutrons from either spontaneous or induced fission. Because the emission of correlated neutrons is a unique and unmistakable signature of nuclear materials, the ability to effectively detect, process, and analyze these emissions will continue to play a vital role in the non-proliferation, safeguards, and security missions. While currently deployed neutron measurement techniques based on 3He proportional counter technology, such as neutron coincidence and multiplicity counters currently used by the International Atomic Energy Agency, have proven to be effective over the past several decades for a wide range of measurement needs, a number of technical and practical limitations exist in continuing to apply this technique to future measurement needs. In many cases, those limitations exist within the algorithms that are used to process and analyze the detected signals from these counters that were initially developed approximately 20 years ago based on the technology and computing power that was available at that time. Over the past three years, an effort has been undertaken to address the general shortcomings in these algorithms by developing new algorithms that are based on fundamental physics principles that should lead to the development of more sensitive neutron non-destructive assay instrumentation. Through this effort, a number of advancements have been made in correcting incoming data for electronic dead time, connecting the two main types of analysis techniques used to quantify the data (Shift register analysis and Feynman variance to mean analysis), and in the underlying physical model, known as the point model, that is used to interpret the data in terms of the characteristic properties of the item being measured. The current status of the testing and evaluation of these advancements in correlated neutron analysis techniques will be discussed

  9. The Multiple-Minima Problem in Protein Folding

    Science.gov (United States)

    Scheraga, Harold A.

    1991-10-01

    The conformational energy surface of a polypeptide or protein has many local minima, and conventional energy minimization procedures reach only a local minimum (near the starting point of the optimization algorithm) instead of the global minimum (the multiple-minima problem). Several procedures have been developed to surmount this problem, the most promising of which are: (a) build up procedure, (b) optimization of electrostatics, (c) Monte Carlo-plus-energy minimization, (d) electrostatically-driven Monte Carlo, (e) inclusion of distance restraints, (f) adaptive importance-sampling Monte Carlo, (g) relaxation of dimensionality, (h) pattern-recognition, and (i) diffusion equation method. These procedures have been applied to a variety of polypeptide structural problems, and the results of such computations are presented. These include the computation of the structures of open-chain and cyclic peptides, fibrous proteins and globular proteins. Present efforts are being devoted to scaling up these procedures from small polypeptides to proteins, to try to compute the three-dimensional structure of a protein from its amino sequence.

  10. Multiple Choice Knapsack Problem: example of planning choice in transportation.

    Science.gov (United States)

    Zhong, Tao; Young, Rhonda

    2010-05-01

    Transportation programming, a process of selecting projects for funding given budget and other constraints, is becoming more complex as a result of new federal laws, local planning regulations, and increased public involvement. This article describes the use of an integer programming tool, Multiple Choice Knapsack Problem (MCKP), to provide optimal solutions to transportation programming problems in cases where alternative versions of projects are under consideration. In this paper, optimization methods for use in the transportation programming process are compared and then the process of building and solving the optimization problems is discussed. The concepts about the use of MCKP are presented and a real-world transportation programming example at various budget levels is provided. This article illustrates how the use of MCKP addresses the modern complexities and provides timely solutions in transportation programming practice. While the article uses transportation programming as a case study, MCKP can be useful in other fields where a similar decision among a subset of the alternatives is required. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  12. Characterizations of double pulsing in neutron multiplicity and coincidence counting systems

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Katrina E., E-mail: kkoehler@lanl.gov [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Henzl, Vladimir [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States); Croft, Stephen S. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Henzlova, Daniela; Santi, Peter A. [Los Alamos National Laboratory, P. O. Box 1663, Los Alamos, NM 87545 (United States)

    2016-10-01

    Passive neutron coincidence/multiplicity counters are subject to non-ideal behavior, such as double pulsing and dead time. It has been shown in the past that double-pulsing exhibits a distinct signature in a Rossi-alpha distribution, which is not readily noticed using traditional Multiplicity Shift Register analysis. However, it has been assumed that the use of a pre-delay in shift register analysis removes any effects of double pulsing. In this work, we use high-fidelity simulations accompanied by experimental measurements to study the effects of double pulsing on multiplicity rates. By exploiting the information from the double pulsing signature peak observable in the Rossi-alpha distribution, the double pulsing fraction can be determined. Algebraic correction factors for the multiplicity rates in terms of the double pulsing fraction have been developed. We discuss the role of these corrections across a range of scenarios.

  13. Correction for variable moderation and multiplication effects associated with thermal neutron coincidence counting

    International Nuclear Information System (INIS)

    Baron, N.

    1978-01-01

    A correction is described for multiplication and moderation when doing passive thermal neutron coincidence counting nondestructive assay measurements on powder samples of PuO 2 mixed arbitrarily with MgO, SiO 2 , and moderating material. The multiplication correction expression is shown to be approximately separable into the product of two independent terms; F/sub Pu/ which depends on the mass of 240 Pu, and F/sub αn/ which depends on properties of the matrix material. Necessary assumptions for separability are (1) isotopic abundances are constant, and (2) fission cross sections are independent of incident neutron energy: both of which are reasonable for the 8% 240 Pu powder samples considered here. Furthermore since all prompt fission neutrons are expected to have nearly the same energy distributions, variations among different samples can be due only to the moderating properties of the samples. Relative energy distributions are provided by a thermal neutron well counter having two concentric rings of 3 He proportional counters placed symmetrically about the well. Measured outer-to-inner ring ratios raised to an empirically determined power for coincidences, (N/sup I//N/sup O/)/sup Z/, and singles, (T/sup O//T/sup I/)/sup delta/, provide corrections for moderation and F/sub αn/ respectively, and F/sub Pu/ is approximated by M 240 /sup X//M 240 . The exponents are calibration constants determined by a least squares fitting procedure using standards' data. System calibration is greatly simplified using the separability principle. Once appropriate models are established for F/sub Pu/ and F/sub αn/, only a few standards are necessary to determine the calibration constants associated with these terms. Since F/sub Pu/ is expressed as a function of M 240 , correction for multiplication in a subsequent assay demands only a measurement of F/sub αn/

  14. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1994-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs

  15. Solution of the neutron transport problem with anisotropic scattering in cylindrical geometry by the decomposition method

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Bogado Leite, S.Q.; Vilhena, M.T. de

    2009-01-01

    An analytical solution has been obtained for the one-speed stationary neutron transport problem, in an infinitely long cylinder with anisotropic scattering by the decomposition method. Series expansions of the angular flux distribution are proposed in terms of suitably constructed functions, recursively obtainable from the isotropic solution, to take into account anisotropy. As for the isotropic problem, an accurate closed-form solution was chosen for the problem with internal source and constant incident radiation, obtained from an integral transformation technique and the F N method

  16. The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Woznicki, Z I [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1994-12-31

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs.

  17. The numerical analysis of eigenvalue problem solutions in multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Woznicki, Z.I.

    1995-01-01

    The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iterations within global iterations. Particular iterative strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 35 figs, 16 tabs

  18. Surrogate 239Pu(n, fxn) and 241Pu(n, fxn) average fission-neutron-multiplicity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alan, B. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fisher, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-26

    We have constructed a new neutron-charged-particle detector array called NeutronSTARS. It has been described extensively in LLNL-TR-703909 [1] and Akindele et al [2]. We have used this new neutron-charged-particle array to measure the 241Pu and 239Pu fissionneutron multiplicity as a function of equivalent incident-neutron energy from 100 keV to 20 MeV. The experimental approach, detector array, data analysis, and results are summarized in the following sections.

  19. The problem of criticality and initial-value problem in neutron transport theory

    International Nuclear Information System (INIS)

    Kyncl, J.

    1984-10-01

    The problem of criticality and the initial value problem are studied in the case of a linear Boltzmann equation and of both finite and infinite media. The space of functions where the problems are solved is chosen in such a way as to cover a wide range of physical situations. The asymptotic time behavior of the solution to the initial-value problem is also discussed, and main results are summarized in three basic theorems. (author)

  20. Vehicle Routing Problem with Backhaul, Multiple Trips and Time Window

    Directory of Open Access Journals (Sweden)

    Johan Oscar Ong

    2011-01-01

    Full Text Available Transportation planning is one of the important components to increase efficiency and effectiveness in the supply chain system. Good planning will give a saving in total cost of the supply chain. This paper develops the new VRP variants’, VRP with backhauls, multiple trips, and time window (VRPBMTTW along with its problem solving techniques by using Ant Colony Optimization (ACO and Sequential Insertion as initial solution algorithm. ACO is modified by adding the decoding process in order to determine the number of vehicles, total duration time, and range of duration time regardless of checking capacity constraint and time window. This algorithm is tested by using set of random data and verified as well as analyzed its parameter changing’s. The computational results for hypothetical data with 50% backhaul and mix time windows are reported.

  1. Functional analysis screening for multiple topographies of problem behavior.

    Science.gov (United States)

    Bell, Marlesha C; Fahmie, Tara A

    2018-04-23

    The current study evaluated a screening procedure for multiple topographies of problem behavior in the context of an ongoing functional analysis. Experimenters analyzed the function of a topography of primary concern while collecting data on topographies of secondary concern. We used visual analysis to predict the function of secondary topographies and a subsequent functional analysis to test those predictions. Results showed that a general function was accurately predicted for five of six (83%) secondary topographies. A specific function was predicted and supported for a subset of these topographies. The experimenters discuss the implication of these results for clinicians who have limited time for functional assessment. © 2018 Society for the Experimental Analysis of Behavior.

  2. Utilizing of computational tools on the modelling of a simplified problem of neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Lessa, Fabio da Silva Rangel; Platt, Gustavo Mendes; Alves Filho, Hermes [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico]. E-mails: fsrlessa@gmail.com; gmplatt@iprj.uerj.br; halves@iprj.uerj.br

    2007-07-01

    In the current technology level, the investigation of several problems is studied through computational simulations whose results are in general satisfactory and much less expensive than the conventional forms of investigation (e.g., destructive tests, laboratory measures, etc.). Almost all of the modern scientific studies are executed using computational tools, as computers of superior capacity and their systems applications to make complex calculations, algorithmic iterations, etc. Besides the considerable economy in time and in space that the Computational Modelling provides, there is a financial economy to the scientists. The Computational Modelling is a modern methodology of investigation that asks for the theoretical study of the identified phenomena in the problem, a coherent mathematical representation of such phenomena, the generation of a numeric algorithmic system comprehensible for the computer, and finally the analysis of the acquired solution, or still getting use of pre-existent systems that facilitate the visualization of these results (editors of Cartesian graphs, for instance). In this work, was being intended to use many computational tools, implementation of numeric methods and a deterministic model in the study and analysis of a well known and simplified problem of nuclear engineering (the neutron transport), simulating a theoretical problem of neutron shielding with physical-material hypothetical parameters, of neutron flow in each space junction, programmed with Scilab version 4.0. (author)

  3. Utilizing of computational tools on the modelling of a simplified problem of neutron shielding

    International Nuclear Information System (INIS)

    Lessa, Fabio da Silva Rangel; Platt, Gustavo Mendes; Alves Filho, Hermes

    2007-01-01

    In the current technology level, the investigation of several problems is studied through computational simulations whose results are in general satisfactory and much less expensive than the conventional forms of investigation (e.g., destructive tests, laboratory measures, etc.). Almost all of the modern scientific studies are executed using computational tools, as computers of superior capacity and their systems applications to make complex calculations, algorithmic iterations, etc. Besides the considerable economy in time and in space that the Computational Modelling provides, there is a financial economy to the scientists. The Computational Modelling is a modern methodology of investigation that asks for the theoretical study of the identified phenomena in the problem, a coherent mathematical representation of such phenomena, the generation of a numeric algorithmic system comprehensible for the computer, and finally the analysis of the acquired solution, or still getting use of pre-existent systems that facilitate the visualization of these results (editors of Cartesian graphs, for instance). In this work, was being intended to use many computational tools, implementation of numeric methods and a deterministic model in the study and analysis of a well known and simplified problem of nuclear engineering (the neutron transport), simulating a theoretical problem of neutron shielding with physical-material hypothetical parameters, of neutron flow in each space junction, programmed with Scilab version 4.0. (author)

  4. Effects of dependence in high-dimensional multiple testing problems

    Directory of Open Access Journals (Sweden)

    van de Wiel Mark A

    2008-02-01

    Full Text Available Abstract Background We consider effects of dependence among variables of high-dimensional data in multiple hypothesis testing problems, in particular the False Discovery Rate (FDR control procedures. Recent simulation studies consider only simple correlation structures among variables, which is hardly inspired by real data features. Our aim is to systematically study effects of several network features like sparsity and correlation strength by imposing dependence structures among variables using random correlation matrices. Results We study the robustness against dependence of several FDR procedures that are popular in microarray studies, such as Benjamin-Hochberg FDR, Storey's q-value, SAM and resampling based FDR procedures. False Non-discovery Rates and estimates of the number of null hypotheses are computed from those methods and compared. Our simulation study shows that methods such as SAM and the q-value do not adequately control the FDR to the level claimed under dependence conditions. On the other hand, the adaptive Benjamini-Hochberg procedure seems to be most robust while remaining conservative. Finally, the estimates of the number of true null hypotheses under various dependence conditions are variable. Conclusion We discuss a new method for efficient guided simulation of dependent data, which satisfy imposed network constraints as conditional independence structures. Our simulation set-up allows for a structural study of the effect of dependencies on multiple testing criterions and is useful for testing a potentially new method on π0 or FDR estimation in a dependency context.

  5. Uranium mass and neutron multiplication factor estimates from time-correlation coincidence counts

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wenxiong [China Academy of Engineering Physics, Center for Strategic Studies, Beijing 100088 (China); Li, Jiansheng [China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621900 (China); Zhu, Jianyu [China Academy of Engineering Physics, Center for Strategic Studies, Beijing 100088 (China)

    2015-10-11

    Time-correlation coincidence counts of neutrons are an important means to measure attributes of nuclear material. The main deficiency in the analysis is that an attribute of an unknown component can only be assessed by comparing it with similar known components. There is a lack of a universal method of measurement suitable for the different attributes of the components. This paper presents a new method that uses universal relations to estimate the mass and neutron multiplication factor of any uranium component with known enrichment. Based on numerical simulations and analyses of 64 highly enriched uranium components with different thicknesses and average radii, the relations between mass, multiplication and coincidence spectral features have been obtained by linear regression analysis. To examine the validity of the method in estimating the mass of uranium components with different sizes, shapes, enrichment, and shielding, the features of time-correlation coincidence-count spectra for other objects with similar attributes are simulated. Most of the masses and multiplications for these objects could also be derived by the formulation. Experimental measurements of highly enriched uranium castings have also been used to verify the formulation. The results show that for a well-designed time-dependent coincidence-count measuring system of a uranium attribute, there are a set of relations dependent on the uranium enrichment by which the mass and multiplication of the measured uranium components of any shape and size can be estimated from the features of the source-detector coincidence-count spectrum.

  6. On an analytical evaluation of the flux and dominant eigenvalue problem for the steady state multi-group multi-layer neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)

    2014-11-15

    In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.

  7. The problem of the black plate with zero thickness and finite width in neutron transport theory

    International Nuclear Information System (INIS)

    Benoist, Pierre.

    1979-08-01

    A black plate with zero thickness, finite width and infinite height, imbedded in an infinite and homogeneous medium which scatters and absorbs neutrons, is considered. The problem is time-independent and the neutrons, which are supposed to have a unique speed, are issued, either from a current at infinity (problem A), or from a uniform source (problem B). It is shown that the Csub(N) method seems to be particularly well suited to the resolution of this 'two-dimensional Milne problem'. A particular interest is attached to the determination of the radius R of the black cylinder leading to the same polar behaviour of the flux at infinity as the plate (criterion 1), or absorbing the same number of neutrons as the plate (criterion 2). In this preliminary report, values of R are calculated in various limit cases: the width of the plate being taken equal to one, l being the mean free path and c the number of secondaries par collision in the outer medium, R is calculated at first in the limit l → 0 (for c = 1) by the theory of Musklelishvili, and then in the limit l → infinity (whatever c is) and c → 0 (whatever l is). In the limit c → 1 (whatever l is), R is shown to be the same in problems A and B and criteria 1 and 2. On the other hand, whatever l and c are; the values of R obtained in the problem A with the criterion 2 and in the problem B with the criterion 1 are shown to be equal. All these results allow henceforth a reasonable interpolation which can be useful in the practice [fr

  8. On the possibility of multiple utilization of Bowen's Kale for neutron activation analysis of biological materials

    International Nuclear Information System (INIS)

    Marinov, V.M.; Lazarova, M.S.; Mihajlov, M.I.; Apostolov, D.

    1977-01-01

    The results of investigations related to the multiple utilization of Bowen's Kale in developing neutron-activation methods for determining microelements in biological materials carried out in recent years are presented. Bowen's Kale might be used as: (1) experimental material in the development of a method and its verification, i.e. as a test for biological materials; (2) a material where experimental conditions might be optimized; (3) a material for investigating the accuracy, reproducibility and the limit of proof at experimental conditions already defined; (4) a monitor; (5) a multielement volume reference standard for a number of microelements during their simultaneous determination and (6) a standard for verifying the authenticity of the results obtained. In this manner, a reliable criterion for comparison of the potentialities, the accuracy, reproducibility, the limits of proof and the authenticity of the neutron-activation methods of determining microelements in biological materials is introduced. (author)

  9. Sensitivity studies of the neutron multiplicity spectrum in the spallation of Pb targets

    International Nuclear Information System (INIS)

    Sinha, A.; Garg, S.B.; Srinivasan, M.

    1986-01-01

    The number of neutrons produced per incident proton in the spallation of Pb targets is of direct relevance to the design of accelerator breeders. The nuclear cascade initiated by high-energy protons in spallation targets is usually described by an intranuclear cascade evaporation (INCE) model. Even though this model describes various average nuclear properties of spallation targets fairly well, differential quantities such as energy spectra, angular spectra etc., are not reproduced within the limits of experimental uncertainty. One of the reasons for this is the uncertainty in the magnitude of the parameters involved in the model, notably the level density parameter Bsub(O) whose magnitude is quoted by different workers to be in the range of 8-20 MeV. The accuracy of Bsub(O) could be improved if we could experimentally determine a quantity which is much more sensitive to Bsub(O) than the average neutron yield. In this paper we discuss one such quantity, namely the neutron multiplicity spectrum (MS). We compute the MS due to the spallation of Pb targets of different sizes at proton energies of 1.5, 1.0 and 0.59 GeV using the Monte Carlo code HETC. It is noticed that for the 1.5 GeV proton case the probability P(ν) for leakage of ν neutrons for ν in the range of 60-65, changes by about 70% when Bsub(O) is varied from 8 to 20 MeV. The corresponding change in the average neutron yield is <20%. It is therefore suggested that an accurate measurement of the MS can serve as a useful tool to narrow down the range of uncertainty in the Bsub(O) parameter. (author)

  10. Is there an Ay problem in low-energy neutron-proton scattering?

    International Nuclear Information System (INIS)

    Gross, Franz; Stadler, Alfred

    2008-01-01

    We calculate Ay in neutron-proton scattering for the interactions models WJC-1 and WJC-2 in the Covariant Spectator Theory. We find that the recent 12 MeV measurements performed at TUNL are in better agreement with our results than with the Nijmegen Phase Shift Analysis of 1993, and after reviewing the low energy data, conclude that there is no Ay problem in low-energy np scattering.

  11. Study of the α and β phases of quartz by neutron multiple diffraction

    International Nuclear Information System (INIS)

    Mazzocchi, V.L.

    1984-01-01

    Crystal structures of α and β phases of quartz are studied, employing neutron multiple diffraction as a method of analysis. Theoretical multiple diffraction patterns in a many-beam case were determined by a computer program which calculates intensities of beams as sums of Taylor's series expansions, retaining terms up to a order n. Experimental 'umweg' and transmitted beam patterns were obtained for the 00.1 primary reflection of α and β phases of quartz. To calculate α - quartz multiple diffraction intensities it was necessary to determine the Dauphine twinning fraction for the crystal after having passed by the β-phase. For the two models of β-quartz a better agreement between experimental and calculated integrated intensities was found for the disordered structure model based on split-half-oxigen positions. (Author) [pt

  12. A Monte Carlo evaluation of analytical multiple scattering corrections for unpolarised neutron scattering and polarisation analysis data

    International Nuclear Information System (INIS)

    Mayers, J.; Cywinski, R.

    1985-03-01

    Some of the approximations commonly used for the analytical estimation of multiple scattering corrections to thermal neutron elastic scattering data from cylindrical and plane slab samples have been tested using a Monte Carlo program. It is shown that the approximations are accurate for a wide range of sample geometries and scattering cross-sections. Neutron polarisation analysis provides the most stringent test of multiple scattering calculations as multiply scattered neutrons may be redistributed not only geometrically but also between the spin flip and non spin flip scattering channels. A very simple analytical technique for correcting for multiple scattering in neutron polarisation analysis has been tested using the Monte Carlo program and has been shown to work remarkably well in most circumstances. (author)

  13. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1975-10-01

    The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level

  14. Adjacent-cell Preconditioners for solving optically thick neutron transport problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1994-01-01

    We develop, analyze, and test a new acceleration scheme for neutron transport methods, the Adjacent-cell Preconditioner (AP) that is particularly suited for solving optically thick problems. Our method goes beyond Diffusion Synthetic Acceleration (DSA) methods in that it's spectral radius vanishes with increasing cell thickness. In particular, for the ID case the AP method converges immediately, i.e. in one iteration, to 10 -4 pointwise relative criterion in problems with dominant cell size of 10 mfp or thicker. Also the AP has a simple formalism and is cell-centered hence, multidimensional and high order extensions are easier to develop, and more efficient to implement

  15. Nodal deterministic simulation for problems of neutron shielding in multigroup formulation

    International Nuclear Information System (INIS)

    Baptista, Josue Costa; Heringer, Juan Diego dos Santos; Santos, Luiz Fernando Trindade; Alves Filho, Hermes

    2013-01-01

    In this paper, we propose the use of some computational tools, with the implementation of numerical methods SGF (Spectral Green's Function), making use of a deterministic model of transport of neutral particles in the study and analysis of a known and simplified problem of nuclear engineering, known in the literature as a problem of neutron shielding, considering the model with two energy groups. These simulations are performed in MatLab platform, version 7.0, and are presented and developed with the help of a Computer Simulator providing a friendly computer application for their utilities

  16. Effect of fission dynamics on the spectra and multiplicities of prompt fission neutrons

    International Nuclear Information System (INIS)

    Nix, J.R.; Madland, D.G.; Sierk, A.J.

    1985-01-01

    With the goal of examining their effect on the spectra and multiplicities of the prompt neutrons emitted in fission, we discuss recent advances in a unified macroscopic-microscopic description of large-amplitude collective nuclear dynamics. The conversion of collective energy into single-particle excitation energy is calculated for a new surface-plus-window dissipation mechanism. By solving the Hamilton equations of motion for initial conditions appropriate to fission, we obtain the average fission-fragment translational kinetic energy and excitation energy. The spectra and multiplicities of the emitted neutrons, which depend critically upon the average excitation energy, are then calculated on the basis of standard nuclear evaporation theory, taking into account the average motion of the fission fragments, the distribution of fission-fragment residual nuclear temperature, the energy dependence of the cross section for the inverse process of compound-nucleus formation, and the possibility of multiple-chance fission. Some illustrative comparisons of our calculations with experimental data are shown

  17. Experimental evaluation of the extended Dytlewski-style dead time correction formalism for neutron multiplicity counting

    Science.gov (United States)

    Lockhart, M.; Henzlova, D.; Croft, S.; Cutler, T.; Favalli, A.; McGahee, Ch.; Parker, R.

    2018-01-01

    Over the past few decades, neutron multiplicity counting has played an integral role in Special Nuclear Material (SNM) characterization pertaining to nuclear safeguards. Current neutron multiplicity analysis techniques use singles, doubles, and triples count rates because a methodology to extract and dead time correct higher order count rates (i.e. quads and pents) was not fully developed. This limitation is overcome by the recent extension of a popular dead time correction method developed by Dytlewski. This extended dead time correction algorithm, named Dytlewski-Croft-Favalli(DCF), is detailed in reference Croft and Favalli (2017), which gives an extensive explanation of the theory and implications of this new development. Dead time corrected results can then be used to assay SNM by inverting a set of extended point model equations which as well have only recently been formulated. The current paper discusses and presents the experimental evaluation of practical feasibility of the DCF dead time correction algorithm to demonstrate its performance and applicability in nuclear safeguards applications. In order to test the validity and effectiveness of the dead time correction for quads and pents, 252Cf and SNM sources were measured in high efficiency neutron multiplicity counters at the Los Alamos National Laboratory (LANL) and the count rates were extracted up to the fifth order and corrected for dead time. In order to assess the DCF dead time correction, the corrected data is compared to traditional dead time correction treatment within INCC. The DCF dead time correction is found to provide adequate dead time treatment for broad range of count rates available in practical applications.

  18. An analytical approach for a nodal scheme of two-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Cabrera, L.C.; Prolo Filho, J.F.

    2011-01-01

    Research highlights: → Nodal equations for a two-dimensional neutron transport problem. → Analytical Discrete Ordinates Method. → Numerical results compared with the literature. - Abstract: In this work, a solution for a two-dimensional neutron transport problem, in cartesian geometry, is proposed, on the basis of nodal schemes. In this context, one-dimensional equations are generated by an integration process of the multidimensional problem. Here, the integration is performed for the whole domain such that no iterative procedure between nodes is needed. The ADO method is used to develop analytical discrete ordinates solution for the one-dimensional integrated equations, such that final solutions are analytical in terms of the spatial variables. The ADO approach along with a level symmetric quadrature scheme, lead to a significant order reduction of the associated eigenvalues problems. Relations between the averaged fluxes and the unknown fluxes at the boundary are introduced as the usually needed, in nodal schemes, auxiliary equations. Numerical results are presented and compared with test problems.

  19. American National Standard: for safety in conducting subcritical neutron-multiplication measurements in-situ

    International Nuclear Information System (INIS)

    1983-01-01

    This standard provides safety guidance for conducting subcritical neutron-multiplication measurements where physical protection of personnel against the consequences of a criticality accident is not provided. The objectives of in-situ measurements are either to confirm an adequate safety margin or to improve an estimate of such a margin. The first objective may constitute a test of the criticality safety of a design that is based on calculations. The second may effect improved operating conditions by reducing the uncertainty of safety margins and providing guidance to new designs

  20. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  1. Positive solution of a time and energy dependent neutron transport problem

    International Nuclear Information System (INIS)

    Pao, C.V.

    1975-01-01

    A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given

  2. Refinement of the ferri and paramagnetic phases of magnetite measured by neutron multiple diffraction

    International Nuclear Information System (INIS)

    Mazzochi, V.L.; Parente, C.B.R.

    1989-10-01

    Structural parameters of the ferri and paramagnetic phases of magnetite have been refined from neutron multiple diffraction data. Experimental patterns were obtained by measuring the III primary reflection of a natural single crystal of this compound, at room temperature for the ferrimagnetic phase and 703 0 C for the paramagnetic phase. Theoretical multiple diffraction patterns for both phases have been calculated by the program MULTI which uses the iterative method. In this method intensities are caluclated as Taylor series expansions summed up to a order sufficient for a good approximation. A step by step process has been used in the refinements similarly to the parameter-shift method. Final values for the discrepancy factor found for the ferri and paramagnetic phases were R = 3.96% and R = 3.46%, respectively. (author) [pt

  3. Experimental Assessment of a New Passive Neutron Multiplication Counter for Partial Defect Verification of LWR Fuel Assemblies

    International Nuclear Information System (INIS)

    LaFleur, A.; Menlove, H.; Park, S.-H.; Lee, S. K.; Oh, J.-M.; Kim, H.-D.

    2015-01-01

    The development of non-destructive assay (NDA) capabilities to improve partial defect verification of spent fuel assemblies is needed to improve the timely detection of the diversion of significant quantities of fissile material. This NDA capability is important to the implementation of integrated safeguards for spent fuel verification by the International Atomic Energy Agency (IAEA) and would improve deterrence of possible diversions by increasing the risk of early detection. A new NDA technique called Passive Neutron Multiplication Counter (PNMC) is currently being developed at Los Alamos National Laboratory (LANL) to improve safeguards measurements of LightWater Reactor (LWR) fuel assemblies. The PNMC uses the ratio of the fast-neutron emission rate to the thermalneutron emission rate to quantify the neutron multiplication of the item. The fast neutrons versus thermal neutrons are measured using fission chambers (FC) that have differential shielding to isolate fast and thermal energies. The fast-neutron emission rate is directly proportional to the neutron multiplication in the spent fuel assembly; whereas, the thermalneutron leakage is suppressed by the fissile material absorption in the assembly. These FCs are already implemented in the basic Self-Interrogation Neutron Resonance Densitometry (SINRD) detector package. Experimental measurements of fresh and spent PWR fuel assemblies were performed at LANL and the Korea Atomic Energy Research Institute (KAERI), respectively, using a hybrid PNMC and SINRD detector. The results from these measurements provides valuable experimental data that directly supports safeguards research and development (R&D) efforts on the viability of passive neutron NDA techniques and detector designs for partial defect verification of spent fuel assemblies. (author)

  4. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1977-11-01

    The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently

  5. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1977-11-01

    The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.

  6. The searchlight problem for neutrons in a semi-infinite medium

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1993-01-01

    The solution of the Search Light Problem for monoenergetic neutrons in a semi-infinite medium with isotropic scattering illuminated at the free surface is obtained by several methods at various planes within the medium. The sources considered are a normally-incident pencil beam and an isotropic point source. The analytic solution is effected by a recently developed numerical inversion technique applied to the Fourier-Bessel transform. This transform inversion results from the solution method of Rybicki, where the two-dimensional problem is solved by casting it as a variant of a one-dimensional problem. The numerical inversion process results in a highly accurate solution. Comparisons of the analytic solution with results from Monte Carlo (MCNP) and discrete ordinates transport (DORT) codes show excellent agreement. These comparisons, which are free of any associated data or cross section set dependencies, provide significant evidence of the proper operation of both the transport codes tested

  7. Performance characteristics of specified power reactors in multidimensional neutron diffusion problems

    International Nuclear Information System (INIS)

    Kim, M.G.

