WorldWideScience

Sample records for neutron interrogation system

  1. Irradiation Effects for the Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Slater, C.O.

    2001-02-02

    At the request of Safety and Ecology Corporation of Tennessee, radiation effects of the proposed Pulsed Fast Neutron Analysis (PFNA) Cargo Interrogation System have been examined. First, fissile cargo were examined to determine if a significant neutron signal would be observable during interrogation. Results indicated that ample multiplication would be seen for near critical bare targets. The water-reflected sphere showed relatively little multiplication. By implication, a fissile target shielded by hydrogenous cargo might not be detectable by neutron interrogation, particularly if reliance is placed on the neutron signal. The cargo may be detectable if use can be made of the ample increase in the photon signal. Second, dose rates were calculated at various locations within and just outside the facility building. These results showed that some dose rates may be higher than the target dose rate of 0.05 mrem/h. However, with limited exposure time, the total dose may be well below the allowed total dose. Lastly, estimates were made of the activation of structures and typical cargo. Most cargo will not be exposed long enough to be activated to levels of concern. On the other hand, portions of the structure may experience buildup of some radionuclides to levels of concern.

  2. Development of the QA/QC Procedures for a Neutron Interrogation System

    Energy Technology Data Exchange (ETDEWEB)

    Obhodas, Jasmina; Sudac, Davorin; Valkovic, Vladivoj [Ruder Boskovic Institute, 10000 Zagreb (Croatia)

    2015-07-01

    In order to perform QA/QC procedures for a system dedicated to the neutron interrogation of objects for the presence of threat materials one needs to perform measurements of reference materials (RM) having the same (or similar) atomic ratios as real materials. It is well known that explosives, drugs, and various other benign materials, contain chemical elements such as hydrogen, oxygen, carbon and nitrogen in distinctly different quantities. For example, a high carbon-to-oxygen ratio (C/O) is characteristic of drugs. Explosives can be differentiated by measurement of both C/O and nitrogen-to-oxygen (N/O) ratios. The C/N ratio of the chemical warfare agents, coupled with the measurement of elements such as fluorine and phosphorus, clearly differentiate them from the conventional explosives. Correlations between theoretical values and experimental results obtained in laboratory conditions for C/O and N/C ratios of simulants of hexogen (RDX), TNT, DLM2, TATP, cocaine, heroin, yperite, tetranitromethane, peroxide methylethyl-ketone, nitromethane and ethyleneglycol dinitrate are presented. (authors)

  3. Enhancing the performance of a tensioned metastable fluid detector based active interrogation system for the detection of SNM in <1 m3 containers using a D-D neutron interrogation source in moderated/reflected geometries

    Science.gov (United States)

    Grimes, T. F.; Hagen, A. R.; Archambault, B. C.; Taleyarkhan, R. P.

    2018-03-01

    This paper describes the development of a SNM detection system for interrogating 1m3 cargos via the combination of a D-D neutron interrogation source (with and without reflectors) and tensioned metastable fluid detectors (TMFDs). TMFDs have been previously shown (Taleyarkhan et al., 2008; Grimes et al., 2015; Grimes and Taleyarkhan, 2016; Archambault et al., 2017; Hagen et al., 2016) to be capable of using Threshold Energy Neutron Analysis (TENA) techniques to reject the ∼2.45 MeV D-D interrogating neutrons while still remaining sensitive to >2.45 MeV neutrons resulting from fission in the target (HEU) material. In order to enhance the performance, a paraffin reflector was included around the accelerator head. This reflector was used to direct neutrons into the package to increase the fission signal, lower the energy of the interrogating neutrons to increase the fission cross-section with HEU, and, also to direct interrogating neutrons away from the detectors in order to enhance the required discrimination between interrogating and fission neutrons. Experiments performed with a 239 Pu-Be neutron source and MnO2 indicated that impressive performance gains could be made by placing a parabolic paraffin moderator between the interrogation source and an air-filled cargo container with HEU placed at the center. However, experiments with other cargo fillers (as specified in the well-known ANSI N42.41-2007 report), and with HEU placed in locations other than the center of the package indicated that other reflector geometries might be superior due to over-"focusing" and the increased solid angle effects due to the accommodation of the moderator geometry. The best performance for the worst case of source location and box fill was obtained by placing the reflector only behind the D-D neutron source rather than in front of it. Finally, it was shown that there could be significant gains in the ability to detect concealed SNM by operating the system in multiple geometric

  4. Neutron interrogator assay system for the Idaho Chemical Processing Plant waste canisters and spent fuel: preliminary description and operating procedures manual

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.; Close, D.A.; Speir, L.G.

    1978-05-01

    A neutron interrogation assay system is being designed for the measurement of waste canisters and spent fuel packages at the new Idaho Chemical Processing Plant to be operated by Allied Chemical Corp. The assay samples consist of both waste canisters from the fluorinel dissolution process and spent fuel assemblies. The assay system is a 252 Cf ''Shuffler'' that employs a cyclic sequence of fast-neutron interrogation with a 252 Cf source followed by delayed-neutron counting to determine the 235 U content

  5. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  6. Classifying threats with a 14-MeV neutron interrogation system.

    Science.gov (United States)

    Strellis, Dan; Gozani, Tsahi

    2005-01-01

    SeaPODDS (Sea Portable Drug Detection System) is a non-intrusive tool for detecting concealed threats in hidden compartments of maritime vessels. This system consists of an electronic neutron generator, a gamma-ray detector, a data acquisition computer, and a laptop computer user-interface. Although initially developed to detect narcotics, recent algorithm developments have shown that the system is capable of correctly classifying a threat into one of four distinct categories: narcotic, explosive, chemical weapon, or radiological dispersion device (RDD). Detection of narcotics, explosives, and chemical weapons is based on gamma-ray signatures unique to the chemical elements. Elements are identified by their characteristic prompt gamma-rays induced by fast and thermal neutrons. Detection of RDD is accomplished by detecting gamma-rays emitted by common radioisotopes and nuclear reactor fission products. The algorithm phenomenology for classifying threats into the proper categories is presented here.

  7. Survey of Neutron Generators for Active Interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Calvin Elroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sundby, Gary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, James P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-05-02

    Some of these commercially available generators meet all of the requirements in Table 1, but there are other concerns. Most generators containing SF6 will be required to have the SF6 gas removed for shipping because of DOT regulations. However, Thermo Fisher has a DOT exemption. The P211 and B211 from Thermo Fisher meet the requirements listed in Table 1, but they are old designs and are no longer offered for sale. Also, they require 15 minutes or more of warmup before neutron output is available, and they lack a modern digital control. The nGen-300C from Starfire Industries is interesting because it is a portable system, but it uses the DD reaction for 2.5 MeV neutrons, which are not as penetrating as the 14 MeV neutrons from the DT reaction. The MP 320 from Thermo Fisher is another portable system, but the minimum pulse rate is 250 Hz, which is too fast for measurement of delayed neutrons and re-interrogation by delayed neutrons between pulses. The Genie 16 from Sodern (from France) probably meets the requirements, but the required power is probably too high for battery operation. The generators from Russia and China may be difficult to purchase, and service may not be available. The power required by some of these generators is low enough that batteries can be used. The portable units, nGen-300C and the MP320, could easily be operated with batteries. Other generators with low power requirements, as specified in the above vendors list, could possibly be operated with reason size batteries. The batteries do not need to be internal to the generator, but can be in a separate package. The availability of high capacity lithium batteries with sophisticated safety circuits makes battery operation more possible now than when lead acid batteries were used. The best path forward probably requires working with vendors of the existing systems. If Starfire Industries could be persuaded to put tritium in their nGen-300C generator, possibly in collaboration with a national

  8. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  9. Systems report on the analysis of spent, highly enriched U-235 reactor fuel by delayed neutron interrogation

    International Nuclear Information System (INIS)

    Piper, T.C.; Kirkham, R.J.

    1990-05-01

    Design aspects are briefly given of a neutron source shuffler used to measure fissile material content of spent, highly enriched reactor fuel. The mode of operation used, results of analyzing 176 fuel packages and recommended system improvements are discussed. Four measurements were made on each of the fuel packages with the mean of the 176 standard deviations being 2.03 percent of value. The maximum individual standard deviation was 9.27 percent. Appendixes concerning imprecisions introduced by counting statistics and crane speed irregularities are given. Use of an improved neutron source shuffler, an improved fuel package motion system and modernized computer system should permit system performance to be limited mainly by counting statistics, to about 1.5 percent of measured value. A stronger source could then be installed to further enhance system operation. 16 figs., 3 tabs

  10. Design and characterisation of a pulsed neutron interrogation facility

    International Nuclear Information System (INIS)

    Favalli, A.; Pedersen, B.

    2007-01-01

    The Joint Research Centre recently obtained a license to operate a new experimental device intended for research in the field of nuclear safeguards. The research projects currently being planned for the new device includes mass determination of fissile materials in matrices and detection of contraband non-nuclear materials. The device incorporates a commercial pulsed neutron generator and a large graphite mantle surrounding the sample cavity. In this configuration, a relatively high thermal neutron flux with a long lifetime is achieved inside the sample cavity. By pulsing the neutron generator, a sample may be interrogated by a pure thermal neutron flux during repeated time periods. The paper reports on the design of the new device and the pulsed fast and thermal neutron source. The thermal neutron flux caused by the neutron generator and the graphite structure has been characterised by foil activation, fission chamber and 3 He proportional counter measurements. (authors)

  11. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Technische Universitaet, Darmstadt (Germany)

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  12. Background and Source Term Identification in Active Neutron Interrogation Methods

    Science.gov (United States)

    2011-03-24

    background source terms during active neutron interrogation. Oxide Percent SiO2 60.6 Al2O3 15.9 CaO 6.4 MgO 4.7 Na2O 3.1 Fe 6.7 K2O 1.8 TiO2 0.7... P2O5 0.1 Table 5. Chemical Properties of Continental Crust Provides the average amount of each element present in the earth’s crust for

  13. Neutron interrogation of actinides with a 17 MeV electron accelerator and first results from photon and neutron interrogation non-simultaneous measurements combination

    Energy Technology Data Exchange (ETDEWEB)

    Sari, A., E-mail: adrien.sari@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Carrel, F.; Lainé, F. [CEA, LIST, Laboratoire Capteurs et Architectures Electroniques, 91191 Gif-sur-Yvette Cedex (France); Lyoussi, A. [CEA, DEN, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2013-10-01

    In this article, we demonstrate the feasibility of neutron interrogation using the conversion target of a 17 MeV linear electron accelerator as a neutron generator. Signals from prompt neutrons, delayed neutrons, and delayed gamma-rays, emitted by both uranium and plutonium samples were analyzed. First results from photon and neutron interrogation non-simultaneous measurements combination are also reported in this paper. Feasibility of this technique is shown in the frame of the measurement of uranium enrichment. The latter was carried out by combining detection of prompt neutrons from thermal fission and delayed neutrons from photofission, and by combining delayed gamma-rays from thermal fission and delayed gamma-rays from photofission.

  14. Integrated Box Interrogation System (IBIS) Preliminary Design Study

    Energy Technology Data Exchange (ETDEWEB)

    DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

    2003-01-13

    Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

  15. Determination of Fissile Material by Neutron Transport Interrogation: Computer simulations of the neutron transport

    International Nuclear Information System (INIS)

    Bruggeman, M.; Mandoki, R.; Van Iseghem, P.

    1994-09-01

    Monte Carlo simulations are used to investigate the performance and possible optimization of simple passive and active neutron assay systems for the determination of fissile material in waste packages. The active system uses external alpha-neutron or gamma-neutron sources -with mean neutron energies below 1 MeV- which continuously irradiates the waste sample. The discrimination between these source neutrons and the neutrons from induced fission in the detection process is based on the different transport properties of these neutrons. The detection limits obtained with the active system is of the order of 1 g 235 U in 1000 s measuring time

  16. The SVM Method for Fissile Mass Estimation through Passive Neutron Interrogation: Advances and Developments

    International Nuclear Information System (INIS)

    Dubi, C.; Shvili, Israel I.

    2014-01-01

    Fissile mass estimation through passive neutron interrogation is now one of the main techniques for NDT of fissile mass estimation, due to the relative transparency of neutron radiation to structural materials- making it extremely effective in poorly characterized or dirty samples . Passive neutron interrogation relies on the fact that the number of neutrons emitted (per time unit) due to spontaneous fissions from the sample is proportional to the mass of the detected sample. However, since the measurement is effected by additional neutron sources- mainly (D±n) reactions and induced fission chain in the tested sample, a naive estimation, assuming a linear correspondence between the mass of the detected sample and the average number of detections, is bound to give an over estimation of the mass. Since most passive interrogation facilities are based on 3He detectors, the origin of the neutron cannot be determined by analyzing the energy spectrum (as all neutrons arrive at the detector in more or less the same energy), and a mathematical 'filter' is used to evaluate the noise to source ratio in the detection signal. The basic idea behind the mathematical filter is to utilize the fact that the different neutron sources have different statistical attributes- in particular, both the source event rate and the distribution of the number of neutrons released in each event differs between the different sources. There for, by studying the higher moments of the neutron population, new information about the source to noise ration may be obtained

  17. Low level transuranic wastes assay by photon interrogation and neutron counting: application to the concrete packages

    International Nuclear Information System (INIS)

    Lyoussi, A.

    1994-02-01

    The present document presents an active detection method for radioactive wastes embedded in high-density matrices, mainly concrete packages. The high density of the packages, as well as their high water content (up to 25%), means only high-energy neutrons or gamma particles have a high enough range to activate the enclosed actinides. Our aims were to evaluate the feasibility of dosing transuranians by induced photofission, and to optimize an experimental system with a view to improving detection limits. The system uses a pulsed electron beam from a linear accelerator (LINAC) to produce high-energy photon bursts from a metallic converter. The photons induce fissions in TRU. When a fission is induced in trace amounts of TRU contaminants in waste material, it provides 'signatures' from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239 Pu, 235 U and 238 U in three sample matrices: glass, polyethylene and concrete. We counted delayed neutrons emitted after each pulse of the LINAC using the 'Sequential PHoton Interrogation and Neutron Counting Signatures' (SPHINCS) technique which had been developed in this thesis work. The experimental process described below (SPHINCS) is one of the first to use a LINAC assay method combined with sequential detection using delayed neutrons. The SPHINCS process enhances the available counts by a factor about 20 compared with the counting of delayed neutrons only after the irradiation period. The electron linear accelerator operates at 15 MeV, 140 mA, and 2.5 μs wide pulse at a 50 Hz rate. Finally, use of an electron linear accelerator as a particle source, experimental and electronics details, measurements results and their interpretation and the future experimental works are discussed. (author)

  18. Interrogating resilience in health systems development.

    Science.gov (United States)

    van de Pas, Remco; Ashour, Majdi; Kapilashrami, Anuj; Fustukian, Suzanne

    2017-11-01

    The Fourth Global Symposium on Health Systems Research was themed around 'Resilient and responsive health systems for a changing world.' This commentary is the outcome of a panel discussion at the symposium in which the resilience discourse and its use in health systems development was critically interrogated. The 2014-15 Ebola outbreak in West-Africa added momentum for the wider adoption of resilient health systems as a crucial element to prepare for and effectively respond to crisis. The growing salience of resilience in development and health systems debates can be attributed in part to development actors and philanthropies such as the Rockefeller Foundation. Three concerns regarding the application of resilience to health systems development are discussed: (1) the resilience narrative overrules certain democratic procedures and priority setting in public health agendas by 'claiming' an exceptional policy space; (2) resilience compels accepting and maintaining the status quo and excludes alternative imaginations of just and equitable health systems including the socio-political struggles required to attain those; and (3) an empirical case study from Gaza makes the case that resilience and vulnerability are symbiotic with each other rather than providing a solution for developing a strong health system. In conclusion, if the normative aim of health policies is to build sustainable, universally accessible, health systems then resilience is not the answer. The current threats that health systems face demand us to imagine beyond and explore possibilities for global solidarity and justice in health. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Low level transuranic wastes assay by photon interrogation and neutron counting: application to the concrete packages

    International Nuclear Information System (INIS)

    Lyoussi, A.

    1994-03-01

    A comprehensive programme is currently in progress at several laboratories for the development of sensitive, practical and non destructive assay techniques for the quantification of low-level transuranics (TRU) in bulk solid wastes. The present document presents an active detection method for radioactive wastes embedded in high-density matrices, mainly concrete packages. The high density of the packages, as well as their high water content (up to 25%), means only high-energy neutrons or gamma particles have a high enough range to activate the enclosed actinides. Our aims were to evaluate the feasibility of dosing transuranians by induced photofission, and to optimize an experimental system with a view to improving detection limits. The system uses a pulsed electron beam from a linear accelerator (LINAC) to produce high-energy photon bursts from a metallic converter. The photons induce fissions in TRU. When a fission is induced in trace amounts of TRU contaminants in waste material, it provides ''signatures'' from fission products that can be used to assay the material before disposal. We give here the results from counting photofission-induced delayed neutrons from 239 Pu, 235 U and 238 U in three sample matrices: glass, polyethylene and concrete. We counted delayed neutrons emitted after each pulse of the LINAC using the ''Sequential PHoton Interrogation and Neutron Counting Signatures'' (SPHINCS) technique. The electron linear accelerator operates at 15 MeV, 140 mA and 2.5 μs wide pulse at a 50 Hz rate. Finally, use of an electron linear accelerator as a particle source, experimental and electronics details, measurements results and their interpretation and future experimental works are discussed. (author). 53 refs., 101 figs., 21 tabs

  20. Evaluation of the neutron self-interrogation approach for assay of plutonium in high materials

    International Nuclear Information System (INIS)

    Russo, P.A.; Menlove, H.O.; Fife, K.W.; West, M.H.

    1987-01-01

    The pyrochemical scrap recovery processes, designed to extract impurities from plutonium metal and compounds, generate a variety of plutonium-laden residues consisting of high (α,n) matrices of varying chemical composition, and often containing grams to tens of grams of americium. For such materials, multiplication corrections based on real neutron coincidence count rate, R, and total neutron count rate, T, measurements cannot be applied because of the large, unknown, and variable (α,n) component in the total neutron emission rate. A study of the prototype self-interrogation assay method is in progress at the Los Alamos plutonium facility. In the self-interrogation approach, the assay signature R(IF)/T is a function of effective fissile plutonium content, where R(IF) is the induced fission component of the measured reals rate, and T is the measured, (α,n)-dominated totals rate. The present study includes a calibration effort using standards consisting of mixtures of PuO 2 and PuF 4 in a salt-strip matrix. The neutron measurements of the standards and the process materials have been performed at the Los Alamos Plutonium Facility. The precision and accuracy of the self-interrogation method applied to pyrochemical residues is examined in this study

  1. Miniaturized Interrogation System for Marsupial Rover Sensing Tether, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development of its marsupial rover sensing tether (MaRS Tether) technology by miniaturizing the sensor's interrogation system. Luna is...

  2. Interrogations, confessions, and adolescent offenders' perceptions of the legal system.

    Science.gov (United States)

    Arndorfer, Andrea; Malloy, Lindsay C; Cauffman, Elizabeth

    2015-10-01

    The potential consequences of interrogations and false confessions have been discussed primarily in terms of the risk for wrongful conviction, especially among adolescents and other vulnerable populations. However, it is possible that such experiences influence adolescents' perceptions of the legal system more generally. In the present study, we examined whether incarcerated male juvenile offenders' (n = 193) perceptions of police and the courts were related to their confession and interrogation experiences. High-pressure interrogation experiences and self-reported false confessions to police were associated with more negative perceptions of police. However, self-reported true confessions were not significantly associated with youths' perceptions of the police. Neither interrogation nor confession experiences (true or false) were related to youths' perceptions of the courts. Results provide additional support for policy reform of interrogation practices with young suspects. A more developmentally appropriate approach to criminal interrogations with youth may simultaneously improve police-youth relations and protect vulnerable suspects in the interrogation room. (c) 2015 APA, all rights reserved).

  3. Design of a novel instrument for active neutron interrogation of artillery shells.

    Directory of Open Access Journals (Sweden)

    Camille Bélanger-Champagne

    Full Text Available The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.

  4. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    Science.gov (United States)

    Chichester, David L.; Seabury, Edward H.

    2009-04-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a 3He neutron detector to detect shielded fissionable material including enriched uranium and reactor grade plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 times 108 neutrons per second, 2.2 kg of enriched uranium hidden within a 61 cm times 61 cm times 71 cm volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit approaching the gram level could be expected with the same simple set-up.

  5. Interrogation zone determination in HF RFID systems with multiplexed antennas*

    Directory of Open Access Journals (Sweden)

    Jankowski-Mihułowicz Piotr

    2015-09-01

    Full Text Available The operation of an anti-collision RFID system is characterized by the interrogation zone which should be estimated in any direction of 3D space for a group of electronic transponders. The interrogation zone should be as large as possible. However, the many problems in this area are due to the fact that energy can be transferred to transponders only on a limited distance. The greatest flexibility in developing RFID applications and shaping the interrogation zone can be achieved using the system with an antenna multiplexer. Therefore the problem of the interrogation zone determination in HF RFID systems with two orthogonal RWD antennas is presented in the paper. The perceived issues have been effectively dealt with and the solution has been proposed on the basis of the elaborated model. Conducted studies have been used to develop the software tool JankoRFIDmuxHF in the Mathcad environment. The research results are analysed in an example system configuration. The specialized measuring stand has been used for experimental verification of the identification efficiency. The convergence of the measurements and calculations confirms a practical usefulness of the presented concept of interrogation zone determination in anti-collision systems. It also shows the practical utility of the developed model and software tools.

  6. Expected count rate for the Self- Interrogation Neutron Resonance Densitometry measurements of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rossa, Riccardo [SCK.CEN, Belgian Nuclear Research Centre, Boeretang, 200 - B2400 Mol (Belgium); Universite libre de Bruxelles, Ecole polytechnique de Bruxelles - Service de Metrologie Nucleaire, CP 165/84, Avenue F.D. Roosevelt, 50 - B1050 Brussels (Belgium); Borella, Alessandro; Van der Meer, Klaas [SCK.CEN, Belgian Nuclear Research Centre, Boeretang, 200 - B2400 Mol (Belgium); Labeau, Pierre-Etienne; Pauly, Nicolas [Universite libre de Bruxelles, Ecole polytechnique de Bruxelles - Service de Metrologie Nucleaire, CP 165/84, Avenue F.D. Roosevelt, 50 - B1050 Brussels (Belgium)

    2015-07-01

    The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in the fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron flux integrated over the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach considered in this study consists in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuel assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types are used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the count rate that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of count rate and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the count rate by increasing the detector size. The study shows that the highest count rate is achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the count rate associated to each detector type

  7. Field Prototype of the ENEA Neutron Active Interrogation Device for the Detection of Dirty Bombs

    Directory of Open Access Journals (Sweden)

    Nadia Cherubini

    2016-10-01

    Full Text Available The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA Neutron Active Interrogation (NAI device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs, the so-called “dirty bombs”. The NAI device, at its current development stage, allows to detect 6 g of 235U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1 an “active” stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2 a “passive” stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.

  8. Noncontact power/interrogation system for smart structures

    Science.gov (United States)

    Spillman, William B., Jr.; Durkee, S.

    1994-05-01

    The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.

  9. Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

    2014-11-04

    An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

  10. Neutron interrogation to identify chemical elements with an ion-tube neutron source (INS)

    International Nuclear Information System (INIS)

    Alvarez, R.A.; Dougan, A.D.; Rowland, M.R.; Wang, T.F.

    1995-01-01

    A non-destructive analysis technique using a portable, electric ion-tube neutron source (INS) and gamma ray detector has been used to identify the key constituent elements in a number of sealed munitions, and from the elemental makeup, infer the types of agent within each. The high energy (14 MeV) and pulsed character of the neutron flux from an INS provide a method of measuring, quantitatively, the oxygen, carbon, and fluorine content of materials in closed containers, as well as the other constituents that can be measured with low-energy neutron probes. The broad range of elements that can be quantitatively measured with INS-based instruments provides a capability of verifying common munition fills; it provides the greatest specificity of any portable neutron-based technique for determining the full matrix of chemical elements in completely unrestricted sample scenarios. The specific capability of quantifying the carbon and oxygen content of materials should led to a fast screening technique which, can discriminate very quickly between high-explosive and chemical agent-filled containers. (author) 12 refs.; 5 figs.; 3 tabs

  11. Photon and neutron interrogation techniques for chemical explosives detection in air cargo: A critical review

    International Nuclear Information System (INIS)

    Runkle, Robert C.; White, Timothy A.; Miller, Erin A.; Caggiano, Joseph A.; Collins, Brian A.

    2009-01-01

    Scanning cargo transported via aircraft ('air cargo') for explosive threats is a problem that presently lacks a comprehensive technical solution. While chemical explosives detection in the baggage-scanning domain has a rich history that sheds light on potential solutions, air cargo differs in several important ways, and thus one cannot look to the present array of technologies. Some contemporary solutions, such as trace analysis, are not readily applied to cargo because of sampling challenges while the larger geometry of air cargo makes others less effective. This review article examines an array of interrogation techniques using photons and neutrons as incident particles. We first present a summary of the signatures and observables chemical explosives provide and review how they have been exploited in baggage scanning. Following this review is a description of the challenges posed by the air-cargo application space. After considering sources of photons and neutrons, we describe methods focused on transmission imaging, sub-surface examination, and elemental characterization. It is our goal to expand the understanding of each method's technical promise while largely deferring questions that revolve around footprint, safety, and conduct of operations. Our overarching intent is that a comprehensive understanding of potential techniques will foster the development of a comprehensive solution.

  12. High-sensitive detection by direct interrogation of 14 MeV Acc neutrons, (1). Uranium-contained metal matrix in a waste dram

    International Nuclear Information System (INIS)

    Haruyama, Mitsuo; Takase, Misao; Tobita, Hiroshi; Mori, Takamasa

    2004-01-01

    Previously, authors reported that the 14 MeV-neutron direct interrogation method has made possible measure for the discrimination of clearance levels of concrete solidification uranium waste. In this paper, applicability of the method to metal waste matrix is discussed based on the results of simulation experiments by the continuation energy Monte Carlo calculation code (MVP). The problem is that self-neutron moderation effect in a waste cannot be expected when a waste matrix is metal. To solve this, a moderator is adopted so as to surround a metal waste drum and to slow down suitably a 14 MeV neutrons. The simulation calculation showed that this effect is satisfactorily large. The detection limit of radioactivity concentration to 4.5% enriched uranium has been found to be 0.0973 Bq/g in the metal waste model of 215.59 kg gross weight, in which 61 pipes are stuffed into its drum. Moreover, the position-dependent sensitivity difference in a metal waste drum can be settled as small as to ±13.5%. In conclusion, it can be said that 14 MeV-neutron direct interrogation method can be applied to the waste of a metal system: the detection sensitivity is high enough and the position-dependent sensitivity difference is small admittedly. Hence the method can be applied also to discrimination measurement of the clearance level of metal uranium waste. (author)

  13. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  14. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Lafleur, Adrienne M. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Los Alamos National Laboratory; Bolind, Alan M. [Los Alamos National Laboratory

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  15. Silicon Carbide and Diamond Neutron Detectors for Active Interrogation Security Applications

    Science.gov (United States)

    Hodgson, Michael

    A thorough investigation has been carried out in order to determine the suitability of diamond and silicon carbide for active interrogation applications. This included electrical and radiological characterisation of single crystal diamond (D-SC) and polycrystalline diamond (D-PC) detectors; epitaxial silicon carbide (SiC-EP) and semi-insulating silicon carbide (SiC-SI); all compared against the performance of a commercial silicon PIN photodiode (Si-PIN) from Hamamatsu. This work aided in determining whether the detectors were suitable for radiation detection purposes, as well as obtaining the operational criteria for use. Characterisation work was also conducted on semi-insulating silicon carbide detectors from three different suppliers, as well as on detectors fabricated via different techniques. This work demonstrated the robustness of the material, as the charge collection properties were unaffected by contact fabrication technique. Changes in current-voltage characteristics were observed for different contact fabrication methods, but were generally still low (≈nA) over the ranges tested (+/-500V). Following this work the performance of selected detectors was measured against criteria for the AWE active interrogation project. Radiation dose dependent performance deterioration was observed in the SiC-SI and D-PC detectors, with decreased charge collection efficiency (-45+/-4%) and intrinsic efficiency (-40% at -400V) observed respectively. It is not clear as to whether these effects are a result of bulk material damage or contact/surface/mount damage, but an increase in the current-voltage relationship was also observed on these detectors, as well as the Si-PIN (SiC-SI≈+25% and D-PC≈+20% at -400V; Si- PIN≈+300% at -25V). Instability of the peak position and/or counting rate with irradiation time was observed in D-SC, D-PC and all the semi-insulating SiC (polarisation effect). For D-SC this was primarily with alpha particles and stability would be

  16. A new method to measure the U-235 content in fresh LWR fuel assemblies via fast-neutron passive self-interrogation

    Science.gov (United States)

    Menlove, Howard; Belian, Anthony; Geist, William; Rael, Carlos

    2018-01-01

    The purpose of this paper is to provide a solution to a decades old safeguards problem in the verification of the fissile concentration in fresh light water reactor (LWR) fuel assemblies. The problem is that the burnable poison (e.g. Gd2O3) addition to the fuel rods decreases the active neutron assay for the fuel assemblies. This paper presents a new innovative method for the verification of the 235U linear mass density in fresh LEU fuel assemblies that is insensitive to the burnable poison content. The technique makes use of the 238U atoms in the fuel rods to self-interrogate the 235U mass. The innovation for the new approach is that the 238U spontaneous fission (SF) neutrons from the rods induces fission reactions (IF) in the 235U that are time correlated with the SF source neutrons. Thus, the coincidence gate counting rate benefits from both the nu-bar of the 238U SF (2.07) and the 235U IF (2.44) for a fraction of the IF reactions. Whereas, the 238U SF background has no time-correlation boost. The higher the detection efficiency, the higher the correlated boost because background neutron counts from the SF are being converted to signal doubles. This time-correlation in the IF signal increases signal/background ratio that provides a good precision for the net signal from the 235U mass. The hard neutron energy spectrum makes the technique insensitive to the burnable poison loading where a Cd or Gd liner on the detector walls is used to prevent thermal-neutron reflection back into the fuel assembly from the detector. We have named the system the fast-neutron passive collar (FNPC).

  17. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  18. Direct fissile assay of highly enriched UF6 using random self-interrogation and neutron coincidence response

    International Nuclear Information System (INIS)

    Stewart, J.E.; Menlove, H.O.

    1983-01-01

    A new nondestructive method for direct assay of 235 U mass contained in Model 5A uranium hexafluoride (UF 6 ) product storage cylinders has been successfully tested in the laboratory and under field conditions. The technique employs passive neutron self-interrogation and uses the ratio of coincidences-to-totals counts as a measure of bulk fissile mass. The accuracy of the method is 6.8% (1 sigma) based on field measurements of 44 Model 5A cylinders, 11 of which were either only partially filled or contained reactor return material. The cylinders contained UF 6 with enrichments from 5.96% to 97.6%. Count times were 3 to 6 min depending on 235 U mass. Samples ranged from below 1 kg to over 16 kg of 235 U. Because the method relies primarily on fast neutron self-interrogation, complete sampling of the UF 6 takes place. This feature alleviates inhomogeneity problems and offers increased assurance of the presence of stated amounts of bulk fissile material as compared with current verification methods

  19. Optical measuring system with an interrogator and a polymer-based single-mode fibre optic sensor system

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an optical measuring system comprising a polymer-based single-mode fibre-optic sensor system (102), an optical interrogator (101), and an optical arrangement (103) interconnecting the optical interrogator (101) and the polymer-based single-mode fibre-optic sensor...... system (102). The invention further relates to an optical interrogator adapted to be connected to a polymer-based single-mode fibre-optic sensor system via an optical arrangement. The interrogator comprises a broadband light source arrangement (104) and a spectrum analysing arrangement which receives...... and analyses light reflected from the polymer-based single- mode fibre-optic sensor system....

  20. Hardware embedded fiber sensor interrogation system using intensive digital signal processing

    OpenAIRE

    Wang, Yujuan; Negri, Lucas H.; Kalinowski, Hypolito J.; Mattos, Daniel S.; Negri, Gabriel H.; Paterno, Aleksander S.

    2014-01-01

    The description of an interrogation system for fiber Bragg grating sensors is reported. The full implementation in hardware of the required signal processing is proposed and made publicly available. The hardware description is implemented in a field programmable gate array (FPGA) development kit and the processing units allow one to control an optoelectronic interrogation system that uses the tunable filter method. Since the signal that drives the used Fabry-Perot filter (FFP) using a digital...

  1. Discrimination of chemical and high-explosive munitions by neutron interrogation for arms control treaty verification

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Cole, J.D.; Gehrke, R.J.; Greenwood, R.C.; Krebs, K.M.

    1993-01-01

    For treaty verification purposes, due to the hazards of direct sampling of chemical and explosive munitions, non-destructive evaluation methods have important safety advantages. The authors assay method employs neutrons from a californium-252 radioisotopic source to induce capture and inelastic reactions in a munition under test, and the resulting gamma radiation is measured with an high-purity germanium gamma-ray detector. For field verification, a portable, battery-operated assay system has been developed that performs automatic spectrum analysis and agent identification in near-real time. In tests with actual chemical and high explosives munitions, the assay method reliably identifies nerve agents GB and VX, blister agents HD and L, white phosphorous, and high explosives

  2. Application of active neutronic interrogation method to the line analysis in reprocessing plant

    International Nuclear Information System (INIS)

    Passard, C.

    1993-01-01

    In a reprocessing plant of irradiated spent fuels, the knowledge in real time (line analysis) of uranium and plutonium quantities present in solutions is an extremely important parameter to control the proceeding and for the apparatus safety. The active neutronic analysis give a nondestructive non intrusive and quick measure to know the concentrations. This method consists in inducing fissions in nuclides with a neutron source and then to detect the particles which come from

  3. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  4. Development of an Optical Fiber Sensor Interrogation System for Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Alfredo Lamberti

    2016-01-01

    Full Text Available Since the introduction of dynamic optical fiber sensor interrogation systems on the market it has become possible to perform vibration measurements at frequencies up to a few kHz. Nevertheless, the use of these sensors in vibration analysis has not become a standard practice yet. This is mainly caused by the fact that interrogators are stand-alone systems which focus on strain measurements while other types of signals are also required for vibration analysis (e.g., force signals. In this paper, we present a fiber Bragg grating (FBG interrogation system that enables accurate strain measurement simultaneously with other signals (e.g., excitation forces. The system is based on a Vertical Cavity Surface Emitting Laser (VCSEL and can easily be assembled with relatively low-cost off-the-shelf components. Dynamic measurements up to a few tens of kHz with a dynamic precision of around 3 nanostrain per square-root Hz can be performed. We evaluate the proposed system on two measurement examples: a steel beam with FBG sensors glued on top and a composite test specimen with a fiber sensor integrated within the material. We show that in the latter case the results of the interrogation system are superior in quality compared to a state-of-the-art commercially available interrogation system.

  5. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    Science.gov (United States)

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  6. Dielectric RheoSANS - Simultaneous Interrogation of Impedance, Rheology and Small Angle Neutron Scattering of Complex Fluids.

    Science.gov (United States)

    Richards, Jeffrey J; Gagnon, Cedric V L; Krzywon, Jeffery R; Wagner, Norman J; Butler, Paul D

    2017-04-10

    A procedure for the operation of a new dielectric RheoSANS instrument capable of simultaneous interrogation of the electrical, mechanical and microstructural properties of complex fluids is presented. The instrument consists of a Couette geometry contained within a modified forced convection oven mounted on a commercial rheometer. This instrument is available for use on the small angle neutron scattering (SANS) beamlines at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). The Couette geometry is machined to be transparent to neutrons and provides for measurement of the electrical properties and microstructural properties of a sample confined between titanium cylinders while the sample undergoes arbitrary deformation. Synchronization of these measurements is enabled through the use of a customizable program that monitors and controls the execution of predetermined experimental protocols. Described here is a protocol to perform a flow sweep experiment where the shear rate is logarithmically stepped from a maximum value to a minimum value holding at each step for a specified period of time while frequency dependent dielectric measurements are made. Representative results are shown from a sample consisting of a gel composed of carbon black aggregates dispersed in propylene carbonate. As the gel undergoes steady shear, the carbon black network is mechanically deformed, which causes an initial decrease in conductivity associated with the breaking of bonds comprising the carbon black network. However, at higher shear rates, the conductivity recovers associated with the onset of shear thickening. Overall, these results demonstrate the utility of the simultaneous measurement of the rheo-electro-microstructural properties of these suspensions using the dielectric RheoSANS geometry.

  7. Sensitivity Measurements For Cargo Scanning Applications Using Photon Interrogation and Neutron Signature Counting Techniques

    Science.gov (United States)

    Ankrah, Maxwell

    2011-12-01

    In recent years, non-destructive evaluation techniques which use either photon or neutron sources from accelerators followed by neutron counting signatures have been used in many national security and nuclear nonproliferation applications [4, 60]. Although the United States customs and border protection initiated and implemented a cargo security initiative to discover threats from others countries before they embark to the US, detectors with better sensitivities are more necessary than ever in view of the global threats faced by nations around the world. Photofission based applications which use delayed neutron signal ores as viable detection schemes for fissile material detection have been ongoing for many years. Applications of this technology to include cargo scanning applications are however lacking. This work in this dissertation used the delayed neutron signature counting technique for fissile material detection in conjunction with new formulated Curries' expressions to establish the sensitivity (minimum detectable mass) limits. The fission reactions were induced in a uranyl nitrate solution containing 94.1 g of 238U using bremsstrahlung endpoint cue pies of 9 MeV to 21 MeV in 2 MeV steps. Preliminary data on the sensitvity measurement at bremsstrahlung end point energies of 9, 14, 18 and 22 MeV are also presented. We also present the effect of borated polyethylene and lead shielding on the sensitivity at 9 and 22 N1cV. The sensitivities were calculated for 5%u false positives and 5% fake negatives as well as for 1% false positives and 0.1% false negatives. A dose of 4 Gy, 5 mGy and 1 mGy were assumed to be delivered to Mutt cargo container. For a radiator and target-to-detector distance of 150 cm and 200 cup, the delayed neutron yield from calculation and experiment was also compared. Finally, feasibility studies was conducted to determine if the linac parameters used in this research was capable of detecting 1 mg, 1 g and 1 kg of 238U. This work was funded

  8. Cadmium Subtraction Method for the Active Albedo Neutron Interrogation of Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Worrall, Louise G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-02-01

    This report describes work performed under the Next Generation Safeguards Initiative (NGSI) Cadmium Subtraction Project. The project objective was to explore the difference between the traditional cadmium (Cd) ratio signature and a proposed alternative Cd subtraction (or Cd difference) approach. The thinking behind the project was that a Cd subtraction method would provide a more direct measure of multiplication than the existing Cd ratio method. At the same time, it would be relatively insensitive to changes in neutron detection efficiency when properly calibrated. This is the first published experimental comparison and evaluation of the Cd ratio and Cd subtraction methods.

  9. NELIS - a Neutron Inspection System for Detection of Illicit Drugs

    International Nuclear Information System (INIS)

    Barzilov, Alexander P.; Womble, Phillip C.; Vourvopoulos, George

    2003-01-01

    NELIS (Neutron ELemental Inspection System) is currently being developed to inspect cargo pallets for illicit drugs. NELIS must be used in conjunction with an x-ray imaging system to optimize the inspection capabilities at ports of entry. Pulsed fast-thermal neutron analysis is utilized to measure the major and minor chemical elements in a non-destructive and non-intrusive manner. Fourteen-MeV neutrons produced with a pulsed d-T neutron generator are the interrogating particles. NELIS analyzes the characteristic gamma rays emitted from the object that are produced by nuclear reactions from fast and thermal neutrons. These gamma rays have different energies for each chemical element, and act as their fingerprints. Since the elemental composition of illicit drugs is quite different from that of innocuous materials, drugs hidden in pallets are identified through the comparison of expected and measured elemental composition and ratios. Results of tests of the system will be discussed

  10. Control of radioactive wastes and coupling of neutron/gamma measurements: use of radiative capture for the correction of matrix effects that penalize the fissile mass measurement by active neutron interrogation; Controle des dechets radioactifs et couplage de mesures neutron/gamma: exploitation de la capture radiative pour corriger les effets de matrice penalisant la mesure de la masse fissile par interrogation neutronique active

    Energy Technology Data Exchange (ETDEWEB)

    Loche, F

    2006-10-15

    In the framework of radioactive waste drums control, difficulties arise in the nondestructive measurement of fissile mass ({sup 235}U, {sup 239}Pu..) by Active Neutron Interrogation (ANI), when dealing with matrices containing materials (Cl, H...) influencing the neutron flux. The idea is to use the neutron capture reaction (n,{gamma}) to determine the matrix composition to adjust the ANI calibration coefficient value. This study, dealing with 118 litres, homogeneous drums of density less than 0,4 and composed of chlorinated and/or hydrogenated materials, leads to build abacus linking the {gamma} ray peak areas to the ANI calibration coefficient. Validation assays of these abacus show a very good agreement between the corrected and true fissile masses for hydrogenated matrices (max. relative standard deviation: 23 %) and quite good for chlorinated and hydrogenated matrices (58 %). The developed correction method improves the measured values. It may be extended to 0,45 density, heterogeneous drums. (author)

  11. A Fiber Bragg Grating Interrogation System with Self-Adaption Threshold Peak Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Weifang Zhang

    2018-04-01

    Full Text Available A Fiber Bragg Grating (FBG interrogation system with a self-adaption threshold peak detection algorithm is proposed and experimentally demonstrated in this study. This system is composed of a field programmable gate array (FPGA and advanced RISC machine (ARM platform, tunable Fabry–Perot (F–P filter and optical switch. To improve system resolution, the F–P filter was employed. As this filter is non-linear, this causes the shifting of central wavelengths with the deviation compensated by the parts of the circuit. Time-division multiplexing (TDM of FBG sensors is achieved by an optical switch, with the system able to realize the combination of 256 FBG sensors. The wavelength scanning speed of 800 Hz can be achieved by a FPGA+ARM platform. In addition, a peak detection algorithm based on a self-adaption threshold is designed and the peak recognition rate is 100%. Experiments with different temperatures were conducted to demonstrate the effectiveness of the system. Four FBG sensors were examined in the thermal chamber without stress. When the temperature changed from 0 °C to 100 °C, the degree of linearity between central wavelengths and temperature was about 0.999 with the temperature sensitivity being 10 pm/°C. The static interrogation precision was able to reach 0.5 pm. Through the comparison of different peak detection algorithms and interrogation approaches, the system was verified to have an optimum comprehensive performance in terms of precision, capacity and speed.

