WorldWideScience

Sample records for neutron inspection system

  1. NELIS - a Neutron Inspection System for Detection of Illicit Drugs

    International Nuclear Information System (INIS)

    Barzilov, Alexander P.; Womble, Phillip C.; Vourvopoulos, George

    2003-01-01

    NELIS (Neutron ELemental Inspection System) is currently being developed to inspect cargo pallets for illicit drugs. NELIS must be used in conjunction with an x-ray imaging system to optimize the inspection capabilities at ports of entry. Pulsed fast-thermal neutron analysis is utilized to measure the major and minor chemical elements in a non-destructive and non-intrusive manner. Fourteen-MeV neutrons produced with a pulsed d-T neutron generator are the interrogating particles. NELIS analyzes the characteristic gamma rays emitted from the object that are produced by nuclear reactions from fast and thermal neutrons. These gamma rays have different energies for each chemical element, and act as their fingerprints. Since the elemental composition of illicit drugs is quite different from that of innocuous materials, drugs hidden in pallets are identified through the comparison of expected and measured elemental composition and ratios. Results of tests of the system will be discussed

  2. A Feasibility Study on the Inspection System Development of Underground Cavities Using Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Che Wook; Kim, Song Hyun; Kim, Do Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    The detection efficiency using the gravimetry method is significantly low; therefore, it requires large surveying time. The magnetometry method detects the cavities by the magnitude of the magnetic field. However, the magnetometry method is problematical in urban areas due to pipes and electrical installations. GPR is the method that uses high frequency electromagnetic wave. This method is widely used for the inspection; however, the detection accuracy of sinkholes can be low in specific soil types. In this study, to verify the feasibility of the neutron source-based inspection system to detect the cavity detection, the Monte Carlo simulation was performed using neutron source. The analysis shows that the detection of the cavity with the given condition is possible when the diameter of cavity is over 100 cm. However, the detection efficiency can be enough increased if some optimization strategies for the inspection are developed. Also, it is expected that the proposed inspection method can detect the expected locations of the cavities.

  3. Radiological risks from irradiation of cargo contents with EURITRACK neutron inspection systems

    International Nuclear Information System (INIS)

    Giroletti, E.; Bonomi, G.; Donzella, A.; Viesti, G.; Zenoni, A.

    2012-01-01

    The radiological risk for the population related to the neutron irradiation of cargo containers with a tagged neutron inspection system has been studied. Two possible effects on the public health have been assessed: the modification of the nutritional and organoleptic properties of the irradiated materials, in particular foodstuff, and the neutron activation of consumer products (i.e. food and pharmaceuticals). The result of this study is that irradiation of food and foodstuff, pharmaceutical and medical devices in container cargoes would neither modify the properties of the irradiated material nor produce effective doses of concern for public health. Furthermore, the dose received by possible stowaways present inside the container during the inspection is less than the annual effective dose limit defined by European Legislation for the public. - Highlights: ► Neutron irradiation of cargo containers implies a radiological risk. ► The risk is about the modification of food properties and the products activation. ► Assessment is made about the EURITRACK neutron irradiation system. ► Results show that the EURITRACK scanning is not dangerous for the population.

  4. Nondestructive Inspection System for Special Nuclear Material Using Inertial Electrostatic Confinement Fusion Neutrons and Laser Compton Scattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.

    2017-07-01

    A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.

  5. Neutron diffraction tomography: a unique, 3D inspection technique for crystals using an intensifier TV system

    International Nuclear Information System (INIS)

    Davidson, J.B.; Case, A.L.

    1978-01-01

    The application of phosphor-intensifier-TV techniques to neutron topography and tomography of crystals is described. The older, analogous x-ray topography using wavelengths approximately 1.5A is widely used for surface inspection. However, the crystal must actually be cut in order to see diffraction anomalies beneath the surface. Because 1.5-A thermal neutrons are highly penetrating, much larger and thicker specimens can be used. Also, since neutrons have magnetic moments, they are diffracted by magnetic structures within crystals. In neutron volume topography, the entire crystal or a large part of it is irradiated, and the images obtained are superimposed reflections from the total volume. In neutron tomography (or section topography), a collimated beam irradiates a slice (0.5 to 10 mm) of the crystal. The diffracted image is a tomogram from this part only. A series of tomograms covering the crystal can be taken as the specimen is translated in steps across the narrow beam. Grains, voids, twinning, and other defects from regions down to 1 mm in size can be observed and isolated. Although at present poorer in resolution than the original neutron and film methods, the TV techniques are much faster and, in some cases, permit real-time viewing. Two camera systems are described: a counting camera having a 150 mm 6 Li-ZnS screen for low-intensity reflections which are integrated in a digital memory, and a 300-mm system using analog image storage. Topographs and tomograms of several crystals ranging in size from 4 mm to 80 mm are shown

  6. A newly developed technique of wireless remote controlled visual inspection system for neutron guides of cold neutron research facilities at HANARO

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2012-01-01

    KAERI developed a neutron guide system for cold neutron research facilities at HANARO from 2003 to 2010. In 2008, the old plug shutter and instruments were removed, and a new plug and primary shutter were installed as the first cold neutron delivery system at HANARO. At the beginning of 2010, all the neutron guides and accessories had been successfully installed as well. The neutron guide system of HANARO consists of the in pile plug assembly with in pile guides, the primary shutter with in shutter guides, the neutron guides in the guide shielding room with secondary shutter, and the neutron guides in the neutron guide hall. Three kinds of glass materials were selected with optimum lengths by considering their lifetime, shielding, maintainability and cost as well. Radiation damage of the guides can occur on the coating and glass by neutron capturing in the glass. It is a big challenge to inspect a guide failure because of the difficult surrounding environment, such as high level radiation, limited working space, and massive hard work for removing and reinstalling the shielding blocks as shown in Fig 1. Therefore, KAERI has developed a wireless remote controlled visual inspection system for neutron guides using an infrared light camera mounted on the vehicle moving in the guide

  7. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    International Nuclear Information System (INIS)

    Gribkov, V.; Karpinski, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; Strzyzewski, P.; Tomaszewski, K.; Dubrovsky, A.

    2006-01-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ∼760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of congruent with 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a ''single-shot detection system'' for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system

  8. The Dense Plasma Focus Opportunities in Detection of Hidden Objects by Using Nanosecond Impulse Neutron Inspection System (NINIS)

    Science.gov (United States)

    Gribkov, V.; Dubrovsky, A.; Karpiński, L.; Miklaszewski, R.; Paduch, M.; Scholz, M.; StrzyŻewski, P.; Tomaszewski, K.

    2006-12-01

    Dense Plasma Focus device is proposed for use as a neutron source to generate very powerful pulses of neutrons in the nanosecond (ns) range of its duration. Our devices PF-6, recently put into operation at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, and PF-10 belonging to the Institute for Theoretical and Experimental Physics, Moscow, Russia, have energy storages in its capacitor banks 7.4 kJ and 13 kJ as a maximum. Operated with the DPF chambers of a special design they have a current maximum up to ˜760 kA with a quarter period of the discharge equal to 1 microsecond. They generate circa 109 of 2.5-MeV neutrons in one pulse of ≅ 10-ns duration when working with deuterium, what permit to expect 1011 14-MeV neutrons at their operation with DT-mixture. This feature gives a principal possibility to create a "single-shot detection system" for interrogation of hidden objects. It means that all necessary information will be received during a single bright pulse of neutrons having duration in a nanosecond range by means of the time-of-flight technique with a short flight base. It might be a base for the creation of the Nanosecond Impulse Neutron Inspection System (NINIS). These characteristics of the neutron source open a number of opportunities while interrogation time in this case would now depend only on the data-processing system.

  9. Container Inspection Utilizing 14 MeV Neutrons

    Science.gov (United States)

    Valkovic, Vladivoj; Sudac, Davorin; Nad, Karlo; Obhodas, Jasmina

    2016-06-01

    A proposal for an autonomous and flexible ship container inspection system is presented. This could be accomplished by the incorporation of an inspection system on various container transportation devices (straddle carriers, yard gentry cranes, automated guided vehicles, trailers). The configuration is terminal specific and it should be defined by the container terminal operator. This enables that no part of the port operational area is used for inspection. The inspection scenario includes container transfer from ship to transportation device with the inspection unit mounted on it. The inspection is performed during actual container movement to the container location. A neutron generator without associated alpha particle detection is used. This allows the use of higher neutron intensities (5 × 109 - 1010 n/s in 4π). The inspected container is stationary in the “inspection position” on the transportation device while the “inspection unit” moves along its side. The following analytical methods will be used simultaneously: neutron radiography, X-ray radiography, neutron activation analysis, (n, γ) and (n,n'γ) reactions, neutron absorption. and scattering, X-ray backscattering. The neutron techniques will utilize “smart collimators” for neutrons and gamma rays, both emitted and detected. The inspected voxel is defined by the intersection of the neutron generator and the detectors solid angles. The container inspection protocol is based on identification of discrepancies between the cargo manifest, elemental “fingerprint” and radiography profiles. In addition, the information on container weight is obtained during the container transport and screening by measuring of density of material in the container.

  10. Neutron radiography inspection of investment castings

    International Nuclear Information System (INIS)

    Richards, W.J.; Barrett, J.R.; Springgate, M.E.; Shields, K.C.

    2004-01-01

    Investment casting, also known as the lost wax process, is a manufacturing method employed to produce near net shape metal articles. Traditionally, investment casting has been used to produce structural titanium castings for aero-engine applications with wall thickness less than 1 in (2.54 cm). Recently, airframe manufacturers have been exploring the use of titanium investment casting to replace components traditionally produced from forgings. Use of titanium investment castings for these applications reduces weight, cost, lead time, and part count. Recently, the investment casting process has been selected to produce fracture critical structural titanium airframe components. These airframe components have pushed the traditional inspection techniques to their physical limits due to cross sections on the order of 3 in (7.6 cm). To overcome these inspection limitations, a process incorporating neutron radiography (n-ray) has been developed. In this process, the facecoat of the investment casting mold material contains a cocalcined mixture of yttrium oxide and gadolinium oxide. The presence of the gadolinium oxide, allows for neutron radiographic imaging (and eventual removal and repair) of mold facecoat inclusions that remain within these thick cross sectional castings. Probability of detection (POD) studies have shown a 3x improvement of detecting a 0.050x0.007 in 2 (1.270x0.178 mm 2 ) inclusion of this cocalcined material using n-ray techniques when compared to the POD using traditional X-ray techniques. Further, it has been shown that this n-ray compatible mold facecoat material produces titanium castings of equal metallurgical quality when compared to the traditional materials. Since investment castings can be very large and heavy, the neutron radiography facilities at the University of California, Davis McClellan Nuclear Radiation Center (UCD/MNRC) were used to develop the inspection techniques. The UCD/MNRC has very unique facilities that can handle large parts

  11. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  12. A dual neutron/gamma source for the Fissmat Inspection for Nuclear Detection (FIND) system.

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee (Sandia National Laboratories, Albuquerque, NM); King, Michael; Rossi, Paolo (Sandia National Laboratories, Albuquerque, NM); McDaniel, Floyd Del (Sandia National Laboratories, Albuquerque, NM); Morse, Daniel Henry; Antolak, Arlyn J.; Provencio, Paula Polyak (Sandia National Laboratories, Albuquerque, NM); Raber, Thomas N.

    2008-12-01

    Shielded special nuclear material (SNM) is very difficult to detect and new technologies are needed to clear alarms and verify the presence of SNM. High-energy photons and neutrons can be used to actively interrogate for heavily shielded SNM, such as highly enriched uranium (HEU), since neutrons can penetrate gamma-ray shielding and gamma-rays can penetrate neutron shielding. Both source particles then induce unique detectable signals from fission. In this LDRD, we explored a new type of interrogation source that uses low-energy proton- or deuteron-induced nuclear reactions to generate high fluxes of mono-energetic gammas or neutrons. Accelerator-based experiments, computational studies, and prototype source tests were performed to obtain a better understanding of (1) the flux requirements, (2) fission-induced signals, background, and interferences, and (3) operational performance of the source. The results of this research led to the development and testing of an axial-type gamma tube source and the design/construction of a high power coaxial-type gamma generator based on the {sup 11}B(p,{gamma}){sup 12}C nuclear reaction.

  13. Optical fiber inspection system

    Science.gov (United States)

    Moore, Francis W.

    1987-01-01

    A remote optical inspection system including an inspection head. The inspection head has a passageway through which pellets or other objects are passed. A window is provided along the passageway through which light is beamed against the objects being inspected. A plurality of lens assemblies are arranged about the window so that reflected light can be gathered and transferred to a plurality of coherent optical fiber light guides. The light guides transfer the light images to a television or other image transducer which converts the optical images into a representative electronic signal. The electronic signal can then be displayed on a signal viewer such as a television monitor for inspection by a person. A staging means can be used to support the objects for viewing through the window. Routing means can be used to direct inspected objects into appropriate exit passages for accepted or rejected objects. The inspected objects are advantageously fed in a singular manner to the staging means and routing means. The inspection system is advantageously used in an enclosure when toxic or hazardous materials are being inspected.

  14. Wheel inspection system environment.

    Science.gov (United States)

    2008-11-18

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  15. A Broad Coverage Neutron Source For Security Inspections

    Science.gov (United States)

    Yang, Yang; Robert, Stubbers; Linchun, Wu; George, Miley

    2004-05-01

    To meet the increasing demanding requirements for security safety inspections, a line-type neutron source employing a cylindrical IEC (RC-IEC) is proposed for non-destructive "in situ" security inspections. The advantages of such a neutron source include line geometry, modularity, swithcability, variable source strength, low cost with minimum maintenance. Detailed description of a 1/3 scale cylindrical device is presented, which might demonstrate that a reasonably long RC-IEC produces a stable discharge with reasonably uniform neutron production along the cylindrical axis. Aiming at the neutron production efficiency at the order of 106 n/J, several methods to maximize neutron production efficiency are discussed. The results of a two-dimensional computer code(MCP) using a Monte Carlo numerical approach for the RC-IEC device are presented together with an analysis of neutron yield vs. different operation parameters.

  16. Stereoscopic inspection system

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Robinson, M.; Przybyla, J.S.

    1989-01-01

    A stereoscopic X-ray inspection system has a binocular radiographic source in which the binocular radiographic dimensions affecting presentation of the stereoscopic image are variable. The separation distance between X-ray sources and the convergence angle of the X-ray beams may be altered to change the individual perspective views comprising the final image. The acquired views are stored in video frame stores ready for display in a manner appropriate to stereoscopic presentation and the lateral disparity between the images may also be altered to control the position in depth relative to the display screen in the perceived stereo image. The object may be a cargo container. The X-ray sources may comprise accelerating waveguides in which microwaves from magnetrons or klystrons and waveguides accelerate pulses of electrons form an electron gun onto an anode. (author)

  17. Radiography with neutrons: use in inspection of hydrogenated materials

    International Nuclear Information System (INIS)

    Pugliesi, R.; Assuncao, M.P.M.

    1989-01-01

    Neutron radiography technique is used for showing the viability of inspecting hydrogenated materials. The experimental disposition is installed in irradiation radial channel n. 10 from IEA-R1 (IPEN-CNEN-SP). The inspetionated materials were munitions for gun and rifle. (C.G.C.)

  18. Neutron generator control system

    International Nuclear Information System (INIS)

    Peelman, H.E.; Bridges, J.R.

    1981-01-01

    A method is described of controlling the neutron output of a neutron generator tube used in neutron well logging. The system operates by monitoring the target beam current and comparing a function of this current with a reference voltage level to develop a control signal used in a series regulator to control the replenisher current of the neutron generator tube. (U.K.)

  19. Realistic modeling of radiation transmission inspection systems

    International Nuclear Information System (INIS)

    Sale, K.E.

    1993-01-01

    We have applied Monte Carlo particle transport methods to assess a proposed neutron transmission inspection system for checked luggage. The geometry of the system and the time, energy and angle dependence of the source have been modeled in detail. A pulsed deuteron beam incident on a thick Be target generates a neutron pulse with a very broad energy spectrum which is detected after passage through the luggage item by a plastic scintillator detector operating in current mode (as opposed to pulse counting mode). The neutron transmission as a function of time information is used to infer the densities of hydrogen, carbon, oxygen and nitrogen in the volume sampled. The measured elemental densities can be compared to signatures for explosives or other contraband. By using such computational modeling it is possible to optimize many aspects of the design of an inspection system without costly and time consuming prototyping experiments or to determine that a proposed scheme will not work. The methods applied here can be used to evaluate neutron or photon schemes based on transmission, scattering or reaction techniques

  20. Robotic Welding and Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    H. B. Smartt; D. P. Pace; E. D. Larsen; T. R. McJunkin; C. I. Nichol; D. E. Clark; K. L. Skinner; M. L. Clark; T. G. Kaser; C. R. Tolle

    2008-06-01

    This paper presents a robotic system for GTA welding of lids on cylindrical vessels. The system consists of an articulated robot arm, a rotating positioner, end effectors for welding, grinding, ultrasonic and eddy current inspection. Features include weld viewing cameras, modular software, and text-based procedural files for process and motion trajectories.

  1. Inspection of an artificial heart by the neutron radiography technique

    CERN Document Server

    Pugliesi, R; Andrade, M L G; Menezes, M O; Pereira, M A S; Maizato, M J S

    1999-01-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process.

  2. Fast neutron inspection of sea containers for the presence of 'dirty bomb'

    International Nuclear Information System (INIS)

    Valkovic, V.; Sudac, D.; Blagus, S.; Nad, K.; Obhodas, J.; Vekic, B.; Nebbia, G.; Pesente, S.

    2007-01-01

    The possibility of the detection of 'dirty bomb' presence inside sea containers is evaluated. The method proposed for explosive and fissile material detection makes use of two sensors (X-rays and neutrons). A commercial imaging device based on the X-ray radiography performs a fast scan of the container, identifies a 'suspect' region and provides its coordinates to the neutron based device for the final 'confirmatory' inspection. In this two sensor system a 14 MeV neutron beam defined by the detection of associated alpha particles is used for interrogation of only volume elements marked by X-ray sensor. The object's nature is determined from passive and neutron induced, gamma energy spectra measurements. Experimental results (time-of-flight and gamma energy spectra) obtained for the irradiation 30 kg of TNT, depleted uranium and other materials hidden inside the container are presented

  3. Associated-particle sealed-tube neutron probe for nonintrusive inspection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.

    1996-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) show potential to allow the associated-particle method to be moved out of the laboratory into field applications. Alpha particles associated with 14 MeV neutrons generated from the D-T reaction travel in the opposite direction and are detected inside the sealed tube. Gamma-ray spectra of resulting neutron reactions in the inspected volume encompassed by the alpha- detector solid angle identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles not only separate the prompt and delayed gamma-rays but can also yield a separate coarse tomographic image of each identified nuclide, from a single orientation without collimation. A continuous ion beam allows data acquisition by relatively low-bandwidth commercial electronics. This efficient collection of maximum information from each detected neutron by the associated-particle method can allow a much lower source intensity than pulsed accelerator methods, provided a sufficient usable signal rate is obtained. When this method is coupled with a compact sealed-tube neutron generator, a relatively small, inexpensive, reliable, and easily maintainable inspection system can be developed, that is rugged enough to be transportable. Proof-of- concept laboratory experiments have been performed for simulated explosives, drugs, special nuclear materials, and chemical warfare agents. Based on lessons learned with the present APSTNG system, an advanced APSTNG system is being designed and built that will be transportable, yield a substantial neutron output increase, and provide a substantially improved target lifetime

  4. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  5. Remote inspection system for nuclear power plants

    International Nuclear Information System (INIS)

    Inagaki, K.; Fujii, M.; Doi, A.; Harima, T.

    1977-01-01

    A remote inspection system for nuclear power plants was constructed based on an analysis of inspections performed by an operator on patrol. This system consists of an operator's console and a remote station. The remote station, equipped with five kinds of sensors, is steered along the inspection route by a photoelectric guiding system or may be manually controlled from an operator's console in a main control room. Signals for control and inspection data are multiplexed and transmitted through a coaxial cable

  6. Real time neutron image processing system in NRF

    International Nuclear Information System (INIS)

    Lee, Yong Deok; Kim, Yi Kyung; Nam, Ki Yong; Lee, Chang Hee; Chang, Jong Hwa

    1999-01-01

    The neutron radiography facility was installed at the neutron radiography beam tube of the HANARO research reactor. The NRF is used for the nondestructive test to inspect and evaluate the material defect and homogeneity by detecting the transmitted neutron image in the nuclear as well as non-nuclear industry. To analyze the dynamical neutron image effectively and efficiently, the real-time image processing system was developed in background subtraction, normalization, geometry correction and beam uniformity, contrast control, filtering. The image quality test and dimension measurements were performed for the neutron beam purity and sensitivity indication. The NRF beam condition represents the highest beam quality for neutron radiography.

  7. RIMACS, Reactor Inspection Main Control System

    International Nuclear Information System (INIS)

    2008-01-01

    1 - Description of program or function: RIMACS prepares for automatic inspection files on each inspection item for the reactor. These automatic inspection files provide the data to move RIROB (Reactor Inspection Robot) with laser by interpreting the coordinates of LASPO (Laser Positioner) and the laser detecting device of RIROB in three dimensional space. In addition, when RIROB arrives at the inspecting location, the files provide all values of the manipulator's motions to acquire the ultrasonic data. RIMACS provides various modules in order to perform these complex functions, and the functions are programmed on graphic user interface for the convenience of the user. RIMACS provides various functions, such as insertion of reactor production data, selection of the reactor for inspection, the creation of automatic inspection file, the selection of the inspection item, inspection simulation, and automatic inspection procedures. It also provides all other functions, which are necessary for the inspection, such as operating program download and manual control of LASPO and RIROB, the inspection simulation and the inspection status display by means of the graphic screen, and SODAS (ultra-Sonic Data Acquisition System) drive verification. 2 - Methods: Moving path and operation procedures for inspection robot are generated automatically with Kinematics algorithm. 3 - Restrictions on the complexity of the problem: A graphics display with MS-Window capability is required

  8. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  9. Advanced algorithms for radiographic material discrimination and inspection system design

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Deinert, Mark R.

    2016-10-01

    X-ray and neutron radiography are powerful tools for non-invasively inspecting the interior of objects. Materials can be discriminated by noting how the radiographic signal changes with variations in the input spectrum or inspection mode. However, current methods are limited in their ability to differentiate when multiple materials are present, especially within large and complex objects. With X-ray radiography, the inability to distinguish materials of a similar atomic number is especially problematic. To overcome these critical limitations, we augmented our existing inverse problem framework with two important expansions: 1) adapting the previous methodology for use with multi-modal radiography and energy-integrating detectors, and 2) applying the Cramer-Rao lower bound to select an optimal set of inspection modes for a given application a priori. Adding these expanded capabilities to our algorithmic framework with adaptive regularization, we observed improved discrimination between high-Z materials, specifically plutonium and tungsten. The combined system can estimate plutonium mass within our simulated system to within 1%. Three types of inspection modes were modeled: multi-endpoint X-ray radiography alone; in combination with neutron radiography using deuterium-deuterium (DD); or in combination with neutron radiography using deuterium-tritium (DT) sources.

  10. Intelligent Automated Nuclear Fuel Pellet Inspection System

    International Nuclear Information System (INIS)

    Keyvan, S.

    1999-01-01

    At the present time, nuclear pellet inspection is performed manually using naked eyes for judgment and decisionmaking on accepting or rejecting pellets. This current practice of pellet inspection is tedious and subject to inconsistencies and error. Furthermore, unnecessary re-fabrication of pellets is costly and the presence of low quality pellets in a fuel assembly is unacceptable. To improve the quality control in nuclear fuel fabrication plants, an automated pellet inspection system based on advanced techniques is needed. Such a system addresses the following concerns of the current manual inspection method: (1) the reliability of inspection due to typical human errors, (2) radiation exposure to the workers, and (3) speed of inspection and its economical impact. The goal of this research is to develop an automated nuclear fuel pellet inspection system which is based on pellet video (photographic) images and uses artificial intelligence techniques

  11. Status on system inspection and preventive maintenance of HANARO

    International Nuclear Information System (INIS)

    Kim, Young-Ki; Cho, Yeong-Garp; Kwag, Byung-Ho

    1999-01-01

    The HANARO is a 30 MW open pool type multi-purpose research reactor with forced light water coolant/moderator flows and heavy water annular reflector. The relatively small reactor core uses a low enriched fuel and is designed to maximize the power density, thus providing the required neutron flux for various research activities. It is mainly used for radioisotope production, nuclear material testing and neutron physics experiments. The initial criticality was achieved February 1995. Considering the importance of their functionality from the safety point of view, some components and equipment are categorized into a nuclear safety grade. There are three different inspection activities for the various reactor systems and components - a Surveillance Inspection(SI) for the safety grades and a Periodic Inspection (PI) for the non-safety grades and In-Service Inspection (ISI) for the ASME Sec.III components. All of the SIs are specified and required by the safety analysis report. The SI also differs from the PI in such a point that all kinds of activities for the SIs should be accompanied by an appropriate quality assurance, while for the PIs it is not necessarily mandatory. In addition, the inspection results for the SIs should go through an examination from regulatory body every two years and specific functions of the critical components or systems are demonstrated under the witness by the governmental inspector. The ISI is required and carried out as per international codes and standards as well as Korean atomic energy regulations. There are 54 SIs, 25 PIs and 4 ISIs for the HANARO. This paper concentrates on the managing strategy and its practices for the SIs and ISIs of the safety-related components, currently being done at HANARO. Most parts of the inspections fall into a group for the periodic performance testing and/or equipment calibration. Some mechanical inspections like a torque measurement are grouped into a preventive maintenance. Lastly the ASME Sec

  12. System Enhancements for Mechanical Inspection Processes

    Science.gov (United States)

    Hawkins, Myers IV

    2011-01-01

    Quality inspection of parts is a major component to any project that requires hardware implementation. Keeping track of all of the inspection jobs is essential to having a smooth running process. By using HTML, the programming language ColdFusion, and the MySQL database, I created a web-based job management system for the 170 Mechanical Inspection Group that will replace the Microsoft Access based management system. This will improve the ways inspectors and the people awaiting inspection view and keep track of hardware as it is in the inspection process. In the end, the management system should be able to insert jobs into a queue, place jobs in and out of a bonded state, pre-release bonded jobs, and close out inspection jobs.

  13. Development of an automatic reactor inspection system

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Eom, Heung Seop; Lee, Jae Cheol; Choi, Yoo Raek; Moon, Soon Seung

    2002-02-01

    Using recent technologies on a mobile robot computer science, we developed an automatic inspection system for weld lines of the reactor vessel. The ultrasonic inspection of the reactor pressure vessel is currently performed by commercialized robot manipulators. Since, however, the conventional fixed type robot manipulator is very huge, heavy and expensive, it needs long inspection time and is hard to handle and maintain. In order to resolve these problems, we developed a new automatic inspection system using a small mobile robot crawling on the vertical wall of the reactor vessel. According to our conceptual design, we developed the reactor inspection system including an underwater inspection robot, a laser position control subsystem, an ultrasonic data acquisition/analysis subsystem and a main control subsystem. We successfully carried out underwater experiments on the reactor vessel mockup, and real reactor ready for Ulchine nuclear power plant unit 6 at Dusan Heavy Industry in Korea. After this project, we have a plan to commercialize our inspection system. Using this system, we can expect much reduction of the inspection time, performance enhancement, automatic management of inspection history, etc. In the economic point of view, we can also expect import substitution more than 4 million dollars. The established essential technologies for intelligent control and automation are expected to be synthetically applied to the automation of similar systems in nuclear power plants

  14. System for inspection of stacked cargo containers

    Science.gov (United States)

    Derenzo, Stephen [Pinole, CA

    2011-08-16

    The present invention relates to a system for inspection of stacked cargo containers. One embodiment of the invention generally comprises a plurality of stacked cargo containers arranged in rows or tiers, each container having a top, a bottom a first side, a second side, a front end, and a back end; a plurality of spacers arranged in rows or tiers; one or more mobile inspection devices for inspecting the cargo containers, wherein the one or more inspection devices are removeably disposed within the spacers, the inspection means configured to move through the spacers to detect radiation within the containers. The invented system can also be configured to inspect the cargo containers for a variety of other potentially hazardous materials including but not limited to explosive and chemical threats.

  15. Periodic inspections of the primary system

    International Nuclear Information System (INIS)

    Dufour, L.B.

    1978-01-01

    An impression is given of the inspection techniques, preparations and background for periodic examinations of the primary system of the Dodewaard Nuclear Reactor over the past 10 years. Unfortunately reliable integral inspection techniques to enable 'listening-in' to developing faults, are not yet available. Until they are, inspections will continue to be executed from a distance using different continuous methods, often under water and with a shortage of space and in the presence of ionising radiations. (C.F.)

  16. 9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Maximum inspection rates-New turkey..., DEPARTMENT OF AGRICULTURE AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection rates...

  17. A neutron well logging system

    International Nuclear Information System (INIS)

    1980-01-01

    A pulsed neutron well logging system using a sealed off neutron generator tube is provided with a programmable digital neutron output control system. The control system monitors the target beam current and compares a function of this current with a pre-programmed control function to develop a control signal for the neutron generator. The control signal is used in a series regulator to control the average replenisher current of the neutron generator tube. The programmable digital control system of the invention also provides digital control signals as a function of time to provide ion source voltages. This arrangement may be utilized to control neutron pulses durations and repetition rates or to produce other modulated wave forms for intensity modulating the output of the neutron generator as a function of time. (Auth.)

  18. Visual inspections of the neutron absorber control rods of the IEA-R1 reactor

    International Nuclear Information System (INIS)

    Silva, Jose Eduardo R. da; Terremoto, Luis A.A.; Castanheira, Myrthes; Zeituni, Carlos A.; Damy, Margaret de A.

    2002-01-01

    The Fuel Engineering Division at IPEN/CNEN-SP developed facilities for visual inspection of the IEA-R1 fuel elements and neutron absorbing control rod assemblies inside the research reactor pool. This work presents the method of visual inspection performed at IEA-R1 research reactor. These inspections were adopted to evaluate and to follow the state of the Ag-In-Cd control assemblies fabricated at CERCA in 1972 that remain in use at the reactor core. In 1998, 2000 and 20001, visual inspections were performed in these control rod assemblies, which the general conditions were evaluated. (author)

  19. Developing the information management system for safeguards national inspection

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. J.; Jeon, I.; Park, W. S.; Min, K. S. [KAERI, Taejon (Korea, Republic of)

    2003-10-01

    The inspection information management system for safeguards national inspection is aimed to do the national safeguards inspection with efficiency, and to decrease the inspector's load to write inspection report by systematizing the inspection jobs and sharing the inspection data. National safeguards inspection is consisted two large jobs. The first is the national safeguards supporting job of managing to support the national inspection mission. The other is the writing a national inspection report after completing the national inspection. Before the developing of inspection information management system, the official tools(spread sheet, word processor) are usually used. But there is problem to share the data, to produce the statistics data. To solve the these problem, we developed the inspection information management system that process the job from initial to final inspection work, and opened user education. This paper explain the procedure of developing the inspection information management system for safeguards national inspection.

  20. Developing the information management system for safeguards national inspection

    International Nuclear Information System (INIS)

    Park, S. J.; Jeon, I.; Park, W. S.; Min, K. S.

    2003-01-01

    The inspection information management system for safeguards national inspection is aimed to do the national safeguards inspection with efficiency, and to decrease the inspector's load to write inspection report by systematizing the inspection jobs and sharing the inspection data. National safeguards inspection is consisted two large jobs. The first is the national safeguards supporting job of managing to support the national inspection mission. The other is the writing a national inspection report after completing the national inspection. Before the developing of inspection information management system, the official tools(spread sheet, word processor) are usually used. But there is problem to share the data, to produce the statistics data. To solve the these problem, we developed the inspection information management system that process the job from initial to final inspection work, and opened user education. This paper explain the procedure of developing the inspection information management system for safeguards national inspection

  1. Development of radioactive materials inspection system

    International Nuclear Information System (INIS)

    Yang Lu; Wang Guobao; Chen Yuhua; Li Latu; Zhang Sujing

    2005-01-01

    Radioactive materials inspection system which is applied to inspect the horror activities of radioactive materials and its illegal transfer. The detector sections are made of highly stable and credible material. It has high sensitivity to radioactive materials. The inspect lowest limit of inspection is the 2-3 times to the background, the energy range is 30 keV-2.5 MeV and the response time is 0.5 s. Inspection message can be transmitted through wired or wireless web to implement remote control. The structure of the system is small, light and convenient. It is ideal for protecting society and public from the harm of the radiation. (authors)

  2. Inspection of CF188 composite flight control surfaces with neutron radiography

    International Nuclear Information System (INIS)

    Lewis, W.J.; Bennett, L.G.I.; Mullin, S.K.

    1996-01-01

    At the Royal Military College of Canada's SLOWPOKE-2 Facility, a neutron radiography facility has been designed and installed using a small (20kWth), pool-type research reactor called the SLOWPOKE-2 (Safe Low Power c(K)ritical Experiment) as the neutron source. Since then, the research has continued along two fronts: developing applications and improving the quality of the neutron beam. The most interesting applications investigated to date has been the inspection of various metal ceramic composites and the inspection of the composite flight control surfaces of some of the CF188 Hornet aircraft. As part of the determination of the integrity of the aircraft, it was decided to inspect an aircraft with the highest flight house using both X- and neutron radiography. The neutron radiography and, to a lesser extent, X-radiography inspections completed at McClellan AFB revealed 93 anomalies. After returning to Canada, the component with the greatest structural significance, namely the right hand rudder from the vertical stabilizer, was removed from the aircraft and put through a rigorous program of numerous NDT inspections, including X-radiography (film and real-time), eddy current, ultrasonics (through transmission and pitch-catch), infrared thermography, and neutron radiography. Therefore, of all the techniques investigated, only through transmission ultrasonics and neutron radiography were able to identify large areas of hydration. However, only neutron radiography could identify the small areas of moisture and hydration. Given the structural significance of the flight control surfaces in modern fighter aircraft, even the smallest amounts of hydration could potentially lead to catastrophic results

  3. The interactive on-site inspection system: An information management system to support arms control inspections

    Energy Technology Data Exchange (ETDEWEB)

    DeLand, S.M.; Widney, T.W.; Horak, K.E.; Caudell, R.B.; Grose, E.M.

    1996-12-01

    The increasing use of on-site inspection (OSI) to meet the nation`s obligations with recently signed treaties requires the nation to manage a variety of inspection requirements. This document describes a prototype automated system to assist in the preparation and management of these inspections.

  4. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  5. Procedure for the determination of gap and base ground surface configurations beneath the bottom plate of storage tanks using neutron gauging inspection techniques : including radiation safety procedure and emergency procedure

    International Nuclear Information System (INIS)

    Jaafar Abdullah

    1993-01-01

    The procedure is intended for the neutron gauging inspection of gap between the bottom plate and the foundation of bulk storage tanks, which potentially exhibit uneven sinking of the bottom plate and the foundation. Its describes the requirements for the performance of neutron back scattered inspection techniques (or radiometric non-destructive evaluation techniques), using an isotopic neutron source associated with neutron detecting systems, to detect and size the gap between the bottom plate and the foundations as well as to quantify the presence of hydrogenous materials (e.g. oil or water) underneath the bottom plate. This procedure is not only outline the requirements for the neutron gauging inspection, but also describes the requirements which shall be taken into account in formulating the radiation safety and emergency procedures for the neutron gauging inspection works

  6. Remote inspection system for hazardous sites

    International Nuclear Information System (INIS)

    Redd, J.; Borst, C.; Volz, R.A.; Everett, L.J.

    1999-04-01

    Long term storage of special nuclear materials poses a number of problems. One of these is a need to inspect the items being stored from time to time. Yet the environment is hostile to man, with significant radiation exposure resulting from prolonged presence in the storage facility. This paper describes research to provide a remote inspection capability, which could lead to eliminating the need for humans to enter a nuclear storage facility. While there are many ways in which an RI system might be created, this paper describes the development of a prototype remote inspection system, which utilizes virtual reality technology along with robotics. The purpose of this system is to allow the operator to establish a safe and realistic telepresence in a remote environment. In addition, it was desired that the user interface for the system be as intuitive to use as possible, thus eliminating the need for extensive training. The goal of this system is to provide a robotic platform with two cameras, which are capable of providing accurate and reliable stereographic images of the remote environment. One application for the system is that it might be driven down the corridors of a nuclear storage facility and utilized to inspect the drums inside, all without the need for physical human presence. Thus, it is not a true virtual reality system providing simulated graphics, but rather an augmented reality system, which performs remote inspection of an existing, real environment

  7. Remote inspection system for hazardous sites

    Energy Technology Data Exchange (ETDEWEB)

    Redd, J.; Borst, C.; Volz, R.A.; Everett, L.J. [Texas A and M Univ., College Station, TX (United States). Computer Science Dept.

    1999-04-01

    Long term storage of special nuclear materials poses a number of problems. One of these is a need to inspect the items being stored from time to time. Yet the environment is hostile to man, with significant radiation exposure resulting from prolonged presence in the storage facility. This paper describes research to provide a remote inspection capability, which could lead to eliminating the need for humans to enter a nuclear storage facility. While there are many ways in which an RI system might be created, this paper describes the development of a prototype remote inspection system, which utilizes virtual reality technology along with robotics. The purpose of this system is to allow the operator to establish a safe and realistic telepresence in a remote environment. In addition, it was desired that the user interface for the system be as intuitive to use as possible, thus eliminating the need for extensive training. The goal of this system is to provide a robotic platform with two cameras, which are capable of providing accurate and reliable stereographic images of the remote environment. One application for the system is that it might be driven down the corridors of a nuclear storage facility and utilized to inspect the drums inside, all without the need for physical human presence. Thus, it is not a true virtual reality system providing simulated graphics, but rather an augmented reality system, which performs remote inspection of an existing, real environment.

  8. Neutron measurements in borated water for PWR fuel inspections

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1984-07-01

    A fork detector has been developed for use in the international effort to safeguard irradiated fuel assemblies. To improve interpretation of data from a fork, the following three facets of the detector's neutron counting response have been examined using a tank of borated water and a PWR fresh-fuel assembly: (1) The detector's sensitivity to neutrons initiated at different positions within the assembly was measured and this sensitivity can be used to generate total responses to assemblies with uniform or nonuniform irradiation. (2) Using fission chambers with and without cadmium wrappings provided ratios of count rates that can give an independent estimate of the boron concentration in the water. The precision of a boron determination can be estimated from these measurements. (3) The water temperature was raised, causing small but possibly important effects on the count rates. These facets of the fork detector's neutron response were studied at boron concentrations ranging from 0 to about 3500 ppM

  9. Steam Generator Inspection Planning Expert System

    International Nuclear Information System (INIS)

    Rzasa, P.

    1987-01-01

    Applying Artificial Intelligence technology to steam generator non-destructive examination (NDE) can help identify high risk locations in steam generators and can aid in preparing technical specification compliant eddy current test (ECT) programs. A steam Generator Inspection Planning Expert System has been developed which can assist NDE or utility personnel in planning ECT programs. This system represents and processes its information using an object oriented declarative knowledge base, heuristic rules, and symbolic information processing, three artificial intelligence based techniques incorporated in the design. The output of the system is an automated generation of ECT programs. Used in an outage inspection, this system significantly reduced planning time

  10. Development of NRU reflector wall inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, R.H.; Luloff, B.V.; Zahn, N.; Simpson, N., E-mail: lumsdenr@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-06-15

    In 2009 May, the National Research Universal (NRU) calandria leaked. During the next year, the calandria was inspected with six new Non-Destructive Evaluation (NDE) techniques to determine the extent of the corrosion, repaired, and finally the repair was inspected with four additional new NDE techniques before the reactor was returned to service. The calandria is surrounded by a light-water reflector vessel fabricated from the same material as the calandria vessel. Concerns that the same corrosion mechanism had damaged the reflector vessel led to the development of a system to inspect the full circumference of the reflector wall for corrosion damage. The inspection region could only be accessed through 64 mm diameter ports, was 10 m below the port, and had to be inspected from the corroded surface. The ultrasonic technique was designed to produce a closely spaced wall thickness (WT) grid over an area of approximately 5 m2 on the corroded surface using a very small probe holder. This paper describes the Reflector Wall Inspection (RWI) development project and the system that resulted. (author)

  11. System for inspection of package seal integrity

    Science.gov (United States)

    Gibson, Terry G.

    1995-10-01

    There is an increasing acceptance of reduced waste packaging methods for pharmaceutical and medical products. The high level of product integrity must be maintained, while manufacturing lines are required to increase production rates. To ensure their confidence in these packaging methods, manufacturers have turned to process validation as one method of check. In addition to that effort, automated on-line inspection has become increasingly important. Automated inspection can be used to augment manual inspection techniques that are viable at slower production rates. In this paper we explore the elements of a systematic approach that can provide 100% automatic inspection of product seals at full production rates. The various materials used to seal packages effect the system configuration. One such package sealing material is highly specular (mirror-like) laminated foil. A characteristic of this packaging method is its ability to reflect nearly all of the light from the surface. However, the heat process required to bond the seal to the package creates a coining effect where a uniform, low to medium intensity light source, transmitted at a low incident angle, can be used to identify seal defects. It is equally difficult to inspect package seals that are opaque, translucent, or transparent. Each seal material requires a specific lighting solution. When using reflective material, great care must be taken to develop and integrate the lighting method to an automated package seal inspection system.

  12. SICOM: On-site inspection systems

    International Nuclear Information System (INIS)

    Serna, J.J.; Quecedo, M.; Fernandez, J.R.

    2002-01-01

    As the irradiation conditions become more demanding for the fuel than in the past, there is a need for surveillance programs to gather in-reactor operating experience. The data obtained in these programs can be used to assess the performance of current fuel designs and the improvements incorporated to the fuel assembly design, the performance of the advanced cladding alloys, etc. In these regards, valuable data is obtained from on-site fuel inspections. These on-site data comprise fuel assembly dimensional data such as length and distortion (tilt, twist and bow) and fuel rod data such as length and oxide thickness. These data have to be reliable and accurate to be useful thus, demanding a high precision inspection equipment. However, the inspection equipment has to be also robust and flexible enough to operate in the plant spent fuel pool and, sometimes, without interfering in the works carried out during a plant outage. To meet these requirements, during the past years ENUSA and TECNATOM have developed two on-site inspection systems. While the first system can perform most of the typical measurements in a stand-alone manner thus, without interfering with the critical path of the reload, the second one reduces the inspection time but requires using the plant capabilities. The paper describes both equipment for fuel on-site inspection, their characteristics and main features. (author)

  13. Complicated systems for neutron detection

    International Nuclear Information System (INIS)

    Kozlov, I.M.; Nikotin, O.P.; Chekrenev, A.S.

    1982-01-01

    The design of the system for detecting delayed neutrons due to heavy nuclei photofission is described. The system comprises a large number of 3 He proportional counters of thermal neutrons. Each counter is equipped with an individual amplifier, discriminator and pUlse shaper. The tuning of a detector comprising several counters has been realized by changing the discrimination voltage in such a manner that the point of the ν radiation initial counting for all counters is under the same voltage of the high voltage source. Such method permits not only to reduce the tuning time but to obtain also an optimum value of perfect separation of signals from neutrons and ν radiation. Data processing has been performed by the commutator which permits to add signals in different versions. The choice of the version has been determined by output control potentials. The commutator functions have been recorded in the symbols of algebra logics. The described detector with the commutator has been employed in kinetic measurements of photofission delayed neutrons, for detecting fission neutrons with neutron background, from (α, n) for measuring the distribution of a number of instantaneous neutrons per fission act. The above principles of the detectors structure and data processing and recording facilities permit to unite according power supplies any number of thermal neutron counters and apply more complicated circuats of counter signal commutators

  14. Electronic instrumentation system for pulsed neutron measurements

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Kowalik, W.

    1982-01-01

    An essential point of pulsed neutron measurement of thermal neutron parameters for different materials is the registration of the thermal neutron die-away curve after a fast neutron bursts have been injected into the system. An electronic instrumentation system which is successfully applied for pulsed neutron measurements is presented. An important part of the system is the control unit which has been designed and built in the Laboratory of Neutron Parameters of Materials. (author)

  15. Machine vision systems using machine learning for industrial product inspection

    Science.gov (United States)

    Lu, Yi; Chen, Tie Q.; Chen, Jie; Zhang, Jian; Tisler, Anthony

    2002-02-01

    Machine vision inspection requires efficient processing time and accurate results. In this paper, we present a machine vision inspection architecture, SMV (Smart Machine Vision). SMV decomposes a machine vision inspection problem into two stages, Learning Inspection Features (LIF), and On-Line Inspection (OLI). The LIF is designed to learn visual inspection features from design data and/or from inspection products. During the OLI stage, the inspection system uses the knowledge learnt by the LIF component to inspect the visual features of products. In this paper we will present two machine vision inspection systems developed under the SMV architecture for two different types of products, Printed Circuit Board (PCB) and Vacuum Florescent Displaying (VFD) boards. In the VFD board inspection system, the LIF component learns inspection features from a VFD board and its displaying patterns. In the PCB board inspection system, the LIF learns the inspection features from the CAD file of a PCB board. In both systems, the LIF component also incorporates interactive learning to make the inspection system more powerful and efficient. The VFD system has been deployed successfully in three different manufacturing companies and the PCB inspection system is the process of being deployed in a manufacturing plant.

  16. Development of oral cavity inspecting system

    Science.gov (United States)

    Zhang, Hongxia; Wu, Di; Jia, Dagong; Zhang, Yimo

    2009-11-01

    An oral cavity inspecting system is designed and developed to inspect the detail of teeth. The inspecting system is composed of microscopic imaging part, illuminating part, image capture and processing, display part. The two groups of cemented lenses were optimized to minimize the optical aberration and the collimated beam light is gotten between the two lenses. A relay lens is adopted to allow the probe to access the oral cavity depth. The illumination optic fiber is used and the brightness and color temperature can be adjustable. The illumination fiber end surface is oblique cut and the optimum angle is 37°. The image of teeth is imaged on CMOS and captured into computer. The illumination intensity and uniformity were tested and the proper parameter is set. Foucault chart was observed and the system resolution is higher than 100lp/mm. The oral inspecting system is used to test standard tooth model and patho-teeth model. The tooth image is clear and the details can be observed. The experimental results show that the system could meet dental medical application requirements.

  17. A simple neutron-gamma discriminating system

    International Nuclear Information System (INIS)

    Liu Zhongming; Xing Shilin; Wang Zhongmin

    1986-01-01

    A simple neutron-gamma discriminating system is described. A detector and a pulse shape discriminator are suitable for the neutron-gamma discriminating system. The influence of the constant fraction discriminator threshold energy on the neutron-gamma resolution properties is shown. The neutron-gamma timing distributions from an 241 Am-Be source, 2.5 MeV neutron beam and 14 MeV neutron beam are presented

  18. A stereoscopic television system for reactor inspection

    International Nuclear Information System (INIS)

    Friend, D.B.; Jones, A.

    1980-03-01

    A stereoscopic television system suitable for reactor inspection has been developed. Right and left eye views, obtained from two conventional black and white cameras, are displayed by the anaglyph technique and observers wear appropriately coloured viewing spectacles. All camera functions, such as zoom, focus and toe-in are remotely controlled. A laboratory experiment is described which demonstrates the increase in spatial awareness afforded by the use of stereo television and illustrates its potential in the supervision of remote handling tasks. Typical depth resolutions of 3mm at 1m and 10mm at 2m have been achieved with the reactor instrument. Trials undertaken during routine inspection at Oldbury Power Station in June 1978 are described. They demonstrate that stereoscopic television can indeed improve the convenience of remote handling and that the added display realism is beneficial in visual inspection. (author)

  19. A robotic scanning system for ultrasonic inspection

    International Nuclear Information System (INIS)

    De Buda, E.; Moles, M.D.C.; Chan, W.K.

    1984-01-01

    The reliability of flaw detection is a major concern in ultrasonic inspections. A robotic ultrasonic scanning system, which is being developed at Ontario Hydro, Research Division, promises to provide repeatable and accurate ultrasonic scans to allow better mixing and identification of defects than would be possible with manual methods

  20. Optimal inspection Strategies for Offshore Structural Systems

    DEFF Research Database (Denmark)

    Faber, M. H.; Sørensen, John Dalsgaard; Kroon, I. B.

    1992-01-01

    a mathematical framework for the estimation of the failure and repair costs a.ssociated with systems failure. Further a strategy for selecting the components to inspect based on decision tree analysis is suggested. Methods and analysis schemes are illustrated by a simple example....

  1. Inspection systems for valves monitoring at EDF

    International Nuclear Information System (INIS)

    Germain, J.L.; Granal, L.; Provost, D.; Touillez, M.