    1980-01-01

    The multigroup neutron diffusion equations with the constraint of specified power distributions are investigated by the application of the straight-line method which can be considered as the limiting case of zero mesh space in the finite difference method. The standard partial differential form of the diffusion equation is reduced to sets of ordinary differential equations and then converted into sets of integral equations by using Green's functions defined on the pseudo straight lines. Coupling of each straight line to the adjacent lines arises from the application of a three-point central difference formula. The interfaces encountered between two regions are taken into account by imposing the continuity conditions for the grown fluxes and net currents with Taylor expansions of internal fluxes at the interface positions. A few sample problems are selected to test the validity of the method. It is found that the proposed method of solution is similar to the finite Fourier sine transform. Numerical results for the solutions obtained by the method of straight lines are compared with the results of the exact analytical solutions for simple geometries. These comparisons indicate that the proposed method is compatible with the analytical method, and in some problems considered the straight-line solutions are much more efficient than the exact solutions. The method is also extended to the reactor kinetics problem by expressing the kinetics parameters in terms of the basis functions which are used to obtain the solutions of the steady-state neutron diffusion equations

  8. Conjugate Gradient like methods and their application to fixed source neutron diffusion problems

    International Nuclear Information System (INIS)

    Suetomi, Eiichi; Sekimoto, Hiroshi

    1989-01-01

    This paper presents a number of fast iterative methods for solving systems of linear equations appearing in fixed source problems for neutron diffusion. We employed the conjugate gradient and conjugate residual methods. In order to accelerate the conjugate residual method, we proposed the conjugate residual squared method by transforming the residual polynomial of the conjugate residual method. Since the convergence of these methods depends on the spectrum of coefficient matrix, we employed the incomplete Choleski (IC) factorization and the modified IC (MIC) factorization as preconditioners. These methods were applied to some neutron diffusion problems and compared with the successive overrelaxation (SOR) method. The results of these numerical experiments showed superior convergence characteristics of the conjugate gradient like method with MIC factorization to the SOR method, especially for a problem involving void region. The CPU time of the MICCG, MICCR and MICCRS methods showed no great difference. In order to vectorize the conjugate gradient like methods based on (M)IC factorization, the hyperplane method was used and implemented on the vector computers, the HITAC S-820/80 and ETA10-E (one processor mode). Significant decrease of the CPU times was observed on the S-820/80. Since the scaled conjugate gradient (SCG) method can be vectorized with no manipulation, it was also compared with the above methods. It turned out the SCG method was the fastest with respect to the CPU times on the ETA10-E. These results suggest that one should implement suitable algorithm for different vector computers. (author)

  9. Multi-element neutron activation analysis and solution of classification problems using multidimensional statistics

    International Nuclear Information System (INIS)

    Vaganov, P.A.; Kol'tsov, A.A.; Kulikov, V.D.; Mejer, V.A.

    1983-01-01

    The multi-element instrumental neutron activation analysis of samples of mountain rocks (sandstones, aleurolites and shales of one of gold deposits) is performed. The spectra of irradiated samples are measured by Ge(Li) detector of the volume of 35 mm 3 . The content of 22 chemical elements is determined in each sample. The results of analysis serve as reliable basis for multi-dimensional statistic information processing, they constitute the basis for the generalized characteristics of rocks which brings about the solution of classification problem for rocks of different deposits

  10. Exact and approximate interior corner problem in neutron diffusion by integral transform methods

    International Nuclear Information System (INIS)

    Bareiss, E.H.; Chang, K.S.J.; Constatinescu, D.A.

    1976-09-01

    The mathematical solution of the neutron diffusion equation exhibits singularities in its derivatives at material corners. A mathematical treatment of the nature of these singularities and its impact on coarse network approximation methods in computational work is presented. The mathematical behavior is deduced from Green's functions, based on a generalized theory for two space dimensions, and the resulting systems of integral equations, as well as from the Kontorovich--Lebedev Transform. The effect on numerical calculations is demonstrated for finite difference and finite element methods for a two-region corner problem

  11. Criticality problems for slabs and spheres in energy dependent neutron transport theory

    International Nuclear Information System (INIS)

    Victory, H.D. Jr.

    1980-01-01

    The steady-state equation for energy-dependent neutron transport in isotropically scattering slabs and spheres is formulated as an integral equation. The Perron-Frobenius-Jentzsch theory of positive operators is used to analyze criticality problems for transport in slab and spherical media consisting of core and reflector. In addition, with an adroit selection of diffusion-like solutions, this theory is used to obtain an expression relating the critical radius of a homogeneous sphere to a parameter characterizing fission production. 21 refs

  12. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    Energy Technology Data Exchange (ETDEWEB)

    Modak, R S; Kumar, Vinod; Menon, S V.G. [Theoretical Physics Div., Bhabha Atomic Research Centre, Mumbai (India); Gupta, Anurag [Reactor Physics Design Div., Bhabha Atomic Research Centre, Mumbai (India)

    2005-09-15

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  13. Transport synthetic acceleration scheme for multi-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Modak, R.S.; Vinod Kumar; Menon, S.V.G.; Gupta, Anurag

    2005-09-01

    The numerical solution of linear multi-energy-group neutron transport equation is required in several analyses in nuclear reactor physics and allied areas. Computer codes based on the discrete ordinates (Sn) method are commonly used for this purpose. These codes solve external source problem and K-eigenvalue problem. The overall solution technique involves solution of source problem in each energy group as intermediate procedures. Such a single-group source problem is solved by the so-called Source Iteration (SI) method. As is well-known, the SI-method converges very slowly for optically thick and highly scattering regions, leading to large CPU times. Over last three decades, many schemes have been tried to accelerate the SI; the most prominent being the Diffusion Synthetic Acceleration (DSA) scheme. The DSA scheme, however, often fails and is also rather difficult to implement. In view of this, in 1997, Ramone and others have developed a new acceleration scheme called Transport Synthetic Acceleration (TSA) which is much more robust and easy to implement. This scheme has been recently incorporated in 2-D and 3-D in-house codes at BARC. This report presents studies on the utility of TSA scheme for fairly general test problems involving many energy groups and anisotropic scattering. The scheme is found to be useful for problems in Cartesian as well as Cylindrical geometry. (author)

  14. Determining neutron multiplication factor in the infinite system by reactivity dependence on one dimension of the reactor core

    International Nuclear Information System (INIS)

    Pesic, M.

    1975-01-01

    The objective of this task was to apply Fermi age theory for determining τ and neutron multiplication factor in infinite medium by measuring reactivity coefficient of heavy water in heterogeneous mixed reactor lattice. Basis of experiment is the measurement of stable reactor period. Measurement of heavy water reactivity coefficient by measuring the stable reactor period is described for chosen overcritical heavy water levels. Calculated values of infinite multiplication factor for measured neutron age data are presented and they are compared to expected theoretical values

  15. Analogue of Pontryagin's maximum principle for multiple integrals minimization problems

    OpenAIRE

    Mikhail, Zelikin

    2016-01-01

    The theorem like Pontryagin's maximum principle for multiple integrals is proved. Unlike the usual maximum principle, the maximum should be taken not over all matrices, but only on matrices of rank one. Examples are given.

  16. Solving Multiple Timetabling Problems at Danish High Schools

    DEFF Research Database (Denmark)

    Kristiansen, Simon

    name; Elective Course Student Sectioning. The problem is solved using ALNS and solutions are proven to be close to optimum. The algorithm has been implemented and made available for the majority of the high schools in Denmark. The second Student Sectioning problem presented is the sectioning of each...... high schools. Two types of consultations are presented; the Parental Consultation Timetabling Problem (PCTP) and the Supervisor Consultation Timetabling Problem (SCTP). One mathematical model containing both consultation types has been created and solved using an ALNS approach. The received solutions...... problems as mathematical models and solve them using operational research techniques. Two of the models and the suggested solution methods have resulted in implementations in an actual decision support software, and are hence available for the majority of the high schools in Denmark. These implementations...

  17. Neutron transmission benchmark problems for iron and concrete shields in low, intermediate and high energy proton accelerator facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yoshihiro; Sakamoto, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hayashi, Katsumi [and others

    1996-09-01

    Benchmark problems were prepared for evaluating the calculation codes and the nuclear data for accelerator shielding design by the Accelerator Shielding Working Group of the Research Committee on Reactor Physics in JAERI. Four benchmark problems: transmission of quasi-monoenergetic neutrons generated by 43 MeV and 68 MeV protons through iron and concrete shields at TIARA of JAERI, neutron fluxes in and around an iron beam stop irradiated by 500 MeV protons at KEK, reaction rate distributions inside a thick concrete shield irradiated by 6.2 GeV protons at LBL, and neutron and hadron fluxes inside an iron beam stop irradiated by 24 GeV protons at CERN are compiled in this document. Calculational configurations and neutron reaction cross section data up to 500 MeV are provided. (author)

  18. Genetic algorithms - A new technique for solving the neutron spectrum unfolding problem

    International Nuclear Information System (INIS)

    Freeman, David W.; Edwards, D. Ray; Bolon, Albert E.

    1999-01-01

    A new technique utilizing genetic algorithms has been applied to the Bonner sphere neutron spectrum unfolding problem. Genetic algorithms are part of a relatively new field of 'evolutionary' solution techniques that mimic living systems with computer-simulated 'chromosome' solutions. Solutions mate and mutate to create better solutions. Several benchmark problems, considered representative of radiation protection environments, have been evaluated using the newly developed UMRGA code which implements the genetic algorithm unfolding technique. The results are compared with results from other well-established unfolding codes. The genetic algorithm technique works remarkably well and produces solutions with relatively high spectral qualities. UMRGA appears to be a superior technique in the absence of a priori data - it does not rely on 'lucky' guesses of input spectra. Calculated personnel doses associated with the unfolded spectra match benchmark values within a few percent

  19. Some problems concenrning the use of automated radiochemical separation systems in destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Nagy, L.G.; Toeroek, G.

    1977-01-01

    The present state of a long term program is reviewed. It was started to elaborate a remote controlled automated radiochemical processing system for the neutron activation analysis of biological materials. The system is based on wet ashing of the sample followed by reactive desorption of some volatile components. The distillation residue is passed through a series of columns filled with selective ion screening materials to remove the matrix activity. The solution is thus ''stripped'' from the interfering radioions, and it is processed to single-elements through group separations using ion-exchange chromatographic techniques. Some special problems concerning this system are treated. (a) General aspects of the construction of a (semi)automated radiochemical processing system are discussed. (b) Comparison is made between various technical realizations of the same basic concept. (c) Some problems concerning the ''reconstruction'' of an already published processing system are outlined. (T.G.)

  20. Preliminary performance analysis of exponential experimental system for the determination of neutron effective multiplication factor of PWR spent fuel

    International Nuclear Information System (INIS)

    Shin, Heesung; Lee, Sang-Yun; Ro, Seung-Gy; Seo, Gi-Seok; Kim, Ho-Dong

    2002-01-01

    An exponential experiment system which is composed of neutron detector, signal analysis system and neutron source, 10 mCi Cf-252 has been installed in the storage pool of PIEF at KAERI in order to experimentally determining neutron effective multiplication factors of PWR spent fuel assemblies. Preliminary functional characteristic tests of the experimental system are performed for C15, J14 and J44 assemblies loaded in the pool. As a result of preliminary tests, the average neutron counts obtained for 3 minutes in the plateau of the C15, J14 and J44 assemblies are about 1900, 3800 and 3200, respectively. A dip of the neutron flux density distribution is noticed in the spacer grid position. Neutron counts at those positions appear to be reduced to about 70 % in comparison to the fuel position. The measured axial neutron distribution shapes are compared with the result for the P14 assembly and Cs-137 gamma scanning data performed in KAERI. It is revealed that the spacer grid position measured is consistent with the design specifications within a 2.3 % error. The exponential decay constants for the C15 assembly were determined to be 0.152 and 0.165 for detector and source scanning, respectively. (author)

  1. Fast rigorous numerical method for the solution of the anisotropic neutron transport problem and the NITRAN system for fusion neutronics application. Pt. 2

    International Nuclear Information System (INIS)

    Takahashi, A.; Rusch, D.

    1979-10-01

    The I*-method, which is a non-approximative treatment of the neutron balance equations by the use of double-differential cross sections and a generalized angular transfer probability, is realized within the NITRAN system. It is shown, by means of test calculations for assemblies related to fusion reactor neutronics that double-differential cross section data provide substantial progress in transport problems with kinematically complicated reaction channels like (n,2n), (n,n'γ), and (n,n'α), because the I*-method is free from kinematic assumptions. The properties of the exponential method to generate the supplementary equations to the SN equations are investigated. (orig.) [de

  2. On the problem of monitoring the neutron parameters of the Fast Energy Amplifier

    International Nuclear Information System (INIS)

    Behringer, K.; Wydler, P.

    1998-10-01

    The conceptual Fast Energy Amplifier, proposed by Rubbia et al. (1995), consists of a combination of a U-233/Th-232 fuelled fast-neutron subcritical facility with a proton accelerator. An intense beam of 1 GeV protons is injected into liquid lead at the core centre and drives the reactor by producing spallation neutrons. The burst of spallation neutrons produced by a single proton alters the basic neutron statistics which are well known for thermal neutrons in conventional nuclear reactors. A short assessment of standard neutron noise analysis methods is made with respect to monitoring neutron parameter data. (author)

  3. Boundary element methods applied to two-dimensional neutron diffusion problems

    International Nuclear Information System (INIS)

    Itagaki, Masafumi

    1985-01-01

    The Boundary element method (BEM) has been applied to two-dimensional neutron diffusion problems. The boundary integral equation and its discretized form have been derived. Some numerical techniques have been developed, which can be applied to critical and fixed-source problems including multi-region ones. Two types of test programs have been developed according to whether the 'zero-determinant search' or the 'source iteration' technique is adopted for criticality search. Both programs require only the fluxes and currents on boundaries as the unknown variables. The former allows a reduction in computing time and memory in comparison with the finite element method (FEM). The latter is not always efficient in terms of computing time due to the domain integral related to the inhomogeneous source term; however, this domain integral can be replaced by the equivalent boundary integral for a region with a non-multiplying medium or with a uniform source, resulting in a significant reduction in computing time. The BEM, as well as the FEM, is well suited for solving irregular geometrical problems for which the finite difference method (FDM) is unsuited. The BEM also solves problems with infinite domains, which cannot be solved by the ordinary FEM and FDM. Some simple test calculations are made to compare the BEM with the FEM and FDM, and discussions are made concerning the relative merits of the BEM and problems requiring future solution. (author)

  4. Variance reduction techniques for 14 MeV neutron streaming problem in rectangular annular bent duct

    Energy Technology Data Exchange (ETDEWEB)

    Ueki, Kotaro [Ship Research Inst., Mitaka, Tokyo (Japan)

    1998-03-01

    Monte Carlo method is the powerful technique for solving wide range of radiation transport problems. Its features are that it can solve the Boltzmann`s transport equation almost without approximation, and that the complexity of the systems to be treated rarely becomes a problem. However, the Monte Carlo calculation is always accompanied by statistical errors called variance. In shielding calculation, standard deviation or fractional standard deviation (FSD) is used frequently. The expression of the FSD is shown. Radiation shielding problems are roughly divided into transmission through deep layer and streaming problem. In the streaming problem, the large difference in the weight depending on the history of particles makes the FSD of Monte Carlo calculation worse. The streaming experiment in the 14 MeV neutron rectangular annular bent duct, which is the typical streaming bench mark experiment carried out of the OKTAVIAN of Osaka University, was analyzed by MCNP 4B, and the reduction of variance or FSD was attempted. The experimental system is shown. The analysis model by MCNP 4B, the input data and the results of analysis are reported, and the comparison with the experimental results was examined. (K.I.)

  5. Multiple-instance learning as a classifier combining problem

    DEFF Research Database (Denmark)

    Li, Yan; Tax, David M. J.; Duin, Robert P. W.

    2013-01-01

    In multiple-instance learning (MIL), an object is represented as a bag consisting of a set of feature vectors called instances. In the training set, the labels of bags are given, while the uncertainty comes from the unknown labels of instances in the bags. In this paper, we study MIL with the ass...

  6. Application of the modified neutron source multiplication method for a measurement of sub-criticality in AGN-201K reactor

    International Nuclear Information System (INIS)

    Myung-Hyun Kim

    2010-01-01

    Measurement of sub-criticality is a challenging and required task in nuclear industry both for nuclear criticality safety and physics test in nuclear power plant. A relatively new method named as Modified Neutron Source Multiplication Method (MNSM) was proposed in Japan. This method is an improvement of traditional Neutron Source Multiplication (NSM) Method, in which three correction factors are applied additionally. In this study, MNSM was tested in calculation of rod worth using an educational reactor in Kyung Hee University, AGN-201K. For this study, a revised nuclear data library and a neutron transport code system TRANSX-PARTISN were used for the calculation of correction factors for various control rod positions and source locations. Experiments were designed and performed to enhance errors in NSM from the location effects of source and detectors. MNSM can correct these effects but current results showed not much correction effects. (author)

  7. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  8. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1978-01-01

    Some aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. In deriving these formulas, use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, is one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table

  9. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1978-04-01

    Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table

  10. Analytical calculations of neutron slowing down and transport in the constant-cross-section problem

    Energy Technology Data Exchange (ETDEWEB)

    Cacuci, D.G.

    1978-04-01

    Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u/sup -5/. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M/sub 2/(u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table.

  11. Some properties of the neutron monochromatic beams obtained by multiple Bragg reflections realized in bent perfect single crystals

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Krejčí, F.; Seong, B. S.; Woo, W.; Furusaka, M.

    2013-01-01

    Roč. 46, č. 1 (2013), s. 128-134 ISSN 0021-8898 R&D Projects: GA ČR GAP204/10/0654; GA MŠk LM2010011 Institutional support: RVO:61389005 Keywords : multiple reflections * bent perfect crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.950, year: 2013

  12. RBE for late spinal cord injury following multiple fractions of neutrons

    International Nuclear Information System (INIS)

    Geraci, J.P.; Jackson, K.L.; Christensen, G.M.; Thrower, P.D.; Mariano, M.

    1978-01-01

    Using the length of the time interval between the irradiation of lumbosacral spinal cord of mice with ten fractions of either x rays or neutrons, and the onset of hindquarter paralysis, a fast neutron RBE of 3.5 for spinal cord damage at a neutron dose per fraction of 100 rad has been measured. This RBE for spinal cord injury is significant because it is larger than the RBE being used to calculate treatment doses in neutron radiotherapy

  13. Time and multiple objectives in scheduling and routing problems

    NARCIS (Netherlands)

    Dabia, S.

    2012-01-01

    Many optimization problems encountered in practice are multi-objective by nature, i.e., different objectives are conflicting and equally important. Many times, it is not desirable to drop some of them or to optimize them in a composite single objective or hierarchical manner. Furthermore, cost

  14. Numerical estimates of multiple reaction corrections in neutron cross-section measurements

    International Nuclear Information System (INIS)

    Magnusson, G.

    1979-04-01

    A method to evaluate the effect of secondary neutrons in 14-15 MeV neutron cross-section measurements is presented. The emission spectra of secondary neutrons are calculated by means of the preequilibrium and statistical models. An expression for the collision probability in a homogenous body has been utilized in the calculations. (author)

  15. Child outcomes of home-visiting for families with complex and multiple problems

    NARCIS (Netherlands)

    van Assen, Arend; Dickscheit, Jana; Post, Wendy; Grietens, Hans

    2016-01-01

    Introduction Families with complex and multiple problems are faced with an accumulation of problems across multiple areas of life. Furthermore, these families are often considered to be ‘difficult to treat’. Children and teenagers growing up in these families are exposed to an accumulation of risks

  16. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    International Nuclear Information System (INIS)

    Wilczynski, J.; Siwek-Wilczynska, K.; Wilschut, H.W.

    1996-01-01

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), for which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a time-dependent statistical cascade calculation. In order to reproduce the measured prescission multiplicities and the observed (nearly symmetric) mass divisions, the energy dissipation must be dramatically changed with regard to the standard one-body dissipation: In the entrance channel, in the process of forming a composite system, the energy dissipation has to be reduced to at least half of the one-body dissipation strength (k s in ≤0.5), and in the exit channel (from a mononucleus shape to scission) it must be increased by a factor ranging for the studied reactions from k s out =4 to k s out =12. These results are compared with the temperature dependence of the friction coefficient, recently deduced by Hofman, Back, and Paul from data on the prescission giant dipole resonance emission in fusion-fission reactions. The combined picture of the temperature dependence of the friction coefficient, for both fusion-fission and nonfusion reactions, may indicate the onset of strong two-body dissipation already at a nuclear temperature of about 2 MeV. copyright 1996 The American Physical Society

  17. Fast rigorous numerical method for the solution of the anisotropic neutron transport problem and the NITRAN system for fusion neutronics application. Pt. 1

    International Nuclear Information System (INIS)

    Takahashi, A.; Rusch, D.

    1979-07-01

    Some recent neutronics experiments for fusion reactor blankets show that the precise treatment of anisotropic secondary emissions for all types of neutron scattering is needed for neutron transport calculations. In the present work new rigorous methods, i.e. based on non-approximative microscopic neutron balance equations, are applied to treat the anisotropic collision source term in transport equations. The collision source calculation is free from approximations except for the discretization of energy, angle and space variables and includes the rigorous treatment of nonelastic collisions, as far as nuclear data are given. Two methods are presented: first the Ii-method, which relies on existing nuclear data files and then, as an ultimate goal, the I*-method, which aims at the use of future double-differential cross section data, but which is also applicable to the present single-differential data basis to allow a smooth transition to the new data type. An application of the Ii-method is given in the code system NITRAN which employs the Ssub(N)-method to solve the transport equations. Both rigorous methods, the Ii- and the I*-method, are applicable to all radiation transport problems and they can be used also in the Monte-Carlo-method to solve the transport problem. (orig./RW) [de

  18. Contribution to solving the problem of neutron thermalization in heterogeneous reactor; Prilog resavanju problema termalizacije neutron u heterognom reaktoru

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J P [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1963-12-15

    A method for calculating of neutron termalization in heterogeneous rector core was developed. It is more precise than the diffusion method but more complcated. Concerning accuracy it is comparable to non-diffusion methods. Sonce the approach was analytical need for powerful computer is avoided and the description of physical phenomena is more transparent. Convergence is satsfactory. Constraints of the proposed method are: low neutron absorption in the moderator, negligible slowing down in the fuel, and big lattice pitch. The method is applicable for heavy water and graphite moderator systems. Based on the application of this method, procedures were developed for calculating thermal utilzation and neutron temperature. Since 1/v dependence of cross sections is not estimated this metof could be used for long-term reactivity changes.

  19. Multiple Scale Reaction-Diffusion-Advection Problems with Moving Fronts

    Science.gov (United States)

    Nefedov, Nikolay

    2016-06-01

    In this work we discuss the further development of the general scheme of the asymptotic method of differential inequalities to investigate stability and motion of sharp internal layers (fronts) for nonlinear singularly perturbed parabolic equations, which are called in applications reaction-diffusion-advection equations. Our approach is illustrated for some new important cases of initial boundary value problems. We present results on stability and on the motion of the fronts.

  20. Surface harmonics method for two-dimensional time-dependent neutron transport problems of square-lattice nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A. [National Research Centre Kurchatov Institute, Kurchatov Sq. 1, Moscow (Russian Federation)

    2013-07-01

    Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)

  1. Heuristic geometric ''eigenvalue universality'' in a one-dimensional neutron transport problem with anisotropic scattering

    International Nuclear Information System (INIS)

    Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.

    2010-01-01

    In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)

  2. Solving the relativistic inverse stellar problem through gravitational waves observation of binary neutron stars

    Science.gov (United States)

    Abdelsalhin, Tiziano; Maselli, Andrea; Ferrari, Valeria

    2018-04-01

    The LIGO/Virgo Collaboration has recently announced the direct detection of gravitational waves emitted in the coalescence of a neutron star binary. This discovery allows, for the first time, to set new constraints on the behavior of matter at supranuclear density, complementary with those coming from astrophysical observations in the electromagnetic band. In this paper we demonstrate the feasibility of using gravitational signals to solve the relativistic inverse stellar problem, i.e., to reconstruct the parameters of the equation of state (EoS) from measurements of the stellar mass and tidal Love number. We perform Bayesian inference of mock data, based on different models of the star internal composition, modeled through piecewise polytropes. Our analysis shows that the detection of a small number of sources by a network of advanced interferometers would allow to put accurate bounds on the EoS parameters, and to perform a model selection among the realistic equations of state proposed in the literature.

  3. Extension of the Dytlewski-style dead time correction formalism for neutron multiplicity counting to any order

    International Nuclear Information System (INIS)

    Croft, Stephen; Favalli, Andrea

    2017-01-01

    Here, neutron multiplicity counting using shift-register calculus is an established technique in the science of international nuclear safeguards for the identification, verification, and assay of special nuclear materials. Typically passive counting is used for Pu and mixed Pu-U items and active methods are used for U materials. Three measured counting rates, singles, doubles and triples are measured and, in combination with a simple analytical point-model, are used to calculate characteristics of the measurement item in terms of known detector and nuclear parameters. However, the measurement problem usually involves more than three quantities of interest, but even in cases where the next higher order count rate, quads, is statistically viable, it is not quantitatively applied because corrections for dead time losses are currently not available in the predominant analysis paradigm. In this work we overcome this limitation by extending the commonly used dead time correction method, developed by Dytlewski, to quads. We also give results for pents, which may be of interest for certain special investigations. Extension to still higher orders, may be accomplished by inspection based on the sequence presented. We discuss the foundations of the Dytlewski method, give limiting cases, and highlight the opportunities and implications that these new results expose. In particular there exist a number of ways in which the new results may be combined with other approaches to extract the correlated rates, and this leads to various practical implementations.

  4. On the adequacy of message-passing parallel supercomputers for solving neutron transport problems

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1990-01-01

    A coarse-grained, static-scheduling parallelization of the standard iterative scheme used for solving the discrete-ordinates approximation of the neutron transport equation is described. The parallel algorithm is based on a decomposition of the angular domain along the discrete ordinates, thus naturally producing a set of completely uncoupled systems of equations in each iteration. Implementation of the parallel code on Intcl's iPSC/2 hypercube, and solutions to test problems are presented as evidence of the high speedup and efficiency of the parallel code. The performance of the parallel code on the iPSC/2 is analyzed, and a model for the CPU time as a function of the problem size (order of angular quadrature) and the number of participating processors is developed and validated against measured CPU times. The performance model is used to speculate on the potential of massively parallel computers for significantly speeding up real-life transport calculations at acceptable efficiencies. We conclude that parallel computers with a few hundred processors are capable of producing large speedups at very high efficiencies in very large three-dimensional problems. 10 refs., 8 figs

  5. On some one-speed neutron transport problems revisited and reformulated

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2001-01-01

    The solution of a number of one-speed neutron transport problems involving infinite media have been re-considered in the light of a transformation first used by Wallace (Wallace, P.R., 1944a. Boundary Conditions at Thin Absorbing Shells and Plates I. Canadian National Research Council Report MT-34; Wallace, P.R., 1944b. On the Thermal Utilisation of Plates in the Presence of Linear Anisotropic Scattering. Canadian National Research Council Report MT-63). The outcome of this transformation is that the infinite medium problem can be reduced to one in terms of an integral equation involving finite regions only. For example, in the case of an infinitely reflected slab, the infinite reflector is removed and its presence transferred to the kernel of a new integral equation. These kernels turn out to be the point or plane kernels of the corresponding infinite medium problem in the pure reflector material. In this paper the method is extended to slabs with arbitrary anisotropic scattering in slab and reflector; it is also applied to reflected spheres. In this case however, there is a limitation that the total mean free path in sphere and reflector be the same. Finally, we comment on the physical meaning of the standard anisotropic formalism and show that a more realistic eigenvalue exists which is directly related to the isotropic fission source. Some numerical results are given to illustrate our conclusions

  6. Domain decomposition methods for the mixed dual formulation of the critical neutron diffusion problem; Methodes de decomposition de domaine pour la formulation mixte duale du probleme critique de la diffusion des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, P

    2007-12-15

    The neutronic simulation of a nuclear reactor core is performed using the neutron transport equation, and leads to an eigenvalue problem in the steady-state case. Among the deterministic resolution methods, diffusion approximation is often used. For this problem, the MINOS solver based on a mixed dual finite element method has shown his efficiency. In order to take advantage of parallel computers, and to reduce the computing time and the local memory requirement, we propose in this dissertation two domain decomposition methods for the resolution of the mixed dual form of the eigenvalue neutron diffusion problem. The first approach is a component mode synthesis method on overlapping sub-domains. Several Eigenmodes solutions of a local problem solved by MINOS on each sub-domain are taken as basis functions used for the resolution of the global problem on the whole domain. The second approach is a modified iterative Schwarz algorithm based on non-overlapping domain decomposition with Robin interface conditions. At each iteration, the problem is solved on each sub domain by MINOS with the interface conditions deduced from the solutions on the adjacent sub-domains at the previous iteration. The iterations allow the simultaneous convergence of the domain decomposition and the eigenvalue problem. We demonstrate the accuracy and the efficiency in parallel of these two methods with numerical results for the diffusion model on realistic 2- and 3-dimensional cores. (author)

  7. To the problem of spatial focusing of ultracold neutrons by nonuniform magnetic field. Eikonal approximation

    CERN Document Server

    Chen, T

    2002-01-01

    Motion of the ultracold neutrons in the nonuniform magnetic field with a square nonuniformity by two coordinates is considered. The Schroedinger equation is solved with application of the quasi-classical (eikonal) approach. The theoretical possibility of the neutrons spatial focusing with formation of the point focus and also the neutrons bunches is shown

  8. Protective factors associated with fewer multiple problem behaviors among homeless/runaway youth.

    Science.gov (United States)

    Lightfoot, Marguerita; Stein, Judith A; Tevendale, Heather; Preston, Kathleen

    2011-01-01

    Although homeless youth exhibit numerous problem behaviors, protective factors that can be targeted and modified by prevention programs to decrease the likelihood of involvement in risky behaviors are less apparent. The current study tested a model of protective factors for multiple problem behavior in a sample of 474 homeless youth (42% girls; 83% minority) ages 12 to 24 years. Higher levels of problem solving and planning skills were strongly related to lower levels of multiple problem behaviors in homeless youth, suggesting both the positive impact of preexisting personal assets of these youth and important programmatic targets for further building their resilience and decreasing problem behaviors. Indirect relationships between the background factors of self-esteem and social support and multiple problem behaviors were significantly mediated through protective skills. The model suggests that helping youth enhance their skills in goal setting, decision making, and self-reliant coping could lessen a variety of problem behaviors commonly found among homeless youth.

