WorldWideScience

Sample records for neutron curved guide

  1. Modeling neutron guides using Monte Carlo simulations

    CERN Document Server

    Wang, D Q; Crow, M L; Wang, X L; Lee, W T; Hubbard, C R

    2002-01-01

    Four neutron guide geometries, straight, converging, diverging and curved, were characterized using Monte Carlo ray-tracing simulations. The main areas of interest are the transmission of the guides at various neutron energies and the intrinsic time-of-flight (TOF) peak broadening. Use of a delta-function time pulse from a uniform Lambert neutron source allows one to quantitatively simulate the effect of guides' geometry on the TOF peak broadening. With a converging guide, the intensity and the beam divergence increases while the TOF peak width decreases compared with that of a straight guide. By contrast, use of a diverging guide decreases the intensity and the beam divergence, and broadens the width (in TOF) of the transmitted neutron pulse.

  2. Eliminating line of sight in elliptic guides using gravitational curving

    DEFF Research Database (Denmark)

    Klenø, Kaspar H.; Willendrup, Peter Kjær; Bergbäck Knudsen, Erik

    2011-01-01

    result in a breakdown of the geometrical focusing mechanism inherent to the elliptical shape, resulting in unwanted reflections and loss of transmission. We present a new and yet untried idea by curving a guide in such a way as to follow the ballistic curve of a neutron in the gravitational field, while...

  3. Radiation shielding for neutron guides

    Science.gov (United States)

    Ersez, T.; Braoudakis, G.; Osborn, J. C.

    2006-11-01

    Models of the neutron guide shielding for the out of bunker guides on the thermal and cold neutron beam lines of the OPAL Reactor (ANSTO) were constructed using the Monte Carlo code MCNP 4B. The neutrons that were not reflected inside the guides but were absorbed by the supermirror (SM) layers were noted to be a significant source of gammas. Gammas also arise from neutrons absorbed by the B, Si, Na and K contained in the glass. The proposed shielding design has produced compact shielding assemblies. These arrangements are consistent with safety requirements, floor load limits, and cost constraints. To verify the design a prototype was assembled consisting of 120 mm thick Pb(96%)Sb(4%) walls resting on a concrete block. There was good agreement between experimental measurements and calculated dose rates for bulk shield regions.

  4. Performance of an elliptically tapered neutron guide

    Science.gov (United States)

    Mühlbauer, Sebastian; Stadlbauer, Martin; Böni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-11-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  5. Performance of an elliptically tapered neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Muehlbauer, Sebastian [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany)]. E-mail: sebastian.muehlbauer@frm2.tum.de; Stadlbauer, Martin [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, D-85747 Garching (Germany); Schanzer, Christan [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Stahn, Jochen [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland); Filges, Uwe [Labor fuer Neutronenstreuung, Paul Scherrer Institut, CH-5232 Villingen PSI (Switzerland)

    2006-11-15

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics.

  6. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  7. General Design for CARR Neutron Guide System

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A neutron guide system has been designed and partly installed at the China Advanced Research Reactor (CARR) to transport cold neutrons from the cold neutron source (CNS) to several instruments,which are situated in a separate guide hall of 30 m×60 m.

  8. Light Curves of Rapidly Rotating Neutron Stars

    CERN Document Server

    Braje, T M; Rauch, K P; Braje, Timothy M.; Romani, Roger W.; Rauch, Kevin P.

    2000-01-01

    We consider the effect of rapid rotation on the light curves of neutron stars with hot polar caps. For $P \\approx 3$ms spin periods, the pulse fractions can be as much as an order of magnitude larger than with simple slowly-rotating (Schwarzschild) estimates. Doppler boosting, in particular, leads to characteristic distortion and ``soft lags'' in the pulse profiles, which are easily measurable in light curves with moderate energy resolution. With $\\sim 10^5$ photons it should also be possible to isolate the more subtle distortions of light travel time variations and frame dragging. Detailed analysis of high quality millisecond pulsar data from upcoming X-ray missions must include these effects.

  9. Light curves from rapidly rotating neutron stars

    CERN Document Server

    Numata, Kazutoshi

    2010-01-01

    We calculate light curves produced by a hot spot of a rapidly rotating neutron star, assuming that the spot is perturbed by a core $r$-mode, which is destabilized by emitting gravitational waves. To calculate light curves, we take account of relativistic effects such as the Doppler boost due to the rapid rotation and light bending assuming the Schwarzschild metric around the neutron star. We assume that the core $r$-modes penetrate to the surface fluid ocean to have sufficiently large amplitudes to disturb the spot. For a $l'=m$ core $r$-mode, the oscillation frequency $\\omega\\approx2m\\Omega/[l'(l'+1)]$ defined in the co-rotating frame of the star will be detected by a distant observer, where $l'$ and $m$ are respectively the spherical harmonic degree and the azimuthal wave number of the mode, and $\\Omega$ is the spin frequency of the star. In a linear theory of oscillation, using a parameter $A$ we parametrize the mode amplitudes such that ${\\rm max}\\left(|\\xi_\\theta|,|\\xi_\\phi|\\right)/R=A$ at the surface, w...

  10. "m=1" coatings for neutron guides

    DEFF Research Database (Denmark)

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt

    2014-01-01

    A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over...... the critical angle of Ni is needed one has used Ni58 or Ni/Ti multilayer coatings. Ni has one of the highest neutron scattering density but it also has a fairly high absorption cross section for cold and thermal neutrons and when a neutron is absorbed it emits a lot of gamma rays, some with energies above 9 Me......V. Materials like diamond and Be have higher neutron scattering density than Ni, have smaller absorption cross section and when a neutron is absorbed they emit much less gamma ray and at lower energies. We present results, both theoretically and experimentally, comparing Ni with Be and preliminary results...

  11. The Thermodynamic Functions in Curved Space of Neutron Star

    Science.gov (United States)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-04-01

    The aim of this article is to calculate the thermodynamic functions of a neutron star in curved space. We obtained equation of state (EOS) and the excess free energy for a neutron star in curved space up to order n4, where n is the density of particles.

  12. "m=1" coatings for neutron guides

    OpenAIRE

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt; Kapaklis, V.; Wilkens, H.; Rats, D.; Hjörvarsson, B.; Kirstein, O.; Bentley, Philip

    2014-01-01

    A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over the critical angle of Ni is needed one has used Ni58 or Ni/Ti multilayer coatings. Ni has one of the highest neutron scattering density but it also has a fairly high absorption cross section for cold and therm...

  13. Ion guiding in curved glass capillaries

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takao M. [Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Ikeda, Tokihiro [Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kanai, Yasuyuki; Yamazaki, Yasunori [Atomic Physics Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2015-07-01

    Straight and curved glass capillaries were tested for the guiding of 8 keV Ar{sup 8+} ion beams. The straight capillary was about 50 mm long and 0.87 mm/1.1 mm in inner/outer diameter. One of the two curved capillaries was similar, but was curved with a 270 mm radius. The other was 53 mm long, had diameters of 2.34 mm/2.99 mm, and was curved with a 150 mm radius. The corresponding bending angles of the two curved capillaries were 9.6° and 17.5°, respectively. Transmission through the straight capillary disappeared when the tilt angle was larger than 5°. The curved capillaries guided the ion beams into their corresponding bending angles, which were much larger than 5°, with transmission efficiencies of a few tens percent. This demonstrates the possibility of developing a new scheme of simple small beam deflectors and related beam optics.

  14. Advanced geometries for ballistic neutron guides

    Science.gov (United States)

    Schanzer, Christian; Böni, Peter; Filges, Uwe; Hils, Thomas

    2004-08-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands.

  15. Advanced geometries for ballistic neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Schanzer, Christian E-mail: christian.schanzer@frm2.tum.de; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-08-21

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands.

  16. Simulation of waviness in neutron guides

    DEFF Research Database (Denmark)

    Hansen, Ursula Bengaard; Bertelsen, Mads; Bergbäck Knudsen, Erik;

    2015-01-01

    As the trend of neutron guide designs points towards longer and more complex guides, imperfections such as waviness becomes increasingly important. Simulations of guide waviness has so far been limited by a lack of reasonable waviness models. We here present a stochastic description of waviness a...... and its implementation in the McStas simulation package. The effect of this new implementation is compared to the guide simulations without waviness and the simple, yet unphysical, waviness model implemented in McStas 1.12c and 2.0....

  17. The automatic neutron guide optimizer guide_bot

    Science.gov (United States)

    Bertelsen, Mads

    2017-09-01

    The guide optimization software guide_bot is introduced, the main purpose of which is to reduce the time spent programming when performing numerical optimization of neutron guides. A limited amount of information on the overall guide geometry and a figure of merit describing the desired beam is used to generate the code necessary to solve the problem. A generated McStas instrument file performs the Monte Carlo ray-tracing, which is controlled by iFit optimization scripts. The resulting optimal guide is thoroughly characterized, both in terms of brilliance transfer from an idealized source and on a more realistic source such as the ESS Butterfly moderator. Basic MATLAB knowledge is required from the user, but no experience with McStas or iFit is necessary. This paper briefly describes how guide_bot is used and some important aspects of the code. A short validation against earlier work is performed which shows the expected agreement. In addition a scan over the vertical divergence requirement, where individual guide optimizations are performed for each corresponding figure of merit, provides valuable data on the consequences of this parameter. The guide_bot software package is best suited for the start of an instrument design project as it excels at comparing a large amount of different guide alternatives for a specific set of instrument requirements, but is still applicable in later stages as constraints can be used to optimize more specific guides.

  18. Light Curves for Rapidly-Rotating Neutron Stars

    CERN Document Server

    Cadeau, C; Leahy, D; Campbell, S S; Cadeau, Coire; Morsink, Sharon M.; Leahy, Denis; Campbell, Sheldon S.

    2006-01-01

    We present raytracing computations for light emitted from the surface of a rapidly-rotating neutron star in order to construct light curves for X-ray pulsars and bursters. These calculations are for realistic models of rapidly-rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect arising from rotation comes from the oblate shape of the rotating star. We find that approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, in most cases acceptable fits to the ratio M/R can be obtained with the spherical approximation.