    1997-01-01

    Electricite de France (EDF) makes increasing use of valve inspection systems to guarantee safety in its pressurized water reactor plants, improve plant availability and facilitate condition-based maintenance. A portable system known as SAMIR has been developed for inspection of motor-operated valves, and is now used on EDF's 900-MW sites. For its 1300-MW units, EDF has chosen a more complete system which enables measuring thrust on the valve stem during a maneuver, using a sensor mounted on the yoke. To detect internal vale leaks, an on-site assessment has demonstrated the economic benefits of acoustic emission techniques. EDF has equipped its sites with analog leak detection systems which may soon be replaced by a digital model now being developed. (authors)

  2. A Vessel Inspection Information System.

    Science.gov (United States)

    1977-09-01

    in this field, and provides a model for evaluating costs and performance of the proposed system. A. HISTORY OF UNITED STATES MERCHANI MARINE SAFETY...costs. The equations that follow for determining performance are from standard queueing theory models in use today. 1. The first step in...Z’JJ o—— K-Zas 1-iMZ Oi-»-<yi —z (_—1— 0«3 • •»- — ZO - _J— ᝰ i-t-a (MOoO v- -ao O- 1— OOO 1 X 1—*o <zz — -1 OZo LULU OU.U ZO |_ O0XUJ

  3. An automated miniature robotic vehicle inspection system

    International Nuclear Information System (INIS)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter

    2014-01-01

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software

  4. An automated miniature robotic vehicle inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Dobie, Gordon; Summan, Rahul; MacLeod, Charles; Pierce, Gareth; Galbraith, Walter [Centre for Ultrasonic Engineering, University of Strathclyde, 204 George Street, Glasgow, G1 1XW (United Kingdom)

    2014-02-18

    A novel, autonomous reconfigurable robotic inspection system for quantitative NDE mapping is presented. The system consists of a fleet of wireless (802.11g) miniature robotic vehicles, each approximately 175 × 125 × 85 mm with magnetic wheels that enable them to inspect industrial structures such as storage tanks, chimneys and large diameter pipe work. The robots carry one of a number of payloads including a two channel MFL sensor, a 5 MHz dry coupled UT thickness wheel probe and a machine vision camera that images the surface. The system creates an NDE map of the structure overlaying results onto a 3D model in real time. The authors provide an overview of the robot design, data fusion algorithms (positioning and NDE) and visualization software.

  5. Fault-Tolerant Control For A Robotic Inspection System

    Science.gov (United States)

    Tso, Kam Sing

    1995-01-01

    Report describes first phase of continuing program of research on fault-tolerant control subsystem of telerobotic visual-inspection system. Goal of program to develop robotic system for remotely controlled visual inspection of structures in outer space.

  6. Detector correction in large container inspection systems

    CERN Document Server

    Kang Ke Jun; Chen Zhi Qiang

    2002-01-01

    In large container inspection systems, the image is constructed by parallel scanning with a one-dimensional detector array with a linac used as the X-ray source. The linear nonuniformity and nonlinearity of multiple detectors and the nonuniform intensity distribution of the X-ray sector beam result in horizontal striations in the scan image. This greatly impairs the image quality, so the image needs to be corrected. The correction parameters are determined experimentally by scaling the detector responses at multiple points with logarithm interpolation of the results. The horizontal striations are eliminated by modifying the original image data with the correction parameters. This method has proven to be effective and applicable in large container inspection systems

  7. The system of underwater CCTV inspection for reactor internal components

    International Nuclear Information System (INIS)

    Zhu Rong

    1997-12-01

    During the operation of nuclear power plant, the reactor internal components are greatly scoured and vibrated by flowing water. So the structural integrity and surface sludge for reactor internal components are needed to be inspected during refuelling. Thus an inspection system is developed, in which the camera inspects underwater at different height and different direction by mechanical elevator and the image of closed-circuit television (CCTV) is mixed with digital coordinate of the camera position for re-inspection. It is the first system for inspection of reactor internal components in China. This system has been used 4 times in the inspection of Daya Bay Nuclear Power Plant successfully

  8. Development of a new electronic neutron imaging system

    CERN Document Server

    Brenizer, J S; Gibbs, K M; Mengers, P; Stebbings, C T; Polansky, D; Rogerson, D J

    1999-01-01

    An electronic neutron imaging camera system was developed for use with thermal, epithermal, and fast neutrons in applications that include nondestructive inspection of explosives, corrosion, turbine blades, electronics, low Z components, etc. The neutron images are expected to provide information to supplement that available from X-ray tests. The primary camera image area was a 30x30 cm field-of-view with a spatial resolution approaching 1.6 line pairs/mm (lp/mm). The camera had a remotely changeable second lens to limit the field-of-view to 7.6x7.6 cm for high spatial resolution (at least 4 lp/mm) thermal neutron imaging, but neutron and light scatter will limit resolution for fast neutrons to about 0.5 lp/mm. Remote focus capability enhanced camera set-up for optimum operation. The 75 dB dynamic range camera system included sup 6 Li-based screens for imaging of thermal and epithermal neutrons and ZnS(Ag)-based screens for fast neutron imaging. The fast optics was input to a Super S-25 Gen II image intensifi...

  9. PIPEBOT: a mobile system for duct inspection

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Emanuel; Goncalves, Eder Mateus; Botelho, Silvia; Oliveira, Vinicius; Souto Junior, Humberto; Almeida, Renan de; Mello Junior, Claudio; Santos, Thiago [Universidade Federal do Rio Grande (FURG), RS (Brazil); Gulles, Roger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2009-07-01

    In this paper, it is presented the development of an innovative and low-cost robotic mobile system to be employed in inspection of pipes. The system is composed of a robot with different sensors which permit to move inside pipes and detect faults as well as incipient faults. The robot is a semiautonomous one, i.e. it can navigate by human tele operation or autonomously one. The autonomous mode uses computer vision techniques and signals from position sensor of the robot to navigating and localizing it. It is showed the mechanical structure of the robot, the overall architecture of the system and preliminary results. (author)

  10. Visual inspections of the neutron absorber control rods of the IEA-R1 reactor; Inspecoes visuais nas barras absorvedoras de neutrons do reator IEA-R1

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jose Eduardo R. da; Terremoto, Luis A.A.; Castanheira, Myrthes; Zeituni, Carlos A.; Damy, Margaret de A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear]. E-mail: jersilva@net.ipen.br

    2002-07-01

    The Fuel Engineering Division at IPEN/CNEN-SP developed facilities for visual inspection of the IEA-R1 fuel elements and neutron absorbing control rod assemblies inside the research reactor pool. This work presents the method of visual inspection performed at IEA-R1 research reactor. These inspections were adopted to evaluate and to follow the state of the Ag-In-Cd control assemblies fabricated at CERCA in 1972 that remain in use at the reactor core. In 1998, 2000 and 20001, visual inspections were performed in these control rod assemblies, which the general conditions were evaluated. (author)

  11. An automated system for rail transit infrastructure inspection.

    Science.gov (United States)

    2015-03-01

    This project applied commercial remote sensing and spatial information (CRS&SI) : technologies such as Ground Penetrating Radar (GPR), laser, GIS, and GPS to passenger rail : inspections. An integrated rail inspection system that can be mounted on hi...

  12. The CORSYS neutronics code system

    International Nuclear Information System (INIS)

    Caner, M.; Krumbein, A.D.; Saphier, D.; Shapira, M.

    1994-01-01

    The purpose of this work is to assemble a code package for LWR core physics including coupled neutronics, burnup and thermal hydraulics. The CORSYS system is built around the cell code WIMS (for group microscopic cross section calculations) and 3-dimension diffusion code CITATION (for burnup and fuel management). We are implementing such a system on an IBM RS-6000 workstation. The code was rested with a simplified model of the Zion Unit 2 PWR. (authors). 6 refs., 8 figs., 1 tabs

  13. Reliability-Based Inspection Planning for Structural Systems

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    1993-01-01

    A general model for reliability-based optimal inspection and repair strategies for structural systems is described. The total expected costs in the design lifetime is minimized with the number of inspections, the inspection times and efforts as decision variables. The equivalence of this model wi...

  14. Neutron flux control systems validation

    International Nuclear Information System (INIS)

    Hascik, R.

    2003-01-01

    In nuclear installations main requirement is to obtain corresponding nuclear safety in all operation conditions. From the nuclear safety point of view is commissioning and start-up after reactor refuelling appropriate period for safety systems verification. In this paper, methodology, performance and results of neutron flux measurements systems validation is presented. Standard neutron flux measuring chains incorporated into the reactor protection and control system are used. Standard neutron flux measuring chain contains detector, preamplifier, wiring to data acquisition unit, data acquisition unit, wiring to display at control room and display at control room. During reactor outage only data acquisition unit and wiring and displaying at reactor control room is verified. It is impossible to verify detector, preamplifier and wiring to data acquisition recording unit during reactor refuelling according to low power. Adjustment and accurate functionality of these chains is confirmed by start-up rate (SUR) measurement during start-up tests after refuelling of the reactors. This measurement has direct impact to nuclear safety and increase operational nuclear safety level. Briefly description of each measuring system is given. Results are illustrated on measurements performed at Bohunice NPP during reactor start-up tests. Main failures and their elimination are described (Authors)

  15. Electronic imaging system for neutron radiography at a low power research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.J.O., E-mail: fferreira@ien.gov.b [Instituto de Engenharia Nuclear, Comissao Nacional de Energia Nuclear, Caixa Postal 68550, CEP 21945-970, Rio de Janeiro (Brazil); Silva, A.X.; Crispim, V.R. [PEN/COPPE-DNC/POLI CT, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro (Brazil)

    2010-08-15

    This paper describes an electronic imaging system for producing real time neutron radiography from a low power research reactor, which will allow inspections of samples with high efficiency, in terms of measuring time and result analysis. This system has been implanted because of its potential use in various scientific and industrial areas where neutron radiography with photographic film could not be applied. This real time system is installed in neutron radiography facility of Argonauta nuclear research reactor, at the Instituto de Engenharia Nuclear of the Comissao Nacional de Energia Nuclear, in Brazil. It is adequate to perform real time neutron radiography of static and dynamic events of samples.

  16. Operation of inspection data acquisition and evaluation system

    International Nuclear Information System (INIS)

    Takahashi, Yoichi; Harada, Hiroshi; Watanabe, Masayuki; Sakaguchi, Makoto; Ishikawa, Masayuki

    2016-01-01

    Rokkasho Reprocessing Plant (RRP) is a large scale plant to treat a huge amount of Plutonium significant for safeguards. The LArge SCAle Reprocessing plant safeguards (LASCAR) Forum recommended an effective utilization of unattended verification systems and automated data acquisition system etc. Based on LASCAR recommendation, Nuclear Material Control Center (NMCC) has developed the inspection data acquisition system as the automated data acquisition system from the unattended verification systems (including non-destructive assay equipment, solution monitoring system and surveillance camera). The data gathered from the unattended verification system are provided to the inspection data evaluation system for the State and the IAEA. In this development, redundancy concepts for data transfer line, in order to prevent inspection data missing, were introduced, and the timely confirmation of solution behaver such as material flows and inventories by the solution monitoring can be achieved. Furthermore, for purpose of efficiency of evaluation of inspection activity for the State, NMCC has developed the inspection data evaluation system which operates automated partition of inspection data coming from each verification equipment. Additionally, the inspection data system evaluation can manage the inspection activities and their efforts. These development and operation have been funded by JSGO (Japan Safeguards Office). This paper describes development history and operation of the inspection data acquisition and evaluation system. (author)

  17. Installation of the Canadian Muon Cargo Inspection System at CRL

    Science.gov (United States)

    2014-04-01

    Installation of the Canadian Muon Cargo Inspection System at CRL Prepared by: Guy Jonkmans Atomic Energy of Canada Limited Chalk River ON...INSTALLATION OF THE CANADIAN MUON CARGO INSPECTION SYSTEM AT CRL 153-30100-REPT-001 Revision 0 2013/02/19 UNRESTRICTED 2013/02/19 ILLIMITÉ 153...30100-REPT-001 2013/02/19 Report, General Installation of the Canadian Muon Cargo Inspection System at CRL Research and Development 153-30100

  18. Reliable data acquisition for inspection systems

    Science.gov (United States)

    Silva, V. P.; Silva, D. S.; Boccardo, D. R.; Machado, R. C. S.; Carmo, L. F. R. C.

    2015-01-01

    In Brazil, the road transportation of dangerous goods is subject to regulatory control, which is conducted by Inmetro, the National Institute of Metrology, Quality and Technology. Currently, the process of monitoring such inspections is done manually, leaving the possibility of some inconsistencies: inspections held outside the authorized local inspection, incorrectly, incompletely, or even be held. Thus, in order to increase the reliability of such inspections, it is needed a closer monitoring by the regulatory agency. One approach towards that, is the implementation of an automated process in which evidences are collected in a reliable way during the inspections, enabling further analyses. This work employs security mechanisms on a portable device to ensure the confidence of the evidences collected during an inspection, paving the way for later more robust analyzes.

  19. PIPES expert system speeds up eddy current inspection planning

    International Nuclear Information System (INIS)

    Neuschaefer, C.H.; Rzasa, P.

    1990-01-01

    Combustion Engineering's Steam Generator Inspection Planning Expert System (PIPES) is a PC-based software system which automates the lengthy process of selecting which steam generator tubes are to be eddy current tested. It allows the computer to be used as a tool for developing the plan, and provides documented records of the inspection. The system was first used in the field during an outage inspection at the Maine Yankee plant in April 1986, enabling outage planners to generate inspection programmes in minutes. The system's benefits and operation are outlined. (author)

  20. Computerized ultrasonic test inspection enhancement system for aircraft components

    Science.gov (United States)

    Parent, R. G.

    Attention is given to the computerized ultrasonic test inspection enhancement (CUTIE) system which was designed to meet the following program goals: (1) automation of the inspection technique and evaluation of the discontinuities for aircraft components while maintaining reasonable implementation costs and reducing the overall inspection costs; and (2) design of a system which would allow for easy modification so that new concepts could be implemented. The system's ultrasonic test bridge, C-scan recorder, computer control, and ultrasonic flaw detector are described. Consideration is also given to the concurrent development of an eight element array transducer (for increasing the inspection rate) and a high-speed data acquisition system (for signature analysis).

  1. Machine vision system for online wholesomeness inspection of poultry carcasses

    Science.gov (United States)

    A line-scan machine vision system and multispectral inspection algorithm were developed and evaluated for differentiation of wholesome and systemically diseased chickens on a high-speed processing line. The inspection system acquires line-scan images of chicken carcasses on a 140 bird-per-minute pro...

  2. NRF Based Nondestructive Inspection System for SNM by Using Laser-Compton-Backscattering Gamma-Rays

    Science.gov (United States)

    Ohgaki, H.; Omer, M.; Negm, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Hori, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.

    2015-10-01

    A non-destructive inspection system for special nuclear materials (SNMs) hidden in a sea cargo has been developed. The system consists of a fast screening system using neutron generated by inertial electrostatic confinement (IEC) device and an isotope identification system using nuclear resonance fluorescence (NRF) measurements with laser Compton backscattering (LCS) gamma-rays has been developed. The neutron flux of 108 n/sec has been achieved by the IEC in static mode. We have developed a modified neutron reactor noise analysis method to detect fission neutron in a short time. The LCS gamma-rays has been generated by using a small racetrack microtoron accelerator and an intense sub-nano second laser colliding head-on to the electron beam. The gamma-ray flux has been achieved more than 105 photons/s. The NRF gamma-rays will be measured using LaBr3(Ce) scintillation detector array whose performance has been measured by NRF experiment of U-235 in HIGS facility. The whole inspection system has been designed to satisfy a demand from the sea port.

  3. Machine vision system for remote inspection in hazardous environments

    International Nuclear Information System (INIS)

    Mukherjee, J.K.; Krishna, K.Y.V.; Wadnerkar, A.

    2011-01-01

    Visual Inspection of radioactive components need remote inspection systems for human safety and equipment (CCD imagers) protection from radiation. Elaborate view transport optics is required to deliver images at safe areas while maintaining fidelity of image data. Automation of the system requires robots to operate such equipment. A robotized periscope has been developed to meet the challenge of remote safe viewing and vision based inspection. (author)

  4. A Time of Flight Fast Neutron Imaging System Design Study

    Science.gov (United States)

    Canion, Bonnie; Glenn, Andrew; Sheets, Steven; Wurtz, Ron; Nakae, Les; Hausladen, Paul; McConchie, Seth; Blackston, Matthew; Fabris, Lorenzo; Newby, Jason

    2017-09-01

    LLNL and ORNL are designing an active/passive fast neutron imaging system that is flexible to non-ideal detector positioning. It is often not possible to move an inspection object in fieldable imager applications such as safeguards, arms control treaty verification, and emergency response. Particularly, we are interested in scenarios which inspectors do not have access to all sides of an inspection object, due to interfering objects or walls. This paper will present the results of a simulation-based design parameter study, that will determine the optimum system design parameters for a fieldable system to perform time-of-flight based imaging analysis. The imaging analysis is based on the use of an associated particle imaging deuterium-tritium (API DT) neutron generator to get the time-of-flight of radiation induced within an inspection object. This design study will investigate the optimum design parameters for such a system (e.g. detector size, ideal placement, etc.), as well as the upper and lower feasible design parameters that the system can expect to provide results within a reasonable amount of time (e.g. minimum/maximum detector efficiency, detector standoff, etc.). Ideally the final prototype from this project will be capable of using full-access techniques, such as transmission imaging, when the measurement circumstances allow, but with the additional capability of producing results at reduced accessibility.

  5. Automated management for pavement inspection system (AMPIS)

    Science.gov (United States)

    Chung, Hung Chi; Girardello, Roberto; Soeller, Tony; Shinozuka, Masanobu

    2003-08-01

    An automated in-situ road surface distress surveying and management system, AMPIS, has been developed on the basis of video images within the framework of GIS software. Video image processing techniques are introduced to acquire, process and analyze the road surface images obtained from a moving vehicle. ArcGIS platform is used to integrate the routines of image processing and spatial analysis in handling the full-scale metropolitan highway surface distress detection and data fusion/management. This makes it possible to present user-friendly interfaces in GIS and to provide efficient visualizations of surveyed results not only for the use of transportation engineers to manage road surveying documentations, data acquisition, analysis and management, but also for financial officials to plan maintenance and repair programs and further evaluate the socio-economic impacts of highway degradation and deterioration. A review performed in this study on fundamental principle of Pavement Management System (PMS) and its implementation indicates that the proposed approach of using GIS concept and its tools for PMS application will reshape PMS into a new information technology-based system providing a convenient and efficient pavement inspection and management.

  6. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    This PhD work has two main topics; one on neutron instrumentations, and one on correlated electron systems. There have been a total of ten different subprojects. Common to all the projects is the neutron scattering technique that is presented in the first chapters of the thesis. Neutrons are a un......This PhD work has two main topics; one on neutron instrumentations, and one on correlated electron systems. There have been a total of ten different subprojects. Common to all the projects is the neutron scattering technique that is presented in the first chapters of the thesis. Neutrons...... the impact of the time structure (pulse length and repetition frequency) choice for ESS are appended. McStas simulations of a low resolution cold powder diffractometer and high resolution thermal powder diffractometer with wavelength frame multiplication have been carried out for 20 different settings...... of the time structure. The instrument designs were changed to fit each setting with pulse lengths between 1 ms and 2 ms and repetition frequencies between 10 Hz and 25 Hz. The cold powder diffractometer was found to perform well with all the different source settings. The thermal powder diffractometer...

  7. Modeling of a remote inspection system for NSSS components

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Kim, Jae Hee; Lee, Jae Cheol

    2003-03-01

    Safety inspection for safety-critical unit of nuclear power plant has been processed using off-line technology. Thus we can not access safety inspection system and inspection data via network such as internet. We are making an on-line control and data access system based on WWW and JAVA technologies which can be used during plant operation to overcome these problems. Users can access inspection systems and inspection data only using web-browser. This report discusses about analysis of the existing remote system and essential techniques such as Web, JAVA, client/server model, and multi-tier model. This report also discusses about a system modeling that we have been developed using these techniques and provides solutions for developing an on-line control and data access system

  8. Fuel visual inspection system of the RTMIII

    International Nuclear Information System (INIS)

    Delfin L, A.; Castaneda J, G.; Mazon R, R.; Aguilar H, F.

    2007-01-01

    The International Atomic Energy Agency (IAEA) through the RLA/04/18 project, Management of Irradiated Fuel in Research Reactors, it recommended among other that the participant countries (Brazil, Argentina, Chile, Peru and Mexico), develop tools to assure the integrity of the nuclear fuels used in the research reactors. The TRIGA Mark lll reactor (RTMIII) of the ININ, designed and built a system of visual inspection, that it uses a high radiation camera and image digitalisation. The project considers safety conditions of the personnel that carried out the activities of visual inspection, for that which the tool dives in the pool of the RTMIII, being held by an end in the superior part of the aluminium liner of the Reactor like it is shown in the plane No. 1. The primordial unit of the system is the visual equipment that corresponds to a camera of the Hydro-Technologie (HYTEC) VSLT 410N mark, designed to work in atmospheres under the water and/or in places of high risk. The camera has an unit of motorized orientation of stainless steel that can be rotated unboundedly in both senses, with variable speed by means of a control lever from the control unit. Together to this orientation unit is found the camera head, the one which is contained in an unit of motorized inclination of stainless steel that can be rotated azimuthally up to 370 degrees in both senses. The operation conditions of the camera are the following ones, temperature: 0 to 50 C, dose speed: ≤ 50 rad/h, operation depth: ≤ 30 mts, humidity (control unit): ≤ 80%. From the control unit it is derived an external device plug-n-play TV-Usb Aver Media marks whose function is to decode the video signal sent by the control unit and to transmit it to the computer where the image is captured in picture or video that is analyzed later on with any software ad hoc, that in our case we use the Quantikov Image Analyzer program for Windows 98 of the Dr. Lucio C. M. Pinto from Brazil who participates in the RLA/04

  9. Eliminating NVA Requirements & Improving the Inspection System

    Science.gov (United States)

    2011-01-27

    Wg ISPR Blood Pgm QA JTAC Stan/Eval Formal Joint Comm AAAHC SCI Security Pgm Review Pathologists WII Ed & Dev Inter vent. Servi ces FDA Pubs...his/her tour  Balanced mix of scheduled & no-notice inspections  Units will be inspected for Readiness and Compliance every 24 months  Readiness...a whole  IG Team Chiefs drive team effectiveness, are the most visible direct representatives of MAJCOM CCs & should be selected by CIP or a board

  10. Modification of Gentilly-2 SLARette inspection system for delivering OPG's ANDE inspection tools

    International Nuclear Information System (INIS)

    Cantin, M.; Rousseau, G.; Bherer, J.; Drossis, J.; Jarvis, G.

    2003-01-01

    Gentilly-2 has been SLARing its fuel channels using a delivery system based on the Advanced Delivery Machine (ADM). The ADM is a compact, remotely operated delivery system that is manually clamped to a wet fuel channel that has been emptied of fuel and shield plugs. The ADM was developed in 1995 by AECL to deliver and position SLAR tools in CANDU 6 fuel channels but it can also be used on Pickering-style reactors. Since its development, the ADM has been used extensively at Gentilly-2 and other CANDU 6 stations, performing more than 700 channel visits at Gentilly-2 alone. The system has proven to be fast to install and very reliable. Over the years, Hydro-Quebec has upgraded its ADM by replacing its computerized controller in order to facilitate on-channel operations. First introduced in 2001, it improved SLARing by reducing the number of operational errors (latch failures) and speeding up the detection and repositioning of spacers. With the planned reduction of SLAR campaigns at Gentilly-2 and the need to perform fuel channel inspection in 2003, the question of how to deliver fuel channel inspection equipment was raised. The desired system had to provide inspection capability equal to or greater than CIGAR but with data acquisition rates three times faster in order to inspect up to 3 channels in a 24-hour period. In addition, it had to be easily integrated with minimum modifications to the existing ADM. The equipment selected was the OPG Advanced Non-Destructive Examination (ANDE) fuel channel inspection system developed by the Inspection and Services Division (ISD). A joint development project was required between Hydro-Quebec and OPG to integrate the ANDE inspection system with the ADM. (author)

  11. Preservice inspection of BWR plants using advanced ISI system

    International Nuclear Information System (INIS)

    Shouji, H.; Kobayashi, T.; Nagao, T.

    1994-01-01

    This paper reports experiences of preservice inspections using advanced Inservice Inspection (ISI) systems. The advanced ISI system consists of newly designed automated scanners, a high speed data acquisition/analysis station and automated pipe inspection system. This system has been developed to reduce examination time and radiation dose. The automated scanners are designed light weight and easy handling. A semi-automated inspection system has been used for pipe inspection. It is successful for taking reliable examination data, but not successful to reduce the radiation dose of personnel. For this reason, the automated pipe inspection system has been developed to replace the semi-automated system. The automated pipe inspection system consists of a small scanner, scanner controller and high speed personal computer for data acquisition. The data is analyzed by the data analysis station. The scanner has a light weight body in order to ease handling, and it requires almost the same clearance with manual examination. The PSI were successfully completed in a shorten time period. From this experience, the advanced ISI system will be very useful for ISI, especially reduction of radiation dose of personnel in future

  12. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    Klann, R.T.

    1996-01-01

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this sytem, objects as small as a coin or as large as a waste drum can be radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3x10 10 neutrons/second with an average energy of 14.5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available cassettes. The cassettes have been modified to include a thin sheet of plastic to convert neutrons to protons through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9x10 7 to 3.8x10 8 n/cm 2 depending on the type of screen and film

  13. System of leak inspection of irradiated fuel

    International Nuclear Information System (INIS)

    Delfin L, A.; Castaneda J, G.; Mazon R, R.; Aguilar H, F.

    2007-01-01

    The International Atomic Energy Agency (IAEA) through the project RLA/04/18 Irradiated Fuel Management in Research reactors, recommended among other that the participant countries (Brazil, Argentina, Chile, Peru and Mexico), develop the sipping tool to generate registrations of the state that keep the irradiated fuels in the facilities of each country. The TRIGA Mark lll Reactor (RTMIII) Department, generated a project that it is based on the dimensions of the used fuel by the RTMIII, for design and to build an inspection system of irradiated fuel well known as SIPPING. This technique, provides a high grade of accuracy in the detection of gassy fission products or liquids that escape from the enveloping of fuels that have flaws or flights. The operation process of the SIPPING is carried out generating the migration of fission products through the creation of a pressure differential gas or vacuum to identify fuel assemblies failed by means of the detection of the xenon and/or krypton presence. The SIPPING system, is a device in revolver form with 4 tangential nozzles, which will discharge the fluid between the external surface of the enveloping of the fuel and the interior surface of the encircling one; the device was designed with independent pieces, with threaded joining and with stamps to impede flights of the fluid toward the exterior of the system. The System homogenizes and it distributes the fluid pressure so that the 4 nozzles work to equality of conditions, for what the device was designed in 3 pieces, an internal that is denominated revolver, one external that calls cover, and a joining called mamelon that will unite with the main encircling of the system. The detection of fission products in failed fuels, its require that inside the encircling one where the irradiated fuel element is introduced, be generated a pressure differential of gas or vacuum, and that it allows the samples extraction of water. For what generated a top for the encircling with the

  14. Turnkey Optical Inspection Systems: Getting The Job Done Right

    Science.gov (United States)

    Figler, Burton D.

    1988-05-01

    A turnkey optical inspection system is one for which the vendor, not the customer, assumes the responsibility for ensuring that the system satisfies the customer's needs. This paper presents some of the pitfalls that are encountered in reaching the goal of mutual satisfaction of vendor and customer, based on experience with actual turnkey inspection and measurement systems that have been developed for industrial assembly operations. A "roadmap" is presented for achieving a turnkey system that is satisfactory to both vendor and customer.

  15. Swimming type inspection device and system thereof

    International Nuclear Information System (INIS)

    Ito, Arata; Kimura, Motohiko; Ito, Tomoyuki

    1998-01-01

    The present invention provides a swimming type inspection device which can be reduced in the size, easily accessible to each portion of a reactor, and increase the degree of freedom of swimming and visual range, and facilitate visual inspection. The swimming type inspection device comprises two photographing devices, a device which can obtain propelling force by rotation of impellers, two second propelling devices having impellers disposed in perpendicular to the rotating axis of the impellers of the first propelling device, a control device for controlling control signals of first and second propelling devices and driving devices therefor and control image signals of the photographing devices, and transmission section for wireless transmitting of the control signals and the image signals. (N.H.)

  16. EUV mask pattern inspection with an advanced electron beam inspection system

    Science.gov (United States)

    Shimomura, Takeya; Inazuki, Yuichi; Tsukasa, Abe; Takikawa, Tadahiko; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya; Wang, Fei; Ma, Long; Zhao, Yan; Kuan, Chiyan; Xiao, Hong; Jau, Jack

    2009-12-01

    Readiness of defect-free mask is one of the biggest challenges to insert extreme ultraviolet (EUV) lithography into semiconductor high volume manufacturing for 22nm half pitch (HP) node and beyond. According to ITRS roadmap updated in 2008, minimum size of defect needed to be removed is 25nm for 22nm HP node in 2013 [1]. It is necessary, therefore, to develop EUV mask pattern inspection tool being capable of detecting 25nm defect. Electron beam inspection (EBI) is one of promising tools which will be able to meet such a tight defect requirement. In this paper, we evaluated defect detection sensitivity of electron beam inspection (EBI) system developed by Hermes Microvision, Inc. (HMI) using 88nm half-pitch (HP) line-and-space (L/S) pattern and 128nm HP contact-hole (C/H) pattern EUV mask. We found the EBI system can detect 25nm defects. We, furthermore, fabricated 4 types of EUV mask structures: 1) w/ anti-reflective (AR) layer and w/ buffer layer, 2) w/ AR layer and w/o buffer layer, 3) w/o AR layer and w/ buffer layer, 4) w/o AR layer and w/o buffer layer. And the sensitivity and inspectability for the EBI were compared. It was observed that w/o AR layer structure introduce higher image contrast and lead to better inspectability, although there is no significant different in sensitivity.

  17. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  18. Manually controlled neutron-activation system

    International Nuclear Information System (INIS)

    Johns, R.A.; Carothers, G.A.

    1982-01-01

    A manually controlled neutron activation system, the Manual Reactor Activation System, was designed and built and has been operating at one of the Savannah River Plant's production reactors. With this system, samples can be irradiated for up to 24 hours and pneumatically transferred to a shielded repository for decay until their activity is low enough for them to be handled at a radiobench. The Manual Reactor Activation System was built to provide neutron activation of solid waste forms for the Alternative Waste Forms Leach Testing Program. Neutron activation of the bulk sample prior to leaching permits sensitive multielement radiometric analyses of the leachates

  19. A digital control system for neutron spectrometers

    DEFF Research Database (Denmark)

    Hansen, Knud Bent; Skaarup, Per

    1968-01-01

    A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer.......A description is given of the principles of a digital system used to control neutron spectrometers. The system is composed of independent functional units with the control programme stored on punched paper tape or in a computer....

  20. Project and construction of counting system for neutron probe

    International Nuclear Information System (INIS)

    Monteiro, W.P.

    1985-01-01

    A counting system was developed for coupling neutron probe aiming to register pulses produced by slow neutron interaction in the detector. The neutron probe consists of fast neutron source, thermal neutron detector, amplifier circuit and pulse counting circuit. The counting system is composed by counting circuit, timer and signal circuit. (M.C.K.)

  1. Findings of the inspection grading system on industrial radiography

    International Nuclear Information System (INIS)

    Gloria Doloressa

    2011-01-01

    The use of industrial radiography techniques evolve rapidly and widely. Various jobs in industry require the examination of welding techniques / connecting pipes and metal construction. The use of industrial radiography is one type of utilization of nuclear energy must get control so that its use does not cause harmful impacts to worker safety, community, and environment. Regulations is done through inspections, in order to supervise the observance of the terms in the licensing and legislation in the field of nuclear safety. The main purpose of inspection is to ensure the utilization of radiation sources of radiation have been used with. Findings of the inspection is a decline in the performance of licensees in meeting safety requirements. The Grading System to the findings of the inspection needs to be done to improve the effectiveness and efficiency of inspection, and it is expected that the company can improve the management of radiation safety. (author)

  2. Electrical Distribution System Functional Inspection (EDSFI) data base program

    International Nuclear Information System (INIS)

    Gautam, A.

    1993-01-01

    This document describes the organization, installation procedures, and operating instructions for the database computer program containing inspection findings from the US Nuclear Regulatory Commission's (NRC's) Electrical Distribution System Functional Inspections (EDSFIs). The program enables the user to search and sort findings, ascertain trends, and obtain printed reports of the findings. The findings include observations, unresolved issues, or possible deficiencies in the design and implementation of electrical distribution systems in nuclear plants. This database will assist those preparing for electrical inspections, searching for deficiencies in a plant, and determining the corrective actions previously taken for similar deficiencies. This database will be updated as new EDSFIs are completed

  3. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  4. An Adaptive Machine Vision System for Parts Assembly Inspection

    Science.gov (United States)

    Sun, Jun; Sun, Qiao; Surgenor, Brian

    This paper presents an intelligent visual inspection methodology that addresses the need for an improved adaptability of a visual inspection system for parts verification in assembly lines. The proposed system is able to adapt to changing inspection tasks and environmental conditions through an efficient online learning process without excessive off-line retraining or retuning. The system consists of three major modules: region localization, defect detection, and online learning. An edge-based geometric pattern-matching technique is used to locate the region of verification that contains the subject of inspection within the acquired image. Principal component analysis technique is employed to implement the online learning and defect detection modules. Case studies using field data from a fasteners assembly line are conducted to validate the proposed methodology.

  5. A survey on inspecting structures using robotic systems

    Directory of Open Access Journals (Sweden)

    Randa Almadhoun

    2016-11-01

    Full Text Available Advancements in robotics and autonomous systems are being deployed nowadays in many application domains such as search and rescue, industrial automation, domestic services and healthcare. These systems are developed to tackle tasks in some of the most challenging, labour intensive and dangerous environments. Inspecting structures (e.g. bridges, buildings, ships, wind turbines and aircrafts is considered a hard task for humans to perform and of critical importance since missing any details could affect the structure’s performance and integrity. Additionally, structure inspection is time and resource intensive and should be performed as efficiently and accurately as possible. Inspecting various structures has been reported in the literature using different robotic platforms to: inspect difficult to reach areas and detect various types of faults and anomalies. Typically, inspection missions involve performing three main tasks: coverage path planning, shape, model or surface reconstruction and the actual inspection of the structure. Coverage path planning ensures the generation of an optimized path that guarantees the complete coverage of the structure of interest in order to gather highly accurate information to be used for shape/model reconstruction. This article aims to provide an overview of the recent work and breakthroughs in the field of coverage path planning and model reconstruction, with focus on 3D reconstruction, for the purpose of robotic inspection.

  6. A new fast neutron collar for safeguards inspection measurements of fresh low enriched uranium fuel assemblies containing burnable poison rods

    International Nuclear Information System (INIS)

    Evans, Louise G.; Swinhoe, Martyn T.; Menlove, Howard O.; Schwalbach, Peter; Baere, Paul De; Browne, Michael C.

    2013-01-01

    Safeguards inspection measurements must be performed in a timely manner in order to detect the diversion of significant quantities of nuclear material. A shorter measurement time can increase the number of items that a nuclear safeguards inspector can reliably measure during a period of access to a nuclear facility. In turn, this improves the reliability of the acquired statistical sample, which is used to inform decisions regarding compliance. Safeguards inspection measurements should also maintain independence from facility operator declarations. Existing neutron collars employ thermal neutron interrogation for safeguards inspection measurements of fresh fuel assemblies. A new fast neutron collar has been developed for safeguards inspection measurements of fresh low-enriched uranium (LEU) fuel assemblies containing gadolinia (Gd 2 O 3 ) burnable poison rods. The Euratom Fast Collar (EFC) was designed with high neutron detection efficiency to make a fast (Cd) mode measurement viable whilst meeting the high counting precision and short assay time requirements of the Euratom safeguards inspectorate. A fast mode measurement reduces the instrument sensitivity to burnable poison rod content and therefore reduces the applied poison correction, consequently reducing the dependence on the operator declaration of the poison content within an assembly. The EFC non-destructive assay (NDA) of typical modern European pressurized water reactor (PWR) fresh fuel assembly designs have been simulated using Monte Carlo N-particle extended transport code (MCNPX) simulations. Simulations predict that the EFC can achieve 2% relative statistical uncertainty on the doubles neutron counting rate for a fast mode measurement in an assay time of 600 s (10 min) with the available 241 AmLi (α,n) interrogation source strength of 5.7×10 4 s −1 . Furthermore, the calibration range of the new collar has been extended to verify 235 U content in variable PWR fuel designs in the presence of up to

  7. An application of ultrasonic inspection system (INER-SCAN) inspecting generator retaining rings

    International Nuclear Information System (INIS)

    Chen, L.C.; Hwang, S.C.

    1994-01-01

    The performances of the automatic ultrasonic inspecting and imaging system (INER-SCAN) developed by the NDT laboratory of the Institute of Nuclear Energy Research have been enhanced and much more improved to commercial level. With appropriate rearrangements of software libraries, it is used to inspect generator retaining rings which are critical structural rotor components that support the end-turn regions of the rotor wingings against centrifugal forces. The use of the INER-SCAN provides distinct advantages over other systems in terms of the reliability of inspection and the flexibility of system performance modifications. The INER-SCAN system assists users to select and modify ultrasonic parameters under computer-aided environment. In addition, the INER-SCAN system contains the necessary software functions to image the ultrasonic data (A-SCAN, B-SCAN, B'-SCAN, C-SCAN). The use of the imaging system makes it quite easy to evaluate various test parameters and their effects on the discrimination between geometric and IGSCC reflectors. Through experimental test, it is recognized that the system has powerful detectable capability which can find 0.2mm-depth slight scratch on the inner surface of retaining rings. This system can also be used on different generator retaining rings (different in terms of hidden design features) without the need for access to the dimension of retaining ring

  8. Development of Remote Inspection Systems with the Java Applet

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2005-01-01

    The world wide web and java are powerful networking technologies on the internet. An applet is a program written in the java programming language that can be included in an HTML page, much in the same way as an image is included. When we use a Java technology-enabled browser to view a page that contains an applet, the applet code is transferred to a client's system and executed by the browser's Java Virtual Machine (JVM). We have developed two remote inspection systems for a reactor wall inspection and guide tube spilt pin inspection based on the java and traditional programming language. The java is used on a GUI(graphic user interface) and the traditional visual C++ programming language is used to control the inspection equipments

  9. Bionic Vision-Based Intelligent Power Line Inspection System.

    Science.gov (United States)

    Li, Qingwu; Ma, Yunpeng; He, Feijia; Xi, Shuya; Xu, Jinxin

    2017-01-01

    Detecting the threats of the external obstacles to the power lines can ensure the stability of the power system. Inspired by the attention mechanism and binocular vision of human visual system, an intelligent power line inspection system is presented in this paper. Human visual attention mechanism in this intelligent inspection system is used to detect and track power lines in image sequences according to the shape information of power lines, and the binocular visual model is used to calculate the 3D coordinate information of obstacles and power lines. In order to improve the real time and accuracy of the system, we propose a new matching strategy based on the traditional SURF algorithm. The experimental results show that the system is able to accurately locate the position of the obstacles around power lines automatically, and the designed power line inspection system is effective in complex backgrounds, and there are no missing detection instances under different conditions.

  10. Turnkey Optical Inspection Systems: Getting What You Want

    Science.gov (United States)

    Figler, Burton D.

    1985-12-01

    The science of automatic inspection and measurement has assumed greatly increased importance in today's competitive business environment and it will assume still greater importance with the coming of tomorrow's Factory of the Future (FOF). Even today, the terms Computer Aided Manufacturing, the "CAM" in CAD/CAM, and Computer Integrated Manufacturing (CIM) have become common in the popular jargon. Whether computer aided or computer integrated, the modern manufacturing operation requires automated inspection and measurement for two fundamental reasons: (1) economic pressures dictate that waste and inefficiency be minimized, and (2) today's customer base requires not only competitive prices but also competitive quality. Therefore, automated inspection and measurement is needed to provide cost minimization while also providing quality maximization. These dual requirements are discussed in terms of turnkey systems supplied by independent vendors to the manufacturer. Specific examples are presented of the pitfalls that are sometimes encountered. We illustrate the process in terms of actual turnkey on-line inspection and measurement systems that have been developed for industrial use on fixed assembly lines, as well as for use in flexible assembly operations. The systems to be discussed contain image acquisition subsystems, real time data processing, optical non-contact gauging subsystems, and the associated mechanical, optical and computer hardware to achieve total automated operation. As such, these systems address the problems of integrated system design for automated inspection and gauging. The systems described have the capability to inspect and gauge a variety of products, ranging from spur gears to rigid, dimensionally accurate bodies, to metal webs, to transparent/transluscent paper, plastic and woven materials, and to the testing and inspection of optical systems.

  11. Computer-vision-based inspecting system for needle roller bearing

    Science.gov (United States)

    Li, Wei; He, Tao; Zhong, Fei; Wu, Qinhua; Zhong, Yuning; Shi, Teiling

    2006-11-01

    A Computer Vision based Inspecting System for Needle Roller Bearing (CVISNRB) is proposed in the paper. The characteristic of technology, main functions and principle of CVISNRB are also introduced. CVISNRB is composed of a mechanic transmission and an automatic feeding system, an imaging system, software arithmetic, an automatic selecting system of inspected bearing, a human-computer interaction, a pneumatic control system, an electric control system and so on. The computer vision technique is introduced in the inspecting system for needle roller bearing, which resolves the problem of the small needle roller bearing inspecting in bearing production business enterprise, raises the speed of the inspecting, and realizes the automatic untouched and on-line examination. The CVISNRB can effectively examine the loss of needle and give the accurate number. The accuracy can achieve 99.5%, and the examination speed can arrive 15 needle roller bearings each minute. The CVISNRB has none malfunction in the actual performance in the past half year, and can meet the actual need.

  12. Implementation of a Quality Management System in regulatory inspection activities

    International Nuclear Information System (INIS)

    Pires do Rio, Monica; Ferreira, Paulo Roberto; Cunha, Paulo G. da; Acar, Maria Elizabeth

    2005-01-01

    The Institute for Radioprotection and Dosimetry - IRD -, of the Brazilian National Nuclear Energy Commission, CNEN, started in 2001, the implementation of a quality management system (SGQ), in the inspection, testing and calibration activities. The SGQ was an institutional guideline and is inserted in a larger system of management of the IRD started in 1999, with the adoption of the National Quality Award criteria - PNQ, within the Project for Excellence in Technological Research of Associacao Brasileira das Instituicoes de Pesquisas Tecnologicas - ABIPTI (Brazilian Association of Technological Research institutions). The proposed quality management system and adopted at the IRD was developed and implemented in accordance with the requirements of NBR ISO/IEC 17025 - General requirements for the competence of testing and calibration laboratories, and ISO/IEC 17020 - General criteria for operation of various types of bodies performing inspections. For regulatory inspection activities, the quality system was implemented on three program inspection services of radiological protection led, respectively, by clinics and hospitals that operate radiotherapy services; industries that use nuclear gauges in their control or productive processes and power reactor operators (CNAAA) - just the environmental part. It was formed a pioneering team of inspectors for standardizing the processes, procedures and starting the implementation of the system in the areas. This work describes the implementation process steps, including difficulties, learning and advantages of the adoption of a quality management system in inspection activities

  13. Progress of Neutron Discrimination System for Sonoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Kyu; Cho, Gyu Seong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Hyun Duk [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kwak, Ho Young; Ko, Il Gon [Chung-Ang University, Seoul (Korea, Republic of)

    2009-10-15

    The sonoluminescence and its possibility for fusion reaction in the bubble are famous issues at one time. There are a lot of controversies over the experiment of R.P Taleyarkhan. As Electric Power Research Institute (EPRI, USA) Project, we at KAIST and our subcontractor colleagues at Chung-Ang University are investigating this phenomenon and its applications which include the possibility of bubble fusion. We are carefully interested in the neutron detection in our measurement when the fusion reaction should occur in the chilled deuterated acetone. To sense existence of fusion reaction, neutron-gamma discrimination system has been installed and tested by neutron and gamma-ray sources. By performing two method at the same time, discrimination between neutron pulse and pile-up events are improved. And it can be applied to bubble fusion system.

  14. Machine vision system for online inspection of freshly slaughtered chickens

    Science.gov (United States)

    A machine vision system was developed and evaluated for the automation of online inspection to differentiate freshly slaughtered wholesome chickens from systemically diseased chickens. The system consisted of an electron-multiplying charge-coupled-device camera used with an imaging spectrograph and ...

  15. Optimization of neutron tomography for rapid hydrogen concentration inspection of metal castings

    CERN Document Server

    Gibbons, M R; Shields, K

    1999-01-01

    Hydrogen embrittlement describes a group of phenomena leading to the degradation of metal alloy properties. The hydrogen concentration in the alloy can be used as an indicator for the onset of embrittlement. A neutron tomography system has been optimized to perform nondestructive detection of hydrogen concentration in titanium aircraft engine compressor blades. Preprocessing of backprojection images and postprocessing of tomographic reconstructions are used to achieve hydrogen concentration sensitivity below 200 ppm weight. This paper emphasizes the postprocessing techniques which allow automated reporting of hydrogen concentration.

  16. Machine vision system for quality inspection of bulk rice seeds

    Science.gov (United States)

    Cheng, F.; Ying, YB

    2005-11-01

    A machine vision system for quality inspection of bulk rice seeds has been developed in this research. This system is designed to inspect rice seeds on a rotating disk with a CCD camera. The seeds scattering and positioning device on this system, under continuous feeding condition, reaches 85% fill-ratio of the number of holes on the disk. Combining morphological and color characteristics gave a highly acceptable classification. The high classification accuracies obtained using a small number of features indicate the potential of the algorithm for on-line inspection of germinated rice seeds in industrial environment. The overall average classification accuracy among the four categories was above 90%. This paper presents the significant elements of the computer vision system and emphasizes the important aspects of the image processing technique.

  17. Design of a system for neutrons dosimetry

    International Nuclear Information System (INIS)

    Ceron, P.; Rivera, T.; Paredes G, L.; Azorin, J.; Sanchez, A.; Vega C, H. R.

    2014-08-01

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF 3 , He 3 and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a 239 PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  18. Computerized phased array UT system for turbine disc rim inspection

    International Nuclear Information System (INIS)

    Goto, M.; Ohmatsu, K.; Nagai, S.; Komura, I.

    1988-01-01

    Turbine disc rim cracking in the nuclear power plants has been a major reliability issue in recent years. This problem has led to increased interest in periodic nondestructive examination and the computerized inspection system using phased array probe called PADRIS (phased array disc rim inspection system) has been developed. It provides for rapid assessment of disk rim integrity without removing blades from the disc rim during a brief unit shutdown and in highly confined spaces. PADRIS has performed successfully during recent field trials at the nuclear power plants, and both the rapid inspection and the precise evaluation capability for the disc rim cracking was established. This paper summarizes the outline of the PADRIS system and the results of the field trial

  19. Fast-neutron detecting system with n, γ discrimination

    International Nuclear Information System (INIS)

    Ouyang Xiaoping; Huang Bao; Cao Jinyun

    1997-11-01

    In the present work, a new type neutron detecting system is reported, which can absolutely measure neutron parameters in n + γ mixed fields and has a long continuance of static high vacuum of 10 -4 Pa. The detecting system, with middle neutron-detecting sensitivity, short time response and big linear current output, has applied successfully in pulsed neutron beam measurement

  20. Automatic optical inspection system design for golf ball

    Science.gov (United States)

    Wu, Hsien-Huang; Su, Jyun-Wei; Chen, Chih-Lin

    2016-09-01

    ith the growing popularity of golf sport all over the world, the quantities of relevant products are increasing year by year. To create innovation and improvement in quality while reducing production cost, automation of manufacturing become a necessary and important issue. This paper reflect the trend of this production automa- tion. It uses the AOI (Automated Optical Inspection) technology to develop a system which can automatically detect defects on the golf ball. The current manual quality-inspection is not only error-prone but also very man- power demanding. Taking into consideration the competition of this industry in the near future, the development of related AOI equipment must be conducted as soon as possible. Due to the strong reflective property of the ball surface, as well as its surface dimples and subtle flaws, it is very difficult to take good quality image for automatic inspection. Based on the surface properties and shape of the ball, lighting has been properly design for image-taking environment and structure. Area-scan cameras have been used to acquire images with good contrast between defects and background to assure the achievement of the goal of automatic defect detection on the golf ball. The result obtained is that more than 973 of the NG balls have be detected, and system maintains less than 103 false alarm rate. The balls which are determined by the system to be NG will be inspected by human eye again. Therefore, the manpower spent in the inspection has been reduced by 903.

  1. Development of the radiation inspection system for food materials

    International Nuclear Information System (INIS)

    Min, Sujung; Kim, Heeyoung; Kim, Myungjin; Lee, Unjang

    2015-01-01

    Radioactive contamination of processed foodstuffs, livestock, marine products, farm products imported from Japan and fishes caught in coastal waters of Korea has become an important social issue. Recently, there are also needs of inspection system for monitoring of public meals such like school feedings of kindergarten, elementary school, middle school, high school and university. Radioactivity inspections of those foods are executed manually with portable measuring instruments or at labs using their samples. But, radioactivity inspections of those foods should execute field survey in real time. In consequence, there are some problem of time delay and low reliability. To protect the health of citizens from radioactivity contained in Japanese marine products imported to Korea, a system to inspect radioactivity in real time is developed. The system is to measure the radioactivity level of farm and marine products and public meals continuously and automatically at inspection sites of an agency checking radiation of imported foodstuffs to determine radioactive contamination. Performance was identified through the performance test (Cs-137 30, 50, 300, 900Bq/kg) at Korea Research Institute of Standards and Science (KRISS). NaI(Tl) detector was satisfied the performance for measurement

  2. Development of the radiation inspection system for food materials

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sujung; Kim, Heeyoung; Kim, Myungjin; Lee, Unjang [ORIONENC Co., Seoul (Korea, Republic of)

    2015-10-15

    Radioactive contamination of processed foodstuffs, livestock, marine products, farm products imported from Japan and fishes caught in coastal waters of Korea has become an important social issue. Recently, there are also needs of inspection system for monitoring of public meals such like school feedings of kindergarten, elementary school, middle school, high school and university. Radioactivity inspections of those foods are executed manually with portable measuring instruments or at labs using their samples. But, radioactivity inspections of those foods should execute field survey in real time. In consequence, there are some problem of time delay and low reliability. To protect the health of citizens from radioactivity contained in Japanese marine products imported to Korea, a system to inspect radioactivity in real time is developed. The system is to measure the radioactivity level of farm and marine products and public meals continuously and automatically at inspection sites of an agency checking radiation of imported foodstuffs to determine radioactive contamination. Performance was identified through the performance test (Cs-137 30, 50, 300, 900Bq/kg) at Korea Research Institute of Standards and Science (KRISS). NaI(Tl) detector was satisfied the performance for measurement.