  12. Plasmonic Interrogation of Biomimetic Systems for Enhanced Toxicity Assays

    Science.gov (United States)

    Hinman, Samuel Stuart

    In light of their escalating exposure to possible environmental toxicants, there are many biological systems that need to be evaluated in a resource and time efficient manner. Understanding how toxicants behave in relation to their physicochemical properties and within complex biological media is especially important toward developing a stronger scientific foundation of these systems so that adequate regulatory decisions may be made. While there are many emerging methods available for the detection and characterization of these chemicals, nanotechnology has presented itself as a promising alternative toward creating more efficient assays. In particular, metallic nanoparticles and thin films exhibit unique optical properties that allow for highly sensitive and multiplexed studies to be performed. These plasmonic materials often preclude the use of molecular tags and labels, enabling direct characterizations and enhancing the throughput of biomolecular studies. However, their lack of specificity toward certain targets and potential toxicity has thus far precluded their widespread use in toxicity testing. The cell membrane, a natural signal transducer, represents one of the fundamental structures for biological recognition and communication. These interfaces principally function as a selective barrier to exogenous materials, including ions, signaling molecules, growth factors, and toxins; therefore, understanding interactions at membrane interfaces is a vital step in elucidating how biological responses are effected. Supported lipid bilayers, which may easily be tailored in composition and complexity, are ideal interfaces for coupling to plasmonic assays since they may be supported in close proximity to metallic nanoparticles and thin films, where measurements are most sensitive. This research will focus on the coupling of plasmonic materials and biomimetic interfaces to increase the sensitivity, efficiency, and throughput of conventional toxicity assays. The

  13. A neutron well logging system

    International Nuclear Information System (INIS)

    1980-01-01

    A pulsed neutron well logging system using a sealed off neutron generator tube is provided with a programmable digital neutron output control system. The control system monitors the target beam current and compares a function of this current with a pre-programmed control function to develop a control signal for the neutron generator. The control signal is used in a series regulator to control the average replenisher current of the neutron generator tube. The programmable digital control system of the invention also provides digital control signals as a function of time to provide ion source voltages. This arrangement may be utilized to control neutron pulses durations and repetition rates or to produce other modulated wave forms for intensity modulating the output of the neutron generator as a function of time. (Auth.)

  14. The synchronous active neutron detection system for spent fuel assay

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed open-quotes lock-inclose quotes amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound

  15. Incorporation of Photon Analysis into an Active Interrogation System for Shielded Uranium Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Canion, Bonnie E. [Univ. of Texas, Austin, TX (United States)

    2016-02-01

    The main goal of this project is to investigate how photon and neutron signatures from an Associated Particle Imaging (API) Deuterium-Tritium (DT) neutron generator detector system can be used to non-destructively predict the enrichment of uranium in an unknown configuration of shielded uranium.

  16. Simultaneous photon and neutron interrogation using an electron accelerator in order to quantify actinides in encapsulated radioactive wastes; Double interrogation simultanee neutrons et photons utilisant un accelerateur d'electrons pour la caracterisation separee des actinides dans les dechets radioactifs enrobes

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F

    1999-09-24

    Measuring out alpha emitters, such as ({sup 234,235,236,238}U {sup 238,239,240,242,}2{sup 44P}u, {sup 237}Np {sup 241,243}Am...), in solid radioactive waste, allows us to quantify the alpha activity in a drum and then to classify it. The SIMPHONIE (SIMultaneous PHOton and Neutron Interrogation Experiment) method, developed in this Ph.D. work, combines both the Active Neutron Interrogation and the Induced Photofission Interrogation techniques simultaneously. Its purpose is to quantify in only one measurement, fissile ({sup 235}U, {sup 239,241}Pu...) and fertile ({sup 236,238}U, {sup 238,240}Pu...) elements separately. In the first chapter of this Ph.D. report, we present the principle of the Radioactive Waste Management in France. The second chapter deals with the physical properties of neutron fission and of photofission. These two nuclear reactions are the basis of the SIMPHONIE method. Moreover, one of our purposes was to develop the ELEPHANT (ELEctron PHoton And Neutron Transport) code in view to simulate the electron, photon and neutron transport, including the ({gamma}, n), ({gamma}, 2n) and ({gamma}, f) photonuclear reactions that are not taken into account in the MCNP4 (Monte Carlo N-Particle) code. The simulation codes developed and used in this work are detailed in the third chapter. Finally, the fourth chapter gives the experimental results of SIMPHONIE obtained by using the DGA/ETCA electron linear accelerators located at Arcueil, France. Fissile ({sup 235}U, {sup 239}Pu) and fertile ({sup 238}U) samples were studied. Furthermore, comparisons between experimental results and calculated data of photoneutron production in tungsten, copper, praseodymium and beryllium by using an electron LINear Accelerator (LINAC) are given. This allows us to evaluate the validity degree of the ELEPHANT code, and finally the feasibility of the SIMPHONIE method. (author)

  17. Study and development of a method allowing the identification of actinides inside nuclear waste packages, by active neutron or photon interrogation and delayed gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Carrel, F.

    2007-10-01

    An accurate estimation of the alpha-activity of a nuclear waste package is necessary to select the best mode of storage. The main purpose of this work is to develop a non-destructive active method, based on the fission process and allowing the identification of actinides ( 235 U, 238 U, 239 Pu). These three elements are the main alpha emitters contained inside a package. Our technique is based on the detection of delayed gammas emitted by fission products. These latter are created by irradiation with the help of a neutron or photon beam. Performances of this method have been investigated after an Active Photon or Neutron Interrogation (INA or IPA). Three main objectives were fixed in the framework of this thesis. First, we measured many yields of photofission products to compensate the lack of data in the literature. Then, we studied experimental performances of this method to identify a given actinide ( 239 Pu in fission, 235 U in photofission) present in an irradiated mixture. Finally, we assessed the application of this technique on different mock-up packages for both types of interrogation (118 l mock-up package containing EVA in fission, 220 l mock-up package with a wall of concrete in photofission). (author)

  18. Assessment of effectiveness of geologic isolation systems: the feasibility of computer interrogation of experts for WISAP

    Energy Technology Data Exchange (ETDEWEB)

    Wight, L.H.

    1980-05-01

    Simulation of the response of a waste repository to events that could initiate a fault tree to breach and failure is currently a keystone to the Battelle Waste Isolation Safety Assessment Program (WISAP). The repository simulation, which is part of the Disruptive Event Analysis Task, models the repository for its entire design life, one million years. This is clearly a challenging calculation, requiring input unlike any other response analysis by virtue of the long design life of the facility. What technology will provide design criteria for a million year design life. Answers to questions like this can, to some extent, be based on data, but always require some subjective judgments. The subjectivity, which is sometimes driven by inadequate or incomplete data or by a lack of understanding of the physical process, is therefore a crucial ingredient in an analysis of initiating events. Because of the variety of possible initiating events (glaciation, man-caused disruption, volcanism, etc.), many expert opinions will be solicited as input. The complexity of the simulation, the variety of experts involved, and the volume of applicable data all suggest that there may be a more direct, economical method to solicit the expert opinion. This report addresses the feasibility of such a system. Background information is presented that demonstrates the advantages of a computer interrogation system over conventional interrogation and assessment techniques. In the subsequent three sections the three elements - structure and decomposition, scaling, and synthesis - that are basic to any interrogation and assessment technique are reviewed. The interrelationship are schematically illustrated between these three fundamental elements and, therefore, serves as a useful guide to these three sections. Each of these three sections begins with a recommended approach to the particular element and ends with an illustration of representative dialogue.

  19. Assessment of effectiveness of geologic isolation systems: the feasibility of computer interrogation of experts for WISAP

    International Nuclear Information System (INIS)

    Wight, L.H.

    1980-05-01

    Simulation of the response of a waste repository to events that could initiate a fault tree to breach and failure is currently a keystone to the Battelle Waste Isolation Safety Assessment Program (WISAP). The repository simulation, which is part of the Disruptive Event Analysis Task, models the repository for its entire design life, one million years. This is clearly a challenging calculation, requiring input unlike any other response analysis by virtue of the long design life of the facility. What technology will provide design criteria for a million year design life. Answers to questions like this can, to some extent, be based on data, but always require some subjective judgments. The subjectivity, which is sometimes driven by inadequate or incomplete data or by a lack of understanding of the physical process, is therefore a crucial ingredient in an analysis of initiating events. Because of the variety of possible initiating events (glaciation, man-caused disruption, volcanism, etc.), many expert opinions will be solicited as input. The complexity of the simulation, the variety of experts involved, and the volume of applicable data all suggest that there may be a more direct, economical method to solicit the expert opinion. This report addresses the feasibility of such a system. Background information is presented that demonstrates the advantages of a computer interrogation system over conventional interrogation and assessment techniques. In the subsequent three sections the three elements - structure and decomposition, scaling, and synthesis - that are basic to any interrogation and assessment technique are reviewed. The interrelationship are schematically illustrated between these three fundamental elements and, therefore, serves as a useful guide to these three sections. Each of these three sections begins with a recommended approach to the particular element and ends with an illustration of representative dialogue

  20. Monitoring system including an electronic sensor platform and an interrogation transceiver

    Science.gov (United States)

    Kinzel, Robert L.; Sheets, Larry R.

    2003-09-23

    A wireless monitoring system suitable for a wide range of remote data collection applications. The system includes at least one Electronic Sensor Platform (ESP), an Interrogator Transceiver (IT) and a general purpose host computer. The ESP functions as a remote data collector from a number of digital and analog sensors located therein. The host computer provides for data logging, testing, demonstration, installation checkout, and troubleshooting of the system. The IT transmits signals from one or more ESP's to the host computer to the ESP's. The IT host computer may be powered by a common power supply, and each ESP is individually powered by a battery. This monitoring system has an extremely low power consumption which allows remote operation of the ESP for long periods; provides authenticated message traffic over a wireless network; utilizes state-of-health and tamper sensors to ensure that the ESP is secure and undamaged; has robust housing of the ESP suitable for use in radiation environments; and is low in cost. With one base station (host computer and interrogator transceiver), multiple ESP's may be controlled at a single monitoring site.

  1. Complicated systems for neutron detection

    International Nuclear Information System (INIS)

    Kozlov, I.M.; Nikotin, O.P.; Chekrenev, A.S.

    1982-01-01

    The design of the system for detecting delayed neutrons due to heavy nuclei photofission is described. The system comprises a large number of 3 He proportional counters of thermal neutrons. Each counter is equipped with an individual amplifier, discriminator and pUlse shaper. The tuning of a detector comprising several counters has been realized by changing the discrimination voltage in such a manner that the point of the ν radiation initial counting for all counters is under the same voltage of the high voltage source. Such method permits not only to reduce the tuning time but to obtain also an optimum value of perfect separation of signals from neutrons and ν radiation. Data processing has been performed by the commutator which permits to add signals in different versions. The choice of the version has been determined by output control potentials. The commutator functions have been recorded in the symbols of algebra logics. The described detector with the commutator has been employed in kinetic measurements of photofission delayed neutrons, for detecting fission neutrons with neutron background, from (α, n) for measuring the distribution of a number of instantaneous neutrons per fission act. The above principles of the detectors structure and data processing and recording facilities permit to unite according power supplies any number of thermal neutron counters and apply more complicated circuats of counter signal commutators

  2. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  3. High-resolution spectrally-resolved fiber optic sensor interrogation system based on a standard DWDM laser module.

    Science.gov (United States)

    Njegovec, Matej; Donlagic, Denis

    2010-11-08

    This paper presents a spectrally-resolved integration system suitable for the reading of Bragg grating, all-fiber Fabry-Perot, and similar spectrally-resolved fiber-optic sensors. This system is based on a standard telecommunication dense wavelength division multiplexing transmission module that contains a distributed feedback laser diode and a wavelength locker. Besides the transmission module, only a few additional opto-electronic components were needed to build an experimental interrogation system that demonstrated over a 2 nm wide wavelength interrogation range, and a 1 pm wavelength resolution. When the system was combined with a typical Bragg grating sensor, a strain resolution of 1 με and temperature resolution of 0.1 °C were demonstrated experimentally. The proposed interrogation system relies entirely on Telecordia standard compliant photonic components and can thus be straightforwardly qualified for use within the range of demanding applications.

  4. A simple neutron-gamma discriminating system

    International Nuclear Information System (INIS)

    Liu Zhongming; Xing Shilin; Wang Zhongmin

    1986-01-01

    A simple neutron-gamma discriminating system is described. A detector and a pulse shape discriminator are suitable for the neutron-gamma discriminating system. The influence of the constant fraction discriminator threshold energy on the neutron-gamma resolution properties is shown. The neutron-gamma timing distributions from an 241 Am-Be source, 2.5 MeV neutron beam and 14 MeV neutron beam are presented

  5. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Directory of Open Access Journals (Sweden)

    Hyung-Seok Lee

    2014-08-01

    Full Text Available A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system.

  6. Proof-of-Concept Assessment of a Photofission-Based Interrogation System for the Detection of Shielded Nuclear Material

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J. L.; Yoon, W. Y.; Harker, Y. D.; Hoggan, J. M.; Haskell, K. J.; VanAusdeln, L. A.

    2000-11-01

    A photonuclear interrogation method was experimentally assessed for the detection of shielded nuclear materials. Proof-of-Concept assessment was performed at the Los Alamos National Laboratory (LANL) TA-18 facility and used the INEEL VARITRON electron accelerator. Experiments were performed to assess and characterize the delayed neutron emission responses for different nuclear materials with various shield configurations using three ''nominal'' electron beam energies; 8-, 10-, and 11-MeV. With the exception of highly enriched uranium (HEU), the nuclear materials assessed represent material types commonly encountered in commerce. The specific nuclear materials studied include a solid 4.8-kg HEU sphere, a 5-kg multiple-object, depleted uranium (DU) [uranium with about 0.2% enrichment with U-235] target, and two 11-kg thorium disks. The shield materials selected include polyethylene, borated-polyethylene, and lead. Experimental results, supported with numerical predictions, have shown that the photonuclear interrogation technique is quite capable of detecting shielded nuclear material via the direct measurement of the photofission-induced delayed neutron emissions. To identify or discriminate between nuclear material types (i.e., depleted uranium, HEU, and thorium), a ratio of delayed neutron counts at two different beam energies is utilized. This latter method, referred to as the dual-beam energy ratio Figure-of-Merit, allows one to differentiate among the three nuclear material types.

  7. Compact multichannel high-resolution micro-electro-mechanical systems-based interrogator for Fiber Bragg grating sensing

    DEFF Research Database (Denmark)

    Ganziy, Denis; Rose, Bjarke; Bang, Ole

    2017-01-01

    We propose a novel type of compact high-resolution multichannel micro-electro-mechanical systems (MEMS)-based interrogator, where we replace the linear detector with a digital micromirror device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used...

  8. Microwave-Interrogated Embedded Sensor System for Nondestructive Evaluation (NDE) of Complex Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. and Lawrence Livermore National Lab propose to develop a new class of microwave-interrogated embedded sensors for nondestructive evaluation...

  9. Description and performance characteristics for the neutron Coincidence Collar for the verification of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1981-08-01

    An active neutron interrogation method has been developed for the measurement of 235 U content in fresh fuel assemblies. The neutron Coincidence Collar uses neutron interrogation with an AmLi neutron source and coincidence counting the induced fission reaction neutrons from the 235 U. This manual describes the system components, operation, and performance characteristics. Applications of the Coincidence Collar to PWR and BWR types of reactor fuel assemblies are described

  10. Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors.

    Science.gov (United States)

    Comanici, Maria I; Chen, Lawrence R; Kung, Peter

    2017-11-10

    Fiber optic sensors based on fiber Bragg gratings (FBGs) find potential use in condition monitoring because their spectral properties change according to external environmental and/or physical factors. We propose and demonstrate a technique for interrogating multiple FBG-based sensors based on microwave photonic (MWP) filtering. In particular, we exploit the spectrum-slicing properties of two different FBG Fabry-Perot cavities to implement a double passband MWP filter. Each sensor spectrum results in a unique MWP filter passband. As temperature is applied to a sensor, the corresponding MWP filter passband will shift in frequency; we track such shifts by monitoring the detected power at a fixed radio frequency. We discuss the use of a ratiometric approach for enhancing the sensitivity and the impact of cross-talk from the MWP filter responses in terms of simultaneous multi-sensor operation. Results show that we can monitor local temperatures at two (or multiple) different locations simultaneously and independently using a single measurement system.

  11. The CORSYS neutronics code system

    International Nuclear Information System (INIS)

    Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.

    1994-01-01

    The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs

  12. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  13. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  14. Neutron flux control systems validation

    International Nuclear Information System (INIS)

    Hascik, R.

    2003-01-01

    In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)

  15. Datgan, a reusable software system for facile interrogation and visualization of complex transcription profiling data

    Directory of Open Access Journals (Sweden)

    King Benjamin L

    2011-08-01

    Full Text Available Abstract Background We introduce Glaucoma Discovery Platform (GDP, an online environment for facile visualization and interrogation of complex transcription profiling datasets for glaucoma. We also report the availability of Datgan, the suite of scripts that was developed to construct GDP. This reusable software system complements existing repositories such as NCBI GEO or EBI ArrayExpress as it allows the construction of searchable databases to maximize understanding of user-selected transcription profiling datasets. Description Datgan scripts were used to construct both the underlying data tables and the web interface that form GDP. GDP is populated using data from a mouse model of glaucoma. The data was generated using the DBA/2J strain, a widely used mouse model of glaucoma. The DBA/2J-Gpnmb+ strain provided a genetically matched control strain that does not develop glaucoma. We separately assessed both the retina and the optic nerve head, important tissues in glaucoma. We used hierarchical clustering to identify early molecular stages of glaucoma that could not be identified using morphological assessment of disease. GDP has two components. First, an interactive search and retrieve component provides the ability to assess gene(s of interest in all identified stages of disease in both the retina and optic nerve head. The output is returned in graphical and tabular format with statistically significant differences highlighted for easy visual analysis. Second, a bulk download component allows lists of differentially expressed genes to be retrieved as a series of files compatible with Excel. To facilitate access to additional information available for genes of interest, GDP is linked to selected external resources including Mouse Genome Informatics and Online Medelian Inheritance in Man (OMIM. Conclusion Datgan-constructed databases allow user-friendly access to datasets that involve temporally ordered stages of disease or developmental stages

  16. Application of neutron/gamma transport codes for the design of explosive detection systems

    International Nuclear Information System (INIS)

    Elias, E.; Shayer, Z.

    1994-01-01

    Applications of neutron and gamma transport codes to the design of nuclear techniques for detecting concealed explosives material are discussed. The methodology of integrating radiation transport computations in the development, optimization and analysis phases of these new technologies is discussed. Transport and Monte Carlo codes are used for proof of concepts, guide the system integration, reduce the extend of experimental program and provide insight into the physical problem involved. The paper concentrates on detection techniques based on thermal and fast neutron interactions in the interrogated object. (authors). 6 refs., 1 tab., 5 figs

  17. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    This PhD work has two main topics; one on neutron instrumentations, and one on correlated electron systems. There have been a total of ten different subprojects. Common to all the projects is the neutron scattering technique that is presented in the first chapters of the thesis. Neutrons are a un......This PhD work has two main topics; one on neutron instrumentations, and one on correlated electron systems. There have been a total of ten different subprojects. Common to all the projects is the neutron scattering technique that is presented in the first chapters of the thesis. Neutrons...... the impact of the time structure (pulse length and repetition frequency) choice for ESS are appended. McStas simulations of a low resolution cold powder diffractometer and high resolution thermal powder diffractometer with wavelength frame multiplication have been carried out for 20 different settings...... of the time structure. The instrument designs were changed to fit each setting with pulse lengths between 1 ms and 2 ms and repetition frequencies between 10 Hz and 25 Hz. The cold powder diffractometer was found to perform well with all the different source settings. The thermal powder diffractometer...

  18. Physics of enriched uranyl fluoride deposit characterizations using active neutron and gamma interrogation techniques with 252Cf

    International Nuclear Information System (INIS)

    Wyatt, M.S.; Hannon, T.F.

    1998-01-01

    A method was developed and successfully applied to characterize large uranyl fluoride (UO 2 F 21 ) deposits at the former Oak Ridge Gaseous Diffusion Plant. These deposits were formed by a wet air in-leakage into the UF 6 process gas lines over a period of years. The resulting UO 2 F 2 is hygroscopic, readily absorbing moisture from the air to form hydrates as UO 2 F 2 -nH 2 O. The ratio of hydrogen to uranium, denoted H/U, can vary from 0--16, and has significant nuclear criticality safety impacts for large deposits. In order to properly formulate the required course of action, a non-intrusive characterization of the distribution of the fissile material within the pipe, its total mass, and amount of hydration was needed. The Nuclear Weapons Identification System (NWIS) previously developed at the Oak Ridge Y-12 Plant for identification of uranium weapons components in storage containers was used to successfully characterize the distribution, hydration, and total mass of these deposits

  19. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    International Nuclear Information System (INIS)

    Gribkov, V.; Karpinski, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; Strzyzewski, P.; Tomaszewski, K.; Dubrovsky, A.

    2006-01-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ∼760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of congruent with 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a ''single-shot detection system'' for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system

  20. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    Science.gov (United States)

    Gribkov, V.; Dubrovsky, A.; Karpiński, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; StrzyŻewski, P.; Tomaszewski, K.

    2006-12-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ˜760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of ≅ 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a "single-shot detection system" for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system.

  1. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10 10 neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10 7 to 3.8x10 8 n/cm 2 depending on the type of screen and film

  2. Study and development of a method allowing the identification of actinides inside nuclear waste packages, by active neutron or photon interrogation and delayed gamma-ray spectrometry; Etude et developpement d'une technique de dosage des actinides dans les colis de dechets radioactifs par interrogation photonique ou neutronique active et spectrometrie des gamma retardes

    Energy Technology Data Exchange (ETDEWEB)

    Carrel, F

    2007-10-15

    An accurate estimation of the alpha-activity of a nuclear waste package is necessary to select the best mode of storage. The main purpose of this work is to develop a non-destructive active method, based on the fission process and allowing the identification of actinides ({sup 235}U, {sup 238}U, {sup 239}Pu). These three elements are the main alpha emitters contained inside a package. Our technique is based on the detection of delayed gammas emitted by fission products. These latter are created by irradiation with the help of a neutron or photon beam. Performances of this method have been investigated after an Active Photon or Neutron Interrogation (INA or IPA). Three main objectives were fixed in the framework of this thesis. First, we measured many yields of photofission products to compensate the lack of data in the literature. Then, we studied experimental performances of this method to identify a given actinide ({sup 239}Pu in fission, {sup 235}U in photofission) present in an irradiated mixture. Finally, we assessed the application of this technique on different mock-up packages for both types of interrogation (118 l mock-up package containing EVA in fission, 220 l mock-up package with a wall of concrete in photofission). (author)

  3. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  4. Photon interrogation annual report for FY-1980

    International Nuclear Information System (INIS)

    Nieschmidt, E.B.; Tsang, F.Y.; Lawrence, R.S.; Vegors, S.H. Jr.

    1980-12-01

    The Photon Interrogation Technique is being developed for the assay of transuranic materials. A description of source and detector geometry, die-away times and photon flux measurements is given. Considerable effort during FY-1980 was devoted to collimator construction and shielding materials and configurations. Boric acid was found to be a very efficient shielding material for this application. Descriptions and results of these efforts are presented. Results of photon flux determinations, system response to source position and their effects on accuracy are discussed. Changes in the detector system produced a considerable efficiency increase and instrumentation changes brought improved performance. The instrument system with additions can obtain neutron spectral information. A schedule for further development of the system is presented

  5. Manually controlled neutron-activation system

    International Nuclear Information System (INIS)

    Johns, R.A.; Carothers, G.A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates

  6. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  7. Project and construction of counting system for neutron probe

    International Nuclear Information System (INIS)

    Monteiro, W.P.

    1985-01-01

    A counting system was developed for coupling neutron probe aiming to register pulses produced by slow neutron interaction in the detector. The neutron probe consists of fast neutron source, thermal neutron detector, amplifier circuit and pulse counting circuit. The counting system is composed by counting circuit, timer and signal circuit. (M.C.K.)

  8. Fiber optic interrogation systems for hypervelocity and low velocity impact studies

    Science.gov (United States)

    Jackson, D. A.; Cole, M. J.

    2012-03-01

    The aim of this project was to develop non-contact fiber optic based displacement sensors to operate in the harsh environment of a "light gas gun" (LGG), which can "fire" small particles at velocities ranging from 1 km/s-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the center of the impact to minimize corruption of the data from edge effects and survive the impact. We chose to develop a non-contact "pseudo" confocal intensity sensor, which demonstrated resolution comparable with conventional polyvinylidene fluoride (PVDF) sensors combined with high survivability and low cost. A second sensor was developed based on "fiber Bragg gratings" (FBG) to enable a more detailed analysis of the effects of the impact, although requiring contact with the target the low weight and very small contact area of the FBG had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on carbon fiber composite plates in the LGG and on low velocity impact tests. The particle momentum for the low velocity impact tests was chosen to be similar to that of the particles used in the LGG.

  9. RETRACTED: Fast neutron interrogation system development for the detection of explosive materials

    Science.gov (United States)

    Sim, Cheul Muu; Kim, Yi Kyung; Kim, Tae Joo; Hong, Kwang Pyo; Em, V. T.; Lee, Kye Hong; Kim, Young Jin; Kim, Jeong Uk

    2009-06-01

    This article has been removed at the request of the Editor-in-Chief and Authors. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). Reason: this article has been retracted at the request of the Editor-in-Chief and authors as it contains serious errors. This proceedings paper did not fully provide readers with the whole process of the experiment because of page limitations. This short paper resulted in prejudiced texts as well as absurd figures in regard with public information of detecting explosive materials against terrorism. The authors will revise the paper after a comprehensive discussion with the co-authors before resubmitting formally an article to NIMA.

  10. Progress of Neutron Discrimination System for Sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Kyu; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Hyun Duk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kwak, Ho Young; Ko, Il Gon [Chung-Ang University, Seoul (Korea, Republic of)

    2009-10-15

    The sonoluminescence and its possibility for fusion reaction in the bubble are famous issues at one time. There are a lot of controversies over the experiment of R.P Taleyarkhan. As Electric Power Research Institute (EPRI, USA) Project, we at KAIST and our subcontractor colleagues at Chung-Ang University are investigating this phenomenon and its applications which include the possibility of bubble fusion. We are carefully interested in the neutron detection in our measurement when the fusion reaction should occur in the chilled deuterated acetone. To sense existence of fusion reaction, neutron-gamma discrimination system has been installed and tested by neutron and gamma-ray sources. By performing two method at the same time, discrimination between neutron pulse and pile-up events are improved. And it can be applied to bubble fusion system.

  11. Design of a system for neutrons dosimetry

    International Nuclear Information System (INIS)

    Ceron, P.; Rivera, T.; Paredes G, L.; Azorin, J.; Sanchez, A.; Vega C, H. R.

    2014-08-01

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF 3 , He 3 and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a 239 PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  12. Fast-neutron detecting system with n, γ discrimination

    International Nuclear Information System (INIS)

    Ouyang Xiaoping; Huang Bao; Cao Jinyun

    1997-11-01

    In the present work, a new type neutron detecting system is reported, which can absolutely measure neutron parameters in n + γ mixed fields and has a long continuance of static high vacuum of 10 -4 Pa. The detecting system, with middle neutron-detecting sensitivity, short time response and big linear current output, has applied successfully in pulsed neutron beam measurement

  13. Embedded data acquisition system for neutron monitors

    International Nuclear Information System (INIS)

    Población, Ó G; Tejedor, I G; Sánchez, S; Blanco, J J; Gómez-Herrero, R; Medina, J; Steigies, C T

    2014-01-01

    This article presents the design and implementation of a new data acquisition system to be used as replacement for the old ones that have been in use with neutron monitors for the last decades and, which are eventually becoming obsolete. This new system is also intended to be used in new installations, enabling these scientific instruments to use today's communication networks to send data and receive commands from the operators. This system is currently running in two stations: KIEL2, in the Christian-Albrechts-Universität zu Kiel, Kiel, Germany, and CALMA, in the Castilla-La Mancha Neutron Monitor, Guadalajara, Spain

  14. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system

    Science.gov (United States)

    Wu, Jiangling; Huang, Yu; Bian, Xintong; Li, DanDan; Cheng, Quan; Ding, Shijia

    2016-10-01

    In this work, a custom-made intensity-interrogation surface plasmon resonance imaging (SPRi) system has been developed to directly detect a specific sequence of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The variation in the reflected light intensity detected from the sensor chip composed of gold islands array is proportional to the change of refractive index due to the selective hybridization of surface-bound DNA probes with target ssDNA. SPRi measurements were performed with different concentrations of synthetic target DNA sequence. The calibration curve of synthetic target sequence shows a good relationship between the concentration of synthetic target and the change of reflected light intensity. The detection limit of this SPRi measurement could approach 10.29 nM. By comparing SPRi images, the target ssDNA and non-complementary DNA sequence are able to be distinguished. This SPRi system has been applied for assay of BCR/ABL fusion gene extracted from real samples. This nucleic acid-based SPRi biosensor therefore offers an alternative high-effective, high-throughput label-free tool for DNA detection in biomedical research and molecular diagnosis.

  15. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  16. Conception design of shielding collimator system for high energy neutron radiography with minitype neutron source

    International Nuclear Information System (INIS)

    Wu Yang; Dou Haifeng; Tang Bin; Huo Heyong

    2013-01-01

    Shielding collimator system is necessary in the neutron radiography installation, this issue gives the conception design of shielding collimator system for FNR about high energy neutron source by MCNP. Preliminarily ascertain the material component and dimension, confirm the neutron flux at imaging position, imaging distance, imaging field range of the FNP installation in theory. (authors)

  17. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  18. Active interrogation of highly enriched uranium

    Science.gov (United States)

    Fairrow, Nannette Lea

    Safeguarding special nuclear material (SNM) in the Department of Energy Complex is vital to the national security of the United States. Active and passive nondestructive assays are used to confirm the presence of SNM in various configurations ranging from waste to nuclear weapons. Confirmation measurements for nuclear weapons are more challenging because the design complicates the detection of a distinct signal for highly enriched uranium. The emphasis of this dissertation was to investigate a new nondestructive assay technique that provides an independent and distinct signal to confirm the presence of highly enriched uranium (HEU). Once completed and tested this assay method could be applied to confirmation measurements of nuclear weapons. The new system uses a 14-MeV neutron source for interrogation and records the arrival time of neutrons between the pulses with a high efficiency detection system. The data is then analyzed by the Feynman reduced variance method. The analysis determined the amount of correlation in the data and provided a unique signature of correlated fission neutrons. Measurements of HEU spheres were conducted at Los Alamos with the new system. Then, Monte Carlo calculations were performed to verify hypothesis made about the behavior of the neutrons in the experiment. Comparisons of calculated counting rates by the Monte Carlo N-Particle Transport Code (MCNP) were made with the experimental data to confirm that the measured response reflected the desired behavior of neutron interactions in the highly enriched uranium. In addition, MCNP calculations of the delayed neutron build-up were compared with the measured data. Based on the results obtained from this dissertation, this measurement method has the potential to be expanded to include mass determinations of highly enriched uranium. Although many safeguards techniques exist for measuring special nuclear material, the number of assays that can be used to confirm HEU in shielded systems is

  19. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  20. Interrogating the justice system in a multi-ethnic state: a study of ...

    African Journals Online (AJOL)

    Law is a major instrument of maintaining cohesion in any given society. Its formulation, codification or unification as well as interpretation are major factors in determining the credibility of the criminal justice system and the level of legal conformity. The letter and spirit of the law are defeated when its formation, modulations, ...

  1. High-resolution all-optical photoacoustic imaging system for remote interrogation of biological specimens

    Science.gov (United States)

    Sampathkumar, Ashwin

    2014-05-01

    Conventional photoacoustic imaging (PAI) employs light pulses to produce a photoacoustic (PA) effect and detects the resulting acoustic waves using an ultrasound transducer acoustically coupled to the target tissue. The resolution of conventional PAI is limited by the sensitivity and bandwidth of the ultrasound transducer. We have developed an all-optical versatile PAI system for characterizing ex vivo and in vivo biological specimens. The system employs noncontact interferometric detection of the acoustic signals that overcomes limitations of conventional PAI. A 532-nm pump laser with a pulse duration of 5 ns excited the PA effect in tissue. Resulting acoustic waves produced surface displacements that were sensed using a 532-nm continuous-wave (CW) probe laser in a Michelson interferometer with a GHz bandwidth. The pump and probe beams were coaxially focused using a 50X objective giving a diffraction-limited spot size of 0.48 μm. The phase-encoded probe beam was demodulated using a homodyne interferometer. The detected time-domain signal was time reversed using k-space wave-propagation methods to produce a spatial distribution of PA sources in the target tissue. Performance was assessed using PA images of ex vivo rabbit lymph node specimens and human tooth samples. A minimum peak surface displacement sensitivity of 0.19 pm was measured. The all-optical PAI (AOPAI) system is well suited for assessment of retinal diseases, caries lesion detection, skin burns, section less histology and pressure or friction ulcers.

  2. Systems and methods for detecting neutrons

    Science.gov (United States)

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-08-09

    Systems and methods for detecting neutrons. One or more neutron-sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material, such as polystyrene. The nano-sized particles can be compounded into the extruded plastic material with at least one dopant that permits the plastic material to scintillate. One or more plastic light collectors can be associated with a neutron-sensitive scintillator, such that the plastic light collector includes a central hole thereof. A wavelength-shifting fiber can then be located within the hole. The wavelength shifting (WLS) fiber absorbs scintillation light having a wavelength thereof and re-emits the light at a longer wavelength.

  3. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended to generate high-energy neutrons for radiation therapy. This generic type of device may include signal...

  4. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    International Nuclear Information System (INIS)

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4π required for a spectral measurement with this system is approx. 10 10 n where the neutron yield is predominantly below 4 MeV and approx. 10 8 n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described

  5. An automated neutron monitor maintenance system

    International Nuclear Information System (INIS)

    Moore, F.S.; Griffin, J.C.; Odell, D.M.C.

    1996-01-01

    Neutron detectors are commonly used by the nuclear materials processing industry to monitor fissile materials in process vessels and tanks. The proper functioning of these neutron monitors must be periodically evaluated. We have developed and placed in routine use a PC-based multichannel analyzer (MCA) system for on-line BF3 and He-3 gas-filled detector function testing. The automated system: 1) acquires spectral data from the monitor system, 2) analyzes the spectrum to determine the detector's functionality, 3) makes suggestions for maintenance or repair, as required, and 4) saves the spectrum and results to disk for review. The operator interface has been designed to be user-friendly and to minimize the training requirements of the user. The system may also be easily customized for various applications

  6. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  7. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    OpenAIRE

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute ...

  8. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  9. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed

  10. Compact neutron systems expand in applications. RIKEN RANS

    International Nuclear Information System (INIS)

    Otake, Yoshie

    2017-01-01

    RIKEN accelerator-driven compact neutron source (RANS) has been developed and provided neutrons for industrial use. The proton linac of 7 MeV with the maximum average current 100 μA, pulse width 10-180 μs, repetition frequency 20-200 Hz is used with long-life Be target for such practical use in the field of manufacturing. Corrosion in the painted steels are visualized, neutron imaging and neutron diffraction technique have developed with compact neutron source. Non-destructive visualization inside thick concrete slab has been realized for the social infrastructure safety with compact neutron source system. (author)

  11. Real time neutron image processing system in NRF

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Kim, Yi Kyung; Nam, Ki Yong; Lee, Chang Hee; Chang, Jong Hwa

    1999-01-01

    The neutron radiography facility was installed at the neutron radiography beam tube of the HANARO research reactor. The NRF is used for the nondestructive test to inspect and evaluate the material defect and homogeneity by detecting the transmitted neutron image in the nuclear as well as non-nuclear industry. To analyze the dynamical neutron image effectively and efficiently, the real-time image processing system was developed in background subtraction, normalization, geometry correction and beam uniformity, contrast control, filtering. The image quality test and dimension measurements were performed for the neutron beam purity and sensitivity indication. The NRF beam condition represents the highest beam quality for neutron radiography.

  12. MPACT Fast Neutron Multiplicity System Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  13. Software for Manipulating and Embedding Data Interrogation Algorithms into Integrated Systems: Special Application to Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Allen, David W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2004-12-01

    In this study a software package for easily creating and embedding structural health monitoring (SHM) data interrogation processes in remote hardware is presented. The software described herein is comprised of two pieces. The first is a client to allow graphical construction of data interrogation processes. The second is node software for remote execution of processes on remote sensing and monitoring hardware. The client software is created around a catalog of data interrogation algorithms compiled over several years of research at Los Alamos National Laboratory known as DIAMOND II. This study also includes encapsulating the DIAMOND II algorithms into independent interchangeable functions and expanding the catalog with work in feature extraction and statistical discrimination. The client software also includes methods for interfacing with the node software over an Internet connection. Once connected, the client software can upload a developed process to the integrated sensing and processing node. The node software has the ability to run the processes and return results. This software creates a distributed SHM network without individual nodes relying on each other or a centralized server to monitor a structure.

  14. Detector systems for imaging neutron activation analysis

    International Nuclear Information System (INIS)

    Dewaraja, Y.K.; Fleming, R.F.

    1994-01-01

    This paper compares the performance of two imaging detector systems for the new technique of Imaging Neutron Activation Analysis (Imaging NAA). The first system is based on secondary electron imaging, and the second employs a position sensitive charged particle detector for direct localization of beta particles. The secondary electron imaging system has demonstrated a position resolution of 20 μm. The position sensitive beta detector has the potential for higher efficiencies with resolution being a trade off. Results presented show the feasibility of the two imaging methods for different applications of Imaging NAA

  15. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  16. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Science.gov (United States)

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ˜10 kJ is segregated into four modules of ˜2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ˜2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ˜17 kV/550 kA discharge. At ˜7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ˜4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ˜2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  17. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre Autonagar, Vishakapatnam 530012 (India)

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  18. Portable system for periodical verification of area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W.

    2009-01-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  19. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  20. Neutronic control instrumentation of protection systems

    International Nuclear Information System (INIS)

    Furet, J.

    1977-01-01

    The aims of neutronic control instrumentation are briefly recalled and the present status of materials research and development is presented. As for the out-of-pile instrumentation, emphasis is put on the reliability and efficiency of the detectors and the new solutions of electric signal processing. The possible reactivity measurements at rest are examined. As for in-pile instrumentation results relating to mobile detectors of the type of miniaturized fission chambers are presented. The radiation tests on course of development for several years in the working conditions of neutron self-powdered detectors are analyzed so as to show that their use as built-in in-core instrumentation is to be envisaged at short term. Basic options inherent to the 'Nuclear Safety' philosophy that define the protection system are recalled. A definition and a justification of the performance testing of the instrumentation at rest and in-service are then derived. Some new solutions are envisaged for processing the digital data obtained from the various sensors . A quality control of the materials setting conditions (especially electric noise) ensures a high reliability and availability of the materials involved in the neutron control and the protection system in working conditions [fr

  1. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  2. Neutron chain length distributions in subcritical systems

    International Nuclear Information System (INIS)

    Nolen, S.D.; Spriggs, G.

    1999-01-01

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors

  3. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  4. Evaluation of Fish Movements, Migration Patterns and Populations Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Zydlewski, Gayle B.; Casey, Sean

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections were recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440-4,245) was similar to those using more standard screw trap methods

  5. Evaluation of Fish Movements, Migration Patterns, and Population Abundance with Streamwidth PIT Tag Interrogation Systems, Final Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Zydlewski, Gayle; Winter, Christiane; McClanahan, Dee

    2003-02-01

    Two remote Streamwidth PIT tag Interrogation systems (SPIs) were operated continuously for over one year to test the feasibility of these systems for generating movement, migration, survival and smolt production estimates for salmonids. A total of 1,588 juvenile (< 100 mm FL) naturally produced salmonids (7 coho salmon, 482 cutthroat trout, and 1,099 steelhead) were PIT tagged above the upstream-most SPI (9 sites approximately 1 linear km each) in Fall 2001. Age at tagging for wild caught cutthroat and steelhead was 1 year. SPIs were operating before any PIT tagged fish were released in the creek. Over 390,000 detections were recorded from October 2001 to 31 July 2002. Efficiencies were site dependent, but overall detection efficiency for the creek was 97% with 95% confidence intervals of 91-100%. PIT tag detection efficiency ranged from 55-100% depending on the SPI and varied throughout the year with average efficiencies of 73% and 89%. SPI efficiency of PIT tag detection was not completely dependent on electronics noise levels or environmental conditions. Fish from all tagging locations were detected at the SPIs. Steelhead and cutthroat trout were primarily detected moving in the Spring (April-June) coincident with the anticipated smolt migration. Steelhead were also detected moving past SPIs at lower numbers in the Fall and Winter. Travel time between SPIs (downstream movement) was highly dependent on time of year. Travel time in the Spring was significantly faster (34.4 {+-} 7.0 hours) for all species than during any other time of year (763.1 {+-} 267.0 hours). Steelhead and cutthroat migrating in the Spring were the same age as those that did not migrate in the Spring. Peak of steelhead migration recorded at the two SPIs was 5/11 and 5/12 and the peak in the screw trap was recorded on 5/17. Steelhead smolt production estimates using SPIs (3,802 with 95% confidence intervals of 3,440 - 4,245) was similar to those using more standard screw trap methods

  6. A control and recording system for a neutron diffractometer

    International Nuclear Information System (INIS)

    Czech, Z.; Turek, L.; Wierzewski, K.

    1982-01-01

    A digital system for automatic control and data recording being a part of a neutron diffractometer designed for measurement of the angular distribution of monochromatic neutrons is described. The system is built using digital TTL integrated circuits. Particular attention is drawn to the interesting design of the optimized cross-matrix which selects the elements subjected to recording. The system successfully works with the neutron diffractometer at the EWA reactor. (author)

  7. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  8. Inexpensive, Rugged and Compact Tunable Laser with Simple Tuning Control for Airborne Fiber Optic Sensor (FOS) Interrogators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Dryden (Armstrong) Flight Research Center has developed a 4-fiber interrogation system for Fiber Optic Smart Structures (FOSS) sensor networks interrogation....

  9. Inexpensive, Rugged and Compact Tunable Laser with Simple Tuning Control for Airborne Fiber Optic Sensor (FOS) Interrogators, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Dryden (Armstrong) Flight Research Center has developed a 4-fiber interrogation system for Fiber Optic Smart Structures (FOSS) sensor networks interrogation....

  10. Health Interrogation for Space Structures (HISS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon's Health Interrogation for Space Structures (HISS) system provides a significant improvement over current alternatives for monitoring pressurized space...