  19. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.;

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding...

  20. First flux measurement in a SINQ supermirror neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, S.; Schlumpf, N.; Bauer, G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    On Dec. 3, 1996, the Swiss spallation neutron source SINQ was taken into operation and produced its first neutrons successfully. The neutron spectrum within one of the supermirror guides was estimated by a chopper Time-of-Flight method. The result shows a 30% higher neutron intensity at the flux maximum than expected from previous Monte-Carlo simulations. (author) 1 fig., 4 refs.

  1. Neutron Multiplicity: LANL W Covariance Matrix for Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-12-08

    In neutron multiplicity counting one may fit a curve by minimizing an objective function, χ$2\\atop{n}$. The objective function includes the inverse of an n by n matrix of covariances, W. The inverse of the W matrix has a closed form solution. In addition W-1 is a tri-diagonal matrix. The closed form and tridiagonal nature allows for a simpler expression of the objective function χ$2\\atop{n}$. Minimization of this simpler expression will provide the optimal parameters for the fitted curve.

  2. An improved elliptic guide concept for a homogeneous neutron beam without direct line of sight

    CERN Document Server

    Zendler, C; Lieutenant, K

    2014-01-01

    Ballistic neutron guides are efficient for neutron transport over long distances, and in particular elliptically shaped guides have received much attention lately. However, elliptic neutron guides generally deliver an inhomogeneous divergence distribution when used with a small source, and do not allow kinks or curvature to avoid a direct view from source to sample. In this article, a kinked double-elliptic solution is found for neutron transport to a small sample from a small (virtual) source, as given e.g. for instruments using a pinhole beam extraction with a focusing feeder. A guide consisting of two elliptical parts connected by a linear kinked section is shown by VITESS simulations to deliver a high brilliance transfer as well as a homogeneous divergence distribution while avoiding direct line of sight to the source. It performs better than a recently proposed ellipse-parabola hybrid when used in a ballistic context with a kinked or curved central part. Another recently proposed solution, an analyticall...

  3. Application Guide to Neutron Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    D. G. Langner; J. E. Stewart; M. M. Pickrell; M. S. Krick; N. Ensslin; W. C. Harker

    1998-11-01

    This document is intended to serve as a comprehensive applications guide to passive neutron multiplicity counting, a new nondestructive assay (NDA) technique developed over the past ten years. The document describes the principles of multiplicity counter design, electronics, and mathematics. Existing counters in Department of Energy (DOE) facilities are surveyed, and their operating requirements and procedures and defined. Current applications to plutonium material types found in DOE facilities are described, and estimates of the expected assay precision and bias are given. Lastly, guidelines for multiplicity counter selection and procurement are summarized. The document also includes a detailed collection of references on passive neutron coincidence and multiplicity publications over the last ten to fifteen years.

  4. Neutron guide-split: A high performance guide bundle concept for elliptical guides

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Sonja L.; Rasmussen, Nina; Høpfner, Louise [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); ESS Design Update Program (Denmark); Bertelsen, Mads [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); ESS Design Update Program (Denmark); European Spallation Source ESS AB, 22100 Lund (Sweden); Voigt, Jörg [Jülich Centre for Neutron Science JCNS, 52425 Jülich (Germany); Andersen, Ken H. [European Spallation Source ESS AB, 22100 Lund (Sweden); Lefmann, Kim [Nano-Science Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø (Denmark); ESS Design Update Program (Denmark)

    2015-05-11

    We present a new guide-split concept for transporting cold and thermal neutrons to multiple instruments from a single beam port at a neutron facility without compromising the useful neutron brilliance notably for any of the instruments. Elliptical guides are capable of transporting an almost completely filled phase space within a large divergence (±2° for cold neutrons). It is therefore possible to place several secondary guides side by side pointing in slightly different directions using the end of a primary guide as a virtual source. The instruments placed at the secondary guides hence exploit different parts of the phase space transported by the primary guide. In addition, the resulting kink between the primary and secondary guide eliminates line of sight. Using ray-tracing simulations of three different set-ups (with two, four, and eight secondary guides) we show that it is possible to illuminate at least eight sample positions from one beam port with a brilliance transfer above 90% on each sample on a 150 m long instrument. This has been done for a phase space volume comprised of an area of 1×1 cm{sup 2} and a maximum divergence of±0.5° within a wavelength band of 4.25–5.75 Å. We show, by a full virtual experiment, an example of applying the guide-split concept to an instrument proposed for the European Spallation Source, namely a magnetism diffractometer.

  5. Neutron guide facility at the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maayouf, R.M.A.; Abdel-Latif, I.A.; El-Kady, A.S. [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center; Trounov, V.; Kudryashev, V.; Bulkin, A.

    1996-12-01

    The present work presents a neutron guide facility, recently installed, at one of the ET-RR-1 reactor horizontal channels. The facility has been designed for delivering neutrons, with wavelengths between 1--4A, to a Fourier RTOF diffractometer, allowing for neutron diffraction measurements at D values between 0.7 A and 2.9 A respectively. (author)

  6. Correction of Optical Aberrations in Elliptic Neutron Guides

    CERN Document Server

    Bentley, Phillip M; Andersen, Ken H; Rodriguez, Damian Martin; Mildner, David F R

    2012-01-01

    Modern, nonlinear ballistic neutron guides are an attractive concept in neutron beam delivery and instrumentation, because they offer increased performance over straight or linearly tapered guides. However, like other ballistic geometries they have the potential to create significantly non-trivial instrumental resolution functions. We address the source of the most prominent optical aberration, namely coma, and we show that for extended sources the off-axis rays have a different focal length from on-axis rays, leading to multiple reflections in the guide system. We illustrate how the interplay between coma, sources of finite size, and mirrors with non-perfect reflectivity can therefore conspire to produce uneven distributions in the neutron beam divergence, the source of complicated resolution functions. To solve these problems, we propose a hybrid elliptic-parabolic guide geometry. Using this new kind of neutron guide shape, it is possible to condition the neutron beam and remove almost all of the aberration...

  7. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G., E-mail: g.brandl@fz-juelich.de [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching, Germany and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum - MLZ, Forschungszentrum Jülich GmbH, 85748 Garching (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physik Department E21, Technische Universität München, 85748 Garching (Germany); Dunsiger, S. R. [Physik Department E21, Technische Universität München, 85748 Garching, Germany and Center for Emergent Materials, Ohio State University, Columbus, Ohio 43210-1117 (United States); Tsurkan, V. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany and Institute of Applied Physics, Academy of Sciences of Moldova, MD 2028 Chisinau, Republic of Moldova (Germany); Loidl, A. [Experimental Physics V, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Adams, T.; Pfleiderer, C.; Böni, P. [Physik Department E21, Technische Universität München, 85748 Garching (Germany)

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  8. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    Science.gov (United States)

    Brandl, G.; Georgii, R.; Dunsiger, S. R.; Tsurkan, V.; Loidl, A.; Adams, T.; Pfleiderer, C.; Böni, P.

    2015-12-01

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm3, thus enabling the investigation of materials which to date would have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr2Se4 (V = 12.5 mm3), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.

  9. Multiple pixel-scale soil water retention curves quantified by neutron radiography

    Science.gov (United States)

    Kang, M.; Perfect, E.; Cheng, C. L.; Bilheux, H. Z.; Lee, J.; Horita, J.; Warren, J. M.

    2014-03-01

    The soil water retention function is needed for modeling multiphase flow in porous media. Traditional techniques for measuring the soil water retention function, such as the hanging water column or pressure cell methods, yield average water retention data which have to be modeled using inverse procedures to extract relevant point parameters. In this study, we have developed a technique for directly measuring multiple point (pixel-scale) water retention curves for a repacked sand material using 2-D neutron radiography. Neutron radiographic images were obtained under quasi-equilibrium conditions at nine imposed basal matric potentials during monotonic drying of Flint sand at the High Flux Isotope Reactor (HFIR) Cold Guide (CG) 1D beamline at Oak Ridge National Laboratory. All of the images were normalized with respect to an image of the oven dry sand column. Volumetric water contents were computed on a pixel by pixel basis using an empirical calibration equation after taking into account beam hardening and geometric corrections. Corresponding matric potentials were calculated from the imposed basal matric potential and pixel elevations. Volumetric water content and matric potential data pairs corresponding to 120 selected pixels were used to construct 120 point water retention curves. Each curve was fitted to the Brooks and Corey equation using segmented non-linear regression in SAS. A 98.5% convergence rate was achieved resulting in 115 estimates of the four Brooks and Corey parameters. A single Brooks and Corey point water retention function was constructed for Flint sand using the median values of these parameter estimates. This curve corresponded closely with the point Brooks and Corey function inversely extracted from the average water retention data using TrueCell. Forward numerical simulations performed using HYDRUS 1-D showed that the cumulative outflows predicted using the point Brooks and Corey functions from both the direct (neutron radiography) and

  10. Trapping and guiding surface plasmons in curved graphene landscapes

    CERN Document Server

    Smirnova, Daria; Wang, Zheng; Kivshar, Yuri S; Khanikaev, Alexander B

    2015-01-01

    We demonstrate that graphene placed on top of structured substrates offers a novel approach for trapping and guiding surface plasmons. A monolayer graphene with a spatially varying curvature exhibits an effective trapping potential for graphene plasmons near curved areas such as bumps, humps and wells. We derive the governing equation for describing such localized channel plasmons guided by curved graphene and validate our theory by the first-principle numerical simulations. The proposed confinement mechanism enables plasmon guiding by the regions of maximal curvature, and it offers a versatile platform for manipulating light in planar landscapes. In addition, isolated deformations of graphene such as bumps are shown to support localized surface modes and resonances suggesting a new way to engineer plasmonic metasurfaces.