  3. P-scan system for ultrasonic weld inspection

    International Nuclear Information System (INIS)

    Nielsen, N.

    1981-01-01

    A projection image scanning (P-scan) system based on an advanced fully microprocessor-controlled ultrasonic equipment and used to analyse and record echo signals from welded joints is described. The echoes from weld defects are measured with one dB resolution and are recorded together with the corresponding defect position. The system is ideally suited for in-service and automatic weld inspection and gives a very high degree of re-producibility. Some typical inspections are described. (U.K.)

  4. Embedded data acquisition system for neutron monitors

    International Nuclear Information System (INIS)

    Población, Ó G; Tejedor, I G; Sánchez, S; Blanco, J J; Gómez-Herrero, R; Medina, J; Steigies, C T

    2014-01-01

    This article presents the design and implementation of a new data acquisition system to be used as replacement for the old ones that have been in use with neutron monitors for the last decades and, which are eventually becoming obsolete. This new system is also intended to be used in new installations, enabling these scientific instruments to use today's communication networks to send data and receive commands from the operators. This system is currently running in two stations: KIEL2, in the Christian-Albrechts-Universität zu Kiel, Kiel, Germany, and CALMA, in the Castilla-La Mancha Neutron Monitor, Guadalajara, Spain

  5. Periodic inspection for safety of CANDU heat transport piping systems

    International Nuclear Information System (INIS)

    Ellyin, F.

    1979-10-01

    Periodic inspection of heat transport and emergency core cooling piping systems is intended to maintain an adequate level of safety throughout the life of the plant, and to protect plant personnel and the public from the consequences of a failure and release of fission products. This report outlines a rational approach to the periodic inspection based on a fully probabilistic model. It demonstrates the methodology based on theoretical treatment and experimental data whereby the strength of a pressurized pipe or vessel containing a defect could be evaluated. It also shows how the extension of the defect at various lifetimes could be predicted. These relationships are prerequisite for the probabilistic formulation and analysis for the periodic inspection of piping systems

  6. Autonomous navigation system for mobile robots of inspection

    International Nuclear Information System (INIS)

    Angulo S, P.; Segovia de los Rios, A.

    2005-01-01

    One of the goals in robotics is the human personnel's protection that work in dangerous areas or of difficult access, such it is the case of the nuclear industry where exist areas that, for their own nature, they are inaccessible for the human personnel, such as areas with high radiation level or high temperatures; it is in these cases where it is indispensable the use of an inspection system that is able to carry out a sampling of the area in order to determine if this areas can be accessible for the human personnel. In this situation it is possible to use an inspection system based on a mobile robot, of preference of autonomous navigation, for the realization of such inspection avoiding by this way the human personnel's exposure. The present work proposes a model of autonomous navigation for a mobile robot Pioneer 2-D Xe based on the algorithm of wall following using the paradigm of fuzzy logic. (Author)

  7. An approach to software quality assurance for robotic inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1993-10-01

    Software quality assurance (SQA) for robotic systems used in nuclear waste applications is vital to ensure that the systems operate safely and reliably and pose a minimum risk to humans and the environment. This paper describes the SQA approach for the control and data acquisition system for a robotic system being developed for remote surveillance and inspection of underground storage tanks (UST) at the Hanford Site

  8. The Expert System Application For Inspection Of The Power Plants

    International Nuclear Information System (INIS)

    Josowidagdo, L.

    1997-01-01

    This paper describes the application of expert system to evaluate and consider the problem encountered in this fields are complex and time consuming. As as example several factors affecting system voltage selections are load magnitude, distance from the main power supply, safety, standards, cost of utilization and service system equipment, and future load growth. The inspection deal with interactions between alternatives, uncertainties, and important non financial parameter. Several complex problems are multiple objective functions, multiple constraints, complex system interactions, the need for accuracy, the need for trade off, optimization, and coordination of the decision making process. ASDEP is one of the expert system for electric power plant design that describe the application of the artificial intelligence to design of a power plan's electrical auxiliary system. In this circumstance this paper will elaborate another aspect for using the expert system in the inspection

  9. Fiber optic neutron imaging system: calibration

    International Nuclear Information System (INIS)

    Malone, R.M.; Gow, C.E.; Thayer, D.R.

    1981-01-01

    Two neutron imaging experiments using fiber optics have been performed at the Nevada Test Site. In each experiment, an array of scintillator fluor tubes is exposed to neutrons. Light is coupled out through radiation resistant PCS fibers (8-m long) into high-bandwidth, graded index fibers. For image reconstruction to be accurate, common timing differences and transmission variations between fiber optic channels are needed. The calibration system featured a scanning pulsed dye laser, a specially designed fiber optic star coupler, a tektronix 7912AD transient digitizer, and a DEC PDP 11/34 computing system

  10. Conception design of shielding collimator system for high energy neutron radiography with minitype neutron source

    International Nuclear Information System (INIS)

    Wu Yang; Dou Haifeng; Tang Bin; Huo Heyong

    2013-01-01

    Shielding collimator system is necessary in the neutron radiography installation, this issue gives the conception design of shielding collimator system for FNR about high energy neutron source by MCNP. Preliminarily ascertain the material component and dimension, confirm the neutron flux at imaging position, imaging distance, imaging field range of the FNP installation in theory. (authors)

  11. Smart Infrared Inspection System Field Operational Test Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  12. The IAEA Inspections: Creating a Collective Security System

    International Nuclear Information System (INIS)

    Le Guelte, Georges

    2003-01-01

    Through their successes, their achievements and the hopes they raised of a world where the law would replace the arbitrary, but also through the failures imputed to them and the fragility of their action, the inspections of the International Atomic Energy Agency (IAEA) have become a symbol of the capacities, the limits, and the weaknesses of the international system founded in 1945 by the UN Charter. Originally, their objective was much more limited. Historical developments - the Cold War, in particular - have turned the inspections into the major instrument of a unique mechanism of collective security, that is recovering its full significance in the current international context

  13. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1979-01-01

    A simultaneous pulsed neutron porosity and thermal neutron capture cross section logging system is provided for radiological well logging of subsurface earth formations. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a combination gamma ray and fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations; and, during the bursts, the fast neutron and epithermal neutron populations are sampled. During the interval between bursts the thermal neutron capture gamma ray population is sampled in two or more time intervals. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity phi. The capture gamma ray measurements are combined to provide a simultaneous determination of the thermal neutron capture cross section Σ

  14. Complex photonic system for underground railway measurements and inspection

    Science.gov (United States)

    Giltsov, Victor S.; Inozemtsev, Vladimir G.; Popov, Sergey V.; Titov, Evgeny V.; Shilin, Victor A.

    2002-04-01

    Moscow Metro is a powerful and important type of city transportation. Novel photonic gauge consisting of three subsystems for inspection of railway geometrical parameters is presented. Each system includes special lasers, CCD cameras and signal processor. Desired parameters are determined using processing of images formed by lasers. Mathematical methods and software for processing are described. Some experimental results are given.

  15. Graphical means for inspecting qualitative models of system behaviour

    NARCIS (Netherlands)

    Bouwer, A.; Bredeweg, B.

    2010-01-01

    This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are

  16. Contributions of vehicle inspection operations to traffic system in ...

    African Journals Online (AJOL)

    The general view about the routine vehicle inspection operations is to ensure that vehicles are road worthy and meet safety requirements. This is done to enhance safe and clean transport within urban centres since the nature and condition of vehicles on roads can be associated with the efficiency of traffic system.

  17. Crackscope : automatic pavement cracking inspection system.

    Science.gov (United States)

    2008-08-01

    The CrackScope system is an automated pavement crack rating system consisting of a : digital line scan camera, laser-line illuminator, and proprietary crack detection and classification : software. CrackScope is able to perform real-time pavement ins...

  18. Licensing systems and inspection of nuclear installations

    International Nuclear Information System (INIS)

    1986-01-01

    The systems of each country member of the OECD is described according to a plan standardised to the extent possible, so as to facilitate comparison between the National systems. In most cases, the descriptions are supplemented by flow charts illustrating the steps in the licensing procedure and the intervention of the various bodies concerned

  19. Inspection system for Zircaloy clad fuel rods

    International Nuclear Information System (INIS)

    Yancey, M.E.; Porter, E.H.; Hansen, H.R.

    1975-10-01

    A description is presented of the design, development, and performance of a remote scanning system for nondestructive examination of fuel rods. Characteristics that are examined include microcracking of fuel rod cladding, fuel-cladding interaction, cladding thickness, fuel rod diameter variation, and fuel rod bowing. Microcracking of both the inner and outer fuel rod surfaces and variations in wall thickness are detected by using a pulsed eddy current technique developed by Argonne National Laboratory (ANL). Fuel rod diameter variation and fuel rod bowing are detected by using two linear variable differential transformers (LVDTs) and a signal conditioning system. The system's mechanical features include variable scanning speeds, a precision indexing system, and a servomechanism to maintain proper probe alignment. Initial results indicate that the system is a very useful mechanism for characterizing irradiated fuel rods

  20. INTERVALS OPTIMIZATION OF SYSTEMS INFORMATION SECURITY INSPECTION

    Directory of Open Access Journals (Sweden)

    V. A. Bogatyrev

    2014-09-01

    Full Text Available A Markov model is suggested for secure information systems, functioning under conditions of destructive impacts, which aftereffects are found by on-line and test control. It is assumed that on-line control, in contrast to the test one, is char- acterized by the limited control completeness, but does not require the stopping of computational process. The aim of re- search is to create models that optimize intervals of test control initialization by the criterion of probability maximization for system stay in the ready state to secure fulfillment of the functional requests and minimization of the dangerous system states in view of the uncertainty and intensity variance of the destructive impacts. Variants of testing intervals optimization are con- sidered depending on the intensity of destructive impacts by the criterion of the maximum system availability for the safe execution of queries. Optimization is carried out with and without adaptation to the actual intensity change of destructive impacts. The efficiency of adaptive change for testing periods is shown depending on the observed activity of destructive impacts. The solution of optimization problem is obtained by built-in tools of computer mathematics Mathcad 15, including symbolic mathematics for solution of systems of algebraic equations. The proposed models and methods of determining the optimal testing intervals can find their application in the system design of computer systems and networks of critical applications, working under conditions of destabilizing actions with the increased requirements for their safety.

  1. Earth formation pulsed neutron porosity logging system utilizing epithermal neutron and inelastic scattering gamma ray detectors

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector and an inelastic scattering gamma ray detector is moved through a borehole. The detection of inelastic gamma rays provides a measure of the fast neutron population in the vicinity of the detector. repetitive bursts of neutrons irradiate the earth formation and, during the busts, inelastic gamma rays representative of the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. the fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  2. Development of In-situation radioactivity Inspection system

    International Nuclear Information System (INIS)

    Min, Sujung; Lee, Sanghun; Kim, Miyoung; Kim, Myungjin; Lee, Unjang; Park, Jungkyun

    2015-01-01

    Many Korean people worry about radioactive contamination of Japanese and Korean marine products. Radioactive contamination of processed foodstuffs, livestock, marine products, farm products imported from Japan and fishes caught in coastal waters of Korea has become an important social issue. Radioactivity inspections of those foods are executed manually with portable measuring instruments or at labs using their samples. In consequence, there are some problem of time delay and low reliability. To protect the health of citizens from radioactivity contained in Japanese marine products imported to Korea, a system to inspect radioactivity in real time will be developed. The system is to measure the radioactivity level of farm and marine products continuously and automatically at inspection sites of an agency checking radiation of imported foodstuffs to determine radioactive contamination. Product performance assessment and tests will be conducted later. When the system develops and its commercialization begins, people's anxiety about radioactive contamination of foods after the Fukushima nuclear accident will be eased and people will be able to trust the radioactive inspection

  3. Development of In-situation radioactivity Inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Min, Sujung; Lee, Sanghun; Kim, Miyoung; Kim, Myungjin; Lee, Unjang [ORIONENC Co., Seoul (Korea, Republic of); Park, Jungkyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Many Korean people worry about radioactive contamination of Japanese and Korean marine products. Radioactive contamination of processed foodstuffs, livestock, marine products, farm products imported from Japan and fishes caught in coastal waters of Korea has become an important social issue. Radioactivity inspections of those foods are executed manually with portable measuring instruments or at labs using their samples. In consequence, there are some problem of time delay and low reliability. To protect the health of citizens from radioactivity contained in Japanese marine products imported to Korea, a system to inspect radioactivity in real time will be developed. The system is to measure the radioactivity level of farm and marine products continuously and automatically at inspection sites of an agency checking radiation of imported foodstuffs to determine radioactive contamination. Product performance assessment and tests will be conducted later. When the system develops and its commercialization begins, people's anxiety about radioactive contamination of foods after the Fukushima nuclear accident will be eased and people will be able to trust the radioactive inspection.

  4. Systems and methods for detecting neutrons

    Science.gov (United States)

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2005-08-09

    Systems and methods for detecting neutrons. One or more neutron-sensitive scintillators can be configured from a plurality of nano-sized particles, dopants and an extruded plastic material, such as polystyrene. The nano-sized particles can be compounded into the extruded plastic material with at least one dopant that permits the plastic material to scintillate. One or more plastic light collectors can be associated with a neutron-sensitive scintillator, such that the plastic light collector includes a central hole thereof. A wavelength-shifting fiber can then be located within the hole. The wavelength shifting (WLS) fiber absorbs scintillation light having a wavelength thereof and re-emits the light at a longer wavelength.

  5. SAFIRE - a robotic inspection system for CANDU feeders

    International Nuclear Information System (INIS)

    Buckingham, R.

    2011-01-01

    The condition of primary circuit feeder pipes in CANDU reactors is relevant to the commercial viability and plant life. One known wear mechanism is external fretting between feeder pipes and adjacent services or support structures, particularly within the Upper Feeder Cabinet (UFC). Fretting leads to wall thinning which must not exceed certain agreed limits. Chafe shields have been added to protect the feeder pipes. Regular inspections are required of the chafe shields, feeder pipes and other structures that may cause feeder damage. Historically, the dose received by inspectors conducting this work has been significant. For this reason Ontario Power Generation has invested in a remotely operated robot system to conduct visual inspections within the UFC. This system, called SAFIRE for 'Snake-Arm Feeder Inspection Robot Equipment' has been deployed at Pickering during 2010 and 2011 and has been used to inspect areas that are extremely difficult to inspect with existing manual techniques. The 2011 scope of work included inspection of a total of 660 feeder pipes in three UFC quadrants, in two reactors. The full scope was completed over a one-month period in Autumn 2011 in which SAFIRE was used during 23, twelve hour shifts. This included two periods each of 72 hours of continuous operation using multiple teams of operators. SAFIRE is remote controlled delivery system for multiple cameras to record still images and video. The main system elements include a snake-arm robot mounted on a mobile vehicle. It can be controlled from up to 500m away using a fibre/copper connection. The snake-arm is 2.2m long, 25mm wide and has 18 degrees of freedom. It is designed to snake between the rows of feeder pipes to inspect feeder/hanger interfaces, both above and below the feeder cabinet catwalks. Future upgrades offer the potential to add additional tools to increase functionality. This paper describes the SAFIRE development process from inception to operational experience gained

  6. Improvement of remote control system of automatic ultrasonic equipment for inspection of reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Yong Moo; Jung, H. K.; Joo, Y. S.; Koo, K. M.; Hyung, H.; Sim, C. M.; Gong, U. S.; Kim, S. H.; Lee, J. P.; Rhoo, H. C.; Kim, M. S.; Ryoo, S. K.; Choi, C. H.; Oh, K. I

    1999-12-01

    One of the important issues related to the nuclear safety is in-service inspection of reactor pressure vessel (RPV). A remote controlled automatic ultrasonic method is applied to the inspection. At present the automatic ultrasonic inspection system owned by KAERI is interrupted due to degradation of parts. In order to resume field inspection new remote control system for the equipment was designed and installed to the existing equipment. New ultrasonic sensors and their modules for RPV inspection were designed and fabricated in accordance with the new requirements of the inspection codes. Ultrasonic sensors were verified for the use in the RPV inspection. (autho0008.

  7. Calibration of the CCD photonic measuring system for railway inspection

    Science.gov (United States)

    Popov, D. V.; Ryabichenko, R. B.; Krivosheina, E. A.

    2005-08-01

    Increasing of traffic speed is the most important task in Moscow Metro. Requirements for traffic safety grow up simultaneously with the speed increasing. Currently for track inspection in Moscow Metro is used track measurement car has built in 1954. The main drawbacks of this system are absence of automated data processing and low accuracy. Non-contact photonic measurement system (KSIR) is developed for solving this problem. New track inspection car will be built in several months. This car will use two different track inspection systems and car locating subsystem based on track circuit counting. The KSIR consists of four subsystems: rail wear, height and track gauge measurement (BFSM); rail slump measurement (FIP); contact rail measurement (FKR); speed, level and car locating (USI). Currently new subsystem for wheel flange wear (IRK) is developed. The KSIR carry out measurements in real-time mode. The BFSM subsystem contains 4 matrix CCD cameras and 4 infrared stripe illuminators. The FIP subsystem contains 4 line CCD cameras and 4 spot illuminators. The FKR subsystem contains 2 matrix CCD cameras and 2 stripe illuminators. The IRK subsystem contains 2 CCD cameras and 2 stripe illuminators. Each system calibration was carried out for their adjustment. On the first step KSIR obtains data from photonic sensors which is valued in internal measurement units. Due to the calibration on the second step non-contact system converts the data to metric measurement system.

  8. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended to generate high-energy neutrons for radiation therapy. This generic type of device may include signal...

  9. Neutron activation system for spectral measurements of pulsed ion diode neutron production

    International Nuclear Information System (INIS)

    Hanson, D.L.; Kruse, L.W.

    1980-02-01

    A neutron energy spectrometer has been developed to study intense ion beam-target interactions in the harsh radiation environment of a relativistic electron beam source. The main component is a neutron threshold activation system employing two multiplexed high efficiency Ge(Li) detectors, an annihilation gamma coincidence system, and a pneumatic sample transport. Additional constraints on the neutron spectrum are provided by total neutron yield and time-of-flight measurements. A practical lower limit on the total neutron yield into 4π required for a spectral measurement with this system is approx. 10 10 n where the neutron yield is predominantly below 4 MeV and approx. 10 8 n when a significant fraction of the yield is above 4 MeV. Applications of this system to pulsed ion diode neutron production experiments on Hermes II are described

  10. DEVISING A VISUAL INSPECTION SYSTEM FOR CANAL TUNNELS: PRELIMINARY STUDIES

    Directory of Open Access Journals (Sweden)

    J.-L. Albert

    2013-07-01

    Full Text Available In France, most tunnel canals were built during the 19th and 20th centuries. Maintaining them is not only a matter of heritage preservation but also a question of security. Inspecting tunnel canals is difficult and time consuming, which motivates the development of an image-based surveying system, as already exists for railway or road tunnels. However, while the imaging configuration is similar, referencing the data acquisition device is more difficult in the case of underground waterways, due to the drifts of the inspection barge. In this paper, we introduce the recording prototype we have designed and report the results of the test that were performed in an underground waterway, Niderviller's tunnel, to assess the feasibility of the system. In particular, we give details on the imaging system design. We also analyze the pros and cons of each location method, in terms of costs, practicability, computational burden and accuracy.

  11. Devising a Visual Inspection System for Canal Tunnels: Preliminary Studies

    Science.gov (United States)

    Albert, J.-L.; Charbonnier, P.; Chavant, P.; Foucher, P.; Muzet, V.; Prybyla, D.; Perrin, T.; Grussenmeyer, P.; Guillemin, S.; Koehl, M.

    2013-07-01

    In France, most tunnel canals were built during the 19th and 20th centuries. Maintaining them is not only a matter of heritage preservation but also a question of security. Inspecting tunnel canals is difficult and time consuming, which motivates the development of an image-based surveying system, as already exists for railway or road tunnels. However, while the imaging configuration is similar, referencing the data acquisition device is more difficult in the case of underground waterways, due to the drifts of the inspection barge. In this paper, we introduce the recording prototype we have designed and report the results of the test that were performed in an underground waterway, Niderviller's tunnel, to assess the feasibility of the system. In particular, we give details on the imaging system design. We also analyze the pros and cons of each location method, in terms of costs, practicability, computational burden and accuracy.

  12. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  13. An automated neutron monitor maintenance system

    International Nuclear Information System (INIS)

    Moore, F.S.; Griffin, J.C.; Odell, D.M.C.

    1996-01-01

    Neutron detectors are commonly used by the nuclear materials processing industry to monitor fissile materials in process vessels and tanks. The proper functioning of these neutron monitors must be periodically evaluated. We have developed and placed in routine use a PC-based multichannel analyzer (MCA) system for on-line BF3 and He-3 gas-filled detector function testing. The automated system: 1) acquires spectral data from the monitor system, 2) analyzes the spectrum to determine the detector's functionality, 3) makes suggestions for maintenance or repair, as required, and 4) saves the spectrum and results to disk for review. The operator interface has been designed to be user-friendly and to minimize the training requirements of the user. The system may also be easily customized for various applications

  14. Inspection systems for valves monitoring at EDF; Systemes d`inspection utilises par EDF pour la surveillance de la robinetterie

    Energy Technology Data Exchange (ETDEWEB)

    Germain, J.L.; Granal, L.; Provost, D.; Touillez, M. [EDF, 75 - Paris (France)]|[Electricite de France (EDF), 78 - Chatou (France)

    1997-10-01

    Electricite de France (EDF) makes increasing use of valve inspection systems to guarantee safety in its pressurized water reactor plants, improve plant availability and facilitate condition-based maintenance. A portable system known as SAMIR has been developed for inspection of motor-operated valves, and is now used on EDF`s 900-MW sites. For its 1300-MW units, EDF has chosen a more complete system which enables measuring thrust on the valve stem during a maneuver, using a sensor mounted on the yoke. To detect internal vale leaks, an on-site assessment has demonstrated the economic benefits of acoustic emission techniques. EDF has equipped its sites with analog leak detection systems which may soon be replaced by a digital model now being developed. (authors).

  15. The neutron imaging system fielded at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Fittinghoff D.N.

    2013-11-01

    Full Text Available We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′ reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware.

  16. Neutron radiography for nondestructive testing

    International Nuclear Information System (INIS)

    John, J.

    1979-01-01

    Neutron radiography is similar to X-ray inspection in that both depend upon use of radiation that penetrates some materials and is absorbed by others to provide a contrast image of conditions not readily available for visual inspection. X-rays are absorbed by dense materials, such as metals, whereas neutrons readily penetrate metals, but are absorbed by materials containing hydrogen. The neutron radiography has been successfully applied to a number of inspection situations. These include the inspection of explosives, advanced composites, adhesively bonded structures and a number of aircraft engine components. With the availability of Californium-252, it has become feasible to construct mobile neutron radiography systems suitable for field use. Such systems have been used for in-situ inspection of flight line aircraft, particularly to locate and measure hidden corrosion

  17. THE INSPECTION LIKE QUALITY FACTOR IN THE EDUCATIONAL SYSTEM

    Directory of Open Access Journals (Sweden)

    Joaquín Oliver Pozo

    2016-07-01

    Full Text Available The Inspection, along with other educational sectors, shapes from complementarity, coordination and communication between them, the architecture of the educational system. Each has its specificity and its own space in Education. The aim of this study is simply identify and define the location of the inspection into the education system, between educational administration and schools, and the "why" (their mission, and consistent with it, "which makes" (its functions and assignations. Mission and functions that take place in schools, at the sight of the Educational Administration and the society, through the Inspectorate as organization. Of the principles underlying this organization and of the communication, training, and technical and professional exchange that drives through their organizational structures, will depend its leadership in Education and to be seen as a quality factor.

  18. Automated phased array ultrasonic inspection system for rail wheel sets

    International Nuclear Information System (INIS)

    Grosser, Paul; Weiland, M.G.

    2013-01-01

    This paper covers the design, system automation, calibration and validation of an automated ultrasonic system for the inspection of new and in service wheel set assemblies from diesel-electric locomotives and gondola cars. This system uses Phased Array (PA) transducers for flaw detection and Electro-Magnetic Acoustic Transducers (EMAT) for the measurement of residual stress. The system collects, analyses, evaluates and categorizes the wheel sets automatically. This data is archived for future comparison and trending. It is also available for export to a portal lathe for increased efficiency and accuracy of machining, therefore allowing prolonged wheel life.

  19. Applications Of A Low Cost System For Industrial Automatic Inspection

    Science.gov (United States)

    Krey, C.; Ayache, A.; Bruel, A.

    1987-05-01

    In industrial environment, some repetitive tasks wich do not need a high degree of understanding, can be solved automatically owing to Vision. Among the systems available on the market, most of them are rather expensive with various capabilities. The described system is a modular system, built with some standard circuit boards. One of the advantages of this system is that its architecture can be redefined for each application, by assembling judiciously the standard modules. The vision system has been used successfully to sort fruits according to their colour and diameter. The system can sort 8 fruits per second on each sorting line and manage simultaneously up to 16 lines. An application of sheep skin cutting has been implemented too. After chemical and mechanical treatments, the skins present many defaults all around their contour, that must be cut off. A movable camera follows and inspects the contour ; the vision system determines where the cutting device must cut the skin. A third application has been implemented ; it concerns automatic recording and reproduction of logotypes. A moving camera driven by the system picks up the points, of the logotype contours. Before reproduction, programs can modify the logotypes shape, change the scale, and so on. For every application, the system uses the world smallest CCD camera developped in the laboratory. The small dimensions of the vision system and its low cost are major advantages for a wide use in industrial automatic inspection.

  20. 14 CFR 21.125 - Production inspection system: Materials Review Board.

    Science.gov (United States)

    2010-01-01

    ... § 21.125 Production inspection system: Materials Review Board. Link to an amendment published at 74 FR... Materials Review Board action for at least two years. (b) The production inspection system required in § 21... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Production inspection system: Materials...

  1. Influence Of Inspection Intervals On Mechanical System Reliability

    International Nuclear Information System (INIS)

    Zilberman, B.

    1998-01-01

    In this paper a methodology of reliability analysis of mechanical systems with latent failures is described. Reliability analysis of such systems must include appropriate usage of check intervals for latent failure detection. The methodology suggests, that based on system logic the analyst decides at the beginning if a system can fail actively or latently and propagates this approach through all system levels. All inspections are assumed to be perfect (all failures are detected and repaired and no new failures are introduced as a result of the maintenance). Additional assumptions are that mission time is much smaller, than check intervals and all components have constant failure rates. Analytical expressions for reliability calculates are provided, based on fault tree and Markov modeling techniques (for two and three redundant systems with inspection intervals). The proposed methodology yields more accurate results than are obtained by not using check intervals or using half check interval times. The conventional analysis assuming that at the beginning of each mission system is as new, give an optimistic prediction of system reliability. Some examples of reliability calculations of mechanical systems with latent failures and establishing optimum check intervals are provided

  2. Beam monitoring system for intense neutron source

    International Nuclear Information System (INIS)

    Tron, A.M.

    2001-01-01

    Monitoring system realizing novel principle of operation and allowing to register a two-dimensional beam current distribution within entire aperture (100...200 mm) of ion pipe for a time in nanosecond range has been designed and accomplished for beam control of the INR intense neutron source, for preventing thermo-mechanical damage of its first wall. Key unit of the system is monitor of two-dimensional beam current distribution, elements of which are high resistant to heating by the beam and to radiation off the source. The description of the system and monitor are presented. Implementation of the system for the future sources with more high intensities are discussed. (author)

  3. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    International Nuclear Information System (INIS)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed

  4. Vision systems for the inspection of resistance welding joints

    Science.gov (United States)

    Hildebrand, Lars; Fathi, Madjid

    2000-06-01

    Many automated quality inspection systems make use of brightness and contrast features of the objects being inspected. This reduces the complexity of the problem solving methods, as well as the demand for computational capacity. Nevertheless a lot of significant information is located in color features of the objects. This paper describes a method, that allows the evaluation of color information in a very compact and efficient way. The described method uses a combination of multi-valued logic and a special color model. We use fuzzy logic as multi-valued logic, and the HSI color model, but any multi-valued logic, that allows rule-based reasoning can be used. The HSI color model can also be exchanged with other color models, if special demands require this.

  5. Compact neutron systems expand in applications. RIKEN RANS

    International Nuclear Information System (INIS)

    Otake, Yoshie

    2017-01-01

    RIKEN accelerator-driven compact neutron source (RANS) has been developed and provided neutrons for industrial use. The proton linac of 7 MeV with the maximum average current 100 μA, pulse width 10-180 μs, repetition frequency 20-200 Hz is used with long-life Be target for such practical use in the field of manufacturing. Corrosion in the painted steels are visualized, neutron imaging and neutron diffraction technique have developed with compact neutron source. Non-destructive visualization inside thick concrete slab has been realized for the social infrastructure safety with compact neutron source system. (author)

  6. Implementation of an omnidirectional robotic inspection system (ODIS)

    Science.gov (United States)

    Moore, Kevin L.; Flann, Nicholas S.; Rich, Shayne C.; Frandsen, Monte; Chung, You C.; Martin, Jason; Davidson, Morgan E.; Maxfield, Russell; Wood, Carl G.

    2001-09-01

    Previous research has produced the T-series of omni- directional (ODV) robots, which are characterized by their use of smart wheel technology. In this paper we describe the design, implementation, and performance of the first use of ODV technology in a complete robotic system for a practical, real-world application. The system discussed is called ODIS, short for Omni-Directional Inspection System. ODIS is a man- portable mobile robotic system that can be used for autonomous or semi-autonomous inspection under vehicles in a parking area. The ODIS system can be deployed to travel through a parking area, systematically determining when a vehicle is in a parking stall and then carrying out a sweep under the vehicle, while sending streaming video back to a control station. ODIS uses three ODV wheels designed with a belt-driven steering mechanism to facilitate the low profile needed to fit underneath most vehicles. Its vetronics capabilities include eight different processors and a sensor array that includes a range-finding laser, sonar and IR sensors, and a color video camera. The ODIS planning and control architecture is characterized by a unique coupling between the vehicle-level path-tracking control system and a novel sensor-based feedback system for intelligent behavior generation. Real-life examples of ODIS's performance show the effectiveness of the system.

  7. Secure Video Surveillance System (SVSS) for unannounced safeguards inspections

    International Nuclear Information System (INIS)

    Galdoz, Erwin G.; Pinkalla, Mark

    2010-01-01

    The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed. ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains

  8. MPACT Fast Neutron Multiplicity System Design Concepts

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; S. A. Pozzi; J. L. Dolan; M. T. Kinlaw; A. C. Kaplan; M. Flaska; A. Enqvist; J. T. Johnsom; S. M. Watson

    2012-10-01

    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most

  9. Detector systems for imaging neutron activation analysis

    International Nuclear Information System (INIS)

    Dewaraja, Y.K.; Fleming, R.F.

    1994-01-01

    This paper compares the performance of two imaging detector systems for the new technique of Imaging Neutron Activation Analysis (Imaging NAA). The first system is based on secondary electron imaging, and the second employs a position sensitive charged particle detector for direct localization of beta particles. The secondary electron imaging system has demonstrated a position resolution of 20 μm. The position sensitive beta detector has the potential for higher efficiencies with resolution being a trade off. Results presented show the feasibility of the two imaging methods for different applications of Imaging NAA

  10. Conceptual design of neutron diagnostic systems for fusion experimental reactor

    International Nuclear Information System (INIS)

    Iguchi, T.; Kaneko, J.; Nakazawa, M.

    1994-01-01

    Neutron measurement in fusion experimental reactors is very important for burning plasma diagnostics and control, monitoring of irradiation effects on device components, neutron source characterization for in-situ engineering tests, etc. A conceptual design of neutron diagnostic systems for an ITER-like fusion experimental reactor has been made, which consists of a neutron yield monitor, a neutron emission profile monitor and a 14-MeV spectrometer. Each of them is based on a unique idea to meet the required performances for full power conditions assumed at ITER operation. Micro-fission chambers of 235 U (and 238 U) placed at several poloidal angles near the first wall are adopted as a promising neutron yield monitor. A collimated long counter system using a 235 U fission chamber and graphite neutron moderators is also proposed to improve the calibration accuracy of absolute neutron yield determination

  11. Computer control in nondestructive testing illustrated by an automatic ultrasonic tube inspection system

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, N.

    1976-06-01

    In Risoe's automatic tube inspection system, data (more than half a million per tube) from ultrasonic dimension measurements and defect inspections are fed into a computer that simultaneously calculates and evaluates the results. (author)

  12. Evaluation of robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.; Eversole, R.E.; Farnstrom, K.A.; Harvey, H.W.; Martin, H.L.

    1984-03-01

    This report presents and demonstrates a cost-effective approach for robotics application (CARA) to surveillance and inspection work in existing nuclear power plants. The CARA was developed by the Remote Technology Corporation to systematically determine the specific surveillance/inspection tasks, worker hazards, and access or equipment placement restraints in each of the many individual rooms or areas at a power plant. Guidelines for designing inspection robotics are included and are based upon the modular arrangement of commercially-available sensors and other components. Techniques for maximizing the cost effectiveness of robotics are emphasized in the report including: selection of low-cost robotic components, minimal installation work in plant areas, portable systems for common use in different areas, and standardized robotic modules. Factors considered as benefits are reduced radiation exposure, lower man-hours, shorter power outage, less waste material, and improved worker safety concerns. A partial demonstration of the CARA methodology to the Sequoyah (PWR) and Browns Ferry (BWR) Plants is provided in the report along with specific examples of robotic installations in high potential areas

  13. Portable system for periodical verification of area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W.

    2009-01-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  14. Asymptotic time dependent neutron transport in multidimensional systems

    International Nuclear Information System (INIS)

    Nagy, M.E.; Sawan, M.E.; Wassef, W.A.; El-Gueraly, L.A.

    1983-01-01

    A model which predicts the asymptotic time behavior of the neutron distribution in multi-dimensional systems is presented. The model is based on the kernel factorization method used for stationary neutron transport in a rectangular parallelepiped. The accuracy of diffusion theory in predicting the asymptotic time dependence is assessed. The use of neutron pulse experiments for predicting the diffusion parameters is also investigated

  15. Neutronic control instrumentation of protection systems

    International Nuclear Information System (INIS)

    Furet, J.

    1977-01-01

    The aims of neutronic control instrumentation are briefly recalled and the present status of materials research and development is presented. As for the out-of-pile instrumentation, emphasis is put on the reliability and efficiency of the detectors and the new solutions of electric signal processing. The possible reactivity measurements at rest are examined. As for in-pile instrumentation results relating to mobile detectors of the type of miniaturized fission chambers are presented. The radiation tests on course of development for several years in the working conditions of neutron self-powdered detectors are analyzed so as to show that their use as built-in in-core instrumentation is to be envisaged at short term. Basic options inherent to the 'Nuclear Safety' philosophy that define the protection system are recalled. A definition and a justification of the performance testing of the instrumentation at rest and in-service are then derived. Some new solutions are envisaged for processing the digital data obtained from the various sensors . A quality control of the materials setting conditions (especially electric noise) ensures a high reliability and availability of the materials involved in the neutron control and the protection system in working conditions [fr

  16. Accelerator driven systems (ADS): A principal neutronics and transmutation potential

    International Nuclear Information System (INIS)

    Slessarev, I.

    1997-01-01

    An accelerator-based system using a beam of high energy protons to produce supplementary neutrons as a result of spallation processes in a target is investigated. The spallation neutrons are successively used to feed a subcritical blanket where they create a neutron surplus available for incineration of those long-lived toxic nuclei which require neutrons (long-lived fission products and minor actinides), and enhance the deterministic safety features for reactivity-type of accidents

  17. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  18. Neutron chain length distributions in subcritical systems

    International Nuclear Information System (INIS)

    Nolen, S.D.; Spriggs, G.

    1999-01-01

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors

  19. ACCURACY OF A 3D VISION SYSTEM FOR INSPECTION

    DEFF Research Database (Denmark)

    Carmignato, Simone; Savio, Enrico; De Chiffre, Leonardo

    2003-01-01

    ABSTRACT. This paper illustrates an experimental method to assess the accuracy of a three-dimensional (3D) vision system for the inspection of complex geometry. The aim is to provide a procedure to evaluate task related measurement uncertainty for virtually any measurement task. The key element...... of the method is the use of a coordinate measuring machine (CMM) to supply reference measurements as basis for realistic statements of measurement uncertainty. Since robust techniques to establish traceability in CMM measurements of complex geometry are available, a CMM-based approach is suitable...

  20. Equipment and procedures for inspection by the moderator system of PHWR Central

    International Nuclear Information System (INIS)

    Palaez Gutierrez, J. A.; Regidor Ipana, J. J.; Gadea Prrinos, J. R.

    2012-01-01

    The moderator system of PHWR plant is the most important from the standpoint of operation and also in which the dosages are higher. For the realization of the pre-operational service and inspection have been developed ultrasonic inspection procedures both automatic and manual modes. Have also defined all equipment, probes and materials needed for the said inspection.

  1. MPACT Fast Neutron Multiplicity System Prototype Development

    Energy Technology Data Exchange (ETDEWEB)

    D.L. Chichester; S.A. Pozzi; J.L. Dolan; M.T. Kinlaw; S.J. Thompson; A.C. Kaplan; M. Flaska; A. Enqvist; J.T. Johnson; S.M. Watson

    2013-09-01

    This document serves as both an FY2103 End-of-Year and End-of-Project report on efforts that resulted in the design of a prototype fast neutron multiplicity counter leveraged upon the findings of previous project efforts. The prototype design includes 32 liquid scintillator detectors with cubic volumes 7.62 cm in dimension configured into 4 stacked rings of 8 detectors. Detector signal collection for the system is handled with a pair of Struck Innovative Systeme 16-channel digitizers controlled by in-house developed software with built-in multiplicity analysis algorithms. Initial testing and familiarization of the currently obtained prototype components is underway, however full prototype construction is required for further optimization. Monte Carlo models of the prototype system were performed to estimate die-away and efficiency values. Analysis of these models resulted in the development of a software package capable of determining the effects of nearest-neighbor rejection methods for elimination of detector cross talk. A parameter study was performed using previously developed analytical methods for the estimation of assay mass variance for use as a figure-of-merit for system performance. A software package was developed to automate these calculations and ensure accuracy. The results of the parameter study show that the prototype fast neutron multiplicity counter design is very nearly optimized under the restraints of the parameter space.

  2. A control and recording system for a neutron diffractometer

    International Nuclear Information System (INIS)

    Czech, Z.; Turek, L.; Wierzewski, K.

    1982-01-01

    A digital system for automatic control and data recording being a part of a neutron diffractometer designed for measurement of the angular distribution of monochromatic neutrons is described. The system is built using digital TTL integrated circuits. Particular attention is drawn to the interesting design of the optimized cross-matrix which selects the elements subjected to recording. The system successfully works with the neutron diffractometer at the EWA reactor. (author)

  3. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Schultz, W.E.; Smith, H.D.; Smith, M.P.

    1980-01-01

    An improved method and apparatus are described for simultaneously measuring the porosity and thermal neutron capture cross section of earth formations in situ in the vicinity of a well borehole using pulsed neutron well logging techniques. The logging tool which is moved through the borehole consists of a 14 MeV pulsed neutron source, an epithermal neutron detector and a combination gamma ray and fast neutron detector. The associated gating systems, counters and combined digital computer are sited above ground. (U.K.)

  4. Evaluation of computer-based ultrasonic inservice inspection systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T. [Pacific Northwest Lab., Richland, WA (United States)

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems.

  5. Evaluation of computer-based ultrasonic inservice inspection systems

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.; Doctor, S.R.; Park, W.R.; Schuster, G.J.; Taylor, T.T.

    1994-03-01

    This report presents the principles, practices, terminology, and technology of computer-based ultrasonic testing for inservice inspection (UT/ISI) of nuclear power plants, with extensive use of drawings, diagrams, and LTT images. The presentation is technical but assumes limited specific knowledge of ultrasonics or computers. The report is divided into 9 sections covering conventional LTT, computer-based LTT, and evaluation methodology. Conventional LTT topics include coordinate axes, scanning, instrument operation, RF and video signals, and A-, B-, and C-scans. Computer-based topics include sampling, digitization, signal analysis, image presentation, SAFI, ultrasonic holography, transducer arrays, and data interpretation. An evaluation methodology for computer-based LTT/ISI systems is presented, including questions, detailed procedures, and test block designs. Brief evaluations of several computer-based LTT/ISI systems are given; supplementary volumes will provide detailed evaluations of selected systems

  6. The neutron beam users tape management system

    International Nuclear Information System (INIS)

    Lyall, B.; Johnson, M.W.

    1977-02-01

    Systems are described for dealing with data collected at the High Flux Reactor, Institut Laue-Langevin, Grenoble and brought on magnetic tape to the Neutron Beam Research Unit at the Rutherford Laboratory. The first system, named GNAT, was designed to archive the incoming 800 bpi tapes onto 6250 bpi tapes (to enable them to return to the ILL). The archiving program, besides choosing the archive tapes, keeping a record of the data sets archived, and writing the archive tape, should be able to cope with incoming tapes whose formats are somewhat different from the standard IBM format. The second system, named FONT, was designed to maintain a record of all the tapes in the NBRU's possession, their whereabouts and what data, if any, are on them. (U.K.)

  7. Risk evaluation system for operational events and inspection findings

    Energy Technology Data Exchange (ETDEWEB)

    Lopez G, A.; Godinez S, V.; Lopez M, R., E-mail: alopezg@cnsns.gob.m [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2010-10-15

    The Mexican Nuclear Regulatory Commission has developed an adaptation of the US NRC Significance Determination Process (SDP) to evaluate the risk significance of operational events and inspection findings in Laguna Verde nuclear power plant. The Mexican Nuclear Regulatory Commission developed a plant specific flow chart for preliminary screening instead of the open questionnaire used by the US NRC-SDP, with the aim to improve the accuracy of the screening process. Also, the work sheets and support information tables required by the SDP were built up in an Excel application which allows to perform the risk evaluation in an automatic way, focusing the regulator staff efforts in the risk significance analysis instead of the risk calculation tasks. In order to construct this tool a simplified PRA model was developed and validated with the individual plant examination model. This paper shows the Mexican Nuclear Regulatory Commission process and some risk events evaluations performed using the Risk Evaluation System for Operational Events and Inspection Findings (SERHE, by its acronyms in Spanish). (Author)

  8. Risk evaluation system for operational events and inspection findings

    International Nuclear Information System (INIS)

    Lopez G, A.; Godinez S, V.; Lopez M, R.

    2010-10-01

    The Mexican Nuclear Regulatory Commission has developed an adaptation of the US NRC Significance Determination Process (SDP) to evaluate the risk significance of operational events and inspection findings in Laguna Verde nuclear power plant. The Mexican Nuclear Regulatory Commission developed a plant specific flow chart for preliminary screening instead of the open questionnaire used by the US NRC-SDP, with the aim to improve the accuracy of the screening process. Also, the work sheets and support information tables required by the SDP were built up in an Excel application which allows to perform the risk evaluation in an automatic way, focusing the regulator staff efforts in the risk significance analysis instead of the risk calculation tasks. In order to construct this tool a simplified PRA model was developed and validated with the individual plant examination model. This paper shows the Mexican Nuclear Regulatory Commission process and some risk events evaluations performed using the Risk Evaluation System for Operational Events and Inspection Findings (SERHE, by its acronyms in Spanish). (Author)

  9. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  10. DESIGN OF A WELDING AND INSPECTION SYSTEM FOR WASTE STORAGE CLOSURE

    International Nuclear Information System (INIS)

    H.B. Smartt; A.D. Watkins; D.P. Pace; R.J. Bitsoi; E.D. Larsen T.R. McJunkin; C.R. Tolle

    2005-01-01

    This work reported here was done to provide a conceptual design for a robotic welding and inspection system for the Yucca Mountain Repository waste package closure system. The welding and inspection system is intended to make the various closure welds that seal and/or structurally join the lids to the waste package vessels. The welding and inspection system will also perform surface and volumetric inspections of the various closure welds and has the means to repair closure welds, if required. The system is designed to perform these various activities remotely, without the necessity of having personnel in the closure cell

  11. Results of automatic system implementation for Cofrentes power plant detection system LPRM inspection execution

    Energy Technology Data Exchange (ETDEWEB)

    Palomo, M., E-mail: mpalomo@iqn.upv.es [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia (Spain); Urrea, M., E-mail: matias.urrea@iberdrola.es [C.N.Cofrentes - Iberdrola Generacion S.A., Valencia (Spain); Curiel, M., E-mail: m.curiel@lainsa.com [LAINSA, Grupo Dominguis, Valencia (Brazil); Arnaldos, A., E-mail: a.arnaldos@titaniast.com [TITANIA Servicios Teconologicos, Valencia (Spain)

    2011-07-01

    During this presentation we are going to introduce the results of Cofrentes nuclear power plant automation of the detection system LPRM (Local Power Range Monitor) inspection procedure. An LPRM's test system has been developed and it consists in a software application and data acquisition hardware that performs automatically the complete detection system process: refueling, storage and operation inspection: Ramp voltage generation, measured voltage Plateaux evaluation, qualification report emission; historical analysis to scan burn evolution. The inspections differentiations are developed by the different specifications that it has to fulfil: operation inspection: it is made to check the fission bolt wearing, the detection system functioning and to analyse malfunctioning. From technical specifications and curves analyses it can be determined each LPRM's substitution. Storage inspection: it is made to check the correct functioning and isolation losses before being installed in the core during refueling. Refueling inspection: it is checked that storage LPRM's installation is correct and that they are ready for new fuel cycle. The software application LPRM's Test has been developed by National Instruments LabVIEW, and it performs the following actions: Protocol IEEE-488 (GPIB) control of the source KEITHLEY 237. This source generates the ramp voltage and measure voltage; information acquisition of storage, process and source, identifying LPRM and realization conditions of the same; data analysis and conditions report, historical comparative analysis. (author)

  12. A development methodology for a remote inspection system with JAVA and socket

    International Nuclear Information System (INIS)

    Choi, Yoo Rark; Lee, Jae Cheol; Kim, Jae Hee

    2004-01-01

    We have developed RISYS (Reactor Inspection System) which inspects reactor vessel welds by an underwater mobile robot. The system consists of a main control computer and an inspection robot which is controlled by the main control computer. Since the environments of the inspection tasks in a nuclear plant, like in other industrial fields, is very poor, serious accidents often happen. Therefore the necessity for remote inspection and control system has increased more and more. We have carried out the research for a remote inspection model for RISYS, and have adopted the world wide web, java, and socket technologies for it. Client interface to access the main control computer that controls the inspection equipment is essential for the development of a remote inspection system. It has been developed with a traditional programming language, for example, Visual C++, Visual Basic and X-Window. However, it is too expensive to vend and maintain the version of a interface program because of the different computer O/S. Nevertheless web and java technologies come to the fore to solve the problems but the java interpreting typed language could incur a performance problem in operating the remote inspection system. We suggest a methodology for developing a remote inspection system with java, a traditional programming language, and a socket programming that solves the java performance problem in this paper

  13. Demonstration project for robotic inspection systems at nuclear power plants

    International Nuclear Information System (INIS)

    White, J.R.

    1984-01-01

    A cost-effective approach for applying industrial robotics technology to nuclear power plant inspection work was developed during a Phase I study. High potential areas for inspection robots were identified at a BWR and PWR plant. Phase II of this NRC project includes the design, fabrication, and demonstration testing of a surveillance robot (SURBOT) at the Browns Ferry Nuclear Plant. SURBOT will replace workers in performing inspections and radiation mapping within radiation controlled areas

  14. Real-time thermal neutron radiographic detection systems

    International Nuclear Information System (INIS)

    Berger, H.; Bracher, D.A.

    1976-01-01

    Systems for real-time detection of thermal neutron images are reviewed. Characteristics of one system are presented; the data include contrast, resolution and speed of response over the thermal neutron intensity range 2.5 10 3 n/cm 2 -sec to 10 7 n/cm 2 -sec

  15. Data acquisition and instrument control system for neutron ...

    Indian Academy of Sciences (India)

    A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on ...