  9. Bilevel formulation of a policy design problem considering multiple objectives and incomplete preferences

    Science.gov (United States)

    Hawthorne, Bryant; Panchal, Jitesh H.

    2014-07-01

    A bilevel optimization formulation of policy design problems considering multiple objectives and incomplete preferences of the stakeholders is presented. The formulation is presented for Feed-in-Tariff (FIT) policy design for decentralized energy infrastructure. The upper-level problem is the policy designer's problem and the lower-level problem is a Nash equilibrium problem resulting from market interactions. The policy designer has two objectives: maximizing the quantity of energy generated and minimizing policy cost. The stakeholders decide on quantities while maximizing net present value and minimizing capital investment. The Nash equilibrium problem in the presence of incomplete preferences is formulated as a stochastic linear complementarity problem and solved using expected value formulation, expected residual minimization formulation, and the Monte Carlo technique. The primary contributions in this article are the mathematical formulation of the FIT policy, the extension of computational policy design problems to multiple objectives, and the consideration of incomplete preferences of stakeholders for policy design problems.

  10. An algorithm to compute a rule for division problems with multiple references

    Directory of Open Access Journals (Sweden)

    Sánchez Sánchez, Francisca J.

    2012-01-01

    Full Text Available In this paper we consider an extension of the classic division problem with claims: Thedivision problem with multiple references. Hinojosa et al. (2012 provide a solution for this type of pro-blems. The aim of this work is to extend their results by proposing an algorithm that calculates allocationsbased on these results. All computational details are provided in the paper.

  11. Application of the decoupling scheme on complex neutron-gamma shielding problems

    Energy Technology Data Exchange (ETDEWEB)

    Feher, S. [Institute of Nuclear Technology, Technical University of Budapest, Budapest (Hungary); Leege, P.F.A. de; Hoogenboom, J.E.; Kloosterman, J.L. [Interfaculty Reactor Institute, Delft University of Technology, Delft (Netherlands)

    2000-03-01

    Coupled neutron-gamma shielding calculations using S{sub n} transport theory can be time consuming, especially for two- and three-dimensional geometries. In general, the CPU time of these calculations increases stronger than linear with increasing number of neutron and gamma energy groups, and depends on the order of Legendre expansion and number of S{sub n} directions used. This fact induced the idea of the decoupling method, which seems applicable to accelerate coupled neutron-gamma shielding calculations. The data included in a combined neutron-gamma library can be readily separated into a library containing neutron data only and another library containing gamma data only. Separate calculations for neutrons and gammas are performed on complex geometries using a different Legendre order expansion for neutrons and gammas. CPU savings of 60 to 85% can be achieved for the two-dimensional DORT and three-dimensional TORT calculations respectively. (author)

  12. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    International Nuclear Information System (INIS)

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ( 10 B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where 3 He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector's response and filtering based on the presence of a simultaneous energy deposition corresponding to the 10 B(n,alpha) reaction products in the plastic scintillator (93 keV ee ) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including 137 Cs, 54 Mn, AmLi, and 252 Cf. Results of this study indicate that a neutron-capture probability of ∼10% and a die-away time of ∼10 micros are possible with a 4-detector array with a detector volume of 1600 cm 3 . Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 micros are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this investigation are encouraging and may lead to a new class of high

  13. Investigation of multiple Bragg reflections at a constant neutron wavelength and their possible separation

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Vrána, Miroslav; Šaroun, Jan; Em, V.; Seong, B. S.

    2012-01-01

    Roč. 340, 012015 (2012), s. 1-5 ISSN 1742-6588. [5th European Conference on Neutron Scattering. Praha, 17.07.2011-21.07.2011] R&D Projects: GA ČR GAP204/10/0654 EU Projects: European Commission(XE) 226507 - NMI3 Institutional support: RVO:61389005 Keywords : neutron diffraction * bragg reflection * neutron beam Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  14. Detector point of view of reactor internal vibrations under Gaussian coloured random forces - the problem of fitting neutron noise experimental data

    International Nuclear Information System (INIS)

    Arnal, R.S.; Martin, G.V.; Gonzalez, J.L.M.-C.

    1988-01-01

    This paper studies the local vibrations of reactor components driven by Gaussian coloured and white forces, when nonlinear vibrations arise. We study also the important problem of noise sources, modelization and the noise propagation through the neutron field using the discrete ordinates transport theory. Finally, we study the effect of the neutron field upon the PSD (power spectral density) of the noise source and we analyse the problem of fitting neutron noise experimental data to perform pattern recognition analysis. (author)

  15. Choppers to optimise the repetition rate multiplication technique on a direct geometry neutron chopper spectrometer

    International Nuclear Information System (INIS)

    Vickery, A.; Deen, P. P.

    2014-01-01

    In recent years the use of repetition rate multiplication (RRM) on direct geometry neutron spectrometers has been established and is the common mode of operation on a growing number of instruments. However, the chopper configurations are not ideally optimised for RRM with a resultant 100 fold flux difference across a broad wavelength band. This paper presents chopper configurations that will produce a relative constant (RC) energy resolution and a relative variable (RV) energy resolution for optimised use of RRM. The RC configuration provides an almost uniform ΔE/E for all incident wavelengths and enables an efficient use of time as the entire dynamic range is probed with equivalent statistics, ideal for single shot measurements of transient phenomena. The RV energy configuration provides an almost uniform opening time at the sample for all incident wavelengths with three orders of magnitude in time resolution probed for a single European Spallation Source (ESS) period, which is ideal to probe complex relaxational behaviour. These two chopper configurations have been simulated for the Versatile Optimal Resolution direct geometry spectrometer, VOR, that will be built at ESS

  16. Neutron activation analysis applied to assemblage problems in fragmented marble sculptures

    International Nuclear Information System (INIS)

    Sangermano, L.R.

    1976-01-01

    One of the major problems encountered in assemblage work on fragmented marble sculptures is determining if two pieces were originally joined together when there are no remaining material links between the two. This work deals with solving this problem by using Neutron Activation Analysis techniques. Samples from a block of sculpture grade Georgian marble were analyzed. The following trace elements were identified on the basis of their gamma ray energies and their half-life studies: 165 Dy, 155 Sm, 152 Eu, 56 Mn, 24 Na, 85 Sr, 51 Ti, 80 Br, 27 Mg, 52 V, 42 K, 28 Al, 46 Sc, 141 Ce, 198 Au, 140 La, 122 Sb, and 124 Sb. The next step in this work was to determine whether the trace elements, which were originally trapped in the marble during metamorphosis, formed concentration patterns which extended over short distances in the stone. A block of sculpture grade Colorado marble was cut into a number of slices and these slices were analyzed for the trace elements they contained. The concentration patterns formed by these impurities were followed through successive layers of the stone. The ability to follow these ''fingerprint'' concentration patterns over short distances in marble was further tested by analyzing two adjoining segments of a Roman wall relief at the J. Paul Getty Museum in Malibu, California. The trace impurity ''fingerprints'' were successfully matched between the wrist and hand segments of this piece

  17. [AIDS in Chile: a problem with multiple facets].

    Science.gov (United States)

    Ormazabal, B

    1991-03-01

    Chile's 1st case of AIDS was diagnosed in 1984. Some 250 AIDS cases and 1600 HIV positive persons have since been reported, although the actual number by some estimates may reach 5000. Chile, although in the initial stages of the epidemic, already has a serious problem which at present can only be combatted through education. It will be necessary to convince the population that significant modifications of sexual behavior are needed to control the spread of the disease. Education for AIDS prevention is a priority of the National Commission on AIDS (CONASIDA), which is basing its program on the premise that stable monogamy is the most natural form of expression of a couple. Manuals for prevention are under development, and the 1st, for health workers and the general population, is in process of publication. A series of pamphlets and educational videos for workers in sexually transmitted disease clinics are under development. Educational materials are also being created for specific groups such as university students and agricultural workers and for groups at high risk. A social communications campaign has been prepared and approved by the authorities, and is awaiting funding for dissemination. Education of the population is also a concern for the Catholic Church, which views reinforcement of the family and its mission of providing sex education as a primary means of preventing AIDS. CONASIDA is also responsible for epidemiological study of AIDS in Chile through surveillance of sentinel groups and in quality control of the blood supply. Condoms are to be distributed in sexually transmitted disease clinics for the purpose of AIDS prevention.

  18. Verification of a three-dimensional neutronics model based on multi-point kinetics equations for transient problems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Seok; Kim, Hyun Dae; Yeom, Choong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A computer code for solving the three-dimensional reactor neutronic transient problems utilizing multi-point reactor kinetics equations recently developed has been developed. For evaluating its applicability, the code has been tested with typical 3-D LWR and CANDU reactor transient problems. The performance of the method and code has been compared with the results by fine and coarse meshes computer codes employing the direct methods.

  19. Application of the Laplace transform method for the albedo boundary conditions in multigroup neutron diffusion eigenvalue problems in slab geometry

    International Nuclear Information System (INIS)

    Petersen, Claudio Zen; Vilhena, Marco T.; Barros, Ricardo C.

    2009-01-01

    In this paper the application of the Laplace transform method is described in order to determine the energy-dependent albedo matrix that is used in the boundary conditions multigroup neutron diffusion eigenvalue problems in slab geometry for nuclear reactor global calculations. In slab geometry, the diffusion albedo substitutes without approximation the baffle-reflector system around the active domain. Numerical results to typical test problems are shown to illustrate the accuracy and the efficiency of the Chebysheff acceleration scheme. (orig.)

  20. To the question of definition of fissile material mass and neutron multiplication in deep sub-critical systems

    International Nuclear Information System (INIS)

    Dulin, V.V.

    2006-01-01

    A method of determination neutrons multiplication in deep sub-critical multiplying media has been developed. It is based on a modified of Rossi - alpha method. It will consist in use of integral on time (a method of the areas) from correlated parts of distribution and integral in area, independent of time a part of distribution (area of a constant background). It allows to spend the calculated analysis, using the integrated equation on time for a neutrons flux and to not use representation of point kinetic model. A calculation spatially-correlation factor the adjoint (relative the detector count rate) inhomogeneous equation is used. Its calculation takes into account fission both in multiplying media and in a spontaneous neutron source. Measurements with plutonium-steel and uranium-steel blocks, and blocks from uranium and plutonium dioxide of different enrichment are have been carried out. The measured values of neutrons multiplication in a range 1.03-1.82 will be well coordinated to results of calculations. The question on an opportunity of definition of weight of the measured blocks of fissile material is considered [ru

  1. Polarized neutron scattering study of the multiple order parameter system NdB4

    Science.gov (United States)

    Metoki, N.; Yamauchi, H.; Matsuda, M.; Fernandez-Baca, J. A.; Watanuki, R.; Hagihala, M.

    2018-05-01

    Neutron polarization analysis has been carried out in order to clarify the magnetic structures of multiple order parameter f -electron system NdB4. We confirmed the noncollinear "all-in all-out" structure (Γ4) of the in-plane moment, which is in good agreement with our previous neutron powder diffraction study. We found that the magnetic moment along the c -axis mc showed diagonally antiferromagnetic structure (Γ10), inconsistent with previously reported "vortex" structure (Γ2). The microscopic mixture of these two structures with q⃗0=(0 ,0 ,0 ) appears in phase II and remains stable in phases III and IV, where an incommensurate modulation coexists. The unusual magnetic ordering is phenomenologically understood via Landau theory with the primary order parameter Γ4 coupled with higher-order secondary order parameter Γ10. The magnetic moments were estimated to be 1.8 ±0.2 and 0.2 ±0.05 μB at T =7.5 K for Γ4 and Γ10, respectively. We also found a long-period incommensurate modulation of the q⃗1=(0 ,0 ,1 /2 ) antiferromagnetic structure of mc with the propagation q⃗s 1=(0.14 ,0.14 ,0.1 ) and q⃗s 2=(0.2 ,0 ,0.1 ) in phase III and IV, respectively. The amplitude of sinusoidal modulation was about mc=1.0 ±0.2 μB at T =1.5 K. The local (0 ,0 ,1 /2 ) structure consists of in-plane ferromagnetic and out-of-plane antiferromagnetic coupling of mc, opposite to the coexisting Γ10. The mc of Γ10 is significantly enhanced up to 0.6 μB at T =1.5 K, which is accompanied by the incommensurate modulations. The Landau phenomenological approach indicates that the higher-order magnetic and/or multipole interactions based on the pseudoquartet f -electron state play important roles.

  2. Application of the finite element method to neutronics problems with inhomogeneous boundray conditions

    International Nuclear Information System (INIS)

    Yoo, K.J.

    1982-01-01

    The albedo boundary conditions are incorporated into the finite element method using bicubic Hermite element functions in order to reduce the computer memory and computation time in two-group diffusion calculations by excluding the reflector regions in computation space. The basis functions at the core-reflector interfaces are newly established to satisfy the albedo boundary conditions, and then the ''weak'' form of two-group diffusion equations is discretized using the principle of the weighted residual method in combination with the Galerkin approximation. The discretized two-group diffusion equation is then solved by the Gaussian elimination method with the scaled column pivoting algorithm in one-dimensional problem and Gauss-Seidel method in two-dimensional problem. Prior to the application of the method to two-group diffusion problems, the same method is applied to the one-speed neutron transport equation in a bare slab reactor with the vacuum boundary condition to confirm its usefulness in the diffusion calculations. To investigate the applicability of our diffusion method, several numerical calculations are performed: two-dimensional IAEA benchmark problem and two-dimensional ZION problem. The results are compared with the available results from the conventional finite difference and other finite element methods. If the albedo values are appropriately adjusted, our results of the two-dimensional IAEA benchmark problem are agreed within 0.002% of ksub(eff) with the fine mesh PDQ results. Comparing with CITATION results, one-eighth of core memory and one-fifteenth of computing time are required to obtain the same accuracy even though no acceleration technique is used in the present case. Also, it is found that the results are comparable with the other finite element results. However, no significant saving is obtained in computation time comparing with the other finite element results, where the reflector regions are explicity included. This mainly comes from

  3. The Core Problem within a Linear Approximation Problem $AX/approx B$ with Multiple Right-Hand Sides

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Plešinger, Martin; Strakoš, Z.

    2013-01-01

    Roč. 34, č. 3 (2013), s. 917-931 ISSN 0895-4798 R&D Projects: GA ČR GA13-06684S Grant - others:GA ČR(CZ) GA201/09/0917; GA MŠk(CZ) EE2.3.09.0155; GA MŠk(CZ) EE2.3.30.0065 Program:GA Institutional support: RVO:67985807 Keywords : total least squares problem * multiple right-hand sides * core problem * linear approximation problem * error-in-variables modeling * orthogonal regression * singular value decomposition Subject RIV: BA - General Mathematics Impact factor: 1.806, year: 2013

  4. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    Science.gov (United States)

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  5. Gamma spectroscopic studies of the neutron-deficient g-g nucleus 74Kr by means of a neutron multiplicity measurement technique

    International Nuclear Information System (INIS)

    Roth, J.

    1981-01-01

    The g-g nucleus 74 Kr was studied by means of the reaction 58 Ni ( 19 F, p2n#betta#) 74 Kr. In order to make gamma spectroscopic studies at neutron deficient nuclei like 74 Kr a neutron multiplicity measurement technique was developed. Beside #betta# single spectra, #betta# excitation functions, #betta#-#betta# coincidences, #betta# angular distributions, and lifetime measurements by means of this technique all measurements in coincidence with up to two neutrons were taken up. From these measurement data an extended term scheme with 17 newly found excited states could be extracted. To all levels spins and parities could be assigned. From the four energetically lowest levels of the yrast cascade the mean lifetimes could be determined. A double backbending in the sequence of the yrast cascade was interpreted as crossing of the g 9/2 bands. The irregularities in the lower part of the yrast band correspond to the shape consistence picture. The results were considered in connection with the systematics of the even krypton isotopes and compared with a two-quasiparticle-plas-rotor model calculation. (HSI)

  6. Multiple scattering effects in fast neutron polarization experiments using high-pressure helium-xenon gas scintillators as analyzers

    International Nuclear Information System (INIS)

    Tornow, W.; Mertens, G.

    1977-01-01

    In order to study multiple scattering effects both in the gas and particularly in the solid materials of high-pressure gas scintillators, two asymmetry experiments have been performed by scattering of 15.6 MeV polarized neutrons from helium contained in stainless steel vessels of different wall thicknesses. A monte Carlo computer code taking into account the polarization dependence of the differential scattering cross sections has been written to simulate the experiments and to calculate corrections for multiple scattering on helium, xenon and the gas containment materials. Besides the asymmetries for the various scattering processes involved, the code yields time-of-flight spectra of the scattered neutrons and pulse height spectra of the helium recoil nuclei in the gas scintillator. The agreement between experimental results and Monte Carlo calculations is satisfactory. (Auth.)

  7. A file of reference data for multiple-element neutron activation analysis

    International Nuclear Information System (INIS)

    Kabina, L.P.; Kondurov, I.A.; Shesterneva, I.M.

    1983-12-01

    Data needed for planning neutron activation analysis experiments and processing their results are given. The decay schemes of radioactive nuclei formed in irradiation with thermal neutrons during the (n,γ) reaction taken from the international ENSDF file are used for calculating the activities of nuclei and for drawing up an optimum table for identifying gamma lines in the spectra measured. (author)

  8. Influence of multiple small-angle neutron scattering on diffraction peak broadening in ferritic steel

    Czech Academy of Sciences Publication Activity Database

    Woo, W.; Em, V.; Shin, E.; Mikula, Pavol; Ryukhtin, Vasyl

    2015-01-01

    Roč. 48, APR (2015), s. 350-356 ISSN 0021-8898 R&D Projects: GA ČR GB14-36566G; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : peak broadening * small-angle neutron scattering * neutron diffraction * magnetic domain Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.720, year: 2014

  9. Study on uranium-water multiplicative means of the (RESUCO-Subcritical experimental reactor of uranium with oxygen) subcritical assembly by pulsed neutron technique

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1987-01-01

    The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt

  10. Contribution to analytical solution of neutron slowing down problem in homogeneous and heterogeneous media

    International Nuclear Information System (INIS)

    Stefanovic, D.B.

    1970-12-01

    The objective of this work is to describe the new analytical solution of the neutron slowing down equation for infinite monoatomic media with arbitrary energy dependence of cross section. The solution is obtained by introducing Green slowing down functions instead of starting from slowing down equations directly. The previously used methods for calculation of fission neutron spectra in the reactor cell were numerical. The proposed analytical method was used for calculating the space-energy distribution of fast neutrons and number of neutron reactions in a thermal reactor cell. The role of analytical method in solving the neutron slowing down in reactor physics is to enable understating of the slowing down process and neutron transport. The obtained results could be used as standards for testing the accuracy od approximative and practical methods

  11. Neutron multiplicity in deep inelastic collisions: 400 MeV Cu + Au system

    International Nuclear Information System (INIS)

    Tamain, B.; Chechik, R.; Ruchs, H.; Hanappe, F.; Morjean, M.; Ngo, C.; Peter, J.; Dakowski, M.; Lucas, B.; Mazur, C.; Ribrag, M.; Signarbieux, C.

    1979-01-01

    The authors have detected in nine different positions of space the neutrons associated with the collision of 63 Cu on 197 Au at 400 MeV bombarding energy. The deep inelastic products were detected at two different angles: close to the gazing angle and 30 0 forwards of it. Their measses were measured using a time-of-flight technique. The neutrons were detected in coincidence with the fragments - the efficiency of the neutron detectors was measured relatively to a 252 Cf source during beam time. The neutron threshold was set at 300 keV. Within an accuracy of 10% all the emitted neutrons are evaporated by the fully accelerated deep inelastic fragments. It is shown that the excitation energy is shared between the fragments in proportion to their masses and that the relaxation time for internal equilibration of the composite system is very short (approximately 10 -22 s). (Auth.)

  12. Neutron radiography imaging with 2-dimensional photon counting method and its problems

    International Nuclear Information System (INIS)

    Ikeda, Y.; Kobayashi, H.; Niwa, T.; Kataoka, T.

    1988-01-01

    A ultra sensitive neutron imaging system has been deviced with a 2-dimensional photon counting camara (ARGUS 100). The imaging system is composed by a 2-dimensional single photon counting tube and a low background vidicon followed with an image processing unit and frame memories. By using the imaging system, electronic neutron radiography (NTV) has been possible under the neutron flux less than 3 x 10 4 n/cm 2 ·s. (author)

  13. Reevaluation of the average prompt neutron emission multiplicity (nubar) values from fission of uranium and transuranium nuclides

    International Nuclear Information System (INIS)

    Holden, N.E.; Zucker, M.S.

    1984-01-01

    In response to a need of the safeguards community, we have begun an evaluation effort to upgrade the recommended values of the prompt neutron emission multiplicity distribution, P/sub nu/ and its average value, nubar. This paper will report on progress achieved thus far. The evaluation of the uranium, plutonium, americium and curium nuclide's nubar values will be presented. The recommended values will be given and discussed. 61 references

  14. The double travelling salesman problem with multiple stacks - Formulation and heuristic solution approaches

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Madsen, Oli B.G.

    2009-01-01

    This paper introduces the double travelling salesman problem with multiple stacks and presents four different metaheuristic approaches to its solution. The double TSP with multiple stacks is concerned with determining the shortest route performing pickups and deliveries in two separated networks...

  15. TLD-300 detectors for separate measurement of total and gamma absorbed dose distributions of single, multiple, and moving-field neutron treatments

    International Nuclear Information System (INIS)

    Rassow, J.

    1984-01-01

    Fast neutron therapy requirements, because of the poor depth dose characteristic of present therapeutical sources, are at least as complex in treatment plans as photon therapy. The physical part of the treatment planning is very important; however, it is much more complicated than for photons or electrons owing to the need for: Separation of total and gamma absorbed dose distributions (Dsub(T) and Dsub(G)); and more stringent tissue-equivalence conditions of phantoms than in photon therapy. Therefore, methods of clinical dosimetry for the separate determination of total and gamma absorbed dose distributions in irregularly shaped (inhomogeneous) phantoms are needed. A method using TLD-300 (CaF 2 :Tm) detectors is described, which is able to give an approximate solution of the above-mentioned dosimetric requirements. The two independent doses, Dsub(T) and Dsub(G), can be calculated by an on-line computer analysis of the digitalized glow curve of TLD-300 detectors, irradiated with d(14)+Be neutrons of the cyclotron isocentric neutron therapy facility CIRCE in Essen. Results are presented for depth and lateral absorbed dose distributions (Dsub(T) and Dsub(G)) for fixed neutron beams of different field sizes compared with measurements by standard procedures (TE-TE ionization chamber, GM counter) in an A-150 phantom. The TLD-300 results for multiple and moving-field treatments (with and without wedge filters) in a patient simulating irregularly shaped (inhomogeneous) phantoms, are shown together with computer calculations of these dose distributions. The probable causes for some systematic deviations are discussed, which lead to open problems for further investigations owing to features of the detector material and the evaluation method, but mainly to differences in the composition of phantom materials used for the calculations (standard dose distributions) and TLD-300 measurements. (author)

  16. Some principal problems in physics and low-energy neutron physics

    International Nuclear Information System (INIS)

    Aleksandrov, Yu.A.

    2004-01-01

    The questions connected with internal particle (e.g. neutron) structure obtained at low-energy neutron physics are discussed. The first question deals with the charge neutron radius E 2 > 1/2 connected with the value of neutron-electron scattering length a ne determined at low neutron energies. At present, the obtained accuracy allows us to speak not only about the value of E 2 > but also on the segmentation of E 2 > into Dirac and Foldy addenda. The sign of the Dirac addendum is connected directly with the fundamental Yukawa theory explaining the origin of nuclear forces. One of the popular experimental values of the Dirac addendum (from a ne =(-1.32±0.03)·10 -16 cm) contradicts the Yukawa theory. The second question also concerns the subject of the structure of the neutron, namely its deformation. The notion of deformation (polarizability) of the nucleon in electromagnetic field was introduced in the mid-1950s. The reasons are given in favor of the opinion that the neutron polarizability was observed for the first time in neutron experiments as far back as 1957, i.e. earlier than proton polarizability was detected (1960). Finally, the third question deals with the search for a magnetic charge of the neutron. A beautiful experiment (Finkelstein, Shull, Zeilinger, 1986) testifying with high accuracy the absence of a magnetic charge of the neutron is discussed. This diffraction experiment was based on the concept of anomalously small effective mass of the neutron providing greatly enhanced sensitivity. The existence of an isolated magnetic charge in the nature would explain the quantization of electric and magnetic charges (Dirac, 1931)

  17. Determination of the cell parameters of β-quartz at 1003 K by neutron multiple diffraction

    International Nuclear Information System (INIS)

    Campos, Luiz Carlos de

    2002-01-01

    In this work, neutron multiple diffraction (NMD) data was employed for the determination of the parameters a and c of the β-quartz hexagonal cell at 1003 K. An experimental 00.1 β-quartz NMD 'Umweg' pattern has been used for the determinations. During the indexing of the β-quartz pattern it was verified that most of the peaks could be classified as either 'good for the determination of the parameter a' or 'good for the determination of the parameter c'. With such a classification, it became possible to employ an iterative process for the determination of both parameters. To attain this purpose, two methods were developed. The first one, named 'absolute method', used angular azimuthal positions of the peaks, related to the origin of the experimental diagram. The second method, named 'relative method', used azimuthal angular differences between two selected peaks. The values obtained for both parameters, in the two methods employed, were found by applying the angular azimuthal positions, for the first method, and the azimuthal angular differences, for the second method, upon appropriate theoretical indexing diagrams. An iterative process was applied in order to obtain the values of the parameters. In this process, the value obtained for one of the parameters was used in the determination of the other parameter. The process continues until both parameters converge. The iterative process was used in both methods. The relative method proved to be better than the absolute method. The best values of the parameters obtained by the relative method were: a 4.99638 ± 0.00057 angstrom and c = 5.46119 ± 0.00044 angstrom. (author)

  18. Designing and using multiple-possibility physics problems in physics courses

    Science.gov (United States)

    Shekoyan, Vazgen

    2012-02-01

    One important aspect of physics instruction is helping students develop better problem solving expertise. Besides enhancing the content knowledge, problems help students develop different cognitive abilities and skills. This presentation focuses on multiple-possibility problems (alternatively called ill-structured problems). These problems are different from traditional ``end of chapter'' single-possibility problems. They do not have one right answer and thus the student has to examine different possibilities, assumptions and evaluate the outcomes. To solve such problems one has to engage in a cognitive monitoring called epistemic cognition. It is an important part of thinking in real life. Physicists routinely use epistemic cognition when they solve problems. I have explored the instructional value of using such problems in introductory physics courses.

  19. Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron Eigenvalue problem

    International Nuclear Information System (INIS)

    Du, X.; Liu, T.; Ji, W.; Xu, X. G.; Brown, F. B.

    2013-01-01

    Conventional Monte Carlo (MC) methods for radiation transport computations are 'history-based', which means that one particle history at a time is tracked. Simulations based on such methods suffer from thread divergence on the graphics processing unit (GPU), which severely affects the performance of GPUs. To circumvent this limitation, event-based vectorized MC algorithms can be utilized. A versatile software test-bed, called ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - was used for this study. ARCHER facilitates the development and testing of a MC code based on the vectorized MC algorithm implemented on GPUs by using NVIDIA's Compute Unified Device Architecture (CUDA). The ARCHER GPU code was designed to solve a neutron eigenvalue problem and was tested on a NVIDIA Tesla M2090 Fermi card. We found that although the vectorized MC method significantly reduces the occurrence of divergent branching and enhances the warp execution efficiency, the overall simulation speed is ten times slower than the conventional history-based MC method on GPUs. By analyzing detailed GPU profiling information from ARCHER, we discovered that the main reason was the large amount of global memory transactions, causing severe memory access latency. Several possible solutions to alleviate the memory latency issue are discussed. (authors)

  20. Measured performances on vectorization and multitasking with a Monte Carlo code for neutron transport problems

    International Nuclear Information System (INIS)

    Chauvet, Y.

    1985-01-01

    This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in neutron transport problems, the authors briefly describe the work done in order to get a vector code. Vectorization principles are presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples are presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example they propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion they prove that Monte Carlo algorithms are very well suited to future vector and parallel computers

  1. Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron Eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Du, X.; Liu, T.; Ji, W.; Xu, X. G. [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Brown, F. B. [Monte Carlo Codes Group, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-01

    Conventional Monte Carlo (MC) methods for radiation transport computations are 'history-based', which means that one particle history at a time is tracked. Simulations based on such methods suffer from thread divergence on the graphics processing unit (GPU), which severely affects the performance of GPUs. To circumvent this limitation, event-based vectorized MC algorithms can be utilized. A versatile software test-bed, called ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - was used for this study. ARCHER facilitates the development and testing of a MC code based on the vectorized MC algorithm implemented on GPUs by using NVIDIA's Compute Unified Device Architecture (CUDA). The ARCHER{sub GPU} code was designed to solve a neutron eigenvalue problem and was tested on a NVIDIA Tesla M2090 Fermi card. We found that although the vectorized MC method significantly reduces the occurrence of divergent branching and enhances the warp execution efficiency, the overall simulation speed is ten times slower than the conventional history-based MC method on GPUs. By analyzing detailed GPU profiling information from ARCHER, we discovered that the main reason was the large amount of global memory transactions, causing severe memory access latency. Several possible solutions to alleviate the memory latency issue are discussed. (authors)

  2. Measured performances on vectorization and multitasking with a Monte Carlo code for neutron transport problems

    International Nuclear Information System (INIS)

    Chauvet, Y.