  11. Use of cold neutrons for condensed matter research at the neutron guide laboratory ELLA in Juelich

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzler, R.; Monkenbusch, M. [Research Centre Juelich, D-52425 Juelich (Germany)

    1998-07-01

    Cold neutrons produced in the FRJ-2 DIDO reactor are guided into the external hall ELLA. It hosts 10 instruments that are red by three major neutron guides. Cold neutrons allow for diffraction and small angle scattering experiments resolving mesoscopic structures (1 to 100 nm). Contrast variation by isotopic substitution in chemically identical species yields information uniquely accessible bi neutrons. Inelastic scattering of cold neutrons allows investigating slow molecular motions because the low neutron velocity results in large relative velocity changes even at small energy transfers. The SANS machines and the HADAS reflectometer serve as structure probes and the backscattering BSS1 and spin-echo spectrometers NSE as main dynamics probes. Besides this the diffuse scattering instrument DNS and the lattice parameter determination instrument LAP deal mainly with crystals and their defects. Finally the beta-NMR and the EKN position allow for methods other than scattering employing nuclear reactions for solid state physics, chemistry and biology/medicine. (author)

  12. Design and tests of an adaptive focusing neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Roxana Georgiana

    2012-08-23

    This work contains the Monte Carlo Simulations, as well as the first tests with an adaptive focusing neutron guide for creating a focus that does not depend on the wavelength of the incoming neutrons. All known neutron guides consist of a rectangular shape, built out of four glass plates. The inner side of the guide is coated with a complex structure of metal layers. This reflects and guides the neutrons (in analogy with the reflection of the light). For beam focusing neutron guides with fixed curvature can be built. For most experiments it is important that the beam is focused on to a small surface of the sample. In the case of focusing guides with fixed curvature it has been observed that the focusing (dimension and position of the beam focus) is wavelength dependent. This is why for measurements that are performed with different wavelengths it is very important to change the curvature of the neutron guide in order to obtain optimal results. In this work we have designed, constructed and tested a guide where we can change the curvature during the experiment. In this way we can obtain a variable curvature in horizontal as well as in vertical direction. For a curvature in the horizontal or vertical direction it is not necessary to move all four walls, only two of the opposed plates. The element that changes the curvature of the guide consists of an acting element (piezomotor) as well as a rod that can be operated by the piezomotor and that acts through a lever onto the plate. The action of a force and a consecutive torsion momentum at the free end of the plate changes the curvature of the whole plate in an almost parabolic way. Making use of the Monte Carlo simulations we were able to determine the optimal curvature for each wavelength of a neutron guide for the spectrometer TOFTOF installed at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II). First tests have shown that with an adaptive focusing guide one can gain up to a factor three in intensity at

  13. A simulation report for the neutron guide development at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S. J.; Soo, J. Y.; Seong, B. S.; Lee, C. H.; Kim, H. R

    2006-04-15

    Lately, a demand of the measurement technique on atomic scale has been exceedingly increased over the whole field of the basic and technical science such as biotechnology, nano-technology, solid state physics, solid chemistry etc. Therefore a project called 'infrastructure construction for cold neutron research and utilization technique development' was launched in KAERI in July 2003, in order to raise a domestic basic science with an international level and elevate a international competitiveness for the bio-, nano- and informatics technology area through a wide contribution in a material structure research field. In order to accomplish this project until 2008, some important developments were launched at a same time such as a cold neutron source which shifts neutrons from a short wavelength range to a long wavelength, a system driving part for a smooth operation of a cold neutron source, and a neutron guide tube to be able to send neutrons to spectrometers located over a long distance. The guide simulation should be preferentially performed for an effective use of expensive neutron to meet the requirements such as wavelengths and type of instruments, experimental space, interferences with other instruments. The objective of this study was to decide guide shape, dimension, amount, curvature and instrument layout.

  14. Neutron guide shielding for the BIFROST spectrometer at ESS

    Science.gov (United States)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C. P.; Lefmann, K.; Klinkby, E. B.

    2016-09-01

    We report on the study of fast-neutron background for the BIFROST spectrometer at ESS. We investigate the effect of background radiation induced by the interaction of fast neutrons from the source with the material of the neutron guide and devise a reasonable fast, thermal/cold neutron shielding solution for the current guide geometry using McStas and MCNPX. We investigate the effectiveness of the steel shielding around the guide by running simulations with three different steel thicknesses. The same approach is used to study the efficiencies of the steel wall a flat cylinder pierced by the guide in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves that it is sufficient to bring the background level below the cosmic neutron rate, which defines an order of magnitude of the lowest obtainable background in the instruments.

  15. Design of the Mechanical Parts for the Neutron Guide System at HANARO

    Science.gov (United States)

    Shin, J. W.; Cho, Y. G.; Cho, S. J.; Ryu, J. S.

    2008-03-01

    The research reactor HANARO (High-flux Advanced Neutron Application ReactOr) in Korea will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. Functions of the in-pile plug assembly are to shield the reactor environment from nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical structure to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This paper describes the design of the in-pile assembly and the primary shutter for the neutron guide system at HANARO. The design of the guide shielding assembly for the primary shutter and the neutron guides is also presented.

  16. Systematic neutron guide misalignment for an accelerator-driven spallation neutron source

    Science.gov (United States)

    Zendler, C.; Bentley, P. M.

    2016-08-01

    The European Spallation Source (ESS) is a long pulse spallation neutron source that is currently under construction in Lund, Sweden. A considerable fraction of the 22 planned instruments extend as far as 75-150 m from the source. In such long beam lines, misalignment between neutron guide segments can decrease the neutron transmission significantly. In addition to a random misalignment from installation tolerances, the ground on which ESS is built can be expected to sink with time, and thus shift the neutron guide segments further away from the ideal alignment axis in a systematic way. These systematic errors are correlated to the ground structure, position of buildings and shielding installation. Since the largest deformation is expected close to the target, even short instruments might be noticeably affected. In this study, the effect of this systematic misalignment on short and long ESS beam lines is analyzed, and a possible mitigation by overillumination of subsequent guide sections investigated.

  17. Development of a neutron guide tube production technique at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang-Jin [Korea Atomic Energy Reserch Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Seung, Baek-Soek [Korea Atomic Energy Reserch Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Chang-Hee [Korea Atomic Energy Reserch Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Hark-Rho [Korea Atomic Energy Reserch Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2006-11-15

    In this paper, we present KAERI's technical development status for a neutron guide tube fabrication. To achieve a high uniformity, very low roughness and perfect interface during the layer growth process, a sputtering machine was developed whereby various deposition parameters can be controlled. The Ni mirrors fabricated with this coating equipment show a neutron reflectivity of 97% at the critical angle and the Ni/Ti-supermirrors show (M=2) 84%. For a substrate alignment and assembly for the guide elements, a non-contact measurement apparatus equipped with optical microscopes was developed instead of using a 3-axis measuring machine. By employing this optical equipment, it was possible to assemble a neutron guide with an accuracy in the lateral direction of 0.005 mm and in the vertical direction of 0.01 mm.

  18. Upgrade of the neutron guide system at the OPAL Neutron Source

    Science.gov (United States)

    Rodriguez, D. Martin; Kennedy, S. J.; Klose, F.

    2010-11-01

    The new research reactor at ANSTO (OPAL) is operating with seven neutron beam instruments in the user programme and three more under construction. The reactor design provides for expansion of the facility to eighteen instruments, and much of the basic infrastructure is already in place. However, an expansion of the neutron guide system is needed for further beam instruments. For this purpose, several possibilities are under consideration, such as insertion of multi-channel neutron benders in the existing cold guides or the construction of a new elliptic cold guide. In this work Monte Carlo (MC) simulations have been used to evaluate performance of these guide configurations. Results show that these configurations can be competitive with the best instruments in the world.

  19. OPAL Cold Neutron Guide In-Pile Replacement

    Energy Technology Data Exchange (ETDEWEB)

    Rownes, T.; Eltobaji, A.; Bell, M.; Klose, F. [Nuclear Operations, Baitain (Australia)

    2013-07-01

    The 20 MW{sub th} OPAL research reactor has five neutron beam assemblies. These provide cold and thermal neutrons to various neutron guides and associated neutron beam instruments. In 2010 a project was initiated to install a new cold neutron guide, CG2, in one of the assemblies. This installation would allow up to four new neutron beam instruments to be built, significantly expanding the reactor's capabilities. The project concluded in December 2012 with the successful installation of CG2. Each neutron beam assembly has an in-pile plug, a primary shutter and a front cover. Together these constitute the neutron guide's in-pile components, with a total mass of over 12 tonnes. The CG2 installation required the complete replacement of the existing components. This replacement was scheduled to coincide with OPAL's first major shutdown. With a budget of $2.3 million and an expected dose of 50 man.mSv, the CG2 installation was a large and complex task. Work during the shutdown involved over 40 ANSTO personnel and radiation fields approached 1 Sv/h in some areas. Despite this, the installation team received a collective dose of only 10 man.mSv, and the project was completed to budget and within schedule. This paper will outline the details of the project, focusing on lessons learned and recommended practices. Each OPAL in-pile plug has a design life of 10 years at full power operation, and similar replacements will be performed regularly as the reactor ages. It is hoped that this information will be useful for other research reactors planning large capital engineering projects.

  20. Isodose Curves and Treatment Planning for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Liu, Hungyuan B.

    The development of Boron Neutron Capture Therapy (BNCT) has been progressing in both ^{10 }B compound development and testing and neutron beam delivery. Animal tests are now in progress with several ^{10}B compounds and once the results of these animal tests are promising, patient trials can be initiated. The objective of this study is to create a treatment planning method based on the dose calculations by a Monte Carlo code of a mixed radiation field to provide linkage between phantom dosimetry and patient irradiation. The research started with an overall review of the development of BNCT. Three epithermal neutron facilities are described, including the operating Brookhaven Medical Research Reactor (BMRR) beam, the designed Missouri University Research Reactor (MURR) beam, and a designed accelerator based neutron source. The flux and dose distributions in a head model have been calculated for irradiation by these neutron beams. Different beam parameters were inter -compared for effectiveness. Dosimetric measurements in an elliptical lucite phantom and a cylindrical water phantom were made and compared to the MCNP calculations for irradiation by the BMRR beam. Repeated measurements were made and show consistent. To improve the statistical results calculated by MCNP, a neutron source plane was designed to start neutrons at the BMRR irradiation port. The source plane was used with the phantoms for dosimetric calculations. After being verified by different phantom dosimetry and in-air flux measurements at the irradiation port, the source plane was used to calculate the flux and dose distributions in the head model. A treatment planning program was created for use on a PC which uses the MCNP calculated results as input. This program calculates the thermal neutron flux and dose distributions of each component of radiation in the central coronal section of the head model for irradiation by a neutron beam. Different combinations of head orientations and irradiation

  1. Light waves guided by a single curved metallic surface.

    Science.gov (United States)

    Krammer, H

    1978-01-15

    Propagation of TE-waves along a single curved metallic surface with radius of curvature much larger than wavelength is investigated both theoretically and experimentally. Approximate analytic expressions for the field configuration yield that power concentrates in a small region near the metal. The attenuation constant per unit angle of bend (radian) is given by the real part of the inverse of the refractive index, independent of the radius of curvature and of the mode number. In agreement with theory experiments with 10-microm radiation showed that low loss guiding can be realized.