  11. Group knowledge in interrogative epistemology

    NARCIS (Netherlands)

    Baltag, A.; Boddy, R.; Smets, S.; van Ditmarsch, H.; Sandu, G.

    2018-01-01

    In this paper we formalize an approach to knowledge that we call Interrogative Epistemology, in the spirit of Hintikka’s “interrogative model” of knowledge. According to our approach, an agent’s knowledge is shaped and limited by her interrogative agenda (as defined by her fundamental questions or

  12. The neutron beam users tape management system

    International Nuclear Information System (INIS)

    Lyall, B.; Johnson, M.W.

    1977-02-01

    Systems are described for dealing with data collected at the High Flux Reactor, Institut Laue-Langevin, Grenoble and brought on magnetic tape to the Neutron Beam Research Unit at the Rutherford Laboratory. The first system, named GNAT, was designed to archive the incoming 800 bpi tapes onto 6250 bpi tapes (to enable them to return to the ILL). The archiving program, besides choosing the archive tapes, keeping a record of the data sets archived, and writing the archive tape, should be able to cope with incoming tapes whose formats are somewhat different from the standard IBM format. The second system, named FONT, was designed to maintain a record of all the tapes in the NBRU's possession, their whereabouts and what data, if any, are on them. (U.K.)

  13. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  14. Estimating the effective system dead time parameter for correlated neutron counting

    Science.gov (United States)

    Croft, Stephen; Cleveland, Steve; Favalli, Andrea; McElroy, Robert D.; Simone, Angela T.

    2017-11-01

    Neutron time correlation analysis is one of the main technical nuclear safeguards techniques used to verify declarations of, or to independently assay, special nuclear materials. Quantitative information is generally extracted from the neutron-event pulse train, collected from moderated assemblies of 3He proportional counters, in the form of correlated count rates that are derived from event-triggered coincidence gates. These count rates, most commonly referred to as singles, doubles and triples rates etc., when extracted using shift-register autocorrelation logic, are related to the reduced factorial moments of the time correlated clusters of neutrons emerging from the measurement items. Correcting these various rates for dead time losses has received considerable attention recently. The dead time losses for the higher moments in particular, and especially for large mass (high rate and highly multiplying) items, can be significant. Consequently, even in thoughtfully designed systems, accurate dead time treatments are needed if biased mass determinations are to be avoided. In support of this effort, in this paper we discuss a new approach to experimentally estimate the effective system dead time of neutron coincidence counting systems. It involves counting a random neutron source (e.g. AmLi is a good approximation to a source without correlated emission) and relating the second and higher moments of the neutron number distribution recorded in random triggered interrogation coincidence gates to the effective value of dead time parameter. We develop the theoretical basis of the method and apply it to the Oak Ridge Large Volume Active Well Coincidence Counter using sealed AmLi radionuclide neutron sources and standard multiplicity shift register electronics. The method is simple to apply compared to the predominant present approach which involves using a set of 252Cf sources of wide emission rate, it gives excellent precision in a conveniently short time, and it

  15. Real-time thermal neutron radiographic detection systems

    International Nuclear Information System (INIS)

    Berger, H.; Bracher, D.A.

    1976-01-01

    Systems for real-time detection of thermal neutron images are reviewed. Characteristics of one system are presented; the data include contrast, resolution and speed of response over the thermal neutron intensity range 2.5 10 3 n/cm 2 -sec to 10 7 n/cm 2 -sec

  16. Data acquisition and instrument control system for neutron ...

    Indian Academy of Sciences (India)

    A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on ...

  17. Neutron diffraction texture analysis of multi-phase systems

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1989-01-01

    Neutron diffraction methods for texture analysis are closely parallel to well-known X-ray diffraction techniques. The chief advantage of neutron diffraction over X-ray diffraction, however, arises from the fact that the interaction of neutrons with matter is relatively weak, and consequently the penetration depth of neutrons is 10 2 -10 3 times larger than that of X-rays. Hence neutron diffraction is an efficient tool for measuring textures in multi-phase systems. Based on the high transmission of a neutron beam the effect of anisotropic absorption in multi-phase materials can be neglected in most cases. Moreover, the analysis of bulk textures becomes possible, such that textures in a wide variety of multi-phase systems can be studied which are of special interest in engineering and science (metals, alloys, composites, ceramics and geological specimens). (orig.)

  18. OrientExpress: A new system for Laue neutron diffraction

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Archer, J.; McIntyre, G.J.; Hewat, A.W.; Brau, D.; York, S.

    2006-01-01

    A new automatic Laue neutron diffractometer has been developed at the ILL. The system is composed of a goniometer with two tilt stages mounted on an ω-rotation and a scintillator/CCD neutron detector which is mounted on a 2θ arm. All movements are computer controlled. The intensified neutron imaging system is unique and allows electronic capture of neutron Laue diffraction patterns in a much shorter time (few seconds) than conventional film-based methods. The detection system is based upon two high-performance image-intensified CCD cameras coupled to a large-area neutron scintillator. The system is also unique in permitting full back-reflection geometry. A gain of about 100 in efficiency is obtained compared to the conventional film method with comparable spatial resolution. Some examples for Laue patterns are presented and compared to those obtained by film. A quantitative analysis of the integrated intensity of the Laue spots is also made

  19. Development of Neutron Imaging System for Neutron Tomography at Thai Research Reactor TRR-1/M1

    Science.gov (United States)

    Wonglee, S.; Khaweerat, S.; Channuie, J.; Picha, R.; Liamsuwan, T.; Ratanatongchai, W.

    2017-09-01

    The neutron imaging is a powerful non-destructive technique to investigate the internal structure and provides the information which is different from the conventional X-ray/Gamma radiography. By reconstruction of the obtained 2-dimentional (2D) images from the taken different angle around the specimen, the tomographic image can be obtained and it can provide the information in more detail. The neutron imaging system at Thai Research Reactor TRR-1/M1 of Thailand Institute of Nuclear Technology (Public Organization) has been developed to conduct the neutron tomography since 2014. The primary goal of this work is to serve the investigation of archeological samples, however, this technique can also be applied to various fields, such as investigation of industrial specimen and others. This research paper presents the performance study of a compact neutron camera manufactured by Neutron Optics such as speed and sensitivity. Furthermore, the 3-dimentional (3D) neutron image was successfully reconstructed at the developed neutron imaging system of TRR-1/M1.

  20. Micro elements for interrogating magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2011-11-01

    This paper reports a new approach for interrogating a magnetoelastic sensor\\'s resonant frequency. Previously, the frequency of a magnetoelastic sensor was measured by using a large-scale solenoid coil of at least some millimeters both in diameter and length. Planar structures of straight-line and rectangular spiral coil are designed, fabricated and tested to interrogate the resonant frequency of a magnetoelastic sensor. A sensor of 4 mm length is measured to have a resonant frequency of 551 kHz in air. The ability to interrogate a magnetoelastic sensor with such microscale elements is a step towards the miniaturization of a magnetoelastic sensor system and integration of such a system in a microfluidics device. © 2011 IEEE.

  1. New Calgary Neutron Monitor Data Acquisition System

    Science.gov (United States)

    Kouznetsov, A.; Unick, C.; Bland, C. J.; Knudsen, D. J.

    2017-12-01

    The purpose of the project is to supply the World Neutron Database (NMDB) with high-quality data in an online, real-time mode. To do so, we created, and run continuously, a new "real-time hardware" data acquisition system using a set of low-cost (less than $15) counters based on Cypress Programmable System on a Chip (PSoC) technology. The PSoC is flexible and has microcontroller and FPGA-like capabilities which have enabled us to build a multi-level solution with low-level multi-channel counters and a top-level data acquisition and storage system, capable of supplying the NMDB with a real-time data stream. The top-level data acquisition system queries twelve PSoCs in an asynchronous command mode, sending commands and waiting for replies from the PSoCs asynchronously. The PSOC units replace the preamplifier electronics on each counter. Recent test show the units to be stable with a variety of supply-voltage sources and capable of running without adjustment for extended periods.

  2. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    Science.gov (United States)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a 252Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  3. Television imaging system for fast neutron radiography using baby cyclotron

    International Nuclear Information System (INIS)

    Yoshii, Koji; Miya, Kenzo; Katoh, Norihiko.

    1993-01-01

    A television imaging system for fast neutron radiography (FNR-TV) developed using the fast neutron source reactor YAYOI was applied to the baby-cyclotron based fast neutron source to get images of thick objects quickly. In the system the same technique as a current television imaging system of thermal neutron radiography was applied, while the luminescent converter was used to detect fast neutrons. Using the CR39 track etch method it took about 7 h to get an image, while the FNR-TV only 20 s enough for taking the same object. However the FNR-TV imaging result of the simulation model of a large explosive device for the space launch vehicle of H-2 type was not so good as the image taken with the CR39 track etch method. The reason was that the luminescence intensity of the FNR-TV converter was a quarter of that in the YAYOI. (author)

  4. Effective vibration isolation system for perfect-crystal neutron interferometry

    International Nuclear Information System (INIS)

    Arthur, J.

    1985-01-01

    Perfect-crystal neutron interferometers are subject to degradation of their performance caused by vibrational accelerations. It is shown that the most seriously offending accelerations are rotational, and an effective and simple vibration isolation system that has been developed at the MIT Neutron Diffraction Laboratory is described

  5. SRAC2006; A Comprehensive neutronics calculation code system

    OpenAIRE

    奥村 啓介; 久語 輝彦; 金子 邦男; 土橋 敬一郎

    2007-01-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five ele...

  6. Complex Magnetic Systems Studied with Neutron Scattering

    DEFF Research Database (Denmark)

    Jacobsen, Henrik

    was conrmed with further neutron scattering experiments. An apparent discontinuity in the dispersion of the dynamic stripes in the limit of vanishing energy transfer was found in violation of Goldstone's theorem. Detailed simulations of the experiment showed that this eect could not be explained......This thesis presents work done during my PhD jointly at the Niels Bohr Institute and the European Spallation Source. The thesis can be divided into four parts: introduction, magnetic nanoparticles, frustrated materials and superconductivity. The rst part is an introduction to magnetism and neutron....... This leads to absence of long range order even at very low temperatures and to fascinating new states of matter. Neutron scattering is the main experimental tool used in this thesis. The advantage of neutron scattering is that the neutron is sensitive to both magnetic order and magnetic dynamics...

  7. Compact neutron imaging system using axisymmetric mirrors

    Science.gov (United States)

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  8. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  9. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  10. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    International Nuclear Information System (INIS)

    Lee, Hwi Don; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok; Jung, Eun Joo

    2013-01-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal. (paper)

  11. Uniform spacing interrogation of a Fourier domain mode-locked fiber Bragg grating sensor system using a polarization-maintaining fiber Sagnac interferometer

    Science.gov (United States)

    Lee, Hwi Don; Jung, Eun Joo; Jeong, Myung Yung; Chen, Zhongping; Kim, Chang-Seok

    2013-06-01

    A novel linearized interrogation method is presented for a Fourier domain mode-locked (FDML) fiber Bragg grating (FBG) sensor system. In a high speed regime over several tens of kHz modulations, a sinusoidal wave is available to scan the center wavelength of an FDML wavelength-swept laser, instead of a conventional triangular wave. However, sinusoidal wave modulation suffers from an exaggerated non-uniform wavelength-spacing response in demodulating the time-encoded parameter to the absolute wavelength. In this work, the calibration signal from a polarization-maintaining fiber Sagnac interferometer shares the FDML wavelength-swept laser for FBG sensors to convert the time-encoded FBG signal to the wavelength-encoded uniform-spacing signal.

  12. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  13. 233U Assay A Neutron NDA System

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-11-17

    The assay of highly enriched {sup 233}U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched {sup 235}U do not convert easily over to the assay of {sup 233}U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with {gamma} ray isotopics information should give a good overall determination of {sup 233}U material now stored in bldg. 3019 at the Oak Ridge National Laboratory.

  14. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility.

    Science.gov (United States)

    Casey, D T; Volegov, P L; Merrill, F E; Munro, D H; Grim, G P; Landen, O L; Spears, B K; Fittinghoff, D N; Field, J E; Smalyuk, V A

    2016-11-01

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  15. Improved fission neutron energy discrimination with {sup 4}He detectors through pulse filtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ting, E-mail: ting.zhu@ufl.edu [University of Florida, Gainesville, FL (United States); Liang, Yinong; Rolison, Lucas; Barker, Cathleen; Lewis, Jason; Gokhale, Sasmit [University of Florida, Gainesville, FL (United States); Chandra, Rico [Arktis Radiation Detectors Ltd., Räffelstrasse 11, Zürich (Switzerland); Kiff, Scott [Sandia National Laboratories, CA (United States); Chung, Heejun [Korean Institute for Nuclear Nonproliferation and Control, 1534 Yuseong-daero, Yuseong-gu, Daejeon (Korea, Republic of); Ray, Heather; Baciak, James E.; Enqvist, Andreas; Jordan, Kelly A. [University of Florida, Gainesville, FL (United States)

    2017-03-11

    This paper presents experimental and computational techniques implemented for {sup 4}He gas scintillation detectors for induced fission neutron detection. Fission neutrons are produced when natural uranium samples are actively interrogated by 2.45 MeV deuterium-deuterium fusion reaction neutrons. Fission neutrons of energies greater than 2.45 MeV can be distinguished by their different scintillation pulse height spectra since {sup 4}He detectors retain incident fast neutron energy information. To enable the preferential detection of fast neutrons up to 10 MeV and suppress low-energy event counts, the detector photomultiplier gain is lowered and trigger threshold is increased. Pile-up and other unreliable events due to the interrogating neutron flux and background radiation are filtered out prior to the evaluation of pulse height spectra. With these problem-specific calibrations and data processing, the {sup 4}He detector's accuracy at discriminating fission neutrons up to 10 MeV is improved and verified with {sup 252}Cf spontaneous fission neutrons. Given the {sup 4}He detector's ability to differentiate fast neutron sources, this proof-of-concept active-interrogation measurement demonstrates the potential of special nuclear materials detection using a {sup 4}He fast neutron detection system.

  16. Quality assessment of neutron delivery system for small-angle neutron scattering diffractometers of the Jülich Centre for Neutron Science at the FRM II

    International Nuclear Information System (INIS)

    Radulescu, Aurel; Pipich, Vitaliy; Ioffe, Alexander

    2012-01-01

    Following the shutdown of FRJ-2 research reactor in Jülich, the pinhole small-angle neutron diffractometers KWS-1 and KWS-2 have been moved to the research reactor FRM II in Garching. The installation of these 40 m long instruments required the design and setup of new neutron guides with geometrical and optical features imposed by the instruments' positioning in the neutron guide hall, such as, the predetermined length and beam height as well as the foreseen improvement of the instrument performance. We report here about the quality assessment of the newly constructed neutron guides with respect to the optical, geometrical and alignment characteristics and the positioning of the velocity selector integrated in the neutron guide system by comparing the features of the measured neutron beams (in terms of neutron flux, intensity distribution and beam profile) with the results of the simulations of optimal neutron guide systems.

  17. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  18. Hybrid Monte Carlo/Deterministic Methods for Accelerating Active Interrogation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Peplow, Douglas E. [ORNL; Miller, Thomas Martin [ORNL; Patton, Bruce W [ORNL; Wagner, John C [ORNL

    2013-01-01

    The potential for smuggling special nuclear material (SNM) into the United States is a major concern to homeland security, so federal agencies are investigating a variety of preventive measures, including detection and interdiction of SNM during transport. One approach for SNM detection, called active interrogation, uses a radiation source, such as a beam of neutrons or photons, to scan cargo containers and detect the products of induced fissions. In realistic cargo transport scenarios, the process of inducing and detecting fissions in SNM is difficult due to the presence of various and potentially thick materials between the radiation source and the SNM, and the practical limitations on radiation source strength and detection capabilities. Therefore, computer simulations are being used, along with experimental measurements, in efforts to design effective active interrogation detection systems. The computer simulations mostly consist of simulating radiation transport from the source to the detector region(s). Although the Monte Carlo method is predominantly used for these simulations, difficulties persist related to calculating statistically meaningful detector responses in practical computing times, thereby limiting their usefulness for design and evaluation of practical active interrogation systems. In previous work, the benefits of hybrid methods that use the results of approximate deterministic transport calculations to accelerate high-fidelity Monte Carlo simulations have been demonstrated for source-detector type problems. In this work, the hybrid methods are applied and evaluated for three example active interrogation problems. Additionally, a new approach is presented that uses multiple goal-based importance functions depending on a particle s relevance to the ultimate goal of the simulation. Results from the examples demonstrate that the application of hybrid methods to active interrogation problems dramatically increases their calculational efficiency.

  19. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  20. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  1. Pillar-structured neutron detector based multiplicity system

    Science.gov (United States)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  2. Development of Cold Neutron Depth Profiling System at HANARO

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.; Sun, G. M.

    2012-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. A number of analytical techniques for depth profiling have been developed. Neutron Depth Profiling (NDP) system which was developed by Ziegler et al. is one of the leading analytical techniques. In NDP, a thermal or cold neutron beam passes through a material and interacts with certain isotopes that are known to emit monoenergetic-charged particle remaining a recoil nucleus after neutron absorption. The depth is obtained from the energy loss of those charged particles escaping surface of substrate material. For various applications of NDP technique, the Cold Neutron Depth Profiling System (CN-NDP) was developed at a neutron guide CG1 installed at the HANARO cold neutron source. In this study the design features of the cold neutron beam and target chamber for the CN-NDP system are given. Also, some experiments for the performance tests of the CN-NDP system are described

  3. Cosmic Ray Neutron Sensing in Complex Systems

    Science.gov (United States)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of

  4. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  5. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aymond, F. [Univ. of Texas at Austin, TX (United States); Bridgewater, Jon S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Deppert, O. [Technische Universitat Darmstadt (Germany); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Falk, Katerina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gautier, Donald Cort [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Manuel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison Victoria [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guler, Nevzat [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hamilton, Christopher Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hegelich, Bjorn Manuel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jung, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kleinschmidt, Annika [Technische Universitat Darmstadt (Germany); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pomerantz, Ishay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roth, Markus [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shimada, Tsutomu [Los Alamos National Laboratory; Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Taddeucci, Terry Nicholas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wurden, Glen Anthony [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Palaniyappan, Sasikumar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCary, E. [Univ. of Texas at Austin, TX (United States)

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  6. Application of hydrogel system for neutron attenuation

    CERN Document Server

    Gupta, S C; Gupta, B P

    2000-01-01

    Hydrogel sheets based on poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) have been prepared by the technique of acetalization of PVA using formaldehyde and grafting of acrylic acid onto PVAc by gamma irradiation. PVA hydrogel (PVAB) sheets have been prepared in geometrically stable shapes by compression moulding process and characterised for their thermal properties, geometrical stability on water absorption, and neutron shielding efficiency. The effective protection from fast neutrons can be increased by a factor of 18% by swelling the PVAB sheets to 210% in water. The water intake and subsequent retention of water by the sheet can be tailored as per shielding requirements.

  7. Interrogating personhood and dementia

    Science.gov (United States)

    Higgs, Paul; Gilleard, Chris

    2016-01-01

    ABSTRACT Objectives: To interrogate the concept of personhood and its application to care practices for people with dementia. Method: We outline the work of Tom Kitwood on personhood and relate this to conceptualisations of personhood in metaphysics and in moral philosophy. Results: The philosophical concept of personhood has a long history. The metaphysical tradition examines the necessary and sufficient qualities that make up personhood such as agency, consciousness, identity, rationality and second-order reflexivity. Alternative viewpoints treat personhood as a matter of degree rather than as a superordinate category. Within moral philosophy personhood is treated as a moral status applicable to some or to all human beings. Conclusion: In the light of the multiple meanings attached to the term in both metaphysics and moral philosophy, personhood is a relatively unhelpful concept to act as the foundation for developing models and standards of care for people with dementia. Care, we suggest, should concentrate less on ambiguous and somewhat abstract terms such as personhood and focus instead on supporting people's existing capabilities, while minimising the harmful consequences of their incapacities. PMID:26708149

  8. An automatic evaluation system for NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At CERN, neutron personal monitoring for over 4000 collaborators is performed with Kodak NTA films, which have been shown to be the most suitable neutron dosimeter in the radiation environment around high-energy accelerators. To overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with sup 2 sup 3 sup 8 Pu-Be source neutrons, which results in densely ionised recoil tracks, as well as on the extension of the method to higher energy neutrons causing sparse and fragmentary tracks. The application of the method in routine personal monitoring is discussed. $9 overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with /sup 238/Pu-Be source $9 discussed. (10 refs).

  9. Neutron Scattering and Its Application to Strongly Correlated Systems

    OpenAIRE

    Zaliznyak, Igor A.; Tranquada, John M.

    2013-01-01

    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an ...

  10. Advanced FBG sensing through rapid spectral interrogation

    Science.gov (United States)

    Kunzler, Wesley; Newman, Jason; Wilding, Daniel; Zhu, Zixu; Lowder, Tyson; Selfridge, Richard; Schultz, Stephen; Wirthlin, Michael

    2008-03-01

    A fiber Brag grating sensor interrogator has been developed which is capable of gathering vectors of information from individual fiber Bragg gratings by capturing the full optical spectrum 3 kHz. Using a field programmable gate array with high speed digital-to-analog converters and analog-to-digital components, plus a kilohertz rate MEMS optical filter, the optical spectrum can be scanned at rates in excess of 10 million nanometers per second, allowing sensor sampling rates of many kilohertz while maintaining the necessary resolution to understand sensor changes. The autonomous system design performs all necessary detection and processing of multiple sensors and allows spectral measurements to be exported as fast as Ethernet, USB, or RS232 devices can receive it through a memory mapped interface. The high speed - full spectrum - fiber Bragg grating sensor interrogator enables advanced interrogation of dynamic strain and temperature gradients along the length of a sensor, as well as the use of each sensor for multiple stimuli, such as in temperature compensation. Two examples are described, showing interrogation of rapid laser heating in an optical fiber, as well as complex strain effects in a beam that had an engineered defect.

  11. Upgrade of the neutron guide system at the OPAL Neutron Source

    International Nuclear Information System (INIS)

    Rodriguez, D Martin; Kennedy, S J; Klose, F

    2010-01-01

    The new research reactor at ANSTO (OPAL) is operating with seven neutron beam instruments in the user programme and three more under construction. The reactor design provides for expansion of the facility to eighteen instruments, and much of the basic infrastructure is already in place. However, an expansion of the neutron guide system is needed for further beam instruments. For this purpose, several possibilities are under consideration, such as insertion of multi-channel neutron benders in the existing cold guides or the construction of a new elliptic cold guide. In this work Monte Carlo (MC) simulations have been used to evaluate performance of these guide configurations. Results show that these configurations can be competitive with the best instruments in the world.

  12. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1987-04-01

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  13. Review of neutron radiographic applications in industrial and biological systems

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Khan, A.R.

    1992-10-01

    Neutron radiography is a non-destructive testing technique and is being used worldwide for the design and the development of reactor fuels for research and power reactors. It is also being used for non-destructive examination of nuclear industrial products. In addition to its explosives and other industrial sectors. In addition to its applications in industrial sectors, the technique is widely used for research and development activities in biological systems. A review of technical applications of neutron radiography in different fields particularly in nuclear fuel management, aerospace industry, explosives and biology is presented. The methodology of neutron radiography is also discussed in detail along with the advantages of the technique. In addition, the potential of the neutron radiography facility at PINSTECH has been described. (author)

  14. Calibration of a spectrometry multisphere system for neutron fields

    International Nuclear Information System (INIS)

    Carelli, Jorge L.; Cruzate, Juan A.; Papadopulos, Susana B.; Gregori, Beatriz N.; Ciocci Brazzano, Ligia

    2005-01-01

    In this work it is presented the calibration of the neutrons spectrometric system of the Nuclear Regulatory Authority (ARN) in the Institut de Protection et Sure te Nucleaires (Ipn), Labourite dadaist et de Recherche s en Dosimetric Extern e, Cadarache, France. The multisphere system is composed of 9 polyethylene spheres of high density, with a gaseous detector of 3 He and associate electronics. The matrix of energy response to the system neutrons was obtained applying the MCNPX code for the range of energies between thermal and 100 MeV with cross sections taken from library ENDF/B-VI. The neutron spectra of the multisphere system were obtained applying the deconvolution code LOUHI82. The relationship between the theoretical responses and the experiences obtained with the AmBe and 252 Cf sources are also presented in this work [es

  15. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification.

    Science.gov (United States)

    Hamel, Michael C; Polack, J Kyle; Ruch, Marc L; Marcath, Matthew J; Clarke, Shaun D; Pozzi, Sara A

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to a possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.

  16. Spectroscopic neutron detection using composite scintillators

    Science.gov (United States)

    Jovanovic, I.; Foster, A.; Kukharev, V.; Mayer, M.; Meddeb, A.; Nattress, J.; Ounaies, Z.; Trivelpiece, C.

    2016-09-01

    Shielded special nuclear material (SNM), especially highly enriched uranium, is exceptionally difficult to detect without the use of active interrogation (AI). We are investigating the potential use of low-dose active interrogation to realize simultaneous high-contrast imaging and photofission of SNM using energetic gamma-rays produced by low-energy nuclear reactions, such as 11B(d,nγ)12C and 12C(p,p‧)12C. Neutrons produced via fission are one reliable signature of the presence of SNM and are usually identified by their unique timing characteristics, such as the delayed neutron die-away. Fast neutron spectroscopy may provide additional useful discriminating characteristics for SNM detection. Spectroscopic measurements can be conducted by recoil-based or thermalization and capture-gated detectors; the latter may offer unique advantages since they facilitate low-statistics and event-by-event neutron energy measurements without spectrum unfolding. We describe the results of the development and characterization of a new type of capture-gated spectroscopic neutron detector based on a composite of scintillating polyvinyltoluene and lithium-doped scintillating glass in the form of millimeter-thick rods. The detector achieves >108 neutron-gamma discrimination resulting from its geometric properties and material selection. The design facilitates simultaneous pulse shape and pulse height discrimination, despite the fact that no materials intrinsically capable of pulse shape discrimination have been used to construct the detector. Accurate single-event measurements of neutron energy may be possible even when the energy is relatively low, such as with delayed fission neutrons. Simulation and preliminary measurements using the new composite detector are described, including those conducted using radioisotope sources and the low-dose active interrogation system based on low-energy nuclear reactions.

  17. New electronic imaging system for Cf-252 based neutron radiography

    International Nuclear Information System (INIS)

    Ito, S.; Mochiki, K.; Matsumoto, T.

    2004-01-01

    We have developed a new imaging camera and a signal processing system for Cf-252 based neutron radiography. The imaging part consists of cascaded image intensifiers and a progressive-scan monochromatic CCD camera (SONY XC-55) with standard frame rate. The video signal is converted to 12 bits and processed by large-scale field programmable arrays (FPGAs). The signal processing system has three frame accumulation memories for normal frame images, binary-converted frame images and center-of-gravity frame images. A preliminary experiment was made using a Cf-252 neutron source at Atomic Energy Research Laboratory of Musashi Institute of Technology. (author)

  18. Design of a system for neutrons dosimetry; Diseno de un sistema para dosimetria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Ceron, P.; Rivera, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Sanchez, A. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Vega C, H. R., E-mail: victceronr@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF{sub 3}, He{sub 3} and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a {sup 239}PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  19. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    Science.gov (United States)

    Hicks, Rebecca

    2010-01-01

    A fiber Bragg grating is a portion of a core of a fiber optic stand that has been treated to affect the way light travels through the strand. Light within a certain narrow range of wavelengths will be reflected along the fiber by the grating, while light outside that range will pass through the grating mostly undisturbed. Since the range of wavelengths that can penetrate the grating depends on the grating itself as well as temperature and mechanical strain, fiber Bragg gratings can be used as temperature and strain sensors. This capability, along with the light-weight nature of the fiber optic strands in which the gratings reside, make fiber optic sensors an ideal candidate for flight testing and monitoring in which temperature and wing strain are factors. A team of NASA Dryden engineers has been working to advance the fiber optic sensor technology since the mid 1990 s. The team has been able to improve the dependability and sample rate of fiber optic sensor systems, making them more suitable for real-time wing shape and strain monitoring and capable of rivaling traditional strain gauge sensors in accuracy. The sensor system was recently tested on the Ikhana unmanned aircraft and will be used on the Global Observer unmanned aircraft. Since a fiber Bragg grating sensor can be placed every halfinch on each optic fiber, and since fibers of approximately 40 feet in length each are to be used on the Global Observer, each of these fibers will have approximately 1,000 sensors. A total of 32 fibers are to be placed on the Global Observer aircraft, to be sampled at a rate of about 50 Hz, meaning about 1.6 million data points will be taken every second. The fiber optic sensors system is capable of producing massive amounts of potentially useful data; however, methods to capture, record, and analyze all of this data in a way that makes the information useful to flight test engineers are currently limited. The purpose of this project is to research the availability of software

  20. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); King, Michael; Rossi, Paolo (Sandia National Laboratories, Albuquerque, NM); McDaniel, Floyd Del (Sandia National Laboratories, Albuquerque, NM); Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM); Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  1. Development of inverse-planning system for neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Maruo, Takeshi

    2006-01-01

    To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)

  2. Irradiation system for neutron capture therapy using the small accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tooru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Tanaka, Kenichi [Kyoto Univ. (Japan). Graduate School of Engineering; Nakagawa, Yoshinobu [Kagawa Children' s Hospital, Zentsuji (Japan); Hoshi, Masaharu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    2002-09-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions {sup 10}B(n, {alpha}{gamma}) {sup 7}Li and {sup 7}Li (p, n) {sup 7}Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction {sup 7}Li (p, n) {sup 7}Be. The system devoted to the NCT is awaited in future. (K.H.)

  3. The verification of neutron activation analysis support system (cooperative research)

    International Nuclear Information System (INIS)

    Sasajima, Fumio; Ichimura, Shigeju; Ohtomo, Akitoshi; Takayanagi, Masaji

    2000-12-01

    Neutron activation analysis support system is the system in which even the user who has not much experience in the neutron activation analysis can conveniently and accurately carry out the multi-element analysis of the sample. In this verification test, subjects such functions, usability, precision and accuracy of the analysis and etc. of the neutron activation analysis support system were confirmed. As a method of the verification test, it was carried out using irradiation device, measuring device, automatic sample changer and analyzer equipped in the JRR-3M PN-3 facility, and analysis software KAYZERO/SOLCOI based on the k 0 method. With these equipments, calibration of the germanium detector, measurement of the parameter of the irradiation field and analysis of three kinds of environmental standard sample were carried out. The k 0 method adopted in this system is primarily utilized in Europe recently, and it is the analysis method, which can conveniently and accurately carried out the multi-element analysis of the sample without requiring individual comparison standard sample. By this system, total 28 elements were determined quantitatively, and 16 elements with the value guaranteed as analytical data of the NIST (National Institute of Standards and Technology) environment standard sample were analyzed in the accuracy within 15%. This report describes content and verification result of neutron activation support system. (author)

  4. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Inverse kinetics for subcritical systems with external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2017-01-01

    Highlights: • It was developed formalism for reactivity calculation. • The importance function is related to the system subcriticality. • The importance function is also related with the value of the external source. • The equations were analyzed for seven different levels of sub criticality. • The results are physically consistent with others formalism discussed in the paper. - Abstract: Nuclear reactor reactivity is one of the most important properties since it is directly related to the reactor control during the power operation. This reactivity is influenced by the neutron behavior in the reactor core. The time-dependent neutrons behavior in response to any change in material composition is important for the reactor operation safety. Transient changes may occur during the reactor startup or shutdown and due to accidental disturbances of the reactor operation. Therefore, it is very important to predict the time-dependent neutron behavior population induced by changes in neutron multiplication. Reactivity determination in subcritical systems driven by an external neutron source can be obtained through the solution of the inverse kinetics equation for subcritical nuclear reactors. The main purpose of this paper is to find the solution of the inverse kinetics equation the main purpose of this paper is to device the inverse kinetics equations for subcritical systems based in a previous paper published by the authors (Gonçalves et al., 2015) and by (Gandini and Salvatores, 2002; Dulla et al., 2006). The solutions of those equations were also obtained. Formulations presented in this paper were tested for seven different values of k eff with external neutrons source constant in time and for a powers ratio varying exponentially over time.

  6. Analysis of neutron flux measurement systems using statistical functions

    International Nuclear Information System (INIS)

    Pontes, Eduardo Winston

    1997-01-01

    This work develops an integrated analysis for neutron flux measurement systems using the concepts of cumulants and spectra. Its major contribution is the generalization of Campbell's theorem in the form of spectra in the frequency domain, and its application to the analysis of neutron flux measurement systems. Campbell's theorem, in its generalized form, constitutes an important tool, not only to find the nth-order frequency spectra of the radiation detector, but also in the system analysis. The radiation detector, an ionization chamber for neutrons, is modeled for cylindrical, plane and spherical geometries. The detector current pulses are characterized by a vector of random parameters, and the associated charges, statistical moments and frequency spectra of the resulting current are calculated. A computer program is developed for application of the proposed methodology. In order for the analysis to integrate the associated electronics, the signal processor is studied, considering analog and digital configurations. The analysis is unified by developing the concept of equivalent systems that can be used to describe the cumulants and spectra in analog or digital systems. The noise in the signal processor input stage is analysed in terms of second order spectrum. Mathematical expressions are presented for cumulants and spectra up to fourth order, for important cases of filter positioning relative to detector spectra. Unbiased conventional estimators for cumulants are used, and, to evaluate systems precision and response time, expressions are developed for their variances. Finally, some possibilities for obtaining neutron radiation flux as a function of cumulants are discussed. In summary, this work proposes some analysis tools which make possible important decisions in the design of better neutron flux measurement systems. (author)

  7. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  8. Systems for neutronic, thermohydraulic and shielding calculation in personal computers

    International Nuclear Information System (INIS)

    Villarino, E.A.; Abbate, P.; Lovotti, O.; Santini, M.

    1990-01-01

    The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author) [es

  9. A neutron time-of-flight data acquisition system

    International Nuclear Information System (INIS)

    Morris, D.V.

    1983-10-01

    A neutron time-of-flight scaler system is described for use with the Harwell Linac. The equipment is sufficiently versatile to be used with several types of computers although normally used with DEC PDP 11/45 and PDP 11/34. Using a combination of different input and memory boards most types of experiments can be accommodated. (author)

  10. Data acquisition and instrument control system for neutron ...

    Indian Academy of Sciences (India)

    Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input–output and timer-counter operations. An interface card and DC motor ...

  11. Control system for the asynchronous drive of a neutron chopper

    International Nuclear Information System (INIS)

    Bulat, I.A.; Makovetskij, G.I.; Pashkovskij, Yu.L.; Smolik, Ch.K.

    1978-01-01

    A system of the rotation rate stabilization of a neutron time-of-flight spectrometer chopper is described with drive on the basis of an electric spindle of the Sh-24/35 type, fed by a static frequency converter on tiristors. The accurate control of rotation rate is performed by a phase discriminator on the basis of a generator of the sawtooth voltage, a switch and a memory element. The use of the neutron spectrometer shows that the device described provides for 0.05% rotation rate stability of the neutron chopper and automatic synchronization of the rotation rate with a frequency of the supporting quarz generator in the range from 1500 to 12000 rev/min

  12. Fragility of complexity biophysical systems by neutron scattering

    International Nuclear Information System (INIS)

    Magazu, Salvatore; Migliardo, Federica; Bellocco, Ersilia; Lagana, Giuseppina; Mondelli, Claudia

    2006-01-01

    Neutron scattering is an exceptional tool to investigate structural and dynamical properties of systems of biophysical interest, such as proteins, enzymes, lipids and sugars. Moreover, elastic neutron scattering enhances the investigation of atomic motions in hydrated proteins in a wide temperature range and on the picosecond timescale. Homologous disaccharides, such as trehalose, maltose and sucrose, are cryptobiotic substances, since they allow to many organisms to undergo in a 'suspended life' state, known as cryptobiosis in extreme environmental conditions. The present paper is aimed to discuss the fragility degree of disaccharides, as evaluated of the temperature dependence of the mean square displacement by elastic neutron scattering, in order to link this feature with their bioprotective functions

  13. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  14. Neutron imaging systems utilizing lithium-containing semiconductor crystals

    Science.gov (United States)

    Stowe, Ashley C.; Burger, Arnold

    2017-04-25

    A neutron imaging system, including: a plurality of Li-III-VI.sub.2 semiconductor crystals arranged in an array, wherein III represents a Group III element and VI represents a Group VI element; and electronics operable for detecting and a charge in each of the plurality of crystals in the presence of neutrons and for imaging the neutrons. Each of the crystals is formed by: melting the Group III element; adding the Li to the melted Group III element at a rate that allows the Li and Group III element to react, thereby providing a single phase Li-III compound; and adding the Group VI element to the single phase Li-III compound and heating. Optionally, each of the crystals is also formed by doping with a Group IV element activator.

  15. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Vargas Danilo

    2016-01-01

    Full Text Available A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1 and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  16. Scaling beta-delayed neutron measurements to large detector areas

    Science.gov (United States)

    Sutanto, F.; Nattress, J.; Jovanovic, I.

    2017-08-01

    We explore the performance of a cargo screening system that consists of two large-sized composite scintillation detectors and a high-energy neutron interrogation source by modeling and simulation. The goal of the system is to measure β-delayed neutron emission from an illicit special nuclear material by use of active interrogation. This task is challenging because the β-delayed neutron yield is small in comparison with the yield of the prompt fission secondary products, β-delayed neutrons are emitted with relatively low energies, and high neutron and gamma backgrounds are typically present. Detectors used to measure delayed neutron emission must exhibit high intrinsic efficiency and cover a large solid angle, which also makes them sensitive to background neutron radiation. We present a case study where we attempt to detect the presence of 5 kg-scale quantities of 235U in a standard air-filled cargo container using 14 MeV neutrons as a probe. We find that by using a total measurement time of ˜11.6 s and a dose equivalent of ˜1.7 mrem, the presence of 235U can be detected with false positive and false negative probabilities that are both no larger than 0.1%.

  17. Development of the bandwidth-limiting neutron chopper prototype control system for CSNS

    International Nuclear Information System (INIS)

    Yang Bo; Wang Ping; Wang Fangwei

    2012-01-01

    The time-of-flight neutron scattering spectrometer in CSNS (China Spallation Neutron Source) will use a bandwidth-limiting (BWL) neutron chopper for choosing neutrons of certain band ranges. Its control system should synchronize the phase signal of BWL neutron chopper with the timing signal from accelerator, and monitor operation status of the neutron chopper. In this article, we describe the structure of control system, the control principle, and the software design. Test results of the controlling accuracy and operation stability of the control system are given, too. (authors)

  18. Data acquisition and instrument control system for neutron spectrometers

    International Nuclear Information System (INIS)

    Naik, S.S.; Kotwal, Ismat; Chandak, R.M.; Gaonkar, V.G.

    2004-01-01

    A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input-output and timer-counter operations. An interface card and DC motor driver card have been developed indigenously. Software for the system has been written in Visual C++ language using MS Windows operating system. This data acquisition and instrument control system is successfully controlling four spectrometers at Dhruva reactor. (author)

  19. Neutron scattering studies of low dimensional magnetic systems

    DEFF Research Database (Denmark)

    Hansen, Ursula Bengård

    CoCl2 · 2D2O have been investigated with neutron scattering experiments.CoCl2 · 2D2O can be considered a quasi one dimensional Ising system. This means, thatit is a near ideal model material for investigating low dimensional magnetic phenomena.The excitation spectrum of CoCl2 · 2D2O has been...... investigated at low temperaturesand in a longitudinal magnetic eld using neutron spectroscopy. Here we observe thehybridisation of the magnon bound states, inherent to the low dimensional nature ofCoCl2 · 2D2O.At higher temperature, signatures which can be attributed to Magnetic Bloch Oscillationsis observed......The results of this thesis can be divided into two parts, one concerning neutron scatteringstudies of low dimensional magnetic systems and one concerning neutron optics for theEuropean Spallation Source (ESS).In the part concerning low dimensional magnetic systems, three aspects of the dynamicsof...

  20. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  1. Neutronic measurements of radioactive waste

    International Nuclear Information System (INIS)

    Perot, B.

    1997-01-01

    This document presents the general matters involved in the radioactive waste management and the different non destructive assays of radioactivity. The neutronic measurements used in the characterization of waste drums containing emitters are described with more details, especially the active neutronic interrogation assays with prompt or delayed neutron detection: physical principle, signal processing and evaluation of the detection limit. (author)

  2. Groundwater Visualisation System (GVS): A software framework for integrated display and interrogation of conceptual hydrogeological models, data and time-series animation

    Science.gov (United States)

    Cox, Malcolm E.; James, Allan; Hawke, Amy; Raiber, Matthias

    2013-05-01

    Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The "virtual" groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2-5 min) based on sequences of camera 'fly-throughs' and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.

  3. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  4. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  5. The design of systems for the determination of plutonium by passive neutron counting

    International Nuclear Information System (INIS)

    Hooton, B.W.

    1978-10-01

    The properties of moderators and other materials commonly used in systems for determination of plutonium by passive neutron counting have been investigated. The neutron flux from spontaneous fission and (α,n) reactions has been evaluated and the design characteristics of a number of systems have been determined by Monte Carlo tracking of neutrons. (author)

  6. The Martin Marietta Energy Systems personnel neutron dosimetry program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1991-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages five sites for the US Department of Energy. Personnel dosimetry for four of the five sites is coordinated through a Centralized External Dosimetry System (CEDS). These four sites are the Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant (Y-12), the Oak Ridge K-25 Site (K-25), and the Paducah Gaseous Diffusion Plant (PGDP). The fifth Energy Systems site, Portsmouth Gaseous Diffusion Plant, has an independent personnel dosimetry program. The current CEDS personnel neutron dosimeter was first issued in January 1989, after an evaluation and characterization of the dosimeters' response in the workplaces was performed. For the workplace characterization, Energy Systems contracted with Pacific Northwest Laboratory (PNL) to perform neutron measurements at selected locations at ORNL and Y-12. K-25 and PGDP were not included because their neutron radiation fields were similar to others already planned for characterization at ORNL and Y-12. Since the initial characterization, PNL has returned to Oak Ridge twice to perform follow up measurements, and another visit is planned in the near future

  7. Multisphere system neutron spectrometry applied to dosimetry for the personnel

    International Nuclear Information System (INIS)

    Allinei, P.G.