    1985-01-01

    This paper summarized two improvements of a real production code by using vectorization and multitasking techniques. After a short description of Monte Carlo algorithms employed in our neutron transport problems, we briefly describe the work we have done in order to get a vector code. Vectorization principles will be presented and measured performances on the CRAY 1S, CYBER 205 and CRAY X-MP compared in terms of vector lengths. The second part of this work is an adaptation to multitasking on the CRAY X-MP using exclusively standard multitasking tools available with FORTRAN under the COS 1.13 system. Two examples will be presented. The goal of the first one is to measure the overhead inherent to multitasking when tasks become too small and to define a granularity threshold, that is to say a minimum size for a task. With the second example we propose a method that is very X-MP oriented in order to get the best speedup factor on such a computer. In conclusion we prove that Monte Carlo algorithms are very well suited to future vector and parallel computers. (orig.)

  3. Development of reference problems for neutron capture therapy treatment planning systems

    International Nuclear Information System (INIS)

    Albritton, J.R.; Kiger, W.S. III

    2006-01-01

    Currently, 5 different treatment planning systems (TPSs) are or have been used in clinical trials of Neutron Capture Therapy (NCT): MacNCTPlan, NCTPlan, BNCT Rtpe, SERA, and JCDS. This paper describes work performed to comprehensively test and compare 4 of these NCT treatment planning systems in order to facilitate the pooling of patient data from the different clinical sites for analysis of the clinical results as well as to provide an important quality assurance tool for existing and future TPSs. Two different phantoms were used to evaluate the planning systems: the modified Snyder head phantom and a large water-filled box, similar to that used in the International Dosimetry Exchange for NCT. The comparison of the resulting dose profile, isodose contours, and dose volume histograms to reference calculations performed with the Monte Carlo radiation transport code MCNP5 yielded many interesting differences. Each of the planning systems deviated from the reference calculations, with the newer systems (i.e., SERA and NCTPlan) most often yielding better agreement than their predecessors (i.e., BNCT Rtpe and MacNCTPlan). The combination of simple phantoms and sources with more complicated and realistic planning conditions has produced a well-rounded and useful suite of test problems for NCT treatment planning system analysis. (author)

  4. Visual Attention for Solving Multiple-Choice Science Problem: An Eye-Tracking Analysis

    Science.gov (United States)

    Tsai, Meng-Jung; Hou, Huei-Tse; Lai, Meng-Lung; Liu, Wan-Yi; Yang, Fang-Ying

    2012-01-01

    This study employed an eye-tracking technique to examine students' visual attention when solving a multiple-choice science problem. Six university students participated in a problem-solving task to predict occurrences of landslide hazards from four images representing four combinations of four factors. Participants' responses and visual attention…

  5. On Solution of Total Least Squares Problems with Multiple Right-hand Sides

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, I.; Plešinger, Martin; Strakoš, Zdeněk

    2008-01-01

    Roč. 8, č. 1 (2008), s. 10815-10816 ISSN 1617-7061 R&D Projects: GA AV ČR IAA100300802 Institutional research plan: CEZ:AV0Z10300504 Keywords : total least squares problem * multiple right-hand sides * linear approximation problem Subject RIV: BA - General Mathematics

  6. The computer-aided design of a servo system as a multiple-criteria decision problem

    NARCIS (Netherlands)

    Udink ten Cate, A.J.

    1986-01-01

    This paper treats the selection of controller gains of a servo system as a multiple-criteria decision problem. In contrast to the usual optimization-based approaches to computer-aided design, inequality constraints are included in the problem as unconstrained objectives. This considerably simplifies

  7. Confinement of ultra-cold neutron in a multiple cusp magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Nobumichi; Inoue, Nobuyuki; Nihei, Hitoshi; Kinosita, Ken-ichi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-08-01

    A new confinement system of ultra-cold neutrons is proposed. The neutron bottle is made of a rectangular vacuum chamber with the size of 40 cm x 40 cm x 30 cm covered with arrays of bar type permanent magnets. The operation of bottle requires neither cooling system nor high electric power supply, and thereby the bottle is appropriate to use in the room which is located in controlled area. The maximum kinetic energy of neutrons confined is 20 neV. Experimental scheme to test the performance of the bottle is described. (author)

  8. Solution of the linearly anisotropic neutron transport problem in a infinite cylinder combining the decomposition and HTSN methods

    International Nuclear Information System (INIS)

    Goncalves, Glenio A.; Bodmann, Bardo; Bogado, Sergio; Vilhena, Marco T.

    2008-01-01

    Analytical solutions for neutron transport in cylindrical geometry is available for isotropic problems, but to the best of our knowledge for anisotropic problems are not available, yet. In this work, an analytical solution for the neutron transport equation in an infinite cylinder assuming anisotropic scattering is reported. Here we specialize the solution, without loss of generality, for the linearly anisotropic problem using the combined decomposition and HTS N methods. The key feature of this method consists in the application of the decomposition method to the anisotropic problem by virtue of the fact that the inverse of the operator associated to isotropic problem is well know and determined by the HTS N approach. So far, following the idea of the decomposition method, we apply this operator to the integral term, assuming that the angular flux appearing in the integrand is considered to be equal to the HTS N solution interpolated by polynomial considering only even powers. This leads to the first approximation for an anisotropic solution. Proceeding further, we replace this solution for the angular flux in the integral and apply again the inverse operator for the isotropic problem in the integral term and obtain a new approximation for the angular flux. This iterative procedure yields a closed form solution for the angular flux. This methodology can be generalized, in a straightforward manner, for transport problems with any degree of anisotropy. For the sake of illustration, we report numerical simulations for linearly anisotropic transport problems. (author)

  9. Neutron dosimetry: problems, solutions, prospects and the role of trace detectors

    International Nuclear Information System (INIS)

    Fernandez, F.

    2009-10-01

    It is present in schematic way, the origin of the neutrons; their interaction with matter, until its application in the field of dosimetry. It describes some measuring instruments based on thermoluminescence dosimetry, some activation detectors and trace detectors. Finally, it summarizes the work in neutron dosimetry have been carried out at the Autonomous University of Barcelona. (Author)

  10. The problem of resonance self-shielding effect in neutron multigroup calculations

    International Nuclear Information System (INIS)

    Wang Qingming; Huang Jinghua

    1991-01-01

    It is not allowed to neglect the resonance self-shielding effect in hybrid blanket and fast reactor neutron designs. The authors discussed the importance as well as the method of considering the resonance self-shielding effect in hybrid blanket and fast reactor neutron multigroup calculations

  11. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    International Nuclear Information System (INIS)

    Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.

    2006-01-01

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature

  12. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es

    2006-09-15

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.

  13. Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment

    Science.gov (United States)

    Prevost, Luanna B.; Lemons, Paula P.

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021

  14. Neutron induced radiation damage

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    1977-01-01

    We derive a general expression for the number of displaced atoms of type j caused by a primary knock-on of type i. The Kinchin-Pease model is used, but considerably generalised to allow for realistic atomic potentials. Two cases are considered in detail: the single particle problem causing a cascade and the neutron initiated problem which leads to multiple subcascades. Numerical results have been obtained for a variety of scattering laws. An important conclusion is that neutron initiated damage is much more severe than atom-initiated damage and leads to the number of displaced atoms being a factor of (A+1) 2 /4A larger than the single primary knock-on theory predicts. A is the ratio of the atomic mass to the neutron mass. The importance of this result to the theory of neutron sputtering is explained. (orig.) [de

  15. Solvability of the Core Problem with Multiple Right-Hand Sides in the TLS Sense

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Plešinger, M.; Sima, D.M.

    2016-01-01

    Roč. 37, č. 3 (2016), s. 861-876 ISSN 0895-4798 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : total least squares (TLS) problem * multiple right-hand sides * core problem * linear approximation problem * error-in-variables modeling * orthogonal regression * classical TLS algorithm Subject RIV: BA - General Mathematics Impact factor: 2.194, year: 2016

  16. Correlation studies of neutron multiplicities in the 252Cf spontaneous fission

    International Nuclear Information System (INIS)

    Alkhazov, I.D.; Dmitriev, V.D.; Kovalenko, S.S.; Kuznetsov, A.V.; Malkin, L.Z.; Petrzhak, K.A.; Petrov, B.F.; Shpakov, V.I.

    1988-01-01

    Correlations between the numbers of neutrons emitted by the 252 Cf spontaneous fission fragments have been studied as a function of the fragment mass and total kinetic energy. Behaviour of the neutron number dispersions and covariances was studied for the region of symmetric fission. Parameters of the complementary fragment excitation energy distribution (mean values, dispersions, covariances) were determined. Various factors describing correlations between the complementary fragment excitation energies are considered

  17. A study of the 208Pb + 197Au reaction at 29 MeV/u through the associated neutron multiplicity

    International Nuclear Information System (INIS)

    Bresson, S.

    1993-01-01

    The investigation of this heavy symmetric system has been carried out through the study of the associated neutron multiplicity. The experimental techniques and data processing are first described, with emphasis on the Orion neutron detector and the hodoscope used to detect the charged reaction products at forward angles. It is shown that the neutron multiplicity is a good measure of the violence of the collision and a good way to characterize the different modes of the reaction. The fission of the quasi-projectile is then characterized and is shown to occur for peripheral collisions. Using simulations, the minimal values of the angular momentum transferred to the quasi-projectile are determined. The results of dynamical calculations using the Landau Vlasov equation are described, which show the importance of angular momentum. It is demonstrated that, at 29 MeV/u, the Pb + Au collision is still governed by deep inelastic reactions in which angular momentum in the exit channel plays an important role

  18. Recent trends in the incidence of multiple births and its consequences on perinatal problems in Korea.

    Science.gov (United States)

    Choi, Sun Hee; Park, Young Sil; Shim, Kye Shik; Choi, Yong Sung; Chang, Ji Young; Hahn, Won Ho; Bae, Chong-Woo

    2010-08-01

    The aim of this study was to survey multiple birth data and to analyze the recent trends of multiple births and its consequences on perinatal problems in Korea from 1991 to 2008. Data were obtained from the Korean Statistical Information Service. The total number of multiple births showed increasing trends. The multiple birth rate was maintained within less than 10.0 for the decade from 1981 to 1990. However, it increased gradually to reach 27.5 in 2008. The maternal age for multiple births was higher than for total live births. The mean birth weight of the total live births was 3.23 kg; for the multiple births it was 2.40 kg in 2008. The incidence of low birth weight infants (LBWI) among total live births was 3.8% in 2000 and 4.9% in 2008. For multiple births it was 49.2% and 53.0% during the same years. The incidence of preterm births among total live births was 3.8% in 2000 and 5.5% in 2008; for the multiple births it was 38.3% and 51.5% during the same years. The incidence of multiple births and its consequences on perinatal problems (preterm, LBWI, and advanced-maternal age) have been increased steadily over the last two decades in Korea.

  19. Violence of heavy-ion reactions from neutron multiplicity: 11 to 20A MeV /sup 20/Ne+ /sup 238/U

    International Nuclear Information System (INIS)

    Jahnke, U.; Ingold, G.; Hilscher, D.; Lehmann, M.; Schwinn, E.; Zank, P.

    1986-01-01

    The suitability of the neutron multiplicity as a gauge for the violence of medium-energy heavy-ion reactions is investigated for the first time. For this purpose the number of neutrons emitted from fission reactions induced by 220-, 290-, and 400-MeV /sup 20/Ne on /sup 238/U is registered event-by-event with a large 4π scintillator tank. It is shown that the neutron multiplicity is indeed closely related to the two quantities characterizing the violence: the induced total intrinsic excitation and the linear momentum transfer

  20. On the problems relating to the accuracy of the measurement of fuel pin diameters by neutron radiography

    International Nuclear Information System (INIS)

    Matfield, R.

    1983-01-01

    The paper identifies the sources of error in the neutron radiographic system and attempts to estimate some of these errors. The sources of error are in the fuel pin materials, the radiographic set-up, the radiographic equipment, image formation, the microdensitometer, the edge criteria and the dimensional measurement from the microdensitometer trace. However, the critical problem area is that of determining a representative edge criteria and upon this will depend the ability of the method to achieve the required measurement accuracy. (Auth.)

  1. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Document Server

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  2. MCT: a Monte Carlo code for time-dependent neutron thermalization problems

    International Nuclear Information System (INIS)

    Cupini, E.; Simonini, R.

    1974-01-01

    In the Monte Carlo simulation of pulse source experiments, the neutron energy spectrum, spatial distribution and total density may be required for a long time after the pulse. If the assemblies are very small, as often occurs in the cases of interest, sophisticated Monte Carlo techniques must be applied which force neutrons to remain in the system during the time interval investigated. In the MCT code a splitting technique has been applied to neutrons exceeding assigned target times, and we have found that this technique compares very favorably with more usual ones, such as the expected leakage probability, giving large gains in computational time and variance. As an example, satisfactory asymptotic thermal spectra with a neutron attenuation of 10 -5 were quickly obtained. (U.S.)

  3. Neutron/gamma dose separation by the multiple-ion-chamber technique

    International Nuclear Information System (INIS)

    Goetsch, S.J.

    1983-01-01

    Many mixed n/γ dosimetry systems rely on two dosimeters, one composed of a tissue-equivalent material and the other made from a non-hydrogenous material. The paired chamber technique works well in fields of neutron radiation nearly identical in spectral composition to that in which the dosimeters were calibrated. However, this technique is drastically compromised in phantom due to the degradation of the neutron spectrum. The three-dosimeter technique allows for the fall-off in neutron sensitivity of the two non-hydrogenous dosimeters. Precise and physically meaningful results were obtained with this technique with a D-T source in air and in phantom and with simultaneous D-T neutron and 60 Co gamma ray irradiation in air. The MORSE-CG coupled n/γ three-dimensional Monte Carlo code was employed to calculate neutron and gamma doses in a water phantom. Gamma doses calculated in phantom with this code were generally lower than corresponding ion chamber measurements. This can be explained by the departure of irradiation conditions from ideal narrow-beam geometry. 97 references

  4. Neutron dosimetry in French nuclear power plants. Problems and their solutions in 1995

    International Nuclear Information System (INIS)

    Guibbaud, Y.; Dollo, R.; Rannou, A.

    1996-01-01

    Exposure to neutron radiation in the nuclear industry is normally limited to a small number of workers essentially EDF employees operating in specific areas. Operational collective dose due to neutron exposure is almost negligible compared to the rest of the external doses (less than 2 % in the collective dose equivalent). But this risk represents a significant fraction of the annual dose equivalent of those exposed. Suggest specifications for individual dosemeters which would ideally meet both technical and practical requirements. (author)

  5. Arbitrary quadrature: its application in the solution of one-dimensional, planar neutron transport problems

    International Nuclear Information System (INIS)

    Sanchez, J.

    2010-10-01

    A standard numerical procedure for the solution of singular integral equations is applied to the one-dimensional transport equation for monoenergetic neutrons. As is usual in quadrature methods, the procedure yields an Eigen system whose solution provide, for the critical slab, both the eigenvalue which is proportional to the number of secondary neutrons per collision, and the density as a function of position. The results obtained with two versions of the procedure, differing only in the extent of the basic region to which they are applied, are compared with analytically derived results available for benchmarking. The procedures considered yield consistent results for the calculated neutron densities and eigenvalues. Since the one-dimensional transport kernel and its spatial moments are integrable and their integrals can be put in terms of exponential integral functions, the resulting approximations to the neutron density yield somewhat lengthy but closed, forms. These approximate expressions of the neutron density can be used to render, after they are operated on, closed-form formulas for build-up factors, extrapolation distances or angular densities or employed for other purposes that require an analytical expression of the neutron density. As an example of this latter capability, the results of the calculation of the angular density at the surface of the slab are provided. (Author)

  6. Some Principal Problems in Physics and Low-Energy Neutron Physics

    CERN Document Server

    Alexandrov, Yu A

    2004-01-01

    The first question deals with the charge neutron radius $^{1/2}$ connected with the value of neutron-electron scattering length $a_{ne}$ determined at low neutron energies. At present, the obtained accuracy allows us to speak not only about the value of $$ but also on the segmentation of $$ into Dirac and Foldy addenda. The sign of the Dirac addendum is connected directly with the fundamental Yukawa theory explaining the origin of nuclear forces. One of the popular experimental values of the Dirac addendum (from ${a}_{ne} = (-1.32 \\pm 0.03) \\cdot 10^{ - 16}$ cm) contradicts the Yukawa theory. The second question also concerns the subject of the structure of the neutron, namely its deformation. The notion of deformation (polarizability) of the nucleon in electromagnetic field was introduced in the mid-1950s. The reasons are given in favor of the opinion that the neutron polarizability was observed for the first time in neutron experiments as far back as 1957, i.\\,e. earlier than proton polarizability was detec...

  7. Solution of Constrained Optimal Control Problems Using Multiple Shooting and ESDIRK Methods

    DEFF Research Database (Denmark)

    Capolei, Andrea; Jørgensen, John Bagterp

    2012-01-01

    of this paper is the use of ESDIRK integration methods for solution of the initial value problems and the corresponding sensitivity equations arising in the multiple shooting algorithm. Compared to BDF-methods, ESDIRK-methods are advantageous in multiple shooting algorithms in which restarts and frequent...... algorithm. As we consider stiff systems, implicit solvers with sensitivity computation capabilities for initial value problems must be used in the multiple shooting algorithm. Traditionally, multi-step methods based on the BDF algorithm have been used for such problems. The main novel contribution...... discontinuities on each shooting interval are present. The ESDIRK methods are implemented using an inexact Newton method that reuses the factorization of the iteration matrix for the integration as well as the sensitivity computation. Numerical experiments are provided to demonstrate the algorithm....

  8. Finding Multiple Optimal Solutions to Optimal Load Distribution Problem in Hydropower Plant

    Directory of Open Access Journals (Sweden)

    Xinhao Jiang

    2012-05-01

    Full Text Available Optimal load distribution (OLD among generator units of a hydropower plant is a vital task for hydropower generation scheduling and management. Traditional optimization methods for solving this problem focus on finding a single optimal solution. However, many practical constraints on hydropower plant operation are very difficult, if not impossible, to be modeled, and the optimal solution found by those models might be of limited practical uses. This motivates us to find multiple optimal solutions to the OLD problem, which can provide more flexible choices for decision-making. Based on a special dynamic programming model, we use a modified shortest path algorithm to produce multiple solutions to the problem. It is shown that multiple optimal solutions exist for the case study of China’s Geheyan hydropower plant, and they are valuable for assessing the stability of generator units, showing the potential of reducing occurrence times of units across vibration areas.

  9. A Multiple Period Problem in Distributed Energy Management Systems Considering CO2 Emissions

    Science.gov (United States)

    Muroda, Yuki; Miyamoto, Toshiyuki; Mori, Kazuyuki; Kitamura, Shoichi; Yamamoto, Takaya

    Consider a special district (group) which is composed of multiple companies (agents), and where each agent responds to an energy demand and has a CO2 emission allowance imposed. A distributed energy management system (DEMS) optimizes energy consumption of a group through energy trading in the group. In this paper, we extended the energy distribution decision and optimal planning problem in DEMSs from a single period problem to a multiple periods one. The extension enabled us to consider more realistic constraints such as demand patterns, the start-up cost, and minimum running/outage times of equipment. At first, we extended the market-oriented programming (MOP) method for deciding energy distribution to the multiple periods problem. The bidding strategy of each agent is formulated by a 0-1 mixed non-linear programming problem. Secondly, we proposed decomposing the problem into a set of single period problems in order to solve it faster. In order to decompose the problem, we proposed a CO2 emission allowance distribution method, called an EP method. We confirmed that the proposed method was able to produce solutions whose group costs were close to lower-bound group costs by computational experiments. In addition, we verified that reduction in computational time was achieved without losing the quality of solutions by using the EP method.

  10. A Two-Dimensional Helmholtz Equation Solution for the Multiple Cavity Scattering Problem

    Science.gov (United States)

    2013-02-01

    obtained by using the block Gauss – Seidel iterative meth- od. To show the convergence of the iterative method, we define the error between two...models to the general multiple cavity setting. Numerical examples indicate that the convergence of the Gauss – Seidel iterative method depends on the...variational approach. A block Gauss – Seidel iterative method is introduced to solve the cou- pled system of the multiple cavity scattering problem, where

  11. Computation of higher spherical harmonics moments of the angular flux for neutron transport problems in spherical geometry

    International Nuclear Information System (INIS)

    Sahni, D.C.; Sharma, A.

    2000-01-01

    The integral form of one-speed, spherically symmetric neutron transport equation with isotropic scattering is considered. Two standard problems are solved using normal mode expansion technique. The expansion coefficients are obtained by solving their singular integral equations. It is shown that these expansion coefficients provide a representation of all spherical harmonics moments of the angular flux as a superposition of Bessel functions. It is seen that large errors occur in the computation of higher moments unless we take certain precautions. The reasons for this phenomenon are explained. They throw some light on the failure of spherical harmonics method in treating spherical geometry problems as observed by Aronsson

  12. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  13. Reflected‑Point‑Reactor Kinetics Model for Neutron Coincidence Counting: Comments on the Equation for the Leakage Self‑Multiplication

    International Nuclear Information System (INIS)

    Croft, S.; McElroy, RD.; Favalli, A.; Hauck, D.; Henzlova, D.; Henzl, V.; Santi, PA.

    2015-01-01

    Passive neutron correlation counting is widely used, for example by international inspection agencies, for the non‑destructive assay of spontaneously fissile nuclear materials for nuclear safeguards. The mass of special nuclear material present in an item is usually estimated from the observed neutron counting rates by using equations based on mathematically describing the object as an isolated multiplying point‑like source. Calibration using representative physical standards can often adequately compensate for this theoretical oversimplification through the introduction and use of effective‑interpretational‑model‑parameters meaning that useful assay results are obtained. In this work we extend the point‑model treatment by including a simple reflector around the fissioning material. Specifically we show how the leakage self‑multiplication equation mathematically connects the traditional bare source and the reflected source cases. In doing so we explicitly demonstrate that although the presence of a simple reflector changes the leakage self‑multiplication the traditional bare‑item point model multiplicity equations retain the same mathematical form. Making and explaining this connection is important because it helps to explain and justify the practical success and use of the traditional point‑model equations even when the assumptions used to generate the key functional dependences are violated. We are not aware that this point has been recognized previously.

  14. Regularization methods for ill-posed problems in multiple Hilbert scales

    International Nuclear Information System (INIS)

    Mazzieri, Gisela L; Spies, Ruben D

    2012-01-01

    Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, and regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases, convergence is proved and orders and optimal orders of convergence are shown. Finally, some potential applications and open problems are discussed. (paper)

  15. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Rauff Lind Christensen, Tue; Klose, Andreas; Andersen, Kim Allan

    important aspects of supplier selection, an important application of the SSFCTP, this does not reflect the real life situation. First, transportation costs faced by many companies are in fact piecewise linear. Secondly, when suppliers offer discounts, either incremental or all-unit discounts, such savings......The Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem (SSFCMCTP) is a problem with versatile applications. This problem is a generalization of the Single-Sink, Fixed-Charge Transportation Problem (SSFCTP), which has a fixed-charge, linear cost structure. However, in at least two...... are neglected in the SSFCTP. The SSFCMCTP overcome this problem by incorporating a staircase cost structure in the cost function instead of the usual one used in SSFCTP. We present a dynamic programming algorithm for the resulting problem. To enhance the performance of the generic algorithm a number...

  16. Solving Minimal Covering Location Problems with Single and Multiple Node Coverage

    Directory of Open Access Journals (Sweden)

    Darko DRAKULIĆ

    2016-12-01

    Full Text Available Location science represents a very attractiveresearch field in combinatorial optimization and it is in expansion in last five decades. The main objective of location problems is determining the best position for facilities in a given set of nodes.Location science includes techniques for modelling problemsand methods for solving them. This paper presents results of solving two types of minimal covering location problems, with single and multiple node coverage, by using CPLEX optimizer and Particle Swarm Optimization method.

  17. Experimental characterization of a prototype secondary spectrometer for vertically scattering multiple energy analysis at cold-neutron triple axis spectrometers

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Groitl, Felix; Kure, Mathias

    2016-01-01

    A thorough experimental characterization of a multiplexing backend with multiple energy analysis on a cold-neutron triple axis spectrometer (cTAS) is presented. The prototype employs two angular segments (2 theta-segments) each containing five vertically scattering analyzers (energy channels...... to the energy resolution of a standard cTAS. The dispersion relation of the antiferromagnetic excitations in MnF2 has been mapped out by performing constant energy transfer maps. These results show that the tested setup is virtually spurion free. In addition, focusing effects due to (mis...

  18. Safety in conducting subcritical neutron-multiplication measurements in situ (Revision of N16.3-1969) - approved 1975

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard provides safety guidance for conducting subcritical neutron-multiplication measurements where physical protection of personnel against the consequences of a criticality accident is not provided. The objectives of in situ measurements are either to confirm an adequate safety margin or to improve an estimate of such a margin. The first objective may constitute a test of the criticality safety of a design that is based on calculations. The second may effect improved operating conditions by reducing the uncertainty of safety margins and providing guidance to new designs

  19. The Relationship Between Problem Size and Fixation Patterns During Addition, Subtraction, Multiplication, and Division

    Directory of Open Access Journals (Sweden)

    Evan T. Curtis

    2016-08-01

    Full Text Available Eye-tracking methods have only rarely been used to examine the online cognitive processing that occurs during mental arithmetic on simple arithmetic problems, that is, addition and multiplication problems with single-digit operands (e.g., operands 2 through 9; 2 + 3, 6 x 8 and the inverse subtraction and division problems (e.g., 5 – 3; 48 ÷ 6. Participants (N = 109 solved arithmetic problems from one of the four operations while their eye movements were recorded. We found three unique fixation patterns. During addition and multiplication, participants allocated half of their fixations to the operator and one-quarter to each operand, independent of problem size. The pattern was similar on small subtraction and division problems. However, on large subtraction problems, fixations were distributed approximately evenly across the three stimulus components. On large division problems, over half of the fixations occurred on the left operand, with the rest distributed between the operation sign and the right operand. We discuss the relations between these eye tracking patterns and other research on the differences in processing across arithmetic operations.

  20. Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.

    Science.gov (United States)

    Prevost, Luanna B; Lemons, Paula P

    2016-01-01

    This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Long Range Active Detection of HEU Based on Thermal Neutron Multiplication

    Energy Technology Data Exchange (ETDEWEB)

    Forman L.; Dioszegi I.; Salwen, C.; and Vanier, P.E.

    2010-05-24

    We report on the results of measurements of proton irradiation on a series of targets at Brookhaven National Laboratory’s (BNL) Alternate Gradient Synchrotron Facility (AGS), in collaboration with LANL and SNL. We examined the prompt radiation environment in the tunnel for the DTRA-sponsored series (E 972), which investigated the penetration of air and subsequent target interaction of 4 GeV proton pulses. Measurements were made by means of an organic scintillator with a 500 MHz bandwidth system. We found that irradiation of a depleted uranium (DU) target resulted in a large gamma-ray signal in the 100-500 µsec time region after the proton flash when the DU was surrounded by polyethylene, but little signal was generated if it was surrounded by boron-loaded polyethylene. Subsequent Monte Carlo (MCNPX) calculations indicated that the source of the signal was consistent with thermal neutron capture in DU. The MCNPX calculations also indicated that if one were to perform the same experiment with a highly enriched uranium (HEU) target there would be a distinctive fast neutron yield in this 100-500 µsec time region from thermal neutron-induced fission. The fast neutrons can be recorded by the same direct current system and differentiated from gamma ray pulses in organic scintillator by pulse shape discrimination.

  2. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  3. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tariq Siddique, M.; Kim, Myung Hyun [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM.

  4. Fly's Eye: a counting camera for thermal neutrons, some applications, problems, and prospects

    International Nuclear Information System (INIS)

    Davidson, J.B.

    1975-01-01

    An area detector for thermal neutrons based on image intensification techniques is described and some capabilities and limitations of the detection system are discussed. Among the former are high spatial resolution high instantaneous counting rate, electronic zoom, time-gating, and integration. The detector is limited in that the maximum counting rate for a resolution element is 60 regularly spaced counts per second. Also, the nonuniformity of response over the detector limits the useful size and requires point-by-point calibration. In addition, a higher efficiency for neutron detection would be desirable. Some typical applications of the system are: crystal inspection, neutron magnetic diffraction topography, and searches for temperature induced changes in diffraction patterns. The future application of solid state television sensors and microchannel plate intensifiers to improve the system are briefly mentioned. (U.S.)

  5. Fly's eye: a counting camera for thermal neutrons: some applications, problems, and prospects

    International Nuclear Information System (INIS)

    Davidson, J.B.

    1976-01-01

    An area detector for thermal neutrons based on image intensification techniques is described. Some capabilities and limitations of the detection system are discussed. Among the former are high spatial resolution, high instantaneous counting rate, electronic zoom, time-gating, and integration. The detector is limited in that the maximum counting rate for a resolution element is 60 regularly spaced counts per second. Also, the nonuniformity of response over the detector puts a limit on the useful size and necessitates point-by-point calibration. In addition, a higher efficiency for neutron detection would be desirable. Some typical applications of the system are crystal inspection, neutron magnetic diffraction topography, and searches for temperature-induced changes in diffraction patterns. The future application of solid-state television sensors and microchannel-plate intensifiers to improve the system is briefly mentioned

  6. Contribution to solving the problem of neutron thermalization in heterogeneous reactor

    International Nuclear Information System (INIS)

    Pop-Jordanov, J. P.

    1963-12-01

    A method for calculating of neutron termalization in heterogeneous rector core was developed. It is more precise than the diffusion method but more complcated. Concerning accuracy it is comparable to non-diffusion methods. Sonce the approach was analytical need for powerful computer is avoided and the description of physical phenomena is more transparent. Convergence is satsfactory. Constraints of the proposed method are: low neutron absorption in the moderator, negligible slowing down in the fuel, and big lattice pitch. The method is applicable for heavy water and graphite moderator systems. Based on the application of this method, procedures were developed for calculating thermal utilzation and neutron temperature. Since 1/v dependence of cross sections is not estimated this metof could be used for long-term reactivity changes

  7. On the problem of neutron spectroscopy of parametrically non-equilibrium quasiparticles in solids

    International Nuclear Information System (INIS)

    Vo Khong An'.