  2. Development of In-pile Plug Assembly and Primary Shutter for Cold Neutron Guide System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Won; Cho, Yeong Garp; Ryu, Jeong Soo; Lee, Jung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This report describes the mechanical design, fabrication, and installation procedure of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. A special tool and procedure for a replacement of in-pile plug and guide cassette is also presented with the interface condition in the reactor hall.

  3. Intercomparison of Neutron Beam Guides for Cold Neutron Activation Station at HANARO using McStas/VITESS/RESTRAX Codes

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Hoang Sy Minh; Sun, Gwang Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The HANARO (KAERI) research reactor has been developed a neutron guide system for cold neutron (CN) research facilities since July, 2003. The neutron guide system plays an important role in transporting cold neutrons from the CN source to the neutron facilities as CN-NDP, CN-PGAA, SANS, etc. The CN activation station is being installed in the HANARO cold-neutron research project. The CN-NDP and CN-PGAA were selected as two facilities using at this station. At the end position of CG1 and CG2B beam guides, the CN-NDP and CN-PGAA will be installed in the CN guide hall. In order to predict the neutron flux and intensity values at the CG1 and CG2B beam guides, the simulation results of neutron flux at the CG1 and CG2B beam guides are presented by using several Monte Carlo (MC) neutron ray-tracing simulation codes. The intercomparison of neutron flux values between McStas, VITESS and RESTRAX are performed for getting fairly correct results at two neutron beam guides

  4. Systematic study on the performance of elliptic focusing neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rodriguez, D., E-mail: damian.rodriguez@esss.se [European Spallation Source ERIC, Box 176, 221 00 Lund (Sweden); DiJulio, D.D. [European Spallation Source ERIC, Box 176, 221 00 Lund (Sweden); Department of Physics, Lund University, SE-221 00 Lund (Sweden); Bentley, P.M. [European Spallation Source ERIC, Box 176, 221 00 Lund (Sweden); Department of Physics and Astronomy, University of Uppsala, Uppsala 751 20 (Sweden)

    2016-02-01

    In neutron scattering experiments there is an increasing trend towards the study of smaller volume samples, which make the use of focusing optics more important. Focusing guide geometries based on conic-sections, such as those with parabolic and elliptic shapes, have been extensively used in both recently built neutron instruments and upgrades of existing hardware. A large fraction of proposed instruments at the European Spallation Source feature the requirement of good performance when measuring on small samples. The optimised design of a focusing system comes after time consuming Monte-Carlo (MC) simulations. Therefore, in order to help reduce the time needed to design such focusing systems, it is necessary to study systematically the performance of focusing guides. In the present work, we perform a theoretical analysis of the focusing properties of neutron beams, and validate them using a combination of Monte-Carlo simulations and Particle Swarm Optimisations (PSOs), where there is a close correspondence between the maximum divergence of the beam and the shape of the guide. The analytical results show that two limits can be considered, which bound a range of conic section shapes that provide optimum performance. Finally, we analyse a more realistic guide example and we give an assessment of the importance of the contribution from multiple reflections in different systems.

  5. Behavior under irradiation of super-mirror for neutron guides; Tenue sous irradiation de supermiroirs pour guides de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    N' Guy-Marechal, K

    1997-10-15

    The aim of this work is to study the aging of NiCx/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50% hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, the mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author)

  6. Aging under irradiation of super-mirrors used in neutron guides; Tenue sous irradiation de supermiroirs pour guides de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    N`Guy-Marechal, K

    1997-10-16

    The aim of this work is to study the aging of NiC{sub x}/Ti super-mirror multilayers used in neutron guides under thermal neutron irradiation. These multilayers allow an increase of the apparent critical angle of total reflection by creating constructive interferences. Neutrons fluxes are thus increased in neutron guides made with a super-mirror coating. Thin films of one and ten bilayers have been deposited on a silicon and a borosilicate glass substrate. We have then studied the evolution of their optical, structural and mechanical properties after irradiation and annealing. After irradiation, a decrease in neutron reflectivity has been observed, due to the interdiffusion of both materials: this phenomenon was particularly important in the coatings deposited on a glass substrate. X-ray diffraction and X-ray absorption spectroscopy have shown that the structural evolutions of both nickel and titanium do not depend on the substrate. Nickel layers remain face-centered cubic after treatment, whereas the initially hexagonal closed-packed titanium becomes face-centered cubic with a texture in the [111] direction. This phase transformation has been attributed to the formation of a TiH compound containing as much as 50 % hydrogen. Despite these structural changes, stress relaxation has occurred after irradiation in our layers. On the contrary, then mean stress that we have determined in previous samples, elaborated in another laboratory, has increased after irradiation. Comparison of both results shows that stress evolution is linked to the deposition conditions. As stress remains almost unchanged after annealing, we may conclude that only irradiation defects, and not heating, lead to stress evolution. Our samples being very similar to real neutron guides, we can extend the results we have obtained in this work to real super-mirrors. (author) 62 refs.

  7. Quality of the neutron probe calibration curve; Qualidade da curva de calibracao da sonda de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Libardi, Paulo Leonel; Moraes, Sergio Oliveira [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Fisica e Meteorologia. E-mail: pllibardi@mandi.esalq.usp.br; somoraes@mandi.esalq.usp.br

    1997-07-01

    An experiment of neutron probe calibration has been performed, involving various volume size samples and collected at various distances from the access tubes. The experiment aimed to give some answers to questions such as suitable sample physical volume, always use of the same volume and sample distance from the neutron probe access tube.

  8. Bi-spectral extraction through elliptic neutron guides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Henrik, E-mail: hjacobse@fys.ku.dk [Nanoscience center and eScience center, Niels Bohr Institute, University of Copenhagen (Denmark); ESS design update program (Denmark); Lieutenant, Klaus; Zendler, Carolin [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); ESS design update program (Germany); Lefmann, Kim [Nanoscience center and eScience center, Niels Bohr Institute, University of Copenhagen (Denmark); ESS design update program (Denmark)

    2013-07-21

    In this paper we present the results of investigating a suggested guide extraction system utilizing both a thermal and a cold moderator at the same time, the so-called bi-spectral extraction. Here, the thermal moderator has line of sight to the sample position, and the neutrons from the cold source are reflected by a supermirror towards the sample. The work is motivated by the construction of the European Spallation Source (ESS) but the results are general and can be used at any neutron source. Due to the long pulse structure, most instruments at ESS will be long, often exceeding 50 m from moderator to detector. We therefore investigate the performance of bi-spectral extraction for instrument lengths of 30 m, 56 m, 81 m and 156 m. In all these cases, our results show that we can utilize both moderators (and thus high intensity in a wide wavelength band) in the same instrument at a cost of flux of 5–30% for neutrons with wavelength larger than 1 Å. In general, the divergence distribution is smooth at the sample position for all wavelengths. -- Highlights: • We simulate bi-spectral neutron beam extraction through elliptic guides. • Two independent ray-tracing tools (McStas and VITESS) give similar results. • Brilliance transfers of 70–95% for λ>1Å are achieved for guide lengths of 30–156 m. • The beam profile is smooth at the sample position. • The simulations are performed with ESS in mind, but have general validity.

  9. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Science.gov (United States)

    Zeitelhack, K.; Schanzer, C.; Kastenmüller, A.; Röhrmoser, A.; Daniel, C.; Franke, J.; Gutsmiedl, E.; Kudryashov, V.; Maier, D.; Päthe, D.; Petry, W.; Schöffel, T.; Schreckenbach, K.; Urban, A.; Wildgruber, U.

    2006-05-01

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D 2 cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique "twisted" guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  10. Measurement of neutron flux and beam divergence at the cold neutron guide system of the new Munich research reactor FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Zeitelhack, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany)]. E-mail: karl.zeitelhack@frm2.tum.de; Schanzer, C. [Physik-Department E21, TU Muenchen, D-85747 Garching (Germany); Kastenmueller, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Roehrmoser, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Daniel, C. [Physik-Department E22, TU Muenchen, D-85747 Garching (Germany); Franke, J. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany); Gutsmiedl, E. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Kudryashov, V. [GKSS Forschungszentrum GmbH, D-21502 Geesthacht (Germany); Maier, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Paethe, D. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Petry, W. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schoeffel, T. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Schreckenbach, K. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Urban, A. [ZWE FRM-II, TU Muenchen, D-85747 Garching (Germany); Wildgruber, U. [Max-Planck-Institut fuer Metallforschung, D-70569 Stuttgart (Germany)

    2006-05-10

    A sophisticated neutron guide system has been installed at the new Munich neutron source FRM-II to transport neutrons from the D{sub 2} cold neutron source to several instruments, which are situated in a separate neutron guide hall. The guide system takes advantage of supermirror coatings and includes a worldwide unique 'twisted' guide for a desired phase space transformation of the neutron beam. During the initial reactor commissioning in summer 2004, the integral and differential neutron flux as well as the distribution of beam divergence at the exit of two representative and the twisted neutron guide were measured using time-of-flight spectroscopy and gold-foil activation. The experimental results can be compared to extensive simulation calculations based on MCNP and McStas. The investigated guides fulfill the expectations of providing high neutron fluxes and reveal good quality with respect to the reflective coatings and the installation precision.