  16. Neutron diffraction texture analysis of multi-phase systems

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1989-01-01

    Neutron diffraction methods for texture analysis are closely parallel to well-known X-ray diffraction techniques. The chief advantage of neutron diffraction over X-ray diffraction, however, arises from the fact that the interaction of neutrons with matter is relatively weak, and consequently the penetration depth of neutrons is 10 2 -10 3 times larger than that of X-rays. Hence neutron diffraction is an efficient tool for measuring textures in multi-phase systems. Based on the high transmission of a neutron beam the effect of anisotropic absorption in multi-phase materials can be neglected in most cases. Moreover, the analysis of bulk textures becomes possible, such that textures in a wide variety of multi-phase systems can be studied which are of special interest in engineering and science (metals, alloys, composites, ceramics and geological specimens). (orig.)

  17. Comparison of tomographic systems for X-Ray and thermal neutrons

    International Nuclear Information System (INIS)

    Souza, Maria Ines S.; Almeida, Gevaldo L. de; Furieri, Rosanne C.A.A.; Lopes, Ricardo Tadeu; Jesus, Edgar Oliveira de; Barbosa, Ademarlaudo Franca

    2003-01-01

    In this work, tomographic images of the same object have been taken with 25 keV X-rays and thermal neutrons (E=0.025 eV) aiming to demonstrate that thermal neutron tomography in some cases is a complementary technique to the X-ray tomography, such as in the examination of hydrogen-bearing compounds wrapped in a metallic matrix for instance. The capability of the neutron to pass through metallic materials such as lead, stainless steel and aluminium, allows to inspect encapsulated plastic explosives and visualize their inner structure like density variations, voids and alien materials, which are important features for the quality control of the final product. To obtain the images, a 3 rd generation tomographic system with a Position Sensitive Detector has been developed. For X-rays this proportional detector was provided with an 8 cm long carbon window, and filled with Ar - CH 4 4 under a pressure of 2 atm. The X-ray beam was supplied by an ampoule with a tungsten anode manufactured by IPRJ/UERJ. For neutron detection the carbon window has been replaced by aluminium, and the filling-gas by 3 He enriched helium, acting simultaneously as neutron converter and ionization gas. The Argonauta reactor at the Instituto de Engenharia Nuclear IEN/CNEN was used as neutron source and furnishes a thermal neutron flux of 4.5x10 5 n · cm -2 · s -1 at its main channel outlet, where the tomographic system was installed. (author)

  18. Integrating design and production planning with knowledge-based inspection planning system

    International Nuclear Information System (INIS)

    Abbasi, Ghaleb Y.; Ketan, Hussein S.; Adil, Mazen B.

    2005-01-01

    In this paper an intelligent environment to integrate design and inspection earlier to the design stage. A hybrid knowledge-based approach integrating computer-aided design (CAD) and computer-aided inspection planning (CAIP) was developed, thereafter called computer-aided design and inspection planning (CADIP). CADIP was adopted for automated dimensional inspection planning. Critical functional features were screened based on certain attributes for part features for inspection planning application. Testing the model resulted in minimizing the number of probing vectors associated with the most important features in the inspected prismatic part, significant reduction in inspection costs and release of human labor. In totality, this tends to increase customer satisfaction as a final goal of the developed system. (author)

  19. INETEC new system for inspection of PWR reactor pressure vessel head

    International Nuclear Information System (INIS)

    Nadinic, B.; Postruzin, Z.

    2004-01-01

    INETEC Institute for Nuclear Technology developed new equipment for inspection of PWR and VVER reactor pressure vessel head. The new advances in inspection technology are presented in this article, as the following: New advance manipulator for inspection of RPVH with high speed of inspection possibilities and total automated work; New sophisticated software for manipulator driving which includes 3D virtual presentation of manipulator movement and collision detection possibilities; New multi axis controller MAC-8; New end effector system for inspection of penetration tube and G weld; New eddy current and ultrasonic probes for inspection of G weld and penetration tube; New Eddy One Raster scan software for analysis of eddy current data with mant advanced features which allows easy and quick data analysis. Also the results of laboratory testing and laboratory qualification are presented on reactor pressure vessel head mock, as well as obtained speed of inspection and quality of collected data.(author)

  20. Design of database management system for 60Co container inspection system

    International Nuclear Information System (INIS)

    Liu Jinhui; Wu Zhifang

    2007-01-01

    The function of the database management system has been designed according to the features of cobalt-60 container inspection system. And the software related to the function has been constructed. The database querying and searching are included in the software. The database operation program is constructed based on Microsoft SQL server and Visual C ++ under Windows 2000. The software realizes database querying, image and graph displaying, statistic, report form and its printing, interface designing, etc. The software is powerful and flexible for operation and information querying. And it has been successfully used in the real database management system of cobalt-60 container inspection system. (authors)

  1. 75 FR 65051 - Consensus Standards, Standard Practice for Inspection of Airplane Electrical Wiring Systems

    Science.gov (United States)

    2010-10-21

    ... Practice for Inspection of Airplane Electrical Wiring Systems AGENCY: Federal Aviation Administration, DOT...'s F2696-08 Standard Practice for Inspection of Airplane Electrical Wiring Systems (Standard Practice) as an acceptable means of compliance to 14 CFR part 23 sections concerning electrical wiring systems...

  2. Guidance notes : safe practice for the use of x-ray security and inspection systems

    International Nuclear Information System (INIS)

    2001-08-01

    These guidance notes are advisory only and have been written to provide information for owners, licensees and users on the safety of fluoroscopic x-ray security systems used for surveillance of baggage for security and quarantine purposes, mail inspection, and surveillance of personnel, and fluoroscopic x-ray inspection systems used for quality control inspection of bulk foodstuffs (detection of foreign bodies), and manufactured items such as tyres and wheel castings. They give practical guidance on compliance with the requirements of radiation protection legislation and the 'Code of safe practice for the use of x-ray security and inspection systems, NRL C16'. (author). 3 refs

  3. Self-localization for underwater inspection robot in reactor systems

    International Nuclear Information System (INIS)

    Kobayashi, Futoshi; Kojima, Fumio

    2007-01-01

    An underwater inspection robot has been needed for preventive maintenance in a nuclear power plant. This paper deals with a self-localization method for the underwater inspection robot. In this method, the position and the orientation of the robot are estimated by using the particle filter. For showing the effectiveness of the proposed method, an experiment with real robot is demonstrated. (author)

  4. OrientExpress: A new system for Laue neutron diffraction

    International Nuclear Information System (INIS)

    Ouladdiaf, B.; Archer, J.; McIntyre, G.J.; Hewat, A.W.; Brau, D.; York, S.

    2006-01-01

    A new automatic Laue neutron diffractometer has been developed at the ILL. The system is composed of a goniometer with two tilt stages mounted on an ω-rotation and a scintillator/CCD neutron detector which is mounted on a 2θ arm. All movements are computer controlled. The intensified neutron imaging system is unique and allows electronic capture of neutron Laue diffraction patterns in a much shorter time (few seconds) than conventional film-based methods. The detection system is based upon two high-performance image-intensified CCD cameras coupled to a large-area neutron scintillator. The system is also unique in permitting full back-reflection geometry. A gain of about 100 in efficiency is obtained compared to the conventional film method with comparable spatial resolution. Some examples for Laue patterns are presented and compared to those obtained by film. A quantitative analysis of the integrated intensity of the Laue spots is also made

  5. Development of Neutron Imaging System for Neutron Tomography at Thai Research Reactor TRR-1/M1

    Science.gov (United States)

    Wonglee, S.; Khaweerat, S.; Channuie, J.; Picha, R.; Liamsuwan, T.; Ratanatongchai, W.

    2017-09-01

    The neutron imaging is a powerful non-destructive technique to investigate the internal structure and provides the information which is different from the conventional X-ray/Gamma radiography. By reconstruction of the obtained 2-dimentional (2D) images from the taken different angle around the specimen, the tomographic image can be obtained and it can provide the information in more detail. The neutron imaging system at Thai Research Reactor TRR-1/M1 of Thailand Institute of Nuclear Technology (Public Organization) has been developed to conduct the neutron tomography since 2014. The primary goal of this work is to serve the investigation of archeological samples, however, this technique can also be applied to various fields, such as investigation of industrial specimen and others. This research paper presents the performance study of a compact neutron camera manufactured by Neutron Optics such as speed and sensitivity. Furthermore, the 3-dimentional (3D) neutron image was successfully reconstructed at the developed neutron imaging system of TRR-1/M1.

  6. An automatic chip structure optical inspection system for electronic components

    Science.gov (United States)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  7. New Calgary Neutron Monitor Data Acquisition System

    Science.gov (United States)

    Kouznetsov, A.; Unick, C.; Bland, C. J.; Knudsen, D. J.

    2017-12-01

    The purpose of the project is to supply the World Neutron Database (NMDB) with high-quality data in an online, real-time mode. To do so, we created, and run continuously, a new "real-time hardware" data acquisition system using a set of low-cost (less than $15) counters based on Cypress Programmable System on a Chip (PSoC) technology. The PSoC is flexible and has microcontroller and FPGA-like capabilities which have enabled us to build a multi-level solution with low-level multi-channel counters and a top-level data acquisition and storage system, capable of supplying the NMDB with a real-time data stream. The top-level data acquisition system queries twelve PSoCs in an asynchronous command mode, sending commands and waiting for replies from the PSoCs asynchronously. The PSOC units replace the preamplifier electronics on each counter. Recent test show the units to be stable with a variety of supply-voltage sources and capable of running without adjustment for extended periods.

  8. Experience in Application of Calandria Internal Inspection System to Wolsung NPP 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaedong; Jin, Seukhong; Moon, Gyoonyoung [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    For the purpose of this inspection, we have developed a expeditious NDE System for calandrias internal and successfully applied the system to the field inspection during the period of pressure tube replacement of Wolsung Nuclear Power Plant Unit 1 on February 2010. For the purpose of this inspection, we have developed the Calandria Internal Inspection System(CIIS) and then completed the field inspection to apply this system to Wolsung Nuclear Power Plant Unit 1 on February 2010. The inspection results are 'No Record able Indication(NRI)' and not found foreign materials. Especially, we reduced inspection time to 20 days compare to overseas company. In the future, we are plan to export this system and technology to overseas plant. Calandria is a PHWR Reactor and a horizontal cylindrical vessel of eight by eight meter in size. Calandrias internal structure and parts cannot be inspected during the normal operation or overhaul period. Accordingly, this inspection is only allowed when the pressure tubes are replaced for the lifetime extension activity.

  9. Television imaging system for fast neutron radiography using baby cyclotron

    International Nuclear Information System (INIS)

    Yoshii, Koji; Miya, Kenzo; Katoh, Norihiko.

    1993-01-01

    A television imaging system for fast neutron radiography (FNR-TV) developed using the fast neutron source reactor YAYOI was applied to the baby-cyclotron based fast neutron source to get images of thick objects quickly. In the system the same technique as a current television imaging system of thermal neutron radiography was applied, while the luminescent converter was used to detect fast neutrons. Using the CR39 track etch method it took about 7 h to get an image, while the FNR-TV only 20 s enough for taking the same object. However the FNR-TV imaging result of the simulation model of a large explosive device for the space launch vehicle of H-2 type was not so good as the image taken with the CR39 track etch method. The reason was that the luminescence intensity of the FNR-TV converter was a quarter of that in the YAYOI. (author)

  10. Effective vibration isolation system for perfect-crystal neutron interferometry

    International Nuclear Information System (INIS)

    Arthur, J.

    1985-01-01

    Perfect-crystal neutron interferometers are subject to degradation of their performance caused by vibrational accelerations. It is shown that the most seriously offending accelerations are rotational, and an effective and simple vibration isolation system that has been developed at the MIT Neutron Diffraction Laboratory is described

  11. SRAC2006; A Comprehensive neutronics calculation code system

    OpenAIRE

    奥村 啓介; 久語 輝彦; 金子 邦男; 土橋 敬一郎

    2007-01-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five ele...

  12. Complex Magnetic Systems Studied with Neutron Scattering

    DEFF Research Database (Denmark)

    Jacobsen, Henrik

    was conrmed with further neutron scattering experiments. An apparent discontinuity in the dispersion of the dynamic stripes in the limit of vanishing energy transfer was found in violation of Goldstone's theorem. Detailed simulations of the experiment showed that this eect could not be explained......This thesis presents work done during my PhD jointly at the Niels Bohr Institute and the European Spallation Source. The thesis can be divided into four parts: introduction, magnetic nanoparticles, frustrated materials and superconductivity. The rst part is an introduction to magnetism and neutron....... This leads to absence of long range order even at very low temperatures and to fascinating new states of matter. Neutron scattering is the main experimental tool used in this thesis. The advantage of neutron scattering is that the neutron is sensitive to both magnetic order and magnetic dynamics...

  13. Compact neutron imaging system using axisymmetric mirrors

    Science.gov (United States)

    Khaykovich, Boris; Moncton, David E; Gubarev, Mikhail V; Ramsey, Brian D; Engelhaupt, Darell E

    2014-05-27

    A dispersed release of neutrons is generated from a source. A portion of this dispersed neutron release is reflected by surfaces of a plurality of nested, axisymmetric mirrors in at least an inner mirror layer and an outer mirror layer, wherein the neutrons reflected by the inner mirror layer are incident on at least one mirror surface of the inner mirror layer N times, wherein N is an integer, and wherein neutrons reflected by the outer mirror are incident on a plurality of mirror surfaces of the outer layer N+i times, where i is a positive integer, to redirect the neutrons toward a target. The mirrors can be formed by a periodically reversed pulsed-plating process.

  14. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    Science.gov (United States)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  15. A New Ultrasonic Inspection System for Non-Destructive Examination of Precision Tubes

    DEFF Research Database (Denmark)

    Gundtoft, Hans Erik; Agerup, C. C.; Nielsen, T.

    1977-01-01

    The Risø/HV Tube Inspection System is designed for fast automatic inspection of the dimensions of and defects in precision tubes. The system is based upon a rotating water chamber with eight ultrasonic transducers. Tube handling and evaluation of the results can be performed in various ways using...

  16. Implementation of the Air Program Information Management System (APIMS) Inspection Module

    Science.gov (United States)

    2009-05-01

    7 5 T H A I R B A S E W I N G Implementation of the Air Program Information Management System (APIMS) Inspection Module 2009 Environment...Implementation of the Air Program Information Management System (APIMS) Inspection Module 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  17. SRAC95; general purpose neutronics code system

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke; Tsuchihashi, Keichiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio

    1996-03-01

    SRAC is a general purpose neutronics code system applicable to core analyses of various types of reactors. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications have been made for nuclear data libraries and programs. Thus, the new version SRAC95 has been completed. The system consists of six kinds of nuclear data libraries(ENDF/B-IV, -V, -VI, JENDL-2, -3.1, -3.2), five modular codes integrated into SRAC95; collision probability calculation module (PIJ) for 16 types of lattice geometries, Sn transport calculation modules(ANISN, TWOTRAN), diffusion calculation modules(TUD, CITATION) and two optional codes for fuel assembly and core burn-up calculations(newly developed ASMBURN, revised COREBN). In this version, many new functions and data are implemented to support nuclear design studies of advanced reactors, especially for burn-up calculations. SRAC95 is available not only on conventional IBM-compatible computers but also on scalar or vector computers with the UNIX operating system. This report is the SRAC95 users manual which contains general description, contents of revisions, input data requirements, detail information on usage, sample input data and list of available libraries. (author).

  18. A UAV system for inspection of industrial facilities

    Science.gov (United States)

    Nikolic, J.; Burri, M.; Rehder, J.; Leutenegger, S.; Huerzeler, C.; Siegwart, R.

    This work presents a small-scale Unmanned Aerial System (UAS) capable of performing inspection tasks in enclosed industrial environments. Vehicles with such capabilities have the potential to reduce human involvement in hazardous tasks and can minimize facility outage periods. The results presented generalize to UAS exploration tasks in almost any GPS-denied indoor environment. The contribution of this work is twofold. First, results from autonomous flights inside an industrial boiler of a power plant are presented. A lightweight, vision-aided inertial navigation system provides reliable state estimates under difficult environmental conditions typical for such sites. It relies solely on measurements from an on-board MEMS inertial measurement unit and a pair of cameras arranged in a classical stereo configuration. A model-predictive controller allows for efficient trajectory following and enables flight in close proximity to the boiler surface. As a second contribution, we highlight ongoing developments by displaying state estimation and structure recovery results acquired with an integrated visual/inertial sensor that will be employed on future aerial service robotic platforms. A tight integration in hardware facilitates spatial and temporal calibration of the different sensors and thus enables more accurate and robust ego-motion estimates. Comparison with ground truth obtained from a laser tracker shows that such a sensor can provide motion estimates with drift rates of only few centimeters over the period of a typical flight.

  19. Evaluating physical protection systems of licensed nuclear facilities using systems engineered inspection guidance

    International Nuclear Information System (INIS)

    Bradley, R.T.; Olson, A.W.; Rogue, F.; Scala, S.; Richard, E.W.

    1980-01-01

    The Lawrence Livermore National Laboratory (LLNL) and the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) have applied a systems engineering approach to provide the NRC Office of Inspection and Enforcement (IE) with improved methods and guidance for evaluating the physical protection systems of licensed nuclear facilities

  20. The synchronous active neutron detection system for spent fuel assay

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed open-quotes lock-inclose quotes amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound

  1. Analysis of data from the thermal imaging inspection system project.

    Science.gov (United States)

    2009-12-01

    The goal of this study was to use temperature measurements derived from infrared cameras to identify trucks with potential brake, tire, or hub defects. Data were collected at inspection sites on six different days and vehicles were subjected to CVSA ...

  2. Charting the Course for a New Air Force Inspection System

    Science.gov (United States)

    2013-01-01

    billeting, transportation, food , and orientation materials. Typically, at an active component wing, the inspection team spends approximately one...inspectors. You can easily get 200 people on base at the same time, all needing vehicles, lodging, food . It can over- whelm the base and outstrip...focus group remarked, No-notice would make the inspections more effective. With the UCI as it is now, you put all the junk on your desk into a drawer

  3. Modeling delayed neutron monitoring systems for fast breeder reactors

    International Nuclear Information System (INIS)

    Bunch, W.L.; Tang, E.L.

    1983-10-01

    The purpose of the present work was to develop a general expression relating the count rate of a delayed neutron monitoring system to the introduction rate of fission fragments into the sodium coolant of a fast breeder reactor. Most fast breeder reactors include a system for detecting the presence of breached fuel that permits contact between the sodium coolant and the mixed oxide fuel. These systems monitor for the presence of fission fragments in the sodium that emit delayed neutrons. For operational reasons, the goal is to relate the count rate of the delayed neutron monitor to the condition of the breach in order that appropriate action might be taken

  4. 233U Assay A Neutron NDA System

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-11-17

    The assay of highly enriched {sup 233}U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched {sup 235}U do not convert easily over to the assay of {sup 233}U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with {gamma} ray isotopics information should give a good overall determination of {sup 233}U material now stored in bldg. 3019 at the Oak Ridge National Laboratory.

  5. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility.

    Science.gov (United States)

    Casey, D T; Volegov, P L; Merrill, F E; Munro, D H; Grim, G P; Landen, O L; Spears, B K; Fittinghoff, D N; Field, J E; Smalyuk, V A

    2016-11-01

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  6. Quality assessment of neutron delivery system for small-angle neutron scattering diffractometers of the Jülich Centre for Neutron Science at the FRM II

    International Nuclear Information System (INIS)

    Radulescu, Aurel; Pipich, Vitaliy; Ioffe, Alexander

    2012-01-01

    Following the shutdown of FRJ-2 research reactor in Jülich, the pinhole small-angle neutron diffractometers KWS-1 and KWS-2 have been moved to the research reactor FRM II in Garching. The installation of these 40 m long instruments required the design and setup of new neutron guides with geometrical and optical features imposed by the instruments' positioning in the neutron guide hall, such as, the predetermined length and beam height as well as the foreseen improvement of the instrument performance. We report here about the quality assessment of the newly constructed neutron guides with respect to the optical, geometrical and alignment characteristics and the positioning of the velocity selector integrated in the neutron guide system by comparing the features of the measured neutron beams (in terms of neutron flux, intensity distribution and beam profile) with the results of the simulations of optimal neutron guide systems.

  7. Radiation safety for baggage x-ray inspection systems

    International Nuclear Information System (INIS)

    1994-05-01

    This book is an outgrowth of a course on radiation safety aimed at technicians responsible for conducting maintenance on baggage x-ray inspection systems used in federally operated facilities. The need for a single reference book became apparent to the instructor in 1984. In an effort to provide a cohesive development of the subject, a set of lecture notes was prepared and revised annually since 1984, from which this book has evolved. This book is intended to present concepts necessary for an elementary but comprehensive knowledge of radiation safety. While some material coverage may appear somewhat detailed, it is a deliberate attempt to strengthen areas of demonstrated weaknesses observed in course attenders and to provide guidance on the numerous questions about man-made radiation asked by course attenders over the years. Numerical examples are included in most chapters for clarity and ease of understanding. The problems given at the end of most chapters provide the reader with the opportunity of applying the material presented in the chapters to situations of practical interest. It is important that these problems be considered an integral part of the course and students attempt to solve them. 36 refs., 9 tabs., 17 figs

  8. Inspection robots

    International Nuclear Information System (INIS)

    Takenaka, Toshio; Oya, Tadashi

    1990-01-01

    Inspections of nuclear power plants make it possible to achieve and maintain high levels of plant reliability and availability. The Corporation is developing robots to perform inspection tasks. The benefits of robot use include maintaining higher surveillance levels, reducing occupational radiation exposure, and reduced labor costs. The article introduces two fully developed products: a remote-inspection robot for use inside nuclear reactor containment vessels, and a remote inspection and repair robot for use inside the the vacuum vessel of the JT-60 nuclear-fusion critical plasma test reactor. It also describes a prototype automatic inspection robot that detects abnormalities using video and infrared cameras and an image-processing system. (author)

  9. System and plastic scintillator for discrimination of thermal neutron, fast neutron, and gamma radiation

    Science.gov (United States)

    Zaitseva, Natalia P.; Carman, M. Leslie; Faust, Michelle A.; Glenn, Andrew M.; Martinez, H. Paul; Pawelczak, Iwona A.; Payne, Stephen A.

    2017-05-16

    A scintillator material according to one embodiment includes a polymer matrix; a primary dye in the polymer matrix, the primary dye being a fluorescent dye, the primary dye being present in an amount of 3 wt % or more; and at least one component in the polymer matrix, the component being selected from a group consisting of B, Li, Gd, a B-containing compound, a Li-containing compound and a Gd-containing compound, wherein the scintillator material exhibits an optical response signature for thermal neutrons that is different than an optical response signature for fast neutrons and gamma rays. A system according to one embodiment includes a scintillator material as disclosed herein and a photodetector for detecting the response of the material to fast neutron, thermal neutron and gamma ray irradiation.

  10. SRAC2006: A comprehensive neutronics calculation code system

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Kugo, Teruhiko; Kaneko, Kunio; Tsuchihashi, Keichiro

    2007-02-01

    The SRAC is a code system applicable to neutronics analysis of a variety of reactor types. Since the publication of the second version of the users manual (JAERI-1302) in 1986 for the SRAC system, a number of additions and modifications to the functions and the library data have been made to establish a comprehensive neutronics code system. The current system includes major neutron data libraries (JENDL-3.3, JENDL-3.2, ENDF/B-VII, ENDF/B-VI.8, JEFF-3.1, JEF-2.2, etc.), and integrates five elementary codes for neutron transport and diffusion calculation; PIJ based on the collision probability method applicable to 16 kind of lattice models, S N transport codes ANISN(1D) and TWOTRN(2D), diffusion codes TUD(1D) and CITATION(multi-D). The system also includes an auxiliary code COREBN for multi-dimensional core burn-up calculation. (author)

  11. Pillar-structured neutron detector based multiplicity system

    Science.gov (United States)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  12. Monitoring System for the Inspection of Vehicle Loads for Radioactivity

    International Nuclear Information System (INIS)

    Krishnamarchri, G.; Chaudhury, P.; Jain, A.; Kale, M. S.; Pradeepkumar, K. S.; Sharma, D. N.; Venkat Raj, V.

    2004-01-01

    From the nuclear facilities, inactive scrap may have to be sent periodically for disposal. The scrap is to be monitored to ensure that it is free from inadvertent mix up of contaminated material, which has got the potential of unwanted exposure to people as well as costly and time consuming clean up operations. Earlier the scrap carrying vehicles were monitored manually using portable radiation survey monitors by health physicists. A PC based monitoring system for the inspection of vehicle loads for radioactivity is developed and is in use which requires minimum manual interaction. The advantage of the system is that it can automatically screen all outgoing vehicles from the establishment. The PC based system consists of two detector boxes, each having three Plastic Scintillation detectors of 50 mm dia x 500 mm long. The processing unit is built around a PC addon card. Using the calibration factor (i.e., nGy/h per cps), the dose rate is computed and 'allow' / 'disallow' visual signal is generated in the PC located in a control room. The graphical user interface provides ON / OFF button for controlling the counting process and counting time interval can be set by the user as desired. All the six counters are synchronized for the process of counting. The acquired counts are displayed on the PC screen in the form of a count rate vs. time graph. At the completion of scanning of a vehicle, the counting is continued to acquire background radiation level till the next vehicle arrives. The processing unit estimates the radiation dose rate from these recorded counts by using already established calibration factor and displays the data on the monitor screen of the computer. If the determined dose rate exceeds the pre determined limit, an audio alarm is initiated and the alarm information is displayed on the monitor of the computer. The system has provision to enter information like vehicle registration number, type of the vehicle, origin of the load, destination etc. These

  13. Development of Cold Neutron Depth Profiling System at HANARO

    International Nuclear Information System (INIS)

    Park, B. G.; Choi, H. D.; Sun, G. M.

    2012-01-01

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. A number of analytical techniques for depth profiling have been developed. Neutron Depth Profiling (NDP) system which was developed by Ziegler et al. is one of the leading analytical techniques. In NDP, a thermal or cold neutron beam passes through a material and interacts with certain isotopes that are known to emit monoenergetic-charged particle remaining a recoil nucleus after neutron absorption. The depth is obtained from the energy loss of those charged particles escaping surface of substrate material. For various applications of NDP technique, the Cold Neutron Depth Profiling System (CN-NDP) was developed at a neutron guide CG1 installed at the HANARO cold neutron source. In this study the design features of the cold neutron beam and target chamber for the CN-NDP system are given. Also, some experiments for the performance tests of the CN-NDP system are described

  14. Cosmic Ray Neutron Sensing in Complex Systems

    Science.gov (United States)

    Piussi, L. M.; Tomelleri, E.; Tonon, G.; Bertoldi, G.; Mejia Aguilar, A.; Monsorno, R.; Zebisch, M.

    2017-12-01

    Soil moisture is a key variable in environmental monitoring and modelling: being located at the soil-atmosphere boundary, it is a driving force for water, energy and carbon fluxes. Nevertheless its importance, soil moisture observations lack of long time-series at high acquisition frequency in spatial meso-scale resolutions: traditional measurements deliver either long time series with high measurement frequency at spatial point scale or large scale and low frequency acquisitions. The Cosmic Ray Neutron Sensing (CRNS) technique fills this gap because it supplies information from a footprint of 240m of diameter and 15 to 83 cm of depth at a temporal resolution varying between 15 minutes and 24 hours. In addition, being a passive sensing technique, it is non-invasive. For these reasons, CRNS is gaining more and more attention from the scientific community. Nevertheless, the application of this technique in complex systems is still an open issue: where different Hydrogen pools are present and where their distributions vary appreciably with space and time, the traditional calibration method shows some limits. In order to obtain a better understanding of the data and to compare them with remote sensing products and spatially distributed traditional measurements (i.e. Wireless Sensors Network), the complexity of the surrounding environment has to be taken into account. In the current work we assessed the effects of spatial-temporal variability of soil moisture within the footprint, in a steep, heterogeneous mountain grassland area. Measurement were performed with a Cosmic Ray Neutron Probe (CRNP) and a mobile Wireless Sensors Network. We performed an in-deep sensitivity analysis of the effects of varying distributions of soil moisture on the calibration of the CRNP and our preliminary results show how the footprint shape varies depending on these dynamics. The results are then compared with remote sensing data (Sentinel 1 and 2). The current work is an assessment of

  15. Inspectable vault system for the disposal of radioactive waste having a liquid collection system

    International Nuclear Information System (INIS)

    Meess, D.C.; Hamilton, W.H.; Severson, W.J.; Wright, J.B.; Weiss, T.G. Jr.

    1990-01-01

    This patent describes an inspectable vault cell for the disposal of hazardous waste having a liquid collection and monitoring system. It comprises: a liquid impermeable floor slab having a drainage channel along one of its edges and being sloped so that liquid on the floor slab flow toward the drainage channel; a wall assembly disposed around the periphery of the floor slab, and a monitoring and inspection aisleway defined between the wall assembly and hazardous waste deposited on the floor slab for providing both an unobstructed view and convenient access to the drainage channel

  16. SAFER Inspection of Space Shuttle Thermal Protection System

    Science.gov (United States)

    Scoville, Zebulon C.; Rajula, Sudhakar

    2005-01-01

    In the aftermath of the space shuttle Columbia accident, it quickly became clear that new methods would need to be developed that would provide the capability to inspect and repair the shuttle's thermal protection system (TPS). A boom extension to the Remote Manipulator System (RMS) with a laser topography sensor package was identified as the primary means for measuring the damage depth in acreage tile as well as scanning Reinforced Carbon- Carbon (RCC) surfaces. However, concern over the system's fault tolerance made it prudent to investigate alternate means of acquiring close range photographs and contour depth measurements in the event of a failure. One method that was identified early was to use the Simplified Aid For EVA Rescue (SAFER) propulsion system to allow EVA access to damaged areas of concern. Several issues were identified as potential hazards to SAFER use for this operation. First, the ability of an astronaut to maintain controlled flight depends upon efficient technique and hardware reliability. If either of these is insufficient during flight operations, a safety tether must be used to rescue the crewmember. This operation can jeopardize the integrity of the Extra-vehicular Mobility Unit (EMU) or delicate TPS materials. Controls were developed to prevent the likelihood of requiring a tether rescue, and procedures were written to maximize the chances for success if it cannot be avoided. Crewmember ability to manage tether cable tension during nominal flight also had to be evaluated to ensure it would not negatively affect propellant consumption. Second, although propellant consumption, flight control, orbital dynamics, and flight complexity can all be accurately evaluated in Virtual Reality (VR) Laboratory at Johnson Space Center, there are some shortcomings. As a crewmember's hand is extended to simulate measurement of tile damage, it will pass through the vehicle without resistance. In reality, this force will push the crewmember away from the

  17. Commissioning of accelerator based boron neutron capture therapy system

    International Nuclear Information System (INIS)

    Nakamura, S.; Wakita, A.; Okamoto, H.; Igaki, H.; Itami, J.; Ito, M.; Abe, Y.; Imahori, Y.

    2017-01-01

    Boron neutron capture therapy (BNCT) is a treatment method using a nuclear reaction of 10 B(n, α) 7 Li. BNCT can be deposited the energy to a tumor since the 10 B which has a higher cross-section to a neutron is high is concentrated on the tumor. It is different from conventional radiation therapies that BNCT expects higher treatment effect to radiation resistant tumors since the generated alpha and lithium particles have higher radiological biological effectiveness. In general, BNCT has been performed in research nuclear reactor. Thus, BNCT is not widely applied in a clinical use. According to recent development of accelerator-based boron neutron capture therapy system, the system has an adequate flux of neutrons. Therefore, National Cancer Canter Hospital, Tokyo, Japan is planning to install accelerator based BNCT system. Protons with 2.5 MeV are irradiated to a lithium target system to generate neutrons. As a result, thermal load of the target is 50 kW since current of the protons is 20.0 mA. Additionally, when the accelerator-based BNCT system is installed in a hospital, the facility size is disadvantage in term of neutron measurements. Therefore, the commissioning of the BNCT system is being performed carefully. In this article, we report about the commissioning. (author)

  18. Development of machine-vision system for gap inspection of muskmelon grafted seedlings.

    Science.gov (United States)

    Liu, Siyao; Xing, Zuochang; Wang, Zifan; Tian, Subo; Jahun, Falalu Rabiu

    2017-01-01

    Grafting robots have been developed in the world, but some auxiliary works such as gap-inspecting for grafted seedlings still need to be done by human. An machine-vision system of gap inspection for grafted muskmelon seedlings was developed in this study. The image acquiring system consists of a CCD camera, a lens and a front white lighting source. The image of inspected gap was processed and analyzed by software of HALCON 12.0. The recognition algorithm for the system is based on principle of deformable template matching. A template should be created from an image of qualified grafted seedling gap. Then the gap image of the grafted seedling will be compared with the created template to determine their matching degree. Based on the similarity between the gap image of grafted seedling and the template, the matching degree will be 0 to 1. The less similar for the grafted seedling gap with the template the smaller of matching degree. Thirdly, the gap will be output as qualified or unqualified. If the matching degree of grafted seedling gap and the template is less than 0.58, or there is no match is found, the gap will be judged as unqualified; otherwise the gap will be qualified. Finally, 100 muskmelon seedlings were grafted and inspected to test the gap inspection system. Results showed that the gap inspection machine-vision system could recognize the gap qualification correctly as 98% of human vision. And the inspection speed of this system can reach 15 seedlings·min-1. The gap inspection process in grafting can be fully automated with this developed machine-vision system, and the gap inspection system will be a key step of a fully-automatic grafting robots.

  19. Development of machine-vision system for gap inspection of muskmelon grafted seedlings.

    Directory of Open Access Journals (Sweden)

    Siyao Liu

    Full Text Available Grafting robots have been developed in the world, but some auxiliary works such as gap-inspecting for grafted seedlings still need to be done by human. An machine-vision system of gap inspection for grafted muskmelon seedlings was developed in this study. The image acquiring system consists of a CCD camera, a lens and a front white lighting source. The image of inspected gap was processed and analyzed by software of HALCON 12.0. The recognition algorithm for the system is based on principle of deformable template matching. A template should be created from an image of qualified grafted seedling gap. Then the gap image of the grafted seedling will be compared with the created template to determine their matching degree. Based on the similarity between the gap image of grafted seedling and the template, the matching degree will be 0 to 1. The less similar for the grafted seedling gap with the template the smaller of matching degree. Thirdly, the gap will be output as qualified or unqualified. If the matching degree of grafted seedling gap and the template is less than 0.58, or there is no match is found, the gap will be judged as unqualified; otherwise the gap will be qualified. Finally, 100 muskmelon seedlings were grafted and inspected to test the gap inspection system. Results showed that the gap inspection machine-vision system could recognize the gap qualification correctly as 98% of human vision. And the inspection speed of this system can reach 15 seedlings·min-1. The gap inspection process in grafting can be fully automated with this developed machine-vision system, and the gap inspection system will be a key step of a fully-automatic grafting robots.

  20. Development and deployment of BARC Vessel Inspection System (BARVIS) for TAPS-1 and 2

    International Nuclear Information System (INIS)

    Singh, Jit Pal; Ranjon, R.; Kulkarni, M.P.; Soni, N.L.; Patel, R.J.

    2016-01-01

    As per regulatory requirements, inspection of welds in Reactor Pressure Vessel (RPV) is necessary for further continuing operation of TAPS - 1 and 2. Upper shell longitudinal welds of RPV which were seen as inaccessible up till now have been inspected first time since operation of the reactors by deploying Weld Inspection Manipulator (WIM) in Unit-1 in August 2012. Subsequently Unit-2 and again Unit-1 upper shell welds were inspected with upgraded versions of WIM in Feb 2013 and March 2015 respectively. Inspection of upper shell welds paves the way for more challenging inspection of beltline region welds. These welds are accessible only from Inside Diameter (JD) surface through a narrow annular gap of 25 mm between RPV wall and thermal shield by managing obstructions due to core internals. BARC Vessel Inspection System (BARVIS) for inspection of beltline region welds from inner side of the RPV was designed, manufactured, tested and qualified for sending scanning probes in to the annular gap of 25mm as per RPV engineering drawings and also based on actual gap measured in Unit-2. Annular gap measurement was done in Units-1 before deployment of BARVIS during 25 th Refuelling Outage (RFO) in Unit-1. Contrary to the expectation, the annular gap was found less and inspection of beltline region with BARVIS in Unit-1 could not be done. Finally during RFO in January 2016 of Unit-2, BARVIS has been successfully deployed for beltline region welds inspection. BARVIS mainly consists of manipulator, its operating system and data acquisition system. Data acquisition system and data analysis are not covered in this report. (author)

  1. Unique systems for inspection and repair of VVER steam generators

    International Nuclear Information System (INIS)

    Kovalyk, Adrian; Pilat, Peter; Jablonicky, Pavol

    2014-01-01

    During over 30 years, VUJE Trnava has developed a series of remote control manipulators for in-service inspection and maintenance of steam generator collectors. The manipulators have been widely used on WWER type reactors in Slovakia and abroad. Some of the manipulators for non-destructive testing are shown.

  2. Optimal Inspection and Maintenance Strategies for Structural Systems

    DEFF Research Database (Denmark)

    Sommer, A. M.

    on experience and judgement with a few exceptions within the areas of aircraft structures and offshore structures. For some aircraft structures in the U.S. Airforce, inspections are planned when the average crack is expected to exceed a given level according to Yang, 1980, and in Pedersen et al., 1992...

  3. 49 CFR 213.333 - Automated vehicle inspection systems.

    Science.gov (United States)

    2010-10-01

    ... applied (pounds). c = Coefficient of friction between rail/tie which is assigned a nominal value of (0.4... hours of the inspection, output reports that— (1) Provide a continuous plot, on a constant-distance axis... exception report containing a systematic listing of all track geometry conditions which constitute an...

  4. Application of hydrogel system for neutron attenuation

    CERN Document Server

    Gupta, S C; Gupta, B P

    2000-01-01

    Hydrogel sheets based on poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) have been prepared by the technique of acetalization of PVA using formaldehyde and grafting of acrylic acid onto PVAc by gamma irradiation. PVA hydrogel (PVAB) sheets have been prepared in geometrically stable shapes by compression moulding process and characterised for their thermal properties, geometrical stability on water absorption, and neutron shielding efficiency. The effective protection from fast neutrons can be increased by a factor of 18% by swelling the PVAB sheets to 210% in water. The water intake and subsequent retention of water by the sheet can be tailored as per shielding requirements.

  5. Experience with a new ultrasonic inspection system for non-destructive examination of canning tubes

    International Nuclear Information System (INIS)

    Gundtoft, H.E.; Nielsen, T.; Agerup, C.C.

    1976-05-01

    The Risoe/HV Tube Inspection System is designed for the fast automatic inspection of precision tubes. Work has been carried out on this system for the last 3 years. Its accuracy and stability have been improved by innovation in both the mechanical system (specially the water circulation and temperature regulation) and the electronic modules (the ultrasonic equipment). Also the ultrasonic transducers have been studied and changed. The calibration procedure has been simplified and furthermore improved, both for dimensions and defects. (author)

  6. An automatic evaluation system for NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At CERN, neutron personal monitoring for over 4000 collaborators is performed with Kodak NTA films, which have been shown to be the most suitable neutron dosimeter in the radiation environment around high-energy accelerators. To overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with sup 2 sup 3 sup 8 Pu-Be source neutrons, which results in densely ionised recoil tracks, as well as on the extension of the method to higher energy neutrons causing sparse and fragmentary tracks. The application of the method in routine personal monitoring is discussed. $9 overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with /sup 238/Pu-Be source $9 discussed. (10 refs).

  7. Neutron Scattering and Its Application to Strongly Correlated Systems

    OpenAIRE

    Zaliznyak, Igor A.; Tranquada, John M.

    2013-01-01

    Neutron scattering is a powerful probe of strongly correlated systems. It can directly detect common phenomena such as magnetic order, and can be used to determine the coupling between magnetic moments through measurements of the spin-wave dispersions. In the absence of magnetic order, one can detect diffuse scattering and dynamic correlations. Neutrons are also sensitive to the arrangement of atoms in a solid (crystal structure) and lattice dynamics (phonons). In this chapter, we provide an ...

  8. Three-dimensional measurement system for in-vessel visual inspection

    International Nuclear Information System (INIS)

    Aikawa, Tetsuro; Satoh, Yoshinori; Oodake, Tatsuya; Ochiai, Makoto; Yuguchi, Yasuhiro

    2009-01-01

    The main roles of in-vessel visual inspection (IVVI) are to observe internal structures and crack on the structure surface. For accurately checking those matters by visual inspection, inspectors sometimes need three-dimensional (3D) recognitions. Therefore, we developed a prototype system that has only one inspection head to obtain 3D measurements. This system is based on our 3DVT (3 Dimensional Visual Testing) technique that we have been developing. This report proposes that prototype measurement head and performance of this prototype evaluated by flat test piece and measures test piece which is simulated actual internal structure. (author)

  9. Development of video probe system for inspection of feeder pipe support in calandria reactor

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Lee, Nam Ho; Choi, Young Soo

    2000-07-01

    There are 760 feederpipes, which they are connected to inlet/outlet of the 380 pressure tube channels on the front of the calandria, in CANDU-type Reactor of Wolsung Nuclear Power Plant. As an ISI(In-Service Inspection) and PSI (Post- Service Inspection) requirements, maintenance activities of measuring the thickness of curvilinear part of feederpipe and inspecting the feederpipe support area within calandria are needed to ensure continued reliable operation of nuclear power plant. And untrasonic probe is used to measure the thickness of curvilinear part of feederpipe, however workers are exposed to radioactivity irradiation during the measurement period. But, it is impossible to inspect feederpipe support area thoroughlv because of narrow and confined accessibility, that is, an inspection space between the pressure tube channels is less than 100mm and pipes in feederpipe support area are congested. And also, workers involved in inspecting feederpipe support area are under the jeopardy of high-level radiation exposure. Concerns about sliding home, which make the move of feederpipe connected to pressure tube channel smooth as pressure tube expands and contracts in its axial direction, stuck to feederpipe support and some of the structural components have made necessary the development of video inspection probe system with narrow and confined accessibility to observe and inspect feederpipe support area more close. Using video inspection probe system, it is possible to inspect and repair abnormality of feederpipe support connected to pressure tube channels of the calandria more accurate and quantative than naked eye. Therefore, that will do much for ensuring safety of CANDU-type nuclear power plant

  10. Wheel inspection system environment qualification and validation : final report for public distribution.

    Science.gov (United States)

    2009-03-20

    International Electronic Machines Corporation (IEM) has developed and is now marketing a state-of-the-art Wheel Inspection System Environment (WISE). WISE provides wheel profile and dimensional measurements, i.e. rim thickness, flange height, flange ...

  11. Simulating an Isochronal Scheduled Inspection System for the P-3 Orion

    National Research Council Canada - National Science Library

    Jones, Jeffrey

    1998-01-01

    ...) for the United States Navy's P-3 Orion. Implementation of ISIS, which is based solely upon calendar time, has been proposed to replace the present system of scheduled inspections that are based upon both calendar time and flight hours...

  12. A remote telepresence robotic system for inspection and maintenance of a nuclear power plant

    International Nuclear Information System (INIS)

    Crane, C.D. III; Tulenko, J.S.

    1993-01-01

    Progress in reported in the areas of environmental hardening; database/world modeling; man-machine interface; development of the Advanced Liquid Metal Reactor (ALMR) maintenance inspection robot design; and Articulated Transporter/Manipulator System (ATMS) development

  13. Inspection, maintenance, and repair of large pumps and piping systems using advanced robotic tools

    International Nuclear Information System (INIS)

    Lewis, R.K.; Radigan, T.M.

    1998-01-01

    Operating and maintaining large pumps and piping systems can be an expensive proposition. Proper inspections and monitoring can reduce costs. This was difficult in the past, since detailed pump inspections could only be performed by disassembly and many portions of piping systems are buried or covered with insulation. Once these components were disassembled, a majority of the cost was already incurred. At that point, expensive part replacement usually took place whether it was needed or not. With the completion of the Pipe Walkertrademark/LIP System and the planned development of the Submersible Walkertrademark, this situation is due to change. The specifications for these inspection and maintenance robots will ensure that. Their ability to traverse both horizontal and vertical, forward and backward, make them unique tools. They will open the door for some innovative approaches to inspection and maintenance of large pumps and piping systems

  14. Development of intelligent Eddy Current Testing (ECT) system for PWR steam generator tube inspection

    International Nuclear Information System (INIS)

    Kawata, K.; Kawase, N.; Kurokawa, M.; Asada, Y.

    2005-01-01

    The intelligent ECT system was developed for the inspection of heat transfer tubes of the steam generator of the PWR plant. It consists of intelligent probe, data acquisition unit and data analysis system. The probe combines 24 channels inclined lay out drive coils and thin film pick-up coils with built-in electric circuits to provide high inspection capability equivalent to rotating coil ECT and high-speed inspection equivalent to conventional bobbin coil ECT. The advanced data analysis system that has filtering and automatic analysis functions is also developed to enable fast and precise analysis of large volume inspection data. The system was qualified by confirmation tests in FY 2003 to show thinned thickness sizing accuracy within ± 5%. (T. Tanaka)

  15. Upgrade of the neutron guide system at the OPAL Neutron Source

    International Nuclear Information System (INIS)

    Rodriguez, D Martin; Kennedy, S J; Klose, F

    2010-01-01

    The new research reactor at ANSTO (OPAL) is operating with seven neutron beam instruments in the user programme and three more under construction. The reactor design provides for expansion of the facility to eighteen instruments, and much of the basic infrastructure is already in place. However, an expansion of the neutron guide system is needed for further beam instruments. For this purpose, several possibilities are under consideration, such as insertion of multi-channel neutron benders in the existing cold guides or the construction of a new elliptic cold guide. In this work Monte Carlo (MC) simulations have been used to evaluate performance of these guide configurations. Results show that these configurations can be competitive with the best instruments in the world.

  16. A New Ultrasonic Inspection System for Non-Destructive Examination of precision Tubes

    DEFF Research Database (Denmark)

    Gundtoft, Hans Erik; Nielsen, T.

    1977-01-01

    In the automatic inspection system used by the Research Establishment at Risø - described in Part 1 - data (more than half a million per tube) from the ultrasonic dimension measurement and defect inspection are fed into a computer that simultaneously calculates and evaluates the results. This pap...... described the development of the computer program used and discussed the advantages of computer control over normal analogue recording techniques. The overall benefits gained by using a computer controlled ndt system are outlined....

  17. Development of sup 6 sup 0 Co cargo train inspection system

    CERN Document Server

    Wu Zhi Fang

    2002-01-01

    The author introduces the research and development of sup 6 sup 0 Co cargo train inspection system. With the use of radiography principle, every car image is acquired when the cargo train runs through the inspection channel. It is evaluated whether the cargo in car matches the corresponding customs declaration information with digital image processing techniques. The system has been installed in railway port at Manzhouli Customs

  18. Image processing in 60Co container inspection system

    International Nuclear Information System (INIS)

    Wu Zhifang; Zhou Liye; Wang Liqiang; Liu Ximing

    1999-01-01

    The authors analyzes the features of 60 Co container inspection image, the design of several special processing methods for container image and some normal processing methods for two-dimensional digital image, including gray enhancement, pseudo-enhancement, space filter, edge enhancement, geometry process, etc. It gives out the way to carry out the above mentioned process in Windows 95 or Win NT. It discusses some ways to improve the image processing speed on microcomputer and good results were obtained

  19. Comparison of secondary system piping Cr content with inspection data

    International Nuclear Information System (INIS)

    Tapping, R.L.; Mitchell, A.M.

    1997-06-01

    For several years a number of Ontario Hydro and CANDU-6 stations have been sampling sections of secondary-side piping for chromium content. Several hundred of these measurements have been made, and comparisons with inspection data drawn. There is special interest in chromium concentrations in the range 0.01< Cr<0.1 wt.%, in order to better define the effect of trace chromium content on susceptibility to flow-assisted corrosion. (author)

  20. A guide to the AUS modular neutronics code system

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1987-04-01

    A general description is given of the AUS modular neutronics code system, which may be used for calculations of a very wide range of fission reactors, fusion blankets and other neutron applications. The present system has cross-section libraries derived from ENDF/B-IV and includes modules which provide for lattice calculations, one-dimensional transport calculations, and one, two, and three-dimensional diffusion calculations, burnup calculations and the flexible editing of results. Details of all system aspects of AUS are provided but the major individual modules are only outlined. Sufficient information is given to enable other modules to be added to the system

  1. Review of neutron radiographic applications in industrial and biological systems

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Khan, A.R.

    1992-10-01

    Neutron radiography is a non-destructive testing technique and is being used worldwide for the design and the development of reactor fuels for research and power reactors. It is also being used for non-destructive examination of nuclear industrial products. In addition to its explosives and other industrial sectors. In addition to its applications in industrial sectors, the technique is widely used for research and development activities in biological systems. A review of technical applications of neutron radiography in different fields particularly in nuclear fuel management, aerospace industry, explosives and biology is presented. The methodology of neutron radiography is also discussed in detail along with the advantages of the technique. In addition, the potential of the neutron radiography facility at PINSTECH has been described. (author)

  2. A development of Trend Analysis System on Quality Assurance Inspection Results

    International Nuclear Information System (INIS)

    Oh, K. M.; Choi, G. S.; Ahn, S. K.; Lee, W. H.