    1992-01-01

    Neutron dosimetry is a necessity that must be dealt with in order to ensure efficient monitoring of all personnel regarding radiology safety. Dosimetric variables are difficult to measure for they are dependent on complex functions evolving with the energy of neutrons, which forces us to determine their energetic distribution. We have chosen to use the multisphere system associated to an unfolding code in order to perform neutron spectrometry, our purpose being to determine these dosimetric variables. The initial stage consists in modifying a research code, the code SOHO, in order to adapt it to our needs. The resulting new version was subsequently tested and proven successful by means of computerized simulations. Afterwards, we used reference dosimetric and spectral beams to confirm the position results previously obtained. At the time of this test, the code SOHO yielded results coherent with the theoretical values, and even allowed the quantity of radiation diffused by the laboratory structures to be estimated. The final part of this study consists in applying the previously perfected technique to authentic situations. The results thus obtained are compared to those obtained by conventional methods in order to reveal the interest of neutron spectrometry used for dosimetry of the personnel

  8. Development of neutron personnel monitoring system based on CR-39 solid state nuclear track detector

    International Nuclear Information System (INIS)

    Massand, O.P.; Kundu, H.K.; Marathe, P.K.; Supe, S.J.

    1990-01-01

    Personnel neutron monitoring aims at providing a method to evaluate the magnitude of the detrimental effects on the personnel exposed to neutrons. Neutron monitoring is done for a small though growing number of personnel working with neutrons in a wide range of situations. Over the years, many solid state nuclear track detectors (SSNTD) have been tried for neutron personnel monitoring. CR-39 SSNTD is a proton sensitive polymer and offers a lot of promise for neutron personnel monitoring due to its high sensitivity and lower energy threshold for neutron detection. This report presents the mechanism of track formation in this polymer, the development of this neutron personnel monitoring system in our laboratory, its various characteristics and its promise as a routine personnel neutron monitor. (author). 1 tab., 7 figs

  9. Design and implementation of the control system for neutron reflectometer

    International Nuclear Information System (INIS)

    Wu Xuehui; Fu Yongli; Zhou Aiyu; Zhu Kejun; Yuan Guangcui

    2011-01-01

    The neutron reflectometry is an important technique that has widespread applications as a powerful analytical tool to analyze the surface and interfacial structure and composition of many materials. An efficient and accurate instrument control system is a key component of the system, with software based on LabVIEW and hardware based on PCI-1240 motor control card, TRUMP-PCI-2K multichannel buffer card and 974 counter/timer. It gives an overview of the design and implementation of this control system. The results prove that this system fulfills the needs well with high stability and operability. (authors)

  10. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  11. Directed Neutron Beams From Inverse Kinematic Reactions

    Science.gov (United States)

    Vanhoy, J. R.; Guardala, N. A.; Glass, G. A.

    2011-06-01

    Kinematic focusing of an emitted fairly mono-energetic neutron beam by the use of inverse-kinematic reactions, i.e. where the projectile mass is greater than the target atom's mass, can provide for the utilization of a significant fraction of the fast neutron yield and also provide for a safer radiation environment. We examine the merit of various neutron production reactions and consider the practicalities of producing the primary beam using the suitable accelerator technologies. Preliminary progress at the NSWC-Carderock Positive Ion Accelerator Facility is described. Possible important applications for this type of neutron-based system can be both advanced medical imaging techniques and active "stand-off" interrogation of contraband items.

  12. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1981-01-01

    A pulsed high-energy neutron source irradiates the earth formations surrounding a borehole with bursts of fast neutrons. A pair of detectors, one sensitive to epithermal neutrons and the other sensitive to fast neutrons and thermal neutron capture gamma rays, measure the fast and epithermal neutron populations at their effective distances from the source. The fast neutron measurements can be separated from thermal neutron interactions by time gating techniques and by pulse shape discrimination. The measurments of the fast and epithermal neutron populations at the two detectors may then be interpreted in terms of the earth formation porosity in accordance with predetermined relationships. Between neutron bursts capture gamma rays are detected in two or more time intervals, and these measurements are used to derive the thermal neutron capture cross section of the formation

  13. Accelerating fissile material detection with a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Mark S.; Snyderman, Neal J.

    2018-01-30

    A neutron detector system for discriminating fissile material from non-fissile material wherein a digital data acquisition unit collects data at high rate, and in real-time processes large volumes of data directly to count neutrons from the unknown source and detecting excess grouped neutrons to identify fission in the unknown source. The system includes a Poisson neutron generator for in-beam interrogation of a possible fissile neutron source and a DC power supply that exhibits electrical ripple on the order of less than one part per million. Certain voltage multiplier circuits, such as Cockroft-Walton voltage multipliers, are used to enhance the effective of series resistor-inductor circuits components to reduce the ripple associated with traditional AC rectified, high voltage DC power supplies.

  14. Neutron kinetics for system thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1996-01-01

    There is general agreement that for many light water reactor (LWR) calculations for licensing safety analysis, probabilistic risk assessment, operational support, and training, it is necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model in order to obtain satisfactory results. This need coincides with the fact that in recent years there has been considerable research and development in this field, with modelers taking advantage of the increase in computing power that has become available. This progress has now led to coupling multidimensional neutron kinetics models to the nuclear steam supply system thermal hydraulics. This is not new since some coupled codes have always been available. What is new is that the coupling can now be done with very sophisticated models, and the planning of this coupling and the requisite modeling can take advantage of the experience of many code developers in many countries. The U.S. Nuclear Regulatory Commission and other organizations are in the process of reviewing the state of the art and making recommendations for future development. This paper summarizes one contribution to this review process: a review of the multidimensional neutron kinetics modeling, and ancillary modeling, which would be used in conjunction with system thermal-hydraulic models to perform core dynamics calculations

  15. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  16. Verification of fast neutron spectrum calculation in coupled system HERBE

    International Nuclear Information System (INIS)

    Avdic, S.; Pesic, M.; Marinkovic, P.

    1995-01-01

    A high-resolution semiconductor spectrometer filled with 3 He gas, in diode coincidence arrangement, is applied to measure neutron spectrum in the centre of the fast core of the coupled fast-thermal system HERBE in the 'Vinca' Institute. The neutron spectrum is evaluated from measured pulse height distribution by using the HE3 computer code developed in the Nuclear Engineering Laboratory of the Institute of Nuclear Sciences VINCA. Experimental results are compared with the relevant multigroup calculations in the energy range from 2.5 MeV to 10.5 MeV. The measured spectrum provides a sufficient overlapping with the calculated one and no serious divergence is found in the measured energy range. (author)

  17. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  18. A high power accelerator driver system for spallation neutron sources

    International Nuclear Information System (INIS)

    Jason, A.; Blind, B.; Channell, P.

    1996-01-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). For several years, the Los Alamos Meson Physics Facility (LAMPF) and the Proton Storage Ring (PSR) have provided a successful driver for the nearly 100-kW Los Alamos Neutron Scattering Center (LANSCE) source. The authors have studied an upgrade to this system. The goal of this effort was to establish a credible design for the accelerator driver of a next-generation source providing 1-MW of beam power. They have explored a limited subset of the possible approaches to a driver and have considered only the low 1-MW beam power. The next-generation source must utilize the optimum technology and may require larger neutron intensities than they now envision

  19. Recent performance of the Intense Pulsed Neutron Source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.; Donley, L.

    1987-03-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has now been in operation as part of a national user program for over five years. During that period steady progress has been made in both beam intensity and reliability. Almost 1.8 billion pulses totaling 4 x 10 21 protons have now been delivered to the spallation neutron target. Recent weekly average currents have reached 15 μA (3.2 x 10 12 protons per pulse, 30 pulses per second) and short-term peaks of almost 17 μA have been reached. In fact, the average current for the last two years is up 31% over the average for the first three years of operation

  20. Preliminary neutron shielding calculations of the electronics in the EAST BES systems focusing on neutron induced displacement damage

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Németh, József, E-mail: nemeth.jozsef@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary)

    2016-11-15

    Monte Carlo N-Particle (MCNP) calculations were carried out to compare neutron shielding capabilities of three frequently used neutron shielding materials: polyethylene without neutron absorbers, polyethylene with boron absorbers and polyethylene with lithium absorbers, according to Non Ionizing Energy Loss (NIEL). The results of 1D shielding calculations showed that simple neutron moderating materials can provide sufficient and cheap shielding against 2.45 MeV and 14.1 MeV fusion neutrons, in terms of 1 MeV neutron equivalent flux, in silicon targets, which is the most commonly used material of electronic components. Based on these results a new shielding concept is proposed which can be taken into consideration where the reduction of displacement damage is the main goal and the free space available for shielding is limited. Based on this shielding concept detailed 3D calculations were carried out to describe the properties of the neutron shielding of the Beam Emission Spectroscopy (BES) system installed at the EAST tokamak.

  1. First Deminsys (high speed FBG interrogator) flight

    Science.gov (United States)

    van Els, Thomas J.

    2009-03-01

    Deminsys is the world's fastest multi sensor / multi channel FBG interrogator, identifies one till four channels with typically 8 sensors per channel. The system is especially developed for the interrogation of signals up to 19,3 kHz for each sensor and the sample frequency is independent of the number of sensors. By having multiple sensors per fibre you can create a very compact network of sensors. Due to its revolutionary (light weight, compact and solid state) design, Deminsys seems to fit perfectly into (research) programs for aerospace, medic & life science, maritime, industrial, crash test and all other fast detection applications. Technobis Fibre Technologies (TFT) and NLR made a first test flight with the Deminsys optical fibre measurement system using the NLR test aircraft on October 24th 2008. This flight was a first step in the further development of the current system in order to make it suitable for operation on-board an aircraft and bring it from TRL3 towards TRL5, a functional model for aerospace applications.

  2. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  3. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  4. Performance Test for Neutron Detector and Associated System using Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seongwoo; Park, Sung Jae; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Oh, Se Hyun [USERS, Daejeon (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    SPND (Self-Powered Neutron Detector) has been developed to extend its lifespan. ENFMS (Ex-Core Flux Monitoring System) of pressurized water reactor has been also improved. After the development and improvement, their performance must be verified under the neutron irradiation environment. We used a research reactor for the performance verification of neutron detector and associated system because the research reactor can meet the neutron flux level of commercial nuclear reactor. In this paper, we report the performance verification method and result for the SPND and ENFMS using the research reactor. The performance tests for the SPND and ENFMS were conducted using UCI TRIGA reactor. The test environment of commercial reactor’s neutron flux level must be required. However, it is difficult to perform the test in the commercial rector due to the constraint of time and space. The research reactor can be good alternative neutron source for the test of neutron detectors and associated system.

  5. Evaluation of the NDP (neutron diagnostic probe) system

    Energy Technology Data Exchange (ETDEWEB)

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  6. A Time of Flight Fast Neutron Imaging System Design Study

    Science.gov (United States)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  7. Neutron density fluctuations in point reactor systems with dichotomic reactivity noise

    International Nuclear Information System (INIS)

    Sako, Okitsugu

    1984-01-01

    The exactly solvable stochastic point reactor model systems are analyzed through the stochastic Liouville equation. Three kinds of model systems are treated: (1) linear system without delayed neutrons, (2) linear system with one-group of delayed neutrons, and (3) nonlinear system with direct power feedback. The exact expressions for the fluctuations of neutron density, such as the moments, autocorrelation function and power spectral density, are derived in the case where the colored reactivity noise is described by the dichotomic, or two state, Markov process with arbitrary correlation time and intensity, and the effects of the finite correlation time and intensity of the noise on the neutron density fluctuations are investigated. The influence of presence of delayed neutrons and the effect of nonlinearity of system on the neutron density fluctuations are also elucidated. When the reactivity correlation time is very short, the correlation time has almost no effect on the power spectral density, and the relative fluctuation of neutron density in the stationary state is not affected very much by the presence of delayed neutrons and also by the nonlinearity of system. On the other hand, if the reactivity correlation time is very long, the effect of the reactivity noise on the power spectral density appears at very low frequency, and the presence of delayed neutrons has an effect of reducing the neutron density fluctuations. (author)

  8. Development in neutron dosimetry: automatic traces reading system and albedo OSL dosimetry; Developpement en dosimetrie neutron: systeme automatique de lecture de traces et dosimetrie albedo OSL

    Energy Technology Data Exchange (ETDEWEB)

    Million, M.; Perks, C.A.; Faugoin, S.; Archambault, V. [LCIE Landauer, 92 - Fontenay aux Roses (France)

    2009-07-01

    To answer to a regulatory evolution and technical constraints, the Landauer group introduced on the make an automatic reading system of neutron traces and an albedo dosemeter based on the O.S.L. in light dosemeters (O.S.L. for optically stimulated luminescence). In this article are described the last developments in matter of neutron dosimetry. (N.C.)

  9. Portable system for periodical verification of area monitors for neutrons; Sistema portatil para verificacao periodica de monitores de area para neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu, E-mail: rluciane@ird.gov.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Energia Nuclear; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W., E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI). Lab. de Neutrons

    2009-07-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  10. Shidaowan HTR Ex-Core Neutron Flux Monitoring Systems

    International Nuclear Information System (INIS)

    Artaud, Clark J.; Yang Shuping

    2014-01-01

    For the Huaneng Shandong Shidao Bay Nuclear Power Plant High Temperature Gas-Cooled Reactor Nuclear Power Plant Demonstration Project (HTR-PM) several neutron flux measurements are made outside the Reactor Pressure Vessel (RPV) performed by the Ex-core Neutron Flux Monitoring Systems (ENFMS). This paper will discuss the design of the ENFMS for the Shidaowan project. The unique design of this ENFMS includes a B-10 proportional counter for Source Range (SR) monitoring and a shared four-section guarded fission chamber detector assembly for both Intermediate Range (IR) and Power Range (PR) monitoring. The detectors hang from a suspension shielding device via wire rope. The IR channel ENFMS is completely qualified to survive Loss of Coolant Accidents (LOCA) and Main Steam Line Breaks (MSLB) per US NRC Reg Guide 1.97 Post Monitoring Requirements. The ENFMS will be qualified for Class 1E Safety-Related applications and also will undergo EMI / EMC testing per Reg Guide 1.180. Due to the long length of the HTR-PM core, the flux is measured at several axial positions. For the fission chamber based systems full advantage is taken of all the operating modes for fission chambers (pulse counting, mean square voltage (MSV), and linear current) to provide the Intermediate and Power Range signals. This paper describes the challenges in the development of the monitoring systems for the measurement of neutron flux within the ex core region. The selection of detector configuration and the associated signal processing will be discussed and compared with traditional PWR designs. The use of only analog signal processing techniques will also be elaborated on. (author)

  11. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  12. Theory of quasielastic neutron scattering by water in heterogeneous systems

    International Nuclear Information System (INIS)

    Sposito, G.

    1982-01-01

    The partial differential cross-section is derived for the quasielastic scattering of neutrons by liquid water protons undergoing translational diffusion in a heterogeneous system. It is shown that the incoherent scattering law reflects both molecular averaging via statistical mechanics and local volume averaging over the microscopic heterogeneities in the target sample. A model expression for the incoherent scattering law is derived using the macroscopic differential balance laws for mass and linear momentum as applied to liquid water in a porous medium. The model expression can be used to measure the macroscopic water diffusivity parameter. (author)

  13. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  14. Development of a transportable neutron radiography system for non-destructive tests application

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    1999-01-01

    This paper presents a study of a transportable neutron radiography system utilizing californium-252. Studies about moderation, collimation and shielding are showed. A Monte Carlo Code, MCNP3b, has been used to obtain a maximum and more homogeneous thermal neutron flux in the collimator outlet next to the image plain, and an adequate radiation shielding to attend radiological protection rules. With the presented collimator, it was possible to obtain for the thermal neutron flux, at the collimator outlet and next to the image plain, a L/D ratio 7,5, for neutron flux up to 6 X 10 -6 cm -2 .s -1 per neutron source. (author)

  15. Monte Carlo Simulations Of The Response Of Shielded SNM To A Pulsed Neutron Source

    Science.gov (United States)

    Seabury, E. H.; Chichester, D. L.

    2011-06-01

    Active neutron interrogation has been used as a technique for the detection and identification of special nuclear material (SNM) for both proposed and field-tested systems. Idaho National Laboratory (INL) has been studying this technique for systems ranging from small systems employing portable electronic neutron generators to larger systems employing linear accelerators as high-energy photon sources for assessment of vehicles and cargo. In order to assess the feasibility of new systems, INL has undertaken a campaign of Monte Carlo simulations of the response of a variety of masses of SNM in multiple shielding configurations to a pulsed neutron source using the MCNPX code, with emphasis on the neutron and photon response of the system as a function of time after the initial neutron pulse. We present here some preliminary results from these calculations.

  16. Development of Interactive Monitoring System for Neutron Scattering Instrument

    International Nuclear Information System (INIS)

    So, Ji Yong

    2015-01-01

    Neutron scattering instruments in HANARO research reactor have been contributed to various fields of basic science and material engineering. These instruments are open to publics and researchers can apply beam-time and do experiments with instrument scientists. In most cases, these instruments run for several weeks without stopping, and therefore instrument scientist wants to see the instrument status and receive information if the instruments have some problem. This is important for the safety. However, it is very hard to get instrument information outside of instruments. Access from external site is strongly forbidden in the institute due to the network safety, I developed another way to send instrument status information using commercial short messaging service(SMS). In this presentation, detailed features of this system will be shown. As a prototype, this system is being developed for the single instrument: Disk-chopper time-of-flight instruments (DC-TOF). I have successfully developed instruments and operate for several years. This information messaging system can be used for other neutron scattering instruments

  17. Implementation of the active neutron Coincidence Collar for the verification of unirradiated PWR and BWR fuel assemblies

    International Nuclear Information System (INIS)

    Menlove, H.O.; Keddar, A.

    1982-01-01

    An active neutron interrogation technique has been developed for the measurement of the 235 U content in fresh fuel assemblies. The method employs an AmLi neutron source to induce fission reactions in the fuel assembly and coincidence counting of the resulting fission reaction neutrons. When no interrogation source is present, the passive neutron coincidence rate gives a measure of the 238 U by the spontaneous fission reactions. The system can be applied to the fissile content determination in fresh fuel assemblies for accountability, criticality control, and safeguards purposes. Field tests have been performed by International Atomic Energy Agency (IAEA) staff using the Coincidence Collar to verify the 235 U content in light-water-reactor fuel assemblies. The results gave an accuracy of 1 to 2% in the active mode ( 235 U) and 2 to 3% in the passive mode ( 238 U) under field conditions

  18. System of adjoint P1 equations for neutron moderation

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  19. Neutronic analysis of the 1D and 1E banks reflux detection system

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  20. Neutronic analysis of the 1D and 1E banks reflux detection system

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal 235 U concentration levels to reflux levels remain satisfactory detectable

  1. Instrumentation system for pulsed neutron generator. Pt. 1. Electronic control and data acquisition

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Janik, W.; Kosik, M.; Kurowski, A.; Zaleski, T.

    1997-01-01

    The paper presents an electronic instrumentation system which is successfully applied for pulsed neutron generator and measurements. In the paper there are described in details all modernized parts of the system as well as new designed and applied ones. The set of diagrams is enclosed. An important part of the system has been designed and built in the Neutron Transport Physics Laboratory. (author)

  2. Optic fibber data acquisition and transmission system dedicated to a neutron generator

    International Nuclear Information System (INIS)

    Ledo Pereda, Luis Miguel; Vergara Limon, Sergio; Arteche Diaz, Raul

    2009-01-01

    Hereby, are presented the design, construction and application of a virtual data acquisition system based on the usage of microcontrollers, optic fibber, and PC. System is aimed to the reestablishment of the communication between the basic modules of a Neutron Generator. The work shows, how the original interface design is upgraded by the automation of the data acquisition, on the Neutron Generator exploitation parameters. The PC usage is being introduced in the Neutron Generator and the precedent is established for further subsystem

  3. Design of a neutron poison monitor system (NPMS) of maximum sensitivity

    International Nuclear Information System (INIS)

    Piper, T.C.

    1989-01-01

    The development of a neutron poison monitoring system was first reported in 1958 and systems implemented by others have copied that design. The present work shows that the 1958 physical configuration does not yield maximum sensitivity [i.e. sensitivity = fractional change in neutron count rate for given fractional change in concentration]. The maximum sensitivity design being reported was configured by using neutron transport calculations to determine sensitivity versus configuration. Data from the new and the 1958 types are compared. 2 refs

  4. Electronic imaging system for neutron radiography at a low power research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.J.O., E-mail: fferreira@ien.gov.b [Instituto de Engenharia Nuclear, Comissao Nacional de Energia Nuclear, Caixa Postal 68550, CEP 21945-970, Rio de Janeiro (Brazil); Silva, A.X.; Crispim, V.R. [PEN/COPPE-DNC/POLI CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro (Brazil)

    2010-08-15

    This paper describes an electronic imaging system for producing real time neutron radiography from a low power research reactor, which will allow inspections of samples with high efficiency, in terms of measuring time and result analysis. This system has been implanted because of its potential use in various scientific and industrial areas where neutron radiography with photographic film could not be applied. This real time system is installed in neutron radiography facility of Argonauta nuclear research reactor, at the Instituto de Engenharia Nuclear of the Comissao Nacional de Energia Nuclear, in Brazil. It is adequate to perform real time neutron radiography of static and dynamic events of samples.

  5. A Novel Approach to Mission-Level Engineering of Complex Systems of Systems: Addressing Integration and Interoperability Shortfalls by Interrogating the Interstitials

    Science.gov (United States)

    2013-12-17

    on Stochastic Modeling and Uncertainty Quantification in Complex Systems. Rio de Janeiro Brazil: Virginia Tech. Sauser, B., Ramirez-Marquez, J...environment is populated with mission threads. These mission threads are the description of the end-to-end set of activities and component systems...components are able to connect, pass messages (correct protocol, format, etc.) and some (perhaps all) of the data is populated , we typically claim

  6. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    Science.gov (United States)

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  7. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  8. A compact in vivo neutron activation analysis system to quantify manganese in human hand bone

    Science.gov (United States)

    Liu, Yingzi

    As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.

  9. Technology for Polymer Optical Fiber Bragg Grating Fabrication and Interrogation

    DEFF Research Database (Denmark)

    Ganziy, Denis

    The aim of this project is to develop a new, high-quality interrogator for FBG sensor systems, which combines high performance with costeffectiveness. The work includes the fields of optical system design, signal processing, and algorithm investigation. We present an efficient and fast peak detec...... by measuring optical resolution, wavelength fit resolution, accuracy, temperature and polarization dependable wavelength shift and use it to measure the strain response of a fewmode and a highly multimode FBG in a polymer fiber.......The aim of this project is to develop a new, high-quality interrogator for FBG sensor systems, which combines high performance with costeffectiveness. The work includes the fields of optical system design, signal processing, and algorithm investigation. We present an efficient and fast peak......) based interrogator, where the linear detector is replaced with a commercially available DMD, which leads to cost reduction and better performance. Original optical design, which utilizes advantages of a retro-reflect optical scheme, has been developed in Zemax. We test the presented interrogator...

  10. The TENDL neutron data library and the TEND1038 38-group neutron constant system

    International Nuclear Information System (INIS)

    Abramovich, S.N.; Gorelov, V.P.; Gorshikhin, A.A.; Grebennikov, A.N.; Il'in, V.N.; Krut'ko, N.A.; Farafontov, G.G.

    2002-01-01

    The library contains neutron data for 103 nuclei - i.e. for 38 actinide nuclei (from 232 Th to 249 Cm), 26 fission fragment nuclei and 39 nuclei in structural and technological materials. The 38-group constants were obtained from TENDL. The high-energy group boundary is 20 MeV. The energy range below 1.2 eV contains 11 groups. Temperature and resonance effects were taken into account. The delayed neutron parameters for 6 groups and the yields of 40 fission fragments were obtained (light and heavy, stable and non-stable). The fast neutron features of spherical critical assemblies were calculated using constants from TEND1038. (author)

  11. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  12. Ion-induced gammas for photofission interrogation of HEU.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); Antolak, Arlyn J.; Morse, Daniel H.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM)

    2006-03-01

    High-energy photons and neutrons can be used to actively interrogate for heavily shielded special nuclear material (SNM), such as HEU (highly enriched uranium), by detecting prompt and/or delayed induced fission signatures. In this work, we explore the underlying physics for a new type of photon source that generates high fluxes of mono-energetic gamma-rays from low-energy (<500 keV) proton-induced nuclear reactions. The characteristic energies (4- to 18-MeV) of the gamma-rays coincide with the peak of the photonuclear cross section. The source could be designed to produce gamma-rays of certain selected energies, thereby improving the probability of detecting shielded HEU or providing a capability to determine enrichment inside sealed containers. The fundamental physics of such an interrogation source were studied in this LDRD through scaled ion accelerator experiments and radiation transport modeling. The data were used to assess gamma and neutron yields, background, and photofission-induced signal levels from several (p,{gamma}) target materials under consideration.

  13. Advanced Neutron Source reactor control and plant protection systems design

    International Nuclear Information System (INIS)

    Anderson, J.L.; Battle, R.E.; March-Leuba, J.; Khayat, M.I.

    1992-01-01

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges

  14. Neutron measurement in 12,13C+ 27Al system using CR-39 detectors and neutron rem meter

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Shanbhag, A.A.; Sunil, C.; Joshi, D.S.; Sarkar, P.K.

    2011-01-01

    In this work, neutron measurements carried out for the interaction of 60 and 67.5 MeV 12 C, 57.3 and 65 MeV 13 C ions with thick aluminium target by using CR-39 detectors and neutron rem meter is reported. Both the detector systems were irradiated at different angles viz. 0 deg, 30 deg, 60 deg, 90 deg with respect to the beam direction. The normalized track density measurements (tracks/cm 2 /projectile at 1m) in CR-39 detectors were correlated with the normalized dose equivalent values (μSv/projectile at 1m) obtained using the neutron rem meter. The track density was found to be more in case of 13 C than 12 C. However in all the cases, the track density per incident projectile was found to decrease as the angle with respect to beam direction increases, indicating non-isotropic nature of neutron emission. The ratio between measured dose equivalent in rem meter to the measured track densities in CR-39 detectors was found to be 2.8±0.2, which remains constant irrespective of the change in angle from beam direction as well as neutron spectrum, indicating a flat dose response of CR-39 detectors. (author)

  15. Neutron-based portable drug probe

    International Nuclear Information System (INIS)

    Womble, P. C.; Vourvopoulos, G.; Ball Howard, J.; Paschal, J.

    1999-01-01

    Based on previous measurements, a probe prototype for contraband detection utilizing the neutron technique of Pulsed Fast-Thermal Neutron Analysis (PFTNA) is being constructed. The prototype weighs less than 45 kg and is composed of a probe (5 cm diameter), a power pack and a data acquisition and display system. The probe is designed to be inserted in confined spaces such as the boiler of a ship or a tanker truck filled with liquid. The probe provides information on a) the elemental content, and b) the density variations of the interrogated object. By measuring elemental content, the probe can differentiate between innocuous materials and drugs. Density variations can be found through fast neutron transmission. In all cases, hidden drugs are identified through the measurement of the elemental content of the object, and the comparison of expected and measured elemental ratios

  16. The design of the electronic system on neutron beam monitor based on GEM

    International Nuclear Information System (INIS)

    Zuo Min; Zhuang Bao'an; Zhao Yubin; Chen Shaojia; Wang Na; Zhang Hongyu; Zhao Jingwei

    2012-01-01

    The Neutron Beam Monitor - a GEM based system used to monitor the neutron beams in real time - is introduced. The electronic parts are described in details, including the principles of the circuit, the system structure, the design of the Daughterboard and the logic and algorithm of the FPGA on the Monitor board. The test results are also given out in the final. (authors)

  17. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  18. A study on the linearity characteristics of neutron power measurement system for Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 {sup -8} %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well asthe output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs.

  19. A study on the linearity characteristics of neutron power measurement system for Hanaro

    International Nuclear Information System (INIS)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 -8 %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well as the output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs

  20. Analysis of the Neutron Generator and Target for the LSDTS System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius.

  1. Analysis of the Neutron Generator and Target for the LSDTS System

    International Nuclear Information System (INIS)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan

    2008-11-01

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius

  2. Multistage position-stabilized vibration isolation system for neutron interferometry

    Science.gov (United States)

    Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.

    1994-10-01

    A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.

  3. Development of five axis robotic system for an industrial neutron tomography imaging system

    International Nuclear Information System (INIS)

    Vyas, R.J.; Radke, M.G.; Mishra, J.K.; Arunkumar, G.V.D.; Ramakumar, M.S.

    1994-01-01

    Tomography is one of the latest techniques in the field of nondestructive testing. X-rays, gamma rays or neutrons are used as an energy source whereas five axis manipulator is designed to move the specimen across the beam. The 5 axis robotic system has been indigenously developed, designed, manufactured and tested to move up to 10 kg payload. Computer is necessary to process and store data and retrieve it for processing. The same computer is used for control of manipulator. Computer aided tomography is carried out for research and industrial use. Neutron beam will be used either for evaluation of organic materials in attenuation based measurements or for evaluation on the basis of neutron activation of materials like nuclear fuels. The paper describes the indigenously developed 5-axis robotic system as a part of a facility built around Kamini reactor at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. (author). 4 figs

  4. Measurement system of gamma, X, thermal and/or fast neutron flux

    International Nuclear Information System (INIS)

    Siffert, P.; Regal, R.; Koebel, J.M.; Teissier, C.

    1987-01-01

    The system includes detection means of gamma or/and X radiation, detection means of gamma and/or X radiation from thermal neutrons, detection means of gamma and/or X radiation from thermal and/or fast neutrons. It includes also processing devices of the signals given by the detection means able to get a linear combination of the detected signals. These processing devices give a signal selectively representative of photon, thermal or fast neutron rate [fr

  5. A newly developed technique of wireless remote controlled visual inspection system for neutron guides of cold neutron research facilities at HANARO

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2012-01-01

    KAERI developed a neutron guide system for cold neutron research facilities at HANARO from 2003 to 2010. In 2008, the old plug shutter and instruments were removed, and a new plug and primary shutter were installed as the first cold neutron delivery system at HANARO. At the beginning of 2010, all the neutron guides and accessories had been successfully installed as well. The neutron guide system of HANARO consists of the in pile plug assembly with in pile guides, the primary shutter with in shutter guides, the neutron guides in the guide shielding room with secondary shutter, and the neutron guides in the neutron guide hall. Three kinds of glass materials were selected with optimum lengths by considering their lifetime, shielding, maintainability and cost as well. Radiation damage of the guides can occur on the coating and glass by neutron capturing in the glass. It is a big challenge to inspect a guide failure because of the difficult surrounding environment, such as high level radiation, limited working space, and massive hard work for removing and reinstalling the shielding blocks as shown in Fig 1. Therefore, KAERI has developed a wireless remote controlled visual inspection system for neutron guides using an infrared light camera mounted on the vehicle moving in the guide

  6. System for measurements and data processing in neutron physics researches

    International Nuclear Information System (INIS)

    Kadashevich, V.I.; Kondurov, I.A.; Nikolaev, S.N.; Ryabov, Yu.F.

    1976-01-01

    A system of measuring and computing means created for automation of studies in the field of the neutron physics is discussed. Within the framework of this system each experiment is provided with its individual measuring station which consists of a set of analog and digital modules implemented in accordance with the CAMAC standard. On the higher level of this system there are measuring-computing centres (MCC) which simultaneously serve a number of physical installations. These MCCs are based on ''Minsk-22'' computers whose computational facilities are used for the preliminary processing and for creation of temporary data archives. In its turn, all the MCCs are users of the time-sharing system on the basis of the ''Minsk-32'' computers. This system extends possibilities for user's fast data processing, archive creation and provides transfer of required information to the main computing system based on the BESM-6 computer. Transfer of information and preliminary processing are performed by remote terminals with the help of a special directive language

  7. SERA - an advanced treatment planning system for neutron therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Wessol, D.E.; Wemple, C.A.; Nigg, D.W.; Albright, C.L.; Cohen, M.T.; Frandsen, M.W.; Harkin, G.J.; Rossmeier, M.B.

    2001-01-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimization of dose pattern is required. (author)

  8. SERA - An Advanced Treatment Planning System for Neutron Therapy

    International Nuclear Information System (INIS)

    Wemple, C. A.; Albright, C. L.; Nigg, D. W.; Wessol, D. W.; Wheeler, F. J.; Harkin, G. J.; Rossmeirer, M. B.; Cohen, M. T.; Frandsen, M. W.

    1999-01-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimizations of dose pattern is required

  9. SERA - An Advanced Treatment Planning System for Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    C. A. Wemple; C. L. Albright; D. W. Nigg; D. W. Wessol; F. J. Wheeler; G. J. Harkin; M. B. Rossmeirer; M. T. Cohen; M. W. Frandsen

    1999-06-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimizations of dose pattern is required.

  10. Application of Monte Carlo Method to Design a Delayed Neutron Counting System

    International Nuclear Information System (INIS)

    Ahn, Gil Hoon; Park, Il Jin; Kim, Jung Soo; Min, Gyung Sik

    2006-01-01

    The quantitative determination of fissile materials in environmental samples is becoming more and more important because of the increasing demand for nuclear nonproliferation. A number of methods have been proposed for screening environmental samples to measure fissile material content. Among them, delayed neutron counting (DNC) that is a nondestructive neutron activation analysis (NAA) method without chemical preparation has numerous advantages over other screening techniques. Fissile materials such as 239 Pu and 235 U can be made to undergo fission in the intense neutron field. Some of the fission products emit neutrons referred to as 'delayed neutrons' because they are emitted after a brief decay period following irradiation. Counting these delayed neutrons provides a simple method for determining the total fissile content in the sample. In delayed neutron counting, the chemical bonding environment of a fissile atom has no effect on the measurement process. Therefore, NAA is virtually immune to the 'matrix' effects that complicate other methods. The present study aims at design of a DNC system. In advance, neutron detector, gamma ray shielding material, and neutron thermalizing material should be selected. Next, investigation should be done to optimize the thickness of gamma ray shielding material and neutron thermalizing material using the MCNPX that is a well-known and widely-used Monte Carlo radiation transport code to find the following

  11. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, L.J., E-mail: broussardlj@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zeck, B.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Baeßler, S. [University of Virginia, Charlottesville, VA 22904 (United States); Birge, N. [University of Tennessee, Knoxville, TN 37996 (United States); Blatnik, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cleveland State University, Cleveland, OH 44115 (United States); Bowman, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brandt, A.E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Brown, M. [University of Kentucky, Lexington, KY 40506 (United States); Burkhart, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B. [Indiana University, Bloomington, IN 47405 (United States); Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 (United States); Fomin, N. [University of Tennessee, Knoxville, TN 37996 (United States); Frlez, E.; Fry, J. [University of Virginia, Charlottesville, VA 22904 (United States); and others

    2017-03-21

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  12. On the definition of neutron lifetimes in multiplying and non-multiplying systems

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Adams, K.J.; Parsons, D.K.

    1997-01-01

    Historically, the term neutron lifetime has been used in the literature to describe a wide variety of different time intervals associated with a neutron's trek through a given system. This duplication of usage of the term neutron lifetime has undoubtedly resulted in some confusion concerning its physical meaning. In hopes of reducing some of this confusion, we suggest in this work that the various time intervals characterizing the life of a neutron be divided into three general categories: (1) neutron lifespans, (2) reaction rate lifetimes, and (3) neutron generation times. In this report, we define these three different time intervals and give deterministic and Monte Carlo transport expressions that can be used to calculate them

  13. Simulation and analysis of the transmission properties of curved-straight neutron guide systems

    International Nuclear Information System (INIS)

    Copley, J.R.D.; Mildner, D.F.R.

    1992-01-01

    This paper reports that the spatial intensity distribution of neutrons emerging from a curved guide is far from uniform, particularly at short wavelengths, and curved guides are sometimes followed by a straight section of guide to make the intensity distribution more uniform. The behavior of neutrons within curved-straight neutron guide systems is examined using both ray-tracing and analytical approaches to the problem. The intensity distribution within the straight guide tends to wash from one side of the guide to the other. The amplitude of this transverse wave decreases with increasing guide length, and the characteristic length of the wave decreases with increasing neutron wavelength

  14. An accelerator-based neutron microbeam system for studies of radiation effects.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Bigelow, Alan W; Akselrod, Mark S; Sykora, Jeff G; Brenner, David J

    2011-06-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the ⁷Li(p,n)⁷Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min⁻¹. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy.

  15. Research opportunities with compact accelerator-driven neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, I.S. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Andreani, C., E-mail: carla.andreani@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Carpenter, J.M. [Argonne National Laboratory, Argonne, IL (United States); Festa, G., E-mail: giulia.festa@uniroma2.it [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy); Gorini, G. [Università degli Studi di Milano—Bicocca, Milano (Italy); Loong, C.-K. [Università degli Studi di Roma “Tor Vergata”, Centro NAST, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Senesi, R. [Università degli Studi di Roma “Tor Vergata”, Physics Department and NAST Centre, Via della Ricerca Scientifica 1, 00133 Roma (Italy); CNR-IPCF Sezione di Messina, Messina (Italy); Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Roma (Italy)

    2016-10-13

    Since the discovery of the neutron in 1932 neutron beams have been used in a very broad range of applications, As an aging fleet of nuclear reactor sources is retired the use of compact accelerator-driven neutron sources (CANS) is becoming more prevalent. CANS are playing a significant and expanding role in research and development in science and engineering, as well as in education and training. In the realm of multidisciplinary applications, CANS offer opportunities over a wide range of technical utilization, from interrogation of civil structures to medical therapy to cultural heritage study. This paper aims to provide the first comprehensive overview of the history, current status of operation, and ongoing development of CANS worldwide. The basic physics and engineering regarding neutron production by accelerators, target–moderator systems, and beam line instrumentation are introduced, followed by an extensive discussion of various evolving applications currently exploited at CANS.

  16. 32 CFR 637.21 - Recording interviews and interrogations.

    Science.gov (United States)

    2010-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MILITARY POLICE INVESTIGATION Investigations § 637.21 Recording interviews and interrogations. The recording of interviews and interrogations by military police personnel is...

  17. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  18. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    International Nuclear Information System (INIS)

    Rosta, L.; Cser, L.; Revay, Z.

    2002-01-01

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  19. Shift-register coincidence electronics system for thermal neutron counters

    International Nuclear Information System (INIS)

    Swansen, J.E.; Collinsworth, P.R.; Krick, M.S.

    1980-04-01

    An improved shift-register, coincidence-counting logic circuit, developed for use with thermal neutron well counters, is described in detail. A distinguishing feature of the circuit is its ability to operate usefully at neutron counting rates of several hundred kHz. A portable electronics package incorporating the new coincidence logic and support circuits is also described

  20. ANL--LASL workshop on advanced neutron detection systems

    International Nuclear Information System (INIS)

    Kitchens, T.A.

    1979-06-01

    A two-day workshop on advanced neutron detectors and associated electronics was held in Los Alamos on April 5--6, 1979, as a part of the Argonne National Laboratory--Los Alamos Scientific Laboratory Coordination on neutron scattering instrumentation. This report contains an account of the information presented and conclusions drawn at the workshop

  1. Fusion Power Measurement Using a Combined Neutron Spectrometer-Camera System at ITER

    International Nuclear Information System (INIS)

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.

    2008-01-01

    A central task for fusion plasma diagnostics is to measure the 2.5 and 14 MeV neutron emission rate in order to determine the fusion power. A new method for determining the neutron yield has been developed at JET. It makes use of the magnetic proton recoil neutron spectrometer and a neutron camera and provides the neutron yield with small systematic errors. At ITER a similar system could operate if a high-resolution, high-performance neutron spectrometer similar to the MPR was installed. In this paper, we present how such system could be implemented and how well it would perform under different assumption of plasma scenarios and diagnostic capabilities. It is found that the systematic uncertainty for using such a system as an absolute calibration reference is as low as 3% and hence it would be an excellent candidate for the calibration of neutron monitors such as fission chambers. It is also shown that the system could provide a 1 ms time resolved estimation of the neutron rate with a total uncertainty of 5%

  2. Application of 2-dimensional coordinate system conversion in stress measurements with neutron diffraction

    International Nuclear Information System (INIS)

    Wang, D.-Q.; Hubbard, C.R.; Spooner, S.

    2000-01-01

    This paper will present a method and program to precisely calculate the coordinates in a positioner coordinate system from given sample position coordinates with a minimum number of neutron surface scans for three possible circumstances in stress and texture measurement using neutron diffraction

  3. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    International Nuclear Information System (INIS)

    Habib, Moinul

    2005-12-01

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design

  4. The real-time neutron radiography system at Texas A and M University

    International Nuclear Information System (INIS)

    Reuscher, Jon A.

    1990-01-01

    This paper reports on the development and fabrication of a real-time system at Texas A and M University using commercially available and relatively inexpensive components. The real-time neutron radiography system consists of two major components: a camera and image processing equipment. The neutron beam provides a thermal neutron flux of 10 neutrons/cm -sec (cadmium ratio of 4.0) with the TRIGA reactor operating at a power of 1 MW. A remotely operated turntable is used to position the sample in the neutron beam for optimum viewing and ease of changing position. The front surface mirror at 45 deg. to the neutron beam reflects the scintillation image to the lens. The IRO and CCD camera are placed behind shielding out of the neutron. Results using the imaging system for a cadmium plate (0.032 inch thick) with several holes of different diameters are presented. Applications of this neutron radiography system include sensitivity indicators for the spatial resolution of bubbles in water-filled tubes, moisture content of zeolite samples, operating heat pipes and the freezing and thawing of metallic samples

  5. Intensity stability improvements for the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Rauchas, A.; Gunderson, G.; Zolecki, R.; Stipp, V.; Volk, G.

    1985-01-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system consists of a 750 keV Cockcroft-Walton preaccelerator, 50 MeV linear accelerator and a 500 MeV Rapid Cycling Synchrotron (RCS). The accelerator system accelerates over 2.5 x 10 12 protons per pulse at a 30 Hz rate to strike a depleted uranium target for producing neutrons (which are used for neutron scattering research.) Since beginning operation in 1977, the beam intensity has been steadily increasing with improvements in various systems, such as a new H - source, improved correction magnet systems, etc. Instabilities created by the higher intensities have also been under control

  6. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  7. In situ calibration of neutron activation system on the large helical device

    Science.gov (United States)

    Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.

    2017-11-01

    In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.