    1981-01-01

    A suitable for numerical estimations formula for coherent neutron inelastic scattering cross sections on the plasmon-phonon mixed modes of electron-phonon systems in the parametric resonance conditions is obtained from the analytical one presented in the previous work using some relations of the general parametric excitation theory. The cross sections of neutron scattering on the high-frequency plasmon-like and the low-frequency longitudinal optical phonon-like modes in InSb crystals are calculated as functions of the driving laser field intensity, which show an increase in values by about two orders of magnitude as the field intensity approaches the parametric excitation threshold

  8. Concerning the problem of the plastic deformation mechanism changeover in neutron-irradiated metals and alloys

    International Nuclear Information System (INIS)

    Kolesnikov, A.N.; Krasnoselov, V.A.; Prokhorov, V.I.

    1982-01-01

    With a phenomenological model of plastic deformation instability as a basis, an analysis was made of the neutron irradition effects on the characteristics of strength and plasticity vs. structural parameters and radiation damage morphology. It was demonstrated that the enchanced plasticity in the initial stage of neutron irradiation has to do with the solid solution disintegration. Introduction of indestructible strengthening barriers enhances the stress-resistance of the neck-formation by 1.22 times. The ''big grain'' effect is observable during the deformation channel production only. Both the deformation twinning and deformation-induced martensite transformation raise the plastic flow stability

  9. Trace aluminium determination and sampling problems of archeological bone employing destructive neutron activation analysis

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Rack, E.P.; Recker, R.R.; Leffler, J.A.; Teitelbaum, S.

    1978-01-01

    A destructive neutron activation analysis procedure was developed for determining trace aluminium content in bone. The method is based on a carefully planned sample preparation, irradiation at a neutron flux for 3.1x10 11 nxcm -2 xs -1 for 5 minutes, and chemical separation based on ion exchange. It was found that bone samples soaked in aluminium containing soil gave highly elevated aluminium values as a result of the aluminium adsorption into the bone matrix. The maximum aluminium content values for prehistoric bones are larger than those of modern bones and comparable to aluminium levels present in bone from renal patients. (T.G.)

  10. Multiple positive solutions for second order impulsive boundary value problems in Banach spaces

    Directory of Open Access Journals (Sweden)

    Zhi-Wei Lv

    2010-06-01

    Full Text Available By means of the fixed point index theory of strict set contraction operators, we establish new existence theorems on multiple positive solutions to a boundary value problem for second-order impulsive integro-differential equations with integral boundary conditions in a Banach space. Moreover, an application is given to illustrate the main result.

  11. Exact Solutions to the Double Travelling Salesman Problem with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne L.; Archetti, Claudia; Speranza, M. Grazia

    2010-01-01

    In this paper we present mathematical programming formulations and solution approaches for the optimal solution of the Double Travelling Salesman Problem with Multiple Stacks (DTSPMS). A set of orders is given, each one requiring transportation of one item from a customer in a pickup region...

  12. Strong convergence of an extragradient-type algorithm for the multiple-sets split equality problem.

    Science.gov (United States)

    Zhao, Ying; Shi, Luoyi

    2017-01-01

    This paper introduces a new extragradient-type method to solve the multiple-sets split equality problem (MSSEP). Under some suitable conditions, the strong convergence of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Moreover, several numerical results are given to show the effectiveness of our algorithm.

  13. Emotional and Behavioural Problems in Children with Visual Impairment, Intellectual and Multiple Disabilities

    Science.gov (United States)

    Alimovic, S.

    2013-01-01

    Background: Children with multiple impairments have more complex developmental problems than children with a single impairment. Method: We compared children, aged 4 to 11 years, with intellectual disability (ID) and visual impairment to children with single ID, single visual impairment and typical development on "Child Behavior Check…

  14. Multiplicity of neutrons from violent heavy-ion collisions: 40Ar + Th and U from 10 to 77 MeV/u

    International Nuclear Information System (INIS)

    Jahnke, U.; Cramer, B.; Ingold, G.; Schwinn, E.; Charvet, J.L.; Frehaut, J.; Lott, B.; Morjean, M.; Patin, Y.; Pranal, Y.; Uzureau, J.L.; Doubre, H.; Galin, J.; Guerreau, D.; Jiang, D.X.; Pouthas, J.; Sokolov, A.; Gatty, B.; Jacquet, D.; Magnago, C.

    1988-12-01

    With large 4π scintillator tanks the multiplicity of neutrons released from the most dissipative reactions in 10 to 77 MeV/u 40 Ar induced collisions with Th and U nuclei has been investigated. The central issue is the relation between the fission-fragment folding angle or linear momentum transfer and the multiplicity of evaporated neutrons and charged particles or dissipated energy. Their multiplicity points to a 'soft saturation' of the maximum energy deposit with increasing bombarding energy near 700 MeV of excitation. Unlike the folding-angle distributions, the inclusive neutron multiplicity spectra, which are unbiased by specific decay properties of the intermediate nuclear system, do not show a decline of the most dissipative processes within this range of incident energy. (orig.)

  15. The application of isogeometric analysis to the neutron diffusion equation for a pincell problem with an analytic benchmark

    International Nuclear Information System (INIS)

    Hall, S.K.; Eaton, M.D.; Williams, M.M.R.

    2012-01-01

    Highlights: ► Isogeometric analysis used to obtain solutions to the neutron diffusion equation. ► Exact geometry captured for a circular fuel pin within a square moderator. ► Comparisons are made between the finite element method and isogeometric analysis. ► Error and observed order of convergence found using an analytic solution. -- Abstract: In this paper the neutron diffusion equation is solved using Isogeometric Analysis (IGA), which is an attempt to generalise Finite Element Analysis (FEA) to include exact geometries. In contrast to FEA, the basis functions are rational functions instead of polynomials. These rational functions, called non-uniform rational B-splines, are used to capture both the geometry and approximate the solution. The method of manufactured solutions is used to verify a MatLab implementation of IGA, which is then applied to a pincell problem. This is a circular uranium fuel pin within a square block of graphite moderator. A new method is used to compute an analytic solution to a simplified version of this problem, and is then used to observe the order of convergence of the numerical scheme. Comparisons are made against quadratic finite elements for the pincell problem, and it is found that the disadvantage factor computed using IGA is less accurate. This is due to a cancellation of errors in the FEA solution. A modified pincell problem with vacuum boundary conditions is then considered. IGA is shown to outperform FEA in this situation.

  16. Dual worth trade-off method and its application for solving multiple criteria decision making problems

    Institute of Scientific and Technical Information of China (English)

    Feng Junwen

    2006-01-01

    To overcome the limitations of the traditional surrogate worth trade-off (SWT) method and solve the multiple criteria decision making problem more efficiently and interactively, a new method labeled dual worth trade-off (DWT) method is proposed. The DWT method dynamically uses the duality theory related to the multiple criteria decision making problem and analytic hierarchy process technique to obtain the decision maker's solution preference information and finally find the satisfactory compromise solution of the decision maker. Through the interactive process between the analyst and the decision maker, trade-off information is solicited and treated properly, the representative subset of efficient solutions and the satisfactory solution to the problem are found. The implementation procedure for the DWT method is presented. The effectiveness and applicability of the DWT method are shown by a practical case study in the field of production scheduling.

  17. On the multiple depots vehicle routing problem with heterogeneous fleet capacity and velocity

    Science.gov (United States)

    Hanum, F.; Hartono, A. P.; Bakhtiar, T.

    2018-03-01

    This current manuscript concerns with the optimization problem arising in a route determination of products distribution. The problem is formulated in the form of multiple depots and time windowed vehicle routing problem with heterogeneous capacity and velocity of fleet. Model includes a number of constraints such as route continuity, multiple depots availability and serving time in addition to generic constraints. In dealing with the unique feature of heterogeneous velocity, we generate a number of velocity profiles along the road segments, which then converted into traveling-time tables. An illustrative example of rice distribution among villages by bureau of logistics is provided. Exact approach is utilized to determine the optimal solution in term of vehicle routes and starting time of service.

  18. A New Neutron Multiplicity Counter for the Measurement of Impure Plutonium Metal at Westinghouse Savannah River Site

    International Nuclear Information System (INIS)

    Baker, L.B.; Faison, D.M.; Langner, D.G.; Sweet, M.R.; Salazar, S.D.; Kroncke, K.E.

    1998-07-01

    A new neutron multiplicity counter has been designed, fabricated, characterized, and installed for use in the assay of impure plutonium metal buttons from the FB-Line at the Westinghouse Savannah River Site (WSRS). This instrument incorporates the performance characteristics of the Pyrochemical or In-plant Multiplicity Counter with the package size of the Plutonium Scrap Multiplicity Counter. In addition, state-of-the art features such as the de-randomizer circuit and separate ring outputs have been added. The counter consists of 113, 71 cm active length 3He tubes in a polyethylene moderator. Its efficiency for 252Cf is 57.8 percent, the highest of any multiplicity counter to date. Its die-away time is 50.4 ms and its deadtime is 50 ns. In this paper we will present the characterization data for the counter and the results of preliminary metal measurements at WSRS. We will also discuss the new challenges the impure metal buttons from FB-Line are presenting to the multiplicity counting technique

  19. Cosmic Rays and Dynamical Meteorology, 2. Snow Effect In Different Multiplicities According To Neutron Monitor Data of Emilio Segre' Observatory

    Science.gov (United States)

    Dorman, L. I.; Iucci, N.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Zukerman, I. G.

    On the basis of cosmic ray hourly data obtained by NM of Emilio Segre' Observatory (hight 2025 m above s.l., cut-off rigidity for vertical direction 10.8 GV) we determine the snow effect in CR for total neutron intensity and for multiplicities m=1, m=2, m=3, m=4, m=5, m=6, and m=7. For comparison and excluding primary CR variations we use also hourly data on neutron multiplicities obtained by Rome NM (about sea level, cut-off rigidity 6.7 GV). In this paper we will analize effects of snow in periods from 4 January 2000 to 15 April 2000 with maximal absorption effect about 5%, and from 21 December 2000 up to 31 March 2001 with maximal effect 13% in the total neu- tron intensity. We use the periods without snow to determine regeression coefficients between primary CR variations observed by NM of Emilio Segre' Observatory, and by Rome NM. On the basis of obtained results we develop a method to correct data on snow effect by using several NM hourly data. On the basis of our data we estimate the accuracy with what can be made correction of NM data of stations where the snow effect can be important.

  20. Effect of N/Z in pre-scission neutron multiplicity for 16,18O+198Pt systems

    International Nuclear Information System (INIS)

    Sandal, R.; Behera, B.R.; Singh, V.; Kaur, M.; Kumar, A.; Singh, G.; Singh, K.P.; Sugathan, P.; Jhingan, A.; Golda, K.S.; Chatterjee, M.B.; Bhowmik, R.K.; Kalkal, S.; Siwal, D.; Goyel, S.; Mandal, S.; Prasad, E.; Sadhukhan, J.; Pal, S.; Mahta, K.; Saxena, A.

    2014-01-01

    This paper reports the summary of the experimental results of pre-scission neutron multiplicities from four compound nuclei, namely 210,212,214,216 Rn, and statistical model analysis of the corresponding data. The compound nuclei 210,212,214,216 Rn having N/Z values as 1.441, 1.465, 1.488, 1.511 respectively are populated through the 16,18 O+ 194,198 Pt reactions at excitation energies of 50, 61, 71.7 and 79 MeV. The measured neutron multiplicities are further analyzed with the statistical model of nuclear decay where fission hindrance due to nuclear dissipation is considered. The N/Z dependence of the dissipation strength at lowest excitation energy of the compound nuclei suggests shell closure effects. However, such effects are not observed at higher excitations where the variation of the dissipation strength with N/Z does not show any specific trend. The variation of N/Z in fission time scale is also shown. (authors)

  1. Computational methods for the nuclear and neutron matter problems. Progress report

    International Nuclear Information System (INIS)

    Kalos, M.H.

    1979-01-01

    A brief report is given of progress on the development of Monte Carlo methods for the treatment of both simplified and realistic models of extensive neutron and nuclear matter and, eventually, of finite nuclei. A wide class of algorithms that may allow the efficient sampling of the integrands required in calculating the energy expectations with useful trial wave functions was devised

  2. neutron multiplicity measurements on 220 l waste drums containing Pu in the range 0.1-1 g 240Pueff with the time interval analysis method

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.; De Boeck, W.

    1998-01-01

    Measurement results are presented for the assay of plutonium in 220 l waste drums containing Pu-masses in the range 0.1-1 g 240 Pu eff obtained with the time interval analysis (TIA) method. TIA is a neutron multiplicity method based on the concept of one- and two-dimensional Rossi-alpha distributions. The main source of measurement bias in neutron multiplicity measurements at low count-rates is the impredictable variation of the high-multiplicity neutron background of spallation neutrons induced by cosmic rays. The TIA-method was therefore equipped with a special background filter, which is designed and optimized to reduce the influence of these spallation neutrons by rejecting the high-multiplicity events. The measurement results, obtained with the background correction filter outlined in this paper, prove the repeatability and validity of the TIA-method and show that multiplicity counting with the TIA-technique is applicable for masses as low as 0.1 g 240 Pu eff even at a detection efficiency of 12%. (orig.)

  3. Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique

    Directory of Open Access Journals (Sweden)

    Omar Abu Arqub

    2014-01-01

    Full Text Available The purpose of this paper is to present a new kind of analytical method, the so-called residual power series, to predict and represent the multiplicity of solutions to nonlinear boundary value problems of fractional order. The present method is capable of calculating all branches of solutions simultaneously, even if these multiple solutions are very close and thus rather difficult to distinguish even by numerical techniques. To verify the computational efficiency of the designed proposed technique, two nonlinear models are performed, one of them arises in mixed convection flows and the other one arises in heat transfer, which both admit multiple solutions. The results reveal that the method is very effective, straightforward, and powerful for formulating these multiple solutions.

  4. A multiple objective test assembly approach for exposure control problems in Computerized Adaptive Testing

    Directory of Open Access Journals (Sweden)

    Theo J.H.M. Eggen

    2010-01-01

    Full Text Available Overexposure and underexposure of items in the bank are serious problems in operational computerized adaptive testing (CAT systems. These exposure problems might result in item compromise, or point at a waste of investments. The exposure control problem can be viewed as a test assembly problem with multiple objectives. Information in the test has to be maximized, item compromise has to be minimized, and pool usage has to be optimized. In this paper, a multiple objectives method is developed to deal with both types of exposure problems. In this method, exposure control parameters based on observed exposure rates are implemented as weights for the information in the item selection procedure. The method does not need time consuming simulation studies, and it can be implemented conditional on ability level. The method is compared with Sympson Hetter method for exposure control, with the Progressive method and with alphastratified testing. The results show that the method is successful in dealing with both kinds of exposure problems.

  5. A branch-and-cut algorithm for the vehicle routing problem with multiple use of vehicles

    Directory of Open Access Journals (Sweden)

    İsmail Karaoğlan

    2015-06-01

    Full Text Available This paper addresses the vehicle routing problem with multiple use of vehicles (VRPMUV, an important variant of the classic vehicle routing problem (VRP. Unlike the classical VRP, vehicles are allowed to use more than one route in the VRPMUV. We propose a branch-and-cut algorithm for solving the VRPMUV. The proposed algorithm includes several valid inequalities from the literature for the purpose of improving its lower bounds, and a heuristic algorithm based on simulated annealing and a mixed integer programming-based intensification procedure for obtaining the upper bounds. The algorithm is evaluated in terms of the test problems derived from the literature. The computational results which follow show that, if there were 120 customers on the route (in the simulation, the problem would be solved optimally in a reasonable amount of time.

  6. Pattern-set generation algorithm for the one-dimensional multiple stock sizes cutting stock problem

    Science.gov (United States)

    Cui, Yaodong; Cui, Yi-Ping; Zhao, Zhigang

    2015-09-01

    A pattern-set generation algorithm (PSG) for the one-dimensional multiple stock sizes cutting stock problem (1DMSSCSP) is presented. The solution process contains two stages. In the first stage, the PSG solves the residual problems repeatedly to generate the patterns in the pattern set, where each residual problem is solved by the column-generation approach, and each pattern is generated by solving a single large object placement problem. In the second stage, the integer linear programming model of the 1DMSSCSP is solved using a commercial solver, where only the patterns in the pattern set are considered. The computational results of benchmark instances indicate that the PSG outperforms existing heuristic algorithms and rivals the exact algorithm in solution quality.

  7. Study of some environmental problem in egypt using neutron activation analysis techniques

    International Nuclear Information System (INIS)

    El-Karim, A.H.M.G.

    2003-01-01

    this thesis deals with the investigation of the possibility of using the new (second) egyptian research reactor (ETRR-2) at Inshas (22 MW) for the neutron activation analysis (ANN) of trace elements, particularly in air dust, collected from cairo and some other cities of egypt. in this concern chapter 1 gives an introduction about the activation methods in general, describing the various techniques used and a comparison of the methods with other instrumental methods of analysis . as a main classification, the neutron activation methods involve prompt γ-ray NAA and delayed γ-ray NAA; cyclic NAA (repeated activation) was also outlined. the methodology of NAA involves the absolute method, the relative method and the mono standard (single comparator) method , which is in between the absolute and relative methods

  8. Nuclear data for neutron emission in the fission process

    International Nuclear Information System (INIS)

    Ganesan, S.

    1991-11-01

    This document contains the proceedings of the IAEA Consultants' Meeting on Nuclear Data for Neutron Emission in the Fission Process, Vienna, 22 - 24 October 1990. Included are the conclusions and recommendations reached at the meeting and the papers presented by the meeting participants. These papers provide a review of the status of experimental and theoretical data on neutron emission in spontaneous and neutron induced fission with reference to the data needs for reactor applications oriented towards actinide burner studies. The specific topics covered are the following: experimental measurements and theoretical predictions and evaluations of fission neutron energy spectra, average prompt fission neutron multiplicity, correlation in neutron emission from complementary fragments, neutron emission during acceleration of fission fragments, statistical properties of neutron rich nuclei by study of emission spectra of neutrons from the excited fission fragments, integral qualification of nu-bar for the major fissile isotopes, nu-bar total of 239 Pu and 235 U, and related problems. Refs figs and tabs

  9. Time-dependent variation of the neutron multiplication factor in spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Leotlela, M.J. [Univ. of the Witwatersrand, Johannesburg (South Africa). School of Physics; Eskom, Johannesburg (South Africa). Regulations and Licensing, Koeberg Operating Unit; Olifant, T. [Cape Town Univ. (South Africa). Dept. of Electrical Engineering and Nuclear Power Studies; Koeberg Nuclear Power Station, Cape Town (South Africa). Operating Dept.; Petr, I. [Univ. of the Witwatersrand, Johannesburg (South Africa). School of Physics

    2017-12-15

    After spent fuel assemblies have been discharged from the reactor, reactivity will fluctuate as the cooling period progresses because of changes in the number density of fissile nuclides and neutron absorber nuclides. The purpose of this project was (1) to quantify the contribution of each individual nuclide to the reactivity of the fissile system, (2) to identify nuclides that are responsible for the fluctuation in reactivity, and (3) to determine the effect of the number of nuclides on reactivity. This paper will present the results of the study of the behaviour of the k{sub eff} with respect to variation in the duration of the cooling period during storage.

  10. First observation of excited structures in neutron-deficient 179Hg : evidence for multiple shape coexistence

    International Nuclear Information System (INIS)

    Kondev, F.G.; Carpenter, M.P.; Janssens, R.V.F.; Lister, C.J.; Abu Saleem, K.; Ahmad, I.; Amro, H.; Caggiano, J.; Davids, C.N.; Heinz, A.; Herskind, B.; Khoo, T.L.; Lauristen, T.; Ma, W.C.; Ressler, J.J.; Reviol, W.; Riedinger, L.L.; Sarantites, D.G.; Seweryniak, D.; Siem, S.; Sonzongni, A.A.; Varmette, P.G.; Wiedenhoever, I.

    2002-01-01

    Excited structures in the neutron-deficient nucleus 179 Hg have been established for the first time using the Gammasphere spectrometer in conjunction with the fragment mass analyzer. Competing states originating from three different minima associated with nearly spherical, oblate, and prolate deformations were found. This result can be contrasted with the situation in heavier odd-mass Hg isotopes where only two minima (oblate and prolate) have been seen. The implications of these three shapes at low spin and excitation energy are discussed in the general context of shape coexistence in this mass region.

  11. A novel multi-item joint replenishment problem considering multiple type discounts.

    Directory of Open Access Journals (Sweden)

    Ligang Cui

    Full Text Available In business replenishment, discount offers of multi-item may either provide different discount schedules with a single discount type, or provide schedules with multiple discount types. The paper investigates the joint effects of multiple discount schemes on the decisions of multi-item joint replenishment. In this paper, a joint replenishment problem (JRP model, considering three discount (all-unit discount, incremental discount, total volume discount offers simultaneously, is constructed to determine the basic cycle time and joint replenishment frequencies of multi-item. To solve the proposed problem, a heuristic algorithm is proposed to find the optimal solutions and the corresponding total cost of the JRP model. Numerical experiment is performed to test the algorithm and the computational results of JRPs under different discount combinations show different significance in the replenishment cost reduction.

  12. Combined neutron activation analysis techniques for multiple purposes at Portuguese research reactor

    International Nuclear Information System (INIS)

    Dung, H.M.; Freitas, M.C.; Beasley, D.; Almeida, S.M.; Dionisio, I; Canha, N.H.; Galinha, C.; Marques, J.G.

    2010-01-01

    Full text: Developments of the neutron activation analysis (NAA) techniques using Compton suppression system (CSS), fast pneumatic irradiation facility (SIPRA), epithermal neutron and automatic sample changers (ASCs) associated with the traditional NAA for trace element determination in various sample types are described with reference to specific conditions at the 1 MW Portuguese research reactor (RPI). Experiences in application of k o -IAEA software for data processing in order to deduce the results are also discussed. A selected number of sample types which are intended to the application in biological and environmental areas as well as industrial and material samples are demonstrated which provide challenges in the irradiation, measurement and the interpretation of data to which in most cases a combined solution should be made. The role that each NAA technique can play in the combined scheme along with their optimized characteristics has been studied and shown. The combined NAA techniques at RPI established for on-going and potential projects as well as analysis service with respect to the element scope (48), typically Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, CI, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Hf, Hg, I, In, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Th, Ti, U, V, W, Vb, Zn and Zr along with detection limits, accuracies and precision's have been evaluated as a trace analysis method meeting the requirements of the intended applications

  13. [The suffering of professionals working at home with families with multiple problems].

    Science.gov (United States)

    Lamour, Martine; Barraco-De Pinto, Marthe

    2015-01-01

    The management of families with multiple problems often adversely affects the many people involved in their case. This suffering at work affects particularly professionals carrying out home visits. Acknowledging this suffering, enabling these professionals to express and give meaning to their feelings is essential in order to enable them to draw on their skills and creativity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Representation of Students in Solving Simultaneous Linear Equation Problems Based on Multiple Intelligence

    Science.gov (United States)

    Yanti, Y. R.; Amin, S. M.; Sulaiman, R.

    2018-01-01

    This study described representation of students who have musical, logical-mathematic and naturalist intelligence in solving a problem. Subjects were selected on the basis of multiple intelligence tests (TPM) consists of 108 statements, with 102 statements adopted from Chislet and Chapman and 6 statements equal to eksistensial intelligences. Data were analyzed based on problem-solving tests (TPM) and interviewing. See the validity of the data then problem-solving tests (TPM) and interviewing is given twice with an analyzed using the representation indikator and the problem solving step. The results showed that: the stage of presenting information known, stage of devising a plan, and stage of carrying out the plan those three subjects were using same form of representation. While he stage of presenting information asked and stage of looking back, subject of logical-mathematic was using different forms of representation with subjects of musical and naturalist intelligence. From this research is expected to provide input to the teacher in determining the learning strategy that will be used by considering the representation of students with the basis of multiple intelligences.

  15. Psidium guajava: A Single Plant for Multiple Health Problems of Rural Indian Population.

    Science.gov (United States)

    Daswani, Poonam G; Gholkar, Manasi S; Birdi, Tannaz J

    2017-01-01

    The rural population in India faces a number of health problems and often has to rely on local remedies. Psidium guajava Linn. (guava), a tropical plant which is used as food and medicine can be used by rural communities due to its several medicinal properties. A literature search was undertaken to gauge the rural health scenario in India and compile the available literature on guava so as to reflect its usage in the treatment of multiple health conditions prevalent in rural communities. Towards this, electronic databases such as Pubmed, Science Direct, google scholar were scanned. Information on clinical trials on guava was obtained from Cochrane Central Register of Controlled Trials and Clinicaltrial.gov. The literature survey revealed that guava possesses various medicinal properties which have been reported from across the globe in the form of ethnobotanical/ethnopharmacological surveys, laboratory investigations and clinical trials. Besides documenting the safety of guava, the available literature shows that guava is efficacious against the following conditions which rural communities would encounter. (a) Gastrointestinal infections; (b) Malaria; (c)Respiratory infections; (d) Oral/dental infections; (e) Skin infections; (f) Diabetes; (g) Cardiovascular/hypertension; (h) Cancer; (i) Malnutrition; (j) Women problems; (k) Pain; (l) Fever; (m) Liver problems; (n) Kidney problems. In addition, guava can also be useful for treatment of animals and explored for its commercial applications. In conclusion, popularization of guava, can have multiple applications for rural communities.

  16. Application of hot neutron scattering to the problem of 3d metallic paramagnetism

    International Nuclear Information System (INIS)

    Brown, P.J.; Capellmann, H.; Deportes, J.; Givord, D.; Johnson, S.M.; Ziebeck, K.R.A.

    1984-01-01

    The authors report in this paper on experiments performed in Fe and Ni in their paramagnetic state. Scattering of polarized neutrons with polarization analysis has been used to separate out the magnetic scattering from other sources of scattering. Large quasi-elastic scattering is observed which characterizes ferromagnetic correlations over several inter-atomic distances. The large-Q component of the scattering is fairly small as expected for itinerant electrons in which the energy of magnetic excitations may be of the order of the bandwidth. These should help discriminate between the itinerant and localized models

  17. Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming

    DEFF Research Database (Denmark)

    Christensen, Tue; Andersen, Kim Allan; Klose, Andreas

    2013-01-01

    This paper considers a minimum-cost network flow problem in a bipartite graph with a single sink. The transportation costs exhibit a staircase cost structure because such types of transportation cost functions are often found in practice. We present a dynamic programming algorithm for solving...... this so-called single-sink, fixed-charge, multiple-choice transportation problem exactly. The method exploits heuristics and lower bounds to peg binary variables, improve bounds on flow variables, and reduce the state-space variable. In this way, the dynamic programming method is able to solve large...... instances with up to 10,000 nodes and 10 different transportation modes in a few seconds, much less time than required by a widely used mixed-integer programming solver and other methods proposed in the literature for this problem....

  18. Estimating the Proportion of True Null Hypotheses in Multiple Testing Problems

    Directory of Open Access Journals (Sweden)

    Oluyemi Oyeniran

    2016-01-01

    Full Text Available The problem of estimating the proportion, π0, of the true null hypotheses in a multiple testing problem is important in cases where large scale parallel hypotheses tests are performed independently. While the problem is a quantity of interest in its own right in applications, the estimate of π0 can be used for assessing or controlling an overall false discovery rate. In this article, we develop an innovative nonparametric maximum likelihood approach to estimate π0. The nonparametric likelihood is proposed to be restricted to multinomial models and an EM algorithm is also developed to approximate the estimate of π0. Simulation studies show that the proposed method outperforms other existing methods. Using experimental microarray datasets, we demonstrate that the new method provides satisfactory estimate in practice.

  19. Multiple Charging Station Location-Routing Problem with Time Window of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Wang Li-ying

    2015-11-01

    Full Text Available This paper presents the electric vehicle (EV multiple charging station location-routing problem with time window to optimize the routing plan of capacitated EVs and the strategy of charging stations. In particular, the strategy of charging stations includes both infrastructure-type selection and station location decisions. The problem accounts for two critical constraints in logistic practice: the vehicle loading capacity and the customer time windows. A hybrid heuristic that incorporates an adaptive variable neighborhood search (AVNS with the tabu search algorithm for intensification was developed to address the problem. The specialized neighborhood structures and the selection methods of charging station used in the shaking step of AVNS were proposed. In contrast to the commercial solver CPLEX, experimental results on small-scale test instances demonstrate that the algorithm can find nearly optimal solutions on small-scale instances. The results on large-scale instances also show the effectiveness of the algorithm.

  20. Measurement of multiple α-modes at the Delphi subcritical assembly by neutron noise techniques

    International Nuclear Information System (INIS)

    Szieberth, Máté; Klujber, Gergely; Kloosterman, Jan Leen; Haas, Dick de

    2015-01-01

    Highlights: • Neutron noise measurements were performed at the Delphi subcritical assembly. • Bias in the fitted prompt decay constant was observed due to higher modes. • Spatial dependence of the higher mode was surveyed. • Effect of two different source distributions was investigated. • An estimation of the prompt decay constant is given for the Delphi. - Abstract: The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft University of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean (VTM, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurements also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly

  1. RCPO1 - A Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability

    International Nuclear Information System (INIS)

    Ondis, L.A. II; Tyburski, L.J.; Moskowitz, B.S.

    2000-01-01

    The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations

  2. RCPO1 - A Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability

    Energy Technology Data Exchange (ETDEWEB)

    Ondis, L.A., II; Tyburski, L.J.; Moskowitz, B.S.

    2000-03-01

    The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations.

  3. Optimization of Multiple Traveling Salesman Problem Based on Simulated Annealing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xu Mingji

    2017-01-01

    Full Text Available It is very effective to solve the multi variable optimization problem by using hierarchical genetic algorithm. This thesis analyzes both advantages and disadvantages of hierarchical genetic algorithm and puts forward an improved simulated annealing genetic algorithm. The new algorithm is applied to solve the multiple traveling salesman problem, which can improve the performance of the solution. First, it improves the design of chromosomes hierarchical structure in terms of redundant hierarchical algorithm, and it suggests a suffix design of chromosomes; Second, concerning to some premature problems of genetic algorithm, it proposes a self-identify crossover operator and mutation; Third, when it comes to the problem of weak ability of local search of genetic algorithm, it stretches the fitness by mixing genetic algorithm with simulated annealing algorithm. Forth, it emulates the problems of N traveling salesmen and M cities so as to verify its feasibility. The simulation and calculation shows that this improved algorithm can be quickly converged to a best global solution, which means the algorithm is encouraging in practical uses.