  11. Neutron guide shielding for the BIFROST spectrometer at ESS

    DEFF Research Database (Denmark)

    Mantulnikovs, K.; Bertelsen, M.; Cooper-Jensen, C.P.

    2016-01-01

    in the middle and the polyethylene layer. The final model presented here has a 3 cm thick steel shielding around the guide, 30 cm of polyethylene around the shielding, two 5 mm thick B4C layers and a steel wall at position Z = 38 m, being 1 m thick and 10 m in radius. The final model finally proves...... that it is sufficient to bring the background level below the cosmic neutron rate, which defines an order of magnitude of the lowest obtainable background in the instruments....

  12. Monte-Carlo simulation on the cold neutron guides at CARR

    Energy Technology Data Exchange (ETDEWEB)

    Guo Liping; Wang Hongli; Yang Tonghua; Cheng Zhixu; Liu Yi [China Institute of Atomic Energy, Neutron Scattering Laboratory, Beijing (China)

    2003-03-01

    The designs of the two cold neutron guides to be built at China Advanced Research Reactor (CARR) are simulated with Monte-Carlo simulation software VITESS. Various parameters of the guides, e.g. transmission efficiency, neutron flux, divergence, etc., are obtained. (author)

  13. Gain factors with the new supermirror guide system at the Budapest Neutron Centre

    CERN Document Server

    Rosta, L; Revay, Z

    2002-01-01

    In parallel with the installation of a cold-neutron source (CNS) at the 10-MW Budapest Research Reactor, the neutron-guide system has been redesigned and replaced by state of art neutron optical elements. Monte Carlo calculations have been used to determine the optimal conditions for the guide parameters. For the three cold-neutron beams nearly 100 m of new guides were installed; a great part is made of supermirrors. The new in-pile guide system and the individual shutters enable minimal losses at the starting sections. The out-of-pile part was optimized for the experimental stations. The neutron-flux measurements were compared with the simulated values. The combined effect of the CNS and the guide system yields a gain factor in the flux as high as 30-60. (orig.)

  14. Curves and surfaces for CAGD a practical guide

    CERN Document Server

    Farin, Gerald

    2002-01-01

    This fifth edition has been fully updated to cover the many advances made in CAGD and curve and surface theory since 1997, when the fourth edition appeared. Material has been restructured into theory and applications chapters. The theory material has been streamlined using the blossoming approach; the applications material includes least squares techniques in addition to the traditional interpolation methods. In all other respects, it is, thankfully, the same. This means you get the informal, friendly style and unique approach that has made Curves and Surfaces for CAGD: A Practical Gui

  15. Neutron guide system for small-angle neutron scattering instruments of the Jülich Centre for Neutron Science at the FRM-II

    Science.gov (United States)

    Radulescu, A.; Ioffe, A.

    2008-02-01

    Following the shut-down of the FRJ-2 research reactor in Jülich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-München. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically "S-shaped" guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally "S-shaped" guide serving the focusing KWS3 instrument, will be reported on.

  16. Neutron guide system for small-angle neutron scattering instruments of the Juelich Centre for Neutron Science at the FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Radulescu, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science at FRM II, Lichtenbergstr. 1, 85747 Garching (Germany)], E-mail: a.radulescu@fz-juelich.de; Ioffe, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich GmbH, Juelich Centre for Neutron Science at FRM II, Lichtenbergstr. 1, 85747 Garching (Germany)

    2008-02-11

    Following the shut-down of the FRJ-2 research reactor in Juelich a large part of the neutron scattering instrumentation operating there is currently being moved to the FRM-II research reactor in Garching-Muenchen. The installation of these instruments requires the design and set-up of new neutron guides with geometrical and optical features imposed by the positioning of the instruments in the neutron guide hall and by the foreseen significant improvement of the instrument performance. Particularly three SANS diffractometers require a special approach due to on one hand, their pre-determined size and on the other hand, the demanded neutron wavelength range. Expected characteristics of three neutron guides (currently under construction) optimized using VITESS and McStas simulation packages, namely the vertically 'S-shaped' guides serving the KWS2 and KWS1 conventional SANS instruments and the horizontally 'S-shaped' guide serving the focusing KWS3 instrument, will be reported on.

  17. ELECTROMAGNETIC EMISSION FROM LONG-LIVED BINARY NEUTRON STAR MERGER REMNANTS. II. LIGHT CURVES AND SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Daniel M. [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D-14476 Potsdam-Golm (Germany); Ciolfi, Riccardo, E-mail: daniel.siegel@aei.mpg.de, E-mail: riccardo.ciolfi@unitn.it [Physics Department, University of Trento, Via Sommarive 14, I-38123 Trento (Italy)

    2016-03-01

    Recent observations indicate that in a large fraction of binary neutron star (BNS) mergers a long-lived neutron star (NS) may be formed rather than a black hole. Unambiguous electromagnetic (EM) signatures of such a scenario would strongly impact our knowledge on how short gamma-ray bursts (SGRBs) and their afterglow radiation are generated. Furthermore, such EM signals would have profound implications for multimessenger astronomy with joint EM and gravitational-wave (GW) observations of BNS mergers, which will soon become reality thanks to the ground-based advanced LIGO/Virgo GW detector network. Here we explore such EM signatures based on the model presented in a companion paper, which provides a self-consistent evolution of the post-merger system and its EM emission up to ∼10{sup 7} s. Light curves and spectra are computed for a wide range of post-merger physical properties. We present X-ray afterglow light curves corresponding to the “standard” and the “time-reversal” scenario for SGRBs (prompt emission associated with the merger or with the collapse of the long-lived NS). The light curve morphologies include single and two-plateau features with timescales and luminosities that are in good agreement with Swift observations. Furthermore, we compute the X-ray signal that should precede the SGRB in the time-reversal scenario, the detection of which would represent smoking-gun evidence for this scenario. Finally, we find a bright, highly isotropic EM transient peaking in the X-ray band at ∼10{sup 2}–10{sup 4} s after the BNS merger with luminosities of L{sub X} ∼ 10{sup 46}–10{sup 48} erg s{sup −1}. This signal represents a very promising EM counterpart to the GW emission from BNS mergers.

  18. How information guides movement: intercepting curved free kicks in soccer.

    Science.gov (United States)

    Craig, Cathy M; Bastin, Julien; Montagne, Gilles

    2011-10-01

    Previous studies have shown that balls subjected to spin induce large errors in perceptual judgments (Craig, Berton, Rao, Fernandez, & Bootsma, 2006; Craig et al., 2009) due to the additional accelerative force that causes the ball's flight path to deviate from a standard parabolic trajectory. A recent review however, has suggested that the findings from such experiments may be imprecise due to the decoupling of perception and action and the reliance on the ventral system (van der Kamp, Rivas, van Doorn, & Savelsbergh, 2008). The aim of this study was to present the same curved free kick trajectory simulations from the perception only studies (Craig et al., 2006, 2009) but this time allow participants to move to intercept the ball. By using immersive, interactive virtual reality technology participants were asked to control the movement of a virtual effector presented in a virtual soccer stadium so that it would make contact with a virtual soccer ball as it crossed the goal-line. As in the perception only studies the direction of spin had a significant effect on the participants' responses with significantly fewer balls being intercepted in the spin conditions when compared to no-spin conditions. A significantly higher percentage of movement reversals for the spin conditions served to highlight the link between information specifying ball heading direction and subsequent movement. The coherence of the findings for both the perception and perception/action study are discussed in light of the dual systems model for visual processing.

  19. Calculation of isodose curves from initial neutron radiation of a hypothetical nuclear explosion using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marcos P.C.; Rebello, Wilson F.; Andrade, Edson R., E-mail: rebello@ime.eb.br, E-mail: daltongirao@yahoo.com.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Nuclear; Silva, Ademir X., E-mail: ademir@nuclear.ufrj.br [Corrdenacao dos Programas de Pos-Graduacao em Egenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Nuclear explosions are usually described in terms of its total yield and associated shock wave, thermal radiation and nuclear radiation effects. The nuclear radiation produced in such events has several components, consisting mainly of alpha and beta particles, neutrinos, X-rays, neutrons and gamma rays. For practical purposes, the radiation from a nuclear explosion is divided into {sup i}nitial nuclear radiation{sup ,} referring to what is issued within one minute after the detonation, and 'residual nuclear radiation' covering everything else. The initial nuclear radiation can also be split between 'instantaneous or 'prompt' radiation, which involves neutrons and gamma rays from fission and from interactions between neutrons and nuclei of surrounding materials, and 'delayed' radiation, comprising emissions from the decay of fission products and from interactions of neutrons with nuclei of the air. This work aims at presenting isodose curves calculations at ground level by Monte Carlo simulation, allowing risk assessment and consequences modeling in radiation protection context. The isodose curves are related to neutrons produced by the prompt nuclear radiation from a hypothetical nuclear explosion with a total yield of 20 KT. Neutron fluency and emission spectrum were based on data available in the literature. Doses were calculated in the form of ambient dose equivalent due to neutrons H*(10){sub n}{sup -}. (author)

  20. Learning curves for ultrasound guided lung biopsy in the hands of respiratory physicians

    DEFF Research Database (Denmark)

    Laursen, Christian; Naur, Therese Maria Henriette; Bodtger, Uffe

    2016-01-01

    Background: The aim of this study was to determine learning curves for ultrasound guided transthoracic needle biopsies (US-TTNB) performed by respiratory physicians after implementation at three different centers.Methods: During January 2012 to August 2014 patients were included if they had...... are depicted in figure 1. Six of the physicians had learning curves with a relatively downward or stable projection as a sign of developing competence. Three physicians, however, had learning curves with an upward projection indicating unacceptable competence in performing the procedure...