  8. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    International Nuclear Information System (INIS)

    Whitney, Chad M.; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-01-01

    Recently, RMD has investigated the use of CLYC (Cs 2 LiYCl 6 :Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam TM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our 252 Cf source was possible using both pulse height and pulse shape discrimination with CLYC. • Imaging

  9. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Chad M., E-mail: cwhitney@rmdinc.com; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-06-01

    Recently, RMD has investigated the use of CLYC (Cs{sub 2}LiYCl{sub 6}:Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam{sup TM} instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our {sup 252}Cf source was possible using both pulse height and pulse shape discrimination with

  10. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori [Oregon State Univ., Corvallis, OR (United States)

    2016-03-31

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238U and 239Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two

  11. Active Interrogation using Photofission Technique for Nuclear Materials Control and Accountability

    International Nuclear Information System (INIS)

    Yang, Haori

    2016-01-01

    Innovative systems with increased sensitivity and resolution are in great demand to detect diversion and to prevent misuse in support of nuclear materials management for the U.S. fuel cycle. Nuclear fission is the most important multiplicative process involved in non-destructive active interrogation. This process produces the most easily recognizable signature for nuclear materials. In addition to thermal or high-energy neutrons, high-energy gamma rays can also excite a nucleus and cause fission through a process known as photofission. Electron linear accelerators (linacs) are widely used as the interrogating photon sources for inspection methods involving photofission technique. After photofission reactions, prompt signals are much stronger than the delayed signals, but it is difficult to quantify them in practical measurements. Delayed signals are easily distinguishable from the interrogating radiation. Linac-based, advanced inspection techniques utilizing the delayed signals after photofission have been extensively studied for homeland security applications. Previous research also showed that a unique delayed gamma ray energy spectrum exists for each fissionable isotope. In this work, high-energy delayed γ-rays were demonstrated to be signatures for detection, identification, and quantification of special nuclear materials. Such γ-rays were measured in between linac pulses using independent data acquisition systems. A list-mode system was developed to measure low-energy delayed γ-rays after irradiation. Photofission product yields of 238 U and 239 Pu were determined based on the measured delayed γ-ray spectra. The differential yields of delayed γ-rays were also proven to be able to discriminate nuclear from non-nuclear materials. The measurement outcomes were compared with Monte Carlo simulation results. It was demonstrated that the current available codes have capabilities and limitations in the simulation of photofission process. A two-fold approach was

  12. An investigation of the neutron die-away time in passive neutron waste assay systems

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.

    1997-02-01

    Neutron coincidence counting applied to the assay of Pu-bearing waste is commonly based on the assumption that the time intervals between detected fission neutrons are distributed according to a mono-exponential function, often called Rossi-alpha distribution. The time constant of this characteristic exponential function is generally referred to as the die-away time of the detector assembly. In fact, the distribution of time intervals is derived from the more fundamental arrival time distribution, which is also assumed to obey a mono-exponential law. In view of the design studies for a neutron counter, the validity of this basic assumption was investigated. Different parameters such as neutron moderation and absorption in the sample and the presence of cadmium-lining were investigated by means of Monte Carlo simulations using the NCNP-code. The simulation results lead to the conclusion that the description of the arrival time function with a mono-exponential function with a sample-independent die-away time is only a first approximations. The mono-exponential decay is perturbed by a second time component related to the detection of neutrons already thermalized in the sample. This thermal component cannot be described by a mono-exponential function, but has a characteristic shape with a fast build-up reaching a maximum followed by a slow decay as a function of the arrival time. The relative contribution of this component strongly depends on the absorption and moderation of the sample matrix. This component cannot be described by a simple analytical expression involving sample related parameters. Hence, no direct useful information can be withdrawn from the arrival time probability function to characterize the waste matrix. The thermal component can be strongly suppressed by the use of cadmium-lining in front of the detector blocks simplifying the mathematical description of the arrival time probability function. Indications of the bias introduced by an inaccurate

  13. Police interrogations through the prism of science

    Directory of Open Access Journals (Sweden)

    Igor Areh

    2016-03-01

    Full Text Available Several approaches can be employed for information gathering from human sources, differing in their theoretical basis, goals, realisation, and ethical acceptability. The paper critically presents and compares two prevalent approaches to suspect interrogation used by the police. The older, prevalent interrogation approach focuses on obtaining suspects’ incriminating statements and admissions, which severely elevates the risk of false confessions. Consequently, this interrogation approach is termed accusatorial or coercive since suspects are forced to admit to a crime. The newer interrogation approach is the information-gathering approach, also known as the investigative interview. It focuses on gathering accurate information in order to exclude or accuse a suspect in a criminal investigation. In comparison with coercive interrogation models, the information-gathering approach has a lower probability of false confessions since suspects are exposed to significantly lower levels of psychological pressure. Moreover, it is ethically more acceptable, has scientific grounds, enables the gathering of more accurate information, and has been found to be at least as effective as the coercive approach in criminal investigations. The investigative interview relies mainly on findings from social psychology. An analysis of coercive interrogation models reveals that they have no scientific basis and as such rely mainly on uncorroborated common-sense assumptions from authorities. In developed countries, coercive interrogation models are increasingly being replaced by the information-gathering approach, a trend connected with the enforcement of high human rights standards and a higher awareness of risks associated with coercive interrogation methods by the general public, academia, and professionals alike.

  14. Design of the thermal neutron detection system for CJPL-II

    Science.gov (United States)

    Zeng, Zhao-Ming; Gong, Hui; Li, Jian-Min; Yue, Qian; Zeng, Zhi; Cheng, Jian-Ping

    2017-05-01

    A low background thermal neutron flux detection system has been designed to measure the ambient thermal neutron flux of the second phase of the China Jinping Underground Laboratory (CJPL-II), right after completion of the rock bolting work. A 3He proportional counter tube combined with an identical 4He proportional counter tube was employed as the thermal neutron detector, which has been optimised in energy resolution, wall effect and radioactivity of construction materials for low background performance. The readout electronics were specially designed for long-term stable operation and easy maintenance in an underground laboratory under construction. The system was installed in Lab Hall No. 3 of CJPL-II and accumulated data for about 80 days. The ambient thermal neutron flux was determined under the assumption that the neutron field is fully thermalized, uniform and isotropic at the measurement position. Supported by National Natural Science Foundation of China (11475094)

  15. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  16. Characterization of film-converter screens systems for neutron radiography; Caracterizacao de sistemas filme-conversor para radiografia com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marcos Leandro Garcia

    2002-07-01

    In general a good quality radiography is that one able to furnish high contrast and sharp edge images. Technically 'high contrast' means high capability to discern material thickness and 'sharp edges', high resolution power. In the present work the optimal conditions to obtain neutron radiography images by using the following film-converter screen systems, Kodak-AA/Gd vaporated; Kodak-AA/Gd metallic; Kodak-AA/LiF; Min-R/GdS{sub 2}O{sub 4}, have been determined. The irradiations were performed in a radiographic facility which was designed and constructed by the neutron radiography working group and is installed at the beamhole 08 of the IEA-R1 nuclear research reactor of the IPEN-CNEN/SP. In order to determine such conditions, the start point was to evaluate the neutron exposure interval for which the optical contrast is maximal and so quantify the sensitivity or capability to discern material thickness, as well as the spatial resolution achieved in the radiographic image, for these systems. The best results have been obtained for the Kodak-AA/Gd vaporated system which is able to discern, for example, 0,024 cm of lucite, with a maximal resolution of 22{mu}m. The radiography images presently obtained in IPEN-CNEN/SP have similar quality when compared to the ones from several other research centers, around the world, whose making use of the same film-converter screens systems. (author)

  17. Nuclear reactor, fuel assembly and neutron measuring system

    International Nuclear Information System (INIS)

    Chaki, Masao; Murase, Michio; Zukeran, Atsushi; Moriya, Kimiaki

    1998-01-01

    The present invention provides a BWR type reactor improved with the efficiency of used fuels and fuel economy by increasing a rated power and reducing exchange fuels. Namely, in a BWR type reactor at present, a thermal limit value is determined by conducting nuclear calculation of the reactor core based on data of reactor flow rate measurement and data of neutron flux measurement. However, since the neutron calculation of the reactor core is based on fuel assemblies while the points for the neutron measurement are present at the outside of the fuel assemblies, errors are caused. A margin including the errors has been used as a thermal limit value during operation. In the present invention, neutron fluxes in the fuel assembly as a base of the nuclear calculation can be measured by the same number of neutron detector tubes, but the number of the measuring points is increased to four times. With such procedures, errors caused by the difference of the neutron calculation and values at neutron measuring points can be reduced. As a result, a margin of the thermal limit value is reduced to increase the degree of freedom of reactor operation. Then, the economical property of the reactor operation can be improved. (N.H.)

  18. An automated delayed neutron counting system for mass determinations of special nuclear materials

    International Nuclear Information System (INIS)

    Sellers, M.T.; Kelly, D.G.; Corcoran, E.C.

    2012-01-01

    An automated delayed neutron counting (DNC) system has been developed at the Royal Military College of Canada (RMC) to enhance nuclear forensics capabilities pertaining to special nuclear material analysis. The system utilises the SLOWPOKE-2 Facility at RMC as a neutron source and 3 He detectors. System control and data acquisition occur through a LabVIEW platform. The time dependent count rate of the delayed neutron production has been examined for 235 U, using certified reference materials. Experimental validation according to ISO 17025 protocols suggests typical errors and precision of -3.6 and 3.1%, respectively, and a detection limit of 0.26 μg 235 U. (author)

  19. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng, E-mail: mphyszf@qq.com [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang, Sichuan 621900 (China)

    2014-04-15

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  20. Geant4 Analysis of a Thermal Neutron Real-Time Imaging System

    Science.gov (United States)

    Datta, Arka; Hawari, Ayman I.

    2017-07-01

    Thermal neutron imaging is a technique for nondestructive testing providing complementary information to X-ray imaging for a wide range of applications in science and engineering. Advancement of electronic imaging systems makes it possible to obtain neutron radiographs in real time. This method requires a scintillator to convert neutrons to optical photons and a charge-coupled device (CCD) camera to detect those photons. Alongside, a well collimated beam which reduces geometrical blurriness, the use of a thin scintillator can improve the spatial resolution significantly. A representative scintillator that has been applied widely for thermal neutron imaging is 6LiF:ZnS (Ag). In this paper, a multiphysics simulation approach for designing thermal neutron imaging system is investigated. The Geant4 code is used to investigate the performance of a thermal neutron imaging system starting with a neutron source and including the production of charged particles and optical photons in the scintillator and their transport for image formation in the detector. The simulation geometry includes the neutron beam collimator and sapphire filter. The 6LiF:ZnS (Ag) scintillator is modeled along with a pixelated detector for image recording. The spatial resolution of the system was obtained as the thickness of the scintillator screen was varied between 50 and 400 μm. The results of the simulation were compared to experimental results, including measurements performed using the PULSTAR nuclear reactor imaging beam, showing good agreement. Using the established model, further examination showed that the resolution contribution of the scintillator screen is correlated with its thickness and the range of the neutron absorption reaction products (i.e., the alpha and triton particles). Consequently, thinner screens exhibit improved spatial resolution. However, this will compromise detection efficiency due to the reduced probability of neutron absorption.

  1. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  2. Brazilian two-component TLD albedo neutron individual monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP: 21941-972, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources ({sup 252}Cf, {sup 252}Cf(D{sub 2}O), {sup 241}Am-Be, {sup 241}Am-B and {sup 238}Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  3. Gamma-neutron imaging system utilizing pulse shape discrimination with CLYC

    Science.gov (United States)

    Whitney, Chad M.; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-06-01

    Recently, RMD has investigated the use of CLYC (Cs2LiYCl6:Ce), a new and emerging scintillation material, in a gamma-neutron coded aperture imaging system based on RMD's commercial RadCamTM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC-PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event.

  4. In-Pile Qualification of the Fast-Neutron-Detection-System

    Science.gov (United States)

    Fourmentel, D.; Villard, J.-F.; Destouches, C.; Geslot, B.; Vermeeren, L.; Schyns, M.

    2018-01-01

    In order to improve measurement techniques for neutron flux assessment, a unique system for online measurement of fast neutron flux has been developed and recently qualified in-pile by the French Alternative Energies and Atomic Energy Commission (CEA) in cooperation with the Belgian Nuclear Research Centre (SCK•ECEN). The Fast-Neutron-Detection-System (FNDS) has been designed to monitor accurately high-energy neutrons flux (E > 1 MeV) in typical Material Testing Reactor conditions, where overall neutron flux level can be as high as 1015 n.cm-2.s-1 and is generally dominated by thermal neutrons. Moreover, the neutron flux is coupled with a high gamma flux of typically a few 1015 γ.cm-2.s-1, which can be highly disturbing for the online measurement of neutron fluxes. The patented FNDS system is based on two detectors, including a miniature fission chamber with a special fissile material presenting an energy threshold near 1 MeV, which can be 242Pu for MTR conditions. Fission chambers are operated in Campbelling mode for an efficient gamma rejection. FNDS also includes a specific software that processes measurements to compensate online the fissile material depletion and to adjust the sensitivity of the detectors, in order to produce a precise evaluation of both thermal and fast neutron flux even after long term irradiation. FNDS has been validated through a two-step experimental program. A first set of tests was performed at BR2 reactor operated by SCK•CEN in Belgium. Then a second test was recently completed at ISIS reactor operated by CEA in France. FNDS proved its ability to measure online the fast neutron flux with an overall accuracy better than 5%.

  5. Rattling nucleons: New developments in active interrogation of special nuclear material

    International Nuclear Information System (INIS)

    Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.

    2012-01-01

    Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.

  6. Neutron and photon transport calculations in fusion system. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    On the application of MCNP to the neutron and {gamma}-ray transport calculations for fusion reactor system, the wide range design calculation has been carried out in the engineering design activities for the international thermonuclear fusion experimental reactor (ITER) being developed jointly by Japan, USA, EU and Russia. As the objects of shielding calculation for fusion reactors, there are the assessment of dose equivalent rate for living body shielding and the assessment of the nuclear response for the soundness of in-core structures. In the case that the detailed analysis of complicated three-dimensional shapes is required, the assessment using MCNP has been carried out. Also when the nuclear response of peripheral equipment due to the gap streaming between blanket modules is evaluated with good accuracy, the calculation with MCNP has been carried out. The analyses of the shieldings for blanket modules and NBI port are explained, and the examples of the results of analyses are shown. In the blanket modules, there are penetrating holes and continuous gap. In the case of the NBI port, shielding plug cannot be installed. These facts necessitate the MCNP analysis with high accuracy. (K.I.)

  7. Development of a modular directional and spectral neutron detection system using solid-state detectors

    Energy Technology Data Exchange (ETDEWEB)

    Weltz, A., E-mail: weltza3@gmail.com; Torres, B.; McElwain, L.; Dahal, R.; Huang, J.; Bhat, I.; Lu, J.; Danon, Y.

    2015-08-21

    A detection system using room-temperature, microstructured solid-state thermal neutron detectors with very low leakage current has been developed at Rensselaer Polytechnic Institute (RPI) with the ability to provide positional and spectral information about an unknown neutron source. The Directional and Spectral Neutron Detection System (DSNDS) utilizes a set of small-but-scalable, zero-bias solid-state thermal neutron detectors which have demonstrated high thermal neutron efficiency and adequate gamma insensitivity. The DSNDS can gather spectral information about an unknown neutron source with a relatively small number of detectors, simplifying the detector electronics and minimizing cost; however, the DSNDS is modular in design, providing the capability to increase the detection efficiency and angular resolution. The system used in this paper was comprised of a stack of five high-density polyethylene (HDPE) disks with a thickness of 5 cm and a diameter of 30 cm, the middle disk containing 16 detectors positioned as one internal (moderated) and one external (unmoderated) ring of solid-state neutron detectors. These two detector rings provide the ability to determine the directionality of a neutron source. The system gathers spectral information about a neutron source in two ways: by measuring the relative responses of the internal ring of detectors as well as measuring the ratio of the internal-to-external detector responses. Experiments were performed with variable neutron spectra: a {sup 252}Cf spontaneous fission neutron source which was HDPE moderated, HDPE reflected, lead (Pb) shielded, and bare in order to benchmark the system for spectral sensitivity. Simulations were performed in order to characterize the neutron spectra corresponding to each of the source configurations and showed agreement with experimental measurements. The DSNDS demonstrates the ability to determine the relative angle of the source and the hardness of the neutron spectrum. By using the

  8. The FOND-2.2 evaluated neutron data library (Russian library of evaluated neutron data files for generating sets of constants in the ABBN constants system)

    International Nuclear Information System (INIS)

    Koshcheev, V.N.; Nikolaev, M.N.; Korchagina, Zh.A.; Savoskina, G.V.

    2001-01-01

    A short description is given of the Russian evaluated neutron data library FOND-2.2. The main purpose of FOND-2.2 is to provide sets of constants for the ABBN constants system. A history of its compilation and the sources of the neutron data are given. The contents of FOND-2.2 are presented with brief comments. (author)

  9. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Science.gov (United States)

    Barbagallo, M.; Mastromarco, M.; Colonna, N.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2014-12-01

    The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  10. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-01-01

    Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  11. Shielding design studies for a neutron irradiator system based on a 252Cf source.

    Science.gov (United States)

    da Silva, A X; Crispim, V R

    2001-01-01

    This study aims to investigate a shielding design against neutrons and gamma rays from a source of 252Cf, using Monte Carlo simulation. The shielding materials studied were borated polyethylene, borated-lead polyethylene and stainless steel. The Monte Carlo code MCNP4B was used to design shielding for 252Cf based neutron irradiator systems. By normalising the dose equivalent rate values presented to the neutron production rate of the source, the resulting calculations are independent of the intensity of the actual 252Cf source. The results show that the total dose equivalent rates were reduced significantly by the shielding system optimisation.

  12. Neutron and X-ray Tomography (NeXT) system for simultaneous, dual modality tomography

    Science.gov (United States)

    LaManna, J. M.; Hussey, D. S.; Baltic, E.; Jacobson, D. L.

    2017-11-01

    Dual mode tomography using neutrons and X-rays offers the potential of improved estimation of the composition of a sample from the complementary interaction of the two probes with the sample. We have developed a simultaneous neutron and 90 keV X-ray tomography system that is well suited to the study of porous media systems such as fuel cells, concrete, unconventional reservoir geologies, limestones, and other geological media. We present the characteristic performance of both the neutron and X-ray modalities. We illustrate the use of the simultaneous acquisition through improved phase identification in a concrete core.

  13. Development of a portable system to test area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de Rezende

    2011-02-01

    The objective is to develop a portable system to test the reliability in terms of calibration of area monitors for neutrons. For the production of this system, thickness and location of the source within the system were simulated using the code of radiation transport MCNP5. The thicknesses were set for a 241 Am-Be source with an activity of 395 mCi, which will be in a polyethylene cylinder which will provide a ambient dose equivalent rate chosen through the points of calibration settings' used by the Laboratory of Neutrons (IRD / CNEN). The results obtained in this study show the feasibility of mounting the portable system as a tool to test the area monitors for neutrons, which will provide the user of neutron area monitors to check the instrument's response in the same field of operation, thus avoiding the use of an inadequate equipment. (author)

  14. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)

  15. Neutron cross section library production code system for continuous energy Monte Carlo code MVP. LICEM

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-05-01

    A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).

  16. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    Energy Technology Data Exchange (ETDEWEB)

    Gribkov, V A; Latyshev, S V [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation); Miklaszewski, R A; Chernyshova, M [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Drozdowicz, K; Wiacek, U [Institute of Nuclear Physics, Krakow (Poland); Tomaszewski, K [ACS Ltd, Warsaw (Poland); Lemeshko, B D [N L Dukhov All-Russian Institute of Automation, Moscow (Russian Federation)], E-mail: gribkovv@yahoo.com

    2010-03-15

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity ({delta}E/E{approx}1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 10{sup 8}-10{sup 9} 2.45 MeV and 10{sup 10}-10{sup 11} 14 MeV neutrons per pulse with pulse duration {approx}10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation-1 litre bottles with methanol (CH{sub 3}OH), phosphoric (H{sub 2}PO{sub 4}) and nitric (HNO{sub 3}) acids as well as a long object-a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  17. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    International Nuclear Information System (INIS)

    Gribkov, V A; Latyshev, S V; Miklaszewski, R A; Chernyshova, M; Drozdowicz, K; Wiacek, U; Tomaszewski, K; Lemeshko, B D

    2010-01-01

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity (ΔE/E∼1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 10 8 -10 9 2.45 MeV and 10 10 -10 11 14 MeV neutrons per pulse with pulse duration ∼10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation-1 litre bottles with methanol (CH 3 OH), phosphoric (H 2 PO 4 ) and nitric (HNO 3 ) acids as well as a long object-a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  18. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse

    Science.gov (United States)

    Gribkov, V. A.; Latyshev, S. V.; Miklaszewski, R. A.; Chernyshova, M.; Drozdowicz, K.; Wiącek, U.; Tomaszewski, K.; Lemeshko, B. D.

    2010-03-01

    Recent progress in a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects by means of measuring elastically scattered neutrons is presented in this paper. The method uses very bright neutron pulses having duration of the order of 10 ns only, which are generated by dense plasma focus (DPF) devices filled with pure deuterium or DT mixture as a working gas. The small size occupied by the neutron bunch in space, number of neutrons per pulse and mono-chromaticity (ΔE/E~1%) of the neutron spectrum provides the opportunity to use a time-of-flight (TOF) technique with flying bases of about a few metres. In our researches we used DPF devices having bank energy in the range 2-7 kJ. The devices generate a neutron yield of the level of 108-109 2.45 MeV and 1010-1011 14 MeV neutrons per pulse with pulse duration ~10-20 ns. TOF base in the tests was 2.2-18.5 m. We have demonstrated the possibility of registering of neutrons scattered by the substances under investigation—1 litre bottles with methanol (CH3OH), phosphoric (H2PO4) and nitric (HNO3) acids as well as a long object—a 1 m gas tank filled with deuterium at high pressure. It is shown that the above mentioned short TOF bases and relatively low neutron yields are enough to distinguish different elements' nuclei composing the substance under interrogation and to characterize the geometry of lengthy objects in some cases. The wavelet technique was employed to 'clean' the experimental data registered. The advantages and restrictions of the proposed and tested NINIS technique in comparison with other methods are discussed.

  19. Development of the real-time neutron activation diagnostic system for NIF

    Science.gov (United States)

    Root, Jaben R.; Jedlovec, Donald R.; Edwards, Ellen R.; Yeamans, Charles B.; Golod, Tony; Hernandez, Jose; Adams, Phil; Brunton, Gordon

    2017-08-01

    The National Ignition Facility (NIF) is one of the highest fluence neutron sources provided by the nuclear fusion of deuterium and tritium nuclei. One of the resultant products is 14.1 MeV neutrons which provide key information to the conditions in which they were formed. The degree of polar and azimuthal symmetry of the neutron flux is a key metric for the performance of the capsule, thus a spatially-resolved measurement of the neutron distribution is critical. Implementing a suite of 48 lanthanum bromide detectors with zirconium activation samples around the target chamber has been developed to measure the neutron distribution. The system provides near real-time time estimates of the neutron fluence distribution. It is designed to operate over six orders of magnitude of neutron yield, providing overall yield estimates precise to 2%. The system is designed to operate continuously through the NIF shot cycles, accommodating high data rates. We will describe the nuclear counting system, data acquisition and archiving, analysis, and yield distribution results for some NIF high yield shots. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF-736439

  20. Solid-State Neutron Multiplicity Counting System Using Commercial Off-the-Shelf Semiconductor Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rozhdestvenskyy, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    This work iterates on the first demonstration of a solid-state neutron multiplicity counting system developed at Lawrence Livermore National Laboratory by using commercial off-the-shelf detectors. The system was demonstrated to determine the mass of a californium-252 neutron source within 20% error requiring only one-hour measurement time with 20 cm2 of active detector area.

  1. Operational experience with neutron power on-line calibration system AKE-02R at Bohunice NPP

    International Nuclear Information System (INIS)

    Zavodsky, M.; Klucarova, K.

    2010-01-01

    Ex-core neutron flux measurement system was modernized at Bohunice NPP in period 2007-2008. The previous system AKNT-2 was replaced by new system AKNT-17R. In spite of the new modern system, neutron flux measurement accuracy is still influenced by the changes of various parameters: control assemblies group 6 position, coolant temperature at reactor inlet, power distribution in reactor core change because of fuel burn-up, etc. Therefore AKE-02R system (neutron power on-line calibration system) was installed at Bohunice NPP in 2008 and 2009. AKE-02R system was working in open-loop mode more than one year and finally at the end of 2009 (Unit 3) and at the beginning of 2010 (Unit 4) was switched into close-loop mode. The purpose of AKE-02R system is to increase ex-core neutron power measurement accuracy. AKE-02R system eliminates above mentioned dependencies by using correction factors, determined on the basis of real control assemblies axial position, real coolant inlet temperature and real burn-up. Correction factors are continually calculated in AKE-02R system and next enter into AKNT-17R system. New corrected value of neutron power is computed in AKNT-17R system by using correction factor. Corrected value of neutron power is used as input value for all other systems (reactor control system, reactor trip system, reactor limitation system, etc.). In this paper brief description of AKNT-17R system and AKE-02R system is presented. The process of commissioning of AKE-02R and also the results of tests are explained. Operational experiences with AKE-02R system after switching into close-loop mode are showed. (Authors)

  2. Methodology of measurement of thermal neutron time decay constant in Canberra 35+ MCA system

    International Nuclear Information System (INIS)

    Drozdowicz, K.; Gabanska, B.; Igielski, A.; Krynicka, E.; Woznicka, U.

    1993-01-01

    A method of the thermal neutron time decay constant measurement in small bounded media is presented. A 14 MeV pulsed neutron generator is the neutron source. The system of recording of a die-away curve of thermal neutrons consists of a 3 He detector and of a multichannel time analyzer based on analyzer Canberra 35+ with multi scaler module MCS 7880 (microsecond range). Optimum parameters for the measuring system are considered. Experimental verification of a dead time of the instrumentation system is made and a count-loss correction is incorporated into the data treatment. An attention is paid to evaluate with a high accuracy the fundamental mode decay constant of the registered decaying curve. A new procedure of the determination of the decay constant by a multiple recording of the die-away curve is presented and results of test measurements are shown. (author). 11 refs, 12 figs, 4 tabs

  3. The development of enabling technologies for producing active interrogation beams.

    Science.gov (United States)

    Kwan, Thomas J T; Morgado, Richard E; Wang, Tai-Sen F; Vodolaga, B; Terekhin, V; Onischenko, L M; Vorozhtsov, S B; Samsonov, E V; Vorozhtsov, A S; Alenitsky, Yu G; Perpelkin, E E; Glazov, A A; Novikov, D L; Parkhomchuk, V; Reva, V; Vostrikov, V; Mashinin, V A; Fedotov, S N; Minayev, S A

    2010-10-01

    A U.S./Russian collaboration of accelerator scientists was directed to the development of high averaged-current (∼1 mA) and high-quality (emittance ∼15 πmm mrad; energy spread ∼0.1%) 1.75 MeV proton beams to produce active interrogation beams that could be applied to counterterrorism. Several accelerator technologies were investigated. These included an electrostatic tandem accelerator of novel design, a compact cyclotron, and a storage ring with energy compensation and electron cooling. Production targets capable of withstanding the beam power levels were designed, fabricated, and tested. The cyclotron/storage-ring system was theoretically studied and computationally designed, and the electrostatic vacuum tandem accelerator at BINP was demonstrated for its potential in active interrogation of explosives and special nuclear materials.

  4. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Directory of Open Access Journals (Sweden)

    John Eley

    2015-03-01

    Full Text Available Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  5. Development of a neutron multiplicity counter system for the nuclear material accounting and safeguards in KAERI

    International Nuclear Information System (INIS)

    Ha, Jang Ho; Kim, Ho Dong; Ko, Won Il; Lee, Sang Yon; Song, Dae Yong; Yang, Myung Seung

    2004-01-01

    A well-type neutron multiplicity counter (WNMC) system was installed in a hot cell for the purpose of nuclear material control, accounting (NMC and A) and safeguards. The WNMC system determined the nuclear material amount on the basis of the Cm-monitoring method by measuring the neutron multiplicity and the number of coincidence events. The developed system consisted of 20 He-3 tubes with a 2.54 cm diameter and 50 cm length to cover a 25 cm long uniform neutron efficiency region along the tube length direction. As a neutron moderator in order to increase the neutron absorption rate at the He-3 tube, a well type high density polyethylene (HDPE) with a 50 cm diameter was used. The efficiently optimized cylindrical Cd-plate was used in order to satisfy the uniformity along the tube direction. The absolute neutron detection efficiency of the HDPE system was measured about 14.0% and the die-away time was 51.6μs. This system will be used not only for NMC and A but also the process for material quality control, for example, decladding performance of rod-cuts and the homogeneity of a mixing powder, waste and ingot. (author)

  6. Development and investigation of a neutron radiography imaging system with a low-pressure multistep chamber

    International Nuclear Information System (INIS)

    Anisimov, Yu.S.; Chernenko, S.P.; Ivanov, A.B.; Netusil, T.; Peshekhonov, V.D.; Smykov, L.P.; Zanevsky, Yu.V.; Cisar, M.; Horacek, J.; Knourek, J.; Moucka, L.; Nezmar, L.; Pellar, L.; Pochman, J.; Schneider, Z.; Sidak, Z.; Vrba, I.; Bizek, V.; Zavadil, Z.; Beran, P.; Cerny, K.

    1988-01-01

    An imaging system of thermal neutrons for an investigation of digital neutron radiography has been developed and tested. Some characteristics obtained on a neutron radiography beam of an experimental reactor are reported. The coordinates of each event are determined in this system. After processing in a LSI 11/23 computer, a radiograph, accumulated in a histogramming memory of 64 K 16-bit words, is presented on a colour display. A 230x180 mm 2 low-pressure multistep chamber is used as a detector. Neutron conversion takes place in a 6 μm boron layer enriched to 86% in 10 B. The detection efficiency of thermal neutrons is no less than 3%. The count rate of the system reaches up to 2x10 5 events per second. A radiograph can be obtained within 10 minutes. The sensitivity of this system to gamma-background is low. One event/s is detected for a background of 1 R/h. The spatial resolution is found to be 0.7 mm (FWHM) using a cadmium knife edge. The integral nonlinearity is less than 0.4%. The possibility of using a hydrogeneous converter in this system for neutron radiography is discussed. (orig.)

  7. Triton burnup measurements in KSTAR using a neutron activation system

    Science.gov (United States)

    Jo, Jungmin; Cheon, MunSeong; Kim, Jun Young; Rhee, T.; Kim, Junghee; Shi, Yue-Jiang; Isobe, M.; Ogawa, K.; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-11-01

    Measurements of the time-integrated triton burnup for deuterium plasma in Korea Superconducting Tokamak Advanced Research (KSTAR) have been performed following the simultaneous detection of the d-d and d-t neutrons. The d-d neutrons were measured using a 3He proportional counter, fission chamber, and activated indium sample, whereas the d-t neutrons were detected using activated silicon and copper samples. The triton burnup ratio from KSTAR discharges is found to be in the range 0.01%-0.50% depending on the plasma conditions. The measured burnup ratio is compared with the prompt loss fraction of tritons calculated with the Lorentz orbit code and the classical slowing-down time. The burnup ratio is found to increase as plasma current and classical slowing-down time increase.

  8. Background subtraction system for pulsed neutron logging of earth boreholes

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1977-01-01

    A neutron generator in well logging instrument is pulsed 100 times having a time between pulses of 1400 microseconds. This is followed by an off period of four cycles wherein 2800 microseconds is allowed for capture radiation to decay to an insignificant level and the remaining 2800 microseconds is used to measure background radiation. This results in the neutron source being disabled four pulses after every hundred pulses of operation, or approximately a 4 percent loss of neutron output. A first detector gate is open from 400 to 680 microseconds and a second detector gate is open from 700 to 980 microseconds. During the 100 cycles, each of the gates is thus open for 280 microseconds times 100 for a total of 28,000 microseconds. By scaling the gate count rate by a factor of 10, the background is subtracted directly

  9. Double and triple entanglement in a single neutron system

    International Nuclear Information System (INIS)

    Erdösi, D.

    2015-01-01

    Single-neutron interferometry is used in various experiments to study the foundations of quantum mechanics. The drawback of this technique, however, is that the contrast of neutron interferometers is very prone to disturbances, in particular, temperature variations. In order to achieve very low degrading of the contrast, we develop new devices to manipulate the neutron-s spin and energy in the interferometer. These devices open the door for quantum state generation with much higher fidelities than it has been possible so far in neutron interferometry. Spin rotators with time-dependent (radio-frequency (RF)) field change both spin and energy. We improve our RF spin-rotators for the interferometer by equipping them with miniature Helmholtz coils, which allows to adjust the energy shift due to each RF coil independently. This is essential for the generation of certain quantum states. This improvement is made possible by a new coil cooling method. Furthermore, we also develop new Larmor precession accelerators and decelerators that do not consume energy and hence do not produce heat at all. We demonstrate two applications of the new spin and energy manipulators by generating bi- and tripartite entanglement between the neutron's spin, energy and path degrees of freedom in the interferometer: we succeed in generating a Bell-like state and GHZ- and W-like states. For Bell state generation we also introduce a convenient spin preparation scheme that uses our Larmor precession manipulator. We achieve a considerably more significant violation of a Bell-like inequality than with the previous method, thus further confirming quantum contextuality. With our RF spin rotators we achieve for the GHZ- and W-like states fidelities between 95 and 99%. (author) [de

  10. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I

    2006-01-15

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year.

  11. Fundamental design of systems and facilities for cold neutron source in the Hanaro

    International Nuclear Information System (INIS)

    Kim, Bong Soo; Jeong, H. S.; Kim, Y. K.; Wu, S. I.

    2006-01-01

    The CNS(Cold Neutron Source) development project has been carried out as the partial project of the reactor utilization R and D government enterprise since 2003. In the advantage of lower energy and long wave length for the cold neutron, it can be used with the essential tool in order to investigate the structure of protein, amino-acid, DNA, super lightweight composite and advanced materials in the filed of high technology. This report is mainly focused on the basic design of the systems and facilities for the HANARO cold neutron source, performed during the second fiscal project year

  12. Methematical model of a neutron counting system used for the characteristics control of spontaneously fissioning material

    International Nuclear Information System (INIS)

    Bessis, J.

    1986-09-01

    Methods are described for calculating the probabilities, p(m), of detection of m neutrons, inside a split millisecond counting gate, m varying from zero to some units. At the present stage, these methods suppose the source to be very small. Using the generating function concept, they concern both possible modes of the counting system, for opening gates, i.e.: 1) Trigger pulses randomly with regard to the emitted neutrons, 2) Trigger pulses from the detected neutrons themselves. Computed values are finally compared to the measured ones. This comparison seems to be very favourable, since the respective deviations are often lower than 1 % [fr

  13. Neutron analysis of a hybrid system fusion-fission

    International Nuclear Information System (INIS)

    Dorantes C, J. J.; Francois L, J. L.

    2011-11-01

    The use of energy at world level implies the decrease of natural resources, reduction of fossil fuels, in particular, and a high environmental impact. In view of this problem, an alternative is the energy production for nuclear means, because up to now is one of the less polluting energy; however, the nuclear fuel wastes continue being even a problem without being solved. For the above mentioned this work intends the creation of a device that incorporates the combined technologies of fission and nuclear fusion, called Nuclear Hybrid Reactor Fusion-Fission (HRFF). The HRFF has been designed theoretically with base in experimental fusion reactors in different parts of the world like: United States, Russia, Japan, China and United Kingdom, mainly. The hybrid reactor model here studied corresponds at the Compact Nuclear Facility Source (CNFS). The importance of the CNFS resides in its feasibility, simple design, minor size and low cost; uses deuterium-tritium like main source of neutrons, and as fuel can use the spent fuel of conventional nuclear reactors, such as the current light water reactors. Due to the high costs of experimental research, this work consists on simulating in computer a proposed model of CNFS under normal conditions of operation, to modify the arrangement of the used fuel: MOX and IMF, to analyze the obtained results and to give final conclusions. In conclusion, the HRFF can be a versatile system for the management of spent fuel of light water reactors, so much for the possibility of actinides destruction, like for the breeding of fissile material. (Author)

  14. CVD polycrystalline diamond. A novel neutron detector and applications

    International Nuclear Information System (INIS)

    Mongkolnavin, R.

    1998-07-01

    Chemical Vapour Deposition (CVD) Polycrystalline Diamond film has been investigated as a low noise sensor for beta particles, gammas and neutrons using High Energy Physics technologies. Its advantages and disadvantages have been explored in comparison with other particle detectors such as silicon detector and other plastic scintillators. The performance and characteristic of the diamond detector have been fully studied and discussed. These studies will lead to a better understanding of how CVD diamonds perform as a detector and how to improve their performance under various conditions. A CVD diamond detector model has been proposed which is an attempt to explain the behaviour of such an extreme detector material. A novel neutron detector is introduced as a result of these studies. A good thermal and fast neutron detector can be fabricated with CVD diamond with new topologies. This detector will perform well without degradation in a high neutron radiation environment, as diamond is known to be radiation-hard. It also offers better neutrons and gammas discrimination for high gamma background applications compared to other semiconductor detectors. A full simulation of the detector has also been done using GEANT, a Monte Carlo simulation program for particle detectors. Simulation results show that CVD diamond detectors with this novel topology can detect neutrons with great directionality. Experimental work has been done on this detector in a nuclear reactor environment and accelerator source. A novel neutron source which offers a fast pulse high-energy neutrons has also been studied. With this detector, applications in neutron spectrometry for low-Z material have been pursued with various neutron detection techniques. One of these is a low-Z material identification system. The system has been designed and simulated for contraband luggage interrogation using the detector and the novel neutron source. (author)

  15. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    Science.gov (United States)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-07-01

    An extension of the point kinetics model is developed to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. The spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  16. Magnetic fields in mixed neutron-star-plus-wormhole systems

    International Nuclear Information System (INIS)

    Aringazin, Ascar; Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta

    2015-01-01

    We consider mixed configurations consisting of a wormhole filled by a strongly magnetized isotropic or anisotropic neutron fluid. The nontrivial topology of the spacetime is allowed by the presence of exotic matter. By comparing these configurations with ordinary magnetized neutron stars, we clarify the question of how the presence of the nontrivial topology influences the magnetic field distribution inside the fluid. In the case of an anisotropic fluid, we find new solutions describing configurations, where the maximum of the fluid density is shifted from the center. A linear stability analysis shows that these mixed configurations are unstable

  17. Magnetic fields in mixed neutron-star-plus-wormhole systems

    Energy Technology Data Exchange (ETDEWEB)

    Aringazin, Ascar [Institute for Basic Research, Eurasian National University, 5, Munaitpasov Street, Astana, 010008 (Kazakhstan); Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta, E-mail: aringazin@gmail.com, E-mail: v.dzhunushaliev@gmail.com, E-mail: vfolomeev@mail.ru, E-mail: b.kleihaus@uni-oldenburg.de, E-mail: jutta.kunz@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, 114-118, Ammerländer Heerstraße, D-26111 Oldenburg (Germany)

    2015-04-01

    We consider mixed configurations consisting of a wormhole filled by a strongly magnetized isotropic or anisotropic neutron fluid. The nontrivial topology of the spacetime is allowed by the presence of exotic matter. By comparing these configurations with ordinary magnetized neutron stars, we clarify the question of how the presence of the nontrivial topology influences the magnetic field distribution inside the fluid. In the case of an anisotropic fluid, we find new solutions describing configurations, where the maximum of the fluid density is shifted from the center. A linear stability analysis shows that these mixed configurations are unstable.

  18. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    Science.gov (United States)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  19. Neutrons in science and technology

    International Nuclear Information System (INIS)

    Bromley, D.A.

    1984-01-01

    Occasionally to the fiftieth anniversy of the discovery of the neutron the author presents a historical review about the impact of this discovery on different fields at physics. Especially considered are nuclear physics, the neutron as an elementary particles, ultracold neutrons, condensed matter physics, radiation damage induced by neutrons, neutron activation analysis, imaging and radiography by neutrons, neutrons in mining operations, track etching, the use of intense gamma sources, gauging systems, neutron holography and neutron stars. (HSI)

  20. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  1. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  2. An NaI(Tl) spectrometer system for keV neutron radiative-capture reactions

    International Nuclear Information System (INIS)

    Ohsaki, T.; Nagai, Y.; Igashira, M.; Shima, T.; Suzuki, T.S.; Kikuchi, T.; Kobayashi, T.; Takaoka, T.; Kinoshita, M.; Nobuhara, Y.

    1999-01-01

    An NaI(Tl) spectrometer system has been installed to measure the cross section of a radiative neutron-capture reaction of a nucleus at an astrophysically relevant energy of between 10 and 500 keV. The system consists of two large anti-Compton NaI(Tl) spectrometers and a new data-taking system. The spectrometer can detect a discrete γ-ray emitted promptly from a neutron-capture state to its low-lying state, and the data-taking system can transfer events with much higher rates, about 30-times higher, compared to the existing system

  3. Unfolding neutron spectra with BS-TLD system using genetic algorithms

    International Nuclear Information System (INIS)

    Santos, Joelan A.L.; Silva, Everton R.; Vilela, Eudice C.

    2011-01-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as function of energy to be characterized. To perform this task, the neutron spectrometer has a primary role in determining the neutron flux (Φ E (E)). Precise information allows radiological quantities establishment related to that spectrum but it is necessary, however, a series of steps with a spectrometric system that can cover a large interval of energy and whose answer is isotropic. The most widely used for accomplishing this task is the spectrometric Bonner spheres system. One of the biggest problems related to neutron spectrometry is the process of data analysis, known as unfolding. Most of the work undertaken to implement new techniques of this process, using data obtained with the scintillator 6 LiI(I). However, characteristics related to the dead time make it not be so effective when used in high flow neutron fields. An alternative to this problem is the use of thermoluminescent detectors (TLD), but the codes used do not provide a more specific response matrix to unfolding the information obtained through these materials, which makes the development of a specific response matrix important to adequately characterize the response obtained by them. This paper proposes using a technique of artificial intelligence called genetic algorithm, which uses bio-inspired mathematical models and through the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a system of Bonner spheres, such as thermal neutron detectors, to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enables of this technique to unfolding neutrons spectra with BS-TLD system. (author)

  4. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Energy Technology Data Exchange (ETDEWEB)

    Koetzle, Thomas F. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: tkoetzle@anl.gov; Piccoli, Paula M.B.; Schultz, Arthur J. [IPNS Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-02-21

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a {beta}-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS)

  5. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    Science.gov (United States)

    Koetzle, Thomas F.; Piccoli, Paula M. B.; Schultz, Arthur J.

    2009-02-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H⋯O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  6. Single-crystal neutron diffraction studies of hydrogen-bonded systems: Two recent examples from IPNS

    International Nuclear Information System (INIS)

    Koetzle, Thomas F.; Piccoli, Paula M.B.; Schultz, Arthur J.