    2005-01-01

    The purpose of periodic quality assurance (QA) inspection by KINS is to confirm the adequacy of QA program and the effectiveness of its implementation in accordance with a licensee's quality assurance program previously approved. In actual, KINS has performed regulatory QA inspection since March 13th, 1996 entrusted by the MOST. This inspection is executed for major nuclear related enterprises according to Enforcement Decree of the Act Article 31. Inspections typically are performed at a frequency of once every one or two years or three years according to KINS's internal guideline. This regulatory inspection covers siting, design, fabrication, installation, operation, and decommissioning activities of nuclear related facilities. Up to now, inspection findings and recommendations were issued and accumulated approximately to one thousand. But, the trends of a licensee's quality assurance program performance were not systematically analyzed yet. Therefore, this study introduces quality performance indicator and trend analysis system in order to effectively assess a licensee's quality assurance program performance. Using this trend analysis system, the trends of QA inspection findings and recommendations are quantitatively analyzed, based on finding cause codes

  3. Calibration of a spectrometry multisphere system for neutron fields

    International Nuclear Information System (INIS)

    Carelli, Jorge L.; Cruzate, Juan A.; Papadopulos, Susana B.; Gregori, Beatriz N.; Ciocci Brazzano, Ligia

    2005-01-01

    In this work it is presented the calibration of the neutrons spectrometric system of the Nuclear Regulatory Authority (ARN) in the Institut de Protection et Sure te Nucleaires (Ipn), Labourite dadaist et de Recherche s en Dosimetric Extern e, Cadarache, France. The multisphere system is composed of 9 polyethylene spheres of high density, with a gaseous detector of 3 He and associate electronics. The matrix of energy response to the system neutrons was obtained applying the MCNPX code for the range of energies between thermal and 100 MeV with cross sections taken from library ENDF/B-VI. The neutron spectra of the multisphere system were obtained applying the deconvolution code LOUHI82. The relationship between the theoretical responses and the experiences obtained with the AmBe and 252 Cf sources are also presented in this work [es

  4. Mechanized ultrasonic inspection of austenitic pipe systems; Mechanisierte Ultraschallpruefung von austenitischen Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Dressler, K.; Luecking, J.; Medenbach, S. [ABB ZAQ GmbH, Essen (Germany)

    1999-08-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [Deutsch] Das Ziel dieses Beitrages ist die Vorstellung der von der ABB ZAQ GmbH eingesetzten Standardprueftechniken fuer die Pruefung austenitischer Anlagenkomponenten. Im einzelnen wird die Grundwerkstoffpruefung (Rohre, Boegen, Formstuecke), die Schweissnahtpruefung und die Mischnahtpruefung angesprochen. Es werden dabei die Techniken fuer `Detection` und `Sizing` differenziert betrachtet und erlaeutert. (orig.)

  5. Critical experiments on an enriched uranium solution system containing periodically distributed strong thermal neutron absorbers

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1996-01-01

    A series of 62 critical and critical approach experiments were performed to evaluate a possible novel means of storing large volumes of fissile solution in a critically safe configuration. This study is intended to increase safety and economy through use of such a system in commercial plants which handle fissionable materials in liquid form. The fissile solution's concentration may equal or slightly exceed the minimum-critical-volume concentration; and experiments were performed for high-enriched uranium solution. Results should be generally applicable in a wide variety of plant situations. The method is called the 'Poisoned Tube Tank' because strong neutron absorbers (neutron poisons) are placed inside periodically spaced stainless steel tubes which separate absorber material from solution, keeping the former free of contamination. Eight absorbers are investigated. Both square and triangular pitched lattice patterns are studied. Ancillary topics which closely model typical plant situations are also reported. They include the effect of removing small bundles of absorbers as might occur during inspections in a production plant. Not taking the tank out of service for these inspections would be an economic advantage. Another ancillary topic studies the effect of the presence of a significant volume of unpoisoned solution close to the Poisoned Tube Tank on the critical height. A summary of the experimental findings is that boron compounds were excellent absorbers, as expected. This was true for granular materials such as Gerstley Borate and Borax; but it was also true for the flexible solid composed of boron carbide and rubber, even though only thin sheets were used. Experiments with small bundles of absorbers intentionally removed reveal that quite reasonable tanks could be constructed that would allow a few tubes at a time to be removed from the tank for inspection without removing the tank from production service

  6. Results of automatic system implementation for Cofrentes nuclear power plant LPRM inspection execution

    International Nuclear Information System (INIS)

    Curiel, M.; Palomo, M. J.; Rodriguez, M.; Arnaldos, A.

    2010-10-01

    During this presentation we are going to introduce the results of Cofrentes nuclear power plant automation of the detection system LPRM (Local Power Range Monitor) inspection procedure. An LPRM test system has been developed and it consists in a software application and data acquisition hardware that performs automatically the complete detection system process: 1) Refuelling, storage and operation inspection: ramp voltage generation, measured voltage plateaux evaluation, qualification report emission. 2) Historical analysis to scan burn evolution. The inspections differentiations are developed by the different specifications that it has to fulfil: 1) Operation inspection: it is made to check the fission bolt wearing, the detection system functioning and to analyse malfunctioning. From technical specifications and curves analyses it can be determined each LPRM substitution. 2) Storage inspection: it is made to check the correct functioning and isolation losses before being installed in the core during refueling. 3) Refueling inspection: it is checked that storage LPRM installation is correct and that they are ready for new fuel cycle. The software application LPRM test has been developed by National Instruments LabVIEWTM, and it performs the following actions: 1) Protocol IEEE-488 (GPI B) control of the source Keithley 237. This source generates the ramp voltage and measure voltage. 2) Information acquisition of storage, process and source, identifying LPRM and realization conditions of the same. 3) Data analysis and conditions report. 4) Historical comparative analysis. (Author)

  7. Results of automatic system implementation for Cofrentes nuclear power plant LPRM inspection execution

    Energy Technology Data Exchange (ETDEWEB)

    Curiel, M. [Logistica y Acondicionamientos Industriales SAU, Sorolla Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain); Palomo, M. J. [ISIRYM, Universidad Politecnica de Valencia, Camino de Vera s/n, Valencia (Spain); Rodriguez, M. [Iberdrola Generacion S. A., Central Nuclear Cofrentes, Carretera Almansa Requena s/n, 04662 Cofrentes, Valencia (Spain); Arnaldos, A., E-mail: m.curiel@lainsa.co [TITANIA Servicios Tecnologicos SL, Sorollo Center, local 10, Av. de las Cortes Valencianas No. 58, 46015 Valencia (Spain)

    2010-10-15

    During this presentation we are going to introduce the results of Cofrentes nuclear power plant automation of the detection system LPRM (Local Power Range Monitor) inspection procedure. An LPRM test system has been developed and it consists in a software application and data acquisition hardware that performs automatically the complete detection system process: 1) Refuelling, storage and operation inspection: ramp voltage generation, measured voltage plateaux evaluation, qualification report emission. 2) Historical analysis to scan burn evolution. The inspections differentiations are developed by the different specifications that it has to fulfil: 1) Operation inspection: it is made to check the fission bolt wearing, the detection system functioning and to analyse malfunctioning. From technical specifications and curves analyses it can be determined each LPRM substitution. 2) Storage inspection: it is made to check the correct functioning and isolation losses before being installed in the core during refueling. 3) Refueling inspection: it is checked that storage LPRM installation is correct and that they are ready for new fuel cycle. The software application LPRM test has been developed by National Instruments LabVIEWTM, and it performs the following actions: 1) Protocol IEEE-488 (GPI B) control of the source Keithley 237. This source generates the ramp voltage and measure voltage. 2) Information acquisition of storage, process and source, identifying LPRM and realization conditions of the same. 3) Data analysis and conditions report. 4) Historical comparative analysis. (Author)

  8. Advanced computed tomography system for the inspection of large aluminium car bodies

    Energy Technology Data Exchange (ETDEWEB)

    Simon, M.; Tiseanu, I.; Sauerwein, C. [Hans Waelischmiller, Meersburg (Germany); Sindel, M.; Brodmann, M.; Schmuecker, M. [AUDI AG, Neckarsulm (Germany)

    2006-07-01

    An advanced 3D CT system with the capability to scan parts sizing from 3 mm up to 5000 mm was developed. The newly designed non destructive inspection system overcomes existing limitations of conventional CT systems in terms of part size and resolution. Reconstruction and scan algorithms were developed that allow achieving three-dimensional information of material and geometry in large automotive bodies with a resolution of up to 30 {mu}m. In micro 3D CT mode a resolution of up to 3 {mu}m can be achieved. The development of the mechatronic inspection system includes aspects of mechanics, electronics, software, and algorithms. For the manipulation of the full range of parts a high precision manipulation system and an industrial robot are used. The system allows the car manufacturer to inspect non-destructively a variety of join connections in car body parts. The capability of the system is demonstrated by different applications. (orig.)

  9. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    International Nuclear Information System (INIS)

    Wang, Hesheng; Xu, Lifei; Chen, Weidong

    2016-01-01

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  10. Design and implementation of visual inspection system handed in tokamak flexible in-vessel robot

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng; Xu, Lifei [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory of System Control and Information Processing, Ministry of Education of China (China)

    2016-05-15

    In-vessel viewing system (IVVS) is a fundamental tool among the remote handling systems for ITER, which is used to providing information on the status of the in-vessel components. The basic functional requirement of in-vessel visual inspection system is to perform a fast intervention with adequate optical resolution. In this paper, we present the software and hardware solution, which is designed and implemented for tokamak in-vessel viewing system that installed on end-effector of flexible in-vessel robot working under vacuum and high temperature. The characteristic of our in-vessel viewing system consists of two parts: binocular heterogeneous vision inspection tool and first wall scene emersion based augment virtuality. The former protected with water-cooled shield is designed to satisfy the basic functional requirement of visual inspection system, which has the capacity of large field of view and high-resolution for detection precision. The latter, achieved by overlaying first wall tiles images onto virtual first wall scene model in 3D virtual reality simulation system, is designed for convenient, intuitive and realistic-looking visual inspection instead of viewing the status of first wall only by real-time monitoring or off-line images sequences. We present the modular division of system, each of them in smaller detail, and go through some of the design choices according to requirements of in-vessel visual inspection task.

  11. A novel automatic full-scale inspecting system for banknote printing plates

    Science.gov (United States)

    Zhang, Jian; Feng, Li; Lu, Jibing; Qin, Qingwang; Liu, Liquan; Liu, Huina

    2018-01-01

    Quality assurance of banknote printing plates is an important issue for the corporation which produces them. Every plate must be checked carefully and entirely before it's sent to the banknote printing factory. Previously the work is done by specific workers, usually with the help of powder and magnifiers, and often lasts for 3 to 4 hours for a 5*7 plate with the size of about 650*500 square millimeters. Now we have developed an automatic inspecting system to replace human work. The system mainly includes a stable platform, an electrical subsystem and an inspecting subsystem. A microscope held by the crossbeam can move around in the x-y-z space over the platform. A digital camera combined with the microscope captures gray digital images of the plate. The size of each digital image is 2672*4008, and each pixel corresponds to about 2.9*2.9 square microns area of the plate. The plate is inspected by each unit, and corresponding images are captured at the same relative position. Thousands of images are captured for one plate (for example, 4200 (120*5*7) for a 5*7 plate). The inspecting model images are generated from images of qualified plates, and then used to inspect indeterminate plates. The system costs about 64 minutes to inspect a plate, and identifies obvious defects.

  12. Research and development on in-service inspection system for reactor vessel of FBR's

    International Nuclear Information System (INIS)

    Rindo, Hiroshi; Mitabe, Noriaki; Ara, Kuniaki; Nagai, Keiichi; Otaka, Masahiko

    1993-01-01

    In-Service Inspection (ISI) is required for main components and piping of FBRs. Visual test and volumetric examination of the reactor vessel (RV) from the outer surface are to be performed under severe conditions such as limited space, high temperature and high gamma dose rate during the reactor shutdown. Therefore, ISI should be performed by using a remote operation system, and the ISI system should be very compact. PNC has been developing the ISI system to apply to the RV inspection. Verification and performance tests of ISI system were carried out by use of the RV test model. This paper describes the system structure, system verification tests including operation and controlling the inspection robot, the functions of the visual test and the volumetric examination under the high temperature

  13. Joint optimal inspection and inventory for a k-out-of-n system

    International Nuclear Information System (INIS)

    Bjarnason, Erik T.S.; Taghipour, Sharareh; Banjevic, Dragan

    2014-01-01

    Purpose: The objective of this paper is to develop a model, which optimizes jointly the inspection frequency and the inventory level for a k-out-of-n system with repairable components whose failures are hidden. Scope: The system is periodically inspected to detect failed components, and the components are either minimally repaired or replaced with spares from the inventory. The system fails between periodic inspections if n−k+1 components are down; in that case, all failed components are inspected and rectified if possible. Otherwise, the failed components are rectified at periodic inspections. An emergency spare is ordered at a system failure, if the inventory is empty and all failed components require replacement. Methodology: Using analytical approach to find the optimal solution is computationally intensive and not practical; a simulation model is developed to solve the problem. Results: The proposed model harmonizes the maintenance and inventory policies and finds the joint optimal solution which results in a minimum total cost. Conclusion: The joint optimization model results in a lower cost compared to separate maintenance and inventory optimization models. Novelty: Few joint models for k-out-of-n systems exist, and none of them investigate repairable components whose failures are hidden and follow a non-homogeneous Poisson process. - Highlights: • We model a k-out-of-n system with hidden failures and inventory. • The system is periodically inspected and the inventory is periodically replenished. • Failed components are either replaced or minimally repaired. • A simulation model is developed to calculate the total expected cost. • The inspection interval and inventory level that minimizes the total cost is found

  14. New electronic imaging system for Cf-252 based neutron radiography

    International Nuclear Information System (INIS)

    Ito, S.; Mochiki, K.; Matsumoto, T.

    2004-01-01

    We have developed a new imaging camera and a signal processing system for Cf-252 based neutron radiography. The imaging part consists of cascaded image intensifiers and a progressive-scan monochromatic CCD camera (SONY XC-55) with standard frame rate. The video signal is converted to 12 bits and processed by large-scale field programmable arrays (FPGAs). The signal processing system has three frame accumulation memories for normal frame images, binary-converted frame images and center-of-gravity frame images. A preliminary experiment was made using a Cf-252 neutron source at Atomic Energy Research Laboratory of Musashi Institute of Technology. (author)

  15. Design of a system for neutrons dosimetry; Diseno de un sistema para dosimetria de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Ceron, P.; Rivera, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Sanchez, A. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Vega C, H. R., E-mail: victceronr@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    At the present time diverse systems of detection of neutrons exist, as proportional counters based on BF{sub 3}, He{sub 3} and spectrometers of Bonner spheres. However, the cost and the complexity of the implementation of these systems put them far from the reach for dosimetric purposes. For these reasons a system of neutrons detection composed by a medium paraffin moderator that forms a 4π (spheres) arrangement and of several couples of thermoluminescent dosimeters TLD 600/TLD 700. The response of the system presents a minor repeatability to 5% in several assays when being irradiated with a {sup 239}PuBe source and a deviation of 13.8% in the Tl readings of four different spheres. The calibration factor of the system with regard to the neutrons source which was of 56.2 p Sv/nc also was calculated. These detectors will be used as passive monitors of photoneutrons in a radiotherapy room with lineal accelerator of high energy. (Author)

  16. A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement

    International Nuclear Information System (INIS)

    Yang, Li; Ma, Xiaobing; Zhai, Qingqing; Zhao, Yu

    2016-01-01

    We propose an inspection and replacement policy for a single component system that successively executes missions with random durations. The failure process of the system can be divided into two states, namely, normal and defective, following the delay time concept. Inspections are carried out periodically and immediately after the completion of each mission (random inspections). The failed state is always identified immediately, whereas the defective state can only be revealed by an inspection. If the system fails or is defective at a periodic inspection, then replacement is immediate. If, however, the system is defective at a random inspection, then replacement will be postponed if the time to the subsequent periodic inspection is shorter than a pre-determined threshold, and immediate otherwise. We derive the long run expected cost per unit time and then investigate the optimal periodic inspection interval and postponement threshold. A numerical example is presented to demonstrate the applicability of the proposed maintenance policy. - Highlights: • A delay time model of inspection is introduced for mission-based systems. • Periodic and random inspections are performed to check the state. • Replacement of the defective system at a random inspection can be postponed.

  17. Development of inverse-planning system for neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Maruo, Takeshi

    2006-01-01

    To lead proper irradiation condition effectively, Japan Atomic Energy Agency (JAEA) is developing an inverse-planning system for neutron capture therapy (NCT-IPS) based on the JAEA computational dosimetry system (JCDS) for BNCT. The leading methodology of an optimum condition in the NCT-IPS has been applied spatial channel theory with adjoint flux solution of Botzman transport. By analyzing the results obtained from the adjoint flux calculations according to the theory, optimum incident point of the beam against the patient can be found, and neutron spectrum of the beam which can generate ideal distribution of neutron flux around tumor region can be determined. The conceptual design of the NCT-IPS was investigated, and prototype of NCT-IPS with JCDS is being developed. (author)

  18. Development and applications of a new computer-controlled magnetic inspection system

    Science.gov (United States)

    Eichmann, A. R.

    1992-07-01

    The magnetic hysteresis inspection technique has been shown to obtain results that can be traceable to the fundamental properties of the material. A new computer-controlled instrument known as the Magnescope Mark 2 was developed which can be used to make magnetic hysteresis inspections on materials in situ. These inspections can be used to evaluate the condition of steel components non-destructively allowing it to be used in applications such as quality control and assurance in the production of steel and for evaluating the structural integrity of steel components. Previous inspections systems based on this technique were large, heavy, and hard to use making measurements out in the field difficult to obtain. The Magnescope Mark 2 was designed to be smaller, lighter, and easier to use allowing field measurements to be obtained much easier. The design and construction of the Magnescope Mark 2 is described along with the improvements and additions made to the control and analysis software known as MAGNUM.

  19. Irradiation system for neutron capture therapy using the small accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tooru [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Tanaka, Kenichi [Kyoto Univ. (Japan). Graduate School of Engineering; Nakagawa, Yoshinobu [Kagawa Children' s Hospital, Zentsuji (Japan); Hoshi, Masaharu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine

    2002-09-01

    Neutron capture therapy (NCT) is to kill tumor cells that previously incorporated the stable isotope which generates heavy charged particles with a short range and a high linear energy transfer (LET) on neutron irradiation. Boron-10 is ordinarily used as such an isotope. The tumor tissue is neutron-irradiated at craniotomy after preceding craniotomy for tumor extraction: therefore two surgeries are required for the present NCT in Japan. The reactions {sup 10}B(n, {alpha}{gamma}) {sup 7}Li and {sup 7}Li (p, n) {sup 7}Be are thought preferential for patients and doctors if a convenient small accelerator, not the reactor used at present, is available in the hospital because only one craniotomy is sufficient. Authors' examinations of the system for NCT using the small accelerator involve irradiation conditions, desirable energy spectrum of neutron, characterization of thermal and epi-thermal neutrons, social, practical and technical comparison of the reactor and accelerator, and usefulness of the reaction {sup 7}Li (p, n) {sup 7}Be. The system devoted to the NCT is awaited in future. (K.H.)

  20. The verification of neutron activation analysis support system (cooperative research)

    International Nuclear Information System (INIS)

    Sasajima, Fumio; Ichimura, Shigeju; Ohtomo, Akitoshi; Takayanagi, Masaji

    2000-12-01

    Neutron activation analysis support system is the system in which even the user who has not much experience in the neutron activation analysis can conveniently and accurately carry out the multi-element analysis of the sample. In this verification test, subjects such functions, usability, precision and accuracy of the analysis and etc. of the neutron activation analysis support system were confirmed. As a method of the verification test, it was carried out using irradiation device, measuring device, automatic sample changer and analyzer equipped in the JRR-3M PN-3 facility, and analysis software KAYZERO/SOLCOI based on the k 0 method. With these equipments, calibration of the germanium detector, measurement of the parameter of the irradiation field and analysis of three kinds of environmental standard sample were carried out. The k 0 method adopted in this system is primarily utilized in Europe recently, and it is the analysis method, which can conveniently and accurately carried out the multi-element analysis of the sample without requiring individual comparison standard sample. By this system, total 28 elements were determined quantitatively, and 16 elements with the value guaranteed as analytical data of the NIST (National Institute of Standards and Technology) environment standard sample were analyzed in the accuracy within 15%. This report describes content and verification result of neutron activation support system. (author)

  1. Development and validation of real-time SAFT-UT system for inservice inspection of LWRs

    International Nuclear Information System (INIS)

    Doctor, S.R.; Hall, T.E.; Reid, L.D.; Mart, G.A.

    1988-01-01

    The Pacific Northwest Laboratory is working to design, fabricate, and evaluate a real-time flaw detection and characterization system based on the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The system is designed to perform inservice inspection of light-water reactor components. Included objectives of this program for the Nuclear Regulatory Commission are to develop procedures for system calibration and field operation, to validate the system through laboratory and field inspections, and to generate an engineering database to support ASME Code acceptance of the technology. This progress report covers the programmatic work from October 1986 through September 1987. (author)

  2. Image formation simulation for computer-aided inspection planning of machine vision systems

    Science.gov (United States)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  3. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  4. Inspection of 56Fe γ-Ray angular distributions as a function of incident neutron energy using optical model approaches

    Directory of Open Access Journals (Sweden)

    Vanhoy J.R.

    2017-01-01

    Full Text Available Neutron inelastic scattering cross sections measured directly through (n,n or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n′γ are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator. For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energy resolution, since at 125o, the a2P2 term of the Legendre expansion is identically zero and the a4P4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the γ-ray production cross section. This project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting γ-ray excitation functions as cross sections when the incident neutron energy is < 1000 keV above threshold or before the onset of feeding.

  5. Inspection of 56Fe γ-Ray angular distributions as a function of incident neutron energy using optical model approaches

    Science.gov (United States)

    Vanhoy, J. R.; Ramirez, A. P.; Alcorn-Dominguez, D. K.; Hicks, S. F.; Peters, E. E.; McEllistrem, M. T.; Mukhopadhyay, S.; Yates, S. W.

    2017-09-01

    Neutron inelastic scattering cross sections measured directly through (n,n) or deduced from γ-ray production cross sections following inelastic neutron scattering (n,n'γ) are a focus of basic and applied research at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator). For nuclear data applications, angle-integrated cross sections are desired over a wide range of fast neutron energies. Several days of experimental beam time are required for a data set at each incident neutron energy, which limits the number of angular distributions that can be measured in a reasonable amount of time. Approximations can be employed to generate cross sections with a higher energy resolution, since at 125o, the a2P2 term of the Legendre expansion is identically zero and the a4P4 is assumed to be very small. Provided this assumption is true, a single measurement at 125o would produce the γ-ray production cross section. This project tests these assumptions and energy dependences using the codes CINDY/SCAT and TALYS/ECIS06/SCAT. It is found that care must be taken when interpreting γ-ray excitation functions as cross sections when the incident neutron energy is < 1000 keV above threshold or before the onset of feeding.

  6. Development of beryllium-based neutron target system with three-layer structure for accelerator-based neutron source for boron neutron capture therapy.

    Science.gov (United States)

    Kumada, Hiroaki; Kurihara, Toshikazu; Yoshioka, Masakazu; Kobayashi, Hitoshi; Matsumoto, Hiroshi; Sugano, Tomei; Sakurai, Hideyuki; Sakae, Takeji; Matsumura, Akira

    2015-12-01

    The iBNCT project team with University of Tsukuba is developing an accelerator-based neutron source. Regarding neutron target material, our project has applied beryllium. To deal with large heat load and blistering of the target system, we developed a three-layer structure for the target system that includes a blistering mitigation material between the beryllium used as the neutron generator and the copper heat sink. The three materials were bonded through diffusion bonding using a hot isostatic pressing method. Based on several verifications, our project chose palladium as the intermediate layer. A prototype of the neutron target system was produced. We will verify that sufficient neutrons for BNCT treatment are generated by the device in the near future. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Inverse kinetics for subcritical systems with external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2017-01-01

    Highlights: • It was developed formalism for reactivity calculation. • The importance function is related to the system subcriticality. • The importance function is also related with the value of the external source. • The equations were analyzed for seven different levels of sub criticality. • The results are physically consistent with others formalism discussed in the paper. - Abstract: Nuclear reactor reactivity is one of the most important properties since it is directly related to the reactor control during the power operation. This reactivity is influenced by the neutron behavior in the reactor core. The time-dependent neutrons behavior in response to any change in material composition is important for the reactor operation safety. Transient changes may occur during the reactor startup or shutdown and due to accidental disturbances of the reactor operation. Therefore, it is very important to predict the time-dependent neutron behavior population induced by changes in neutron multiplication. Reactivity determination in subcritical systems driven by an external neutron source can be obtained through the solution of the inverse kinetics equation for subcritical nuclear reactors. The main purpose of this paper is to find the solution of the inverse kinetics equation the main purpose of this paper is to device the inverse kinetics equations for subcritical systems based in a previous paper published by the authors (Gonçalves et al., 2015) and by (Gandini and Salvatores, 2002; Dulla et al., 2006). The solutions of those equations were also obtained. Formulations presented in this paper were tested for seven different values of k eff with external neutrons source constant in time and for a powers ratio varying exponentially over time.

  8. Risk-based Inspection Guide for the Susquehanna Station HPCI system

    Energy Technology Data Exchange (ETDEWEB)

    Travis, R; Higgins, J; Gunther, W; Shier, W [Brookhaven National Lab., Upton, NY (United States)

    1992-11-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A system Risk-based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Susquehanna Steam Electric Station (SSES) which is operated by Pennsylvania Power & Light (PP&L). Included in this S-RIG is a discussion of the role of HPCI in mitigating accidents and a presentation of PRA-based failure modes which could prevent proper operation of the system. The S-RIG uses industry operating experience, including plant-specific illustrative examples, to augment the basic PRA failure modes. It is designed to be used as a reference for both routine inspections and the evaluation of the significance of component failures.

  9. Risk-based Inspection Guide for the Susquehanna Station HPCI system

    International Nuclear Information System (INIS)

    Travis, R.; Higgins, J.; Gunther, W.; Shier, W.

    1992-11-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A system Risk-based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Susquehanna Steam Electric Station (SSES) which is operated by Pennsylvania Power ampersand Light (PP ampersand L). Included in this S-RIG is a discussion of the role of HPCI in mitigating accidents and a presentation of PRA-based failure modes which could prevent proper operation of the system. The S-RIG uses industry operating experience, including plant-specific illustrative examples, to augment the basic PRA failure modes. It is designed to be used as a reference for both routine inspections and the evaluation of the significance of component failures

  10. Analysis of neutron flux measurement systems using statistical functions

    International Nuclear Information System (INIS)

    Pontes, Eduardo Winston

    1997-01-01

    This work develops an integrated analysis for neutron flux measurement systems using the concepts of cumulants and spectra. Its major contribution is the generalization of Campbell's theorem in the form of spectra in the frequency domain, and its application to the analysis of neutron flux measurement systems. Campbell's theorem, in its generalized form, constitutes an important tool, not only to find the nth-order frequency spectra of the radiation detector, but also in the system analysis. The radiation detector, an ionization chamber for neutrons, is modeled for cylindrical, plane and spherical geometries. The detector current pulses are characterized by a vector of random parameters, and the associated charges, statistical moments and frequency spectra of the resulting current are calculated. A computer program is developed for application of the proposed methodology. In order for the analysis to integrate the associated electronics, the signal processor is studied, considering analog and digital configurations. The analysis is unified by developing the concept of equivalent systems that can be used to describe the cumulants and spectra in analog or digital systems. The noise in the signal processor input stage is analysed in terms of second order spectrum. Mathematical expressions are presented for cumulants and spectra up to fourth order, for important cases of filter positioning relative to detector spectra. Unbiased conventional estimators for cumulants are used, and, to evaluate systems precision and response time, expressions are developed for their variances. Finally, some possibilities for obtaining neutron radiation flux as a function of cumulants are discussed. In summary, this work proposes some analysis tools which make possible important decisions in the design of better neutron flux measurement systems. (author)

  11. Integrity of neutron-absorbing components of LWR fuel systems

    International Nuclear Information System (INIS)

    Bailey, W.J.; Berting, F.M.

    1991-03-01

    A study of the integrity and behavior of neutron-absorbing components of light-water (LWR) fuel systems was performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE). The components studies include control blades (cruciforms) for boiling-water reactors (BWRs) and rod cluster control assemblies for pressurized-water reactors (PWRs). The results of this study can be useful for understanding the degradation of neutron-absorbing components and for waste management planning and repository design. The report includes examples of the types of degradation, damage, or failures that have been encountered. Conclusions and recommendations are listed. 84 refs

  12. Evaluation of Contamination Inspection and Analysis Methods through Modeling System Performance

    Science.gov (United States)

    Seasly, Elaine; Dever, Jason; Stuban, Steven M. F.

    2016-01-01

    Contamination is usually identified as a risk on the risk register for sensitive space systems hardware. Despite detailed, time-consuming, and costly contamination control efforts during assembly, integration, and test of space systems, contaminants are still found during visual inspections of hardware. Improved methods are needed to gather information during systems integration to catch potential contamination issues earlier and manage contamination risks better. This research explores evaluation of contamination inspection and analysis methods to determine optical system sensitivity to minimum detectable molecular contamination levels based on IEST-STD-CC1246E non-volatile residue (NVR) cleanliness levels. Potential future degradation of the system is modeled given chosen modules representative of optical elements in an optical system, minimum detectable molecular contamination levels for a chosen inspection and analysis method, and determining the effect of contamination on the system. By modeling system performance based on when molecular contamination is detected during systems integration and at what cleanliness level, the decision maker can perform trades amongst different inspection and analysis methods and determine if a planned method is adequate to meet system requirements and manage contamination risk.

  13. Inspection system of radioactive contamination in foods and its results in Yokohama City

    International Nuclear Information System (INIS)

    Morita, Masahiro

    1993-01-01

    Accompanying the Chernobyl nuclear power plant accident occurred on April 26, 1986, the radioactive contamination of the foods imported from Europe became problems. Consequently, the Ministry of Health and Welfare stipulated the temporary limit of radioactive concentration in imported foods in terms of the total of Cs-134 and Cs-137 at less than 370 becquerel per 1 kg of foods in November, 1986, and the inspection system was tightened. In Yokohama, in view of securing the safety of foods and eliminating the anxiety of citizen, the measuring instruments for radioactivity were installed in the Hygiene Laboratory in 1986 and in the Food Hygiene Inspection Stations in Central Wholesale Market in 1987, and the inspection was begun. So far 720 subjects were inspected, but there was none that exceeds the temporary limit. The period and the method of executing the inspection and the results of nuclide analysis, screening inspection and so on are reported. It was judged that at the present point of time, there is not much influence to the life of citizen. (K.I.)

  14. Inspection logistics planning for multi-stage production systems with applications to semiconductor fabrication lines

    Science.gov (United States)

    Chen, Kyle Dakai

    Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.

  15. Systems for neutronic, thermohydraulic and shielding calculation in personal computers

    International Nuclear Information System (INIS)

    Villarino, E.A.; Abbate, P.; Lovotti, O.; Santini, M.

    1990-01-01

    The MTR-PC (Materials Testing Reactors-Personal Computers) system has been developed by the Nuclear Engineering Division of INVAP S.E. with the aim of providing working conditions integrated with personal computers for design and neutronic, thermohydraulic and shielding analysis for reactors employing plate type fuel. (Author) [es

  16. A neutron time-of-flight data acquisition system

    International Nuclear Information System (INIS)

    Morris, D.V.

    1983-10-01

    A neutron time-of-flight scaler system is described for use with the Harwell Linac. The equipment is sufficiently versatile to be used with several types of computers although normally used with DEC PDP 11/45 and PDP 11/34. Using a combination of different input and memory boards most types of experiments can be accommodated. (author)

  17. Data acquisition and instrument control system for neutron ...

    Indian Academy of Sciences (India)

    Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input–output and timer-counter operations. An interface card and DC motor ...

  18. Control system for the asynchronous drive of a neutron chopper

    International Nuclear Information System (INIS)

    Bulat, I.A.; Makovetskij, G.I.; Pashkovskij, Yu.L.; Smolik, Ch.K.

    1978-01-01

    A system of the rotation rate stabilization of a neutron time-of-flight spectrometer chopper is described with drive on the basis of an electric spindle of the Sh-24/35 type, fed by a static frequency converter on tiristors. The accurate control of rotation rate is performed by a phase discriminator on the basis of a generator of the sawtooth voltage, a switch and a memory element. The use of the neutron spectrometer shows that the device described provides for 0.05% rotation rate stability of the neutron chopper and automatic synchronization of the rotation rate with a frequency of the supporting quarz generator in the range from 1500 to 12000 rev/min

  19. Fragility of complexity biophysical systems by neutron scattering

    International Nuclear Information System (INIS)

    Magazu, Salvatore; Migliardo, Federica; Bellocco, Ersilia; Lagana, Giuseppina; Mondelli, Claudia

    2006-01-01

    Neutron scattering is an exceptional tool to investigate structural and dynamical properties of systems of biophysical interest, such as proteins, enzymes, lipids and sugars. Moreover, elastic neutron scattering enhances the investigation of atomic motions in hydrated proteins in a wide temperature range and on the picosecond timescale. Homologous disaccharides, such as trehalose, maltose and sucrose, are cryptobiotic substances, since they allow to many organisms to undergo in a 'suspended life' state, known as cryptobiosis in extreme environmental conditions. The present paper is aimed to discuss the fragility degree of disaccharides, as evaluated of the temperature dependence of the mean square displacement by elastic neutron scattering, in order to link this feature with their bioprotective functions

  20. Accelerator-based cold neutron sources and their cooling system

    International Nuclear Information System (INIS)

    Inoue, Kazuhiko; Yanai, Masayoshi; Ishikawa, Yoshikazu.

    1985-01-01

    We have developed and installed two accelerator-based cold neutron sources within a electron linac at Hokkaido University and a proton synchrotoron at National Laboratory for High Energy Physics. Solid methane at 20K was adopted as the cold moderator. The methane condensing heat exchangers attached directly to the moderator chambers were cooled by helium gas, which was kept cooled in refrigerators and circulated by ventilation fans. Two cold neutron sources have operated smoothly and safely for the past several years. In this paper we describe some of the results obtained in the preliminary experiments by using a modest capacity refrigerator, the design philosophy of the cooling system for the pulsed cold neutron sources, and outline of two facilities. (author)

  1. Neutron imaging systems utilizing lithium-containing semiconductor crystals

    Science.gov (United States)

    Stowe, Ashley C.; Burger, Arnold

    2017-04-25

    A neutron imaging system, including: a plurality of Li-III-VI.sub.2 semiconductor crystals arranged in an array, wherein III represents a Group III element and VI represents a Group VI element; and electronics operable for detecting and a charge in each of the plurality of crystals in the presence of neutrons and for imaging the neutrons. Each of the crystals is formed by: melting the Group III element; adding the Li to the melted Group III element at a rate that allows the Li and Group III element to react, thereby providing a single phase Li-III compound; and adding the Group VI element to the single phase Li-III compound and heating. Optionally, each of the crystals is also formed by doping with a Group IV element activator.

  2. Development of advanced ultrasonic inspection system for nuclear power plant reactor vessels

    International Nuclear Information System (INIS)

    Sawaragi, Kazuo; Miyake, Yoshio; Nakayama, Junji; Tachibana, Kiyoshi; Oomichi, Takao; Fukagawa, Yukio; Fujiwara, Masahiro; Honmura, Shiro

    1991-01-01

    Ultrasonic inspection machine consisting of large and stiff columns and guide rails has been usually used in the pre-service inspection (PSI) and in-service inspection (ISI) of the nuclear power plant reactor vessels. However, the machine is so large-sized and heavy that maintenance and handling are degraded. To solve these problems, our robotics technology and idea obtained from experience of reactor vessel ISI have been applied to develop a new second generation machine that can dramatically reduce critical path time of reactor vessel ISI. This system is characterized by the following features. (1) It can move automatically and can set the position accurately by underwater positioning system. (2) Inspection is made by the articulated manipulator of high rigidity and high path accuracy. (3) The total weight is approx 300 kg in air (0 kg underwater). So the plant's polar crane is not required during inspection. Realization of this system, we have studied and designed all of the systems. We have also fabricated prototype machine to make the functional test using full scale mock up of reactor vessel. (author)

  3. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Vargas Danilo

    2016-01-01

    Full Text Available A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1 and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  4. Development of the bandwidth-limiting neutron chopper prototype control system for CSNS

    International Nuclear Information System (INIS)

    Yang Bo; Wang Ping; Wang Fangwei

    2012-01-01

    The time-of-flight neutron scattering spectrometer in CSNS (China Spallation Neutron Source) will use a bandwidth-limiting (BWL) neutron chopper for choosing neutrons of certain band ranges. Its control system should synchronize the phase signal of BWL neutron chopper with the timing signal from accelerator, and monitor operation status of the neutron chopper. In this article, we describe the structure of control system, the control principle, and the software design. Test results of the controlling accuracy and operation stability of the control system are given, too. (authors)

  5. Data acquisition and instrument control system for neutron spectrometers

    International Nuclear Information System (INIS)

    Naik, S.S.; Kotwal, Ismat; Chandak, R.M.; Gaonkar, V.G.

    2004-01-01

    A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input-output and timer-counter operations. An interface card and DC motor driver card have been developed indigenously. Software for the system has been written in Visual C++ language using MS Windows operating system. This data acquisition and instrument control system is successfully controlling four spectrometers at Dhruva reactor. (author)

  6. Neutron scattering studies of low dimensional magnetic systems

    DEFF Research Database (Denmark)

    Hansen, Ursula Bengård

    CoCl2 · 2D2O have been investigated with neutron scattering experiments.CoCl2 · 2D2O can be considered a quasi one dimensional Ising system. This means, thatit is a near ideal model material for investigating low dimensional magnetic phenomena.The excitation spectrum of CoCl2 · 2D2O has been...... investigated at low temperaturesand in a longitudinal magnetic eld using neutron spectroscopy. Here we observe thehybridisation of the magnon bound states, inherent to the low dimensional nature ofCoCl2 · 2D2O.At higher temperature, signatures which can be attributed to Magnetic Bloch Oscillationsis observed......The results of this thesis can be divided into two parts, one concerning neutron scatteringstudies of low dimensional magnetic systems and one concerning neutron optics for theEuropean Spallation Source (ESS).In the part concerning low dimensional magnetic systems, three aspects of the dynamicsof...

  7. Mobile robot teleoperation system for plant inspection based on collecting and utilizing environment data

    International Nuclear Information System (INIS)

    Kawabata, Kuniaki; Watanabe, Nobuyasu; Asama, Hajime; Kita, Nobuyuki; Yang, Hai-quan

    2004-01-01

    This paper describes about development of a mobile robot teleoperation system for plant inspection. In our system, the robot is an agent for collecting the environment data and is also teleoperated by the operator utilizing such accumulated environment data which is displayed on the operation interface. The robot equips many sensors for detecting the state of the robot and the environment. Such redundant sensory system can be also utilized to collect the working environment data on-site while the robot is patrolling. Here, proposed system introduces the framework of collecting and utilizing environment data for adaptive plant inspection using the teleoperated robot. A view simulator is primarily aiming to facilitate evaluation of the visual sensors and algorithms and is also extended as the Environment Server, which is the core technology of the digital maintenance field for the plant inspection. In order to construct detailed seamless digital maintenance field mobile robotic technology is utilized to supply environment data to the server. The sensory system on the robot collect the environment data on-site and such collected data is uploaded to the Environment Server for compiling accurate digital environment data base. The robot operator also can utilize accumulated environment data by referring to the Environment Server. In this paper, we explain the concept of our teleoperation system based on collecting and utilizing environment data. Using developed system, inspection patrol experiments were attempted in the plant mock-up. Experimental results are shown by using an omnidirectional mobile robot with sensory system and the Environment Server. (author)

  8. Pirate, the development of an autonomous gas distribution system inspection robot

    NARCIS (Netherlands)

    Pulles, C.; Dertien, Edwin Christian; van de Pol, H.J.; Nispeling, R.

    2008-01-01

    A consortium of four companies is developing an autonomous inspection system for small diameter, low pressure gas distribution mains. Such a system could eventually replace the current practice of leak survey and improve the assessment of the quality of the mains, being able to investigate the mains

  9. The data correction algorithms in sup 6 sup 0 Co train inspection system

    CERN Document Server

    Yuan Ya Ding; LiuXiMing; Miao Ji Cheng

    2002-01-01

    Because of the physical characteristics of the sup 6 sup 0 Co train inspection system and the application of high-speed data collection system based on current integral, the original images have been distorted in a certain degree. Authors investigate into the reasons why the distortion comes into being, and accordingly present the data correction algorithm

  10. Analysis and optimization on in-vessel inspection robotic system for EAST

    International Nuclear Information System (INIS)

    Zhang, Weijun; Zhou, Zeyu; Yuan, Jianjun; Du, Liang; Mao, Ziming

    2015-01-01

    Since China has successfully built her first Experimental Advanced Superconducting TOKAMAK (EAST) several years ago, great interest and demand have been increasing in robotic in-vessel inspection/operation systems, by which an observation of in-vessel physical phenomenon, collection of visual information, 3D mapping and localization, even maintenance are to be possible. However, it has been raising many challenges to implement a practical and robust robotic system, due to a lot of complex constraints and expectations, e.g., high remanent working temperature (100 °C) and vacuum (10 −3 pa) environment even in the rest interval between plasma discharge experiments, close-up and precise inspection, operation efficiency, besides a general kinematic requirement of D shape irregular vessel. In this paper we propose an upgraded robotic system with redundant degrees of freedom (DOF) manipulator combined with a binocular vision system at the tip and a virtual reality system. A comprehensive comparison and discussion are given on the necessity and main function of the binocular vision system, path planning for inspection, fast localization, inspection efficiency and success rate in time, optimization of kinematic configuration, and the possibility of underactuated mechanism. A detailed design, implementation, and experiments of the binocular vision system together with the recent development progress of the whole robotic system are reported in the later part of the paper, while, future work and expectation are described in the end.

  11. Vision-Inspection System for Residue Monitoring of Ready-Mixed Concrete Trucks

    Directory of Open Access Journals (Sweden)

    Deok-Seok Seo

    2015-01-01

    Full Text Available The objective of this study is to propose a vision-inspection system that improves the quality management for ready-mixed concrete (RMC. The proposed system can serve as an alternative to the current visual inspection method for the detection of residues in agitator drum of RMC truck. To propose the system, concept development and the system-level design should be executed. The design considerations of the system are derived from the hardware properties of RMC truck and the conditions of RMC factory, and then 6 major components of the system are selected in the stage of system level design. The prototype of system was applied to a real RMC plant and tested for verification of its utility and efficiency. It is expected that the proposed system can be employed as a practical means to increase the efficiency of quality management for RMC.

  12. Black holes and neutron stars: evolution of binary systems

    International Nuclear Information System (INIS)

    Kraft, R.P.

    1975-01-01

    Evidence for the existence of neutron stars and black holes in binary systems has been reviewed, and the following summarizes the current situation: (1) No statistically significant case has been made for the proposition that black holes and/or neutron stars contribute to the population of unseen companions of ordinary spectroscopic binaries; (2) Plausible evolutionary scenarios can be advanced that place compact X-ray sources into context as descendants of several common types of mass-exchange binaries. The collapse object may be a black hole, a neutron star, or a white dwarf, depending mostly on the mass of the original primary; (3) The rotating neutron star model for the pulsating X-ray sources Her X-1 and Cen X-3 is the simplest interpretation of these objects, but the idea that the pulsations result from the non-radial oscillations of a white dwarf cannot be altogether dismissed. The latter is particularly attractive in the case of Her X-1 because the total mass of the system is small; (4) The black hole picture for Cyg X-1 represents the simplest model that can presently be put forward to explain the observations. This does not insure its correctness, however. The picture depends on a long chain of inferences, some of which are by no means unassailable. (Auth.)

  13. Recent activities on clearance in IAEA and clearance automatic laser inspection system (CLALIS)

    International Nuclear Information System (INIS)

    Hattori, Takatoshi; Sasaki, Michiya

    2005-01-01

    Exemption levels for bulk amounts of materials have been described in RS-G-1.7 published as a safety guide in IAEA on August 2004. In Japan, the Nuclear Safety Commission adopted the RS-G-1.7 values as Japanese clearance levels after the careful review of dose assessment results. After completing revises of regulatory laws in relation to clearance level, solid wastes from decommissioning and operating nuclear power plants will be targets of clearance inspection. In CRIEPI, Clearance Automatic Laser Inspection System (CLALIS) has been developed, which can give high reliability and objectivity to the measurement data. The CLALIS is a new monitoring system coupling with 3D laser shape measurement, Monte-Carlo calculation and gamma measurement techniques, which can keep a high accuracy in the measurement data using an automatic correction technique for self-shielding effects of metal waste itself and is expected to apply as a practical use in actual clearance inspections. (author)

  14. Mobile CT-System for In-situ Inspection in the LHC at CERN

    CERN Document Server

    Sauerwein, C; Caspers, F; Dalin, J M; Haemmerle, V; Tiseanu, I; Tock, J P

    2010-01-01

    For the inspection of certain critical elements of the LHC machine a mobile computed tomography system has been developed and built. This instrument has to satisfy stringent space, volume and weight requirements in order to be transportable and usable to any interconnection location in the LHC tunnel. Particular regions of interest in the interconnection zones between adjacent magnets are the plug in modules (PIM), the soldered splices in the superconducting bus-bars and the interior of the quench diode container. This system permits detailed inspection of these regions without needing to break the insulation vacuum. Limited access for the x-ray tube and the detector required the development of a special type of partial tomography, together with suitable reconstruction techniques for 3 D volume generation from radiographic projections. The layout of the complete machine, the limited angle tomography, as well as a number of radiographic and tomographic inspection results is presented.

  15. System and method for online inspection of turbines using an optical tube with broadspectrum mirrors

    Science.gov (United States)

    Baleine, Erwan

    2015-12-22

    An optical inspection system for nondestructive internal visual inspection and non-contact infra-red (IR) temperature monitoring of an online, operating power generation turbine. The optical inspection system includes an optical tube having a viewing port, at least one reflective mirror or a mirror array having a reflectivity spectral range from 550 nm to 20 .mu.m, and capable of continuous operation at temperatures greater than 932 degrees Fahrenheit (500 degrees Celsius), and a transparent window with high transmission within the same spectral range mounted distal the viewing port. The same optical mirror array may be used to measure selectively surface temperature of metal turbine blades in the near IR range (approximately 1 .mu.m wavelength) and of thermal barrier coated turbine blades in the long IR range (approximately 10 .mu.m wavelength).

  16. Online integrated visual inspection and sorting system for fast reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, D., E-mail: sorwadip@yahoo.co.i [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre (BARC), Tarapur Complex: 401502, Maharashtra (India); Majeesh, K.; Baghra, C.; Soreng, T.; Panakkal, J.P.; Kamath, H.S. [Advanced Fuel Fabrication Facility (AFFF), Bhabha Atomic Research Centre (BARC), Tarapur Complex: 401502, Maharashtra (India)

    2010-06-15

    Mixed oxide (MOX) fuel for prototype fast breeder reactor (PFBR) is designed to have initial burn up of 100,000 MWD/T. The major differences from thermal reactor fuel are relatively smaller dimension with central hole and higher plutonium concentration (21% and 28% of PuO{sub 2}) MOX pellets which are loaded into 2.5 m long clad tubes with depleted UO{sub 2} blanket pellets at either end of the MOX stack. The relatively smaller dimension of fuel pellets for PFBR results in large volume at fabrication and inspection. To ensure fast and accurate inspection and sorting of as sintered pellets with less radiation exposure to personnel an integrated on line pellet inspection system for remote visual inspection and sorting of pellets based on diameter has been developed. Details of the integrated pellet inspection system developed at Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur along with the results of the performance trials has been described in this paper.

  17. Control of pneumatic transfer system for neutron activation analysis

    International Nuclear Information System (INIS)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading

  18. Control of pneumatic transfer system for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y

    2000-06-01

    Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.

  19. The design of systems for the determination of plutonium by passive neutron counting

    International Nuclear Information System (INIS)

    Hooton, B.W.

    1978-10-01

    The properties of moderators and other materials commonly used in systems for determination of plutonium by passive neutron counting have been investigated. The neutron flux from spontaneous fission and (α,n) reactions has been evaluated and the design characteristics of a number of systems have been determined by Monte Carlo tracking of neutrons. (author)

  20. The Martin Marietta Energy Systems personnel neutron dosimetry program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1991-01-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages five sites for the US Department of Energy. Personnel dosimetry for four of the five sites is coordinated through a Centralized External Dosimetry System (CEDS). These four sites are the Oak Ridge National Laboratory (ORNL), the Oak Ridge Y-12 Plant (Y-12), the Oak Ridge K-25 Site (K-25), and the Paducah Gaseous Diffusion Plant (PGDP). The fifth Energy Systems site, Portsmouth Gaseous Diffusion Plant, has an independent personnel dosimetry program. The current CEDS personnel neutron dosimeter was first issued in January 1989, after an evaluation and characterization of the dosimeters' response in the workplaces was performed. For the workplace characterization, Energy Systems contracted with Pacific Northwest Laboratory (PNL) to perform neutron measurements at selected locations at ORNL and Y-12. K-25 and PGDP were not included because their neutron radiation fields were similar to others already planned for characterization at ORNL and Y-12. Since the initial characterization, PNL has returned to Oak Ridge twice to perform follow up measurements, and another visit is planned in the near future

  1. Multisphere system neutron spectrometry applied to dosimetry for the personnel

    International Nuclear Information System (INIS)

    Allinei, P.G.