  4. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  5. Safety from physical viewpoint: ''two-risk model in multiple risk problem''

    International Nuclear Information System (INIS)

    Kuz'Min, I.I.; Akimov, V.A.

    1998-01-01

    Full text of publication follows: the problem of safety provision for people and environment within the framework of a certain socio-economic system (SES) as a problem of managing a great number of interacting risks characterizing numerous hazards (natural, manmade, social, economic once, etc.) inherent in the certain SES has been discussed. From the physical point of view, it can be considered a problem of interaction of many bodies which has no accurate mathematical solution even if the laws of interaction of this bodies are known. In physics, to solve this problem, an approach based on the reduction of the above-mentioned problem of the problem of two-body interaction which can be solved accurately in mathematics has been used. The report presents a similar approach to the problem of risk management in the SES. This approach includes the subdivision of numerous hazards inherent within the framework of the SES into two classes of hazards, so that each of the classes could be considered an integrated whole one, each of them being characterized by the appropriate risk. Consequently, problem of 'multiple-risk' management (i.e. the problem of many bodies, as represented in physics) can be reduced to the 'two-risk' management problem (that is, to the problem two-bodies). Within the framework of the two-risk model the optimization of costs to reduce the two kinds of risk, that is, the risk inherent in the SES as a whole, as well as the risk potentially provoked by lots of activities to be introduced in the SES economy has been described. The model has made it possible to formulate and prove the theorem of equilibrium in risk management. Using the theorem, a relatively simple and practically applicable procedure of optimizing the threshold costs to reduce diverse kinds of risk has been elaborated. The procedure provides to assess the minimum value of the cost that can be achieved regarding the socio-economic factors typical of the SES under discussion. The aimed

  6. Applying the response matrix method for solving coupled neutron diffusion and transport problems

    International Nuclear Information System (INIS)

    Sibiya, G.S.

    1980-01-01

    The numerical determination of the flux and power distribution in the design of large power reactors is quite a time-consuming procedure if the space under consideration is to be subdivided into very fine weshes. Many computing methods applied in reactor physics (such as the finite-difference method) require considerable computing time. In this thesis it is shown that the response matrix method can be successfully used as an alternative approach to solving the two-dimension diffusion equation. Furthermore it is shown that sufficient accuracy of the method is achieved by assuming a linear space dependence of the neutron currents on the boundaries of the geometries defined for the given space. (orig.) [de

  7. Computational methods for the nuclear and neutron matter problem. Progress report

    International Nuclear Information System (INIS)

    Kalos, M.H.; Carlson, J.; Panoff, R.; Schmidt, K.

    1985-10-01

    A new method is presented for treating fermion systems by Monte Carlo methods. This method is based on the concept of a ''mirror potential,'' which is a many-body potential that forces the Monte Carlo iteration to have a stable anti-symmetric component. The potential may be determined from the wave function and, within the framework of Green's Function Monte Carlo (GFMC), from the random walk whose density converges to the wave function. Further work has been given to the variational study of light nuclei. In particular, microscopic calculations of alpha-neutron scattering were performed. Techniques were also developed for performing variational calculations of heavier nuclei interacting with realistic interactions. A series of calculations on liquid 3 He at its experimental equilibrium density has also been done. 42 refs

  8. The analysis by several neutron transport methods of a small PWR model problem

    International Nuclear Information System (INIS)

    Halsall, M.J.

    1980-09-01

    A small model problem in x-y co-ordinate geometry is specified in detail to permit readers to make their own calculations. The problem is analysed using diffusion theory, differential and integral transport methods and a Monte Carlo code, and a best estimate eigenvalue is deduced. (author)

  9. Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and Groebner bases

    Science.gov (United States)

    Grolet, Aurelien; Thouverez, Fabrice

    2015-02-01

    This paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency.

  10. An Extended TOPSIS Method for the Multiple Attribute Decision Making Problems Based on Interval Neutrosophic Set

    Directory of Open Access Journals (Sweden)

    Pingping Chi

    2013-03-01

    Full Text Available The interval neutrosophic set (INS can be easier to express the incomplete, indeterminate and inconsistent information, and TOPSIS is one of the most commonly used and effective method for multiple attribute decision making, however, in general, it can only process the attribute values with crisp numbers. In this paper, we have extended TOPSIS to INS, and with respect to the multiple attribute decision making problems in which the attribute weights are unknown and the attribute values take the form of INSs, we proposed an expanded TOPSIS method. Firstly, the definition of INS and the operational laws are given, and distance between INSs is defined. Then, the attribute weights are determined based on the Maximizing deviation method and an extended TOPSIS method is developed to rank the alternatives. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness.

  11. Canonical resolution of the multiplicity problem for U(3): an explicit and complete constructive solution

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Lohe, M.A.; Louck, J.D.

    1975-01-01

    The multiplicity problem for tensor operators in U(3) has a unique (canonical) resolution which is utilized to effect the explicit construction of all U(3) Wigner and Racah coefficients. Methods are employed which elucidate the structure of the results; in particular, the significance of the denominator functions entering the structure of these coefficients, and the relation of these denominator functions to the null space of the canonical tensor operators. An interesting feature of the denominator functions is the appearance of new, group theoretical, polynomials exhibiting several remarkable and quite unexpected properties. (U.S.)

  12. A multiple ship routing and speed optimization problem under time, cost and environmental objectives

    DEFF Research Database (Denmark)

    Wen, M.; Pacino, Dario; Kontovas, C.A.

    2017-01-01

    The purpose of this paper is to investigate a multiple ship routing and speed optimization problem under time, cost and environmental objectives. A branch and price algorithm as well as a constraint programming model are developed that consider (a) fuel consumption as a function of payload, (b......) fuel price as an explicit input, (c) freight rate as an input, and (d) in-transit cargo inventory costs. The alternative objective functions are minimum total trip duration, minimum total cost and minimum emissions. Computational experience with the algorithm is reported on a variety of scenarios....

  13. Double evolutsional artificial bee colony algorithm for multiple traveling salesman problem

    Directory of Open Access Journals (Sweden)

    Xue Ming Hao

    2016-01-01

    Full Text Available The double evolutional artificial bee colony algorithm (DEABC is proposed for solving the single depot multiple traveling salesman problem (MTSP. The proposed DEABC algorithm, which takes advantage of the strength of the upgraded operators, is characterized by its guidance in exploitation search and diversity in exploration search. The double evolutional process for exploitation search is composed of two phases of half stochastic optimal search, and the diversity generating operator for exploration search is used for solutions which cannot be improved after limited times. The computational results demonstrated the superiority of our algorithm over previous state-of-the-art methods.

  14. Large neighborhood search for the double traveling salesman problem with multiple stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Russell W [Los Alamos National Laboratory; Van Hentenryck, Pascal [BROWN UNIV

    2009-01-01

    This paper considers a complex real-life short-haul/long haul pickup and delivery application. The problem can be modeled as double traveling salesman problem (TSP) in which the pickups and the deliveries happen in the first and second TSPs respectively. Moreover, the application features multiple stacks in which the items must be stored and the pickups and deliveries must take place in reserve (LIFO) order for each stack. The goal is to minimize the total travel time satisfying these constraints. This paper presents a large neighborhood search (LNS) algorithm which improves the best-known results on 65% of the available instances and is always within 2% of the best-known solutions.

  15. Investigation of multiple Bragg reflections at a constant neutron wavelength and their possible separation

    International Nuclear Information System (INIS)

    Mikula, P; Vrána, M; Šaroun, J; Em, V; Seong, B S

    2012-01-01

    Multiple Bragg reflections (MBR) realized in one bent-perfect crystal (BPC) slab by sets of different lattice planes behave differently in comparison to the case of perfect nondeformed or mosaic crystal. Individual sets of lattice planes are mutually in dispersive diffraction geometry and the kinematical approach can be applied on this MBR process. It has been found that contrary to the perfect nondeformed or mosaic crystal, individual reflections participating in the MBR process can be spatially separated.

  16. Application of Multiple-Population Genetic Algorithm in Optimizing the Train-Set Circulation Plan Problem

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2017-01-01

    Full Text Available The train-set circulation plan problem (TCPP belongs to the rolling stock scheduling (RSS problem and is similar to the aircraft routing problem (ARP in airline operations and the vehicle routing problem (VRP in the logistics field. However, TCPP involves additional complexity due to the maintenance constraint of train-sets: train-sets must conduct maintenance tasks after running for a certain time and distance. The TCPP is nondeterministic polynomial hard (NP-hard. There is no available algorithm that can obtain the optimal global solution, and many factors such as the utilization mode and the maintenance mode impact the solution of the TCPP. This paper proposes a train-set circulation optimization model to minimize the total connection time and maintenance costs and describes the design of an efficient multiple-population genetic algorithm (MPGA to solve this model. A realistic high-speed railway (HSR case is selected to verify our model and algorithm, and, then, a comparison of different algorithms is carried out. Furthermore, a new maintenance mode is proposed, and related implementation requirements are discussed.

  17. A location-routing problem model with multiple periods and fuzzy demands

    Directory of Open Access Journals (Sweden)

    Ali Nadizadeh

    2014-08-01

    Full Text Available This paper puts forward a dynamic capacitated location-routing problem with fuzzy demands (DCLRP-FD. It is given on input a set of identical vehicles (each having a capacity, a fixed cost and availability level, a set of depots with restricted capacities and opening costs, a set of customers with fuzzy demands, and a planning horizon with multiple periods. The problem consists of determining the depots to be opened only in the first period of the planning horizon, the customers and the vehicles to be assigned to each opened depot, and performing the routes that may be changed in each time period due to fuzzy demands. A fuzzy chance-constrained programming (FCCP model has been designed using credibility theory and a hybrid heuristic algorithm with four phases is presented in order to solve the problem. To obtain the best value of the fuzzy parameters of the model and show the influence of the availability level of vehicles on final solution, some computational experiments are carried out. The validity of the model is then evaluated in contrast with CLRP-FD's models in the literature. The results indicate that the model and the proposed algorithm are robust and could be used in real world problems.

  18. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.J.; Lehmann, E.H.; Tian, L.; Vontobel, P.

    2010-01-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  19. Do neutron stars disprove multiplicative creation in Dirac's large number hypothesis

    International Nuclear Information System (INIS)

    Qadir, A.; Mufti, A.A.

    1980-07-01

    Dirac's cosmology, based on his large number hypothesis, took the gravitational coupling to be decreasing with time and matter to be created as the square of time. Since the effects predicted by Dirac's theory are very small, it is difficult to find a ''clean'' test for it. Here we show that the observed radiation from pulsars is inconsistent with Dirac's multiplicative creation model, in which the matter created is proportional to the density of matter already present. Of course, this discussion makes no comment on the ''additive creation'' model, or on the revised version of Dirac's theory. (author)

  20. Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization

    International Nuclear Information System (INIS)

    Kong, Xiangyong; Gao, Liqun; Ouyang, Haibin; Li, Steven

    2015-01-01

    In most research on redundancy allocation problem (RAP), the redundancy strategy for each subsystem is assumed to be predetermined and fixed. This paper focuses on a specific RAP with multiple strategy choices (RAP-MSC), in which both active redundancy and cold standby redundancy can be selected as an additional decision variable for individual subsystems. To do so, the component type, redundancy strategy and redundancy level for each subsystem should be chosen subject to the system constraints appropriately such that the system reliability is maximized. Meanwhile, imperfect switching for cold standby redundancy is considered and a k-Erlang distribution is introduced to model the time-to-failure component as well. Given the importance and complexity of RAP-MSC, we propose a new efficient simplified version of particle swarm optimization (SPSO) to solve such NP-hard problems. In this method, a new position updating scheme without velocity is presented with stochastic disturbance and a low probability. Moreover, it is compared with several well-known PSO variants and other state-of-the-art approaches in the literature to evaluate its performance. The experiment results demonstrate the superiority of SPSO as an alternative for solving the RAP-MSC. - Highlights: • A more realistic RAP form with multiple strategy choices is focused. • Redundancy strategies are to be selected rather than fixed in general RAP. • A new simplified particle swarm optimization is proposed. • Higher reliabilities are achieved than the state-of-the-art approaches.

  1. Effects of neutron data libraries and criticality codes on IAEA criticality benchmark problems

    International Nuclear Information System (INIS)

    Sarker, Md.M.; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka

    1993-10-01

    In order to compare the effects of neutron data libraries and criticality codes to thermal reactors (LWR), the IAEA criticality benchmark calculations have been performed. The experiments selected in this study include TRX-1 and TRX-2 with a simple geometric configuration. Reactor lattice calculation codes WIMS-D/4, MCNP-4, JACS (MGCL, KENO), and SRAC were used in the present calculations. The TRX cores were analyzed by WIMS-D/4 using WIMS original library and also by MCNP-4, JACS (MGCL, KENO), and SRAC using the libraries generated from JENDL-3 and ENDF/B-IV nuclear data files. An intercomparison work for the above mentioned code systems and cross section libraries was performed by analyzing the LWR benchmark experiments TRX-1 and TRX-2. The TRX cores were also analyzed for supercritical and subcritical conditions and these results were compared. In the case of critical condition, the results were in good agreement. But for the supercritical and subcritical conditions, the difference of the results obtained by using the different cross section libraries become larger than for the critical condition. (author)

  2. A Novel Efficient Graph Model for the Multiple Longest Common Subsequences (MLCS Problem

    Directory of Open Access Journals (Sweden)

    Zhan Peng

    2017-08-01

    Full Text Available Searching for the Multiple Longest Common Subsequences (MLCS of multiple sequences is a classical NP-hard problem, which has been used in many applications. One of the most effective exact approaches for the MLCS problem is based on dominant point graph, which is a kind of directed acyclic graph (DAG. However, the time and space efficiency of the leading dominant point graph based approaches is still unsatisfactory: constructing the dominated point graph used by these approaches requires a huge amount of time and space, which hinders the applications of these approaches to large-scale and long sequences. To address this issue, in this paper, we propose a new time and space efficient graph model called the Leveled-DAG for the MLCS problem. The Leveled-DAG can timely eliminate all the nodes in the graph that cannot contribute to the construction of MLCS during constructing. At any moment, only the current level and some previously generated nodes in the graph need to be kept in memory, which can greatly reduce the memory consumption. Also, the final graph contains only one node in which all of the wanted MLCS are saved, thus, no additional operations for searching the MLCS are needed. The experiments are conducted on real biological sequences with different numbers and lengths respectively, and the proposed algorithm is compared with three state-of-the-art algorithms. The experimental results show that the time and space needed for the Leveled-DAG approach are smaller than those for the compared algorithms especially on large-scale and long sequences.

  3. Analytical calculations of multiple scattering for high energy photons and neutrons

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1994-04-01

    Radiography of large dense objects often require the use of highly penetrating radiation. For example, a couple of centimeters of steel attenuates 50 keV x-rays by a factor of approximately 10 -14 whereas this same amount of steel would attenuate a 500 keV photon beam by only a factor of about 0.25. However, this increase in penetrating power comes with a price. In the case of x-radiation there are two bills to pay: (1) For projection radiography, this increase in penetration directly causes a corresponding decrease in resolution. (2) This increase in penetration occurs in a region where the interaction of radiation and matter is changing from absorption to scattering. In the above example the fraction of scattering goes from about 0.1 at 50 keV to over 0.99 at 500 keV. These scattered photons can significantly degrade contrast. In order to overcome some of these difficulties, radiography using scattered photons has been studied by myself and numerous other authors. In all the above cases, calculation of the intensity of scattered radiation is of primary importance. In cases where scattering is probable, multiple scattering can also be probable. Calculations of multiple scattering are generally very difficult and usually require the use of extremely sophisticated Monte Carlo simulations. It is not unusual for these calculations to require several hours of CPU time on some of the worlds largest and fastest supercomputers. In this paper I will present an alternative approach. I will present an analytical solution to the equations of double scattering, and show how this solution can extended to the case of higher order scattering. Finally, I will give numerical examples of these solutions and compare them to solutions obtained by Monte Carlo simulations

  4. Automatic mesh adaptivity for CADIS and FW-CADIS neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M.; Wilson, P. P.; Sawan, M. E.

    2013-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)

  5. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-01-01

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer

  6. Solving problems by interrogating sets of knowledge systems: Toward a theory of multiple knowledge systems

    Science.gov (United States)

    Dekorvin, Andre

    1989-01-01

    The main purpose is to develop a theory for multiple knowledge systems. A knowledge system could be a sensor or an expert system, but it must specialize in one feature. The problem is that we have an exhaustive list of possible answers to some query (such as what object is it). By collecting different feature values, in principle, it should be possible to give an answer to the query, or at least narrow down the list. Since a sensor, or for that matter an expert system, does not in most cases yield a precise value for the feature, uncertainty must be built into the model. Also, researchers must have a formal mechanism to be able to put the information together. Researchers chose to use the Dempster-Shafer approach to handle the problems mentioned above. Researchers introduce the concept of a state of recognition and point out that there is a relation between receiving updates and defining a set valued Markov Chain. Also, deciding what the value of the next set valued variable is can be phrased in terms of classical decision making theory such as minimizing the maximum regret. Other related problems are examined.

  7. Study of neutronic problems related to the xenon instability in the pressurized water reactor

    International Nuclear Information System (INIS)

    Mathonniere, G.

    1988-03-01

    Xenon instabilities lead to increase initial errors. So it is extremely difficult to get an accurate calculation schema able to deal with these problems which are very important for electrical grid whose electronuclear output is large. The main task was to build a tridimensional calculation schema including nuclear, thermal hydraulic feedback. It was qualified by comparing its results with an actual experiment. Many technical problems were investigated through analytical studies or calculation results: time step, spatial mesh, finite element, convergence criterion, modelization for grids and fast control rod moves. Moreover, a 1D model, for less expensive, was studied. Its comparison with the 3D results allowed to check its accuracy and to validate the modelization of the radial laplacien and the modelization of the control rods [fr

  8. Feasibility Study of Neutron Multiplicity Assay for a Heterogeneous Sludge Sample containing Na, Pu and other Impurities

    International Nuclear Information System (INIS)

    Nakamura, H.; Nakamichi, H.; Mukai, Y.; Yoshimoto, K.; Beddingfield, D.H.

    2010-01-01

    To reduce radioactivity of liquid waste generated at PCDF, a neutralization precipitation processes of radioactive nuclides by sodium hydroxide is used. We call the precipitate a 'sludge' after calcination. Pu mass in the sludge is normally determined by sampling and DA within the required uncertainty on DIQ. Annual yield of the mass is small but it accumulates and reaches to a few kilograms, so it is declared as retained waste and verified at PIV. A HM-5-based verification is applied for sludge verification. The sludge contains many chemical components. For example, Pu (-10wt%), U, Am, SUS components, halogens, NaNO 3 (main component), residual NaOH, and moisture. They are mixed together as an impure heterogeneous sludge sample. As a result, there is a large uncertainty in the sampling and DA that is currently used at PCDF. In order to improve the material accounting, we performed a feasibility study using neutron multiplicity assay for impure sludge samples. We have measured selected sludge samples using a multiplicity counter which is called FCAS (Fast Carton Assay System) which was designed by JAEA and Canberra. The PCDF sludge materials fall into the category of 'difficult to measure' because of the high levels of impurities, high alpha values and somewhat small Pu mass. For the sludge measurements, it was confirmed that good consistency between Pu mass in a pure sludge standard (PuO 2 -Na 2 U 2 O 7 , alpha=7) and the DA could be obtained. For unknown samples, using 14-hour measurements, we could obtain quite low statistical uncertainty on Doubles (-1%) and Triples (-10%) count rate although the alpha value was extremely high (15-25) and FCAS efficiency was relatively low (40%) for typical multiplicity counters. Despite the detector efficiency challenges and the material challenges (high alpha, low Pu mass, heterogeneous matrix), we have been able to obtain assay results that greatly exceed the accountancy requirements for retained waste materials. We have

  9. Lawrence Livermore National Laboratory Experience Using 30-Gallon Drum Neutron Multiplicity Counter for Measuring Plutonium-Bearing Salts

    International Nuclear Information System (INIS)

    Dearborn, D M; Keeton, S C

    2004-01-01

    Lawrence Livermore National Laboratory (LLNL) has been performing accountability measurements of plutonium (Pu) -bearing items with the 30-gallon drum neutron multiplicity counter (NMC) since August 1998. A previous paper focused on the LLNL experience with Pu-bearing oxide and metal items. This paper expands on the LLNL experience with Pu-bearing salts containing low masses of Pu. All Pu-bearing salts used in this study were measured using calorimetry and gamma isotopic analyses (Cal/Iso) as well as the 30-gallon drum NMC. The Cal/Iso values were treated as being the true measure of Pu content because of the inherent high accuracy of the Cal/Iso technique, even at low masses of Pu, when measured over a sufficient period of time. Unfortunately, the long time period required to achieve high accuracy from Cal/Iso can impact other required accountability measurements. The 30-gallon drum NMC is a much quicker system for making accountability measurements of a Pu-bearing salt and might be a desirable tradeoff. The accuracy of 30-gallon drum NMC measurements of Pu-bearing salts, relative to that of Cal/Iso, is presented in relation to the mass range and alpha associated with each item. Conclusions drawn from the use of the 30-gallon drum NMC for accountability measurements of salts are also included

  10. The Application of the Weighted k-Partite Graph Problem to the Multiple Alignment for Metabolic Pathways.

    Science.gov (United States)

    Chen, Wenbin; Hendrix, William; Samatova, Nagiza F

    2017-12-01

    The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.

  11. $H^\\infty$ control of systems with multiple I/O delays via decomposition to adobe problems

    NARCIS (Netherlands)

    Meinsma, Gjerrit; Mirkin, Leonid

    In this paper, the standard (four-block) $H^\\infty$ control problem for systems with multiple input-output delays in the feedback loop is studied. The central idea is to see the multiple delay operator as a special series connection of elementary delay operators, called the adobe delay operators.

  12. Bayesian models based on test statistics for multiple hypothesis testing problems.

    Science.gov (United States)

    Ji, Yuan; Lu, Yiling; Mills, Gordon B

    2008-04-01

    We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.

  13. Improved Harmony Search Algorithm for Truck Scheduling Problem in Multiple-Door Cross-Docking Systems

    Directory of Open Access Journals (Sweden)

    Zhanzhong Wang

    2018-01-01

    Full Text Available The key of realizing the cross docking is to design the joint of inbound trucks and outbound trucks, so a proper sequence of trucks will make the cross-docking system much more efficient and need less makespan. A cross-docking system is proposed with multiple receiving and shipping dock doors. The objective is to find the best door assignments and the sequences of trucks in the principle of products distribution to minimize the total makespan of cross docking. To solve the problem that is regarded as a mixed integer linear programming (MILP model, three metaheuristics, namely, harmony search (HS, improved harmony search (IHS, and genetic algorithm (GA, are proposed. Furthermore, the fixed parameters are optimized by Taguchi experiments to improve the accuracy of solutions further. Finally, several numerical examples are put forward to evaluate the performances of proposed algorithms.

  14. Fraction Multiplication and Division Word Problems Posed by Different Years of Pre-Service Elementary Mathematics Teachers

    Directory of Open Access Journals (Sweden)

    Tuba Aydogdu Iskenderoglu

    2018-04-01

    Full Text Available It is important for pre-service teachers to know the conceptual difficulties they have experienced regarding the concepts of multiplication and division in fractions and problem posing is a way to learn these conceptual difficulties. Problem posing is a synthetic activity that fundamentally has multiple answers. The purpose of this study is to analyze the multiplication and division of fractions problems posed by pre-service elementary mathematics teachers and to investigate how the problems posed change according to the year of study the pre-service teachers are in. The study employed developmental research methods. A total of 213 pre-service teachers enrolled in different years of the Elementary Mathematics Teaching program at a state university in Turkey took part in the study. The “Problem Posing Test” was used as the data collecting tool. In this test, there are 3 multiplication and 3 division operations. The data were analyzed using qualitative descriptive analysis. The findings suggest that, regardless of the year, pre-service teachers had more conceptual difficulties in problem posing about the division of fractions than in problem posing about the multiplication of fractions.

  15. Some problems dealing with the rapid pulsation of a neutron generator beam (1960)

    International Nuclear Information System (INIS)

    Prelec, K.

    1960-01-01

    The first part of this paper discusses the fundamental properties of some simple chopper systems. The relations for burst duration, exit angle of the beam after the slit, and maximum deflection are given the results are presented in graphical form for convenience. In the second part velocity modulation as a mean of bunching the particles behind a slit-deflector system is investigated. Expressions for the minimum distance for bunching ψ 0 , bunching factor γ 0 and HF power are given for the case of single or multiple slit modulation. Beam acceleration following velocity modulation has also been investigated. Results are presented in graphical fashion. In the last part, the space charge effects on an ion pack during bunching is given. A simple differential equation expressing particle motion in axial and radial directions has been derived on the basis of certain approximations. Numerical integration of the equation has been carried out for a number of values of the parameters. (author) [fr

  16. Computational modelling for diffusion of neutrons problems inside nuclear multiplying medium on bidimensional cartesian rectangular geometry

    International Nuclear Information System (INIS)

    Couto, Nozimar do

    2003-01-01

    Diffusion theory is traditionally applied to nuclear reactor global calculations. Based on the good results generated by the one-dimensional spectral nodal diffusion (SND) method for benchmark problems, we offer the SND method for nuclear reactor global calculations in X,Y geometry. In this method, the continuity equation and Flick law are transverse integrated in each spatial direction leading to a system of two 'one-dimensional' equations coupled by the transverse leakage terms. We then apply the SND method to numerically solve this system with constant approximations for the transverse leakage terms. We perform a spectral analysis to determine the local general solution of each 'one-dimensional' nodal equation with flat approximation for the transverse leakages. We used special auxiliary equations with parameters that are to be determined in order to preserve the analytical general solutions in the numerical algorithm. By considering continuity conditions at the node interfaces and appropriate boundary conditions, we obtain a solvable system of discretized equations involving the node-edge average scalar fluxes at each estimate of the dominant eigenvalue (k eff ) in the outer power iterations. As we considered approximations to the transverse leakages, the SND method is not free of spatial truncation errors. Nevertheless, it generated good results for the typical model problems that we considered. (author)

  17. Problems Associated with the Monochromatisation of Slow Neutrons; Quelques aspects de la monochromatisation des neutrons thermiques; Nekotorye voprosy monokhromatizatsii medlennykh nejtronov; Algunos problemas de la monocromatizacion de neutrones lentos

    Energy Technology Data Exchange (ETDEWEB)

    Vertebnyj, V P; Kolotyj, V V; Majstrenko, A N

    1963-01-15

    The paper sets out the result of calculations to determine the shape of the spectral line of twin-rotor, pulsing, slow-neutron monochromators, as a function of the shifts in the phases between the rotors. Consideration is also given to die possibility of using certain light elements as slow-neutron filters. (author) [French] Les auteurs exposent les resultats de leurs calculs relatifs a la forme du spectre des monochromateurs a impulsions et a deux rotors pour neutrons thermiques en fonction de la distance et du dephasage entre les rotors. Ils examinent egalement la possibilite d*utiliser certains elements legers comme filtres a neutrons lents. (author) [Spanish] Los autores exponen ios resultadas de sus calculos relativos a la forma de la linea espectral de los monocromadores pulsantes de dos rotores para neutrones lentos en funcion de la distancia y del desias amiento de los rotores. Examinan asimismo la posibilidad de utilizar algunos elementos ligeros como filtros de neutrones lentos. (author)

  18. Iterative solution of multiple radiation and scattering problems in structural acoustics using the BL-QMR algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, M. [Stanford Univ., CA (United States)

    1996-12-31

    Finite-element discretizations of time-harmonic acoustic wave problems in exterior domains result in large sparse systems of linear equations with complex symmetric coefficient matrices. In many situations, these matrix problems need to be solved repeatedly for different right-hand sides, but with the same coefficient matrix. For instance, multiple right-hand sides arise in radiation problems due to multiple load cases, and also in scattering problems when multiple angles of incidence of an incoming plane wave need to be considered. In this talk, we discuss the iterative solution of multiple linear systems arising in radiation and scattering problems in structural acoustics by means of a complex symmetric variant of the BL-QMR method. First, we summarize the governing partial differential equations for time-harmonic structural acoustics, the finite-element discretization of these equations, and the resulting complex symmetric matrix problem. Next, we sketch the special version of BL-QMR method that exploits complex symmetry, and we describe the preconditioners we have used in conjunction with BL-QMR. Finally, we report some typical results of our extensive numerical tests to illustrate the typical convergence behavior of BL-QMR method for multiple radiation and scattering problems in structural acoustics, to identify appropriate preconditioners for these problems, and to demonstrate the importance of deflation in block Krylov-subspace methods. Our numerical results show that the multiple systems arising in structural acoustics can be solved very efficiently with the preconditioned BL-QMR method. In fact, for multiple systems with up to 40 and more different right-hand sides we get consistent and significant speed-ups over solving the systems individually.

  19. Multiple kernel learning using single stage function approximation for binary classification problems

    Science.gov (United States)

    Shiju, S.; Sumitra, S.

    2017-12-01

    In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.

  20. Assessing Risks to Wildlife Populations from Multiple Stressors: Overview of the Problem and Research Needs.

    Directory of Open Access Journals (Sweden)

    Wayne R. Munns, Jr.