    2009-01-01

    Beginning with work in the 1950s at the first generation of research reactors, studies of hydrogen-bonded systems have been a prime application for single-crystal neutron diffraction. The range of systems studied was extended in the 1960s and 1970s, with the advent of high flux reactor sources, and beginning around 1980 studies at pulsed neutron sources have made increasingly important contributions. Recently at the Argonne Intense Pulsed Neutron Source (IPNS), working with collaborators, we completed two studies of hydrogen-bonded systems that will serve to illustrate topics of current interest. In the first study, on andrographolide, an active diterpenoid natural product, our neutron diffraction results definitively characterize the hydrogen-bonding interactions. The second IPNS study is on tetraacetylethane (TAE), a β-diketone enol system with a very short, strong intramolecular O-H...O hydrogen bond. At IPNS, we have determined the neutron crystal structure of TAE at five temperatures between 20 and 298 K to investigate changes in the structure with temperature and to probe for disorder. Despite the successes illustrated by the two examples presented here and by many other studies, at present applications of single-crystal neutron diffraction continue to be extremely flux limited and constrained by the requirement for mm-size crystals for many problems. These limitations are being addressed through the realization of powerful instruments at a new generation of pulsed neutron sources, including in the USA the TOPAZ and MaNDi single-crystal diffractometers that are under development at the Spallation Neutron Source (SNS).

  7. Unfolding neutron spectra with BS-TLD system using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Joelan A.L., E-mail: jasantos@cnen.gov.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Silva, Everton R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Informatica; Ferreira, Tiago A.E. [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Estatistica e Informatica; Fonseca, Evaldo S. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Vilela, Eudice C., E-mail: ecvilela@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-07-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as function of energy to be characterized. To perform this task, the neutron spectrometer has a primary role in determining the neutron flux ({Phi}{sub E}(E)). Precise information allows radiological quantities establishment related to that spectrum but it is necessary, however, a series of steps with a spectrometric system that can cover a large interval of energy and whose answer is isotropic. The most widely used for accomplishing this task is the spectrometric Bonner spheres system. One of the biggest problems related to neutron spectrometry is the process of data analysis, known as unfolding. Most of the work undertaken to implement new techniques of this process, using data obtained with the scintillator {sup 6}LiI(I). However, characteristics related to the dead time make it not be so effective when used in high flow neutron fields. An alternative to this problem is the use of thermoluminescent detectors (TLD), but the codes used do not provide a more specific response matrix to unfolding the information obtained through these materials, which makes the development of a specific response matrix important to adequately characterize the response obtained by them. This paper proposes using a technique of artificial intelligence called genetic algorithm, which uses bio-inspired mathematical models and through the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a system of Bonner spheres, such as thermal neutron detectors, to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enables of this technique to unfolding neutrons spectra with BS-TLD system. (author)

  8. A Computerized Library and Evaluation System for Integral Neutron Experiments.

    Science.gov (United States)

    Hampel, Viktor E.; And Others

    A computerized library of references to integral neutron experiments has been developed at the Lawrence Radiation Laboratory at Livermore. This library serves as a data base for the systematic retrieval of documents describing diverse critical and bulk nuclear experiments. The evaluation and reduction of the physical parameters of the experiments…

  9. Study on a focusing, low-background neutron delivery system

    Science.gov (United States)

    Stahn, J.; Panzner, T.; Filges, U.; Marcelot, C.; Böni, P.

    2011-04-01

    In various fields of neutron scattering there is a tendency to use smaller and smaller samples. There are various reasons for this, e.g. the limited size in high pressure cells, the restrictions given by growth methods of thin films, or the impossibility to grow larger single crystals. With conventional guides this leads to the situation that a white beam with some 50 cm2 cross-section and a broad divergence is to illuminate a sample of some mm2 area. Thus more than 99% of the neutrons leaving the guide are not needed and cause background and radiation problems.It is suggested to change the order of the optical elements and the design of the guide section to filter neutrons not intended to hit the sample as early as possible. As an example a set-up for specular reflectivity on small samples is presented. A double monochromator some meters behind the source cuts away all neutrons of the wrong wavelength even before they enter the guide. The guide itself is one branch of an ellipse. It maps the divergent beam from the monochromator to a convergent beam at the sample position. An entry aperture at the first focal point, a bit larger than the sample, guarantees that just enough neutrons enter the guide to bath the sample. There is no direct line of sight to the source and the guide ends far away from the sample position, so that there are only few spacial restrictions.Detailed McStas calculations and a design study for a down-scaled test device, both for reflectometry and diffraction, are presented.

  10. Spectroscopic neutron radiography for a cargo scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Rahon, Jill [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Danagoulian, Areg, E-mail: aregjan@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); MacDonald, Thomas D. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Hartwig, Zachary S. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Lanza, Richard C. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-06-01

    Detection of cross-border smuggling of illicit materials and contraband is a challenge that requires rapid, low-dose, and efficient radiographic technology. The work we describe here is derived from a technique which uses monoenergetic gamma rays from low energy nuclear reactions, such as {sup 11}B(d,nγ){sup 12}C, to perform radiographic analysis of shipping containers. Transmission ratios of multiple monoenergetic gamma lines resulting from several gamma producing nuclear reactions can be employed to detect materials of high atomic number (Z), the details of which will be described in a separate paper. Inherent in this particular nuclear reaction is the production of fast neutrons which could enable neutron radiography and further characterization of the effective-Z of the cargo, especially within the range of lower Z. Previous research efforts focused on the use of total neutron counts in combination with X-ray radiography to characterize the hydrogenous content of the cargo. We present a technique of performing transmitted neutron spectral analysis to reconstruct the effective Z and potentially the density of the cargo. This is made possible by the large differences in the energy dependence of neutron scattering cross-sections between hydrogenous materials and those of higher Z. These dependencies result in harder transmission spectra for hydrogenous cargoes than those of non-hydrogenous cargoes. Such observed differences can then be used to classify the cargo based on its hydrogenous content. The studies presented in this paper demonstrate that such techniques are feasible and can provide a contribution to cargo security, especially when used in concert with gamma radiography.

  11. Plans for a Collaboratively Developed Distributed Control System for the Spallation Neutron Source

    International Nuclear Information System (INIS)

    DeVan, W.R.; Gurd, D.P.; Hammonds, J.; Lewis, S.A.; Smith, J.D.

    1999-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based pulsed neutron source to be built in Oak Ridge, Tennessee. The facility has five major sections - a ''front end'' consisting of a 65 keV H - ion source followed by a 2.5 MeV RFQ; a 1 GeV linac; a storage ring; a 1MW spallation neutron target (upgradeable to 2 MW); the conventional facilities to support these machines and a suite of neutron scattering instruments to exploit them. These components will be designed and implemented by five collaborating institutions: Lawrence Berkeley National Laboratory (Front End), Los Alamos National Laboratory (Linac); Brookhaven National Laboratory (Storage Ring); Argonne National Laboratory (Instruments); and Oak Ridge National Laboratory (Neutron Source and Conventional Facilities). It is proposed to implement a fully integrated control system for all aspects of this complex. The system will be developed collaboratively, with some degree of local autonomy for distributed systems, but centralized accountability. Technical integration will be based upon the widely-used EPICS control system toolkit, and a complete set of hardware and software standards. The scope of the integrated control system includes site-wide timing and synchronization, networking and machine protection. This paper discusses the technical and organizational issues of planning a large control system to be developed collaboratively at five different institutions, the approaches being taken to address those issues, as well as some of the particular technical challenges for the SNS control system

  12. Automatic neutron dosimetry system based on fluorescent nuclear track detector technology

    International Nuclear Information System (INIS)

    Akselrod, M.S.; Fomenko, V.V.; Bartz, J.A.; Haslett, T.L.

    2014-01-01

    For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. The first table-top automatic FNTD neutron dosimetry system was successfully tested for LLD, linearity and ability to measure neutrons in mixed neutron-photon fields satisfying US and ISO standards. This new neutron dosimetry system provides advantages over other technologies including environmental stability of the detector material, wide range of detectable neutron energies and doses, detector re-readability and re-usability and all-optical readout. A new adaptive image processing algorithm reliably removes false-positive tracks associated with surface and bulk crystal imperfections. (authors)

  13. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, R. [Department of Mathematics, Center for Computational Engineering Science, RWTH Aachen University, Schinkel Strasse 2, D-52062 Aachen (Germany)

    2013-07-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  14. Application of an integrated PC-based neutronics code system to criticality safety

    International Nuclear Information System (INIS)

    Briggs, J.B.; Nigg, D.W.

    1991-01-01

    An integrated system of neutronics and radiation transport software suitable for operation in an IBM PC-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past four years. Four modules within the system are particularly useful for criticality safety applications. Using the neutronics portion of the integrated code system, effective neutron multiplication values (k eff values) have been calculated for a variety of benchmark critical experiments for metal systems (Plutonium and Uranium), Aqueous Systems (Plutonium and Uranium) and LWR fuel rod arrays. A description of the codes and methods used in the analysis and the results of the benchmark critical experiments are presented in this paper. In general, excellent agreement was found between calculated and experimental results. (Author)

  15. Rheo: Japanese Sound Art Interrogating Digital Mediality

    DEFF Research Database (Denmark)

    Vandsø, Anette

    2014-01-01

    THe article asks in what way the Japanese sound artist Ryoichi Kurokawa's audiovisual installation Rheo 5 Horisonz (2010) is 'digital'. Using Professor Lars Elleströms concept of 'mediality, the main claim in this article is that Rheo no only uses digital tehcnology, but also interrogates digital...

  16. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  17. PROMETHEE: An Alpha Low Level Waste Assay System Using Passive and Active Neutron Measurement Methods

    International Nuclear Information System (INIS)

    Passard, Christian; Mariani, Alain; Jallu, Fanny; Romeyer-Dherbey, Jacques; Recroix, Herve; Rodriguez, Michel; Loridon, Joel; Denis, Caroline; Toubon, Herve

    2002-01-01

    The development of a passive-active neutron assay system for alpha low level waste characterization at the French Atomic Energy Commission is discussed. Less than 50 Bq[α] (about 50 μg Pu) per gram of crude waste must be measured in 118-l 'European' drums in order to reach the requirements for incinerating wastes. Detection limits of about 0.12 mg of effective 239 Pu in total active neutron counting, and 0.08 mg of effective 239 Pu coincident active neutron counting, may currently be detected (empty cavity, measurement time of 15 min, neutron generator emission of 1.6 x 10 8 s -1 [4π]). The most limiting parameters in terms of performances are the matrix of the drum - its composition (H, Cl...), its density, and its heterogeneity degree - and the localization and self-shielding properties of the contaminant

  18. Goodness of isospin in neutron rich systems from the fission fragment distribution

    Science.gov (United States)

    Garg, Swati; Jain, Ashok Kumar

    2017-09-01

    We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.

  19. Nuclear science experiments with a bright neutron source from fusion reactions on the OMEGA Laser System

    Science.gov (United States)

    Forrest, C. J.; Knauer, J. P.; Schroeder, W. U.; Glebov, V. Yu.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Sickles, M.; Stoeckl, C.; Szczepanski, J.

    2018-04-01

    Subnanosecond impulses of 1013 to 1014 neutrons, produced in direct-drive laser inertial confinement fusion implosions, have been used to irradiate deuterated targets at the OMEGA Laser System (Boehly et al., 1997). The target compounds include heavy water (D2O) and deuterated benzene (C6D6). Yields and energy spectra of neutrons from D(n,2n)p to study the breakup reaction have been measured at a forward angle of θlab = 3 .5∘ ± 3.5° with a sensitive, high-dynamic-range neutron time-of-flight spectrometer to infer the double-differential breakup cross section d2 σ/dE d Ω for 14-MeV D-T fusion neutrons.

  20. The development of ex-core neutron flux monitoring system for integral reactor

    International Nuclear Information System (INIS)

    Lee, J. K.; Kwon, H. J.; Park, H. Y.; Koo, I. S.

    2004-12-01

    Due to the arrangement of major components within the reactor vessel, the integral reactor has relatively long distance between the core support barrel and the reactor vessel when compared with the currently operating plants. So, a neutron flux leakage at the ex-vessel represents a relatively low flux level which may generate some difficulties in obtaining a wide range of neutron flux information including the source range one. This fact may have an impact upon the design and fabrication of an ex-core neutron flux detector. Therefore, it is required to study neutron flux detectors that are suitable for the installation location and characteristics of an integral reactor. The physical constraints of an integral reactor should be considered when one designs and develops the ex-core neutron flux monitoring detectors and their systems. As a possible installation location of the integral reactor ex-core neutron flux detector assembly, two candidate locations are considered, that is, one is between the core support barrel and the reactor vessel and the other is within the Internal Shielding Tank(IST). And, for these locations, some factors such as the environmental requirements and geometrical restrictions are investigated In the case of considering the inside of the IST as a ex-core neutron flux detector installation position, an electrical insulation problem and a low neutron flux measurement problem arose and when considering the inside of the reactor vessel, a detector's sensitivity variation problem, an electrical insulation problem, a detector's insertion and withdrawal problem, and a high neutron flux measurement problem were encountered. Through a survey of the detector installation of the currently operating plants and detector manufacturer's products, the proposed structure and specifications of an ex-core neutron flux detector are suggested. And, the joint ownership strategy for a proposed detector model is also depicted. At the end, by studying the ex

  1. Neutronics-processing interface analyses for the Accelerator Transmutation of Waste (ATW) aqueous-based blanket system

    International Nuclear Information System (INIS)

    Davidson, J.W.; Battat, M.E.

    1993-01-01

    Neutronics-processing interface parameters have large impacts on the neutron economy and transmutation performance of an aqueous-based Accelerator Transmutation of Waste (ATW) system. A detailed assessment of the interdependence of these blanket neutronic and chemical processing parameters has been performed. Neutronic performance analyses require that neutron transport calculations for the ATW blanket systems be fully coupled with the blanket processing and include all neutron absorptions in candidate waste nuclides as well as in fission and transmutation products. The effects of processing rates, flux levels, flux spectra, and external-to-blanket inventories on blanket neutronic performance were determined. In addition, the inventories and isotopics in the various subsystems were also calculated for various actinide and long-lived fission product transmutation strategies

  2. Adaptive interrogation for 3D-PIV

    International Nuclear Information System (INIS)

    Novara, Matteo; Scarano, Fulvio; Ianiro, Andrea

    2013-01-01

    A method to adapt the shape and orientation of interrogation volumes for 3D-PIV motion analysis is introduced, aimed to increase the local spatial resolution. The main application of this approach is the detailed analysis of complex 3D and vortex-dominated flows that exhibit high vorticity in confined regions like shear layers and vortex filaments. The adaptive criterion is based on the analysis of the components of the local velocity gradient tensor, which returns the level of anisotropy of velocity spatial fluctuations. The principle to increase the local spatial resolution is based on the deformation of spherical isotropic interrogation regions, obtained by means of Gaussian weighting, into ellipsoids, with free choice of the principal axes and their directions. The interrogation region is contracted in the direction of the maximum velocity variation and elongated in the minimum one in order to maintain a constant interrogation volume. The adaptivity technique for three-dimensional PIV data takes advantage of the 3D topology of the flow, allowing increasing the spatial resolution not only in the case of shear layers, but also for vortex filaments, which is not possible for two-dimensional measurement in the plane normal to the vortex axis. The definition of the ellipsoidal interrogation region semi-axes is based on the singular values and singular directions of the local velocity gradient tensor as obtained by the singular values decomposition technique (SVD). The working principle is verified making use of numerical simulations of a shear layer and of a vortex filament. The application of the technique to data from a Tomo-PIV experiment conducted on a round jet, shows that the resolution of the shear layer at the jet exit can be considerably improved and an increase of about 25% in the vorticity peak is attained when the adaptive approach is applied. On the other hand, the peak vorticity description in the core of vortex rings is only slightly improved with

  3. Scintillation spectrometer system for measuring fast-neutron spectra in beam geometry

    International Nuclear Information System (INIS)

    Simons, G.G.; Larson, J.M.; Reynolds, R.S.

    1977-05-01

    A high-energy liquid-organic scintillation spectrometer system is described. This spectrometer was developed to measure neutron spectra in extracted beams from zero-power fast reactors. The highly efficient NE-213 scintillation solution was used as the neutron detection medium. Identification and removal of gamma-ray-induced events was accomplished using electronic pulse shape discrimination. Instrumentation used to process the discrete pulses stemming from neutron and gamma-ray interactions, within the scintillation solution, is described in detail. Evaluation of the system's performance is discussed for a gamma-ray discrimination ratio of nominally 1000:1, a total countrate of 3000 cps, and a dynamic range corresponding to neutron energies from 1 to 10 MeV. Operation above 10 MeV is certainly possible. However, since the neutron flux above 10 MeV was negligible in the radiation fields of interest in this work, the operating characteristics of the spectrometer were not evaluated above 10 MeV. Neutron spectra are reported for extracted beam measurements made on ZPPR assembly 4, phase 2

  4. System of adjoint P1 equations for neutron moderation; Sistema de equacoes P1 adjuntas para a moderacao de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  5. Ambient neutron dose equivalent during proton therapy using wobbling scanning system: Measurements and calculations

    Science.gov (United States)

    Lin, Yung-Chieh; Lee, Chung-Chi; Chao, Tsi-Chian; Tsai, Hui-Yu

    2017-11-01

    Neutron production is a concern in proton therapy, particularly in scattering proton beam delivery systems. Despite this fact, little is known about the effects of secondary neutron exposure around wobbling scattered proton treatment nozzles. The objective of this study was to estimate the neutron dose level resulting from the use of a wobbling scattered proton treatment unit. We applied the Monte Carlo method for predict the ambient neutron dose equivalent, H*(10), per absorbed dose at the treatment isocenter, D, in the proton therapy center of Chang Gung Memorial Hospital, Linkou, Taiwan. For a 190-MeV proton beam, H* (10) / D values typically decreased with the distance from the isocenter, being 1.106 mSv/Gy at the isocenter versus 0.112 mSv/Gy at a distance of 150 cm from the isocenter. The H* (10) / D values generally decreased as the neutron receptors moved away from the isocenter, and increased when the angle from the initial beam axis increased. The ambient neutron dose equivalents were observed to be slightly lower in the direction of multileaf collimator movement. For radiation protection, the central axis of a proton-treated patient is suggested to be at the 0° angle of the beam. If the beam direction at the 90° angle is necessary, the patient axis is suggested to be along with the direction of MLC movement. Our study provides the neutron dose level and neutron energy fluence for the first wobbling proton system at the proton therapy center of Chang Gung Memorial Hospital.

  6. Multi-beam neutron guide system at IRI, Delft

    International Nuclear Information System (INIS)

    Well, A.A. van; Gibcus, H.P.M.; Gommers, R.M.; Haan, V.O. de; Labohm, F.; Verkooijen, A.H.M.

    2001-01-01

    One of the main facilities of the Interfaculty Reactor Institute (IRI) at the Delft University of Technology is the swimming-pool type research reactor HOR. In 1963 it was critical for the first time. The power raised from 100 kW in 1963 to 500 kW in 1965. In 1968, forced cooling was introduced. From that time on, the reactor is operated at 2 MW, 5 days per week. The reactor comprises a variety of irradiation facilities, used among others for radioisotope production and neutron activation analysis. It is equipped with six horizontal radial beam tubes, originally used for neutron-scattering experiments. Throughout the years, the research activities have grown steadily, both in the development of new techniques and in applying these techniques in new research areas. (orig.)

  7. A Delayed Neutron Counting System for the Analysis of Special Nuclear Materials

    Science.gov (United States)

    Sellers, Madison Theresa

    Nuclear forensic analysis is a modem science that uses numerous analytical techniques to identify and attribute nuclear materials in the event of a nuclear explosion, radiological terrorist attack or the interception of illicit nuclear material smuggling. The Canadian Department of National Defence has participated in recent international exercises that have highlighted the Nation's requirement to develop nuclear forensics expertise, protocol and capabilities, specifically pertaining to the analysis of special nuclear materials (SNM). A delayed neutron counting (DNC) system has been designed and established at the Royal Military College of Canada (RMC) to enhance the Government's SNM analysis capabilities. This analytical technique complements those already at RMC by providing a rapid and non-destructive method for the analysis of the fissile isotopes of both uranium (U) and plutonium (Pu). The SLOWPOKE-2 reactor at RMC produces a predominately thermal neutron flux. These neutrons induce fission in the SNM isotopes 233U, 235U and 239Pu releasing prompt fast neutrons, energy and radioactive fission fragments. Some of these fission fragments undergo beta - decay and subsequently emit neutrons, which can be recorded by an array of sensitive 3He detectors. The significant time period between the fission process and the release of these neutrons results in their identification as 'delayed neutrons'. The recorded neutron spectrum varies with time and the count rate curve is unique to each fissile isotope. In-house software, developed by this project, can analyze this delayed neutron curve and provides the fissile mass in the sample. Extensive characterization of the DNC system has been performed with natural U samples with 235 U content ranging from 2--7 microg. The system efficiency and dead time behaviour determined by the natural uranium sample analyses were validated by depleted uranium samples with similar quantities of 235 U resulting in a typical relative error of

  8. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors

    International Nuclear Information System (INIS)

    Martins, Marcelo Marques

    2008-01-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in 252C f(D 2 O), 252 Cf, 241 Am-B, 241 Am-Be and 238 Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  9. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  10. Spallation Neutron Source Second Target Station Integrated Systems Update

    Energy Technology Data Exchange (ETDEWEB)

    Ankner, John Francis [ORNL; An, Ke [ORNL; Blokland, Willem [ORNL; Charlton, Timothy R. [ORNL; Coates, Leighton [ORNL; Dayton, Michael J. [ORNL; Dean, Robert A. [ORNL; Dominguez-Ontiveros, Elvis E. [ORNL; Ehlers, Georg [ORNL; Gallmeier, Franz X. [ORNL; Graves, Van B. [ORNL; Heller, William T. [ORNL; Holmes, Jeffrey A. [ORNL; Huq, Ashfia [ORNL; Lumsden, Mark D. [ORNL; McHargue, William M. [ORNL; McManamy, Thomas J. [ORNL; Plum, Michael A. [ORNL; Rajic, Slobodan [ORNL; Remec, Igor [ORNL; Robertson, Lee [ORNL; Sala, Gabriele [ORNL; Stoica, Alexandru Dan [ORNL; Trotter, Steven M. [ORNL; Winn, Barry L. [ORNL; Abudureyimu, Reheman [ORNL; Rennich, Mark J. [ORNL; Herwig, Kenneth W. [ORNL

    2017-04-01

    The Spallation Neutron Source (SNS) was designed from the beginning to accommodate both an accelerator upgrade to increase the proton power and a second target station (STS). Four workshops were organized in 2013 and 2014 to identify key science areas and challenges where neutrons will play a vital role [1-4]. Participants concluded that the addition of STS to the existing ORNL neutron sources was needed to complement the strengths of High Flux Isotope Reactor (HFIR) and the SNS first target station (FTS). To address the capability gaps identified in the workshops, a study was undertaken to identify instrument concepts that could provide the required new science capabilities. The study outlined 22 instrument concepts and presented an initial science case for STS [5]. These instrument concepts formed the basis of a planning suite of instruments whose requirements determined an initial site layout and moderator selection. An STS Technical Design Report (TDR) documented the STS concept based on those choices [6]. Since issue of the TDR, the STS concept has significantly matured as described in this document.

  11. System optimization for continuous on-stream elemental analysis using low-output isotopic neutron sources

    International Nuclear Information System (INIS)

    Rizk, R.A.M.

    1989-01-01

    In continuous on-stream neutron activation analysis, the material to be analyzed may be continuously recirculated in a closed loop system between an activation source and a shielded detector. In this paper an analytical formulation of the detector response for such a system is presented. This formulation should be useful in optimizing the system design parameters for specific applications. A study has been made of all parameters that influence the detector response during on-stream analysis. Feasibility applications of the method to solutions of manganese and vanadium using a 5 μg 252 Cf neutron source are demonstrated. (author)

  12. Monte Carlo analysis of accelerator-driven systems studies on spallation neutron yield and energy gain

    CERN Document Server

    Hashemi-Nezhad, S R; Westmeier, W; Bamblevski, V P; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Wan, J S; Odoj, R

    2001-01-01

    The neutron yield in the interaction of protons with lead and uranium targets has been studied using the LAHET code system. The dependence of the neutron multiplicity on target dimensions and proton energy has been calculated and the dependence of the energy amplification on the proton energy has been investigated in an accelerator-driven system of a given effective multiplication coefficient. Some of the results are compared with experimental findings and with similar calculations by the DCM/CEM code of Dubna and the FLUKA code system used in CERN. (14 refs).

  13. Design of a prompt gamma neutron activation analysis system at HANARO

    International Nuclear Information System (INIS)

    Hee, Dong-Choi; Soo, Hyun-Byun; Byung, Jin-Jun

    1998-01-01

    The design feature is described for a prompt gamma neutron activation analysis (PGAA) system at HANARO, the 30 MW research reactor in Korea Atomic Energy Research Institute (KAERI). The primary purpose of this system is to analyze boron concentration in biological samples for research of neutron capture therapy. By considering the performance, available space and cost of setup, the PGAA system will use a thermal neutron beam diffracted by pyrolytic graphite (PG) in the existing ST1 horizontal beam line. The energy of monochromatic neutrons is 12.4 meV by setting the Bragg angle of 22.5 deg. The backgrounds will be low due to the use of diffracted beam and be further reduced through a Bi filter and a couple of LiF collimators. A neutron flux of 10 7 n/cm 2 sec is expected at sample position. The feature of low backgrounds will permit a closer detector position less than 10 cm from sample while the actual location will be decided upon test measurement. Capture γ-rays of 478 keV from 10 B(n,α) 7 Li reaction will be detected by a 30% n-type HPGe detector and processed by a fast ADC. The goal of detection sensitivity for natural boron is 2,500 cps/mg. By completing the facility, efforts to improve the system performance will be further implemented in parallel with widening application of PGAA to other elements. (author)

  14. Encapsulated microsensors for reservoir interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  15. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.; Latkowski, J.F.; Meier, W.R. [Lawrence Livermore National Lab., CA (United States); Reyes, S. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad Nacional de Educacion a Distancia and Instituto de Fusion Nuclear, Dept. Ingenieria Energetica, Bilbao (Spain)

    2000-07-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  16. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    CERN Document Server

    Kumada, H; Matsumura, A; Nakagawa, Y; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, K; Yamamoto, T

    2003-01-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is...

  17. Development of MCATHAS system of coupled neutronics/thermal-hydraulics in supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    An, P.; Yao, D. [Science and Tech. on Reactor System Design Tech. Laboratory, Chengdu (China)

    2011-07-01

    The MCATHAS system of coupled neutronics/Thermal-hydraulics in supercritical water reactor is described, which considers the mutual influence between the obvious axial and radial evolution of material temperature, water density and the relative power distribution. This system can obtain the main neutronics and thermal parameters along with burn-up. MCATHAS system is parallel processing coupling. The MCNP code is used for neutronics analysis with the continuous cross section library at any temperature calculated by interpolation algorithm; The sub-channel code ATHAS is for thermal-hydraulics analysis and the ORIGEN Code for burn-up calculation. We validate the code with the assembly of HPLWR and analyze the assembly SCLWR- H. (author)

  18. Implementation of the neutron noise technique for subcritical reactors using a new data acquisition system

    International Nuclear Information System (INIS)

    Bellino, Pablo A.; Gomez, Angel

    2009-01-01

    A new data acquisition system was designed and programmed for nuclear kinetics parameter estimations in subcritical reactors. The system allows using any of the neutron noise techniques, since it could store the whole information available in the neutron detection system. The α Rossi, α Feynman and spectral analysis methods were performed in order to estimate the prompt neutron decay constant (and hence the reactivity). The measurements were done in the nuclear research reactor RA-1, where introducing the control rods, different reactivity levels where reached (until -7 dollars). With the three methods used, agreement was found between the estimations and the reference reactivities in each level, even when the detector efficiency was low. All the measurements were performed with a high gamma flux, although the results were found to be satisfactory. (author)

  19. Wireless SAW Interrogator and Sensor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Wireless, passive, Surface Acoustic Wave (SAW), Orthogonal Frequency Coded (OFC) temperature sensors, operating in a multi-sensor environment, developed at the...

  20. Fast neutron inspection of sea containers for the presence of 'dirty bomb'

    International Nuclear Information System (INIS)

    Valkovic, V.; Sudac, D.; Blagus, S.; Nad, K.; Obhodas, J.; Vekic, B.; Nebbia, G.; Pesente, S.

    2007-01-01

    The possibility of the detection of 'dirty bomb' presence inside sea containers is evaluated. The method proposed for explosive and fissile material detection makes use of two sensors (X-rays and neutrons). A commercial imaging device based on the X-ray radiography performs a fast scan of the container, identifies a 'suspect' region and provides its coordinates to the neutron based device for the final 'confirmatory' inspection. In this two sensor system a 14 MeV neutron beam defined by the detection of associated alpha particles is used for interrogation of only volume elements marked by X-ray sensor. The object's nature is determined from passive and neutron induced, gamma energy spectra measurements. Experimental results (time-of-flight and gamma energy spectra) obtained for the irradiation 30 kg of TNT, depleted uranium and other materials hidden inside the container are presented

  1. Coupling of 3D neutronics models with the system code ATHLET

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    1999-01-01

    The system code ATHLET for plant transient and accident analysis has been coupled with 3D neutronics models, like QUABOX/CUBBOX, for the realistic evaluation of some specific safety problems under discussion. The considerations for the coupling approach and its realization are discussed. The specific features of the coupled code system established are explained and experience from first applications is presented. (author)

  2. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible using gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.

  3. RPL-SC dosimetric system for measuring gamma and neutron irradiation in case of emergency

    International Nuclear Information System (INIS)

    Khristova, M. G.

    1993-01-01

    A RPL-SC dosimetric system is designed based on radiophotoluminescence (RPL) and on the effect of fast neutron bombardment of silicon semiconductor (SC) diodes. The experimental prototype consists of a computerized automatic measurement system and an individual dosimetric cassette accommodating RPL and SC detectors. The equipment includes: a device for measurement of the direct voltage of Si diodes and the RPL light emitted by RPL detectors; a compartment with dosimetric cassettes to be measured; a manipulator with three positions executing automatic measurement of cassettes; a computer and a printer. The system operates in both manual and automatic modes. In the manual mode each step of the manipulator is set up by the operator who changes the ranges after they have been filled to capacity and registers the results. In the automatic mode the whole process of maintaining the supply and control voltage, of manipulator's operation, measuring, data recording and data processing are controlled by a specially designed computer programme. Main technical parameters: 1) Measurement range of absorbed dose: gamma rays - 10 -3 to 10 2 Gy; thermal neutrons - 10 -3 to 10 2 Gy; fast neutrons - 10 to 30 Gy. 2) Energy range: gamma rays - 0.04 to 1.25 MeV; thermal neutrons - 0.024 eV; fast neutrons - 0.3 to 14 MeV. 3) Relative measurement error - ±15% 4) Recurrent measurement of one and the same dose. 5) Measurement time of 1 detector - 15 sec. (author)

  4. Method of Sustaining a Neutronic Chain Reacting System

    Science.gov (United States)

    Fermi, Enrico; Leverett, Miles C.

    This Patent gives a general discussion of a reactor with variable critical dimensions. The pile considered is an uranium-graphite one, cooled by air and with control rods of cadmium or boron (the uranium rods are placed in aluminium jackets). Of particular interest is the discussion of the variation of the reproduction factor K due to long and short term effects. Long term effects are, for instance, the increase of K due to the production of plutonium and its decrease due to the production of fission impurities. Instead, among the short term effects considered are the production of xenon, which absorbs neutrons, and the effect of retarded neutrons. It is also of some relevance the pointing out that a moderator with a thickness of 1-2 feet around the uranium in the reactor acts as a reflecting screen for neutrons, with the same efficiency of an infinite thickness one. From this it follows that by using a moderator of 10 feet, for instance, the uranium content of the pile may be increased, with no relevant consequence on the efficacy of the screen. A peculiar curiosity is the suggestion that the presence of nitrogen (as an impurity) in the reactor, which may change due to changes in the atmospheric pressure, could be used to obtain a sensitive barometer. Some partial results may be found already in other Patents and/or in several papers of Volume II of [Fermi (1962)] (in particular, the realization of xenon poisoning is narrated on pages 428-429 of this reference). No published reference article behind the present Patent exists.

  5. A novel type epithermal neutron radiography detecting and imaging system

    CERN Document Server

    Balasko, M; Svab, E; Eoerdoegh, I

    1999-01-01

    The transfer technique is widely used for epithermal neutron radiography (ENR) for making images upon the object to be investigated. We propose to use instead of the photosensitive film a gamma sensitive scintillation screen (NaCe single crystal), that is monitored by a computer controlled low light level TV camera. The exposure time has been reduced to a duration of only a short fraction of that needed for the conventional transfer process. The presented ENR images consist of electronic signals that are handled by an advanced image processing and analyzing program, the Iman 1.4 version, using a task oriented video grabber.

  6. FURNACE; a toroidal geometry neutronic program system method description and users manual

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1984-12-01

    The FURNACE program system performs neutronic and photonic calculations in 3D toroidal geometry for application to fusion reactors. The geometry description is quite general, allowing any torus cross section and any neutron source density distribution for the plasma, as well as simple parametric representations of circular, elliptic and D-shaped tori and plasmas. The numerical method is based on an approximate transport model that produces results with sufficient accuracy for reactor-design purposes, at acceptable calculational costs. A short description is given of the numerical method, and a user manual for the programs of the system: FURNACE, ANISN-PT, LIBRA, TAPEMA and DRAWER is presented

  7. Topological aspects in a two-component Bose condensed system in a neutron star

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Heng, Guo

    2009-01-01

    By making use of Duan–Ge's decomposition theory of gauge potential and the topological current theory proposed by Prof. Duan Yi–Shi, we study a two-component superfluid Bose condensed system, which is supposed to be realized in the interior of neutron stars in the form of the coexistence of a neutron superfluid and a protonic superconductor. We propose that this system possesses vortex lines. The topological charges of the vortex lines are characterized by the Hopf indices and the Brower degrees of ø-mapping. (the physics of elementary particles and fields)

  8. Comparison of tomographic systems for X-Ray and thermal neutrons

    International Nuclear Information System (INIS)

    Souza, Maria Ines S.; Almeida, Gevaldo L. de; Furieri, Rosanne C.A.A.; Lopes, Ricardo Tadeu; Jesus, Edgar Oliveira de; Barbosa, Ademarlaudo Franca

    2003-01-01

    In this work, tomographic images of the same object have been taken with 25 keV X-rays and thermal neutrons (E=0.025 eV) aiming to demonstrate that thermal neutron tomography in some cases is a complementary technique to the X-ray tomography, such as in the examination of hydrogen-bearing compounds wrapped in a metallic matrix for instance. The capability of the neutron to pass through metallic materials such as lead, stainless steel and aluminium, allows to inspect encapsulated plastic explosives and visualize their inner structure like density variations, voids and alien materials, which are important features for the quality control of the final product. To obtain the images, a 3 rd generation tomographic system with a Position Sensitive Detector has been developed. For X-rays this proportional detector was provided with an 8 cm long carbon window, and filled with Ar - CH 4 4 under a pressure of 2 atm. The X-ray beam was supplied by an ampoule with a tungsten anode manufactured by IPRJ/UERJ. For neutron detection the carbon window has been replaced by aluminium, and the filling-gas by 3 He enriched helium, acting simultaneously as neutron converter and ionization gas. The Argonauta reactor at the Instituto de Engenharia Nuclear IEN/CNEN was used as neutron source and furnishes a thermal neutron flux of 4.5x10 5 n · cm -2 · s -1 at its main channel outlet, where the tomographic system was installed. (author)

  9. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  10. Natural syntax : English interrogative main clauses

    Directory of Open Access Journals (Sweden)

    Janez Oresnik

    2007-12-01

    Full Text Available Natural Syntax is a developing deductive theory, a branch of Naturalness Theory. The naturalnessjudgements are couched in naturalness scales, whichfollow from the basic parameters (or «axioms» listed at the beginning of the paper. The predictions of the theory are calculated in deductions, whose chief components are apair of naturalness scales and the rules governing the alignment of corresponding naturalness values. Parallel and chiastic alignments are distinguished, in complementary distribution. Chiastic alignment is mandatory in deductions limited to unnatural environments. The paper deals with English interrogative main clauses. Within these, only the interrogatives containing wh-words exclusively insitu constitute an extremely unnatural environment and require chiastic alignment. Otherwiseparallel alignment is used. Earlier publications on Natural Syntax: Kavcic 2005a,b, Oresnik 1999, 2000a,b, 200la-f   2002, 2003a-c, 2002/03, 2004. This list cites only works written in English.

  11. Prompt-gamma neutron activation analysis system design. Effects of D-T versus D-D neutron generator source selection

    International Nuclear Information System (INIS)

    Shypailo, R.J.; Ellis, K.J.

    2008-01-01

    Prompt-gamma neutron activation (PGNA) analysis is used for the non-invasive measurement of human body composition. Advancements in portable, compact neutron generator design have made those devices attractive as neutron sources. Two distinct generators are available: D-D with 2.5 MeV and D-T with 14.2 MeV neutrons. To compare the performance of these two units in our present PGNA system, we performed Monte Carlo simulations (MCNP-5; Los Alamos National Laboratory) evaluating the nitrogen reactions produced in tissue-equivalent phantoms and the effects of background interference on the gamma-detectors. Monte Carlo response curves showed increased gamma production per unit dose when using the D-D generator, suggesting that it is the more suitable choice for smaller sized subjects. The increased penetration by higher energy neutrons produced by the D-T generator supports its utility when examining larger, especially obese, subjects. A clinical PGNA analysis design incorporating both neutron generator options may be the best choice for a system required to measure a wide range of subject phenotypes. (author)

  12. Present status of fast neutron personnel dosimetry system based on CR-39 solid state nuclear track detectors

    International Nuclear Information System (INIS)

    Pal, Rupali; Sathian, Deepa; Jayalakshmi, V.; Bakshi, A.K.; Chougaonkar, M.P.; Mayya, Y.S.; Kumar, Valli; Babu, Rajesh; Kar, S.; Joshi, V.M.

    2011-08-01

    Neutron sources are of different types depending upon the method of production such as nuclear reactors, particle accelerators and laboratory sources. Neutron sources depending upon their energy, flux, size etc. are used for variety of applications in basic and applied sciences, neutron scattering experiments and in industry such as oil well - digging, coal mining and processing, ore processing etc. Personnel working in nuclear installations such as reactors, accelerators, spent fuel processing plants, nuclear fuel cycle operations and those working in various industries such as oil refining, oil well-digging, coal mining and processing, ore processing, etc. need to be monitored for neutron exposures, if any. Neutron monitoring is especially necessary in view of the fact that the radiation weighting factor for neutron is much higher than gamma rays and also it varies with energy. Radiological Physics and Advisory Division is involved in monitoring of personnel working in neutron fields. Around 2100 workers from 70 institutions (DAE and Non-DAE) are monitored on a quarterly basis. Neutron personnel monitoring, carried out in the country is based on Solid State Nuclear Track Detection (SSNTD) technique. In this technique, neutrons interact with hydrogen in CR-39 polymer to produce recoil protons. These protons create damages in the polymer, which are enlarged and appear as tracks when subjected to electrochemical etching (ECE). These tracks are counted in an optical system to evaluate the neutron dose. The neutron dosimetry system based on SSNTD has undergone a significant development, since it was started in 1990. The development includes upgradation of image analysis system for counting tracks, introduction of chemical etching (CE) at elevated temperatures for evaluation of dose equivalents above 10 mSv and use of carbon laser for cutting of CR-39 detectors. The entire dose evaluation process has been standardized, which includes calibration and performance tests

  13. Revenge versus rapport: Interrogation, terrorism, and torture.

    Science.gov (United States)

    Alison, Laurence; Alison, Emily

    2017-04-01

    This review begins with the historical context of harsh interrogation methods that have been used repeatedly since the Second World War. This is despite the legal, ethical and moral sanctions against them and the lack of evidence for their efficacy. Revenge-motivated interrogations (Carlsmith & Sood, 2009) regularly occur in high conflict, high uncertainty situations and where there is dehumanization of the enemy. These methods are diametrically opposed to the humanization process required for adopting rapport-based methods-for which there is an increasing corpus of studies evidencing their efficacy. We review this emerging field of study and show how rapport-based methods rely on building alliances and involve a specific set of interpersonal skills on the part of the interrogator. We conclude with 2 key propositions: (a) for psychologists to firmly maintain the Hippocratic Oath of "first do no harm," irrespective of perceived threat and uncertainty, and (b) for wider recognition of the empirical evidence that rapport-based approaches work and revenge tactics do not. Proposition (a) is directly in line with fundamental ethical principles of practice for anyone in a caring profession. Proposition (b) is based on the requirement for psychology to protect and promote human welfare and to base conclusions on objective evidence. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Super-resolution processing for pulsed neutron imaging system using a high-speed camera

    International Nuclear Information System (INIS)

    Ishizuka, Ken; Kai, Tetsuya; Shinohara, Takenao; Segawa, Mariko; Mochiki, Koichi

    2015-01-01

    Super-resolution and center-of-gravity processing improve the resolution of neutron-transmitted images. These processing methods calculate the center-of-gravity pixel or sub-pixel of the neutron point converted into light by a scintillator. The conventional neutron-transmitted image is acquired using a high-speed camera by integrating many frames when a transmitted image with one frame is not provided. It succeeds in acquiring the transmitted image and calculating a spectrum by integrating frames of the same energy. However, because a high frame rate is required for neutron resonance absorption imaging, the number of pixels of the transmitted image decreases, and the resolution decreases to the limit of the camera performance. Therefore, we attempt to improve the resolution by integrating the frames after applying super-resolution or center-of-gravity processing. The processed results indicate that center-of-gravity processing can be effective in pulsed-neutron imaging with a high-speed camera. In addition, the results show that super-resolution processing is effective indirectly. A project to develop a real-time image data processing system has begun, and this system will be used at J-PARC in JAEA. (author)

  15. Radiological risks from irradiation of cargo contents with EURITRACK neutron inspection systems

    International Nuclear Information System (INIS)

    Giroletti, E.; Bonomi, G.; Donzella, A.; Viesti, G.; Zenoni, A.

    2012-01-01

    The radiological risk for the population related to the neutron irradiation of cargo containers with a tagged neutron inspection system has been studied. Two possible effects on the public health have been assessed: the modification of the nutritional and organoleptic properties of the irradiated materials, in particular foodstuff, and the neutron activation of consumer products (i.e. food and pharmaceuticals). The result of this study is that irradiation of food and foodstuff, pharmaceutical and medical devices in container cargoes would neither modify the properties of the irradiated material nor produce effective doses of concern for public health. Furthermore, the dose received by possible stowaways present inside the container during the inspection is less than the annual effective dose limit defined by European Legislation for the public. - Highlights: ► Neutron irradiation of cargo containers implies a radiological risk. ► The risk is about the modification of food properties and the products activation. ► Assessment is made about the EURITRACK neutron irradiation system. ► Results show that the EURITRACK scanning is not dangerous for the population.