    1992-01-01

    Neutron dosimetry is a necessity that must be dealt with in order to ensure efficient monitoring of all personnel regarding radiology safety. Dosimetric variables are difficult to measure for they are dependent on complex functions evolving with the energy of neutrons, which forces us to determine their energetic distribution. We have chosen to use the multisphere system associated to an unfolding code in order to perform neutron spectrometry, our purpose being to determine these dosimetric variables. The initial stage consists in modifying a research code, the code SOHO, in order to adapt it to our needs. The resulting new version was subsequently tested and proven successful by means of computerized simulations. Afterwards, we used reference dosimetric and spectral beams to confirm the position results previously obtained. At the time of this test, the code SOHO yielded results coherent with the theoretical values, and even allowed the quantity of radiation diffused by the laboratory structures to be estimated. The final part of this study consists in applying the previously perfected technique to authentic situations. The results thus obtained are compared to those obtained by conventional methods in order to reveal the interest of neutron spectrometry used for dosimetry of the personnel

  2. Compact neutron generator

    Science.gov (United States)

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  3. Container code recognition in information auto collection system of container inspection

    International Nuclear Information System (INIS)

    Su Jianping; Chen Zhiqiang; Zhang Li; Gao Wenhuan; Kang Kejun

    2003-01-01

    Now custom needs electrical application and automatic detection. Container inspection should not only give the image of the goods, but also auto-attain container's code and weight. Its function and track control, information transfer make up the Information Auto Collection system of Container Inspection. Code Recognition is the point. The article is based on model match, the close property of character, and uses it to recognize. Base on checkout rule, design the adjustment arithmetic, form the whole recognition strategy. This strategy can achieve high recognition ratio and robust property

  4. New prospect in neutron radiography

    International Nuclear Information System (INIS)

    Cluzeau, S.

    1991-01-01

    Neutron radiography is a very useful non-destructive testing (NDT) method which frequently complements classical X-ray inspection. Numerous inspections in some fields are currently performed at reactor-based neutron radiography facilities but many other interesting applications in different fields are at present not considered because the objects to be tested cannot be moved to a reactor. It is the goal of the DIANE project, to allow the utilization of this NDT method in industrial facilities by developing a safe and convenient neutron radiography equipment using an ''on-off'' neutron source. As a result of the efforts of the four European partners, a first laboratory demonstration model is currently in operation in Germany and a fully mobile second one is expected by the end of 1992. Good radiographs are obtained with exposure times in the range of a few seconds to ten minutes using an electronic imaging system. The fast neutron generator uses a sealed neutron tube delivering 5.10 11 neutrons.cm -2 .s -1 in 4 π steradian; with a collimator ratio of about 12, the fluence rate onto the object is then close to 1,5.10 5 thermal neutrons.cm -2 .s -1 . (author)

  5. Use of artificial intelligence techniques for visual inspection systems prototyping. Application to magnetoscopy

    International Nuclear Information System (INIS)

    Pallas, Christophe

    1987-01-01

    The automation of visual inspection is a complex task that requires collaboration between experts, for example inspection specialist, vision specialist. on-line operators. Solving such problems through prototyping promotes this collaboration: the use of a non specific programming environment allows rapid, concrete checking of method validity, thus leading incrementally to the final system. In this context, artificial intelligence techniques permit easy, extensible, and modular design of the prototype, together with heuristic solution building. We define and achieve the SPOR prototyping environment, based on object-oriented programming and rules-basis managing. The feasibility and the validity of an heuristic method for automated visual inspection in fluoroscopy have been proved through prototyping in SPOR. (author) [fr

  6. Application of diffractive elements for improving the efficiency of systems for cylindrical surface inspection

    Science.gov (United States)

    Zavyalov, P. S.; Karlin, V. E.; Kravchenko, M. S.; Finogenov, L. V.; Khakimov, D. R.

    2017-09-01

    An improved method of structural lighting for increasing the efficiency of inspection of the cylindrical object surface appearance is considered. The method is based on using a diffractive optical element to reduce the amount of recorded data due to illuminating the test object at an angle to the image recording plane, which is normal to the inspected surface. Implementation of the proposed method implies the use of several identical channels. For this reason, one channel is considered in the present study. Calculations of diffractive elements, a description of the experimental setup, and results of experiments aimed at determining the depth of surface defects on objects simulating fuel pellets and fuel elements are presented. Implementation of the investigated method with defect depth determination in industrial systems of inspection of fuel pellets and fuel elements is expected to improve the quality of the fuel for atomic power stations.

  7. Thresholding using two-dimensional histogram and watershed algorithm in the luggage inspection system

    International Nuclear Information System (INIS)

    Chen Jingyun; Cong Peng; Song Qi

    2006-01-01

    The authors present a new DR image segmentation method based on two-dimensional histogram and watershed algorithm. The authors use watershed algorithm to locate threshold on the vertical projection plane of two-dimensional histogram. This method is applied to the segmentation of DR images produced by luggage inspection system with DR-CT. The advantage of this method is also analyzed. (authors)

  8. Prototype crawling robotics system for remote visual inspection of high-mast light poles.

    Science.gov (United States)

    1997-01-01

    This report presents the results of a project to develop a crawling robotics system for the remote visual inspection of high-mast light poles in Virginia. The first priority of this study was to develop a simple robotics application that would reduce...

  9. Capacity building improve Malaysia's inspection and monitoring system for aquaculture and fishery products

    NARCIS (Netherlands)

    Gevers, G.J.M.; Zoontjes, P.W.; Essers, M.L.; Klijnstra, M.; Gerssen, A.

    2012-01-01

    The project aimed to help build a credible inspection and monitoring system that can guarantee safe quality products of Ministry of Health (MoH) and Department of Fisheries (DoF) by upgrading the analytical capacity of the laboratory staff directly involved in the analysis and detection of forbidden

  10. State of the Art and Development Trends of the Digital Radiography Systems for Cargo Inspection

    Science.gov (United States)

    Udod, V.; Van, J.; Osipov, S.; Chakhlov, S.; Temnik, A.

    2016-01-01

    Increasing requirements for technical parameters of inspection digital radiography systems are caused by increasing incidences of terrorism, drug trafficking and explosives via variety of transport. These requirements have determined research for new technical solutions that enable to ensure the safety of passengers and cargos in real-time. The main efforts in the analyzed method of testing are aimed at the creation of new and modernization of operated now systems of digital radiography as a whole and their main components and elements in particular. The number of these main components and elements includes sources of X-ray recording systems and transformation of radiometric information as well as algorithms and software that implements these algorithms for processing, visualization and results interpretation of inspection. Recent developments of X-ray units and betatrons used for inspection of small- and large-sized objects that are made from different materials are deserve special attention. The most effective X-ray detectors are a line and a radiometric detector matrix based on various scintillators. The most promising methods among the algorithms of material identification of testing objects are dual-energy methods. The article describes various models of digital radiography systems applied in Russia and abroad to inspection of baggage, containers, vehicles and large trucks.

  11. Completion of development of robotics systems for inspecting unpiggable transmission pipelines.

    Science.gov (United States)

    2013-02-01

    This document presents the final report for a program focusing on the completion of the : research, development and demonstration effort, which was initiated in 2001, for the : development of two robotic systems for the in-line, live inspection of un...

  12. Electrical and electronic subsystems of a nuclear waste tank annulus inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Evenson, R.J.

    1981-06-01

    The nuclear waste tank annulus inspection system is designed specifically for use at the Nuclear Regulatory Commission's Nuclear Fuel Services Facility at West Valley, New York. This system sends a television and photographic camera into the space between the walls of a double-shell nuclear waste tank to obtain images of the inner and outer walls at precisely known locations. The system is capable of inspecting a wall section 14 ft wide by 27 ft high. Due to the high temperature and radiation of the annulus environment, the operating life for the inspection device is uncertain, but is expected to be at least 100 h, with 1000 R/h at 82/sup 0/C. The film camera is shielded with 1/2 in. of lead to minimize radiation fogging of the film during a 25-min picture taking excursion. The operation of the inspection system is semiautomated with remote manual prepositioning of the camera, followed by a computer controlled wall scan. This apparatus is currently set up to take an array of contiguous pictures, but is adaptable to other modes of operation.

  13. Intelligent mobile sensor system for drum inspection and monitoring: Phase 1

    International Nuclear Information System (INIS)

    1993-06-01

    The objective of this project was to develop an operational system for monitoring and inspection activities for waste storage facility operations at several DOE sites. Specifically, the product of this effort is a robotic device with enhanced intelligence and maneuverability capable of conducting routine inspection of stored waste drums. The device is capable of operating in narrow aisles and interpolating the free aisle space between rows of stacked drums. The system has an integrated sensor suite for leak detection, and is interfaced with a site database both for inspection planning and for data correlation, updating, and report generation. The system is capable of departing on an assigned mission, collecting required data, recording which positions of its mission had to be aborted or modified due to environmental constraints, and reporting back when the mission is complete. Successful identification of more than 90% of all drum defects has been demonstrated in a high fidelity waste storage facility mockup. Identified anomalies included rust spots, rust streaks, areas of corrosion, dents, and tilted drums. All drums were positively identified and correlated with the site database. This development effort is separated into three phases of which phase one is now complete. The first phase has demonstrated an integrated system for monitoring and inspection activities for waste storage facility operations. This demonstration system was quickly fielded and evaluated by leveraging technologies developed from previous NASA and DARPA contracts and internal research. The second phase will demonstrate a prototype system appropriate for operational use in an actual storage facility. The prototype provides an integrated design that considers operational requirements, hardware costs, maintenance, safety, and robustness. The final phase will demonstrate commercial viability using the prototype vehicle in a pilot waste operations and inspection project

  14. Development of high sensitivity and high speed large size blank inspection system LBIS

    Science.gov (United States)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  15. Development of neutron personnel monitoring system based on CR-39 solid state nuclear track detector

    International Nuclear Information System (INIS)

    Massand, O.P.; Kundu, H.K.; Marathe, P.K.; Supe, S.J.

    1990-01-01

    Personnel neutron monitoring aims at providing a method to evaluate the magnitude of the detrimental effects on the personnel exposed to neutrons. Neutron monitoring is done for a small though growing number of personnel working with neutrons in a wide range of situations. Over the years, many solid state nuclear track detectors (SSNTD) have been tried for neutron personnel monitoring. CR-39 SSNTD is a proton sensitive polymer and offers a lot of promise for neutron personnel monitoring due to its high sensitivity and lower energy threshold for neutron detection. This report presents the mechanism of track formation in this polymer, the development of this neutron personnel monitoring system in our laboratory, its various characteristics and its promise as a routine personnel neutron monitor. (author). 1 tab., 7 figs

  16. Development of advanced neutron radiography for inspection on irradiated fuels and materials (2). Observation of hydride and oxide film on zircaloy cladding by using neutron radiography

    International Nuclear Information System (INIS)

    Yasuda, Ryou; Nakata, Masahito; Mastubayashi, Masahito; Harada, Katsuya

    2001-02-01

    Neutron radiography has been used as available diagnosis method of integrity on irradiated fuels, and has not been employed for estimating hydride and oxide film, which are influenced on integrity of Zircaloy cladding. Preliminary tests for PIE were carried out to assess possibility of neutron radiography as evaluation tool for hydrided and oxide film on the cladding. In these experiments, Zircaloy claddings with controlled amount of hydrogen absorption (200, 500, and 1000ppm) and thickness of oxide film were radiographed in center axis and in side directions of cladding tube by neutron imaging plate method. It is noted that thickness of oxide film was formed range from 7 μ m to 70 μ m at various temperatures (973, 1173, and 1323K) under steam atmosphere on the Zircaloy claddings. CT (Computed Tomography) restructure calculation was carried out to obtain cross section image of the claddings non-destructively. The Radiographs were qualitatively investigated about structure formation area and dependence of hydrogen absorption amount on PSL (Photo Simulated Luminescence) and CT values using by image analysis processor. At the results of imaging plate test, obvious difference was not found out between hydride formation (except for 1000ppm cladding) and standard claddings in side direction image. However, on the center axis direction image, outer circumference in the cladding cross-section that corresponded with hydride segregation area became blacker. In the case of oxide film formed cladding images, although oxide film could not find out on all speciments in the radiographs taken at the center axis and side directions, cross-section of claddings heat-processed at 973K showed appreciable blackness increasing with oxide film thickness on the radiographs. On the other hand, there is no effective difference between images of oxide film formed claddings processed at 1173K and 1323K and that of standard cladding. In CT image of 1000ppm hydrogen absorbed cladding, it is

  17. Design and implementation of the control system for neutron reflectometer

    International Nuclear Information System (INIS)

    Wu Xuehui; Fu Yongli; Zhou Aiyu; Zhu Kejun; Yuan Guangcui

    2011-01-01

    The neutron reflectometry is an important technique that has widespread applications as a powerful analytical tool to analyze the surface and interfacial structure and composition of many materials. An efficient and accurate instrument control system is a key component of the system, with software based on LabVIEW and hardware based on PCI-1240 motor control card, TRUMP-PCI-2K multichannel buffer card and 974 counter/timer. It gives an overview of the design and implementation of this control system. The results prove that this system fulfills the needs well with high stability and operability. (authors)

  18. Innovative inspection system for reactor pressure vessels; Innovative Pruefsysteme fuer Reaktordruckbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, K.; Trautmann, H.

    1999-08-01

    The versatile, compact and modern underwater systems described, the DELPHIN manipulators and MIDAS submarines, are innovative systems enabling RPV inspections at considerably reduced efforts and time, thus reducing the total time required for ISI of reactors. (orig./CB) [Deutsch] Die vorgestellten kleinen, flexiblen und modernen Schwimmsysteme (DELPHIN-Manipulatoren und MIDAS-U-Boote) sind innovative Systeme fuer die Reduzierung der Aufwaende und Zeit zur Pruefung des Reaktordruckbehaelters und damit zur Reduktion der Revisionszeiten der Reaktoranlagen. (orig.)

  19. Establishment of mobile based nuclear safety inspection system

    International Nuclear Information System (INIS)

    Kim, In Hyeon; Lee, Yoon; Choi, Keun Ho; Lee, Kwang Pyo; Cha, Gi Hyeon; Gook, Cheol Woong; Park, Tae Joo; Kang, Roc Hyeong; Kim, Ji Young; Yoo, Mi Jung

    2005-03-01

    We have developed the mobile-based atomic energy status real time monitoring system and mobile-based atomic energy accident and trouble retrieval system through this study. The mobile-based atomic energy status real time monitoring system is the system enabling its users to monitor nineteen (19) Nuclear Power Plants under operation in the real time based on the PDA(Personal Digital Assistance) via a wireless communication. We have developed the mobile information providing server program and PDA client program for the purpose of providing the atomic energy status information service on the PDA by linking the real time atomic energy status information collected by the computerized technical advisory system for the radiological emergency installed and operated by the KINS. The mobile based atomic energy accident and trouble retrieval system has been developed under the intention of enabling the site inspector to effectively use the past information upon performing the test works at the sites through the local retrieval of past accidents and troubles occurred in the Nuclear Power Plants at the mobile client(PDA). In this regard, we have developed the client program to retrieve the atomic energy accident and trouble status by installing the accident and trouble information database. We also include the function supporting the rapid site report through the employees' information retrieval, site status image file transmission, e-mail and SMS(Short Message Service)

  20. Establishment of mobile based nuclear safety inspection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Hyeon; Lee, Yoon; Choi, Keun Ho; Lee, Kwang Pyo; Cha, Gi Hyeon; Gook, Cheol Woong; Park, Tae Joo; Kang, Roc Hyeong; Kim, Ji Young; Yoo, Mi Jung [Korea geoSpatial Information and Communication Co., Ltd., Seoul (Korea, Republic of)

    2005-03-15

    We have developed the mobile-based atomic energy status real time monitoring system and mobile-based atomic energy accident and trouble retrieval system through this study. The mobile-based atomic energy status real time monitoring system is the system enabling its users to monitor nineteen (19) Nuclear Power Plants under operation in the real time based on the PDA(Personal Digital Assistance) via a wireless communication. We have developed the mobile information providing server program and PDA client program for the purpose of providing the atomic energy status information service on the PDA by linking the real time atomic energy status information collected by the computerized technical advisory system for the radiological emergency installed and operated by the KINS. The mobile based atomic energy accident and trouble retrieval system has been developed under the intention of enabling the site inspector to effectively use the past information upon performing the test works at the sites through the local retrieval of past accidents and troubles occurred in the Nuclear Power Plants at the mobile client(PDA). In this regard, we have developed the client program to retrieve the atomic energy accident and trouble status by installing the accident and trouble information database. We also include the function supporting the rapid site report through the employees' information retrieval, site status image file transmission, e-mail and SMS(Short Message Service)

  1. KeproVt : underwater robotic system for visual inspection of nuclear reactor internals

    International Nuclear Information System (INIS)

    Cho, Byung-Hak; Byun, Seung-Hyun; Shin, Chang-Hoon; Yang, Jang-Bum; Song, Sung-Il; Oh, Jung-Mook

    2004-01-01

    An underwater robotic system for visual inspection of reactor vessel internals has been developed. The Korea Electric Power Robot for Visual Test (KeproVt) consists of an underwater robot, a vision processor based measuring unit, a master control station and a servo control station. The vision processor based measuring unit employs a first-of-a-kind engineering technology in nuclear robotics. The vision processor makes use of a camera located at the top of the water level referenced to the reactor center line to get an image of the robot, and computes the location and orientation of the robot. The robot guided by the control station with the measuring unit can be controlled to have any motion at any position in the reactor vessel with ±1 cm positioning and ±2 deg. heading accuracies with enough precision to inspect reactor internals. A simple and fast installation process is emphasized in the developed system. The installation process consists of hooking a vision camera on the guide rail of the refueling machine and putting a small robot (14.5 kg in weight) in the reactor cavity pool. The easy installation and automatic operation meet the demand of shortening the reactor outage and reducing the number of inspection personnel. The developed robotic system was successfully deployed at the Yonggwang Nuclear Unit 1 for the visual inspection of reactor internals

  2. Efficient material decomposition method for dual-energy X-ray cargo inspection system

    Science.gov (United States)

    Lee, Donghyeon; Lee, Jiseoc; Min, Jonghwan; Lee, Byungcheol; Lee, Byeongno; Oh, Kyungmin; Kim, Jaehyun; Cho, Seungryong

    2018-03-01

    Dual-energy X-ray inspection systems are widely used today for it provides X-ray attenuation contrast of the imaged object and also its material information. Material decomposition capability allows a higher detection sensitivity of potential targets including purposely loaded impurities in agricultural product inspections and threats in security scans for example. Dual-energy X-ray transmission data can be transformed into two basis material thickness data, and its transformation accuracy heavily relies on a calibration of material decomposition process. The calibration process in general can be laborious and time consuming. Moreover, a conventional calibration method is often challenged by the nonuniform spectral characteristics of the X-ray beam in the entire field-of-view (FOV). In this work, we developed an efficient material decomposition calibration process for a linear accelerator (LINAC) based high-energy X-ray cargo inspection system. We also proposed a multi-spot calibration method to improve the decomposition performance throughout the entire FOV. Experimental validation of the proposed method has been demonstrated by use of a cargo inspection system that supports 6 MV and 9 MV dual-energy imaging.

  3. Criticality monitoring with digital systems and solid state neutron detectors

    International Nuclear Information System (INIS)

    Willhoite, S.B.

    1984-01-01

    A commercially available system for criticality monitoring combines the well established technology of digital radiation monitoring with state-of-the art detector systems capable of detecting criticality excursions of varying length and intensity with a high degree of confidence. The field microcomputer servicing the detector clusters contains hardware and software to acquire detector information in both the digital count rate and bit sensing modes supported by the criticality detectors. In both cases special criticality logic in the field microcomputer is used to determine the validity of the criticality event. The solid-state neutron detector consists of a 6 LiF wafer coupled to a diffused-junction charged particle detector. Alpha particles resulting from (n,α) interactions within the lithium wafer produce a pulsed signal corresponding to neutron intensity. Special detector circuitry causes the setting of a criticality bit recognizable by the microcomputer should neutron field intensities either exceed a hardware selectable frequency or saturate the detector resulting in a high current condition. These two modes of criticality sensing, in combination with the standard method of comparing an operator selectable alarm setpoint with the detector count rate, results in a criticality system capable of effective operation under the most demanding criticality monitoring conditions

  4. A robotic inspection experimental system (ARIES) and BOA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    ARIES consists of a 6-wheeled K3A mobile platform, a compact subturret, a sonar imaging system, a laser-based light detection and ranging (lidar) navigation beacon system, and a camera positioning system. It has a sonar imaging system used in navigation and collision avoidance and an automatic docking/charging system. Drum-referencing algorithms and camera-positioning algorithms have been included in the primitive instruction set for the robot. The robot`s navigation is based on Synchro-Drive, a patented design that utilizes concentric shafts to distribute drive and steering power to the six wheels simultaneously. ARIES uses a virtual path concept in which only a limited amount of information needs to be provided to the control computer in order to get the vehicle moving. The safety and health evaluation, during the human factors assessment, found several areas of concern including ergonomics, laser hazards, tripping hazards, fall-from-above and struck-by hazards, electrical hazards, and decontamination of the system. BOA is a self-propelled automated mini-enclosure, able to remove insulation from installed pipes, primarily of 4 inch nominal outside diameter. The system is designed for two operators: one oversees the abatement head operation from a distance of 10 or 15 feet using a pendant control and the other bags the debris at a cyclonic bagging station that is attached by a vacuum hose to the cutting head. Since the abatement head is its own enclosure, there may be no need for further enclosures to be built. The system wets and removes asbestos insulation automatically, cutting the debris into consistent chunks and moving the wave under a strong vacuum to a bagging machine. Prior to reaching the bagging operation, the material passes through a water separator which greatly reduces the weight of the debris and allows recirculation of water, after sufficient filtration. The safety and health evaluation, during the human factors assessment, focused on: noise, dust

  5. Simultaneous thermal neutron decay time and porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1981-01-01

    A pulsed high-energy neutron source irradiates the earth formations surrounding a borehole with bursts of fast neutrons. A pair of detectors, one sensitive to epithermal neutrons and the other sensitive to fast neutrons and thermal neutron capture gamma rays, measure the fast and epithermal neutron populations at their effective distances from the source. The fast neutron measurements can be separated from thermal neutron interactions by time gating techniques and by pulse shape discrimination. The measurments of the fast and epithermal neutron populations at the two detectors may then be interpreted in terms of the earth formation porosity in accordance with predetermined relationships. Between neutron bursts capture gamma rays are detected in two or more time intervals, and these measurements are used to derive the thermal neutron capture cross section of the formation

  6. Analysis of the configuration and the location of thermographic equipment for the inspection in photovoltaic systems

    Science.gov (United States)

    Álvarez-Tey, G.; Jiménez-Castañeda, R.; Carpio, J.

    2017-12-01

    The infrared (IR) thermography is a non-destructive technique (NDT) which is used to carry out maintenance quickly and easily in photovoltaic (PV) systems. IR imaging with thermographic cameras under steady state conditions is a usual method for quality control of PV modules and plants in operation. For the proper IR inspection which determines the severity or the importance of the detected findings, it is necessary to consider different aspects of the configuration and the location of the thermographic equipment which allow reducing measuring errors. This paper considers some elements which contribute to the accurate configuration of the thermographic equipment. The influence of the reflected apparent temperature in outdoor IR inspections is analysed and it is proposed a simple method for obtaining it. Besides, the importance of the emissivity in IR thermography is analysed. For that, the value of the emissivity in PV modules of various types both front and rear shape is determined experimentally. It is also studied the proper location of the thermographic equipment in order to minimize reflections of the sun and the sky. For this objective, it is studied the ideal and minimum height of inspection according to the layout of the PV system. In a particular case, it is also analysed the influence of the horizontal angle of thermographic inspection and the reflected radiation.

  7. Cooperative Behaviours with Swarm Intelligence in Multirobot Systems for Safety Inspections in Underground Terrains

    Directory of Open Access Journals (Sweden)

    Chika Yinka-Banjo

    2014-01-01

    Full Text Available Underground mining operations are carried out in hazardous environments. To prevent disasters from occurring, as often as they do in underground mines, and to prevent safety routine checkers from disasters during safety inspection checks, multirobots are suggested to do the job of safety inspection rather than human beings and single robots. Multirobots are preferred because the inspection task will be done in the minimum amount of time. This paper proposes a cooperative behaviour for a multirobot system (MRS to achieve a preentry safety inspection in underground terrains. A hybrid QLACS swarm intelligent model based on Q-Learning (QL and the Ant Colony System (ACS was proposed to achieve this cooperative behaviour in MRS. The intelligent model was developed by harnessing the strengths of both QL and ACS algorithms. The ACS optimizes the routes used for each robot while the QL algorithm enhances the cooperation between the autonomous robots. A description of a communicating variation within the QLACS model for cooperative behavioural purposes is presented. The performance of the algorithms in terms of without communication, with communication, computation time, path costs, and the number of robots used was evaluated by using a simulation approach. Simulation results show achieved cooperative behaviour between robots.

  8. A whole process quality control system for energy measuring instruments inspection based on IOT technology

    Science.gov (United States)

    Yin, Bo; Liu, Li; Wang, Jiahan; Li, Xiran; Liu, Zhenbo; Li, Dewei; Wang, Jun; Liu, Lu; Wu, Jun; Xu, Tingting; Cui, He

    2017-10-01

    Electric energy measurement as a basic work, an accurate measurements play a vital role for the economic interests of both parties of power supply, the standardized management of the measurement laboratory at all levels is a direct factor that directly affects the fairness of measurement. Currently, the management of metering laboratories generally uses one-dimensional bar code as the recognition object, advances the testing process by manual management, most of the test data requires human input to generate reports. There are many problems and potential risks in this process: Data cannot be saved completely, cannot trace the status of inspection, the inspection process isn't completely controllable and so on. For the provincial metrology center's actual requirements of the whole process management for the performance test of the power measuring appliances, using of large-capacity RF tags as a process management information media, we developed a set of general measurement experiment management system, formulated a standardized full performance test process, improved the raw data recording mode of experimental process, developed a storehouse automatic inventory device, established a strict test sample transfer and storage system, ensured that all the raw data of the inspection can be traced back, achieved full life-cycle control of the sample, significantly improved the quality control level and the effectiveness of inspection work.

  9. Endoscopic system for automated high dynamic range inspection of moving periodic structures

    Science.gov (United States)

    Hahlweg, Cornelius; Rothe, Hendrik

    2015-09-01

    In the current paper an advanced endoscopic system for high resolution and high dynamic range inspection of periodic structures in rotating machines is presented. We address the system architecture, short time illumination, special optical problems, such as excluding the specular reflex, image processing, forward velocity prediction and metrological image processing. There are several special requirements to be met, such as the thermal stability above 100°C, robustness of the image field, illumination in view direction and the separation of metallic surface diffuse scatter. To find a compromise between image resolution and frame rate, an external sensor system was applied for synchronization with the moving target. The system originally was intended for inspection of thermal engines, but turned out to be of a more general use. Beside the theoretical part and dimensioning issues, practical examples and measurement results are included.

  10. Neutron kinetics for system thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Diamond, D.J.

    1996-01-01

    There is general agreement that for many light water reactor (LWR) calculations for licensing safety analysis, probabilistic risk assessment, operational support, and training, it is necessary to use a multidimensional neutron kinetics model coupled to a thermal-hydraulics model in order to obtain satisfactory results. This need coincides with the fact that in recent years there has been considerable research and development in this field, with modelers taking advantage of the increase in computing power that has become available. This progress has now led to coupling multidimensional neutron kinetics models to the nuclear steam supply system thermal hydraulics. This is not new since some coupled codes have always been available. What is new is that the coupling can now be done with very sophisticated models, and the planning of this coupling and the requisite modeling can take advantage of the experience of many code developers in many countries. The U.S. Nuclear Regulatory Commission and other organizations are in the process of reviewing the state of the art and making recommendations for future development. This paper summarizes one contribution to this review process: a review of the multidimensional neutron kinetics modeling, and ancillary modeling, which would be used in conjunction with system thermal-hydraulic models to perform core dynamics calculations

  11. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  12. Verification of fast neutron spectrum calculation in coupled system HERBE

    International Nuclear Information System (INIS)

    Avdic, S.; Pesic, M.; Marinkovic, P.

    1995-01-01

    A high-resolution semiconductor spectrometer filled with 3 He gas, in diode coincidence arrangement, is applied to measure neutron spectrum in the centre of the fast core of the coupled fast-thermal system HERBE in the 'Vinca' Institute. The neutron spectrum is evaluated from measured pulse height distribution by using the HE3 computer code developed in the Nuclear Engineering Laboratory of the Institute of Nuclear Sciences VINCA. Experimental results are compared with the relevant multigroup calculations in the energy range from 2.5 MeV to 10.5 MeV. The measured spectrum provides a sufficient overlapping with the calculated one and no serious divergence is found in the measured energy range. (author)

  13. A new compact, high sensitivity neutron imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Caillaud, T.; Landoas, O.; Briat, M.; Rosse, B.; Thfoin, I.; Philippe, F.; Casner, A.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF,F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Park, H. S.; Robey, H. F.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    We have developed a new small neutron imaging system (SNIS) diagnostic for the OMEGA laser facility. The SNIS uses a penumbral coded aperture and has been designed to record images from low yield (10{sup 9}-10{sup 10} neutrons) implosions such as those using deuterium as the fuel. This camera was tested at OMEGA in 2009 on a rugby hohlraum energetics experiment where it recorded an image at a yield of 1.4 Multiplication-Sign 10{sup 10}. The resolution of this image was 54 {mu}m and the camera was located only 4 meters from target chamber centre. We recently improved the instrument by adding a cooled CCD camera. The sensitivity of the new camera has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. The calibration showed that the signal-to-noise ratio could be improved by using raw binning detection.

  14. A high power accelerator driver system for spallation neutron sources

    International Nuclear Information System (INIS)

    Jason, A.; Blind, B.; Channell, P.

    1996-01-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). For several years, the Los Alamos Meson Physics Facility (LAMPF) and the Proton Storage Ring (PSR) have provided a successful driver for the nearly 100-kW Los Alamos Neutron Scattering Center (LANSCE) source. The authors have studied an upgrade to this system. The goal of this effort was to establish a credible design for the accelerator driver of a next-generation source providing 1-MW of beam power. They have explored a limited subset of the possible approaches to a driver and have considered only the low 1-MW beam power. The next-generation source must utilize the optimum technology and may require larger neutron intensities than they now envision

  15. Recent performance of the Intense Pulsed Neutron Source accelerator system

    International Nuclear Information System (INIS)

    Potts, C.; Brumwell, F.; Rauchas, A.; Stipp, V.; Volk, G.; Donley, L.

    1987-03-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system has now been in operation as part of a national user program for over five years. During that period steady progress has been made in both beam intensity and reliability. Almost 1.8 billion pulses totaling 4 x 10 21 protons have now been delivered to the spallation neutron target. Recent weekly average currents have reached 15 μA (3.2 x 10 12 protons per pulse, 30 pulses per second) and short-term peaks of almost 17 μA have been reached. In fact, the average current for the last two years is up 31% over the average for the first three years of operation

  16. Research on the Application of Risk-based Inspection for the Boiler System in Power Plant

    Science.gov (United States)

    Li, Henan

    2017-12-01

    Power plant boiler is one of the three main equipment of coal-fired power plants, is very tall to the requirement of the safe and stable operation, in a significant role in the whole system of thermal power generation, a risk-based inspection is a kind of pursuit of security and economy of unified system management idea and method, can effectively evaluate equipment risk and reduce the operational cost.

  17. Energy Storage System Safety: Plan Review and Inspection Checklist

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Pam C (PNNL); Conover, David R (PNNL)

    2017-03-01

    Codes, standards, and regulations (CSR) governing the design, construction, installation, commissioning, and operation of the built environment are intended to protect the public health, safety, and welfare. While these documents change over time to address new technology and new safety challenges, there is generally some lag time between the introduction of a technology into the market and the time it is specifically covered in model codes and standards developed in the voluntary sector. After their development, there is also a timeframe of at least a year or two until the codes and standards are adopted. Until existing model codes and standards are updated or new ones are developed and then adopted, one seeking to deploy energy storage technologies or needing to verify the safety of an installation may be challenged in trying to apply currently implemented CSRs to an energy storage system (ESS). The Energy Storage System Guide for Compliance with Safety Codes and Standards1 (CG), developed in June 2016, is intended to help address the acceptability of the design and construction of stationary ESSs, their component parts, and the siting, installation, commissioning, operations, maintenance, and repair/renovation of ESS within the built environment.

  18. Preliminary neutron shielding calculations of the electronics in the EAST BES systems focusing on neutron induced displacement damage

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Kovácsik, Ákos, E-mail: kovacsik.akos@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Németh, József, E-mail: nemeth.jozsef@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [Institute of Nuclear Techniques (NTI), Budapest University of Technology and Economics (BME), H-1111 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics (Wigner RCP), Hungarian Academy of Sciences (HAS), POB 49, 1525 Budapest (Hungary)

    2016-11-15

    Monte Carlo N-Particle (MCNP) calculations were carried out to compare neutron shielding capabilities of three frequently used neutron shielding materials: polyethylene without neutron absorbers, polyethylene with boron absorbers and polyethylene with lithium absorbers, according to Non Ionizing Energy Loss (NIEL). The results of 1D shielding calculations showed that simple neutron moderating materials can provide sufficient and cheap shielding against 2.45 MeV and 14.1 MeV fusion neutrons, in terms of 1 MeV neutron equivalent flux, in silicon targets, which is the most commonly used material of electronic components. Based on these results a new shielding concept is proposed which can be taken into consideration where the reduction of displacement damage is the main goal and the free space available for shielding is limited. Based on this shielding concept detailed 3D calculations were carried out to describe the properties of the neutron shielding of the Beam Emission Spectroscopy (BES) system installed at the EAST tokamak.

  19. Multifrequency eddy current system for steam generator tubing inspection. Volume 2. Analytical studies

    International Nuclear Information System (INIS)

    Libby, H.L.

    1979-04-01

    A multifrequency eddy current testing system has been developed to test nuclear steam generator tubes and has been evaluated on a steam generator mockup. Results to date show that use of more than one inspection frequency facilitates electronic assessment of flaw depth, thereby reducing reliance on visual interpretation of signal information by operators. Details on the system design and an evaluation of the system's performance on a steam generator mockup are provided. The system consists of a four frequency signal generator, which excites the inspection coil, followed by a Walsh function instrument which extracts information from any two of the four frequencies present in the composite test signal. The extracted information is processed to discriminate against unwanted signals, such as those from probe wobble, and is then transmitted to the defect decision circuitry for additional processing. Results of the mockup tests show that the system has a higher probability of flaw detection in many cases than does a conventional single frequency test. Tutorial information is presented on algebraic solutions of simultaneous equations and on representation and analysis of signals using orthogonal functions. Examples illustrating the design of the multifrequency inspection system are included. Also presented is an analytical study of several candidate means for implementing electronic assessment of flaw depth

  20. Aspects of Inspection Planning

    DEFF Research Database (Denmark)

    Faber, M. H.; Sørensen, John Dalsgaard

    2000-01-01

    Inspection planning for systems is considered with special emphasis to the effect of the quality of inspections on the system reliability and the probability of repair. Inspection quality is described and discussed in terms of inspection reliability and inspection coverage where the latter is set...... in relation to the correlation between the failure modes of the considered system. The inspection planning problem is described in general terms taking basis in the Bayesian decision theory. Practical applicable approaches are derived from the more general but also more involving formulations. The theoretical...

  1. Inspection of the metal composite materials using a combination of X-ray radiography and Neutron Imaging

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Jeon, I.; Lehmnann, E.; Kaestner, A.; Vacík, J.

    2011-01-01

    Roč. 6, č. 3 (2011), s. 186-191 ISSN 1748-0221. [International workshop on radiation imaging detectors /12./. Cambridge, 12.07.2010-15.07.2010] R&D Projects: GA ČR(CZ) GA103/09/2101 Grant - others:GA MŠk(CZ) LC06041; GA AV ČR(CZ) KAN400480701 Program:LC; KA Institutional research plan: CEZ:AV0Z20710524; CEZ:AV0Z10480505 Keywords : neutron imaging * detection of defects * computerized tomography * non destructive testing Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/6/03/C03001/

  2. Effect of a Publicly Accessible Disclosure System on Food Safety Inspection Scores in Retail and Food Service Establishments.

    Science.gov (United States)

    Choi, Jihee; Scharff, Robert L

    2017-07-01

    The increased frequency with which people are dining out coupled with an increase in the publicity of foodborne disease outbreaks has led the public to an increased awareness of food safety issues associated with food service establishments. To accommodate consumer needs, local health departments have increasingly publicized food establishments' health inspection scores. The objective of this study was to estimate the effect of the color-coded inspection score disclosure system in place since 2006 in Columbus, OH, by controlling for several confounding factors. This study incorporated cross-sectional time series data from food safety inspections performed from the Columbus Public Health Department. An ordinary least squares regression was used to assess the effect of the new inspection regime. The introduction of the new color-coded food safety inspection disclosure system increased inspection scores for all types of establishments and for most types of inspections, although significant differences were found in the degree of improvement. Overall, scores increased significantly by 1.14 points (of 100 possible). An exception to the positive results was found for inspections in response to foodborne disease complaints. Scores for these inspections declined significantly by 10.2 points. These results should be useful for both food safety researchers and public health decision makers.

  3. Commissioning of cryogenic system for China Spallation Neutron Source

    Science.gov (United States)

    Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun

    2017-12-01

    China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.

  4. Conformal ultrasound imaging system for anatomical breast inspection.

    Science.gov (United States)

    Rouyer, Julien; Mensah, Serge; Franceschini, Emilie; Lasaygues, Philippe; Lefebvre, Jean-Pierre

    2012-07-01

    Ultrasound tomography has considerable potential as a means of breast cancer detection because it reduces the operator-dependency observed in echography. A half-ring transducer array was designed based on breast anatomy, to obtain reflectivity images of the ductolobular structures using tomographic reconstruction procedures. The 3-MHz transducer array comprises 1024 elements set in a 190-degree circular arc with a radius of 100 mm. The front-end electronics incorporate 32 independent parallel transmit/receive channels and a 32-to-1024 multiplexer unit. The transmit and receive circuitries have a variable sampling frequency of up to 80 MHz and 12-bit precision. Arbitrary waveforms are synthesized to improve the signal-to-noise ratio and to increase the spatial resolution when working with low-contrast objects. The setup was calibrated with academic objects and a needle hydrophone to develop the data correction tools and specify the properties of the system. The backscattering field was recorded using a restricted aperture, and tomographic acquisitions were performed with a pair of 0.08-mm-diameter steel wires, a low-contrast 2-D breast phantom, and a breast-shaped phantom containing inclusions. Data were processed with dedicated correction tools and a pulse compression technique. Objects were reconstructed using the elliptical back-projection algorithm.

  5. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    Science.gov (United States)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  6. A Robotic System for Inspection and Repair of Small Diameter Pipelines

    Directory of Open Access Journals (Sweden)

    S. A. Vorotnikov

    2015-01-01

    Full Text Available This paper deals with the construction and control system of miniature robotic system that is designed to move and make inspection inside small diameter pipelines. It gives an overview of ways to move a microsize robotic system inside the small diameter pipe. The proposed design consists of information module and three traction modules, including modules for fixing, linear moving and angular positioning. This paper describes the design and operation of a robotic system and its different modules. Also are shown the structure of the robot control system, the basic calculations of construct and some simulation results of the individual modules of the robot.

  7. SINUPERM N: a new digital neutron flux density monitoring system

    International Nuclear Information System (INIS)

    Flick, H.A.

    1993-01-01

    The new SINUPERM N System is developed for Neutron Monitoring in nuclear power plants. The development was started in 1989 (with the design specification) and will be finished in 1993 (with the qualification). The first built will be the nuclear power plant in Borselle (Netherlands). The design is based on a microprocessor system with a digital signal processor for calculations and signal filtering. The separation between analogue-input signals and digital processing enables for each detector type special input modules and standard output interfaces e.g. field - bus. The wide range of the Neutron Flux Density from 10 -2 cm -2 s -1 up to 10 8 cm -2 s -1 for the out-of-pile instrumentation and up to 10 14 cm -2 s -1 for the in-core-instrumentation will be covered by the SINUPERM N system. The requirements to be met by the SINUPERM N system are the IEEE 323, IEC 987 and the German standard KTA-3503 for safety systems. Other standards for instrumentation and control systems like IEC 801, IEC 1131 and IEC 68 for EMV, climatic and seismic requirements are also included in the hardware type test. The software requirement depends on the IEC 880 standard. (author). 3 figs

  8. Performance Test for Neutron Detector and Associated System using Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Seongwoo; Park, Sung Jae; Cho, Man Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Oh, Se Hyun [USERS, Daejeon (Korea, Republic of); Shin, Ho Cheol [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    SPND (Self-Powered Neutron Detector) has been developed to extend its lifespan. ENFMS (Ex-Core Flux Monitoring System) of pressurized water reactor has been also improved. After the development and improvement, their performance must be verified under the neutron irradiation environment. We used a research reactor for the performance verification of neutron detector and associated system because the research reactor can meet the neutron flux level of commercial nuclear reactor. In this paper, we report the performance verification method and result for the SPND and ENFMS using the research reactor. The performance tests for the SPND and ENFMS were conducted using UCI TRIGA reactor. The test environment of commercial reactor’s neutron flux level must be required. However, it is difficult to perform the test in the commercial rector due to the constraint of time and space. The research reactor can be good alternative neutron source for the test of neutron detectors and associated system.

  9. Evaluation of the NDP (neutron diagnostic probe) system

    Energy Technology Data Exchange (ETDEWEB)

    Pentaleri, E.A.; Eisen, Y.Y.

    1990-12-01

    The neutron diagnostic probe (NDP), an explosive detection system developed by Consolidated Controls Corporation and based on the associated-alpha-particle technique, was evaluated. Although many problems were found with the prototype system that make it useless for most practical applications, the NDP system may be considered a successful proof-of-principle for the basic explosive detection system design. In addition to evaluating the design and performance of the present system, models were developed to estimate the performance that might reasonably be expected from full scale systems of different conceptual design. Specific examples involved various types of bulk and sheet explosives contained in a suitcase and a large crate. Also considered were the effects of innocuous materials surrounding explosives in different scenarios, including the deliberate use of shielding materials as a countermeasure to detection. 11 refs., 46 figs., 24 tabs.

  10. Establishment of national safeguards system and assistance to IAEA safeguards inspection

    International Nuclear Information System (INIS)

    Park, Wan Sou; Kwack, Eun Ho; Park, Chan Sik; Lee, Jae Sung; Jeong, Mi Young.

    1995-12-01

    In Korea, 17 nuclear facilities are currently under IAEA's safeguards and it is expected that more than 25 nuclear facilities will be under IAEA's safeguards in the year 2000 according to nuclear R and D and industry expansion. In connection with unlimited extension of NPT in 1995 and IAEA's measures to strengthen the safeguards like 'Programme 93+2', the international non-proliferation regime will be strengthened more and nuclear advanced countries will require the transparency and credibility of nuclear activities in recipient countries instead of transferring advanced nuclear technologies and nuclear material. In 1995, the Korean Government had revised the Atomic Energy Law to control increasing nuclear facilities and nuclear material effectively and to establish international transparency and credibility. In the revised Atomic Energy Law, it is provided that the national inspection, other than IAEA inspection, will be started from 1996. Currently, necessary arrangements for national inspection are being prepared by MOST and TCNC at KAERI. However, the safeguards system in Korea is still beginning stage, Korea's safeguards activity was passive and fragmentary that leads non-attainment of safeguards goal in many facilities. The reasons were; absence of systematic safeguards system(SSAC); lack of understanding safeguards concepts; lack of manpower, designated organization for safeguards, etc. As Korea ranked world top 10 nuclear power generation country and has a plan to be a nuclear advanced country, Korea should have appropriate safeguards system and should not spare necessary assistance to that system. (author). 19 tabs., 2 figs

  11. Multifrequency eddy-current system for inspection of steam generator turbine

    International Nuclear Information System (INIS)

    Davis, T.J.

    1980-11-01

    The objectives of this program were to: determine the maximum advantage of the multifrequency eddy current method for nuclear steam generator tubing inspection; simplify system operating procedures and enhance presentation of mutifrequency data; and evaluate multifrequency methods for inspecting recently encountered types of anomalies such as circumferential cracks, inside diameter flaws, and flaws in dented regions. New test methods developed under the program have resulted in a dramatic improvement over earlier multifrequency work. The methods rely on judicious selection of test frequencies and the simultaneous use of differential and absolute multiparameter inspection. Flaws may be sized and profiled with increased accuracy over that of the single-frequency method, and improved rejection of indications from unwanted parameters such as support plates and probe wobble has been obtained. The ability to detect and size support cracks in both corroded and non-corroded supports has been demonstrated on a laboratory basis. A field-usable test system employing four test frequencies was developed under the program and has been evaluated in the EPRI steam generator mockup. Some of the new technology used in this system has been commercialized into the new Zetec MIZ-12 multifrequency system

  12. Condition Assessment Survey (CAS) Program. Deficiency standards and inspections methods manual: Volume 11, 0.11 Specialty systems

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    General information is presented for asset determinant factor/CAS repair codes/CAS cost factors; guide sheet tool & material listing; testing methods; inspection frequency; standard system design life tables; system work breakdown structure; and general system/material data. Deficiency standards and inspection methods are presented for canopies; loading dock systems; tanks; domes (bulk storage, metal framing); louvers & vents; access floors; integrated ceilings; and mezzanine structures.

  13. On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Gus J. [Idaho National Laboratory, Idaho Falls, ID (United States); Egger, Ann E. [Idaho National Laboratory, Idaho Falls, ID (United States); Krebs, Kenneth M. [Idaho National Laboratory, Idaho Falls, ID (United States); Milbrath, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jordan, D. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Warren, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilmer, N. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-01

    We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analyses of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.

  14. Decontamination and inspection plan for phase 2 closure of the 300 Area waste acid treatment system

    International Nuclear Information System (INIS)

    Hays, C.B.

    1998-01-01

    This decontamination and inspection plan (DIP) describes decontamination and verification activities in support of Phase 2 closure of the 300 Area Waste Acid Treatment System (WATS). Phase 2, the second phase of three proposed phases of closure for WATS, provides for closure of all WATS portions of the 334-A Building and some, but not all, WATS portions of the 333 and 303-F Buildings. Closure of the entire unit will not occur until all three closure phases have been completed. The DIP also describes the designation and management-process for waste and debris generated during Phase 2 closure activities. Information regarding the decontamination and verification methods for Phase 1 closure can be found in Decontamination and Inspection Plan, for Phase 1 closure of the 300 Area Waste Acid Treatment System, 21 WHC-SD-ENV-AP-001. Information regarding Phase 3 closure will be provided in later documents

  15. ANALYSIS OF PERIODICAL TECHNICAL INSPECTION SYSTEMS IN AUTOMOTIVE TRANSPORT. THE EXPERIENCES OF POLAND AND RUSSIA

    Directory of Open Access Journals (Sweden)

    Jan FILIPCZYK

    2015-12-01

    Full Text Available The increasing number of road accidents nowadays seems to by a global problem. Apart from the obvious causes of accidents, such as violation of road traffic rules by drivers and pedestrians, the drunk driving, poor quality of road infrastructure, the technical faults of vehicles should also be take into account. Reasons of technical failures can be the failure of parts, components and assemblies caused by aging, poor quality or non-observance of technological norms when they are installed. It is possible to prevent the occurrence of faults by applying warning methods, one of which is obligatory periodic technical inspection. The purpose of this article is to analyze the characteristic features of the systems of technical inspections in automotive transport used in Poland and Russia. It makes it possible to identify common features and distinctive features of systems in both countries.

  16. High Pressure Coolant Injection (HPCI) System Risk-Based Inspection Guide for Browns Ferry Nuclear Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Wong, S.; DiBiasio, A.; Gunther, W. [Brookhaven National Lab., Upton, NY (United States)

    1993-09-01

    The High Pressure Coolant Injection (HPCI) system has been examined from a risk perspective. A System Risk-Based Inspection Guide (S-RIG) has been developed as an aid to HPCI system inspections at the Browns Ferry Nuclear Power Plant, Units 1, 2 and 3. The role of. the HPCI system in mitigating accidents is discussed in this S-RIG, along with insights on identified risk-based failure modes which could prevent proper operation of the system. The S-RIG provides a review of industry-wide operating experience, including plant-specific illustrative examples to augment the PRA and operational considerations in identifying a catalogue of basic PRA failure modes for the HPCI system. It is designed to be used as a reference for routine inspections, self-initiated safety system functional inspections (SSFIs), and the evaluation of risk significance of component failures at the nuclear power plant.