    2006-06-01

    Full Text Available Wildlife populations are experiencing increasing pressure from human-induced changes in the landscape. Stressors including agricultural and urban land use, introduced invasive and exotic species, nutrient enrichment, direct human disturbance, and toxic chemicals directly or indirectly influence the quality and quantity of habitat used by terrestrial and aquatic wildlife. Governmental agencies such as the U.S. Environmental Protection Agency are required to assess risks to wildlife populations, in its broadest definition, that result from exposure to these stressors, yet considerable uncertainty exists with respect to how such assessments should be conducted. This uncertainty is compounded by questions concerning the interactive effects of co-occurring stressors, appropriate spatial scales of analysis, extrapolation of response data among species and from organisms to populations, and imperfect knowledge and use of limited data sets. Further, different risk problems require varying degrees of sophistication, methodological refinement, and data quality. These issues suggest a number of research needs to improve methods for wildlife risk assessments, including continued development of population dynamics models to evaluate the effects of multiple stressors at varying spatial scales, methods for extrapolating across endpoints and species with reasonable confidence, stressor-response relations and methods for combining them in predictive and diagnostic assessments, and accessible data sets describing the ecology of terrestrial and aquatic species. Case study application of models and methods for assessing wildlife risk will help to demonstrate their strengths and limitations for solving particular risk problems.

  1. The documentation of health problems in relation to prescribed medication in people with profound intellectual and multiple disabilities

    NARCIS (Netherlands)

    van der Heide, D. C.; van der Putten, A. A. J.; van den Berg, P. B.; Taxis, K.; Vlaskamp, C.

    Persons with profound intellectual and multiple disabilities (PIMD) suffer from a wide range of health problems and use a wide range of different drugs. This study investigated for frequently used medication whether there was a health problem documented in the medical notes for the drug prescribed.

  2. Calculation of Pareto-optimal solutions to multiple-objective problems using threshold-of-acceptability constraints

    Science.gov (United States)

    Giesy, D. P.

    1978-01-01

    A technique is presented for the calculation of Pareto-optimal solutions to a multiple-objective constrained optimization problem by solving a series of single-objective problems. Threshold-of-acceptability constraints are placed on the objective functions at each stage to both limit the area of search and to mathematically guarantee convergence to a Pareto optimum.

  3. Vectorization and multitasking with a Monte-Carlo code for neutron transport problems

    International Nuclear Information System (INIS)

    Chauvet, Y.

    1985-04-01

    This paper summarizes two improvements of a Monte Carlo code by resorting to vectorization and multitasking techniques. After a short presentation of the physical problem to solve and a description of the main difficulties to produce an efficient coding, this paper introduces the vectorization principles employed and briefly describes how the vectorized algorithm works. Next, measured performances on CRAY 1S, CYBER 205 and CRAY X-MP are compared. The second part of this paper is devoted to multitasking technique. Starting from the standard multitasking tools available with FORTRAN on CRAY X-MP/4, a multitasked algorithm and its measured speed-ups are presented. In conclusion we prove that vector and parallel computers are a great opportunity for such Monte Carlo algorithms

  4. Transmission probability method based on triangle meshes for solving unstructured geometry neutron transport problem

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)]. E-mail: hongchun@mail.xjtu.edu.cn; Liu Pingping [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Zhou Yongqiang [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Cao Liangzhi [Nuclear Engineering Department, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China)

    2007-01-15

    In the advanced reactor, the fuel assembly or core with unstructured geometry is frequently used and for calculating its fuel assembly, the transmission probability method (TPM) has been used widely. However, the rectangle or hexagon meshes are mainly used in the TPM codes for the normal core structure. The triangle meshes are most useful for expressing the complicated unstructured geometry. Even though finite element method and Monte Carlo method is very good at solving unstructured geometry problem, they are very time consuming. So we developed the TPM code based on the triangle meshes. The TPM code based on the triangle meshes was applied to the hybrid fuel geometry, and compared with the results of the MCNP code and other codes. The results of comparison were consistent with each other. The TPM with triangle meshes would thus be expected to be able to apply to the two-dimensional arbitrary fuel assembly.

  5. Peripheral collisions in Ar induced reactions between 27 and 44 A.MeV: study of energy dissipation by measuring the correlated neutron multiplicities

    International Nuclear Information System (INIS)

    Guerreau, D.; Doubre, H.; Galin, J.; Pouthas, J.; Jahnke, U.; Jiang, D.X.; Lott, B.; Jacquet, D.

    1988-01-01

    A 4 π detector measuring the neutron multiplicities has been used to investigate the energy dissipation during peripheral collisions in Ar induced reactions around the Fermi Energy. Besides the persistance of direct transfer reactions for the most peripheral collisions, there are strong evidences for the occurrence of quite large energy dissipation, a clear signature for the one body friction to still play a major role at these intermediate energies

  6. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  7. The implementation of multiple intelligences based teaching model to improve mathematical problem solving ability for student of junior high school

    Science.gov (United States)

    Fasni, Nurli; Fatimah, Siti; Yulanda, Syerli

    2017-05-01

    This research aims to achieve some purposes such as: to know whether mathematical problem solving ability of students who have learned mathematics using Multiple Intelligences based teaching model is higher than the student who have learned mathematics using cooperative learning; to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using Multiple Intelligences based teaching model., to know the improvement of the mathematical problem solving ability of the student who have learned mathematics using cooperative learning; to know the attitude of the students to Multiple Intelligences based teaching model. The method employed here is quasi-experiment which is controlled by pre-test and post-test. The population of this research is all of VII grade in SMP Negeri 14 Bandung even-term 2013/2014, later on two classes of it were taken for the samples of this research. A class was taught using Multiple Intelligences based teaching model and the other one was taught using cooperative learning. The data of this research were gotten from the test in mathematical problem solving, scale questionnaire of the student attitudes, and observation. The results show the mathematical problem solving of the students who have learned mathematics using Multiple Intelligences based teaching model learning is higher than the student who have learned mathematics using cooperative learning, the mathematical problem solving ability of the student who have learned mathematics using cooperative learning and Multiple Intelligences based teaching model are in intermediate level, and the students showed the positive attitude in learning mathematics using Multiple Intelligences based teaching model. As for the recommendation for next author, Multiple Intelligences based teaching model can be tested on other subject and other ability.

  8. Experiments and Simulations of the Use of Time-Correlated Thermal Neutron Counting to Determine the Multiplication of an Assembly of Highly Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Mathew T. Kinlaw; Scott M. Watson; Jeffrey M. Kalter; Eric C. Miller; William A. Noonan

    2014-11-01

    A series of experiments and numerical simulations using thermal-neutron time-correlated measurements has been performed to determine the neutron multiplication, M, of assemblies of highly enriched uranium available at Idaho National Laboratory. The experiments used up to 14.4 kg of highly-enriched uranium, including bare assemblies and assemblies reflected with high-density polyethylene, carbon steel, and tungsten. A small 252Cf source was used to initiate fission chains within the assembly. Both the experiments and the simulations used 6-channel and 8-channel detector systems, each consisting of 3He proportional counters moderated with polyethylene; data was recorded in list mode for analysis. 'True' multiplication values for each assembly were empirically derived using basic neutron production and loss values determined through simulation. A total of one-hundred and sixteen separate measurements were performed using fifty-seven unique measurement scenarios, the multiplication varied from 1.75 to 10.90. This paper presents the results of these comparisons and discusses differences among the various cases.

  9. Solution of unidimensional problems from monoenergetics neutrons diffusion through finite differences

    International Nuclear Information System (INIS)

    Filio Lopez, Carlos.

    1979-01-01

    A calculation program (URA 6.F4) was elaborated on FORTRAN IV language, that through finite differences solves the unidimensional scalar Helmholtz equation, assuming only one energy group, in spherical cylindrical or plane geometry. The purpose is the determination of the flow distribution in a reactor of spherical cylindrical or plane geometry and the critical dimensions. Feeding as entrance datas to the program the geometry, diffusion coefficients and macroscopic transversals cross sections of absorption and fission for each region. The differential diffusion equation is converted with its boundary conditions, to one system of homogeneous algebraic linear equations using the box integration technique. The investigation on criticality is converted then in a succession of eigenvalue problems for the critical eigenvalue. In general, only is necessary to solve the first eigenvalue and its corresponding eigenvector, employing the power method. The obtained results by the program for the critical dimensions of the clean reactors are admissible, the existing error as respect to the analytic is less of 0.5%; by the analysed reactors of three regions, the relative error with respect to the semianalytic result is less of 0.2%. With this program is possible to obtain one quantitative description of one reactor if the transversal sections that appears in the monoenergetic model are adequatedly averaged by the energy group used. (author)

  10. The assessment of problems in functioning and the subjective perception of these problems in people with Multiple Sclerosis : the Multiple Sclerosis Impact Profile (MSIP)

    NARCIS (Netherlands)

    Wynia, Klaske; Roodbol, Petrie F.; Middel, Berry

    People with Multiple Sclerosis (MS) perceive consequences of this chronic condition that are not limited to impairments in physical functioning but also have their impact on limitations in activities and restrictions in participation in life situations. There is a growing awareness among healthcare

  11. Spectral nodal methodology for multigroup slab-geometry discrete ordinates neutron transport problems with linearly anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)

  12. Application of space-and-angle finite element method to the three-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Fujimura, T.; Nakahara, Y.; Matsumura, M.

    1983-01-01

    A double finite element method (DFEM), in which both the space-and-angle finite elements are employed, has been formulated and computer codes have been developed to solve the static multigroup neutron transport problems in the three-dimensional geometry. Two methods, Galerkin's weighted residual and variational are used to apply the DFEM to the transport equation. The variational principle requires complicated formulation than the Galerkin method, but the boundary conditions can be automatically incorporated and each plane equation becomes symmetric. The system equations are solved over the planar layers which we call plane iteration. The coarse mesh rebalancing technique is used for the inner iteration and the outer iteration is accelerated by extra-polation. Numerical studies of these two DFEM algorithms have been done in comparison between them and also with THe CITATION and TWOTRAN-II results. It has been confirmed that in the case of variational formulation an adaptive acceleration method of the SSOR iteration works effectively and the ray effects are mitigated in both DFEM algorithms. (author)

  13. A study of dissipative processes in the reactions Ar + Au, Ar + Th between 27 and 44 MeV/u measuring the neutron multiplicities

    International Nuclear Information System (INIS)

    Guerreau, D.; Doubre, H.; Galin, J.; Jahnke, U.; Jiang, D.X.; Pouthas, J.; Charvet, J.L.; Frehaut, J.; Lott, B.; Magnago, C.; Morjean, M.; Patin, Y.; Pranal, Y.; Uzureau, J.L.; Ingold, G.; Jacquet, D.

    1987-01-01

    A 4π detector measuring the neutron multiplicities has been used to characterize the degree of violence of the collision. For peripheral collisions, it allows to study the evolution from a massive transfer process towards a participant-spectator type of reaction. Central collisions have been also investigated. From the measurement of the multiplicities of light evaporated particles (n,p,α), the total excitation energy of the composite system has been estimated at 3 incident energies (27, 35, 44 MeV/u). The results indicate clearly the existence of a limiting excitation energy deposition close to 630 MeV, corresponding to a temperature of 5 MeV

  14. A study of dissipative processes in the reactions Ar+Au, Ar+Th between 27 and 44 MeV/u measuring the neutron multiplicities

    International Nuclear Information System (INIS)

    Guerreau, D.; Doubre, H.; Galin, J.

    1987-01-01

    A 4 π detector measuring the neutron multiplicities has been used to characterize the degree of violence of the collision. For peripheral collisions, it allows to study the evolution from a massive transfer process towards a participant-spectator type of reaction. Central collisions have been also investigated. From the measurement of the multiplicities of light evaporated particles (n,p,α), the total excitation energy of the composite system has been estimated at 3 incident energies (27, 35, 44 MeV/u). The results indicate clearly the existence of a limiting excitation energy deposition close to 630 MeV, corresponding to a temperature of 5 MeV

  15. Computational methods for the nuclear and neutron matter problems: Progress report

    International Nuclear Information System (INIS)

    Kalos, M.H.

    1989-01-01

    This proposal is concerned with the use of Monte Carlo methods as a numerical technique in the study of nuclear structure. The straightforward use of Monte Carlo in nuclear physics has been impeded by certain technical difficulties. Foremost among them is the fact that numerical integration of the Schr/umlt o/dinger equation, by now straightforward for the ground state of boson systems, is substantially more difficult for many-fermion systems. The first part of this proposal outlines a synthesis of several advances into a single experimental algorithm. The proposed work is to implement and study the properties of the algorithm with simple models of few-body nuclei as the physical system to be investigated. Variational Monte Carlo remains an extremely powerful and useful method. Its application to nuclear structure physics presents unique difficulties. The varieties of interactions in the phenomenological potentials must be reflected in a corresponding richness of the correlations in accurate trial wave functions. Then the sheer number of terms in such trial fashions written as a product of pairs presents specific difficulties. We have had good success in our first experiments on a random field method that decouples the interactions and propose to extend our research to 16 O and to p-shell nuclei. Spin-orbit terms present special problems as well, because the implied gradient operators must be applied repeatedly. We propose to treat them in first order only, for now, and to calculate the result in three- and four-body nuclei. We propose a new Monte Carlo method for computing the amplitude of deuteron components in trial functions for heavier nuclei (here, specifically for 6 Li). The method is an extension of that used for off-diagonal matrix elements in quantum fluids

  16. Different Accretion Heating of the Neutron Star Crust during Multiple Outbursts in MAXI J0556–332

    Science.gov (United States)

    Parikh, Aastha S.; Homan, Jeroen; Wijnands, Rudy; Ootes, Laura; Page, Dany; Altamirano, Diego; Degenaar, Nathalie; Brown, Edward F.; Cackett, Edward; Cumming, Andrew; Deibel, Alex; Fridriksson, Joel K.; Lin, Dacheng; Linares, Manuel; Miller, Jon M.

    2017-12-01

    The transient neutron star (NS) low-mass X-ray binary MAXI J0556‑332 provides a rare opportunity to study NS crust heating and subsequent cooling for multiple outbursts of the same source. We examine MAXI, Swift, Chandra, and XMM-Newton data of MAXI J0556‑332 obtained during and after three accretion outbursts of different durations and brightnesses. We report on new data obtained after outburst III. The source has been tracked up to ∼1800 days after the end of outburst I. Outburst I heated the crust strongly, but no significant reheating was observed during outburst II. Cooling from ∼333 eV to ∼146 eV was observed during the first ∼1200 days. Outburst III reheated the crust up to ∼167 eV, after which the crust cooled again to ∼131 eV in ∼350 days. We model the thermal evolution of the crust and find that this source required a different strength and depth of shallow heating during each of the three outbursts. The shallow heating released during outburst I was ∼17 MeV nucleon‑1 and outburst III required ∼0.3 MeV nucleon‑1. These cooling observations could not be explained without shallow heating. The shallow heating for outburst II was not well constrained and could vary from ∼0 to 2.2 MeV nucleon‑1, i.e., this outburst could in principle be explained without invoking shallow heating. We discuss the nature of the shallow heating and why it may occur at different strengths and depths during different outbursts.

  17. Social and economic burden of walking and mobility problems in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Pike James

    2012-09-01

    Full Text Available Abstract Background Multiple sclerosis (MS is a chronic progressive neurological disease and the majority of patients will experience some degree of impaired mobility. We evaluated the prevalence, severity and burden of walking and mobility problems (WMPs in 5 European countries. Methods This was a cross-sectional, patient record-based study involving 340 neurologists who completed detailed patient record forms (PRF for patients (>18 years attending their clinic with MS. Patients were also invited to complete a questionnaire (PSC. Information collected included demographics, disease characteristics, work productivity, quality of life (QoL; EuroQol-5D and Hamburg Quality of Life Questionnaire Multiple Sclerosis [HAQUAMS] and mobility (subjective patient-reported and objectively measured using the timed 25 foot walk test [T25FW]. Relationships between WMPs and disease and other characteristics were examined using Chi square tests. Analysis of variance was used to examine relationships between mobility measures and work productivity. Results Records were available for 3572 patients of whom 2171 also completed a PSC. WMPs were regarded as the most bothersome symptom by almost half of patients who responded (43%; 291/683. There was a clear, independent and strong directional relationship between severity of WMPs (subjective and objective and healthcare resource utilisation. Patients with longer T25FW times (indicating greater walking impairment were significantly more likely to require additional caregiver support (p Conclusions In Europe, WMPs in MS represent a considerable personal and social burden both financially and in terms of quality of life. Interventions to improve mobility could have significant benefits for patients and society as a whole.

  18. Neutron radiography in metallurgy

    International Nuclear Information System (INIS)

    Rant, J.; Ilic, R.

    1977-01-01

    The review surveys microneutronographic and neutron-induced autoradiographic techniques and their applications in metallurgy. A brief survey of applications of neutron radiography as a method of non-destructive testing to some macroscopic problems in metallurgy is included. (author)

  19. Problem Oriented Neutron-Gamma Cross Sections Libraries for WWER-440 and WWER-1000 Shielding and Reactor Vessel Dosimetry Application

    International Nuclear Information System (INIS)

    Belousov, S.; Antonov, S.; Ilieva, K.

    1997-01-01

    The 47 neutron and 20 gamma group libraries BGL-440 and BGL-1000 for the shielding and reactor vessel dosimetry application have been generated for WWER-440 and WWER-1000 by collapsing the VITAMIN-B6 library (199 neutron and 42 gamma groups on the base of ENDF/B-6). The first parts of the libraries for neutron-gamma transport calculation, BGL-440-1 (150 nuclides) and BGL-1000-1 (140 nuclides), have been generated by a modified version of SAS1X control module of the SCALE system. The appropriate zone-average neutron flux had been used for these sub-libraries collapsing. The BGL-440-2 and BGL-1000-2 sub-libraries consist of cross sections for all 120 nuclides of VITAMIN-B6, for calculation of the transport through non-reactor materials of dosimeters, capsules, specimens which may be placed in the cavity behind the reactor vessel. The neutron spectrum just beyond the RPV had been used for this collapsing. As the first test the comparative calculations of the neutron flux on/behind the WWER-1000 reactor vessel have been realised using the libraries BGL-1000 and BUGLE, intended for the American PWR reactors. The integral neutron flux values by BGL-1000 and BUGLE differ by 3% onto the vessel, and 5% behind the vessel. This result shows that the calculations of the neutron flux responses for the WWER vessel surveillance, especially in locations behind the WWER vessel have to be done by the appropriate BGL library. Key words: neutron transport, multigroup neutron cross section libraries

  20. Neutronics codes

    International Nuclear Information System (INIS)

    Buckel, G.

    1983-01-01

    The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de

  1. Low adolescent self-esteem leads to multiple interpersonal problems: a test a social-adaptation theory.

    Science.gov (United States)

    Kahle, L R; Kulka, R A; Klingel, D M

    1980-09-01

    This article reports the results of a study that annually monitored the self-esteem and interpersonal problems of over 100 boys during their sophomore, junior, and senior years of high school. Cross-lagged panel correlation differences show that low self-esteem leads to interpersonal problems in all three time lags when multiple interpersonal problems constitute the dependent variable but not when single interpersonal problem criteria constitute the dependent variable. These results are interpreted as supporting social-adaptation theory rather than self-perception theory. Implications for the conceptual status of personality variables as causal antecedents and for the assessment of individual differences are discussed.

  2. Solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators.

    Science.gov (United States)

    Zhao, Jing; Zong, Haili

    2018-01-01

    In this paper, we propose parallel and cyclic iterative algorithms for solving the multiple-set split equality common fixed-point problem of firmly quasi-nonexpansive operators. We also combine the process of cyclic and parallel iterative methods and propose two mixed iterative algorithms. Our several algorithms do not need any prior information about the operator norms. Under mild assumptions, we prove weak convergence of the proposed iterative sequences in Hilbert spaces. As applications, we obtain several iterative algorithms to solve the multiple-set split equality problem.

  3. A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints.

    Science.gov (United States)

    Xiang, Wei; Yin, Jiao; Lim, Gino

    2015-02-01

    Operating room (OR) surgery scheduling determines the individual surgery's operation start time and assigns the required resources to each surgery over a schedule period, considering several constraints related to a complete surgery flow and the multiple resources involved. This task plays a decisive role in providing timely treatments for the patients while balancing hospital resource utilization. The originality of the present study is to integrate the surgery scheduling problem with real-life nurse roster constraints such as their role, specialty, qualification and availability. This article proposes a mathematical model and an ant colony optimization (ACO) approach to efficiently solve such surgery scheduling problems. A modified ACO algorithm with a two-level ant graph model is developed to solve such combinatorial optimization problems because of its computational complexity. The outer ant graph represents surgeries, while the inner graph is a dynamic resource graph. Three types of pheromones, i.e. sequence-related, surgery-related, and resource-related pheromone, fitting for a two-level model are defined. The iteration-best and feasible update strategy and local pheromone update rules are adopted to emphasize the information related to the good solution in makespan, and the balanced utilization of resources as well. The performance of the proposed ACO algorithm is then evaluated using the test cases from (1) the published literature data with complete nurse roster constraints, and 2) the real data collected from a hospital in China. The scheduling results using the proposed ACO approach are compared with the test case from both the literature and the real life hospital scheduling. Comparison results with the literature shows that the proposed ACO approach has (1) an 1.5-h reduction in end time; (2) a reduction in variation of resources' working time, i.e. 25% for ORs, 50% for nurses in shift 1 and 86% for nurses in shift 2; (3) an 0.25h reduction in

  4. Interference and problem size effect in multiplication fact solving: Individual differences in brain activations and arithmetic performance.

    Science.gov (United States)

    De Visscher, Alice; Vogel, Stephan E; Reishofer, Gernot; Hassler, Eva; Koschutnig, Karl; De Smedt, Bert; Grabner, Roland H

    2018-05-15

    In the development of math ability, a large variability of performance in solving simple arithmetic problems is observed and has not found a compelling explanation yet. One robust effect in simple multiplication facts is the problem size effect, indicating better performance for small problems compared to large ones. Recently, behavioral studies brought to light another effect in multiplication facts, the interference effect. That is, high interfering problems (receiving more proactive interference from previously learned problems) are more difficult to retrieve than low interfering problems (in terms of physical feature overlap, namely the digits, De Visscher and Noël, 2014). At the behavioral level, the sensitivity to the interference effect is shown to explain individual differences in the performance of solving multiplications in children as well as in adults. The aim of the present study was to investigate the individual differences in multiplication ability in relation to the neural interference effect and the neural problem size effect. To that end, we used a paradigm developed by De Visscher, Berens, et al. (2015) that contrasts the interference effect and the problem size effect in a multiplication verification task, during functional magnetic resonance imaging (fMRI) acquisition. Forty-two healthy adults, who showed high variability in an arithmetic fluency test, participated in our fMRI study. In order to control for the general reasoning level, the IQ was taken into account in the individual differences analyses. Our findings revealed a neural interference effect linked to individual differences in multiplication in the left inferior frontal gyrus, while controlling for the IQ. This interference effect in the left inferior frontal gyrus showed a negative relation with individual differences in arithmetic fluency, indicating a higher interference effect for low performers compared to high performers. This region is suggested in the literature to be

  5. 3-D thermal weight function method and multiple virtual crack extension technique for thermal shock problems

    International Nuclear Information System (INIS)

    Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao

    2005-01-01

    An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the

  6. Improving multiple-point-based a priori models for inverse problems by combining Sequential Simulation with the Frequency Matching Method

    DEFF Research Database (Denmark)

    Cordua, Knud Skou; Hansen, Thomas Mejer; Lange, Katrine

    In order to move beyond simplified covariance based a priori models, which are typically used for inverse problems, more complex multiple-point-based a priori models have to be considered. By means of marginal probability distributions ‘learned’ from a training image, sequential simulation has...... proven to be an efficient way of obtaining multiple realizations that honor the same multiple-point statistics as the training image. The frequency matching method provides an alternative way of formulating multiple-point-based a priori models. In this strategy the pattern frequency distributions (i.......e. marginals) of the training image and a subsurface model are matched in order to obtain a solution with the same multiple-point statistics as the training image. Sequential Gibbs sampling is a simulation strategy that provides an efficient way of applying sequential simulation based algorithms as a priori...

  7. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems

    Directory of Open Access Journals (Sweden)

    Faridah Hani Mohamed Salleh

    2017-01-01

    Full Text Available Gene regulatory network (GRN reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C as a direct interaction (A → C. Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  8. Multiple Linear Regression for Reconstruction of Gene Regulatory Networks in Solving Cascade Error Problems.

    Science.gov (United States)

    Salleh, Faridah Hani Mohamed; Zainudin, Suhaila; Arif, Shereena M

    2017-01-01

    Gene regulatory network (GRN) reconstruction is the process of identifying regulatory gene interactions from experimental data through computational analysis. One of the main reasons for the reduced performance of previous GRN methods had been inaccurate prediction of cascade motifs. Cascade error is defined as the wrong prediction of cascade motifs, where an indirect interaction is misinterpreted as a direct interaction. Despite the active research on various GRN prediction methods, the discussion on specific methods to solve problems related to cascade errors is still lacking. In fact, the experiments conducted by the past studies were not specifically geared towards proving the ability of GRN prediction methods in avoiding the occurrences of cascade errors. Hence, this research aims to propose Multiple Linear Regression (MLR) to infer GRN from gene expression data and to avoid wrongly inferring of an indirect interaction (A → B → C) as a direct interaction (A → C). Since the number of observations of the real experiment datasets was far less than the number of predictors, some predictors were eliminated by extracting the random subnetworks from global interaction networks via an established extraction method. In addition, the experiment was extended to assess the effectiveness of MLR in dealing with cascade error by using a novel experimental procedure that had been proposed in this work. The experiment revealed that the number of cascade errors had been very minimal. Apart from that, the Belsley collinearity test proved that multicollinearity did affect the datasets used in this experiment greatly. All the tested subnetworks obtained satisfactory results, with AUROC values above 0.5.

  9. Fuel assembly inspection by three-dimensional neutron radiography

    International Nuclear Information System (INIS)

    Lapinski, N.P.; Reimann, K.J.; Berger, H.

    1979-01-01

    Radiographic inspection of complex objects such as fuel subassemblies often presents problems because superimposition of images at different depths in the object complicates interpretation. One method for obtaining and displaying three-dimensional neutron radiographic images in multiple-film laminagraphy; a series of radiographs generated at different angular orientations are superimposed to provide focussed images of any object plane. In the present work multiple-film neutron laminagraphs were generated using direct and indirect exposure techniques, with neutrons in thermal, epithermal, and fast energy ranges

  10. Department of Mathematics and Physics, University of Aston in Birmingham: multiple neutron scattering effects in /sup 7/Li

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.J.; Warner, P.C.; Findlay, D.J.S.; Cookson, J.A. (eds.)

    1986-06-01

    Future fusion reactors will use lithium as a blanket material in order to breed tritium. Knowledge of the gamma ray production cross-sections associated with 14 MeV neutron interactions in lithium are therefore important for local heating and biological shielding calculations and neutron energy degradation studies. In the present work, the differential cross-sections have been measured for the production of 0.478 MeV gamma rays following the inelastic scattering of 14 MeV neutrons in large samples of LiF. The neutrons were produced using the /sup 3/H(d,n) /sup 4/He reaction, the deuterons being accelerated by a 150 kV SAMES type accelerator. In order to reduce the background level, the gamma ray signal was gated using a time-of-flight technique based on the alpha particle associated with neutron production. The gamma ray detector was a 3 x 3 inch NaI(T1) scintillator coupled to a 56AVP photomultiplier.

  11. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  12. Neutron radiography

    International Nuclear Information System (INIS)

    Alaa eldin, M.T.

    2011-01-01

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  13. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  14. Summary report of the IAEA advisory group meeting on nuclear data for neutron multiplication in fusion-reactor first-wall and blanket materials

    International Nuclear Information System (INIS)

    Muir, D.W.; Pashchenko, A.B.

    1992-09-01

    The present Report contains the Summary of the IAEA Advisory Group Meeting on Nuclear Data for Neutron Multiplication in Fusion-Reactor First-Wall and Blanket Materials, which was hosted by the Southwest Institute of Nuclear physics and Chemistry (SWINPC) at Chengdu, China and held from 19-21 November 1990. This AGM was organized by the IAEA Nuclear Data Section (NDS), with the cooperation and assistance of local organizers at the SWINPC. The papers which the participants prepared for and presented at the meeting will be published as an INDC report. (author)

  15. The Effect of Dynamic and Interactive Mathematics Learning Environments (DIMLE), Supporting Multiple Representations, on Perceptions of Elementary Mathematics Pre-Service Teachers in Problem Solving Process

    Science.gov (United States)

    Ozdemir, S.; Reis, Z. Ayvaz

    2013-01-01

    Mathematics is an important discipline, providing crucial tools, such as problem solving, to improve our cognitive abilities. In order to solve a problem, it is better to envision and represent through multiple means. Multiple representations can help a person to redefine a problem with his/her own words in that envisioning process. Dynamic and…

  16. LEDs based upon AlGaInP heterostructures with multiple quantum wells: comparison of fast neutrons and gamma-quanta irradiation

    Science.gov (United States)

    Gradoboev, A. V.; Orlova, K. N.; Simonova, A. V.

    2018-05-01

    The paper presents the research results of watt and volt characteristics of LEDs based upon AlGaInP heterostructures with multiple quantum wells in the active region. The research is completed for LEDs (emission wavelengths 624 nm and 590 nm) under irradiation by fast neutron and gamma-quanta in passive powering mode. Watt-voltage characteristics in the average and high electron injection areas are described as a power function of the operating voltage. It has been revealed that the LEDs transition from average electron injection area to high electron injection area occurs by overcoming the transition area. It disappears as it get closer to the limit result of the irradiation LEDs that is low electron injection mode in the entire supply voltage range. It has been established that the gamma radiation facilitates initial defects restructuring only 42% compared to 100% when irradiation is performed by fast neutrons. Ratio between measured on the boundary between low and average electron injection areas current value and the contribution magnitude of the first stage LEDs emissive power reducing is established. It is allows to predict LEDs resistance to irradiation by fast neutrons and gamma rays.

  17. Very slow neutrons

    International Nuclear Information System (INIS)

    Frank, A.

    1983-01-01

    The history is briefly presented of the research so far of very slow neutrons and their basic properties are explained. The methods are described of obtaining very slow neutrons and the problems of their preservation are discussed. The existence of very slow neutrons makes it possible to perform experiments which may deepen the knowledge of the fundamental properties of neutrons. Their wavelength approximates that of visible radiation. The possibilities and use are discussed of neutron optical systems (neutron microscope) which could be an effective instrument for the study of the detailed arrangement, especially of organic substances. (B.S.)