  16. SU-F-J-196: A Prototype System for Portal Imaging for Intensity Modulated Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    St James, S; Argento, D; DeWitt, D; Miyaoka, R; Stewart, R [University of Washington, Seattle, WA (United States); Moffitt, G [University of Utah, Salt Lake City, UT (United States)

    2016-06-15

    Purpose: Fast neutron therapy is offered at the University of Washington Medical Center for treatment of selected cancers. The hardware and control systems of the UW Clinical Neutron Therapy System are undergoing upgrades to enable delivery of IMNT. To clinically implement IMNT, dose verification tools need to be developed. We propose a portal imaging system that relies on the creation of positron emitting isotopes ({sup 11}C and {sup 15}O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects the annihilation photons. The pattern of activity produced in the plate provides information to reconstruct the neutron fluence map that can be compared to fluence maps from Monte Carlo (MCNP) simulations to verify treatment delivery. We have previously performed Monte Carlo simulations of the portal imaging system (GATE simulations) and the beam line (MCNP simulations). In this work, initial measurements using a prototype system are presented. Methods: Custom electronics were developed for BGO detectors read out with photomultiplier tubes (previous generation PET detectors from a CTI ECAT 953 scanner). Two detectors were placed in coincidence, with a detector separation of 2 cm. Custom software was developed to create the crystal look up tables and perform a limited angle planar reconstruction with a stochastic normalization. To test the initial capabilities of the system, PMMA squares were irradiated with neutrons at a depth of 1.5 cm and read out using the prototype system. Doses ranging from 10–200 cGy were delivered. Results: Using the prototype system, dose differences in the therapeutic range could be determined. Conclusion: The prototype portal imaging system is capable of detecting neutron doses as low as 10–50 cGy and shows great promise as a patient QA tool for IMNT.

  17. Fundamentals and applications of neutron imaging. Fundamentals part 5. Neutron sources for neutron imaging

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito

    2007-01-01

    Neutrons for experiments by neutron beams are classified regarding neutron sources as follows: (1) Neutrons from radioisotopes, (2) Neutrons from nuclear reactions induced by deuteron beams from accelerators, (3) Neutrons from nuclear spallation induced by high energy proton beams from accelerators, and (4) Neutrons from reactors. As for the neutron imaging, weak intensity neutron sources can be useful if the detector system is sensitive enough. A newly developed spallation neutron source has eminent characteristics that the neutron emission is pulsive with strong peak intensity. Imaging experiments availing this property will be developed henceforth. (K. Yoshida)

  18. Silicon Photomultipliers for Compact Neutron Scatter Cameras

    Science.gov (United States)

    Ruch, Marc L.

    The ability to locate and identify special nuclear material (SNM) is critical for treaty verification and emergency response applications. SNM is used as the nuclear explosive in a nuclear weapon. This material emits neutrons, either spontaneously or when interrogated. The ability to form an image of the neutron source can be used for characterization and/or to confirm that the item is a weapon by determining whether its shape is consistent with that of a weapon. Additionally, treaty verification and emergency response applications might not be conducive to non-portable instruments. In future weapons treaties, for example, it is unlikely that host countries will make great efforts to facilitate large, bulky, and/or fragile inspection equipment. Furthermore, inspectors and especially emergency responders may need to access locations not easily approachable by vehicles. Therefore, there is a considerable need for a compact, human-portable neutron imaging system. Of the currently available neutron imaging technologies, only neutron scatter cameras (NSCs) can be made truly compact because aperture-based imagers, and time-encoded imagers, rely on large amounts of materials to modulate the neutron signal. NSCs, in contrast, can be made very small because most of the volume of the imager can be filled with active detector material. Also, unlike other neutron imaging technologies, NSCs have the inherent ability to act as neutron spectrometers which gives them an additional means of identifying a neutron source. Until recently, NSCs have relied on photomultiplier tubes (PMT) readouts, which are bulky and fragile, require high voltage, and are very sensitive to magnetic fields. Silicon photomultipliers (SiPMs) do not suffer from these drawbacks and are comparable to PMTs in many respects such as gain, and cost with better time resolution. Historically, SiPMs have been too noisy for these applications; however, recent advancements have greatly reduced this issue and they have

  19. Neutron guide system for small-angle neutron scattering instruments of the Juelich Centre for Neutron Science at the FRM-II

    International Nuclear Information System (INIS)

    Radulescu, A.; Ioffe, A.

    2008-01-01

    Following the shut-down of the FRJ-2 research reactor in Juelich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-Muenchen. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically 'S-shaped' guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally 'S-shaped' guide serving the focusing KWS3 instrument, will be reported on

  20. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D–D neutron generator

    International Nuclear Information System (INIS)

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1 cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D–T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D–D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2 mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a

  1. A directional fast neutron detector using scintillating fibers and an intensified CCD camera system

    International Nuclear Information System (INIS)

    Holslin, Daniel; Armstrong, A.W.; Hagan, William; Shreve, David; Smith, Scott

    1994-01-01

    We have been developing and testing a scintillating fiber detector (SFD) for use as a fast neutron sensor which can discriminate against neutrons entering at angles non-parallel to the fiber axis (''directionality''). The detector/convertor component is a fiber bundle constructed of plastic scintillating fibers each measuring 10 cm long and either 0.3 mm or 0.5 mm in diameter. Extensive Monte Carlo simulations were made to optimize the bundle response to a range of fast neutron energies and to intense fluxes of high energy gamma-rays. The bundle is coupled to a set of gamma-ray insenitive electro-optic intensifiers whose output is viewed by a CCD camera directly coupled to the intensifiers. Two types of CCD cameras were utilized: 1) a standard, interline RS-170 camera with electronic shuttering and 2) a high-speed (up to 850 frame/s) field-transfer camera. Measurements of the neutron detection efficiency and directionality were made using 14 MeV neutrons, and the response to gamma-rays was performed using intense fluxes from radioisotopic sources (up to 20 R/h). Recently, the detector was constructed and tested using a large 10 cm by 10 cm square fiber bundle coupled to a 10 cm diameter GEN I intensifier tube. We present a description of the various detector systems and report the results of experimental tests. ((orig.))

  2. Neutron interferometer as a device for illustrating the strange behavior of quantum systems

    International Nuclear Information System (INIS)

    Greenberger, D.M.

    1983-01-01

    The neutron interferometer is a unique instrument that allows one to construct a neutron wave packet of macroscopic size, divide it into two components separated by centimeters, and then coherently recombine them. A number of experiments clearly showing the difference between quantum and classical theory have been performed with it, which are suitable for presentation in elementary quantum courses. This article presents a simple mathematical model of the interferometer, which can be used to illustrate clearly many of the surprising features of quantum systems. For example, one can describe an experiment to determine which component beam the neutron takes (an analog of the two-slit electron experiment). One can then trace in detail the loss of coherence of the wave function, rather than merely invoke the usual ''handwaving'' uncertainty arguments. The author discusses the effect of gravity on the neutron beam [the classic COW (Colella, Overhauser, and Werner) experiment], including a simple analysis in an accelerated reference frame, and its relation to the equivalence principle, the red shift, and the twin paradox. Also described are the effect of rotation of the neutron by 360 0 to change its phase, the effect on the wave function of measuring the absence of the particle from a beam (''Dicke's paradox''), and a realizable version of Wheeler's ''delayed-choice'' experiments, as well as their relation to the problem of ''Schroedinger's cat.'' The treatment is suitable for bright undergraduates and first-year graduate students

  3. Visualization and measurement of pressurized multiphase flow using neutron radiography of JRR-3M system

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yasuo [Yamaguchi Univ. (Japan); Matsubayasi, Masahito

    1998-01-01

    Concerning the transient phenomenon of solid-gas two-phase flow, an attempt was made to visualize and measure a flow phenomenon in which three-dimensional bubbles occurred, grew and collapsed in the vicinity of a gas injection nozzle while solid particles were circulating. Such a phenomenon could not or hardly be visualized and measured by conventional methods. Such two-phase flow was visualized using neutron radiography, its characteristics measured and the usefulness of the visualization by neutron radiography confirmed. For this purpose, three-dimensional fluidized bed vessels, rectangular or cylindrical-shaped, made of steel or aluminum sheet, were prepared. Polyethylene or glass beads were used as solid particles and activated carbon particles as the tracer. In the experiment, nitrogen gas was blown into the vessel from one nozzle and distributors provided at the bottom of the vessel and exhausted from the top via the exhaust valve, by which the pressure in the vessel was controlled. The imaging was done in the following way: A test chamber was provided beside the vessel to receive neutron beams from the JRR-3M system, the intensity of transmitted neutrons was converted to visible light by scintillator and the images were videotaped. The initial objectives of visualizing and measuring bubbles occurring, growing and collapsing and solid particles circulating in the solid-gas two-phase flow have been achieved by means of neutron radiography. (N.H.)

  4. Simulation of complete neutron scattering experiments: from model systems to liquid germanium

    International Nuclear Information System (INIS)

    Hugouvieux, V.

    2004-11-01

    In this thesis, both theoretical and experimental studies of liquids are done. Neutron scattering enables structural and dynamical properties of liquids to be investigated. On the theoretical side, molecular dynamics simulations are of great interest since they give positions and velocities of the atoms and the forces acting on each of them. They also enable spatial and temporal correlations to be computed and these quantities are also available from neutron scattering experiments. Consequently, the comparison can be made between results from molecular dynamics simulations and from neutron scattering experiments, in order to improve our understanding of the structure and dynamics of liquids. However, since extracting reliable data from a neutron scattering experiment is difficult, we propose to simulate the experiment as a whole, including both instrument and sample, in order to gain understanding and to evaluate the impact of the different parasitic contributions (absorption, multiple scattering associated with elastic and inelastic scattering, instrument resolution). This approach, in which the sample is described by its structure and dynamics as computed from molecular dynamics simulations, is presented and tested on isotropic model systems. Then liquid germanium is investigated by inelastic neutron scattering and both classical and ab initio molecular dynamics simulations. This enables us to simulate the experiment we performed and to evaluate the influence of the contributions from the instrument and from the sample on the detected signal. (author)

  5. Neutron scattering studies of the dynamics of biopolymer-water systems using pulsed-source spectrometers

    International Nuclear Information System (INIS)

    Middendorf, H.D.; Miller, A.

    1994-01-01

    Energy-resolving neutron scattering techniques provide spatiotemporal data suitable for testing and refining analytical models or computer simulations of a variety of dynamical processes in biomolecular systems. This paper reviews experimental work on hydrated biopolymers at ISIS, the UK Pulsed Neutron Facility. Following an outline of basic concepts and a summary of the new instrumental capabilities, the progress made is illustrated by results from recent experiments in two areas: quasi- elastic scattering from highly hydrated polysaccharide gels (agarose and hyaluronate), and inelastic scattering from vibrational modes of slightly hydrated collagen fibers

  6. Recent Fast Neutron Imaging Measurements with the Fieldable Nuclear Materials Identification System

    Energy Technology Data Exchange (ETDEWEB)

    Mullens, James Allen [ORNL; Mihalczo, John T [ORNL; Archer, Daniel E [ORNL; Thompson, Thad [ORNL; Britton Jr, Charles L [ORNL; Ezell, N Dianne Bull [ORNL; Ericson, Milton Nance [ORNL; Farquhar, Ethan [ORNL; Lind, Randall F [ORNL; Carter, Jake [ORNL

    2015-01-01

    This paper describes some recent fast neutron imaging measurements of the fieldable nuclear materials identification system (FNMIS) under development by the National Nuclear Security Administration (NNSA-NA-22) for possible future use in arms control and nonproliferation applications. The general configuration of FNMIS has been previously described, and a description of the application-specific integrated circuit (ASIC) electronics designed for FNMIS has been reported. This paper presents initial imaging measurements performed at ORNL with a Thermo Fisher API 120 DT generator and the fast-neutron imaging module of FNMIS.

  7. A new neutron spectrometry system for in-core and out-core application at WWER

    International Nuclear Information System (INIS)

    Mehner, H.C.; Boehmer, B.; Hagemann, U.; Nagel, S.; Schoene, M.; Stephan, I.

    1985-01-01

    An automated measuring system based on a newly-developed multi-component wire activation detector (MWAD) is presented which has been applied for neutron spectrometry inside WWER. The MWAD consisting of Au, Mn, Mo, Ni, and W is designed to determine the neutron spectrum in the thermal, epithermal and fast energy region by a single gamma-ray spectrum measurement. Investigations were carried out within an ordinary fuel assembly of the Greifswald NPS (WWER-440) as well as in experimental fuel assembly of the Rheinsberg NPS (WWER-70). The evaluation of the measurements was done with the newly-developed adjustment code COSA based on the generalized least square method. (author)

  8. Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Existing and proposed experimental facilities for fast neutron systems” is threefold: first, it is intended for presenting and exchanging information about existing and planned experimental facilities in support of the development of innovative fast neutron systems; second, it will allow to create a catalogue of existing and planned experimental facilities currently operated/developed within national or international fast reactors programmes; third, once a clear picture of the existing experimental infrastructures is defined, new experimental facilities will be discussed and proposed, on the basis of the identified R&D needs

  9. Technical Meeting on Existing and Proposed Experimental Facilities for Fast Neutron Systems. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    The objective of the TM on “Existing and proposed experimental facilities for fast neutron systems” was threefold: 1) presenting and exchanging information about existing and planned experimental facilities in support of the development of innovative fast neutron systems; 2) allow creating a catalogue of existing and planned experimental facilities currently operated/developed within national or international fast reactors programmes; 3) once a clear picture of the existing experimental infrastructures is defined, new experimental facilities are discussed and proposed, on the basis of the identified R&D needs

  10. Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-03-01

    Full Text Available The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns.

  11. Neutronic evaluation of insertion of a transmutation layer in a Tokamak system

    International Nuclear Information System (INIS)

    Cabrera, Carlos Eduardo Velasquez

    2013-01-01

    Using MCNP5 code were simulated different models representing the ITER system. It was evaluated the two alloys used by the first wall under high neutron flux. The neutron flux and the reaction rate along the different walls were obtained and evaluated. Based on the results, it was possible to conclude the best way to represent the fusion device evaluating; the different geometrical models, the best material to be used in the first wall taking into consideration the objective of transmutation and placed the transmutation layer. (author)

  12. Neutron activation analysis of zinc in forages used in intensive dairy cattle production systems

    International Nuclear Information System (INIS)

    Armelin, M.J.A.; Piasentin, R.M.; Primavesi, O.

    2002-01-01

    Instrumental neutron activation analysis (INAA) was applied for the determination of Zn concentration in the main tropical grass forages used in intensive dairy cattle production systems, in Brazil. Smaller Zn concentration could be verified in the rainy period. Comparison of results obtained in these analyses of forages dry matter with daily requirements pointed towards deficiency of Zn in the forages. (author)

  13. AUS98 - The 1998 version of the AUS modular neutronic code system

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, G.S.; Harrington, B.V

    1998-07-01

    AUS is a neutronics code system which may be used for calculations of a wide range of fission reactors, fusion blankets and other neutron applications. The present version, AUS98, has a nuclear cross section library based on ENDF/B-VI and includes modules which provide for reactor lattice calculations, one-dimensional transport calculations, multi-dimensional diffusion calculations, cell and whole reactor burnup calculations, and flexible editing of results. Calculations of multi-region resonance shielding, coupled neutron and photon transport, energy deposition, fission product inventory and neutron diffusion are combined within the one code system. The major changes from the previous AUS publications are the inclusion of a cross-section library based on ENDF/B-VI, the addition of the MICBURN module for controlling whole reactor burnup calculations, and changes to the system as a consequence of moving from IBM main-frame computers to UNIX workstations This report gives details of all system aspects of AUS and all modules except the POW3D multi-dimensional diffusion module refs., tabs.

  14. Stress analysis of the modified Pulsed Neutron Activation system downstream shield support structure

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, W.R.

    1980-05-28

    The modified LOFT Pulsed Neutron Activation (PNA) System downstream shielding support structure was stress analyzed for deadweight and worst-case LOCE loads. No deficiencies were found in the structure. This stress analysis was performed for the PNA Shielding Configuration that has been used on Test L3-2 and that is to be used on Test L3-7.

  15. Investigation of biological macromolecular systems with a pulsed neutron source: a review

    International Nuclear Information System (INIS)

    Cser, L.

    1976-01-01

    The investigation of biological macromolecules and crystalline structures by SAS and diffraction of neutrons with the TOF method indicates that the main difficulties of the TOF method (the wavelength dependence of the incident beam, resolution power, and detector efficiency; the need for their determination and up-to-date values) are compensated for by its advantages. Both methods allow a high data accumulation rate and optimal employment of the incident neutron spectrum. The latter has been achieved by utilizing a dominant part of the Maxwellian spectrum and by a more uniform distribution of statistical accuracy over the most informative measuring range. Another advantage is the high degree of monochromatization of the incident neutron beam by the TOF method. The rigid requirements concerning the data accumulation rate and the capacity of the on-line system computer memory are technical problems but not basic ones

  16. Investigation of biological macromolecular systems with a pulsed neutron source--a review.

    Science.gov (United States)

    Cser, L

    1976-05-01

    The conclusion that can be drawn on the basis of the above considerations is that investigation of biological macromolecules and crystalline structures by SAS and diffraction of neutrons with the TOF method is feasible. The main difficulties of the TOF method (the wavelength dependence of the incident beam, resolution power, and detector efficiency; the need for their determination and up-to-date values) are compensated for by its advantages. Both methods allow a high data accumulation rate and optimal employment of the incident neutron spectrum. The latter has been achieved by utilizing a dominant part of the Maxwellian spectrum and by a more uniform distribution of statistical accuracy over the most informative measuring range. Another advantage is the high degree of monochronatization of the incident neutron beam by the TOF method. The rigid requirements concerning the data accumulation rate and the capacity of the on-line system computer memory are technical problems but not basic ones.

  17. Acceleration of criticality analysis solution convergence by matrix eigenvector for a system with weak neutron interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasushi; Takada, Tomoyuki; Kuroishi, Takeshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kadotani, Hiroyuki [Shizuoka Sangyo Univ., Iwata, Shizuoka (Japan)

    2003-03-01

    In the case of Monte Carlo calculation to obtain a neutron multiplication factor for a system of weak neutron interaction, there might be some problems concerning convergence of the solution. Concerning this difficulty in the computer code calculations, theoretical derivation was made from the general neutron transport equation and consideration was given for acceleration of solution convergence by using the matrix eigenvector in this report. Accordingly, matrix eigenvector calculation scheme was incorporated together with procedure to make acceleration of convergence into the continuous energy Monte Carlo code MCNP. Furthermore, effectiveness of acceleration of solution convergence by matrix eigenvector was ascertained with the results obtained by applying to the two OECD/NEA criticality analysis benchmark problems. (author)

  18. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  19. 10-decade wide-range neutron-monitoring system. Final test report

    Energy Technology Data Exchange (ETDEWEB)

    Green, W.K.

    1970-10-01

    The objective of Project Agreement 49 was to design, fabricate, test, and evaluate under actual nuclear reactor operating conditions, one prototype counting-Campbelling wide-range type thermal neutron flux measurement channel. This report describes the basic system designed for PA 49, and describes and presents the results of tests conducted on the system. Individual module descriptions and schematics are contained in the instruction manual which was issued with the system.

  20. Nonreciprocal elastic scattering of unpolarized neutrons by magnetic systems with the noncoplanar magnetization distribution

    International Nuclear Information System (INIS)

    Tatarskiy, D. A.; Udalov, O. G.; Fraerman, A. A.

    2012-01-01

    It is shown that the elastic scattering of unpolarized neutrons by systems with the noncoplanar spatial magnetic induction distribution in nonreciprocal. Two systems with the noncoplanar distribution of the magnetic field are proposed and calculated, i.e., a nanoparticle with vortex magnetization and a system of three magnetic mirrors. It is shown that, under certain conditions, the nonreciprocity is rather large and can be observed experimentally.

  1. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    Science.gov (United States)

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF 2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 10 5  n epi /cm 2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10 -13  Gy-cm 2 /φ epi , and photon dose per epithermal was 2.4 × 10 -13  Gy-cm 2 /φ epi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10 -3  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to

  2. Neutron diffraction tomography: a unique, 3D inspection technique for crystals using an intensifier TV system

    International Nuclear Information System (INIS)

    Davidson, J.B.; Case, A.L.

    1978-01-01

    The application of phosphor-intensifier-TV techniques to neutron topography and tomography of crystals is described. The older, analogous x-ray topography using wavelengths approximately 1.5A is widely used for surface inspection. However, the crystal must actually be cut in order to see diffraction anomalies beneath the surface. Because 1.5-A thermal neutrons are highly penetrating, much larger and thicker specimens can be used. Also, since neutrons have magnetic moments, they are diffracted by magnetic structures within crystals. In neutron volume topography, the entire crystal or a large part of it is irradiated, and the images obtained are superimposed reflections from the total volume. In neutron tomography (or section topography), a collimated beam irradiates a slice (0.5 to 10 mm) of the crystal. The diffracted image is a tomogram from this part only. A series of tomograms covering the crystal can be taken as the specimen is translated in steps across the narrow beam. Grains, voids, twinning, and other defects from regions down to 1 mm in size can be observed and isolated. Although at present poorer in resolution than the original neutron and film methods, the TV techniques are much faster and, in some cases, permit real-time viewing. Two camera systems are described: a counting camera having a 150 mm 6 Li-ZnS screen for low-intensity reflections which are integrated in a digital memory, and a 300-mm system using analog image storage. Topographs and tomograms of several crystals ranging in size from 4 mm to 80 mm are shown

  3. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsumura, Akira; Yamamoto, Tetsuya; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Nakagawa, Yoshinobu [National Sanatorium Kagawa-Children' s Hospital, Kagawa (Japan); Kageji, Teruyoshi [Tokushima Univ., Tokushima (Japan)

    2003-03-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal in the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System which can support to set the patient to an actual irradiation position swiftly and accurately. This report describes basic design of JCDS and functions in several processing, calculation methods, characteristics and performance of JCDS. (author)

  4. Gadolinium-doped water cerenkov-based neutron and high energy gamma-ray detector and radiation portal monitoring system

    Science.gov (United States)

    Dazeley, Steven A; Svoboda, Robert C; Bernstein, Adam; Bowden, Nathaniel

    2013-02-12

    A water Cerenkov-based neutron and high energy gamma ray detector and radiation portal monitoring system using water doped with a Gadolinium (Gd)-based compound as the Cerenkov radiator. An optically opaque enclosure is provided surrounding a detection chamber filled with the Cerenkov radiator, and photomultipliers are optically connected to the detect Cerenkov radiation generated by the Cerenkov radiator from incident high energy gamma rays or gamma rays induced by neutron capture on the Gd of incident neutrons from a fission source. The PMT signals are then used to determine time correlations indicative of neutron multiplicity events characteristic of a fission source.

  5. Assessment of the reliability of neutronic parameters of Ghana Research Reactor-1 control systems

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah-Abu, E.O., E-mail: edwardabu2002@yahoo.com [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana); Gbadago, J.K. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana); Akaho, E.H.K.; Akoto-Bamford, S. [School of Nuclear and Allied Sciences, University of Ghana (Ghana); Gyamfi, K.; Asamoah, M.; Baidoo, I.K. [National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O. Box LG. 80, Legon-Accra (Ghana)

    2015-01-15

    Highlights: • The reliability of neutronics parameters of GHARR-I was assessed. • The reactor was operated at different power levels of 5–30 kW. • The pre-set flux was compared with the flux in the inner irradiation site. • Decrease in the core reactivity caused difference in flux on the meters and site. • Neutronic parameters become reliable when operation is done at reactivity of 4 mk. - Abstract: The Ghana Research Reactor-1 (GHARR-1) has been in operation for the past 19 years using a Micro-Computer Closed Loop System (MCCLS) and Control Console (CC) as the control systems. The two control systems were each coupled separately with a micro-fission chamber to measure the current pulses of the neutron fluxes in the core at excess reactivity of 4 mk. The MCCLS and CC meter readings at a pre-set flux of 5.0 × 10{sup 11} n/cm{sup 2} s were 6.42 × 10{sup 11} n/cm{sup 2} s and 5.0 × 10{sup 11} n/cm{sup 2} s respectively. Due to ageing and obsolescence, the MCCLS and some components that control the sensitivity and the reading mechanism of the meters were replaced. One of the fission chambers was also removed and the two control systems were coupled to one fission chamber. The reliability of the neutronic parameters of the control systems was assessed after the replacement. The results showed that when the reactor is operated at different power levels of 5–30 kW using one micro-fission chamber, the pre-set neutron fluxes at the control systems is 1.6 times the neutron fluxes obtained using a flux monitor at the inner irradiation site two of the reactor. The average percentage deviations of the obtained fluxes from the pre-set values of 1.67 × 10{sup 11}–1.0 × 10{sup 12} n/cm{sup 2} s were 36.5%. This compares very well with the decrease in core excess reactivity of 36.3% of the nominal value of 4 mk, after operating the reactor at critical neutron flux of 1.0 × 10{sup 9} n/cm{sup 2} s.

  6. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Nd + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Nd + Mg + Zn) system. • All phases described by optimised thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Nd + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Nd + Mg + Zn) system was carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental values were used to refine the thermodynamic model parameters.

  7. Thermodynamic modelling and in-situ neutron diffraction investigation of the (Ce + Mg + Zn) system

    International Nuclear Information System (INIS)

    Zhu, Zhijun; Gharghouri, Michael A.; Medraj, Mamoun; Lee, Soo Yeol; Pelton, Arthur D.

    2016-01-01

    Highlights: • All phase diagram and thermodynamic data critically assessed for the (Ce + Mg + Zn) system. • All phases described by optimized thermodynamic models. • In-situ neutron diffraction performed to identify phases and transition temperatures. • Assessments of other (RE + Mg + Zn) systems have been carried out simultaneously. • The final product is a thermodynamic database for multicomponent (Mg + RE + Zn) systems. - Abstract: All available phase diagram data for the (Ce + Mg + Zn) system were critically assessed. In-situ neutron diffraction (ND) experiments were performed on selected samples to identify phases and transition temperatures. A critical thermodynamic evaluation and optimization of the (Ce + Mg + Zn) system were carried out and model parameters for the thermodynamic properties of all phases were obtained. The phase transformation behaviour of selected samples was well resolved from the ND experiments and experimental data were used to refine the thermodynamic model parameters.

  8. Compact D-D/D-T neutron generators and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Tak Pui [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    Boron Neutron Capture Therapy (BNCT). The neutron flux required for positron production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications.

  9. Compact D-D/D-T neutron generators and their applications

    International Nuclear Information System (INIS)

    Lou, Tak Pui

    2003-01-01

    production could not be provided with a single D-T neutron generator. Therefore, a subcritical fission multiplier was designed to increase the neutron yield. The neutron flux was increased by a factor of 25. A D-D driven fission multiplier was also studied for BNCT and a gain of 17 was obtained. The fission multiplier system gain was shown to be limited by the neutron absorption in the fuel and the reduction of source brightness. A brief discussion was also given regarding the neutron generator applications for fast neutron brachytherapy and neutron interrogation systems. It was concluded that new designs of compact D-D/D-T neutron generators are feasible and that superior quality neutron beams could be produced and used for various applications

  10. Pulsed power supply system for neutron well logging

    International Nuclear Information System (INIS)

    Hopkinson, E.C.

    1975-01-01

    A variable D. C. power supply and a variable A. C. power supply are coupled onto the upper end of a single conductor cable at the earth's surface and from the lower end of said cable to a well logging instrument. The A. C. voltage is used to provide filament power for the ion source accelerator tube. The D. C. voltage is used to provide power to fixed D. C. loads maintained constant by regulators once a threshold is reached. The D. C. voltage is raised above the threshold to control the pulsed acceleration voltage and hence neutron output by first feeding into a unijunction relaxation oscillator in combination with an SCR output which output is transformer coupled into a voltage multiplier circuit. An antilatch feature is provided for the SCR by transformer coupling the pulses on the SCR anode back to the base of a transistor in series with the cathode of the SCR. Two outputs of the voltage multiplier circuit are connected to the cathode and anode, respectively, of an ion source accelerator tube, the cathode being connected through a resistor to retard the ripple pulsing of the cathode to allow ionization of the accelerator tube

  11. Calibration Curve of Neutron Moisture Meter for Sandy Soil under Drip Irrigation System

    International Nuclear Information System (INIS)

    Mohammad, Abd El- Moniem M.; Gendy, R. W.; Bedaiwy, M. N.

    2004-01-01

    The aim of this work is to construct a neutron calibration curve in order to be able to use the neutron probe in sandy soils under drip irrigation systems. The experimental work was conducted at the Soil and Water Department of the Nuclear Research Center, Atomic Energy Authority. Three replicates were used along the lateral lines of the drip irrigation system. For each dripper, ten neutron access tubes were installed to 100-cm depth at distances of 5, 15 and 25 cm from the dripper location around the drippers on the lateral line, as well as between lateral lines. The neutron calibrations were determined at 30, 45, and 60-cm depths. Determining coefficients as well as t-test in pairs were employed to detect the accuracy of the calibrations. Results indicated that in order for the neutron calibration curve to express the whole wet area around the emitter; three-access tubes must be installed at distances of 5, 15, and 25 cm from the emitter. This calibration curve will be correlating the average count ratio (CR) at the studied soil depth of the three locations (5, 15, and 25-cm distances from the emitter) to the average moisture content (θ) for this soil depth of the entire wetted area. This procedure should be repeated at different times in order to obtain different θ and C.R values, so that the regression equation of calibration curve at this soil depth can be obtained. To determine the soil moisture content, the average CR of the three locations must be taken and substituted into the regression equation representing the neutron calibration curve. Results taken from access tubes placed at distances of 15 cm from the emitter, showed good agreement with the average calibration curve both for the 45- and the 60-cm depths, suggesting that the 15-cm distance may provide a suitable substitute for the simultaneous use of the three different distances of 5, 15 and 25 cm. However, the obtained results show also that the neutron calibration curves of the 30-cm depth for

  12. Plant protection system optimization studies to mitigate consequences of large breaks in the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Khayat, M.I.; March-Leuba, J.

    1993-01-01

    This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the advanced neutron source (ANS) reactor. The ANS is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the field of material science and engineering, biology, chemistry, material analysis, and nuclear science. To achieve the high neutron fluxes for these state-of-the-art experiments, the ANS design has a very high power density core (330 MW fission with an active volume of 67.6 ell) surrounded by a large heavy-water reflector, where most neutrons are moderated. This design maximizes the number of neutrons available for experiments but results in a low heat capacity core that creates unique challenges to the design of the plant protection system

  13. Impact of the layout of the ITER Radial Neutron Camera in-port system on the measurement of the neutron emissivity profile

    International Nuclear Information System (INIS)

    Marocco, D.; Moro, F.; Esposito, B.; Brolatti, G.; Villari, R.; Salasca, S.; Cantone, B.

    2013-01-01

    Highlights: ► MCNP ITER model ‘Alite-4′ has been updated with the new Port Plug structure (three vertical drawers). ► Two different layouts for the Radial Neutron Camera (RNC) in-vessel system have been considered. ► The impact of both layouts on the RNC diagnostic performance has been assessed. ► The analysis provides useful information for a proper integration of the RNC in the EPP1. -- Abstract: The Radial Neutron Camera (RNC), located in the ITER Equatorial Port Plug 1 (EPP1), is designed to provide the neutron emissivity profile through the measurement of the neutron flux along several collimated channels. The present design of the RNC is based on collimating structures: an ex-port system viewing the plasma core and an in-port system composed by two detector cassettes viewing the upper and lower plasma edges. A design of the EPP1 in which the diagnostics are installed in three completely independent vertical drawers is under study. In this frame, space optimization and integration issues suggest two possible solutions for the layout of the in-port RNC cassettes: the first one in which both cassettes are located in a side drawer; the second one in which the two cassettes lie in the central drawer, on opposite sides of the ex-port RNC cut-out. This paper describes the work performed to assess the impact of the two different in-port system layouts on the capability of the RNC to measure the neutron emissivity profile by means of MCNP and diagnostic performance calculations. The results of the analysis provide guidelines for the integration of the RNC into the EPP1 showing that the proximity of the in-port cassettes to the ex-port cut-out strongly increases the amount of uncollimated and scattered neutrons at the detector positions, thus reducing the diagnostic measurement capability

  14. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  15. China high-intensity accelerator technology developments for neutron sources and accelerator driven systems

    International Nuclear Information System (INIS)

    Wei, J.; Fu, S.N.

    2010-01-01

    There have been aggressive developments in China on the technology of high intensity hadron accelerators for spallation neutron source, compact neutron source, accelerator driven sub-critical systems (ADS), and other related programs including hadron therapy. The primary challenge is to build a robust facility at a fraction of the 'world standard' cost. Benefiting from a close collaboration with world leading institutes and facilities, tremendous efforts were made in China to develop domestic vendors to comprehend the technology for key systems of high intensity ion source, linear accelerators, and rapid cycling synchrotron. Goals of such facilities include spallation-neutron-based, muon-based, and proton-based platforms for multi-discipline science and industrial applications, fast-neutron-based platform for nuclear science and applications, and parasitic apparatus for medical therapy and ADS tests. This paper attempts to summarize the R and D efforts, key component prototyping and vendor development experience, and user development efforts during the past several years in China. (author)

  16. Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia

    Science.gov (United States)

    Newton, William G.; Steiner, Andrew W.; Yagi, Kent

    2018-03-01

    Two low-mass (M Advanced LIGO can potentially measure the neutron star tidal polarizability to equivalent accuracy which, using the I-Love-Q relations, would obtain similar constraints on the formation scenarios. Such information would help constrain important aspects of binary evolution used for population synthesis predictions of the rate of binary neutron star mergers and resulting electromagnetic and gravitational wave signals. Further progress needs to be made in modeling the core-collapse process that leads to low-mass neutron stars, particularly in making robust predictions for the mass loss from the progenitor core.

  17. Characteristics of a New Pneumatic Transfer System for a Neutron Activation Analysis at the Hanaro Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Kim, Sun Ha; Moon, Jong Hwa; Baek, Sung Yeol; Kim, Hark Rho; Kim, Yong Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-08-15

    A rapid pneumatic transfer system (PTS) for an instrumental neutron activation analysis (INAA) is developed as an automatic irradiation facility involving the measurement of a short half-life nuclide and a delayed neutron counting system. Three new PTS designs with improved functions were constructed at the HANARO research reactor in 2006. The new system is composed of a manual system and an automatic system for both an INAA and a delayed neutron activation analysis (DNAA). The design and basic conception of a modified PTS are described, and the functions of system operation and control, radiation protection and emissions of radioactive gas are improved. In addition, a form of capsule transportation of these systems is tested. The experimental results pertaining to the irradiation characteristics with variation of the neutron flux and the temperature of the irradiation position with the irradiation time are presented, as is an analysis of the reference material for analytical quality control and uncertainty assessments

  18. Input data requirements for special processors in the computation system containing the VENTURE neutronics code

    International Nuclear Information System (INIS)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.

    1979-07-01

    User input data requirements are presented for certain special processors in a nuclear reactor computation system. These processors generally read data in formatted form and generate binary interface data files. Some data processing is done to convert from the user oriented form to the interface file forms. The VENTURE diffusion theory neutronics code and other computation modules in this system use the interface data files which are generated

  19. Experience with neutron flux monitoring systems qualified for post-accident monitoring

    International Nuclear Information System (INIS)

    Shugars, H.G.; Miller, J.F.

    1995-01-01

    In this paper we discuss the environmental requirements for excore neutron flux monitors that are qualified for use during and after postulated accidents in Pressurized Water Reactors (PWRs). We emphasize PWRs designed in the United States, which are similar to those used also in parts of Western Europe and Eastern Asia. We then discuss design features of the flux monitoring systems necessary to address the environmental, functional, and regulatory requirements, and the experience with these systems. (author). 9 refs, 2 figs

  20. A VME-based accumulation, control and supervising system for neutron texture measurements

    International Nuclear Information System (INIS)

    Kirilov, A.S.; Heinitz, J.; Korobchenko, M.L.; Rezaev, V.E.; Sirotin, A.P.

    1997-01-01

    Nowadays VME-based systems to control neutron measurement instruments are forcing out those built with PC and CAMAC. One of several alternative solutions is presented here. Its main feature is the implementation of the entire system on the VME site. Both the hardware and the software parts are considered. The instrument can be controlled locally or remotely via local network (even from PCs) with a modern-styled graphical user interface

  1. Sequential interrogation of multiple FBG sensors using LPG modulation and an artificial neural network

    International Nuclear Information System (INIS)

    Basu, Mainak; Ghorai, S K

    2015-01-01

    Interrogating multiple fiber Bragg gratings (FBG) requires highly sensitive spectrum scanning equipment such as optical spectrum analyzers, tunable filters, acousto-optic tunable filters etc, which are expensive, bulky and time consuming. In this paper, we present a new approach for multiple FBG sensor interrogation using long-period gratings and an artificial neural network. The reflection spectra of the multiplexed FBGs are modulated by two long period gratings separately and the modulated optical intensities were detected by two photodetectors. The outputs of the detectors are then used as input in a previously trained artificial neural network to interrogate the FBG sensors. Simulations have been performed to determine the strain and wavelength shift using two and four sensors. The interrogation system has also been demonstrated experimentally for two sensors using simply supported beams in the range of 0–350 μstrain. The proposed interrogation scheme has been found to identify the perturbed FBG, and to determine strain and wavelength shift with reasonable accuracy. (paper)

  2. Miniature and low cost fiber bragg grating interrogator for structural monitoring in nano-satellites

    NARCIS (Netherlands)

    Toet, P.M.; Hagen, R.A.J.; Hakkesteegt, H.C.; Lugtenburg, J.; Maniscalco, M.P.

    2014-01-01

    In this paper we present a newly developed Fiber Optic measurement system, consisting of Fiber Bragg Grating (FBG) sensors and an FBG interrogator. The development of the measuring system is part of the PiezoElectric Assisted Smart Satellite Structure (PEASSS) project, which was initiated at the

  3. An Evaluation of "Miranda" Rights and Interrogation in Autism Spectrum Disorders

    Science.gov (United States)

    Salseda, Lindsay M.; Dixon, Dennis R.; Fass, Tracy; Miora, Deborah; Leark, Robert A.

    2011-01-01

    The primary deficits present in autism spectrum disorders (ASD) may lead to increased susceptibility to involvement in the criminal justice system. The same deficits may also cause individuals with ASD to be more vulnerable to interrogation techniques and other aspects of the legal system. Due to the increased level of vulnerability as well as…

  4. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Brandon R., E-mail: groganbr@ornl.gov; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-12-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system.

  5. Investigation of active interrogation techniques to detect special nuclear material in maritime environments: Boarded search of a cargo container ship

    International Nuclear Information System (INIS)

    Grogan, Brandon R.; Henkel, James J.; Johnson, Jeffrey O.; Mihalczo, John T.; Miller, Thomas M.; Patton, Bruce W.

    2013-01-01

    The detonation of a terrorist nuclear weapon in the United States would result in the massive loss of life and grave economic damage. Even if a device was not detonated, its known or suspected presence aboard a cargo container ship in a U.S. port would have major economic and political consequences. One possible means to prevent this threat would be to board a ship at sea and search for the device before it reaches port. The scenario considered here involves a small Coast Guard team with strong intelligence boarding a container ship to search for a nuclear device. Using active interrogation, the team would nonintrusively search a block of shipping containers to locate the fissile material. Potential interrogation source and detector technologies for the team are discussed. The methodology of the scan is presented along with a technique for calculating the required interrogation source strength using computer simulations. MCNPX was used to construct a computer model of a container ship, and several search scenarios were simulated. The results of the simulations are presented in terms of the source strength required for each interrogation scenario. Validation measurements were performed in order to scale these simulation results to expected performance. Interrogations through the short (2.4 m) axis of a standardized shipping container appear to be feasible given the entire range of container loadings tested. Interrogations through several containers at once or a single container through its long (12.2 m) axis do not appear to be viable with a portable interrogation system

  6. Neutron stars in compact binary systems: From the equation of state to gravitational radiation

    Science.gov (United States)

    Read, Jocelyn S.

    Neutron stars are incredibly dense astrophysical objects that give a unique glimpse of physics at extreme scales. This thesis examines computational and mathematical methods of translating our theoretical understanding of neutron star physics, from the properties of matter to the relativistic behaviour of binary systems, into observable characteristics of astrophysical neutron stars. The properties of neutron star matter are encoded in the equation of state, which has substantial uncertainty. Many equations of state have been proposed based on different models of the underlying physics. These predict various quantities, such as the maximum stable mass, which allow them to be ruled out by astronomical measurements. This thesis presents a natural way to write a general equation of state that can approximate many different candidate equations of state with a few parameters. Astronomical observations are then used to systematically constrain parameter values, instead of ruling out models on a case-by-case basis. Orbiting pairs of neutron stars will release gravitational radiation and spiral in toward each other. The radiation may be observable with ground-based detectors. Until the stars get very close to each other the rate of inspiral is slow, and the orbits are approximately circular. One can numerically find spacetime solutions that satisfy the full set of Einstein equations by imposing an exact helical symmetry. However, we find that the helically-symmetric solution must be matched to a waveless boundary region to achieve convergence. Work with toy models suggests this lack of convergence is intractable, but the agreement of waveless and helical codes validates the use of either approximation to construct state-of-the-art initial data for fully dynamic binary neutron star simulations. The parameterized equation of state can be used with such numerical simulations to systematically explore how the emitted gravitational waves depend on the properties of neutron star

  7. Development of three-dimensional neutronics calculation system for design studies on helical reactor FFHR

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)]. E-mail: teru@nifs.ac.jp; Sagara, A. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Muroga, T. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Youssef, M.Z. [University of California, Los Angeles, CA 90095 (United States)

    2006-11-15

    Construction of a three-dimensional neutronics calculation system has been started for design studies on the helical reactor FFHR2. In the calculation system, geometry data of the helical structures are generated according to numerical equations for quick feedback between neutronics evaluation and design modification. The tritium breeding abilities of the FFHR2 with the Flibe + Be/JLF-1 (Reduced Activation Ferritic/Martensitic Steel) and the Li/V-alloy blanket systems were investigated by using the calculation system. Since the original design could not achieve the tritium breeding ratios (TBRs) > 1.0 due to neutron leakage through opening between the blanket components, the dimensions have been modified to enhance the breeding ability. After the modification, the TBRs of 1.08 and 0.98 were obtained for the Flibe + Be/JLF-1 and Li/V-alloy blanket systems, respectively. The present results indicate that the blanket systems have potential to achieve adequate tritium breeding ability in the FFHR2 by further design optimization.

  8. Neutron microscope with refractive wedge

    International Nuclear Information System (INIS)

    Masalovich, S.V.