  1. Differences in TLD 600 and TLD 700 glow curves derived from distict mixed gamma/neutron field irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Cavalieri, Tassio A.; Castro, Vinicius A.; Siqueira, Paulo T.D., E-mail: tassio.cavalieri@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear

    2013-07-01

    In Neutron Capture Therapy, a thermal neutron beam shall impinge on a specific nuclide, such as {sup 10}B, to promote a nuclear reaction which releases the useful therapeutic energy. A nuclear reactor is usually used as the neutron source, and therefore field contaminants such as gamma and high energy neutrons are also present in the field. However, mixed field dosimetry still stands as a challenge in some cases, due to the difficulty to experimentally discriminate the dose from each field component. For the mixed field dosimetry, the International Commission on Radiation end Units (ICRU) recommends the use of detector pairs with different responses for each beam component. The TLD 600/700 pair meets this need, because these LiF detectors have different Li isotopes concentration, with distinct thermal neutron responses because {sup 6}Li presents a much higher neutron capture cross section than does {sup 7}Li for low energy neutrons. TLD 600 is {sup 6}Li enriched while TLD 700 is {sup 7}Li enriched. However, depending on the neutron spectrum presented in the mixed field, TLD 700 response to thermal neutrons cannot be disregarded. This work aims to study the difference in TLD 600 and TLD 700 glow curves when these TLDs are submitted to mixed fields of different energy spectra and components balance. The TLDs were irradiated in a pure gamma source, and in mixed fields from an AmBe sealed source and from the IPEN/MB-01 reactor. These TLDs were read and had their two main dosimetric regions analyzed to observe the differences in the glow curves of these TLDs in each irradiation. Field components discrimination was achieved through Monte Carlo simulations run with MCNP radiation transport code. (author)

  2. The Ibaraki prefecture materials design diffractometer for J-PARC—Designing neutron guide

    Science.gov (United States)

    Harjo, Stefanus; Kamiyama, Takashi; Torii, Shuki; Ishigaki, Toru; Yonemura, Masao

    2006-11-01

    Ibaraki prefecture materials design diffractometer of J-PARC needs a neutron guide to increase beam intensity without sacrificing measurements of powder diffraction with good resolution, PDF analysis and small angle scattering. Non-parallel guides including elliptical ones have been compared with a linear-straight guide using the McStas simulation. The elliptical guide having the exit focal points away behind the sample position is available to increase the neutron flux at the sample but gives a slight lowering of the instrumental resolution. This elliptical guide gives also Garland peaks at short wavelengths that may give large ambiguities in powder diffraction measurements. Therefore, the linear-straight guide is considered as the best choice for this instrument to keep a good resolution and also a relatively high flux.

  3. The Ibaraki prefecture materials design diffractometer for J-PARC-Designing neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Harjo, Stefanus [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)]. E-mail: harjo.stefanus@jaea.go.jp; Kamiyama, Takashi [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Torii, Shuki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Ishigaki, Toru [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Yonemura, Masao [Institute of Applied Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2006-11-15

    Ibaraki prefecture materials design diffractometer of J-PARC needs a neutron guide to increase beam intensity without sacrificing measurements of powder diffraction with good resolution, PDF analysis and small angle scattering. Non-parallel guides including elliptical ones have been compared with a linear-straight guide using the McStas simulation. The elliptical guide having the exit focal points away behind the sample position is available to increase the neutron flux at the sample but gives a slight lowering of the instrumental resolution. This elliptical guide gives also Garland peaks at short wavelengths that may give large ambiguities in powder diffraction measurements. Therefore, the linear-straight guide is considered as the best choice for this instrument to keep a good resolution and also a relatively high flux.

  4. Curved Needles in CT-Guided Fine Needle Biopsies of Abdominal and Retroperitoneal Small Lesions.

    Science.gov (United States)

    De Filippo, Massimo; Saba, Luca; Rossi, Enrica; Nizzoli, Rita; Tiseo, Marcello; Pedrazzi, Giuseppe; Brunese, Luca; Rotondo, Antonio; Rossi, Cristina

    2015-12-01

    To demonstrate the advantages of using curved needles in fine needle aspiration (FNA) with CT-guided, for analyzing abdominal and/or retroperitoneal small lesions which are impossible to reach with conventional non-surgical biopsy techniques, particularly in cases in which the cytology sample was not possible to obtain by means of US or CT guide with axial images. An authorization for CT-guided FNA in patients with neoplasms is not required by the institutional review board of our Institute. From April 2012 to November 2014, the study included retrospectively 25 patients (16 M, 9 F) who underwent CT-guided FNA of abdominal and/or retroperitoneal small lesions (biopsy procedure because of the interposition of anatomical obstacles. Patients with suspected lymphomas or sarcomas, pediatric patients and patients with bleeding diathesis were excluded. Cytology reports were used for evaluating suitability. The biological material was considered to be suitable for cytological study, with a diagnostic value in all 25 cases, finding in particular: out of 23 neoplastic lesions (85%), 21 were malignant (90.2%) and 2 were benign (8%). 2 out 25 were non-neoplastic benign lesions (8%). No procedural complications arose in any of the cases (0%). Using curved needles, there is an effective improvement in CT-guided FNA of abdominal and retroperitoneal small lesions which are difficult to achieve with conventional CT or ultrasound guide.

  5. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    Science.gov (United States)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.

    1999-11-01

    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  6. Effect of crystal shape on neutron rocking curves of perfect single crystals designed for ultra-small-angle scattering experiments

    Science.gov (United States)

    Freund, A. K.; Rehm, C.

    2014-07-01

    The present study has been conducted in the framework of the channel-cut crystal design for the Kookaburra ultra-small-angle neutron scattering (USANS) instrument to be installed at the OPAL reactor of ANSTO. This facility is based on the classical Bonse-Hart method that uses two multiple-reflection crystal systems. The dynamical theory of diffraction by perfect crystals distinguishes two cases: the Darwin case applying to infinitely thick crystals and the Ewald solution for very small absorption taking into account the reflection from the rear face of a plane-parallel crystal reflecting in Bragg geometry. The former is preferable because it yields narrower rocking curves. To prevent the neutrons to "see" the rear face, grooves were machined into the backside of perfect Si test crystals for single reflection and filled with neutron absorbing material. These samples were examined at the S18 instrument of the Institut Laue-Langevin. Unexpectedly the crystals with empty slots showed an increase of the rocking curve width. When filling the slots with an absorber the widths decreased, but without reaching that of the Darwin curve. Understanding the results and achieving a successful crystal design call for the development of a theory that permits to describe neutron diffraction from crystals with a structured back face.

  7. 100 Hz neutron radiography at the BOA beamline using a parabolic focussing guide.

    Science.gov (United States)

    Trtik, Pavel; Morgano, Manuel; Bentz, Roman; Lehmann, Eberhard

    2016-01-01

    The recent developments in scientific complementary metal oxide semiconductor (sCMOS) detector technology allow for imaging of relevant processes with very high temporal resolution with practically negligible readout time. However, it is neutron intensity that limits the high temporal resolution neutron imaging. In order to partially overcome the neutron intensity problem for the high temporal resolution imaging, a parabolic neutron focussing guide was utilized in the test arrangement and placed upstream the detector in such a manner that the focal point of the guide was positioned slightly behind the scintillator screen. In such a test arrangement, the neutron flux can be increased locally by about one order of magnitude, albeit with the reduced spatial resolution due to the increased divergence of the neutron beam. In a pilot test application, an in-situ titration system allowing for a remote delivery of well-defined volumes of liquids onto the sample stage was utilized. The process of droplets of water (H2O) falling into the container filled with heavy water (D2O) and the subsequent process of the interaction and mixing of the two liquids were imaged with temporal resolution of 0.01 s. •Combination of neutron focussing device and use of sCMOS detector allows for very high temporal resolution neutron imaging to be achieved (albeit with reduced spatial resolution and field of view).•In-situ neutron imaging titration device for liquid interaction experiments.•Interaction of otherwise indiscernible liquids (H2O and D2O) visualized using neutron radiography with 0.01 s temporal resolution.

  8. Slow neutron beam control using multilayer supermirror and capillary guide at JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Soyama, Kazuhiko [Center for Neutron Science, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    1999-08-01

    Development of neutron optical devices at JRR-3M is reported. In order to reduce the interface roughness and enhance the reflectivity of supermirrors, ion polishing technique has been investigated for Ni/Ti multilayers. The optimum ion beam conditions of ion polishing time, ion energy and incident angle were determined, and the reflectivity of Ni/Ti has been successfully enhanced. For the application of supermirror, a natural nickel guide tube has been replaced with a supermirror guide tube at JRR-3M. It was evaluated using Monte-Carlo code that the total intensity at the end of a supermirror guide tube is 5.6 times that of the existing nickel guide tube. A silicate glass multi-capillary fiber fabricated and studied for the neutron transmission characteristics has been conducted. (author)

  9. Sparse SVD Method for High-Resolution Extraction of the Dispersion Curves of Ultrasonic Guided Waves.

    Science.gov (United States)

    Xu, Kailiang; Minonzio, Jean-Gabriel; Ta, Dean; Hu, Bo; Wang, Weiqi; Laugier, Pascal

    2016-10-01

    The 2-D Fourier transform analysis of multichannel signals is a straightforward method to extract the dispersion curves of guided modes. Basically, the time signals recorded at several positions along the waveguide are converted to the wavenumber-frequency space, so that the dispersion curves (i.e., the frequency-dependent wavenumbers) of the guided modes can be extracted by detecting peaks of energy trajectories. In order to improve the dispersion curve extraction of low-amplitude modes propagating in a cortical bone, a multiemitter and multireceiver transducer array has been developed together with an effective singular vector decomposition (SVD)-based signal processing method. However, in practice, the limited number of positions where these signals are recorded results in a much lower resolution in the wavenumber axis than in the frequency axis. This prevents a clear identification of overlapping dispersion curves. In this paper, a sparse SVD (S-SVD) method, which combines the signal-to-noise ratio improvement of the SVD-based approach with the high wavenumber resolution advantage of the sparse optimization, is presented to overcome the above-mentioned limitation. Different penalty constraints, i.e., l1 -norm, Frobenius norm, and revised Cauchy norm, are compared with the sparse characteristics. The regularization parameters are investigated with respect to the convergence property and wavenumber resolution. The proposed S-SVD method is investigated using synthetic wideband signals and experimental data obtained from a bone-mimicking phantom and from an ex-vivo human radius. The analysis of the results suggests that the S-SVD method has the potential to significantly enhance the wavenumber resolution and to improve the extraction of the dispersion curves.