  18. Theoretical aspects and experimental of neutronic interaction of multiplying media; Aspects theoriques et experimentaux de l'interaction neutronique entre milieux multiplicateurs de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Mougniot, J C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    A theoretical study of neutronic interaction of multiplying media is presented. The use of the surface multiplication constant and of the effective multiplication constant is considered. Three classical methods of interaction calculations are studied in parallel and the application of the Keff method to problems of nuclear safety is discussed. (authors) [French] Une etude theorique de l'interaction neutronique entre milieux multiplicateurs de neutrons est presentee. L'utilisation du coefficient de multiplication de surface et du coefficient de multiplication effectif est envisagee. Trois methodes classiques de calcul d'interaction sont etudiees parallelement et l'adaptation de la methode du Keff, aux problemes de securite nucleaire est ensuite discutee. (auteurs)

  19. Prototype Demonstration of Gamma- Blind Tensioned Metastable Fluid Neutron/Multiplicity/Alpha Detector – Real Time Methods for Advanced Fuel Cycle Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M. [Texas A & M Univ., College Station, TX (United States)

    2016-12-20

    The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being “blind” to the intense gamma field that typically accompanies used fuel – simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the

  20. The impact of two multiple-choice question formats on the problem-solving strategies used by novices and experts.

    Science.gov (United States)

    Coderre, Sylvain P; Harasym, Peter; Mandin, Henry; Fick, Gordon

    2004-11-05

    Pencil-and-paper examination formats, and specifically the standard, five-option multiple-choice question, have often been questioned as a means for assessing higher-order clinical reasoning or problem solving. This study firstly investigated whether two paper formats with differing number of alternatives (standard five-option and extended-matching questions) can test problem-solving abilities. Secondly, the impact of the alternatives number on psychometrics and problem-solving strategies was examined. Think-aloud protocols were collected to determine the problem-solving strategy used by experts and non-experts in answering Gastroenterology questions, across the two pencil-and-paper formats. The two formats demonstrated equal ability in testing problem-solving abilities, while the number of alternatives did not significantly impact psychometrics or problem-solving strategies utilized. These results support the notion that well-constructed multiple-choice questions can in fact test higher order clinical reasoning. Furthermore, it can be concluded that in testing clinical reasoning, the question stem, or content, remains more important than the number of alternatives.

  1. Working Memory Components and Problem-Solving Accuracy: Are There Multiple Pathways?

    Science.gov (United States)

    Swanson, H. Lee; Fung, Wenson

    2016-01-01

    This study determined the working memory (WM) components (executive, phonological short-term memory [STM], and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy in elementary schoolchildren (N = 392). The battery of tests administered to assess mediators between WM and problem-solving included measures of…

  2. Outcomes of a coaching program for families with multiple problems in the Netherlands : A prospective study

    NARCIS (Netherlands)

    Tausendfreund, Tim; Knot-Dickscheit, Jana; Post, Wendy J.; Knorth, Erik J.; Grietens, Hans

    2014-01-01

    Families who face a multitude of severe and persistent problems in a number of different areas of life are commonly referred to as multi-problem families in Dutch child welfare. Although evidence suggests that short-term crisis interventions can have positive effects in these families, they have up

  3. Predicting problem behaviors with multiple expectancies: expanding expectancy-value theory.

    Science.gov (United States)

    Borders, Ashley; Earleywine, Mitchell; Huey, Stanley J

    2004-01-01

    Expectancy-value theory emphasizes the importance of outcome expectancies for behavioral decisions, but most tests of the theory focus on a single behavior and a single expectancy. However, the matching law suggests that individuals consider expected outcomes for both the target behavior and alternative behaviors when making decisions. In this study, we expanded expectancy-value theory to evaluate the contributions of two competing expectancies to adolescent behavior problems. One hundred twenty-one high school students completed measures of behavior problems, expectancies for both acting out and academic effort, and perceived academic competence. Students' self-reported behavior problems covaried mostly with perceived competence and academic expectancies and only nominally with problem behavior expectancies. We suggest that behavior problems may result from students perceiving a lack of valued or feasible alternative behaviors, such as studying. We discuss implications for interventions and suggest that future research continue to investigate the contribution of alternative expectancies to behavioral decisions.

  4. n+235U resonance parameters and neutron multiplicities in the energy region below 100 eV

    Directory of Open Access Journals (Sweden)

    Pigni Marco T.

    2017-01-01

    Full Text Available In August 2016, following the recent effort within the Collaborative International Evaluated Library Organization (CIELO pilot project to improve the neutron cross sections of 235U, Oak Ridge National Laboratory (ORNL collaborated with the International Atomic Energy Agency (IAEA to release a resonance parameter evaluation. This evaluation restores the performance of the evaluated cross sections for the thermal- and above-thermal-solution benchmarks on the basis of newly evaluated thermal neutron constants (TNCs and thermal prompt fission neutron spectra (PFNS. Performed with support from the US Nuclear Criticality Safety Program (NCSP in an effort to provide the highest fidelity general purpose nuclear database for nuclear criticality applications, the resonance parameter evaluation was submitted as an ENDF-compatible file to be part of the next release of the ENDF/B-VIII.0 nuclear data library. The resonance parameter evaluation methodology used the Reich-Moore approximation of the R-matrix formalism implemented in the code SAMMY to fit the available time-of-flight (TOF measured data for the thermal induced cross section of n+235U up to 100 eV. While maintaining reasonably good agreement with the experimental data, the validation analysis focused on restoring the benchmark performance for 235U solutions by combining changes to the resonance parameters and to the prompt resonance v̅ below 100 eV.

  5. A Rich Vehicle Routing Problem with Multiple Trips and Driver Shifts

    OpenAIRE

    Arda, Yasemin; Crama, Yves; Kucukaydin, Hande; Talla Nobibon, Fabrice

    2012-01-01

    This study is concerned with a rich vehicle routing problem (RVRP) encountered at a Belgian transportation company in charge of servicing supermarkets and hypermarkets belonging to a franchise. The studied problem can be classified as a one-to-many-to-one pick-up and delivery problem, where there is a single depot from which all delivery customers are served and to which every pick-up demand must be carried back (Gutiérrez-Jarpa et al., 2010). The delivery and backhaul customers are considere...

  6. A multiobjective non-dominated sorting genetic algorithm (NSGA-II for the Multiple Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Rubén Iván Bolaños

    2015-06-01

    Full Text Available This paper considers a multi-objective version of the Multiple Traveling Salesman Problem (MOmTSP. In particular, two objectives are considered: the minimization of the total traveled distance and the balance of the working times of the traveling salesmen. The problem is formulated as an integer multi-objective optimization model. A non-dominated sorting genetic algorithm (NSGA-II is proposed to solve the MOmTSP. The solution scheme allows one to find a set of ordered solutions in Pareto fronts by considering the concept of dominance. Tests on real world instances and instances adapted from the literature show the effectiveness of the proposed algorithm.

  7. Multiple Depots Vehicle Routing Problem in the Context of Total Urban Traffic Equilibrium

    OpenAIRE

    Chen, Dongxu; Yang, Zhongzhen

    2017-01-01

    A multidepot VRP is solved in the context of total urban traffic equilibrium. Under the total traffic equilibrium, the multidepot VRP is changed to GDAP (the problem of Grouping Customers + Estimating OD Traffic + Assigning traffic) and bilevel programming is used to model the problem, where the upper model determines the customers that each truck visits and adds the trucks’ trips to the initial OD (Origin/Destination) trips, and the lower model assigns the OD trips to road network. Feedback ...

  8. Stressors and Caregivers’ Depression: Multiple Mediators of Self-Efficacy, Social Support, and Problem-solving Skill

    OpenAIRE

    Tang, Fengyan; Jang, Heejung; Lingler, Jennifer; Tamres, Lisa K.; Erlen, Judith A.

    2015-01-01

    Caring for an older adult with memory loss is stressful. Caregiver stress could produce negative outcomes such as depression. Previous research is limited in examining multiple intermediate pathways from caregiver stress to depressive symptoms. This study addresses this limitation by examining the role of self-efficacy, social support, and problem-solving in mediating the relationships between caregiver stressors and depressive symptoms. Using a sample of 91 family caregivers, we tested simul...

  9. Automatic treatment of multiple wound coils in 3D finite element problems including multiply connected regions

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, P.J.; Lai, H.C.; Eastham, J.F.; Al-Akayshee, Q.H. [Univ. of Bath (United Kingdom)

    1996-05-01

    This paper describes an efficient scheme for incorporating multiple wire wound coils into 3D finite element models. The scheme is based on the magnetic scalar representation with an additional basis for each coil. There are no restrictions on the topology of coils with respect to ferromagnetic and conductor regions. Reduced scalar regions and cuts are automatically generated.

  10. Supporting children when providing services to families experiencing multiple problems : Perspectives and evidence on programmes

    NARCIS (Netherlands)

    Knorth, Erik J.; Knot-Dickscheit, Jana; Thoburn, June

    2015-01-01

    Recently, there has been growing interest amongst researchers, practitioners and policy-makers in approaches to understanding and ways of helping parents, children and the communities in which they live to respond to ‘families experiencing multiple problems’ (FEMPs). There is a strong need for

  11. Optical study of radiation damage in A-SI02 and problems of selective dosimetry of fast neutrons

    International Nuclear Information System (INIS)

    Abdukadyrova, I.Kh.

    1991-01-01

    The present work deals with the optical study of the processes of radiation damage and structural phase transitions (PT) accumulation in α-SiO 2 monocrystals undergoing various influences of fast neutrons (F) and with the possibility of dosimetrical utilization of radiation-sensitive characteristics of the oxide. It has been found that when F grows within the limits of 10 18 -10 20 cm -2 the optical activity var-phi of the crystal changes; the influence of flux density, temperature, surroundings, mixed reactor irradiation components, and thickness change. The process of radiation damage of crystals by spectroscopic methods has been studied. In the course of the neutron irradiation of the α-SiO 2 structure transformation phenomena were studied by means of IR-spectrometry

  12. Discovery of the neutron (to the fiftieth anniversary of neutron discovery)

    International Nuclear Information System (INIS)

    Pasechnik, M.V.

    1984-01-01

    Development of neutron physics in the USSR for the recent 50 years from the moment of neutron discovery is considered. History of neutron discovery is presented in brief. Neutron properties and fundamental problems of physics: electric dipole neutron moment, neutron β-decay, neutron interaction with nuclei and potential of nucleon interaction not conserving spatial parity are discussed. Main aspects of neutron physics application in power engineering, nuclear technology and other branches of science and technique are set forth

  13. Solving inverse problems through a smooth formulation of multiple-point geostatistics

    DEFF Research Database (Denmark)

    Melnikova, Yulia

    be inferred, for instance, from a conceptual geological model termed a training image.The main motivation for this study was the challenge posed by history matching, an inverse problem aimed at estimating rock properties from production data. We addressed two main difficulties of the history matching problem...... corresponding inverse problems. However, noise in data, non-linear relationships and sparse observations impede creation of realistic reservoir models. Including complex a priori information on reservoir parameters facilitates the process of obtaining acceptable solutions. Such a priori knowledge may...... strategies including both theoretical motivation and practical aspects of implementation. Finally, it is complemented by six research papers submitted, reviewed and/or published in the period 2010 - 2013....

  14. Multiple solutions of a free-boundary FRC equilibrium problem in a metal cylinder

    International Nuclear Information System (INIS)

    Spencer, R.L.; Hewett, D.W.

    1981-01-01

    A new approach to the computation of FRC equilibria that avoids previously encountered difficulties is presented. For arbitrary pressure profiles it is computationally expensive, but for one special pressure profile the problem is simple enough to require only minutes of Cray time; it is this problem that we have solved. We solve the Grad-Shafranov equation, Δ/sup */psi = r 2 p'(psi), in an infinitely long flux conserving cylinder of radius a with the boundary conditions that psi(a,z) = -psi/sub w/ and that delta psi/delta z = 0 as [z] approaches infinity. The pressure profile is p'(psi) = cH(psi) where c is a constant and where H(x) is the Heaviside function. We have found four solutions to this problem: There is a purely vacuum state, two z-independent plasma solutions, and an r-z-dependent plasma state

  15. Multiple Depots Vehicle Routing Problem in the Context of Total Urban Traffic Equilibrium

    Directory of Open Access Journals (Sweden)

    Dongxu Chen

    2017-01-01

    Full Text Available A multidepot VRP is solved in the context of total urban traffic equilibrium. Under the total traffic equilibrium, the multidepot VRP is changed to GDAP (the problem of Grouping Customers + Estimating OD Traffic + Assigning traffic and bilevel programming is used to model the problem, where the upper model determines the customers that each truck visits and adds the trucks’ trips to the initial OD (Origin/Destination trips, and the lower model assigns the OD trips to road network. Feedback between upper model and lower model is iterated through OD trips; thus total traffic equilibrium can be simulated.

  16. The Time-Dependent Multiple-Vehicle Prize-Collecting Arc Routing Problem

    DEFF Research Database (Denmark)

    Black, Daniel; Eglese, Richard; Wøhlk, Sanne

    2015-01-01

    -life traffic situations where the travel times change with the time of day are taken into account. Two metaheuristic algorithms, one based on Variable Neighborhood Search and one based on Tabu Search, are proposed and tested for a set of benchmark problems, generated from real road networks and travel time......In this paper, we introduce a multi vehicle version of the Time-Dependent Prize-Collecting Arc Routing Problem (TD-MPARP). It is inspired by a situation where a transport manager has to choose between a number of full truck load pick-ups and deliveries to be performed by a fleet of vehicles. Real...

  17. Time evolution and use of multiple times in the N-body problem

    International Nuclear Information System (INIS)

    McGuire, J.H.; Godunov, A.L.

    2003-01-01

    Under certain conditions it is possible to describe time evolution using different times for different particles. Use of multiple times is optional in the independent particle approximation, where interparticle interactions are removed, and the N-particle evolution operator factors into N single-particle evolution operators. In this limit one may use either a single time, with a single energy-time Fourier transform, or N different times with a different energy-time transform for each particle. The use of different times for different particles is fully justified when coherence between single-particle amplitudes is lost, e.g., if relatively strong randomly fluctuating residual fields influence each particle independently. However, when spatial correlation is present the use of multiple times is not feasible, even when the evolution of the particles is uncorrelated in time. Some calculations in simple atomic systems with and without spatial and temporal correlation between different electrons are included

  18. Multiplicity of Solutions for a Class of Fourth-Order Elliptic Problems with Asymptotically Linear Term

    Directory of Open Access Journals (Sweden)

    Qiong Liu

    2012-01-01

    Full Text Available We study the following fourth-order elliptic equations: Δ2+Δ=(,,∈Ω,=Δ=0,∈Ω, where Ω⊂ℝ is a bounded domain with smooth boundary Ω and (, is asymptotically linear with respect to at infinity. Using an equivalent version of Cerami's condition and the symmetric mountain pass lemma, we obtain the existence of multiple solutions for the equations.

  19. Higgsplosion: Solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons

    Science.gov (United States)

    Khoze, Valentin V.; Spannowsky, Michael

    2018-01-01

    We introduce and discuss two inter-related mechanisms operative in the electroweak sector of the Standard Model at high energies. Higgsplosion, the first mechanism, occurs at some critical energy in the 25 to 103 TeV range, and leads to an exponentially growing decay rate of highly energetic particles into multiple Higgs bosons. We argue that this is a well-controlled non-perturbative phenomenon in the Higgs-sector which involves the final state Higgs multiplicities n in the regime nλ ≫ 1 where λ is the Higgs self-coupling. If this mechanism is realised in nature, the cross-sections for producing ultra-high multiplicities of Higgs bosons are likely to become observable and even dominant in this energy range. At the same time, however, the apparent exponential growth of these cross-sections at even higher energies will be tamed and automatically cut-off by a related Higgspersion mechanism. As a result, and in contrast to previous studies, multi-Higgs production does not violate perturbative unitarity. Building on this approach, we then argue that the effects of Higgsplosion alter quantum corrections from very heavy states to the Higgs boson mass. Above a certain energy, which is much smaller than their masses, these states would rapidly decay into multiple Higgs bosons. The heavy states become unrealised as they decay much faster than they are formed. The loop integrals contributing to the Higgs mass will be cut off not by the masses of the heavy states, but by the characteristic loop momenta where their decay widths become comparable to their masses. Hence, the cut-off scale would be many orders of magnitude lower than the heavy mass scales themselves, thus suppressing their quantum corrections to the Higgs boson mass.

  20. Clinical problems of multiple primary cancers including head and neck cancers. From the viewpoint of radiotherapy

    International Nuclear Information System (INIS)

    Nishio, Masamichi; Myojin, Miyako; Nishiyama, Noriaki; Taguchi, Hiroshi; Takagi, Masaru; Tanaka, Katsuhiko

    2003-01-01

    A total of 2144 head and neck cancers were treated by radiotherapy at the National Sapporo Hospital between 1974 and 2001. Of these, 313 (14.6%) were found to have other primary cancers besides head and neck cancer, in which double cancers were 79% and triple or more cancers were 21%. Frequency according to primary site of the first head and neck cancer was oral cavity: 107/603 (17.7%), epipharynx cancer: 7/117 (6.0%), oropharyngeal cancer: 63/257 (24.5%), hypopharyngeal cancer: 65/200 (32.5%), laryngeal cancer: 114/558 (20.4%), and nose/paranasal sinus: 4.9% respectively. Esophageal cancer, head and neck cancer, lung cancer and gastric cancer were very frequent as other primary sites combined with the head and neck. The first onset region was the head and neck in 233 out of 313 cases with multiple primary cancers. The five-year survival rate from the onset of head and neck cancers is 52%, 10-year: 30%, and 5-year cause-specific survival rate 82%, and 10-year: 78%, respectively. The treatment possibilities in multiple primary cancers tend to be limited because the treatment areas are sometimes overlapped. New approaches to the treatment of multiple primary cancers should be considered in the future. (author)

  1. Problems reported by parents of children in multiple cultures: the Child Behavior Checklist syndrome constructs

    NARCIS (Netherlands)

    A.A.M. Crijnen (Alfons); T.M. Achenbach (Thomas); F.C. Verhulst (Frank)

    1999-01-01

    textabstractOBJECTIVE: The purpose of this study was to compare syndromes of parent-reported problems for children in 12 cultures. METHOD: Child Behavior Checklists were analyzed for 13,697 children and adolescents, ages 6 through 17 years, from general population

  2. The finite horizon economic lot sizing problem in job shops : the multiple cycle approach

    NARCIS (Netherlands)

    Ouenniche, J.; Bertrand, J.W.M.

    2001-01-01

    This paper addresses the multi-product, finite horizon, static demand, sequencing, lot sizing and scheduling problem in a job shop environment where the planning horizon length is finite and fixed by management. The objective pursued is to minimize the sum of setup costs, and work-in-process and

  3. The Role of Multiple Representations in the Understanding of Ideal Gas Problems

    Science.gov (United States)

    Madden, Sean P.; Jones, Loretta L.; Rahm, Jrene

    2011-01-01

    This study examined the representational competence of students as they solved problems dealing with the temperature-pressure relationship for ideal gases. Seven students enrolled in a first-semester general chemistry course and two advanced undergraduate science majors participated in the study. The written work and transcripts from videotaped…

  4. Problems of Implementing SCORM in an Enterprise Distance Learning Architecture: SCORM Incompatibility across Multiple Web Domains.

    Science.gov (United States)

    Engelbrecht, Jeffrey C.

    2003-01-01

    Delivering content to distant users located in dispersed networks, separated by firewalls and different web domains requires extensive customization and integration. This article outlines some of the problems of implementing the Sharable Content Object Reference Model (SCORM) in the Marine Corps' Distance Learning System (MarineNet) and extends…

  5. Genetic Risk by Experience Interaction for Childhood Internalizing Problems: Converging Evidence across Multiple Methods

    Science.gov (United States)

    Vendlinski, Matthew K.; Lemery-Chalfant, Kathryn; Essex, Marilyn J.; Goldsmith, H. Hill

    2011-01-01

    Background: Identifying how genetic risk interacts with experience to predict psychopathology is an important step toward understanding the etiology of mental health problems. Few studies have examined genetic risk by experience interaction (GxE) in the development of childhood psychopathology. Methods: We used both co-twin and parent mental…

  6. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  7. Development of pulse neutron coal analyzer

    International Nuclear Information System (INIS)

    Jing Shiwie; Gu Deshan; Qiao Shuang; Liu Yuren; Liu Linmao; Jing Shiwei

    2005-01-01

    This article introduced the development of pulsed neutron coal analyzer by pulse fast-thermal neutron analysis technology in the Radiation Technology Institute of Northeast Normal University. The 14 MeV pulse neutron generator and bismuth germanate detector and 4096 multichannel analyzer were applied in this system. The multiple linear regression method employed to process data solved the interferential problem of multiple elements. The prototype (model MZ-MKFY) had been applied in Changshan and Jilin power plant for about a year. The results of measuring the main parameters of coal such as low caloric power, whole total water, ash content, volatile content, and sulfur content, with precision acceptable to the coal industry, are presented

  8. Determining neutron multiplication factor in the infinite system by reactivity dependence on one dimension of the reactor core; Odredjivanje faktora umnozavanja neutrona u beskonacnom sistemu pomocu zavisnosti reaktivnosti od jedne dimenzije reaktorskog jezgra, Diplomski rad

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1975-07-01

    The objective of this task was to apply Fermi age theory for determining {tau} and neutron multiplication factor in infinite medium by measuring reactivity coefficient of heavy water in heterogeneous mixed reactor lattice. Basis of experiment is the measurement of stable reactor period. Measurement of heavy water reactivity coefficient by measuring the stable reactor period is described for chosen overcritical heavy water levels. Calculated values of infinite multiplication factor for measured neutron age data are presented and they are compared to expected theoretical values.

  9. Isotopic neutron sources for neutron activation analysis

    International Nuclear Information System (INIS)

    Hoste, J.

    1988-06-01

    This User's Manual is an attempt to provide for teaching and training purposes, a series of well thought out demonstrative experiments in neutron activation analysis based on the utilization of an isotopic neutron source. In some cases, these ideas can be applied to solve practical analytical problems. 19 refs, figs and tabs

  10. A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem

    Science.gov (United States)

    Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.

    2014-06-01

    For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.

  11. A comparative study of history-based versus vectorized Monte Carlo methods in the GPU/CUDA environment for a simple neutron eigenvalue problem

    International Nuclear Information System (INIS)

    Liu, T.; Du, X.; Ji, W.; Xu, G.; Brown, F.B.

    2013-01-01

    For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed. (authors)

  12. Simultaneous planning of the project scheduling and material procurement problem under the presence of multiple suppliers

    Science.gov (United States)

    Tabrizi, Babak H.; Ghaderi, Seyed Farid

    2016-09-01

    Simultaneous planning of project scheduling and material procurement can improve the project execution costs. Hence, the issue has been addressed here by a mixed-integer programming model. The proposed model facilitates the procurement decisions by accounting for a number of suppliers offering a distinctive discount formula from which to purchase the required materials. It is aimed at developing schedules with the best net present value regarding the obtained benefit and costs of the project execution. A genetic algorithm is applied to deal with the problem, in addition to a modified version equipped with a variable neighbourhood search. The underlying factors of the solution methods are calibrated by the Taguchi method to obtain robust solutions. The performance of the aforementioned methods is compared for different problem sizes, in which the utilized local search proved efficient. Finally, a sensitivity analysis is carried out to check the effect of inflation on the objective function value.

  13. Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence

    Directory of Open Access Journals (Sweden)

    Long Yuhua

    2017-12-01

    Full Text Available In this paper, we study second-order nonlinear discrete Robin boundary value problem with parameter dependence. Applying invariant sets of descending flow and variational methods, we establish some new sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions of the system when the parameter belongs to appropriate intervals. In addition, an example is given to illustrate our results.

  14. Multiple myeloma in South Cumbria 1974-80: problems of health analysis in small communities

    International Nuclear Information System (INIS)

    Jessop, E.G.; Horsley, S.D.

    1985-01-01

    The occurrence of seven cases of multiple myeloma over seven years in a small community 15 miles from a plant reprocessing nuclear fuel caused much local concern. A case control study of 34 confirmed cases in the health district during 1974 to 1980 revealed no excess of known risk factors among the 23 cases for whom informants could be traced. The possible effects of exposure to marine discharges of radioactive material cannot be completely ruled out, but dose estimates make this highly unlikely. Such studies are a necessary response by community physicians to the population they serve but have major practical and theoretical limitations. (author)

  15. Direct and indirect associations between social anxiety and nicotine dependence and cessation problems: multiple mediator analyses.

    Science.gov (United States)

    Buckner, Julia D; Farris, Samantha G; Schmidt, Norman B; Zvolensky, Michael J

    2014-06-01

    Little empirical work has evaluated why socially anxious smokers are especially vulnerable to more severe nicotine dependence and cessation failure. Presumably, these smokers rely on cigarettes to help them manage their chronically elevated negative affect elicited by a wide array of social contexts. The current study examined the direct and indirect effects of social anxiety cross-sectionally in regard to a range of smoking processes among 466 treatment-seeking smokers. Negative affect and negative affect reduction motives were examined as mediators of the relations of social anxiety with nicotine dependence and cessation problems. Social anxiety was directly and robustly associated with perceived barriers to smoking cessation and problems experienced during past quit attempts. Social anxiety was also associated with greater nicotine dependence and smoking inflexibility indirectly through negative affect and negative affect smoking motives. Negative affect and smoking to reduce negative affect mediated these relations. These findings document the important role of negative affect and negative affect reduction motives in the relationships of social anxiety with nicotine dependence and cessation problems.

  16. Single- or multiple-visit endodontics: which technique results in fewest postoperative problems?

    Science.gov (United States)

    Balto, Khaled

    2009-01-01

    The Cochrane Central Register of Controlled Trials, Medline, Embase, six thesis databases (Networked Digital Library of Theses and Dissertations, Proquest Digital Dissertations, OAIster, Index to Theses, Australian Digital Thesis Program and Dissertation.com) and one conference report database (BIOSIS Previews) were searched. There were no language restrictions. Studies were included if subjects had a noncontributory medical history; underwent nonsurgical root canal treatment during the study; there was comparison between single- and multiple-visit root canal treatment; and if outcome was measured in terms of pain degree or prevalence of flare-up. Data were extracted using a standard data extraction sheet. Because of variations in recorded outcomes and methodological and clinical heterogeneity, a meta-analysis was not carried out, although a qualitative synthesis was presented. Sixteen studies fitted the inclusion criteria in the review, with sample size varying from 60-1012 cases. The prevalence of postoperative pain ranged from 3-58%. The heterogeneity of the included studies was far too great to yield meaningful results from a meta-analysis. Compelling evidence is lacking to indicate any significantly different prevalence of postoperative pain or flare-up following either single- or multiple-visit root canal treatment.

  17. Performance of the multiple target He/PbI sub 2 aerosol jet system for mass separation of neutron-deficient actinide isotopes

    CERN Document Server

    Ichikawa, S; Asai, M; Haba, H; Sakama, M; Kojima, Y; Shibata, M; Nagame, Y; Oura, Y; Kawade, K

    2002-01-01

    A multiple target He/PbI sub 2 aerosol jet system coupled with a thermal ion source was installed in the isotope separator on line (JAERI-ISOL) at the JAERI tandem accelerator facility. The neutron-deficient americium and curium isotopes produced in the sup 2 sup 3 sup 3 sup , sup 2 sup 3 sup 5 U( sup 6 Li, xn) and sup 2 sup 3 sup 7 Np( sup 6 Li, xn) reactions were successfully mass-separated and the overall efficiency including the ionization of Am atoms was evaluated to be 0.3-0.4%. The identification of a new isotope sup 2 sup 3 sup 7 Cm with the present system is reported.

  18. Effect of boron and gadolinium concentration on the calculated neutron multiplication factor of U(3)O2 fuel pins in optimum geometries

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1984-10-01

    The KENO-Va improved Monte Carlo criticality program is used to calculate the neutron multiplication factor for TMI-U2 fuel compositions in a variety of configurations and to display parametric regions giving rise to maximum reactivity contributions. The lattice pitch of UO 2 fuel pins producing a maximum k/sub eff/ is determined as a function of boron concentrations in the coolant for infinite and finite systems. The characteristics of U 3 O 8 -coolant mixtures of interest to modeling the rubble region of the core are presented. Several disrupted core configurations are calculated and comparisons made. The results should be useful to proposed defueling of the TMI-U2 reactor

  19. Development and performance test of a system available for generating multiple extreme conditions for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kawano, Shinji; Fukui, Susumu; Moriai, Atsushi; Ohtomo, Akitoshi; Ichimura, Shigeki; Onodera, Akifumi; Amita, F.; Katano, Susumu

    1998-01-01

    We have developed unique system available for controlling sample environment during the neutron scattering experiments. The system can simultaneously generate triple extreme conditions of low temperature, high magnetic field and high pressure. The system consists of: (i) a liquid-helium cryostat variable for sample temperature from 1.7 K to 200 K, (ii) a superconducting magnet providing a vertical field up to ±5 T with an antisymmetric split-coil geometry for polarized-beam experiments, and (iii) a non-magnetic piston-cylinder high-pressure cell designed with the aim of generating hydrostatic pressure up to 2.5 GPa. In the presentation, we will report the outline of the system and some results of performance tests at KURRI and JRR-3M of JAERI. (author)

  20. Existence and multiplicity of solutions to elliptic problems with discontinuities and free boundary conditions

    Directory of Open Access Journals (Sweden)

    Sabri Bensid

    2010-04-01

    Full Text Available We study the nonlinear elliptic problem with discontinuous nonlinearity $$displaylines{ -Delta u = f(uH(u-mu quadhbox{in } Omega, cr u =h quad hbox{on }partial Omega, }$$ where $H$ is the Heaviside unit function, $f,h$ are given functions and $mu$ is a positive real parameter. The domain $Omega$ is the unit ball in $mathbb{R}^n$ with $ngeq 3$. We show the existence of a positive solution $u$ and a hypersurface separating the region where $-Delta u=0$ from the region where $-Delta u=f(u$. Our method relies on the implicit function theorem and bifurcation analysis.