    1990-01-01

    A possibility of applying a refractive element in a mirror-neutron microscope using ultracold neutrons to reduce neutron aberrations is considered. Application of a refractive element in a neutron microscope with horizontal optical axis is studied. A scheme of neutron microscope with a refractive wedge is presented, evaluation of quartz wedge parameters is made. It is stressed that application of refractive elements in neutron microscopes facilitates aberration reduction in neutron-optical systems

  9. Integrated system for production of neutronics and photonics calculational constants. Neutron-induced interactions: index of experimental data

    Energy Technology Data Exchange (ETDEWEB)

    MacGregor, M.H.; Cullen, D.E.; Howerton, R.J.; Perkins, S.T.

    1976-07-04

    Indexes to the neutron-induced interaction data in the Experimental Cross Section Information Library (ECSIL) as of July 4, 1976 are tabulated. The tabulation has two arrangements: isotope (ZA) order and reaction-number order.

  10. A neutron monitor for D-T neutron generator in the PGNAA-based online measurement system

    Science.gov (United States)

    Shan, Qing; Shengnan, Chu; Yongsheng, Ling; Pingkun, Cai; Wenbao, Jia

    2017-06-01

    A new type of neutron detector, which consists of polyethylene, an EJ200 plastic scintillator and fused silica, was proposed and optimized by the GEANT4 Monte Carlo simulation toolkit in our previous studies. The calculation method was also described for calculating the neutron flux in the preset condition. This paper reports the manufacturing of the prototype detector. Experiments are conducted to validate the feasibility of this detector. A D-T neutron generator and a 60Co gamma-ray source are used in the experiments. The designed detector and a He-3 proportional counter are simultaneously used to monitor the yield of the D-T neutron generator. A more universal calculation method is developed to enable the application of this detector to common conditions. The experimental results show that the performance of the designed detector is comparable to that of the He-3 proportional counter. The relative deviations between their normalized counts are less than 5%.

  11. Solid state detector for high spatial resolution coupled to a single event acquisition system for slow neutron detection

    Science.gov (United States)

    Casinini, F.; Petrillo, C.; Sacchetti, F.

    2012-05-01

    In the next years the slow neutron scattering community is waiting for a continuous improvement of the neutron detectors because of the development of the new and more intense neutron sources and to obtain a better performance of the neutron instrumentation to face the higher demands and new capabilities necessary for the novel experiments. In particular detectors having a faster response and a better shape of the time response must be produced, while new and more flexible acquisition systems must be introduced in order to collect in the proper way the information carried by the scattered neutrons. At present inside the neutron detector community the lack for detectors having a spatial resolution below 1 mm is evident. In the past it has been already demonstrated that a silicon microstrip detector coupled to a Gadolinium foil, used as neutron converter, provides a good performance neutron detector. In the present paper we present a 128 channel detector which has been designed for operation in the thermal neutron region with 0.55 mm spatial resolution, 100 ns time resolution and 25 ns time stamp accuracy. We present a new approach for the acquisition of the neutron arrival time, based on a single event storage by manipulating the detector digital output using a programmable acquisition system which takes advantage from high performance industrial standard hardware employing a FPGA and a real-time on board processor. We suggest the use of the single neutron event storing to make the time to energy transformation more efficient in the case of time of flight inelastic scattering, where the conversion from angle and time to momentum and energy is necessary.

  12. The LANSCE (Los Alamos Neutron Scattering Center) target data collection system

    International Nuclear Information System (INIS)

    Kernodle, A.K.

    1989-01-01

    The Los Alamos Neutron Scattering Center (LANSCE) Target Data Collection System is the result of an effort to provide a base of information from which to draw conclusions on the performance and operational condition of the overall LANSCE target system. During the conceptualization of the system, several goals were defined. A survey was made of both custom-made and off-the-shelf hardware and software that were capable of meeting these goals. The first stage of the system was successfully implemented for the LANSCE run cycle 52. From the operational experience gained thus far, it appears that the LANSCE Target Data Collection System will meet all of the previously defined requirements

  13. Application of drug delivery system for boron neutron capture therapy. Basic research toward clinical application

    International Nuclear Information System (INIS)

    Yanagie, Hironobu; Takahashi, Hiroyuki

    2010-01-01

    Tumour cell destruction in boron neutron-capture therapy (BNCT) is due to the nuclear reaction between 10 B and thermal neutrons ( 10 B+ 1 n → 7 Li+ 4 He (α) +2.31 MeV (93.7%)/2.79 MeV (6.3%)). The resulting lithium ions and αparticles are high linear energy transfer (LET) particles which give high biological effect. Their short range in tissue (5-9 μm) restricts radiation damage to those cells in which boron atoms are located at the time of neutron irradiation. BNCT has been applied clinically for the treatment of malignant brain tumors, malignant melanoma, head and neck cancer and hepatoma etc, recently. Sodium borocaptate (Na 2 10 B 12 H 11 SH; BSH) and borono-phenylalanine ( 10 BPA) are currently being used in clinical treatments. To achieve the selective delivery of boron atoms to cancer cells, drug delivery system (DDS) becomes an attractive intelligent technology as targeting and controlled release of drugs. We have firstly reported that 10 B atoms delivered by immunoliposomes are cytotoxic to human pancreatic carcinoma cells (AsPC-1) after thermal neutron irradiation in vitro. The intra-tumoural injection of boronated immunoliposomes can increase the retention of 10 B atoms in tumour cells, causing suppression of tumour growth in vivo following thermal neutron irradiation. We prepared polyethylene-glycol binding liposomes (PEG-liposomes) as an effective 10 B carrier to obviate phagocytosis by reticuloendotherial systems. We had prepared 10 BSH entrapped Water-in-Oil-in-Water (WOW) emulsion. The 10 B concentration in VX-2 tumour after intra-arterial injection of 10 BSH entrapped WOW emulsion was superior to the groups of 10 BSH entrapped conventional Lipiodol mix emulsion. 10 Boron entrapped WOW emulsion is one of the most useful for intra-arterial boron delivery carrier on BNCT to hepatocellular carcinoma. (author)

  14. Evaluation of a computer aided neutron tomographic system incorporating a gaseous position sensitive detector

    Science.gov (United States)

    Silvani, M. I.; Lopes, R. T.; de Jesus, E. F. O.; de Almeida, G. L.; Barbosa, A. F.

    2003-06-01

    A position sensitive gaseous detector, formerly designed to operate with X-rays, has been modified to equip a third generation tomographic system working with a parallel thermal neutron beam. For this purpose, the original filling-gas has been replaced by 3He-enriched helium, which plays simultaneously the role of filling-gas for the ionization process and converter of neutrons into charged particles. This paper describes the modifications done to the detector, the measurements carried out to evaluate its own performance and that of the tomographic system attached to it. Some tomographic images acquired using that system are presented as well. Tomographic systems equipped with this kind of detector should require substantially much less time than those conventional ones, where a sample translation is required. The Argonauta reactor operating at the Instituto de Engenharia Nuclear (IEN/CNEN-Brazil) has been utilized as the source of neutrons, furnishing a flux of 4.5×10 5 n cm -2 s -1 at its main irradiation channel where the tomographic system has been placed.

  15. The hypertext information system on pulsed neutron sources and scientific investigations based on these sources

    International Nuclear Information System (INIS)

    Litvinenko, E.I; Astakhov, Yu.A.; Akishina, E.P.; Semenov, R.N.; Smol'kov, I.S.

    1998-01-01

    The work on the creation of the hypertext information system has been performed on the basis of the web-server of the Frank Laboratory of Neutron Physics, JINR. The initial project proposed the creation of HTML information resources and did not consider the usage of any database for the information management. During the project implementation it became obvious that the system should have well defined structured informational model and it might be helpful to imply the relational database as a part of the system. The ORACLE server at the Laboratory of Computing Techniques and Automation (LCTA) of the JINR has been used for this task. Now we have a set of ORACLE tables designed using CASE tools for the informational model of the system, structured information about neutron sources, neutron instruments, printed publications and URL addresses. We have also the web interface to these tables using free ware gateway ORALINK installed on our Pentium PC with Windows NT and some tools to administer database and view pictures stored in the tables. We took into account NeXuS specifications while tried to design the informational model of the system, and we continue to work on its creation

  16. High-Speed Interrogation for Large-Scale Fiber Bragg Grating Sensing

    Directory of Open Access Journals (Sweden)

    Chenyuan Hu

    2018-02-01

    Full Text Available A high-speed interrogation scheme for large-scale fiber Bragg grating (FBG sensing arrays is presented. This technique employs parallel computing and pipeline control to modulate incident light and demodulate the reflected sensing signal. One Electro-optic modulator (EOM and one semiconductor optical amplifier (SOA were used to generate a phase delay to filter reflected spectrum form multiple candidate FBGs with the same optical path difference (OPD. Experimental results showed that the fastest interrogation delay time for the proposed method was only about 27.2 us for a single FBG interrogation, and the system scanning period was only limited by the optical transmission delay in the sensing fiber owing to the multiple simultaneous central wavelength calculations. Furthermore, the proposed FPGA-based technique had a verified FBG wavelength demodulation stability of ±1 pm without average processing.

  17. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [ORNL; Chatterjee, Sneha [ORNL; Stanley, Christopher B. [ORNL; Qian, Shuo [ORNL; Cheng, Xiaolin [ORNL; Myles, Dean A A [ORNL; Standaert, Robert F. [ORNL; Elkins, James G. [ORNL; Katsaras, John [ORNL

    2017-03-01

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent work using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.

  18. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  19. A neutron booster for spallation sources—application to accelerator driven systems and isotope production

    Science.gov (United States)

    Galy, J.; Magill, J.; Van Dam, H.; Valko, J.

    2002-06-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the μm-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology—for example in the design neutron amplifiers for medical applications and "fast" islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module could be developed for spallation targets foreseen in the MYRRHA (L. Van Den Durpel, H. Aı̈t Abderrahim, P. D'hondt, G. Minsart, J.L. Bellefontaine, S. Bodart, B. Ponsard, F. Vermeersch, W. Wacquier. A prototype accelerator driven system in Belgium: the Myrrha project, Technical Committee Meeting on Feasibility and Motivation for Hybrid concepts for Nuclear Energy generation and Transmutation, Madrid, Spain, September 17-19, 1997 [1]). or MEGAPIE (M. Salvatores, G.S. Bauer, G. Heusener. The MEGAPIE initiative: executive outline and status as per November 1999, MPO-1-GB-6/0_GB, 1999 [2]) projects. With a neutron multiplication factor of the booster unit in the range 10-20 (i.e. with a keff of 0.9-0.95), considerably less powerful accelerators would be required to obtain the desired neutron flux. Instead of the powerful accelerators with proton energies of 1 GeV and currents of 10 mA foreseen for accelerator driven systems, similar neutron fluxes can be obtained

  20. Detection of explosives and other illicit materials by a single nanosecond neutron pulses - Monte-Carlo simulations of the detection process

    International Nuclear Information System (INIS)

    Miklaszewski, R.; Drozdowicz, K.; Wiacek, U.; Dworak, D.; Gribkov, V.

    2011-01-01

    Recent progress in the development of a single-pulse Nanosecond Impulse Neutron Investigation System (NINIS) intended for interrogation of hidden objects (explosives and other illicit materials) by means of measuring elastically scattered neutrons is presented in this paper. The method is based on the well know fact that nuclide-specific information is present in the scattered neutron field. The method uses very bright neutron pulses having duration of the order of few nanoseconds, generated by a dense plasma focus (DPF) devices filled with a pure deuterium or deuterium-tritium mixture as a working gas. Very short duration of the neutron pulse, its high brightness and mono-chromaticity allow to use the time-of-flight method with bases of about few meters to distinguish signals from neutrons scattered by different elements. Results of the Monte Carlo simulations of the scattered neutron field from several compounds (explosives and everyday use materials) are presented in the paper. The MCNP5 code has been used to get information on the angular and energy distributions of the neutrons scattered by the above mentioned compounds assuming the initial neutron energy equal to 2.45 MeV (D-D). A new input has been elaborated that allows the modelling of not only a spectrum of the neutrons scattered at different angles but also their time history from the moment of generation up to detection. Such an approach allows getting approximate signals as registered by scintillator + photomultiplier probes placed at various distances from the scattering object, demonstrating a principal capability of the method to identify an elemental content of the inspected objects. Preliminary results of the MCNP modelling of the interrogation process of the airport luggage containing several illicit objects are presented as well. (authors)

  1. Conceptual design of facilities and systems for cold neutron source in HANARO

    International Nuclear Information System (INIS)

    Kim, Y. K.; Jung, H. S.; Wu, S. I.; Ahn, S. H.; Park, Y. C.; Cho, Y. G.; Ryu, J. S.; Kim, Y. J.

    2004-05-01

    The systems and facilities for the HANARO cold neutron source consist of hydrogen handling system, vacuum system, gas blanket system, helium refrigeration system and electrical and instrumentation and control system. The overriding safety goal in the system design is to prevent the escape of hydrogen from the system boundary or the ingress of air into the hydrogen boundary. Of primary concern is the release of hydrogen (or intrusion of oxygen) into an area where any subsequent reaction could possibly result in damage to the reactor building or safety systems or components, as well as jeopardize personnel safety. It has been an general rule that all aspects of the system design were based on the demonstrated technology of long standing world-wide. In some cases, other options are also suggested for the flexibility of independent review process. This report hopefully serves as basis for the coming detail design and engineering. This report is mainly concentrated on the conceptual system design performed during the first project year. It includes the key safety design requirements in the beginning, followed by the description of the preliminary system design. At the rear part, building layout and equipment arrangement are briefly introduced for easy understanding of the whole pictures. The design status for the In-Pool Assembly including safety analysis and neutron guide and instruments will be discussed in another report

  2. Unfolding neutron spectra obtained from BS–TLD system using genetic algorithm

    International Nuclear Information System (INIS)

    Santos, J.A.L.; Silva, E.R.; Ferreira, T.A.E; Vilela, E.C.

    2012-01-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as a function of energy should be characterized. The precise information allows radiological quantities establishment related to that spectrum, but it is necessary that a spectrometric system covers a large interval of energy and an unfolding process is appropriate. This paper proposes use of a technique of Artificial Intelligence (AI) called genetic algorithm (GA), which uses bio-inspired mathematical models with the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a BS system to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enabling this technique to unfold neutron spectra with the BS–TLD system. - Highlights: ► The unfolding code used the artificial intelligence technique called genetic algorithms. ► A response matrix specific to the unfolding data obtained with the BS–TLD system is used by the AGLN. ► The observed results demonstrate the potential use of genetic algorithms in solving complex nuclear problems.

  3. SEARCH FOR CHAOS IN NEUTRON STAR SYSTEMS: IS Cyg X-3 A BLACK HOLE?

    International Nuclear Information System (INIS)

    Karak, Bidya Binay; Dutta, Jayanta; Mukhopadhyay, Banibrata

    2010-01-01

    The accretion disk around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. Naturally, the question arises whether such a system is chaotic (deterministic) or stochastic (random) which might be related to the associated transport properties whose origin is still not confirmed. Earlier, the black hole system GRS 1915+105 was shown to be low-dimensional chaos in certain temporal classes. However, so far such nonlinear phenomena have not been studied fairly well for neutron stars which are unique for their magnetosphere and kHz quasi-periodic oscillation (QPO). On the other hand, it was argued that the QPO is a result of nonlinear magnetohydrodynamic effects in accretion disks. If a neutron star exhibits chaotic signature, then what is the chaotic/correlation dimension? We analyze RXTE/PCA data of neutron stars Sco X-1 and Cyg X-2, along with the black hole Cyg X-1 and the unknown source Cyg X-3, and show that while Sco X-1 and Cyg X-2 are low dimensional chaotic systems, Cyg X-1 and Cyg X-3 are stochastic sources. Based on our analysis, we argue that Cyg X-3 may be a black hole.

  4. Fuel management and core design code systems for pressurized water reactor neutronic calculations

    International Nuclear Information System (INIS)

    Ahnert, C.; Arayones, J.M.

    1985-01-01

    A package of connected code systems for the neutronic calculations relevant in fuel management and core design has been developed and applied for validation to the startup tests and first operating cycle of a 900MW (electric) PWR. The package includes the MARIA code system for the modeling of the different types of PWR fuel assemblies, the CARMEN code system for detailed few group diffusion calculations for PWR cores at operating and burnup conditions, and the LOLA code system for core simulation using onegroup nodal theory parameters explicitly calculated from the detailed solutions

  5. The Design and Performance of the Spallation Neutron Source Low-Level RF Control System

    CERN Document Server

    Champion, M; Kasemir, K; Ma, H; Piller, C

    2004-01-01

    The Spallation Neutron Source linear accelerator low-level RF control system has been developed within a collaboration of Lawrence Berkeley, Los Alamos, and Oak Ridge national laboratories. Three distinct generations of the system, described in a previous publication [1], have been used to support beam commissioning at Oak Ridge. The third generation system went into production in early 2004, with installation in the coupled-cavity and superconducting linacs to span the remainder of the year. The final design of this system will be presented along with results of performance measurements.

  6. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1986-01-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the cource of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is illustrated in this report by two sample problems. 25 refs

  7. An automated neutron dosimetry system based on the chemical etch of CR-39

    International Nuclear Information System (INIS)

    Harvey, J.R.; French, A.P.; Jackson, M.; Weeks, A.R.

    1997-01-01

    The dosimetric characteristics of two types of personal neutron dosemeter have recently been extensively assessed. The effects of exposure to various extreme environments have also been studied. Both types of dosemeter utilise chemically etched elements which are read in an automated reader, the Autoscan 60, which uses an edge illumination system to increase the pit image size. One type of dosemeter contains three elements in a pyramid structure. The other uses one or two elements in a planar structure. The results indicate that both types of dosemeter can be used to assess accurately the personal dose from neutrons in a range of harsh environments. Formal approval for the operational use of the system has been received. (author)

  8. Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, Michael C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Weber, Thomas M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-11-01

    A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.

  9. DANDE: a linked code system for core neutronics/depletion analysis

    International Nuclear Information System (INIS)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem

  10. Cf-252 based neutron radiography using real-time image processing system

    International Nuclear Information System (INIS)

    Mochiki, Koh-ichi; Koiso, Manabu; Yamaji, Akihiro; Iwata, Hideki; Kihara, Yoshitaka; Sano, Shigeru; Murata, Yutaka

    2001-01-01

    For compact Cf-252 based neutron radiography, a real-time image processing system by particle counting technique has been developed. The electronic imaging system consists of a supersensitive imaging camera, a real-time corrector, a real-time binary converter, a real-time calculator for centroid, a display monitor and a computer. Three types of accumulated NR image; ordinary, binary and centroid images, can be observed during a measurement. Accumulated NR images were taken by the centroid mode, the binary mode and ordinary mode using of Cf-252 neutron source and those images were compared. The centroid mode presented the sharpest image and its statistical characteristics followed the Poisson distribution, while the ordinary mode showed the smoothest image as the averaging effect by particle bright spots with distributed brightness was most dominant. (author)

  11. Neutron physics

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Wirtz, K.

    1974-01-01

    This textbook consists of four sections which deal with the following subjects: 1. Production of neutrons and their interactions with the nuclei; neutron sources; neutron detectors; cross-section measurements. 2. Theory of neutron interactions with macroscopic media; neutron slowing down; space distribution of moderated neutrons; neutron thermalization; neutron scattering. 3. Radioactive probe measurements of thermal neutron fluxes; activation by means of epithermal neutrons; threshold detectors of fast neutrons; neutron calibration. 4. Neutron energy; slowing down kernels; neutron age; diffusion length and absorption of neutrons

  12. Diffraction limit of the theory of multiple small-angle neutron scattering by a dense system of scatterers

    Science.gov (United States)

    Dzheparov, F. S.; Lvov, D. V.

    2016-02-01

    Multiple small-angle neutron scattering by a high-density system of inhomogeneities has been considered. A combined approach to the analysis of multiple small-angle neutron scattering has been proposed on the basis of the synthesis of the Zernike-Prince and Moliére formulas. This approach has been compared to the existing multiple small-angle neutron scattering theory based on the eikonal approximation. This comparison has shown that the results in the diffraction limit coincide, whereas differences exist in the refraction limit because the latter theory includes correlations between successive scattering events. It has been shown analytically that the existence of correlations in the spatial position of scatterers results in an increase in the number of unscattered neutrons. Thus, the narrowing of spectra of multiple small-angle neutron scattering observed experimentally and in numerical simulation has been explained.

  13. Software development of the mechanical vibration monitoring system of the CNA I reactor internals by neutron noise technique

    International Nuclear Information System (INIS)

    Wentzeis, Luis M.; Calvo, Maria D.

    2009-01-01

    The neutron noise analysis technique is an important predictive maintenance tool for early detection of failures such as sensor malfunctions and incipient mechanical problems located in the reactor internals. This technique was applied successfully in Argentina since 1987. The FER-GAEN group dependent of the CNEA developed the measuring system to detect anomalies as early as possible. The magnitude of interest in this analysis is the fluctuating component of the neutron flux known as 'neutron noise'. In order to improve and facilitate the analysis, a new software code was developed for the data acquisition of the neutron noise signals and neutron spectra estimation in the frequency domain. The RMS values related with the internals vibrations are calculated from these spectra and are chronologically displayed, in order to detect any anomalous vibration or incipient detector malfunction as early as possible. (author)

  14. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, J. M., E-mail: lewisj@ufl.edu; Kelley, R. P.; Jordan, K. A. [Nuclear Engineering Program, University of Florida, Gainesville, Florida 32611 (United States); Murer, D. [Arktis Radiation Detectors Ltd., 8045 Zurich (Switzerland)

    2014-07-07

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure {sup 4}He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the {sup 4}He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  15. Fission signal detection using helium-4 gas fast neutron scintillation detectors

    Science.gov (United States)

    Lewis, J. M.; Kelley, R. P.; Murer, D.; Jordan, K. A.

    2014-07-01

    We demonstrate the unambiguous detection of the fission neutron signal produced in natural uranium during active neutron interrogation using a deuterium-deuterium fusion neutron generator and a high pressure 4He gas fast neutron scintillation detector. The energy deposition by individual neutrons is quantified, and energy discrimination is used to differentiate the induced fission neutrons from the mono-energetic interrogation neutrons. The detector can discriminate between different incident neutron energies using pulse height discrimination of the slow scintillation component of the elastic scattering interaction between a neutron and the 4He atom. Energy histograms resulting from this data show the buildup of a detected fission neutron signal at higher energies. The detector is shown here to detect a unique fission neutron signal from a natural uranium sample during active interrogation with a (d, d) neutron generator. This signal path has a direct application to the detection of shielded nuclear material in cargo and air containers. It allows for continuous interrogation and detection while greatly minimizing the potential for false alarms.

  16. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Torii, Yoshiya

    2002-09-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal for the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System to set the patient in an actual irradiation position swiftly and accurately. This report describes basic design and procedure of dosimetry, operation manual, data and library structure for JCDS (ver.1.0). (author)

  17. Neutron Resonances in Systems of Few Nuclei and Their Possible Role in Radiation of Overdense Stars

    International Nuclear Information System (INIS)

    Takibayev, N. Zh.

    2011-01-01

    Exact analytical solutions of three- and four-body systems made of one light particle and other heavy particles have been obtained in the model of Born-Oppenheimer approximation with two-body separable interactions. In the case of neutron scattering on a subsystem of few fixed nuclei the appearance of new resonance quantum states has been shown as well as their dependence on distances between heavy nuclei. The applications of new phenomena to overdense stars radiation are considered. (author)

  18. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  19. Laser interrogation of latent vehicle registration number

    Energy Technology Data Exchange (ETDEWEB)

    Russo, R.E. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.]|[Lawrence Livermore National Lab., CA (United States). Forensic Science Center; Pelkey, G.E. [City of Livermore Police Dept., CA (United States); Grant, P.; Whipple, R.E.; Andresen, B.D. [Lawrence Livermore National Lab., CA (United States). Forensic Science Center

    1994-09-01

    A recent investigation involved automobile registration numbers as important evidentiary specimens. In California, as in most states, small, thin metallic decals are issued to owners of vehicles each year as the registration is renewed. The decals are applied directly to the license plate of the vehicle and typically on top of the previous year`s expired decal. To afford some degree of security, the individual registration decals have been designed to tear easily; they cannot be separated from each other, but can be carefully removed intact from the metal license plate by using a razor blade. In September 1993, the City of Livermore Police Department obtained a blue 1993 California decal that had been placed over an orange 1992 decal. The two decals were being investigated as possible evidence in a case involving vehicle registration fraud. To confirm the suspicion and implicate a suspect, the department needed to known the registration number on the bottom (completely covered) 1992 decal. The authors attempted to use intense and directed light to interrogate the colored stickers. Optical illumination using a filtered white-light source partially identified the latent number. However, the most successful technique used a tunable dye laser pumped by a pulsed Nd:YAG laser. By selectively tuning the wavelength and intensity of the dye laser, backlit illumination of the decals permitted visualization of the underlying registration number through the surface of the top sticker. With optimally-tuned wavelength and intensity, 100% accuracy was obtained in identifying the sequence of latent characters. The advantage of optical techniques is their completely nondestructive nature, thus preserving the evidence for further interrogation or courtroom presentation.

  20. Design of a model for BSA to meet free beam parameters for BNCT based on multiplier system for D–T neutron source

    International Nuclear Information System (INIS)

    Rasouli, Fatemeh S.; Farhad Masoudi, S.; Kasesaz, Yaser

    2012-01-01

    Highlights: ► The possibility of using natural uranium as a neutron multiplier for D–T neutron generator is examined. ► To optimize output neutron beam, a moderator/filter/reflector arrangement was designed. ► The MCNP4C code has been used for BSA optimization and other simulations. ► The results show that using this system the BNCT in-air recommended parameters are met. - Abstract: Extensive research has recently been carried out for the development of high-energy D–T neutron generators as neutron sources for BNCT. The energy of these high-energy neutrons must be reduced by designing a Beam Shaping Assembly (BSA) to make them usable for BNCT. However, the neutron flux decreases drastically as neutrons pass through different materials of BSA. Therefore, it is very important to find ways to treat the neutrons economically. In this paper the possibility of using natural uranium as a neutron multiplier is investigated in order to increase the number of neutrons emitted from D–T neutron generator. According to the simulations and performed calculations, a sphere containing natural uranium as neutron multiplier was used to increase the number of neutrons generated by the D–T neutron generator. The energy of fast neutrons that are generated by D–T fusion reaction and amplified by neutron multiplier system is decreased using proper materials as moderators and fast neutron filters in BSA. The gamma rays which are generated as a result of neutron interaction with moderators are removed from neutron spectrum using bismuth as the gamma filter. Also, a thermal neutron absorber omits undesired low-energy neutrons which lead to a high radiation dose for the skin and soft tissues. The results show that passing neutrons through such a BSA causes the establishment of free beam parameters yet the reduction of the output beam intensity is unavoidable. The neutron spectrum related to our BSA has a proper epithermal flux and the fast and thermal neutron fluxes are

  1. A high repetition rate laser-heavy water based neutron source

    Science.gov (United States)

    Hah, Jungmoo; He, Zhaohan; Nees, John; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team

    2015-11-01

    Neutrons have numerous applications in diverse areas, such as medicine, security, and material science. For example, sources of MeV neutrons may be used for active interrogation for nuclear security applications. Recently, alternative ways to generate neutron flux have been studied. Among them, ultrashort laser pulse interactions with dense plasma have attracted significant attention as compact, pulse sources of neutrons. To generate neutrons using a laser through fusion reactions, thin solid density targets have been used in a pitcher-catcher arrangement, using deuterated plastic for example. However, the use of solid targets is limited for high-repetition rate operation due to the need to refresh the target for every laser shot. Here, we use a free flowing heavy water target with a high repetition rate (500 Hz) laser without a catcher. From the interaction between a 10 micron scale diameter heavy water stream with the Lambda-cubed laser system at the Univ. of Michigan (12mJ, 800nm, 35fs), deuterons collide with each other resulting in D-D fusion reactions generating 2.45 MeV neutrons. Under best conditions a time average of ~ 105 n/s of neutrons are generated.

  2. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux

  3. Design and Construction of the Control System for Batan Small Angle Neutron Scattering Spectrometer (SMARter

    Directory of Open Access Journals (Sweden)

    E. Santoso

    2008-07-01

    Full Text Available A 36 m Small Angle Neutron Scattering (SANS Spectrometer (SMARTer has been installed in Serpong, Indonesia in 1992. As time goes by, the original main computer was out of order and the instrument had not been operated since 2003. In order to activate the SMARTer, in the year 2005, a work on designing and constructing a new control system for SMARTer was carried out. The main component of this control system is a programmable peripheral I/O (IC PPI 8255 and was assembled as a plug-in board at an ISA slot of a personal computer. An IC PPI 8255 was programmed to control the mechanical movements of the instrument’s components: four neutron guide tubes, six pinholes collimator, a detector and a beam stopper. The test either with or without neutron beam has shown that this control system can be implemented for the mechanical movements of SMARTer. Error of moving the detector in the distance range of 1.5 m – 18 m is only 1 mm and the other movements have no error at all (precise.

  4. Development of a direct measurement system for the standardization of neutron emission rates

    International Nuclear Information System (INIS)

    Ogheard, Florestan

    2012-01-01

    via modelling of the system using the stochastic transport code GEANT4. The final detector has also been made and the results obtained have been compared to those from a primary measurement method already in use at LNE-LNHB. Furthermore, a comparison of the results from modelling the manganese bath with GEANT4, MCNPX and FLUKA have been undertaken to find the most reliable code. This comparison lead to the identification of various weaknesses, particularly in GEANT4, and several uncertainty factors, such as the modeling of the neutron emission and the choice of the cross-section library. Finally, neutron source calibration has been carried out with the Cerenkov-gamma method and the correction factors given by the new modeling of the bath using MCNPX. These results have been complemented with a comparison with the former method simultaneously undertaken, after calibration of the detector in the bath using a 56 Mn source irradiated in a nuclear reactor. At the end of this study, several improvements have been proposed, from which a number are currently under development at LNE-LNHB. (author) [fr

  5. Determination of the response function for the Portsmouth Gaseous Diffusion Plant criticality accident alarm system neutron detectors

    International Nuclear Information System (INIS)

    Tayloe, R.W. Jr.; Brown, A.S.; Dobelbower, M.C.; Woollard, J.E.

    1997-03-01

    Neutron-sensitive radiation detectors are used in the Portsmouth Gaseous Diffusion Plant's (PORTS) criticality accident alarm system (CAAS). The CAAS is composed of numerous detectors, electronics, and logic units. It uses a telemetry system to sound building evacuation horns and to provide remote alarm status in a central control facility. The ANSI Standard for a CAAS uses a free-in-air dose rate to define the detection criteria for a minimum accident-of-concern. Previously, the free-in-air absorbed dose rate from neutrons was used for determining the areal coverge of criticality detection within PORTS buildings handling fissile materials. However, the free-in-air dose rate does not accurately reflect the response of the neutron detectors in use at PORTS. Because the cost of placing additional CAAS detectors in areas of questionable coverage (based on a free-in-air absorbed dose rate) is high, the actual response function for the CAAS neutron detectors was determined. This report, which is organized into three major sections, discusses how the actual response function for the PORTS CAAS neutron detectors was determined. The CAAS neutron detectors are described in Section 2. The model of the detector system developed to facilitate calculation of the response function is discussed in Section 3. The results of the calculations, including confirmatory measurements with neutron sources, are given in Section 4

  6. Monte Carlo simulation of explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator.

    Science.gov (United States)

    Bergaoui, K; Reguigui, N; Gary, C K; Brown, C; Cremer, J T; Vainionpaa, J H; Piestrup, M A

    2014-12-01

    An explosive detection system based on a Deuterium-Deuterium (D-D) neutron generator has been simulated using the Monte Carlo N-Particle Transport Code (MCNP5). Nuclear-based explosive detection methods can detect explosives by identifying their elemental components, especially nitrogen. Thermal neutron capture reactions have been used for detecting prompt gamma emission (10.82MeV) following radiative neutron capture by (14)N nuclei. The explosive detection system was built based on a fully high-voltage-shielded, axial D-D neutron generator with a radio frequency (RF) driven ion source and nominal yield of about 10(10) fast neutrons per second (E=2.5MeV). Polyethylene and paraffin were used as moderators with borated polyethylene and lead as neutron and gamma ray shielding, respectively. The shape and the thickness of the moderators and shields are optimized to produce the highest thermal neutron flux at the position of the explosive and the minimum total dose at the outer surfaces of the explosive detection system walls. In addition, simulation of the response functions of NaI, BGO, and LaBr3-based γ-ray detectors to different explosives is described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Some existing Experimental Facilities for Fast Neutron Systems at KIT

    International Nuclear Information System (INIS)

    Litfin, K.

    2013-01-01

    An overview is given of: • Liquid Metal Loops at the Karlsruhe Liquid Metal Laboratory (KALLA) of KIT; • THESYS: Technologies for HEavy metal SYStems; • Thermal Hydraulic experiments in THESYS; • THEADES: THErmalhydraulics and Ads DESign; • Thermal Hydraulic experiments in THEADES; • CORRIDA: CORRosion In Dynamic lead Alloys; • Experimental stagnant facilities at KALLA; • INR Liquid metal research

  8. Interrogator independence and challenges of his lack of ...

    African Journals Online (AJOL)

    The interrogator in criminal procedures is charged with important and momentous judicial tasks and for this reason, he should enjoy higher job security as in French law, an interrogator is not considered among the officials of public prosecutor's office and enjoys higher security. Code of Criminal Procedure of 2013 has ...

  9. Some Semantic Properties of Romanian Interrogatives: "Care" and "Cine."

    Science.gov (United States)

    Vasiliu, E.

    The aim of this paper is to account for some semantic properties of Romanian interrogatives "ce" and "cine" by establishing some definite correlations between various contextual restrictions governing the use of these interrogative particles and the "meaning" which might be assigned to each of these particles in any…

  10. Division of labor in the interpretation of declaratives and interrogatives

    NARCIS (Netherlands)

    Farkas, D.F.; Roelofsen, F.

    This article presents an account of the semantic content and conventional discourse effects of a range of sentence types in English, namely falling declaratives, polar interrogatives and certain kinds of rising declaratives and tag interrogatives. The account aims to divide the labor between

  11. A novel fast-neutron tomography system based on a plastic scintillator array and a compact D-D neutron generator.

    Science.gov (United States)

    Adams, Robert; Zboray, Robert; Prasser, Horst-Michael

    2016-01-01

    Very few experimental imaging studies using a compact neutron generator have been published, and to the knowledge of the authors none have included tomography results using multiple projection angles. Radiography results with a neutron generator, scintillator screen, and camera can be seen in Bogolubov et al. (2005), Cremer et al. (2012), and Li et al. (2014). Comparable results with a position-sensitive photomultiplier tube can be seen in Popov et al. (2011). One study using an array of individual fast neutron detectors in the context of cargo scanning for security purposes is detailed in Eberhardt et al. (2005). In that case, however, the emphasis was on very large objects with a resolution on the order of 1cm, whereas this study focuses on less massive objects and a finer spatial resolution. In Andersson et al. (2014) three fast neutron counters and a D-T generator were used to perform attenuation measurements of test phantoms. Based on the axisymmetry of the test phantoms, the single-projection information was used to calculate radial attenuation distributions of the object, which was compared with the known geometry. In this paper a fast-neutron tomography system based on an array of individual detectors and a purpose-designed compact D-D neutron generator is presented. Each of the 88 detectors consists of a plastic scintillator read out by two Silicon photomultipliers and a dedicated pulse-processing board. Data acquisition for all channels was handled by four single-board microcontrollers. Details of the individual detector design and testing are elaborated upon. Using the complete array, several fast-neutron images of test phantoms were reconstructed, one of which was compared with results using a Co-60 gamma source. The system was shown to be capable of 2mm resolution, with exposure times on the order of several hours per reconstructed tomogram. Details about these measurements and the analysis of the reconstructed images are given, along with a discussion

  12. Design and construction of a data acquisition system for a neutron diffractometer

    International Nuclear Information System (INIS)

    Baeza F, Lorena M.

    1995-01-01

    This work presents the design and construction of a data acquisition system for the neutron diffractometer of the La Reina Nuclear Studies Center. The system counts simultaneously the events produced in 17 detection channels, in 128 time channels with 10 μs duration, synchronized with a external signal. The event counting is performed by associating each detection and time channel to a binary code which determine a storage memory. The system is operated by a computer which controls the data acquisition and transfer. The designed software allows the data acquisition and storage in a file for later processing

  13. An automated microcomputer-controlled system for neutron activation and gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Edward, J.B.; Bennett, L.G.I.

    1990-01-01

    An automated instrumental neutron activation analysis (INAA) system has been constructed at the SLOWPOKE-2 reactor at the Royal Military College of Canada (RMC). Its pneumatic transfer system is controlled by an Apple IIe computer, linked in turn to an MS-DOS-compatible microcomputer which controls data acquisition. Custom software has been created for these computers and for off-line spectral analysis using programs that incorporate either peak boundary or Gaussian peak fitting methods of analysis. This system provides the gamut of INAA techniques for the analyst. The design and performance of the hardware and software are discussed. (orig.)

  14. The new digital neutron flux measuring system in Wuergassen nuclear power plant

    International Nuclear Information System (INIS)

    Pilhofer, K.H.

    1994-01-01

    The 670 MW boiling water reactor of Wuergassen Nuclear Power Plant became critical for the first time on October 22, 1971. A very important criterion for all components is the reliability. With the dew digital neutron flow-measuring system TK250, the development of the failure rate is very positive. On the occasion of the 1993 revision, the existing 12 electronic cubicles were replaced by 4 new ones. Within only three weeks, all connections to the detectors, to the safety system, the control room, the signal system and the process calculator have been made. (orig.) [de

  15. Improvement to surface lagging systems in a nuclear reactor, particularly of the fast neutron type

    International Nuclear Information System (INIS)

    Lemercier, Guy.

    1979-01-01

    Improvements to surface lagging systems in a nuclear reactor, particularly of the fast neutron kind. This system is composed of an assembly of panels each formed of a stack of metal fabric or trellis held against the surface to be protected, by a double fixing system comprising (a) a tubular component passing through a hole in the panel and applying it against the surface through a bearing plate, and (b) a bolt fitted in the centre of the tubular component, also secured to the surface and holding a washer capable of preventing the fall of the tubular component and the panel should the tubular component fracture [fr

  16. Pneumatic sample-transfer system for use with the Lawrence Livermore National Laboratory rotating target neutron source (RTNS-I)

    International Nuclear Information System (INIS)

    Williams, R.E.

    1981-07-01

    A pneumatic sample-transfer system is needed to be able to rapidly retrieve samples irradiated with 14-MeV neutrons at the Rotating Target Neutron Source (RTNS-I). The rabbit system, already in place for many years, has been refurbished with modern system components controlled by an LSI-11 minicomputer. Samples can now be counted three seconds after an irradiation. There are many uses for this expanded 14-MeV neutron activation capability. Several fission products difficult to isolate from mixed fission fragments can be produced instead through (n,p) or (n,α) reactions with stable isotopes. Mass-separated samples of Nd, Mo, and Se, for example, can be irradiated to produce Pr, Nb, and As radionuclides sufficient for decay scheme studies. The system may also be used for multielement fast-neutron activation analysis because the neutron flux is greater than 2 x 10 11 n/cm 2 -sec. Single element analyses of Si and O are also possible. Finally, measurements of fast-neutron cross sections producing short-lived activation products can be performed with this system. A description of the rabbit system and instructions for its use are presented in this report

  17. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    CERN Document Server

    Kumada, H

    2002-01-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to ...

  18. Design of a new neutron delivery system for high flux source

    International Nuclear Information System (INIS)

    Boffy, Romain

    2016-01-01

    The building of new experimental neutron beam facilities as well as the renewal programmes under development at some of the already existing installations have pinpointed the urgent need to develop neutron guide technology in order to make such neutron transport devices more efficient and durable. In fact, a number of mechanical failures of neutron guides have been reported by several research centres. It is therefore important to understand the behaviour of the glass substrates on top of which the neutron optics mirrors are deposited, and how these materials degrade under radiation conditions. The case of the European Spallation Source (ESS), at present under construction at Lund, is a good example. It previews the deployment of neutron guides having more than 100 metres of length for most of the instruments. Also, the future renovation programme of the ILL, called Endurance, foresees the refurbishment of several beam lines. This Ph.D. thesis was the result of a collaboration agreement between the ILL and ESS-Bilbao, aiming to improve the performance and sustainability of future neutron delivery systems. Four different industrially produced alkali-borosilicate glasses were selected for this study: Borofloat, N-ZK7, N-BK7, and S-BSL7. The first three are well known within the neutron instrumentation community, as they have already been used in several installations; whereas the last one is, at present, considered a candidate for making future mirror substrates. All four glasses have a comparable content of boron oxide of about 10 mol.%. The presence of such a strong neutron absorption element is in fact a mandatory component for the manufacturing of neutron guides, because it provides a radiological shielding for the environment. This benefit is, however, somewhat counterbalanced, since the resulting 10 B(n,alpha) 7 Li reactions degrade the glass due to the deposited energy of 2.5 MeV by the α particle and the recoil nuclei. In fact, the brittleness of some of

  19. Performance assessment of imaging plates for the JHR transfer Neutron Imaging System

    Science.gov (United States)

    Simon, E.; Guimbal, P. AB(; )

    2018-01-01

    The underwater Neutron Imaging System to be installed in the Jules Horowitz Reactor (JHR-NIS) is based on a transfer method using a neutron activated beta-emitter like Dysprosium. The information stored in the converter is to be offline transferred on a specific imaging system, still to be defined. Solutions are currently under investigation for the JHR-NIS in order to anticipate the disappearance of radiographic films commonly used in these applications. We report here the performance assessment of Computed Radiography imagers (Imaging Plates) performed at LLB/Orphée (CEA Saclay). Several imaging plate types are studied, in one hand in the configuration involving an intimate contact with an activated dysprosium foil converter: Fuji BAS-TR, Fuji UR-1 and Carestream Flex XL Blue imaging plates, and in the other hand by using a prototypal imaging plate doped with dysprosium and thus not needing any contact with a separate converter foil. The results for these imaging plates are compared with those obtained with gadolinium doped imaging plate used in direct neutron imaging (Fuji BAS-ND). The detection performances of the different imagers are compared regarding resolution and noise. The many advantages of using imaging plates over radiographic films (high sensitivity, linear response, high dynamic range) could palliate its lower intrinsic resolution.

  20. A neutron booster for spallation sources--application to accelerator driven systems and isotope production

    CERN Document Server

    Galy, J; Van Dam, H; Valko, J

    2002-01-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the mu m-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology--for example in the design neutron amplifiers for medical applications and 'fast' islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module cou...