  10. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B L; Robertson, J L; Iverson, E B; Selby, D L, E-mail: winnbl@ornl.gov

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 A to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  11. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Winn, B. L. [Brookhaven National Lab. (BNL), Upton, NY (United States). Neutron Scattering Group; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Robertson, J. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.; Selby, D. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Neutron Facilities Development Div.

    2009-05-03

    The High Flux Isotope Reactor resumed operation in June of 2007 with a super-critical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source at reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  12. Neutron Spectral Brightness of Cold Guide 4 at the High Flux Isotope Reactor

    Science.gov (United States)

    Winn, B. L.; Robertson, J. L.; Iverson, E. B.; Selby, D. L.

    2010-11-01

    The High Flux Isotope Reactor resumed operation in June of 2007 with a supercritical hydrogen cold source in horizontal beam tube 4. Cold guide 4 is a guide system designed to deliver neutrons from this source with a reasonable flux at wavelengths greater than 4 Å to several instruments, and includes a 15-m, 96-section, 4-channel bender. A time-of-flight spectrum with calibrated detector was recorded at port C of cold guide 4, and compared to McStas simulations, to generate a brightness spectrum.

  13. Dose-response curve for blood exposed to gamma-neutron mixed field by conventional cytogenetic method

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Jose Odinilson de C.; Souza, Priscilla L.G.; Santos, Joelan A.L.; Vilela, Eudice C.; Lima, Fabiana F., E-mail: jodinilson@cnen.gov.b, E-mail: fflima@cnen.gov.b, E-mail: jasantos@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Calixto, Merilane S.; Santos, Neide, E-mail: santos_neide@yahoo.com.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Genetica

    2009-07-01

    There is increasing concern about airline crew members (about one million worldwide) are exposed to measurable neutrons doses. Historically, cytogenetic biodosimetry assays have been based on quantifying asymmetrical chromosome alterations (dicentrics, centric rings and acentric fragments) in mytogen-stimulated T-lymphocytes in their first mitosis after radiation exposure. Increased levels of chromosome damage in peripheral blood lymphocytes are a sensitive indicator of radiation exposure and they are routinely exploited for assessing radiation absorbed dose after accidental or occupational exposure. Since radiological accidents are not common, not all nations feel that it is economically justified to maintain biodosimetry competence. However, dependable access to biological dosimetry capabilities is completely critical in event of an accident. In this paper the dose-response curve was measured for the induction of chromosomal alterations in peripheral blood lymphocytes after chronic exposure in vitro to neutron-gamma mixes field. Blood was obtained from one healthy donor and exposed to two neutron-gamma mixed field from sources {sup 241}AmBe (20 Ci) at the Neutron Calibration Laboratory (NCL-CRCN/NE-PE-Brazil). The evaluated absorbed doses were 0.2 Gy; 1.0 Gy and 2.5 Gy. The dicentric chromosomes were observed at metaphase, following colcemid accumulation and 1000 well-spread metaphase figures were analyzed for the presence of dicentrics by two experienced scorers after painted by giemsa 5%. Our preliminary results showed a linear dependence between radiations absorbed dose and dicentric chromosomes frequencies. Dose-response curve described in this paper will contribute to the construction of calibration curve that will be used in our laboratory for biological dosimetry. (author)

  14. Why neutron guides may end up breaking down? Some results on the macroscopic behaviour of alkali-borosilicate glass support plates under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boffy, R.; Kreuz, M. [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9 (France); Beaucour, J., E-mail: beaucour@ill.fr [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9 (France); Köster, U. [Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9 (France); Bermejo, F.J. [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas, Serrano 123, E-20886 Madrid (Spain)

    2015-09-01

    In this paper we report on a first part of a study on the mechanisms leading to brittle fracture in neutron guides made of glass as structural element. Such devices are widely used to deliver thermal and cold neutron beams to experimental lines in most large neutron research facilities. We present results on macroscopic properties of samples of guide glass substrates which are subjected to neutron irradiation at relatively large fluences. The results show a striking dependence of some of the macroscopic properties such as density, shape or surface curvature upon the specific chemical composition of a given glass. The relevance of the present findings for the installation of either replacement guides at the existing facilities or for the deployment of instruments for ongoing projects such as the European Spallation Source is briefly discussed.

  15. Dispersion curve veering of longitudinal guided waves propagating inside prestressed seven-wire strands

    Science.gov (United States)

    Treyssède, Fabien

    2016-04-01

    Elastic guided waves are of interest for the non-destructive evaluation of cables. Such structures are usually helical, multiwired and highly prestressed, which greatly complicates the understanding of wave propagation from a theoretical point of view. A remarkable feature is the occurrence of a missing frequency band in experimental time-frequency diagrams, sometimes referred to as notch frequency in the literature. The central frequency of this band increases under tensile loads. Recently, a numerical model has been proposed to compute the dispersion curves of prestressed helical seven-wire waveguides. Results have shown that the notch frequency indeed corresponds to a curve veering phenomenon between two longitudinal-like modes and that the increase of the notch under tensile loads is mainly due to interwire contact mechanisms. The main goal of this paper is to highlight the origin of this curve veering phenomenon, which is still unexplained up to the author's knowledge. This paper also provides further results which allow us to clarify the accuracy of numerical solutions as well as the influence of contact assumptions. First, the static part of the model, necessary to compute the prestress state including contact effects, is checked from reference analytical solutions. Owing to the importance of contact, the accuracy of results is discussed both in statics and in dynamics. The influence of slip contact conditions is outlined. Then, some numerical tests are conducted by varying the Poisson coefficient and the helix lay angle. These tests allows us to find out that the radial displacement constraint imposed on peripheral wires by the central one in the contact regions constitutes the main source of curve veering. More precisely, it is shown that a similar curve veering does occur for an uncoupled single peripheral wire when constrained by a radially blocked motion localized in its contact zone. Indeed, such a localized boundary condition completely breaks the

  16. Full 3D dispersion curve solutions for guided waves in generally anisotropic media

    Science.gov (United States)

    Hernando Quintanilla, F.; Lowe, M. J. S.; Craster, R. V.

    2016-02-01

    Dispersion curves of guided waves provide valuable information about the physical and elastic properties of waves propagating within a given waveguide structure. Algorithms to accurately compute these curves are an essential tool for engineers working in non-destructive evaluation and for scientists studying wave phenomena. Dispersion curves are typically computed for low or zero attenuation and presented in two or three dimensional plots. The former do not always provide a clear and complete picture of the dispersion loci and the latter are very difficult to obtain when high values of attenuation are involved and arbitrary anisotropy is considered in single or multi-layered systems. As a consequence, drawing correct and reliable conclusions is a challenging task in the modern applications that often utilize multi-layered anisotropic viscoelastic materials. These challenges are overcome here by using a spectral collocation method (SCM) to robustly find dispersion curves in the most complicated cases of high attenuation and arbitrary anisotropy. Solutions are then plotted in three-dimensional frequency-complex wavenumber space, thus gaining much deeper insight into the nature of these problems. The cases studied range from classical examples, which validate this approach, to new ones involving materials up to the most general triclinic class for both flat and cylindrical geometry in multi-layered systems. The apparent crossing of modes within the same symmetry family in viscoelastic media is also explained and clarified by the results. Finally, the consequences of the centre of symmetry, present in every crystal class, on the solutions are discussed.

  17. Curves and tables of neutron cross sections of fission product nuclei in JENDL-3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo [ed.

    1992-06-15

    Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.

  18. Curves and tables of neutron cross sections in JENDL-3.3

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tsuneo; Shibata, Keiichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kawasaki, Hiromitsu [CRC Solutions Corp., Tokyo (Japan)

    2002-11-01

    Neutron cross sections of 337 nuclides in JENDL-3.3 are presented in figures and tables. In the tables, shown are cross sections at 0.0253 eV and 14 MeV, Maxwellian average cross sections (kT = 0.0253 eV), resonance integrals and fission spectrum average cross sections. The average cross sections calculated with typical reactor spectra are also tabulated. The numbers of delayed and total neutrons per fission are given in figures. (author)

  19. Mutations induced in Tradescantia by small doses of X-rays and neutrons - Analysis of dose-response curves.

    Science.gov (United States)

    Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.

    1972-01-01

    Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.

  20. Structural Integrity Evaluation of Cold Neutron Laboratory Building by Design Change of Guide Shielding Room

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Sangik; Kim, Youngki; Kim, Harkrho

    2007-06-15

    This report summarizes the results of the structural integrity evaluation for the cold neutron laboratory building by design change of guide shielding room. The design of the guide shielding room was changed by making its structure members in normal concrete (2.3 g/cc) instead of heavy concrete (3.5 g/cc) because the heavy concrete could be not supplied to meet its design specification. Therefore, it was decided that the guide shielding room is made of the normal concrete. And, the shielding performance of the normal concrete was recalculated to confirm satisfying its design specification, which is of a 9000 zone according to HANARO radiation region classification. The change makes the shielding wall thicker than existing design, and then it is caused to qualify the structural integrity evaluation of the CNLB. Finally, the structural integrity of the CNLB was re-evaluated by considering the design change of the guide shielding room.

  1. A large, high performance, curved 2D position-sensitive neutron detector

    CERN Document Server

    Fried, J W; Mahler, G J; Makowiecki, D S; Mead, J A; Radeka, V; Schaknowski, N A; Smith, G C; Yu, B

    2002-01-01

    A new position-sensitive neutron detector has been designed and constructed for a protein crystallography station at LANL's pulsed neutron source. This station will be one of the most advanced instruments at a major neutron user facility for protein crystallography, fiber and membrane diffraction. The detector, based on neutron absorption in sup 3 He, has a large sensitive area of 3000 cm sup 2 , angular coverage of 120 deg. , timing resolution of 1 mu s, rate capability in excess of 10 sup 6 s sup - sup 1 , position resolution of about 1.5 mm FWHM, and efficiency >50% for neutrons of interest in the range 1-10 A. Features that are key to these remarkable specifications are the utilization of eight independently operating segments within a single gas volume, fabrication of the detector vessel and internal segments with a radius of curvature of about 70 cm, optimized position readout based on charge division and signal shaping with gated baseline restoration, and engineering design with high-strength aluminum ...