  17. Neutron density fluctuations in point reactor systems with dichotomic reactivity noise

    International Nuclear Information System (INIS)

    Sako, Okitsugu

    1984-01-01

    The exactly solvable stochastic point reactor model systems are analyzed through the stochastic Liouville equation. Three kinds of model systems are treated: (1) linear system without delayed neutrons, (2) linear system with one-group of delayed neutrons, and (3) nonlinear system with direct power feedback. The exact expressions for the fluctuations of neutron density, such as the moments, autocorrelation function and power spectral density, are derived in the case where the colored reactivity noise is described by the dichotomic, or two state, Markov process with arbitrary correlation time and intensity, and the effects of the finite correlation time and intensity of the noise on the neutron density fluctuations are investigated. The influence of presence of delayed neutrons and the effect of nonlinearity of system on the neutron density fluctuations are also elucidated. When the reactivity correlation time is very short, the correlation time has almost no effect on the power spectral density, and the relative fluctuation of neutron density in the stationary state is not affected very much by the presence of delayed neutrons and also by the nonlinearity of system. On the other hand, if the reactivity correlation time is very long, the effect of the reactivity noise on the power spectral density appears at very low frequency, and the presence of delayed neutrons has an effect of reducing the neutron density fluctuations. (author)

  18. Review of P-scan computer-based ultrasonic inservice inspection system. Supplement 1

    International Nuclear Information System (INIS)

    Harris, R.V. Jr.; Angel, L.J.

    1995-12-01

    This Supplement reviews the P-scan system, a computer-based ultrasonic system used for inservice inspection of piping and other components in nuclear power plants. The Supplement was prepared using the methodology described in detail in Appendix A of NUREG/CR-5985, and is based on one month of using the system in a laboratory. This Supplement describes and characterizes: computer system, ultrasonic components, and mechanical components; scanning, detection, digitizing, imaging, data interpretation, operator interaction, data handling, and record-keeping. It includes a general description, a review checklist, and detailed results of all tests performed

  19. Major upgrade of the articulated inspection arm control system to fulfill daily operation requirements

    International Nuclear Information System (INIS)

    Pastor, P.; Villedieu, E.; Allegretti, L.; Vincent, B.; Barbuti, A.; Bruno, V.; Coquillat, P.; Dechelle, C.; Gargiulo, L.; Le, R.; Malard, P.; Martinez, A.; Nouailletas, R.; Yuntao, Song; Yong, Cheng; Chen, Liu; Hansheng, Feng; Shanshuang, Shi

    2015-01-01

    Highlights: • We propose an overview of the work which has been done to upgrade the control system of the AIA robot (articulated inspection arm) to fulfill daily operation requirements for tokamak inspection. • The control system is based on the use of new position sensors, new electronics design and new supervisor software. • Final tests are ongoing in the EAST scale 1 tokamak mock-up. Routine operation of the robot at EAST will start in the beginning of 2015. - Abstract: An articulated inspection arm (AIA) has been developed by CEA for visual inspection between pulses inside the Tore Supra tokamak vacuum vessel without breaking temperature and vacuum conditions. The eight meters length robot is composed of a shuttle and six articulated segments with a video camera at its end. A demonstration prototype has been achieved in 2008 at Tore Supra (Gargiulo, 2007; Houry, 2008; Perrot, 2003). A project to upgrade the AIA into a fully operational robot has been undertaken by IRFM and ASIPP in an Associated Laboratory. It will be in operation first in the EAST machine and afterwards in Tore Supra in its WEST (W/Tungsten Environment in Steady-state Tokamak) configuration where it is of paramount importance to survey possible degradation of W component surface. The control system of the robot has been extensively upgraded. The effort has been focused on three areas: (1) improvement of the arm position accuracy, (2) increase of the operational robustness, (3) use of a powerful graphical user interface including simulation of trajectories and robot deployment capabilities in a 3D viewer environment. The aim of this paper is to detail the architecture of the AIA control system.

  20. Development in neutron dosimetry: automatic traces reading system and albedo OSL dosimetry; Developpement en dosimetrie neutron: systeme automatique de lecture de traces et dosimetrie albedo OSL

    Energy Technology Data Exchange (ETDEWEB)

    Million, M.; Perks, C.A.; Faugoin, S.; Archambault, V. [LCIE Landauer, 92 - Fontenay aux Roses (France)

    2009-07-01

    To answer to a regulatory evolution and technical constraints, the Landauer group introduced on the make an automatic reading system of neutron traces and an albedo dosemeter based on the O.S.L. in light dosemeters (O.S.L. for optically stimulated luminescence). In this article are described the last developments in matter of neutron dosimetry. (N.C.)

  1. Portable system for periodical verification of area monitors for neutrons; Sistema portatil para verificacao periodica de monitores de area para neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu, E-mail: rluciane@ird.gov.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), RJ (Brazil). Programa de Energia Nuclear; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W., E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. Nacional de Metrologia das Radiacoes Ionizantes (LNMRI). Lab. de Neutrons

    2009-07-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  2. Shidaowan HTR Ex-Core Neutron Flux Monitoring Systems

    International Nuclear Information System (INIS)

    Artaud, Clark J.; Yang Shuping

    2014-01-01

    For the Huaneng Shandong Shidao Bay Nuclear Power Plant High Temperature Gas-Cooled Reactor Nuclear Power Plant Demonstration Project (HTR-PM) several neutron flux measurements are made outside the Reactor Pressure Vessel (RPV) performed by the Ex-core Neutron Flux Monitoring Systems (ENFMS). This paper will discuss the design of the ENFMS for the Shidaowan project. The unique design of this ENFMS includes a B-10 proportional counter for Source Range (SR) monitoring and a shared four-section guarded fission chamber detector assembly for both Intermediate Range (IR) and Power Range (PR) monitoring. The detectors hang from a suspension shielding device via wire rope. The IR channel ENFMS is completely qualified to survive Loss of Coolant Accidents (LOCA) and Main Steam Line Breaks (MSLB) per US NRC Reg Guide 1.97 Post Monitoring Requirements. The ENFMS will be qualified for Class 1E Safety-Related applications and also will undergo EMI / EMC testing per Reg Guide 1.180. Due to the long length of the HTR-PM core, the flux is measured at several axial positions. For the fission chamber based systems full advantage is taken of all the operating modes for fission chambers (pulse counting, mean square voltage (MSV), and linear current) to provide the Intermediate and Power Range signals. This paper describes the challenges in the development of the monitoring systems for the measurement of neutron flux within the ex core region. The selection of detector configuration and the associated signal processing will be discussed and compared with traditional PWR designs. The use of only analog signal processing techniques will also be elaborated on. (author)

  3. Remotely controlled inspection and handling systems for decommissioning tasks in nuclear facilities

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, W.; Haferkamp, H.

    1993-01-01

    The Institut fur Werkstoffkunde at the University of Hanover has recently developed three remotely controlled systems for different underwater inspection and dismantling tasks. ODIN I is a tool guiding device, particularly being designed for the dismantling of the steam dryer housing of the KRB A power plant at Gundremmingen, Germany. After being approved by the licencing organization TUEV Bayern, hot operation started in November 1992. The seven axes remotely controlled handling system ZEUS, consisting of a three translatory axes guiding machine and a tool handling device with four rotatory axes, has been developed for the demonstration of underwater plasma arc cutting of spherical metallic components with great wall thicknesses. A specially designed twin sensor system and a modular torch, exchanged by means of a remote controlled tool changing device, will be used for different complex cutting tasks. FAUST, an autonomous, freediving underwater vehicle, was designed for complex inspection, maintenance and dismantling tasks. It is equipped with two video cameras, an ultrasonic and a radiologic sensor and a small plasma torch. A gripper and a subsidiary vehicle for inspection may be attached. (author)

  4. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  5. Theory of quasielastic neutron scattering by water in heterogeneous systems

    International Nuclear Information System (INIS)

    Sposito, G.

    1982-01-01

    The partial differential cross-section is derived for the quasielastic scattering of neutrons by liquid water protons undergoing translational diffusion in a heterogeneous system. It is shown that the incoherent scattering law reflects both molecular averaging via statistical mechanics and local volume averaging over the microscopic heterogeneities in the target sample. A model expression for the incoherent scattering law is derived using the macroscopic differential balance laws for mass and linear momentum as applied to liquid water in a porous medium. The model expression can be used to measure the macroscopic water diffusivity parameter. (author)

  6. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  7. Development of a transportable neutron radiography system for non-destructive tests application

    International Nuclear Information System (INIS)

    Silva, Ademir X. da; Crispim, Verginia R.

    1999-01-01

    This paper presents a study of a transportable neutron radiography system utilizing californium-252. Studies about moderation, collimation and shielding are showed. A Monte Carlo Code, MCNP3b, has been used to obtain a maximum and more homogeneous thermal neutron flux in the collimator outlet next to the image plain, and an adequate radiation shielding to attend radiological protection rules. With the presented collimator, it was possible to obtain for the thermal neutron flux, at the collimator outlet and next to the image plain, a L/D ratio 7,5, for neutron flux up to 6 X 10 -6 cm -2 .s -1 per neutron source. (author)

  8. Tridimensional ultrasonic images analysis for the in service inspection of fast breeder reactors; Analyse d'images tridimensionnelles ultrasonores pour l'inspection en service des reacteurs a neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Dancre, M

    1999-11-01

    Tridimensional image analysis provides a set of methods for the intelligent extraction of information in order to visualize, recognize or inspect objects in volumetric images. In this field of research, we are interested in algorithmic and methodological aspects to extract surface visual information embedded in volume ultrasonic images. The aim is to help a non-acoustician operator, possibly the system itself, to inspect surfaces of vessel and internals in Fast Breeder Reactors (FBR). Those surfaces are immersed in liquid metal, what justifies the ultrasonic technology choice. We expose firstly a state of the art on the visualization of volume ultrasonic images, the methods of noise analysis, the geometrical modelling for surface analysis and finally curves and surfaces matching. These four points are then inserted in a global analysis strategy that relies on an acoustical analysis (echoes recognition), an object analysis (object recognition and reconstruction) and a surface analysis (surface defects detection). Few literature can be found on ultrasonic echoes recognition through image analysis. We suggest an original method that can be generalized to all images with structured and non-structured noise. From a technical point of view, this methodology applied to echoes recognition turns out to be a cooperative approach between morphological mathematics and snakes (active contours). An entropy maximization technique is required for volumetric data binarization. (author)

  9. Development of Interactive Monitoring System for Neutron Scattering Instrument

    International Nuclear Information System (INIS)

    So, Ji Yong

    2015-01-01

    Neutron scattering instruments in HANARO research reactor have been contributed to various fields of basic science and material engineering. These instruments are open to publics and researchers can apply beam-time and do experiments with instrument scientists. In most cases, these instruments run for several weeks without stopping, and therefore instrument scientist wants to see the instrument status and receive information if the instruments have some problem. This is important for the safety. However, it is very hard to get instrument information outside of instruments. Access from external site is strongly forbidden in the institute due to the network safety, I developed another way to send instrument status information using commercial short messaging service(SMS). In this presentation, detailed features of this system will be shown. As a prototype, this system is being developed for the single instrument: Disk-chopper time-of-flight instruments (DC-TOF). I have successfully developed instruments and operate for several years. This information messaging system can be used for other neutron scattering instruments

  10. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    Kanamori, T.; Sukita, T.

    1995-01-01

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  11. Flexible low-cost machine vision inspection systems: a design case study

    Science.gov (United States)

    Gunning, James J.; Mahon, James; Farrell, Brian

    1993-08-01

    The field of automated optical inspection (AOI) is continuing to grow rapidly as manufacturing industries begin to recognize the potential of this area. However the AOI industry is rapidly approaching a bottle-neck in the cost of these systems. Computer hardware costs have dropped substantially while precision mechanical hardware costs have remained relatively fixed (and costly) over the last decade. While cost is a major contributing factor to the exclusiveness of AOI, another major factor is the lack of flexibility and general integration problems. This paper describes an AOI system prototype designed to counter some of the above problems regarding the perception and integration of AOI systems.

  12. Inspection system for a turbine blade region of a turbine engine

    Science.gov (United States)

    Smed, Jan P [Winter Springs, FL; Lemieux, Dennis H [Casselberry, FL; Williams, James P [Orlando, FL

    2007-06-19

    An inspection system formed at least from a viewing tube for inspecting aspects of a turbine engine during operation of the turbine engine. An outer housing of the viewing tube may be positioned within a turbine engine using at least one bearing configured to fit into an indentation of a support housing to form a ball and socket joint enabling the viewing tube to move during operation as a result of vibrations and other movements. The viewing tube may also include one or more lenses positioned within the viewing tube for viewing the turbine components. The lenses may be kept free of contamination by maintaining a higher pressure in the viewing tube than a pressure outside of the viewing tube and enabling gases to pass through an aperture in a cap at a viewing end of the viewing tube.

  13. Auxiliary feedwater system risk-based inspection guide for the South Texas Project nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Nickolaus, J.R.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1993-12-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. South Texas Project was selected as a plant for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by the NRC inspectors in preparation of inspection plans addressing AFW risk important components at the South Texas Project plant

  14. Auxiliary feedwater system risk-based inspection guide for the McGuire nuclear power plant

    International Nuclear Information System (INIS)

    Bumgardner, J.D.; Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1994-05-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. McGuire was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the McGuire plant

  15. Auxiliary feedwater system risk-based inspection guide for the Point Beach nuclear power plant

    International Nuclear Information System (INIS)

    Lloyd, R.C.; Moffitt, N.E.; Gore, B.F.; Vo, T.V.; Vehec, T.A.

    1993-02-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Point Beach was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRS. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Point Beach plant

  16. Auxiliary feedwater system risk-based inspection guide for the H. B. Robinson nuclear power plant

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Lloyd, R.C.; Gore, B.F.; Vo, T.V.; Garner, L.W.

    1993-08-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. H. B. Robinson was selected as one of a series of plants for study. The product of this effort is a prioritized listing of AFW failures which have occurred at the plant and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the H. B. Robinson plant

  17. Documentation for initial testing and inspections of Beneficial Uses Shipping System (BUSS) Cask

    International Nuclear Information System (INIS)

    Lundeen, J.E.

    1994-01-01

    The purpose of this report is to compile data generated during the initial tests and inspections of the Beneficial Uses Shipping System (BUSS) Cask. In addition, this report will verify that the testing criteria identified in section 8.1 of the BUSS Cask Safety Analysis Report for Packaging (SARP) was met. The BUSS Cask Model R-1 is a type B shipping container used for shipment of radioactive cesium-137 and strontium-90 capsules to Waste Encapsulation and Storage Facility (WESF). The BUSS Cask body and lid are each one-piece forgings fabricated from ASTM A473, Type 304 stainless steel. The primary purpose of the BUSS Cask is to provide shielding and confinement as well as impact, puncture, and thermal protection for the capsules under both normal and accident conditions. Chapter 8 of the BUSS Cask SARP requires several acceptance tests and inspections, each intended to evaluate the performance of different components of the BUSS Cask system, to be performed before its first use. The results of the tests and inspections required are included in this document

  18. Auxiliary feedwater system risk-based inspection guide for the Byron and Braidwood nuclear power plants

    International Nuclear Information System (INIS)

    Moffitt, N.E.; Gore, B.F.; Vo, T.V.

    1991-07-01

    In a study sponsored by the US Nuclear Regulatory Commission (NRC), Pacific Northwest Laboratory has developed and applied a methodology for deriving plant-specific risk-based inspection guidance for the auxiliary feedwater (AFW) system at pressurized water reactors that have not undergone probabilistic risk assessment (PRA). This methodology uses existing PRA results and plant operating experience information. Existing PRA-based inspection guidance information recently developed for the NRC for various plants was used to identify generic component failure modes. This information was then combined with plant-specific and industry-wide component information and failure data to identify failure modes and failure mechanisms for the AFW system at the selected plants. Byron and Braidwood were selected for the fourth study in this program. The produce of this effort is a prioritized listing of AFW failures which have occurred at the plants and at other PWRs. This listing is intended for use by NRC inspectors in the preparation of inspection plans addressing AFW risk-important components at the Byron/Braidwood plants. 23 refs., 1 fig., 1 tab

  19. System of adjoint P1 equations for neutron moderation

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    In some applications of perturbation theory, it is necessary know the adjoint neutron flux, which is obtained by the solution of adjoint neutron diffusion equation. However, the multigroup constants used for this are weighted in only the direct neutron flux, from the solution of direct P1 equations. In this work, this procedure is questioned and the adjoint P1 equations are derived by the neutron transport equation, the reversion operators rules and analogies between direct and adjoint parameters. (author)

  20. VEDS-Automated system for inspection of vehicles and containers for explosives and other threats

    International Nuclear Information System (INIS)

    Gozani, T.; Liu, F.; Sivakumar, M.

    2004-01-01

    Many parts of national infrastructures around the world are very vulnerable to terrorist threats in the form of large vehicle bombs. The larger bomb, the larger is the damage and its extent. The number of containers and vehicles crossing land or sea ports of entry is huge. Tough the probability is low, any vehicle may contain a threat. Any system addressing these enormous security tasks should obviously be based on excellent human intelligence to focus the attention on a much smaller number of high-risk containers and vehicles. These containers must then be subjected to a thorough and reliable inspection for the threats.Viable security system must incorporate a credible and effective inspection to achieve its purposes. It should have high performance and be operationally acceptable. This means the system must possess high detection capabilities, low false positive rate, fast response and provide automatic decision eliminating the need for human interpretation. Ancore has developed a range of new inspection devices, which are highly suitable for the above tasks. All the systems are automatic, material specific, high performance for a wide range and type of threats. Some of them are also highly modular, and compact. Some of the systems are fixed, other are relocatable, or fully mobile. The presentation will discuss Ancore's VEDS (Vehicle Explosive Detection System) which detects bulk explosives (expandable also to radiological and nuclear threats)) in marine containers, trucks and cars. The compact and rugged nature of the VEDS sensor makes it suitable for many forms of conveyance: mobile (van mounted), portal, forklift mounted, or mounted on container unloading rig. The physics principles of the system and some recent applications and results will be presented

  1. Neutronic analysis of the 1D and 1E banks reflux detection system

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-12-21

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.

  2. Neutronic analysis of the 1D and 1E banks reflux detection system

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal 235 U concentration levels to reflux levels remain satisfactory detectable

  3. Instrumentation system for pulsed neutron generator. Pt. 1. Electronic control and data acquisition

    International Nuclear Information System (INIS)

    Burda, J.; Igielski, A.; Janik, W.; Kosik, M.; Kurowski, A.; Zaleski, T.

    1997-01-01

    The paper presents an electronic instrumentation system which is successfully applied for pulsed neutron generator and measurements. In the paper there are described in details all modernized parts of the system as well as new designed and applied ones. The set of diagrams is enclosed. An important part of the system has been designed and built in the Neutron Transport Physics Laboratory. (author)

  4. Optic fibber data acquisition and transmission system dedicated to a neutron generator

    International Nuclear Information System (INIS)

    Ledo Pereda, Luis Miguel; Vergara Limon, Sergio; Arteche Diaz, Raul

    2009-01-01

    Hereby, are presented the design, construction and application of a virtual data acquisition system based on the usage of microcontrollers, optic fibber, and PC. System is aimed to the reestablishment of the communication between the basic modules of a Neutron Generator. The work shows, how the original interface design is upgraded by the automation of the data acquisition, on the Neutron Generator exploitation parameters. The PC usage is being introduced in the Neutron Generator and the precedent is established for further subsystem

  5. Design of a neutron poison monitor system (NPMS) of maximum sensitivity

    International Nuclear Information System (INIS)

    Piper, T.C.

    1989-01-01

    The development of a neutron poison monitoring system was first reported in 1958 and systems implemented by others have copied that design. The present work shows that the 1958 physical configuration does not yield maximum sensitivity [i.e. sensitivity = fractional change in neutron count rate for given fractional change in concentration]. The maximum sensitivity design being reported was configured by using neutron transport calculations to determine sensitivity versus configuration. Data from the new and the 1958 types are compared. 2 refs

  6. Electric drive vehicle systems : suggested changes to large truck and motorcoach regulations and inspection procedures : [technology brief].

    Science.gov (United States)

    2015-11-01

    Most commercial vehicles on the road today use : low-voltage electrical systems (12/24 volts direct : current). The current Federal Motor Carrier Safety : Regulations (FMCSRs), North American Standard : (NAS) inspection procedures, and out-of-service...

  7. Study of program defects of 22nm nanoimprint template with an advanced e-beam inspection system

    Science.gov (United States)

    Hiraka, Takaaki; Mizuochi, Jun; Nakanishi, Yuko; Yusa, Satoshi; Sasaki, Shiho; Kurihara, Masaaki; Toyama, Nobuhito; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya; Xiao, Hong; Kuan, Chiyan; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2009-10-01

    Nanoimprint lithography (NIL) is a candidate of alternative, low cost of ownership lithography solution for deep nano-meter device manufacturing12. For the NIL template pattern making, we have been developing the processes with 100keV SB EB writer and 50keV VSB EB writer to achieve the fine resolution of near 20nm1-7. However, inspection of nanoimprint template posed a big challenge to inspection system due to the small geometry, 1x comparing to 4x of Optical mask and EUV mask. Previous studies of nanoimprint template inspection were performed indirectly on a stamped wafer and/or on a round quartz wafer13. Electron beam inspection (EBI) systems have been widely used in semiconductor fabs in nanometer technology nodes. Most commonly EBI applications are electrical defects, or voltage contrast (VC) defects detection and monitoring8-11. In this study, we used a mask EBI system developed by Hermes Microvision, Inc. (HMI) to directly inspect a NIL template with line/space and hole patterns half pitched from 22nm to 90nm and with program defects sized from 4nm to 92nm. Capability of inspection with 10nm pixel size has been demonstrated and capability of capturing program defects sized 12nm and smaller has been shown. This study proved the feasibility of EBI as inspection solution of nanoimprint template for 22nmHP and beyond.

  8. Task analysis and structure scheme for center manager station in large container inspection system

    International Nuclear Information System (INIS)

    Li Zheng; Gao Wenhuan; Wang Jingjin; Kang Kejun; Chen Zhiqiang

    1997-01-01

    LCIS works as follows: the accelerator generates beam pulses which are formed into fan shape; the scanning system drags a lorry with a container passing through the beam in constant speed; the detector array detects the beam penetrating the lorry; the projection data acquisition system reads the projections and completes an inspection image of the lorry. All these works are controlled and synchronized by the center manage station. The author will describe the process of the projection data acquisition in scanning mode and the methods of real-time projection data processing. the task analysis and the structure scheme of center manager station is presented

  9. Optimum power of radiation dose in X ray television systems of flaw inspection in industry

    International Nuclear Information System (INIS)

    Denbnovetskii, S.V.; Troitskii, V.A.; Belyi, N.G.; Grom, V.S.; Kuz'micheva, N.V.; Leshchishin, A.V.; Mikhailov, V.N.; Shutenko, O.V.

    1990-01-01

    The authors present the experimental dose characteristics of a x ray television system based on x ray vidicons with the diameter of the working field of 900 mm which operate in the continuous and pulsed conditions with the longer time of cumulation of radiation images on the target of the x ray vidicon. For each type of the inspected material, its thickness, and cumulation time, the dose characteristics were used to determine the optimum power of the exposure dose ensuring the maximum signal/noise ratio and detectability of the defects at the output of the system. (author)

  10. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    Science.gov (United States)

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  11. Machine vision system: a tool for quality inspection of food and agricultural products.

    Science.gov (United States)

    Patel, Krishna Kumar; Kar, A; Jha, S N; Khan, M A

    2012-04-01

    Quality inspection of food and agricultural produce are difficult and labor intensive. Simultaneously, with increased expectations for food products of high quality and safety standards, the need for accurate, fast and objective quality determination of these characteristics in food products continues to grow. However, these operations generally in India are manual which is costly as well as unreliable because human decision in identifying quality factors such as appearance, flavor, nutrient, texture, etc., is inconsistent, subjective and slow. Machine vision provides one alternative for an automated, non-destructive and cost-effective technique to accomplish these requirements. This inspection approach based on image analysis and processing has found a variety of different applications in the food industry. Considerable research has highlighted its potential for the inspection and grading of fruits and vegetables, grain quality and characteristic examination and quality evaluation of other food products like bakery products, pizza, cheese, and noodles etc. The objective of this paper is to provide in depth introduction of machine vision system, its components and recent work reported on food and agricultural produce.

  12. Underwater inspection and maintenance programs within nuclear and non-nuclear related operating systems

    International Nuclear Information System (INIS)

    Vallance, C.; Goulet, B.; Black, S.

    2008-01-01

    The increasing age of the nuclear and non-nuclear power generating facilities requires extended inspection, repair and maintenance (IRM) activities to prolong the operation of these facilities past their original design life. Commercial divers are often utilized to perform critical work at nuclear power plants, fuel reprocessing plants, waste storage facilities, and research institutions. These various tasks include inspection, welding, mechanical modifications and repairs, coating applications, and work associated with plant decommissioning. Programs may take place in areas such as the reactor vessel, equipment pool, spent fuel pool, and suppression chamber using manned intervention and remotely operated vehicles. Some of these tasks can also be conducted using remotely operated vehicles (ROV's). Although specialist robots are not uncommon to the nuclear industry, the use of free-swimming vehicle's and remote systems for the inspection of underwater assets has increased due to improvements of the supporting technologies and information requirements needed to extend the life of these facilities. This paper will provide an overview of the procedures and equipment necessary to perform unique work tasks using manned and unmanned techniques. (author)

  13. A compact neutron beam generator system designed for prompt gamma nuclear activation analysis.

    Science.gov (United States)

    Ghassoun, J; Mostacci, D

    2011-08-01

    In this work a compact system was designed for bulk sample analysis using the technique of PGNAA. The system consists of (252)Cf fission neutron source, a moderator/reflector/filter assembly, and a suitable enclosure to delimit the resulting neutron beam. The moderator/reflector/filter arrangement has been optimised to maximise the thermal neutron component useful for samples analysis with a suitably low level of beam contamination. The neutron beam delivered by this compact system is used to irradiate the sample and the prompt gamma rays produced by neutron reactions within the sample elements are detected by appropriate gamma rays detector. Neutron and gamma rays transport calculations have been performed using the Monte Carlo N-Particle transport code (MCNP5). 2010 Elsevier Ltd. All rights reserved.

  14. A compact in vivo neutron activation analysis system to quantify manganese in human hand bone

    Science.gov (United States)

    Liu, Yingzi

    As an urgent issue of correlating cumulative manganese (Mn) exposure to neurotoxicity, bone has emerged as an attractive biomarker for long-term Mn deposition and storage. A novel Deuterium-Deuterium (DD) neutron generator irradiation system has been simulated and constructed, incorporating moderator, reflector and shielding. This neutron activation analysis (NAA) irradiation assembly presents several desirable features, including high neutron flux, improved detection limit and acceptable neutron & photon dose, which would allow it be ready for clinical measurement. Key steps include simulation modeling and verifying, irradiation system design, detector characterization, and neutron flux and dose assessment. Activation foils were also analyzed to reveal the accurate neutron spectrum in the irradiation cave. The detection limit with this system is 0.428 ppm with 36 mSv equivalent hand dose and 52 microSv whole body effective dose.

  15. Promoting radiation protection and safety for X-ray inspection systems

    International Nuclear Information System (INIS)

    Maharaj, Harri P.

    2008-01-01

    This paper aims to present a regulatory perspective on radiation protection and safety relevant to facilities utilizing baggage X-ray inspection systems. Over the past several years there has been rapid growth in the acquisition and utilization of X-ray tube based inspection systems for security screening purposes worldwide. In addition to ensuring compliance with prescribed standards applicable to such X-ray systems, facilities subject to federal jurisdiction in Canada are required to comply with established codes of practice, which, not only are in accordance with occupational health and safety legislation but also are consistent with international guidance. Overall, these measures are aimed at reducing radiation risks and adverse health effects. Data, acquired in the past several years in a number of facilities through various instruments, namely, monitoring and surveillance, radiation safety audits, onsite evaluations, device registration processes and information developed, were considered in conjunction with detrimental traits. Changes are necessary to reduce radiation and safety risks from both an ALARA point of view and an accountability perspective. Establishing, developing, implementing and following a radiation protection program is warranted and advocated. Minimally, such a program shall be managed by a radiation safety officer. It shall promote and sustain a radiation safety culture in the workplace; shall ensure properly qualified individuals operate and service the X-ray systems in accordance with established and authorized procedures; and shall incorporate data recording and life cycle management principles. Such a program should be the norm for a facility that utilizes baggage X-ray inspection systems for security purposes, and it shall be subject to continuous regulatory oversight. (author)

  16. The TENDL neutron data library and the TEND1038 38-group neutron constant system

    International Nuclear Information System (INIS)

    Abramovich, S.N.; Gorelov, V.P.; Gorshikhin, A.A.; Grebennikov, A.N.; Il'in, V.N.; Krut'ko, N.A.; Farafontov, G.G.

    2002-01-01

    The library contains neutron data for 103 nuclei - i.e. for 38 actinide nuclei (from 232 Th to 249 Cm), 26 fission fragment nuclei and 39 nuclei in structural and technological materials. The 38-group constants were obtained from TENDL. The high-energy group boundary is 20 MeV. The energy range below 1.2 eV contains 11 groups. Temperature and resonance effects were taken into account. The delayed neutron parameters for 6 groups and the yields of 40 fission fragments were obtained (light and heavy, stable and non-stable). The fast neutron features of spherical critical assemblies were calculated using constants from TEND1038. (author)

  17. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  18. Advanced Neutron Source reactor control and plant protection systems design

    International Nuclear Information System (INIS)

    Anderson, J.L.; Battle, R.E.; March-Leuba, J.; Khayat, M.I.

    1992-01-01

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges

  19. An extended optimal replacement model for a deteriorating system with inspections

    International Nuclear Information System (INIS)

    Sheu, Shey-Huei; Tsai, Hsin-Nan; Wang, Fu-Kwun; Zhang, Zhe George

    2015-01-01

    This study considers a generalized replacement model for a deteriorating system in which failures can only be detected by inspection. The system is assumed to have two types of failures and is replaced at the occurrence of the Nth type I failure (minor failure), or the first type II failure (catastrophic failure), or at working age T, whichever occurs first. The probability of a type I or type II failure depends on the number of type I failures since the previous replacement. Such a system can be repaired after a type I failure, but is deteriorating stochastically. That is, the operating intervals are decreasing stochastically, whereas the durations of the repairs are increasing stochastically. Based on these assumptions, we determine the expected net cost rate and discuss various special cases of the model. Finally, we develop a computational algorithm for finding the optimal policy and present a numerical example to show the properties of the proposed model. - Highlight: • Replacement policy for system subject two types of failures or the system's working age. • Failures detected by inspections. • Decreasing operating times and increasing repair times. • Derive a cost function. • Determine the cost minimization policy

  20. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System

    Directory of Open Access Journals (Sweden)

    Ajmal Hinas

    2017-12-01

    Full Text Available In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.

  1. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  2. Vision-Based Target Finding and Inspection of a Ground Target Using a Multirotor UAV System.

    Science.gov (United States)

    Hinas, Ajmal; Roberts, Jonathan M; Gonzalez, Felipe

    2017-12-17

    In this paper, a system that uses an algorithm for target detection and navigation and a multirotor Unmanned Aerial Vehicle (UAV) for finding a ground target and inspecting it closely is presented. The system can also be used for accurate and safe delivery of payloads or spot spraying applications in site-specific crop management. A downward-looking camera attached to a multirotor is used to find the target on the ground. The UAV descends to the target and hovers above the target for a few seconds to inspect the target. A high-level decision algorithm based on an OODA (observe, orient, decide, and act) loop was developed as a solution to address the problem. Navigation of the UAV was achieved by continuously sending local position messages to the autopilot via Mavros. The proposed system performed hovering above the target in three different stages: locate, descend, and hover. The system was tested in multiple trials, in simulations and outdoor tests, from heights of 10 m to 40 m. Results show that the system is highly reliable and robust to sensor errors, drift, and external disturbance.

  3. Development of Inspection Data Collection and Evaluation System (IDES) for J-MOX (1)

    International Nuclear Information System (INIS)

    Kumakura, Shinichi; Takizawa, Koji; Masuda, Shoichiro; Iso, Shoko; Kikuchi, Masahiro; Hisamatsu, Yoshinori; Kurobe, Hiroko; Kawasue, Akane

    2012-01-01

    'Inspection Data and Collection and Evaluation System' is the system to storage inspection data and operator declaration data collected from various measurement equipments, which are installed in fuel fabrication processes of the large-scale MOX fuel fabrication plant, and to make safeguards evaluation using these data. Nuclear Material Control Center is now developing this system under the project commissioned by JSGO. By last fiscal year, we developed the simulator to simulate fuel fabrication process and generate data simulating in-process material inventory/flow and these measurement data. In addition, we developed a verification evaluation system to calculate various statistics from the simulation data and conduct statistical tests such as NRTA in order to verify the adequacy of material accountancy for the fabrication process. We are currently investigating the adequacy of evaluation itself and effects for evaluation by changing various process factors including unmeasured inventories as well as the adequacy of current safeguards approach. In the presentation, we explain the developed system configuration, calculation method of the simulation etc. and demonstrate same examples of the simulated result on material flow in the fabrication process and a part of the analytical results. (author)

  4. Neutron measurement in 12,13C+ 27Al system using CR-39 detectors and neutron rem meter

    International Nuclear Information System (INIS)

    Sahoo, G.S.; Tripathy, S.P.; Shanbhag, A.A.; Sunil, C.; Joshi, D.S.; Sarkar, P.K.

    2011-01-01

    In this work, neutron measurements carried out for the interaction of 60 and 67.5 MeV 12 C, 57.3 and 65 MeV 13 C ions with thick aluminium target by using CR-39 detectors and neutron rem meter is reported. Both the detector systems were irradiated at different angles viz. 0 deg, 30 deg, 60 deg, 90 deg with respect to the beam direction. The normalized track density measurements (tracks/cm 2 /projectile at 1m) in CR-39 detectors were correlated with the normalized dose equivalent values (μSv/projectile at 1m) obtained using the neutron rem meter. The track density was found to be more in case of 13 C than 12 C. However in all the cases, the track density per incident projectile was found to decrease as the angle with respect to beam direction increases, indicating non-isotropic nature of neutron emission. The ratio between measured dose equivalent in rem meter to the measured track densities in CR-39 detectors was found to be 2.8±0.2, which remains constant irrespective of the change in angle from beam direction as well as neutron spectrum, indicating a flat dose response of CR-39 detectors. (author)

  5. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    International Nuclear Information System (INIS)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok.

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs

  6. The development of robotic system for inspecting and repairing NPP primary coolant system of high-level radioactive environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Ki Ho; Jung, Seung Ho; Kim, Byung Soo; Hwang, Suk Yeoung; Kim, Chang Hoi; Seo, Yong Chil; Lee, Young Kwang; Lee, Yong Bum; Cho, Jai Wan; Lee, Jae Kyung; Lee, Yong Deok

    1997-07-01

    This project aims at developing a robotic system to automatically handle inspection and maintenance of NPP safety-related facilities in high-level radioactive environment. This robotic system under development comprises two robots depending on application fields - a mobile robot and multi-functional robot. The mobile robot is designed to be used in the area of primary coolant system during the operation of NPP. This robot enables to overcome obstacles and perform specified tasks in unstructured environment. The multi-functional robot is designed for performing inspection and maintenance tasks of steam generator and nuclear reactor vessel during the overhaul periods of NPP. Nuclear facilities can be inspected and repaired all the time by use of both the mobile robot and the multi-functional robot. Human operator, by teleoperation, monitors the movements of such robots located at remote task environment via video cameras and controls those remotely generating desired commands via master manipulator. We summarize the technology relating to the application of the mobile robot to primary coolant system environment, the applicability of the mobile robot through 3D graphic simulation, the design of the mobile robot, the design of its radiation-hardened controller. We also describe the mechanical design, modeling, and control system of the multi-functional robot. Finally, we present the design of the force-reflecting master and the modeling of virtual task environment for a training simulator. (author). 47 refs., 16 tabs., 43 figs.

  7. The design of the electronic system on neutron beam monitor based on GEM

    International Nuclear Information System (INIS)

    Zuo Min; Zhuang Bao'an; Zhao Yubin; Chen Shaojia; Wang Na; Zhang Hongyu; Zhao Jingwei

    2012-01-01

    The Neutron Beam Monitor - a GEM based system used to monitor the neutron beams in real time - is introduced. The electronic parts are described in details, including the principles of the circuit, the system structure, the design of the Daughterboard and the logic and algorithm of the FPGA on the Monitor board. The test results are also given out in the final. (authors)

  8. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  9. Development of Ultrasonic Testing System for In-Service Inspection of the Shrunk-on Type LP Turbine Roter

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon Soo; Seong Un Hark; Ryu, Seong Woo [Doosan Heavy Industries and Construction Co., Seoul (Korea, Republic of)

    2009-04-15

    Turbine, which is one of major components in nuclear power plants, requires reliable nondestructive inspections. But, accessibility of transducers is limited and interpretation of acquired signals is not easy at all due to the complication. So, in this study, we have fabricated mock-up specimens of real size and shape. We applied pulse-echo method and time-of-flight diffraction(TOFD) method for precise inspection of turbine key and wheel bore. And phased array ultrasonic testing method was adopted for wheel dovetail of turbines by using mock-up. Furthermore, an automatic scanner system was developed for in-service inspection of the developed methods

  10. A study on the linearity characteristics of neutron power measurement system for Hanaro

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 {sup -8} %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well asthe output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs.

  11. A study on the linearity characteristics of neutron power measurement system for Hanaro

    International Nuclear Information System (INIS)

    Kang, Tai Ki; Kim, Young Ki; Lee, Byung Chul; Park, Sang Jun

    1999-06-01

    It is briefly described the general principles of neutron detection and the method of neutron measurement in the nuclear reactor which neutron flux varies widely and gamma radiation also exists. Wide-range Fission Chamber System which is excellent in electrical and mechanical performances has been selected for neutron power measurement system for Hanaro. The linearity characteristics of neutron power signals is a critical factor of the reliability in reactor power control. In particular , the linearity of the log power signal, which covers 10 decade form 10 -8 %FP to 200 %FP was a matter of primary concern during commissioning. In case of the linear power signal for reactor control at high power condition, the output signals were additionally analyzed in connection with the reactor thermal power and the delayed neutron signal from the primary pipe as well as the output signal from the compensated ion chamber as a reference signal. (author). 13 refs., 7 tabs., 33 figs

  12. Analysis of the Neutron Generator and Target for the LSDTS System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-11-15

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius.

  13. Analysis of the Neutron Generator and Target for the LSDTS System

    International Nuclear Information System (INIS)

    Park, Chang Je; Lee, Yong Deok; Song, Jae Hoon; Song, Kee Chan

    2008-11-01

    A preliminary analysis was performed based on the literatures and the patents for the neutron generators and targets for the lead slowing down time spectrometer (LSDTS) system. It was found that local neutron generator did not exhibit enough neutron intensity such as 1E+12 n/s, which is a minimum requirement for the LSDTS system to overcome curium backgrounds. However, a neutron generator implemented with an electron accelerator may provide a higher intensity around 1E+13 n/s and it is required to investigate further including a detail analysis. In addition to the neutron generator, a study on target was performed with the Monte Carlo simulation. In the study, an optimal design of target was suggested to provide a high neutron yield and a better thermal resistance. The suggested target consists several cylindrical plates with a certain cooling gap, which have increasing thickness and increasing radius

  14. Study by Monte Carlo methods of an explosives detection system made up with a D-D neutron generator and NaI(Tl) gamma detectors.

    Science.gov (United States)

    Cevallos Robalino, Lenin E; García Fernández, Gonzalo Felipe; Gallego, Eduardo; Guzmán-García, Karen A; Vega-Carrillo, Hector Rene

    2018-02-17

    Detection of hidden explosives is of utmost importance for homeland security. Several configurations of an Explosives Detection System (EDS) to intercept hidden threats, made up with a Deuterium-Deuterium (D-D) compact neutron generator and NaI (Tl) scintillation detectors, have been evaluated using MCNP6 code. The system's response to various samples of explosives, such as RDX and Ammonium Nitrate, is analysed. The D-D generator is able to produce fast neutrons with 2.5 MeV energy in a maximum yield of 10 10 n/s. It is surrounded by high-density polyethylene to thermalize the fast neutrons and to optimize interactions with the sample inspected, whose emission of gamma rays gives a characteristic spectrum of the elements that constitute it. This procedure allows to determine its chemical composition and to identify the type of substance. The necessary shielding is evaluated to estimate its thicknesses depending on the admissible dose of operation, using lead and polyethylene. The results show that its functionality is promising in the field of national security for explosives inspection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Multistage position-stabilized vibration isolation system for neutron interferometry

    Science.gov (United States)

    Arif, Muhammad; Brown, Dennis E.; Greene, Geoffrey L.; Clothier, R.; Littrell, K.

    1994-10-01

    A two stage, position stabilized vibration isolation system has been constructed and is now in operation at the Cold Neutron Research Facility of the National Institute of Standards and Technology, Gaithersburg, MD. The system employs pneumatic isolators with a multiple input/multiple output pneumatic servo system based upon pulse width modulation control loops. The first stage consists of a 40,000 kg reinforced concrete table supported by pneumatic isolators. A large environmentally isolated laboratory enclosure rests on the concrete table. The second stage consists of a 3000 kg granite optical table located within the enclosure and supported by another set of pneumatic isolators. The position of the two stages is monitored by proximity sensors and inclinometers with 12 degrees of freedom. The system controls 12 independent pneumatic airsprings. The signals from these sensors are fed into a personal computer based control system. The control system has maintained the position of the two stages to better than 1 micrometers in translation and 5 (mu) rad in orientation for a period of a few months. A description of the system and its characteristics is given.

  16. Enhanced defect detection capability using learning system for extreme ultraviolet lithography mask inspection tool with projection electron microscope optics

    Science.gov (United States)

    Hirano, Ryoichi; Hatakeyama, Masahiro; Terao, Kenji; Watanabe, Hidehiro

    2016-04-01

    Extreme ultraviolet lithography (EUVL) patterned mask defect detection is a major issue that must be addressed to realize EUVL-based device fabrication. We have designed projection electron microscope (PEM) optics for integration into a mask inspection system, and the resulting PEM system performs well in half-pitch (hp) 16-nm-node EUVL patterned mask inspection applications. A learning system has been used in this PEM patterned mask inspection tool. The PEM identifies defects using the "defectivity" parameter that is derived from the acquired image characteristics. The learning system has been developed to reduce the labor and the costs associated with adjustment of the PEM's detection capabilities to cope with newly defined mask defects. The concepts behind this learning system and the parameter optimization flow are presented here. The learning system for the PEM is based on a library of registered defects. The learning system then optimizes the detection capability by reconciling previously registered defects with newly registered defects. Functional verification of the learning system is also described, and the system's detection capability is demonstrated by applying it to the inspection of hp 11-nm EUV masks. We can thus provide a user-friendly mask inspection system with reduced cost of ownership.

  17. Conceptual design of an in-vessel inspection robotic system for Tokamak environment

    International Nuclear Information System (INIS)

    Kumar, Prabhat; Raju, Daniel; Ranjan, Vaibhav; Patel, Prateek; Dave, Jatinkumar; Naik, Mehul

    2013-01-01

    An in-vessel inspection robotic system has been conceptualized for operation inside a tokamak vessel. The robotic system is envisaged to comprise of a robotic arm, end-effector, microcontroller and wireless communication system. The end-effector is envisaged to be a special purpose camera for in-situ inspection between plasma shots. The three-link robotic arm, designed for ITER-like environment, has 4 revolute joints- 3 providing manipulation in poloidal plane and the fourth one providing limited movement in adjacent toroidal planes. This paper provides the conceptual design of the system along with kinematic analysis of robotic arm. Solutions have been derived for forward and inverse kinematic models and the Jacobian matrix for the robotic arm linkage. In forward kinematic model, given a set of joint-link parameters, the position and orientation of end-effector are determined with respect to a reference frame. In inverse kinematic model, given the specified position and orientation of end-effector with respect to a reference frame, a set of joint variables are derived that would bring the end-effector into the required posture. Using Jacobian matrix, the relation between the end-effector velocity and the joint velocity of a manipulator is obtained i.e. given the individual joint velocity; the end-effector velocity is obtained. A CAD model has been generated using CATIA to simulate the kinematic model and carry out computational stress analysis. (author)

  18. Design of an Infrared Imaging System for Robotic Inspection of Gas Leaks in Industrial Environments

    Directory of Open Access Journals (Sweden)

    Ramon Barber

    2015-03-01

    Full Text Available Gas detection can become a critical task in dangerous environments that involve hazardous or contaminant gases, and the use of imaging sensors provides an important tool for leakage location. This paper presents a new design for remote sensing of gas leaks based on infrared (IR imaging techniques. The inspection system uses an uncooled microbolometer detector, operating over a wide spectral bandwidth, that features both low size and low power consumption. This equipment is boarded on a robotic platform, so that wide objects or areas can be scanned. The detection principle is based on the use of active imaging techniques, where the use of external IR illumination enhances the detection limit and allows the proposed system to operate in most cases independently from environmental conditions, unlike passive commercial approaches. To illustrate this concept, a fully radiometric description of the detection problem has been developed; CO2 detection has been demonstrated; and simulations of typical gas detection scenarios have been performed, showing that typical industrial leaks of CH4 are well within the detection limits. The mobile platform where the gas sensing system is going to be implemented is a robot called TurtleBot. The control of the mobile base and of the inspection device is integrated in ROS architecture. The exploration system is based on the technique of Simultaneous Localization and Mapping (SLAM that makes it possible to locate the gas leak in the map.

  19. Development of five axis robotic system for an industrial neutron tomography imaging system

    International Nuclear Information System (INIS)

    Vyas, R.J.; Radke, M.G.; Mishra, J.K.; Arunkumar, G.V.D.; Ramakumar, M.S.

    1994-01-01

    Tomography is one of the latest techniques in the field of nondestructive testing. X-rays, gamma rays or neutrons are used as an energy source whereas five axis manipulator is designed to move the specimen across the beam. The 5 axis robotic system has been indigenously developed, designed, manufactured and tested to move up to 10 kg payload. Computer is necessary to process and store data and retrieve it for processing. The same computer is used for control of manipulator. Computer aided tomography is carried out for research and industrial use. Neutron beam will be used either for evaluation of organic materials in attenuation based measurements or for evaluation on the basis of neutron activation of materials like nuclear fuels. The paper describes the indigenously developed 5-axis robotic system as a part of a facility built around Kamini reactor at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. (author). 4 figs

  20. Measurement system of gamma, X, thermal and/or fast neutron flux

    International Nuclear Information System (INIS)

    Siffert, P.; Regal, R.; Koebel, J.M.; Teissier, C.

    1987-01-01

    The system includes detection means of gamma or/and X radiation, detection means of gamma and/or X radiation from thermal neutrons, detection means of gamma and/or X radiation from thermal and/or fast neutrons. It includes also processing devices of the signals given by the detection means able to get a linear combination of the detected signals. These processing devices give a signal selectively representative of photon, thermal or fast neutron rate [fr

  1. Nondestructive Testing and Inspection Using Electron Linacs

    Science.gov (United States)

    Reed, William A.

    2012-06-01

    This chapter focuses on the role of electron accelerators that produce X-rays in NDT applications and emphasizes topics of interest to those using accelerator-based inspection products. In addition, it highlights the developments in digital detector technology that have become the precursor to more sophisticated digital radiography and computed tomography applications as well as the emerging security inspection market. Because the demand for accelerators for cargo inspection has vastly exceeded all other industrial NDT applications, this market segment, its special requirements, and future trends are comprehensively discussed. Accelerator systems that are specifically designed to produce neutrons can also be used for some of the same applications, but these are covered in Chapter 6.

  2. Ageing Management, Monitoring and Inspection of Spent Fuel Storage by Canister System

    International Nuclear Information System (INIS)

    Saegusa, Toshiari; Takeda, Hirofumi; Matsumura, Tetsuo; Nauchi, Yasushi

    2014-01-01

    Ageing Management Programme (AMP) for the storage system over the period of extended storage will address uncertainties in the safety-relevant functions of the system that may otherwise be impaired by ageing mechanisms. The AMP identifies System, Structure and Components (SSCs) that need specific actions to mitigate ageing and ensures that no ageing effects result in a loss of their intended function during an intended licensed period. AMPs generally include prevention, mitigation, monitoring, inspection, and maintenance programmes. An example of monitoring to detect confinement loss of (Helium leakage from) canister is as follows. In a concrete cask storage system, spent fuel assemblies are placed and weld-sealed in a canister filled with Helium gas. If the Helium gas leaks due to stress corrosion cracking of the weld, for instance, the effect of Helium convection is lost in the canister, causing the temperature profile on the canister surface to change. It was found that the temperatures difference between the bottom and the top of the canister surface changed remarkably with the Helium gas leak. Monitoring the temperature difference enables confirmation of the integrity of the canister containment. An example of inspection to detect spent fuel integrity in canister is as follows. When a spent fuel rod lost its integrity, gaseous fission products were discharged and diffused in the canister. Among them, Krypton- 85 emits gamma rays of 514 keV. Detection of this gamma ray from outside of the canister enables identification of a loss of integrity of spent fuel rods without opening the canister lid. Experiments were performed using a small-scale mock-up canister. The Krypton-85 leak of about 10 11 Bq - about 10% of the Krypton-85 inventory in a fuel rod - could be detected by Ge gamma ray detectors. This technique can be used as an inspection method of integrity or damage of spent fuel. It is noted that Krypton-85 decays out with the half-life of approximately 11

  3. Robotized system for in-pipe inspection using pressure tolerant electronics technique

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ramon R.; Hsu, Liu; Peixoto, Alessandro J.; Gomes, Luiz P.C.S. [Coordenacao dos Programas de Pos-graduacao de Engenharia (UFRJ/COPPE), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Eletrica. Grupo de Simulacao e Controle em Automacao e Robotica (GSCAR)]. E-mail: ramon, liu, jacoud, lpgomes@coep.ufrj.br; Reis, Ney R.S. dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas. Lab. de Robotica]. E-mail: salvireis@cenpes.petrobras.com.br

    2003-07-01

    This paper reports the development and experimental evaluation of a robotized system devised to perform two kinds of measurements inside a pipeline: the thickness of the internal wall painting layer and the internal radius. The thickness measurement allows the inspection of the painting layer quality and by measuring several radii it is possible to estimate the pipeline transversal section shape. The proposed scheme is shown to yield very satisfactory results on an actual 14'' (inches) pipeline in a real site. (author)

  4. System for measurements and data processing in neutron physics researches

    International Nuclear Information System (INIS)

    Kadashevich, V.I.; Kondurov, I.A.; Nikolaev, S.N.; Ryabov, Yu.F.

    1976-01-01

    A system of measuring and computing means created for automation of studies in the field of the neutron physics is discussed. Within the framework of this system each experiment is provided with its individual measuring station which consists of a set of analog and digital modules implemented in accordance with the CAMAC standard. On the higher level of this system there are measuring-computing centres (MCC) which simultaneously serve a number of physical installations. These MCCs are based on ''Minsk-22'' computers whose computational facilities are used for the preliminary processing and for creation of temporary data archives. In its turn, all the MCCs are users of the time-sharing system on the basis of the ''Minsk-32'' computers. This system extends possibilities for user's fast data processing, archive creation and provides transfer of required information to the main computing system based on the BESM-6 computer. Transfer of information and preliminary processing are performed by remote terminals with the help of a special directive language

  5. SERA - an advanced treatment planning system for neutron therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Wessol, D.E.; Wemple, C.A.; Nigg, D.W.; Albright, C.L.; Cohen, M.T.; Frandsen, M.W.; Harkin, G.J.; Rossmeier, M.B.

    2001-01-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimization of dose pattern is required. (author)

  6. SERA - An Advanced Treatment Planning System for Neutron Therapy

    International Nuclear Information System (INIS)

    Wemple, C. A.; Albright, C. L.; Nigg, D. W.; Wessol, D. W.; Wheeler, F. J.; Harkin, G. J.; Rossmeirer, M. B.; Cohen, M. T.; Frandsen, M. W.

    1999-01-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimizations of dose pattern is required

  7. SERA - An Advanced Treatment Planning System for Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    C. A. Wemple; C. L. Albright; D. W. Nigg; D. W. Wessol; F. J. Wheeler; G. J. Harkin; M. B. Rossmeirer; M. T. Cohen; M. W. Frandsen

    1999-06-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimizations of dose pattern is required.

  8. Application of Monte Carlo Method to Design a Delayed Neutron Counting System

    International Nuclear Information System (INIS)

    Ahn, Gil Hoon; Park, Il Jin; Kim, Jung Soo; Min, Gyung Sik

    2006-01-01

    The quantitative determination of fissile materials in environmental samples is becoming more and more important because of the increasing demand for nuclear nonproliferation. A number of methods have been proposed for screening environmental samples to measure fissile material content. Among them, delayed neutron counting (DNC) that is a nondestructive neutron activation analysis (NAA) method without chemical preparation has numerous advantages over other screening techniques. Fissile materials such as 239 Pu and 235 U can be made to undergo fission in the intense neutron field. Some of the fission products emit neutrons referred to as 'delayed neutrons' because they are emitted after a brief decay period following irradiation. Counting these delayed neutrons provides a simple method for determining the total fissile content in the sample. In delayed neutron counting, the chemical bonding environment of a fissile atom has no effect on the measurement process. Therefore, NAA is virtually immune to the 'matrix' effects that complicate other methods. The present study aims at design of a DNC system. In advance, neutron detector, gamma ray shielding material, and neutron thermalizing material should be selected. Next, investigation should be done to optimize the thickness of gamma ray shielding material and neutron thermalizing material using the MCNPX that is a well-known and widely-used Monte Carlo radiation transport code to find the following

  9. A real-time 3D scanning system for pavement distortion inspection

    International Nuclear Information System (INIS)

    Li, Qingguang; Yao, Ming; Yao, Xun; Xu, Bugao

    2010-01-01

    Pavement distortions, such as rutting and shoving, are the common pavement distress problems that need to be inspected and repaired in a timely manner to ensure ride quality and traffic safety. This paper introduces a real-time, low-cost inspection system devoted to detecting these distress features using high-speed 3D transverse scanning techniques. The detection principle is the dynamic generation and characterization of the 3D pavement profile based on structured light triangulation. To improve the accuracy of the system, a multi-view coplanar scheme is employed in the calibration procedure so that more feature points can be used and distributed across the field of view of the camera. A sub-pixel line extraction method is applied for the laser stripe location, which includes filtering, edge detection and spline interpolation. The pavement transverse profile is then generated from the laser stripe curve and approximated by line segments. The second-order derivatives of the segment endpoints are used to identify the feature points of possible distortions. The system can output the real-time measurements and 3D visualization of rutting and shoving distress in a scanned pavement

  10. [Application of laboratory information system in the management of the key indicators of quality inspection].

    Science.gov (United States)

    Guo, Ye; Chen, Qian; Wu, Wei; Cui, Wei

    2015-03-31

    To establish a system of monitoring the key indicator of quality for inspection (KIQI) on a laboratory information system (LIS), and to have a better management of KIQI. Clinical sample made in PUMCH were collected during the whole of 2014. Next, interactive input program were designed to accomplish data collecting of the disqualification rate of samples, the mistake rate of samples and the occasions of losing samples, etc. Then, a series moment of sample collection, laboratory sample arrived, sample test, sample check, response to critical value, namely, trajectory information left on LIS were recorded and the qualification rate of TAT, the notification rate of endangering result were calculated. Finally, the information about quality control were collected to build an internal quality control database and the KIQI, such as the out-of-control rate of quality control and the total error of test items were monitored. The inspection of the sample management shows the disqualification rates in 2014 were all below the target, but the rates in January and February were a little high and the rates of four wards were above 2%. The mistake rates of samples was 0.47 cases/10 000 cases, attaining the target ( 95%), however the rates of blood routine in November (94.75%) was out of range. We have solved the problem by optimizing the processes. The notification rate of endangering result attained the target (≥ 98%), while the rate of timely notification is needed to improve. Quality inspection shows the CV of APTT in August (5.02%) was rising significantly, beyond the accepted CV (5.0%). We have solved the problem by changing the reagent. The CV of TT in 2014 were all below the allowable CV, thus the allowable CV of the next year lower to 10%. It is an objective and effective method to manage KIQI with the powerful management mode of database and information process capability on LIS.

  11. An Eddy Current Analysis System for nuclear fan cooler inspection data analysis and interpretation

    International Nuclear Information System (INIS)

    Germana, G.T.; Skiffington, B.B.

    1985-01-01

    A computer-based system for automating the data analysis andinterpretation is described. This system, the Eddy Current Analysis System (ECAS), was developed using classical, statistical and digital signal processing concepts to automatically detect defects. These detections are then processed to provide defect depth-related information. The defect detection algorithm is based on a classical signal processing concept known as the matched filter (MF). To detect defects, the MF waveform, with sigma approximately adjusted, is correlated with the eddy current signal. Signal regions containing defect-like signatures will cause high positive peaks at the same position in the MF output. Peaks above a threshold indicate possible defects. The ECAS provides a general framework for analyzing multifrequency eddy current data collected from FCUs (fan cooler unit). In addition, the data structures and data mangement facilities contained within the system are suitable for many other types of eddy current signals, including steam generator inspection data

  12. Design and development of Pc-based TOFD ultrasonic scanning system for welds inspection

    International Nuclear Information System (INIS)

    Suhairy Sani; Mohamad Pauzi Ismai; Muhammad Faiz Mohd Shukri; Amry Amin Abas

    2010-01-01

    This paper describes the design and development of a portable PC-based ultrasonic scanning system for industrial applications. The system which is called TOFD Ultrasonic Scanning System (TOFUSS) is used to create a gray scale imaging techniques are applied to the RF (AC) signal phase and enables weld integrity to be observed in real time. TOFD consists of a separate ultrasonic transmitter and receiver. The Probes are aimed at the same point in the weld volume. The entire weld is flooded with ultrasound allowing inspection of the weld. With a time of flight path, the ultrasonic velocity and the spatial relationship of the two probes, location and height of the defects can be very accurately calculated. The algorithm and complete system were implemented in a computer software developed using Microsoft Visual BASIC 6.0. (author)

  13. Scanning Ultrasonic Spectroscopy System Developed for the Inspection of Composite Flywheels

    Science.gov (United States)

    Martin, Richard E.; Baaklini, George Y.

    2002-01-01

    Composite flywheels are being considered as replacements for chemical batteries aboard the International Space Station. A flywheel stores energy in a spinning mass that can turn a generator to meet power demands. Because of the high rotational speeds of the spinning mass, extensive testing of the flywheel system must be performed prior to flight certification. With this goal in mind, a new scanning system has been developed at the NASA Glenn Research Center for the nondestructive inspection of composite flywheels and flywheel subcomponents. The system uses ultrasonic waves to excite a material and examines the response to detect and locate flaws and material variations. The ultrasonic spectroscopy system uses a transducer to send swept-frequency ultrasonic waves into a test material and then receives the returning signal with a second transducer. The received signal is then analyzed in the frequency domain using a fast Fourier transform. A second fast Fourier transform is performed to examine the spacing of the peaks in the frequency domain. The spacing of the peaks is related to the standing wave resonances that are present in the material because of the constructive and destructive interferences of the waves in the full material thickness as well as in individual layers within the material. Material variations and flaws are then identified by changes in the amplitudes and positions of the peaks in both the frequency and resonance spacing domains. This work, conducted under a grant through the Cleveland State University, extends the capabilities of an existing point-by-point ultrasonic spectroscopy system, thus allowing full-field automated inspection. Results of an ultrasonic spectroscopy scan of a plastic cylinder with intentionally seeded flaws. The result of an ultrasonic spectroscopy scan of a plastic cylinder used as a proof-of-concept specimen is shown. The cylinder contains a number of flat bottomed holes of various sizes and shapes. The scanning system

  14. Equipment and procedures for inspection by the moderator system of PHWR Central; Equipos y procedimientos para la inspeccion del sistema moderador de una central PHWR

    Energy Technology Data Exchange (ETDEWEB)

    Palaez Gutierrez, J. A.; Regidor Ipana, J. J.; Gadea Prrinos, J. R.

    2012-07-01

    The moderator system of PHWR plant is the most important from the standpoint of operation and also in which the dosages are higher. For the realization of the pre-operational service and inspection have been developed ultrasonic inspection procedures both automatic and manual modes. Have also defined all equipment, probes and materials needed for the said inspection.

  15. Detection system for neutron β decay correlations in the UCNB and Nab experiments

    Energy Technology Data Exchange (ETDEWEB)

    Broussard, L.J., E-mail: broussardlj@ornl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Zeck, B.A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Baeßler, S. [University of Virginia, Charlottesville, VA 22904 (United States); Birge, N. [University of Tennessee, Knoxville, TN 37996 (United States); Blatnik, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cleveland State University, Cleveland, OH 44115 (United States); Bowman, J.D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brandt, A.E. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); North Carolina State University, Raleigh, NC 27695 (United States); Brown, M. [University of Kentucky, Lexington, KY 40506 (United States); Burkhart, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B. [Indiana University, Bloomington, IN 47405 (United States); Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Crawford, C. [University of Kentucky, Lexington, KY 40506 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute & State University, Blacksburg, VA 24061 (United States); Fomin, N. [University of Tennessee, Knoxville, TN 37996 (United States); Frlez, E.; Fry, J. [University of Virginia, Charlottesville, VA 22904 (United States); and others

    2017-03-21

    We describe a detection system designed for precise measurements of angular correlations in neutron β decay. The system is based on thick, large area, highly segmented silicon detectors developed in collaboration with Micron Semiconductor, Ltd. The prototype system meets specifications for β electron detection with energy thresholds below 10 keV, energy resolution of ∼3 keV FWHM, and rise time of ∼50 ns with 19 of the 127 detector pixels instrumented. Using ultracold neutrons at the Los Alamos Neutron Science Center, we have demonstrated the coincident detection of β particles and recoil protons from neutron β decay. The fully instrumented detection system will be implemented in the UCNB and Nab experiments to determine the neutron β decay parameters B, a, and b.

  16. On the definition of neutron lifetimes in multiplying and non-multiplying systems

    International Nuclear Information System (INIS)

    Spriggs, G.D.; Adams, K.J.; Parsons, D.K.

    1997-01-01

    Historically, the term neutron lifetime has been used in the literature to describe a wide variety of different time intervals associated with a neutron's trek through a given system. This duplication of usage of the term neutron lifetime has undoubtedly resulted in some confusion concerning its physical meaning. In hopes of reducing some of this confusion, we suggest in this work that the various time intervals characterizing the life of a neutron be divided into three general categories: (1) neutron lifespans, (2) reaction rate lifetimes, and (3) neutron generation times. In this report, we define these three different time intervals and give deterministic and Monte Carlo transport expressions that can be used to calculate them

  17. High spatial resolution fast-neutron imaging detectors for Pulsed Fast-Neutron Transmission Spectroscopy

    Science.gov (United States)

    Mor, I.; Vartsky, D.; Bar, D.; Feldman, G.; Goldberg, M. B.; Katz, D.; Sayag, E.; Shmueli, I.; Cohen, Y.; Tal, A.; Vagish, Z.; Bromberger, B.; Dangendorf, V.; Mugai, D.; Tittelmeier, K.; Weierganz, M.

    2009-05-01

    Two generations of a novel detector for high-resolution transmission imaging and spectrometry of fast-neutrons are presented. These devices are based on a hydrogenous fiber scintillator screen and single- or multiple-gated intensified camera systems (ICCD). This detector is designed for energy-selective neutron radiography with nanosecond-pulsed broad-energy (1-10 MeV) neutron beams. Utilizing the Time-of-Flight (TOF) method, such a detector is capable of simultaneously capturing several images, each at a different neutron energy (TOF). In addition, a gamma-ray image can also be simultaneously registered, allowing combined neutron/gamma inspection of objects. This permits combining the sensitivity of the fast-neutron resonance method to low-Z elements with that of gamma radiography to high-Z materials.

  18. Simulation and analysis of the transmission properties of curved-straight neutron guide systems

    International Nuclear Information System (INIS)

    Copley, J.R.D.; Mildner, D.F.R.

    1992-01-01

    This paper reports that the spatial intensity distribution of neutrons emerging from a curved guide is far from uniform, particularly at short wavelengths, and curved guides are sometimes followed by a straight section of guide to make the intensity distribution more uniform. The behavior of neutrons within curved-straight neutron guide systems is examined using both ray-tracing and analytical approaches to the problem. The intensity distribution within the straight guide tends to wash from one side of the guide to the other. The amplitude of this transverse wave decreases with increasing guide length, and the characteristic length of the wave decreases with increasing neutron wavelength

  19. An accelerator-based neutron microbeam system for studies of radiation effects.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Bigelow, Alan W; Akselrod, Mark S; Sykora, Jeff G; Brenner, David J

    2011-06-01

    A novel neutron microbeam is being developed at the Radiological Research Accelerator Facility (RARAF) of Columbia University. The RARAF microbeam facility has been used for studies of radiation bystander effects in mammalian cells for many years. Now a prototype neutron microbeam is being developed that can be used for bystander effect studies. The neutron microbeam design here is based on the existing charged particle microbeam technology at the RARAF. The principle of the neutron microbeam is to use the proton beam with a micrometre-sized diameter impinging on a very thin lithium fluoride target system. From the kinematics of the ⁷Li(p,n)⁷Be reaction near the threshold of 1.881 MeV, the neutron beam is confined within a narrow, forward solid angle. Calculations show that the neutron spot using a target with a 17-µm thick gold backing foil will be neutron flux will roughly be 2000 per second based on the current beam setup at the RARAF singleton accelerator. The dose rate will be about 200 mGy min⁻¹. The principle of this neutron microbeam system has been preliminarily tested at the RARAF using a collimated proton beam. The imaging of the neutron beam was performed using novel fluorescent nuclear track detector technology based on Mg-doped luminescent aluminum oxide single crystals and confocal laser scanning fluorescent microscopy.

  20. Development of automatic radiographic inspection system using digital image processing and artificial intelligence

    International Nuclear Information System (INIS)

    Itoga, Kouyu; Sugimoto, Koji; Michiba, Koji; Kato, Yuhei; Sugita, Yuji; Onda, Katsuhiro.

    1991-01-01

    The application of computers to welding inspection is expanding rapidly. The classification of the application is the collection, analysis and processing of data, the graphic display of results, the distinction of the kinds of defects and the evaluation of the harmufulness of defects and the judgement of acceptance or rejection. The application of computer techniques to the automation of data collection was realized at the relatively early stage. Data processing and the graphic display of results are the techniques in progress now, and the application of artificial intelligence to the distinction of the kinds of defects and the evaluation of harmfulness is expected to expand rapidly. In order to computerize radiographic inspection, the abilities of image processing technology and knowledge engineering must be given to computers. The object of this system is the butt joints by arc welding of the steel materials of up to 30 mm thickness. The digitizing transformation of radiographs, the distinction and evaluation of transmissivity and gradation by image processing, and only as for those, of which the picture quality satisfies the standard, the extraction of defect images, their display, the distinction of the kinds and the final judgement are carried out. The techniques of image processing, the knowledge for distinguishing the kinds of defects and the concept of the practical system are reported. (K.I.)

  1. A Custom Robotic System for Inspecting HEPA Filters in the Payload Changeout Room at the NASA Kennedy Space Center

    Science.gov (United States)

    Spencer, James E., Jr.; Looney, Joe

    1994-01-01

    In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.

  2. A Laser Metrology/Viewing System for ITER In-Vessel Inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.; Slotwinski, A.

    1997-10-01

    This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10 7 Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway

  3. Long-Range Untethered Real-Time Live Gas Main Robotic Inspection System

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf; Daphne D' Zurko

    2004-10-31

    Under funding from the Department of Energy (DOE) and the Northeast Gas Association (NGA), Carnegie Mellon University (CMU) developed an untethered, wireless remote controlled inspection robot dubbed Explorer. The project entailed the design and prototyping of a wireless self-powered video-inspection robot capable of accessing live 6- and 8-inch diameter cast-iron and steel mains, while traversing turns and Ts and elbows under real-time control with live video feedback to an operator. The design is that of a segmented actively articulated and wheel-leg powered robot design, with fisheye imaging capability and self-powered battery storage and wireless real-time communication link. The prototype was functionally tested in an above ground pipe-network, in order to debug all mechanical, electrical and software subsystems, and develop the necessary deployment and retrieval, as well as obstacle-handling scripts. A pressurized natural gas test-section was used to certify it for operation in natural gas at up to 60 psig. Two subsequent live-main field-trials in both cast-iron and steel pipe, demonstrated its ability to be safely launched, operated and retrieved under real-world conditions. The system's ability to safely and repeatably exidrecover from angled and vertical launchers, traverse multi-thousand foot long pipe-sections, make T and varied-angle elbow-turns while wirelessly sending live video and handling command and control messages, was clearly demonstrated. Video-inspection was clearly shown to be a viable tool to understand the state of this critical buried infrastructure, irrespective of low- (cast-iron) or high-pressure (steel) conditions. This report covers the different aspects of specifications, requirements, design, prototyping, integration and testing and field-trialing of the Explorer platform.

  4. Dynamic imaging with a triggered and intensified CCD camera system in a high-intensity neutron beam

    International Nuclear Information System (INIS)

    Vontobel, P.; Frei, G.; Brunner, J.; Gildemeister, A.E.; Engelhardt, M.

    2005-01-01

    When time-dependent processes within metallic structures should be inspected and visualized, neutrons are well suited due to their high penetration through Al, Ag, Ti or even steel. Then it becomes possible to inspect the propagation, distribution and evaporation of organic liquids as lubricants, fuel or water. The principle set-up of a suited real-time system was implemented and tested at the radiography facility NEUTRA of PSI. The highest beam intensity there is 2x10 7 cm -2 s -1 , which enables to observe sequences in a reasonable time and quality. The heart of the detection system is the MCP intensified CCD camera PI-Max with a Peltier cooled chip (1300x1340 pixels). The intensifier was used for both gating and image enhancement, where as the information was accumulated over many single frames on the chip before readout. Although, a 16-bit dynamic range is advertised by the camera manufacturers, it must be less due to the inherent noise level from the intensifier. The obtained result should be seen as the starting point to go ahead to fit the different requirements of car producers in respect to fuel injection, lubricant distribution, mechanical stability and operation control. Similar inspections will be possible for all devices with repetitive operation principle. Here, we report about two measurements dealing with the lubricant distribution in a running motorcycle motor turning at 1200rpm. We were monitoring the periodic stationary movements of piston, valves and camshaft with a micro-channel plate intensified CCD camera system (PI-Max 1300RB, Princeton Instruments) triggered at exactly chosen time points

  5. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  6. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    International Nuclear Information System (INIS)

    Rosta, L.; Cser, L.; Revay, Z.

    2002-01-01

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  7. Shift-register coincidence electronics system for thermal neutron counters

    International Nuclear Information System (INIS)

    Swansen, J.E.; Collinsworth, P.R.; Krick, M.S.

    1980-04-01

    An improved shift-register, coincidence-counting logic circuit, developed for use with thermal neutron well counters, is described in detail. A distinguishing feature of the circuit is its ability to operate usefully at neutron counting rates of several hundred kHz. A portable electronics package incorporating the new coincidence logic and support circuits is also described

  8. ANL--LASL workshop on advanced neutron detection systems

    International Nuclear Information System (INIS)

    Kitchens, T.A.

    1979-06-01

    A two-day workshop on advanced neutron detectors and associated electronics was held in Los Alamos on April 5--6, 1979, as a part of the Argonne National Laboratory--Los Alamos Scientific Laboratory Coordination on neutron scattering instrumentation. This report contains an account of the information presented and conclusions drawn at the workshop

  9. Fusion Power Measurement Using a Combined Neutron Spectrometer-Camera System at ITER

    International Nuclear Information System (INIS)

    Sjoestrand, Henrik; Sunden, E. Andersson; Conroy, S.; Ericsson, G.; Johnson, M. Gatu; Giacomelli, L.; Hellesen, C.; Hjalmarsson, A.; Ronchi, E.; Weiszflog, M.; Kaellne, J.

    2008-01-01

    A central task for fusion plasma diagnostics is to measure the 2.5 and 14 MeV neutron emission rate in order to determine the fusion power. A new method for determining the neutron yield has been developed at JET. It makes use of the magnetic proton recoil neutron spectrometer and a neutron camera and provides the neutron yield with small systematic errors. At ITER a similar system could operate if a high-resolution, high-performance neutron spectrometer similar to the MPR was installed. In this paper, we present how such system could be implemented and how well it would perform under different assumption of plasma scenarios and diagnostic capabilities. It is found that the systematic uncertainty for using such a system as an absolute calibration reference is as low as 3% and hence it would be an excellent candidate for the calibration of neutron monitors such as fission chambers. It is also shown that the system could provide a 1 ms time resolved estimation of the neutron rate with a total uncertainty of 5%

  10. Application of 2-dimensional coordinate system conversion in stress measurements with neutron diffraction

    International Nuclear Information System (INIS)

    Wang, D.-Q.; Hubbard, C.R.; Spooner, S.

    2000-01-01

    This paper will present a method and program to precisely calculate the coordinates in a positioner coordinate system from given sample position coordinates with a minimum number of neutron surface scans for three possible circumstances in stress and texture measurement using neutron diffraction

  11. MCNPX simulations of fast neutron diagnostics for accelerator-driven systems

    International Nuclear Information System (INIS)

    Habib, Moinul

    2005-12-01

    In accelerator-driven systems, the neutron spectrum will extend all the way up to the incident beam energy, i.e., several hundred MeV or even up to GeV energies. The high neutron energy allows novel diagnostics with a set of measurement techniques that can be used in a sub-critical reactor environment. Such measurements are primarily connected to system safety and validation. This report shows that in-core fast-neutron diagnostics can be employed to monitor changes in the position of incidence of the primary proton beam onto the neutron production target. It has also been shown that fast neutrons can be used to detect temperature-dependent density changes in a liquid lead-bismuth target. Fast neutrons can escape the system via the beam pipe for the incident proton beam. Out-of-core monitoring of these so called back-streaming neutrons could potentially be used to monitor beam changes if the target has a suitable shape. Moreover, diagnostics of back-streaming neutrons might be used for validation of the system design

  12. The real-time neutron radiography system at Texas A and M University

    International Nuclear Information System (INIS)

    Reuscher, Jon A.

    1990-01-01

    This paper reports on the development and fabrication of a real-time system at Texas A and M University using commercially available and relatively inexpensive components. The real-time neutron radiography system consists of two major components: a camera and image processing equipment. The neutron beam provides a thermal neutron flux of 10 neutrons/cm -sec (cadmium ratio of 4.0) with the TRIGA reactor operating at a power of 1 MW. A remotely operated turntable is used to position the sample in the neutron beam for optimum viewing and ease of changing position. The front surface mirror at 45 deg. to the neutron beam reflects the scintillation image to the lens. The IRO and CCD camera are placed behind shielding out of the neutron. Results using the imaging system for a cadmium plate (0.032 inch thick) with several holes of different diameters are presented. Applications of this neutron radiography system include sensitivity indicators for the spatial resolution of bubbles in water-filled tubes, moisture content of zeolite samples, operating heat pipes and the freezing and thawing of metallic samples

  13. Intensity stability improvements for the intense pulsed neutron source accelerator system

    International Nuclear Information System (INIS)

    Rauchas, A.; Gunderson, G.; Zolecki, R.; Stipp, V.; Volk, G.

    1985-01-01

    The Intense Pulsed Neutron Source (IPNS) accelerator system consists of a 750 keV Cockcroft-Walton preaccelerator, 50 MeV linear accelerator and a 500 MeV Rapid Cycling Synchrotron (RCS). The accelerator system accelerates over 2.5 x 10 12 protons per pulse at a 30 Hz rate to strike a depleted uranium target for producing neutrons (which are used for neutron scattering research.) Since beginning operation in 1977, the beam intensity has been steadily increasing with improvements in various systems, such as a new H - source, improved correction magnet systems, etc. Instabilities created by the higher intensities have also been under control

  14. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  15. Visual inspection system and sipping design for spent fuel at TRIGA MARK III reactor of Mexico

    International Nuclear Information System (INIS)

    Delfin, A.; Mazon, R.

    2002-01-01

    In the framework of the Technical Cooperation Regional Project for Latin America RLA/4/018 for the biennium 2001-2002, one of the activities identified is the characterization of spent fuel. Of these activities an important one is not doubt the physical condition of spent fuel because an appropriate identification of the fuel status will prevent problems of fuel leaks, corrosion problems etc. As part of the activities of the project was decided that countries no having visual inspection and sipping systems should be very desirable to have them as a result of this project. The Triga reactor of Mexico does not have both of them, therefore, it was decided the need of having both system. The paper describe first the way we designed and constructed a remote Visual Inspection System and example of how is operated. Along the experience and problems we have had with the system. Also we will present the design of the Sipping system were two option were considered. First to take a sample of water after a convenient period of time passing through a circuit to a multichannel analyzer and to identify leakage by way of measuring Caesium-137. Second, exists the possibility that the Stainless Steel sleeve of the fuel has only very small failures, so it is going to be very difficult to have leakages unless the fuel is hot. Therefore we are evaluating the possibility of using heaters to increase the temperature of the fuel and succeed on detecting leakages. The results - we hope - will be ready to be presented at the meeting. (author)

  16. In situ calibration of neutron activation system on the large helical device

    Science.gov (United States)

    Pu, N.; Nishitani, T.; Isobe, M.; Ogawa, K.; Kawase, H.; Tanaka, T.; Li, S. Y.; Yoshihashi, S.; Uritani, A.

    2017-11-01

    In situ calibration of the neutron activation system on the Large Helical Device (LHD) was performed by using an intense 252Cf neutron source. To simulate a ring-shaped neutron source, we installed a railway inside the LHD vacuum vessel and made a train loaded with the 252Cf source run along a typical magnetic axis position. Three activation capsules loaded with thirty pieces of indium foils stacked with total mass of approximately 18 g were prepared. Each capsule was irradiated over 15 h while the train was circulating. The activation response coefficient (9.4 ± 1.2) × 10-8 of 115In(n, n')115mIn reaction obtained from the experiment is in good agreement with results from three-dimensional neutron transport calculations using the Monte Carlo neutron transport simulation code 6. The activation response coefficients of 2.45 MeV birth neutron and secondary 14.1 MeV neutron from deuterium plasma were evaluated from the activation response coefficient obtained in this calibration experiment with results from three-dimensional neutron calculations using the Monte Carlo neutron transport simulation code 6.

  17. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George C. Vradis; Dr. Hagen Schempf

    2003-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. This module, which incorporates technology developed by NASA, has already been designed, constructed and tested, having exceeded performance expectations. The full prototype system will be comprehensively tested in the laboratory followed by two field demonstrations in real applications in NGA member utilities' pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. The present report summarizes the accomplishments of the project during its third six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on the last system integration issues and on software development for the turning and launching routines. Testing of the prototype in the lab is expected to be completed by Summer 2003, to be followed by two field demonstrations in early Fall 2003.

  18. Air Force Inspection System: An Application for System-of-Systems (SOS) Engineering

    Science.gov (United States)

    2014-06-19

    JTAC) (Ground), 1 Jan 12 155. JCAS AP MOA 2004-02, Joint Forward Air Controller (Airborne) (FAC(A)), 1 Feb 12 ISO 14001 Environmental Management...1332.35, Transition Assistance for Military Personnel, 9 Dec 1993 115. 104 AFI 90-201 2 August 2013 116. DODD 3020.26, Department of Defense Continuity...sometimes they are called “systems of systems” or “super systems”). Examples of arrays include national communications networks, a mass transit

  19. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    International Nuclear Information System (INIS)

    Whitney, Chad M.; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-01-01

    Recently, RMD has investigated the use of CLYC (Cs 2 LiYCl 6 :Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam TM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our 252 Cf source was possible using both pulse height and pulse shape discrimination with CLYC. • Imaging

  20. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Chad M., E-mail: cwhitney@rmdinc.com; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-06-01

    Recently, RMD has investigated the use of CLYC (Cs{sub 2}LiYCl{sub 6}:Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam{sup TM} instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our {sup 252}Cf source was possible using both pulse height and pulse shape discrimination with

  1. The EBR-II steam generating system - operation, maintenance, and inspection

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Longua, K.J.

    2002-01-01

    The Experimental Breeder Reactor II (EBR-II) has operated for 20 years at the Idaho National Engineering Laboratory near Idaho Falls. EBR-II is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. EBR-II has operated at a capacity factor over 70% in the past few years. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C and 8.62 MPa. The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. During the 20 years of operation, components of the steam generator have been subjected to a variety of inspections including visual, dimensional, and ultrasonic. One superheater was removed from service because of anomalous performance and was replaced with an evaporator which was removed, examined, and converted into a superheater. Overall operating experience of the system has been excellent and essentially trouble free. Inspections have not revealed any conditions that are performance or life limiting. (author)

  2. Simulation of Specular Surface Imaging Based on Computer Graphics: Application on a Vision Inspection System

    Directory of Open Access Journals (Sweden)

    Seulin Ralph

    2002-01-01

    Full Text Available This work aims at detecting surface defects on reflecting industrial parts. A machine vision system, performing the detection of geometric aspect surface defects, is completely described. The revealing of defects is realized by a particular lighting device. It has been carefully designed to ensure the imaging of defects. The lighting system simplifies a lot the image processing for defect segmentation and so a real-time inspection of reflective products is possible. To bring help in the conception of imaging conditions, a complete simulation is proposed. The simulation, based on computer graphics, enables the rendering of realistic images. Simulation provides here a very efficient way to perform tests compared to the numerous attempts of manual experiments.

  3. An investigation of the neutron die-away time in passive neutron waste assay systems

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.

    1997-02-01

    Neutron coincidence counting applied to the assay of Pu-bearing waste is commonly based on the assumption that the time intervals between detected fission neutrons are distributed according to a mono-exponential function, often called Rossi-alpha distribution. The time constant of this characteristic exponential function is generally referred to as the die-away time of the detector assembly. In fact, the distribution of time intervals is derived from the more fundamental arrival time distribution, which is also assumed to obey a mono-exponential law. In view of the design studies for a neutron counter, the validity of this basic assumption was investigated. Different parameters such as neutron moderation and absorption in the sample and the presence of cadmium-lining were investigated by means of Monte Carlo simulations using the NCNP-code. The simulation results lead to the conclusion that the description of the arrival time function with a mono-exponential function with a sample-independent die-away time is only a first approximations. The mono-exponential decay is perturbed by a second time component related to the detection of neutrons already thermalized in the sample. This thermal component cannot be described by a mono-exponential function, but has a characteristic shape with a fast build-up reaching a maximum followed by a slow decay as a function of the arrival time. The relative contribution of this component strongly depends on the absorption and moderation of the sample matrix. This component cannot be described by a simple analytical expression involving sample related parameters. Hence, no direct useful information can be withdrawn from the arrival time probability function to characterize the waste matrix. The thermal component can be strongly suppressed by the use of cadmium-lining in front of the detector blocks simplifying the mathematical description of the arrival time probability function. Indications of the bias introduced by an inaccurate

  4. Design and accomplishment for the monitoring unit of the sup 6 sup 0 Co train freight inspection system

    CERN Document Server

    Cong Peng

    2002-01-01

    The sup 6 sup 0 Co railway cargo inspection system has super automaticity. And the monitoring unit is an important part of the automatic control system. The author introduces the idea of designing the monitoring unit in detail and accomplishes a new-style unit which is different from the traditional one. The monitoring unit which is highly integrated, easy to be mounted and debugged and convenient to be operated and maintained has play an excellent role in the work of the whole inspection system

  5. Design and application of radiation apparatus for sup 6 sup 0 Co cargo train on-line inspection system

    CERN Document Server

    Wu Zhi Fang; Zhang Yuai

    2002-01-01

    Based on the special requirement for radiation apparatus of sup 6 sup 0 Co cargo train on-line inspection system, a radiation apparatus including two-level shutter, working container, storing container and electromagnetism are designed. The makeup, working mode and functional realization of the radiation apparatus are introduced. The system is used in Manzhouli customs cargo train on-line inspection system. The practice shows that the radiation apparatus is reliable to work steadily and the operating speed of the main shutter can reach 0.1 s open and 0.15 s close

  6. Design of the thermal neutron detection system for CJPL-II

    Science.gov (United States)

    Zeng, Zhao-Ming; Gong, Hui; Li, Jian-Min; Yue, Qian; Zeng, Zhi; Cheng, Jian-Ping

    2017-05-01

    A low background thermal neutron flux detection system has been designed to measure the ambient thermal neutron flux of the second phase of the China Jinping Underground Laboratory (CJPL-II), right after completion of the rock bolting work. A 3He proportional counter tube combined with an identical 4He proportional counter tube was employed as the thermal neutron detector, which has been optimised in energy resolution, wall effect and radioactivity of construction materials for low background performance. The readout electronics were specially designed for long-term stable operation and easy maintenance in an underground laboratory under construction. The system was installed in Lab Hall No. 3 of CJPL-II and accumulated data for about 80 days. The ambient thermal neutron flux was determined under the assumption that the neutron field is fully thermalized, uniform and isotropic at the measurement position. Supported by National Natural Science Foundation of China (11475094)

  7. Characterization of the Annular Core Research Reactor (ACRR Neutron Radiography System Imaging Plane

    Directory of Open Access Journals (Sweden)

    Kaiser Krista

    2016-01-01

    Full Text Available The Annular Core Research Reactor (ACRR at Sandia National Laboratories (SNL is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1 available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  8. Characterization of film-converter screens systems for neutron radiography; Caracterizacao de sistemas filme-conversor para radiografia com neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marcos Leandro Garcia

    2002-07-01

    In general a good quality radiography is that one able to furnish high contrast and sharp edge images. Technically 'high contrast' means high capability to discern material thickness and 'sharp edges', high resolution power. In the present work the optimal conditions to obtain neutron radiography images by using the following film-converter screen systems, Kodak-AA/Gd vaporated; Kodak-AA/Gd metallic; Kodak-AA/LiF; Min-R/GdS{sub 2}O{sub 4}, have been determined. The irradiations were performed in a radiographic facility which was designed and constructed by the neutron radiography working group and is installed at the beamhole 08 of the IEA-R1 nuclear research reactor of the IPEN-CNEN/SP. In order to determine such conditions, the start point was to evaluate the neutron exposure interval for which the optical contrast is maximal and so quantify the sensitivity or capability to discern material thickness, as well as the spatial resolution achieved in the radiographic image, for these systems. The best results have been obtained for the Kodak-AA/Gd vaporated system which is able to discern, for example, 0,024 cm of lucite, with a maximal resolution of 22{mu}m. The radiography images presently obtained in IPEN-CNEN/SP have similar quality when compared to the ones from several other research centers, around the world, whose making use of the same film-converter screens systems. (author)

  9. Nuclear reactor, fuel assembly and neutron measuring system

    International Nuclear Information System (INIS)

    Chaki, Masao; Murase, Michio; Zukeran, Atsushi; Moriya, Kimiaki

    1998-01-01

    The present invention provides a BWR type reactor improved with the efficiency of used fuels and fuel economy by increasing a rated power and reducing exchange fuels. Namely, in a BWR type reactor at present, a thermal limit value is determined by conducting nuclear calculation of the reactor core based on data of reactor flow rate measurement and data of neutron flux measurement. However, since the neutron calculation of the reactor core is based on fuel assemblies while the points for the neutron measurement are present at the outside of the fuel assemblies, errors are caused. A margin including the errors has been used as a thermal limit value during operation. In the present invention, neutron fluxes in the fuel assembly as a base of the nuclear calculation can be measured by the same number of neutron detector tubes, but the number of the measuring points is increased to four times. With such procedures, errors caused by the difference of the neutron calculation and values at neutron measuring points can be reduced. As a result, a margin of the thermal limit value is reduced to increase the degree of freedom of reactor operation. Then, the economical property of the reactor operation can be improved. (N.H.)

  10. Demonstration of defect free EUV mask for 22nm NAND flash contact layer using electron beam inspection system

    Science.gov (United States)

    Shimomura, Takeya; Kawashima, Satoshi; Inazuki, Yuichi; Abe, Tsukasa; Takikawa, Tadahiko; Mohri, Hiroshi; Hayashi, Naoya; Wang, Fei; Ma, Long Eric; Zhao, Yan; Kuan, Chiyan; Xiao, Hong; Jau, Jack

    2011-04-01

    Fabrication of defect free EUV masks including their inspection is the most critical challenge for implementing EUV lithography into semiconductor high volume manufacturing (HVM) beyond 22nm half-pitch (HP) node. The contact to bit-line (CB) layers of NAND flash devices are the most likely the first lithography layers that EUV will be employed for manufacturing due to the aggressive scaling and the difficulty for making the pattern with the current ArF lithography. To assure the defect free EUV mask, we have evaluated electron beam inspection (EBI) system eXplore™ 5200 developed by Hermes Microvision, Inc. (HMI) [1]. As one knows, the main issue of EBI system is the low throughput. To solve this challenge, a function called Lightning Scan™ mode has been recently developed and installed in the system, which allows the system to only inspect the pattern areas while ignoring blanket areas, thus dramatically reduced the overhead time and enable us to inspect CB layers of NAND Flash device with much higher throughput. In this present work, we compared the Lightning scan mode with Normal scan mode on sensitivity and throughput. We found out the Lightning scan mode can improve throughput by a factor of 10 without any sacrifices of sensitivity. Furthermore, using the Lightning scan mode, we demonstrated the possibility to fabricate the defect free EUV masks with moderate inspection time.

  11. An automated delayed neutron counting system for mass determinations of special nuclear materials

    International Nuclear Information System (INIS)

    Sellers, M.T.; Kelly, D.G.; Corcoran, E.C.

    2012-01-01

    An automated delayed neutron counting (DNC) system has been developed at the Royal Military College of Canada (RMC) to enhance nuclear forensics capabilities pertaining to special nuclear material analysis. The system utilises the SLOWPOKE-2 Facility at RMC as a neutron source and 3 He detectors. System control and data acquisition occur through a LabVIEW platform. The time dependent count rate of the delayed neutron production has been examined for 235 U, using certified reference materials. Experimental validation according to ISO 17025 protocols suggests typical errors and precision of -3.6 and 3.1%, respectively, and a detection limit of 0.26 μg 235 U. (author)

  12. Note: Neutron bang time diagnostic system on Shenguang-III prototype

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qi; Chen, Jiabin; Liu, Zhongjie; Zhan, Xiayu; Song, Zifeng, E-mail: mphyszf@qq.com [Research Center of Laser Fusion, China Academy of Engineering Physics, P. O. Box 919-986, Mianyang, Sichuan 621900 (China)

    2014-04-15

    A neutron bang time (NBT) diagnostic system has been implemented on Shenguang-III prototype. The bang time diagnostic system is based on a sensitive fusion neutron detector, which consists of a plastic scintillator and a micro-channel plate photomultiplier tube (PMT). An optical fiber bundle is used to couple the scintillator and the PMT. The bang time system is able to measure bang time above a neutron yield of 10{sup 7}. Bang times and start time of laser were related by probing x-ray pulses produced by 200 ps laser irradiating golden targets. Timing accuracy of the NBT is better than 60 ps.

  13. Geant4 Analysis of a Thermal Neutron Real-Time Imaging System

    Science.gov (United States)

    Datta, Arka; Hawari, Ayman I.

    2017-07-01

    Thermal neutron imaging is a technique for nondestructive testing providing complementary information to X-ray imaging for a wide range of applications in science and engineering. Advancement of electronic imaging systems makes it possible to obtain neutron radiographs in real time. This method requires a scintillator to convert neutrons to optical photons and a charge-coupled device (CCD) camera to detect those photons. Alongside, a well collimated beam which reduces geometrical blurriness, the use of a thin scintillator can improve the spatial resolution significantly. A representative scintillator that has been applied widely for thermal neutron imaging is 6LiF:ZnS (Ag). In this paper, a multiphysics simulation approach for designing thermal neutron imaging system is investigated. The Geant4 code is used to investigate the performance of a thermal neutron imaging system starting with a neutron source and including the production of charged particles and optical photons in the scintillator and their transport for image formation in the detector. The simulation geometry includes the neutron beam collimator and sapphire filter. The 6LiF:ZnS (Ag) scintillator is modeled along with a pixelated detector for image recording. The spatial resolution of the system was obtained as the thickness of the scintillator screen was varied between 50 and 400 μm. The results of the simulation were compared to experimental results, including measurements performed using the PULSTAR nuclear reactor imaging beam, showing good agreement. Using the established model, further examination showed that the resolution contribution of the scintillator screen is correlated with its thickness and the range of the neutron absorption reaction products (i.e., the alpha and triton particles). Consequently, thinner screens exhibit improved spatial resolution. However, this will compromise detection efficiency due to the reduced probability of neutron absorption.

  14. Gypsum plasterboard walls: inspection, pathological characterization and statistical survey using an expert system

    Directory of Open Access Journals (Sweden)

    Gaião, C.

    2012-06-01

    Full Text Available This paper presents an expert system to support the inspection and diagnosis of partition walls or wall coverings mounted using the Drywall (DW construction method. This system includes a classification of anomalies in DW and their probable causes. This inspection system was used in a field work that included the observation of 121 DWs. This paper includes a statistical analysis of the anomalies observed during these inspections and their probable causes. The correlation between anomalies and causes in the sample is also thoroughly analyzed. Anomalies are also evaluated for area affected, size, repair urgency and aesthetic value of the affected area. The conclusions of the statistical analysis allowed the creation of an inventory of preventive measures to be implemented in the design, execution and use phases in order to lessen the magnitude or eradicate the occurrence of anomalies in DW. These measures could directly help improve the quality of construction.

    Este trabajo presenta un sistema experto de apoyo a la inspección y diagnóstico de tabiques o revestimientos de yeso laminado. Dicho sistema, que permite la clasificación de las anomalías del yeso laminado y sus causas probables, se empleó en un trabajo de campo en el que se estudiaron 121 elementos construidos con este material. El trabajo incluye el análisis estadístico de las anomalías detectadas durante las inspecciones y sus motivos probables. También se analizó en detalle la correlación entre las anomalías y sus causas, evaluándose aquellas en función de la superficie afectada, la urgencia de las reparaciones y el valor estético de la zona implicada. Las conclusiones del análisis estadístico permitieron la elaboración de un inventario de medidas preventivas que deberían implantarse en las fases de proyecto, ejecución y utilización de estos elementos a fin de erradicar la aparición de anomalías en el yeso laminado o reducir su frecuencia. Dichas

  15. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hagen Schempf

    2003-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6- inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fourth six-month period. The project has in general achieved its goals for this period as outlined in the report. The fabrication of the prototype is complete and is now been tested in the laboratory mainly focusing on endurance testing and testing of launching procedures. Testing of the prototype in the lab is expected to be completed by Fall 2003, to be followed by two field demonstrations in Winter 2003-2004.

  16. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis, Hagen Schempf

    2004-04-01

    This program is undertaken in order to construct and field-demonstrate EXPLORER, a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its fifth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot is undergoing extensive endurance testing in order to prepare for the field demonstrations planned for June 2004.

  17. DESIGN, CONSTRUCTION AND FIELD DEMONSTRATION OF EXPLORER: A LONG-RANGE UNTETHERED LIVE GASOLINE INSPECTION ROBOT SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    George C. Vradis; Hagen Schempf

    2004-10-01

    This program is undertaken in order to construct and field-demonstrate ''EXPLORER'', a modular, remotely controllable, self-powered, untethered robot system for the inspection of live gas distribution 150 mm (6-inch) to 200 mm (8-inch) diameter mains. The modular design of the system allows it to accommodate various components intended to accomplish different inspection, repair, sample retrieval, and other in-pipe tasks. The prototype system being built under this project will include all the basic modules needed, i.e. the locomotor, power storage, wireless communication, and camera. The camera, a solid-state fisheye-type, is used to transmit real-time video to the operator that allows for the live inspection of gas distribution pipes. The system under development significantly advances the state of the art in inspection systems for gas distribution mains, which presently consist of tethered systems of limited range (about 500 ft form the point of launch) and limited inspection views. Also current inspection systems have no ability to incorporate additional modules to expand their functionality. This development program is a joint effort among the Northeast Gas Association (formerly New York Gas Group), the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), Carnegie Mellon University's (CMU) National Robotics Engineering Consortium (NREC), and the US Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) The present report summarizes the accomplishments of the project during its sixth six-month period. The project has in general achieved its goals for this period as outlined in the report. The prototype robot completed its first field demonstration in June 2004 and is undergoing further extensive endurance testing and some minor modifications in order to prepare for the second and last field demonstration planned for October 2004.

  18. Automatic inspection system for dimensional measurements of the saw blade milling cutter

    Directory of Open Access Journals (Sweden)

    Yung-Cheng Wang

    2010-10-01

    Full Text Available The demand for measuring equipments of automatic optical inspection has grown rapidly, because of its benefits of promoted efficiency and higher precision. Instead of manual projection measurements, measurement performance and efficiency can be obviously enhanced by the image measurement system. In this investigation, digital image processing and geometrical measurement principles have been integrated to develop a dynamic measurement system for the dimensional measurements of a saw blade milling cutter. The repeatability of the measurement system has been analyzed and its accuracy has been verified by using commercial 3D image measurement system. The analysis results show that the dimensional precision of 25μm and the angular precision of 0.21° can be realized by the self-developed measurement system. Between the results of the developed system and reference standard system, there are 25μm deviation in dimensional measurement and 0.26° in angular measurement. That measuring performances can meet the industrial requirement and the higher measurement efficiency can be achieved.

  19. Brazilian two-component TLD albedo neutron individual monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M.M., E-mail: marcelo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Mauricio, C.L.P., E-mail: claudia@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Fonseca, E.S. da, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria (IRD), Av. Salvador Allende, s/n, CEP: 22780-160, Rio de Janeiro, RJ (Brazil); Silva, A.X. da, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao em Engenharia, COPPE/PEN Caixa Postal 68509, CEP: 21941-972, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Since 1983, Instituto de Radioprotecao e Dosimetria, Brazil, uses a TLD one-component albedo neutron monitor, which has a single different calibration factor specifically for each installation type. In order to improve its energy response, a two-component albedo monitor was developed, which measure the thermal neutron component besides the albedo one. The two-component monitor has been calibrated in reference neutron fields: thermal, five accelerator-produced monoenergetic beams (70, 144, 565, 1200 and 5000 keV) and five radionuclide sources ({sup 252}Cf, {sup 252}Cf(D{sub 2}O), {sup 241}Am-Be, {sup 241}Am-B and {sup 238}Pu-Be) at several distances. Since January 2008, mainly Brazilian workers who handle neutron sources at different distances and moderation, such as in well logging and calibration facilities are using it routinely.

  20. Gamma-neutron imaging system utilizing pulse shape discrimination with CLYC

    Science.gov (United States)

    Whitney, Chad M.; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-06-01

    Recently, RMD has investigated the use of CLYC (Cs2LiYCl6:Ce), a new and emerging scintillation material, in a gamma-neutron coded aperture imaging system based on RMD's commercial RadCamTM instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC-PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event.