  2. Prompt gamma-ray analysis using cold and thermal guided neutron beams at JAERI.

    Science.gov (United States)

    Yonezawa, C

    1999-01-01

    A highly sensitive neutron-induced prompt gamma-ray analysis (PGA) system, usable at both cold and thermal neutron beam guides of JRR-3M, has been constructed. The system was designed to achieve the lowest gamma-ray background by using lithium fluoride tiles as neutron shielding, by placing the samples in a He atmosphere and by using a Ge-bismuth germanate detector system for Compton suppression. The gamma-ray spectrometer can acquire three modes of spectra simultaneously: single, Compton suppression, and pair modes. Because of the low-energy guided neutron beams and the low-background system, analytical sensitivities and detection limits better than those in usual PGA systems have been achieved. Boron and multielemental determination by a comparative standardization have been investigated, and accuracy, precision, and detection limits for the elements in various materials were evaluated. The system has been applied to the determination of B and multielements in samples of various fields such as medical, environmental, and geological sciences.

  3. Learning curve of 3D fluoroscopy image-guided pedicle screw placement in the thoracolumbar spine.

    Science.gov (United States)

    Ryang, Yu-Mi; Villard, Jimmy; Obermüller, Thomas; Friedrich, Benjamin; Wolf, Petra; Gempt, Jens; Ringel, Florian; Meyer, Bernhard

    2015-03-01

    During the past decade, a disproportionate increase of spinal fusion procedures has been observed. Along with this trend, image-guided spine surgery has been experiencing a renaissance in the recent years. A wide range of different navigation systems are available on the market today. However, only few published studies assess the learning curves concerning these new spinal navigation techniques. So far, a study on the learning curve for intraoperative three-dimensional fluoroscopy (3DFL)-navigated pedicle screw (PS) placement is still lacking. The purpose of the study was to analyze the learning curve for 3DFL-navigated thoracolumbar PS placement. The study design included a prospective case series. A cohort of 145 patients were recruited from January 2011 to June 2012. The outcome measures were duration of intraoperative 3D scans, PS placement, PS accuracy on postoperative computed tomography (CT) scans, and PS-related revisions and complications. From the introduction of spinal navigation to our department in January 2011 until June 2012, the learning curve for the duration of intraoperative 3D scan acquisition (navigation or control scan) and placement time per screw, intraoperative screw revisions, screw-related complications, revision surgeries, and PS accuracy on postoperative CT scans were assessed in 145 patients undergoing dorsal navigated instrumentation for 928 PS (736 lumbosacral and 192 thoracic). The observed time span was divided into four intervals. Results of the second, third, and last periods were compared with the first (reference) period, respectively. The mean navigation 3D scan time decreased (first and fourth periods) from 15.4±7.8 (range, 4-40) to 8.4±3.3 (3-15) minutes (plearning effect was found with respect to intraoperative screw revisions. There was one revision surgery. We could demonstrate significant learning effects for 3DFL-navigated PS placement with regard to intraoperative 3D scan acquisition, PS placement time, and PS

  4. Curved finite elements and acceleration for the neutron transport; Elements finis courbes et acceleration pour le transport de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Moller, J.Y.

    2012-01-10

    To model the nuclear reactors, the stationary linear Boltzmann equation is solved. After discretizing the energy and the angular variables, the hyperbolic equation is numerically solved with the discontinuous finite element method. The MINARET code uses this method on a triangular unstructured mesh in order to deal with complex geometries (like containing arcs of circle). However, the meshes with straight edges only approximate such geometries. With curved edges, the mesh fits exactly to the geometry, and in some cases, the number of triangles decreases. The main task of this work is the study of finite elements on curved triangles with one or several curved edges. The choice of the basis functions is one of the main points for this kind of finite elements. We obtained a convergence result under the assumption that the curved triangles are not too deformed in comparison with the associated straight triangles. Furthermore, a code has been written to treat triangles with one, two or three curved edges. Another part of this work deals with the acceleration of transport calculations. Indeed, the problem is solved iteratively, and, in some cases, can converge really slowly. A DSA (Diffusion Synthetic Acceleration) method has been implemented using a technique from interior penalty methods. A Fourier analysis in 1D and 2D allows to estimate the acceleration for infinite periodical media, and to check the stability of the numerical scheme when strong heterogeneities exist. (author) [French] La modelisation des reacteurs nucleaires repose sur la resolution de l'equation de Boltzmann lineaire. Nous nous sommes interesses a la resolution spatiale de la forme stationnaire de cette equation. Apres discretisation en energie et en angle, l'equation hyperbolique est resolue numeriquement par la methode des elements finis discontinus. Le solveur MINARET utilise cette methode sur un maillage triangulaire non structure afin de pouvoir traiter des geometries complexes

  5. From curve fitting to machine learning an illustrative guide to scientific data analysis and computational intelligence

    CERN Document Server

    Zielesny, Achim

    2016-01-01

    This successful book provides in its second edition an interactive and illustrative guide from two-dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics. The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence. All topics are completely demonstrated with the computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with M...

  6. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  7. A method for the measurement of dispersion curves of circumferential guided waves radiating from curved shells: experimental validation and application to a femoral neck mimicking phantom.

    Science.gov (United States)

    Nauleau, Pierre; Minonzio, Jean-Gabriel; Chekroun, Mathieu; Cassereau, Didier; Laugier, Pascal; Prada, Claire; Grimal, Quentin

    2016-07-07

    Our long-term goal is to develop an ultrasonic method to characterize the thickness, stiffness and porosity of the cortical shell of the femoral neck, which could enhance hip fracture risk prediction. To this purpose, we proposed to adapt a technique based on the measurement of guided waves. We previously evidenced the feasibility of measuring circumferential guided waves in a bone-mimicking phantom of a circular cross-section of even thickness. The goal of this study is to investigate the impact of the complex geometry of the femoral neck on the measurement of guided waves. Two phantoms of an elliptical cross-section and one phantom of a realistic cross-section were investigated. A 128-element array was used to record the inter-element response matrix of these waveguides. This experiment was simulated using a custom-made hybrid code. The response matrices were analyzed using a technique based on the physics of wave propagation. This method yields portions of dispersion curves of the waveguides which were compared to reference dispersion curves. For the elliptical phantoms, three portions of dispersion curves were determined with a good agreement between experiment, simulation and theory. The method was thus validated. The characteristic dimensions of the shell were found to influence the identification of the circumferential wave signals. The method was then applied to the signals backscattered by the superior half of constant thickness of the realistic phantom. A cut-off frequency and some portions of modes were measured, with a good agreement with the theoretical curves of a plate waveguide. We also observed that the method cannot be applied directly to the signals backscattered by the lower half of varying thicknesses of the phantom. The proposed approach could then be considered to evaluate the properties of the superior part of the femoral neck, which is known to be a clinically relevant site.

  8. Curved crystal study of de-excitation gamma rays in /sup 184/W following neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, W.F.; Reich, C.W.; Greenwood, R.C.; Koch, C.W.

    1981-01-01

    The capture ..gamma..-ray spectrum was studied using the curved-crystal ..gamma..-ray spectrometers installed at the High Flux Reactor of the ILL in Grenoble. Approximately 150 ..gamma..-ray transitions, from approx. 85 keV to 2.33 Mev, were assigned to /sup 184/W. A partial level scheme of /sup 184/W, showing the first four excited positive-parity bands and their de-exciting ..gamma..-ray transitions as observed in this study, is shown. (WHK)

  9. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    Energy Technology Data Exchange (ETDEWEB)

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969. As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: that is machine-readable (for checking and indicating possible errors); that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  10. An optional focusing SELENE extension to conventional neutron guides: A case study for the ESS instrument BIFROST

    Science.gov (United States)

    Hansen, U. B.; Bertelsen, M.; Stahn, J.; Lefmann, K.

    2017-04-01

    The high brilliance at the European Spallation Source (ESS) will allow for performing experiments with much smaller samples than at present neutron facilities and in much more complex sample environments. However the higher flux also results in higher background from unwanted neutrons not originating from scattering of the sample. We here present a new design idea for beam delivery, where a 165 m ballistic guide system with good transport properties is followed by a 4-8 m SELENE guide system similar to Montel optics used for X-ray optics. We have investigated the system by detailed Monte-Carlo simulations using McStas. We show that under certain conditions, this set-up works surprisingly well, with a brilliance transfer of 20-60% for neutrons of wavelength 4 Å and above. We demonstrate that the guide system is able to focus the beam almost perfectly onto samples sizes in the range of 0.1-2 mm. We furthermore show that our SELENE system is insensitive to gravity and to realistic values of guide waviness. We argue that this guide system can be useful as an optional guide insert when small samples are used in the vicinity of bulky sample environment, e.g. for high-field or high-pressure experiments.

  11. EXFOR BASICS A SHORT GUIDE TO THE NEUTRON REACTION DATA EXCHANGE FORMAT.

    Energy Technology Data Exchange (ETDEWEB)

    MCLANE,V.; NUCLEAR DATA CENTER NETWORK

    2000-05-19

    This manual is intended as a guide to users of nuclear reaction data compiled in the EXFOR format, and is not intended as a complete guide to the EXFOR System. EXFOR is the exchange format designed to allow transmission of nuclear reaction data between the Nuclear Reaction Data Centers. In addition to storing the data and its' bibliographic information, experimental information is also compiled. The status (e.g., the source of the data) and history (e.g., date of last update) of the data set is also included. EXFOR is designed for flexibility in order to meet the diverse needs of the nuclear reaction data centers. It was originally conceived for the exchange of neutron data and was developed through discussions among personnel from centers situated in Saclay, Vienna, Livermore and Brookhaven. It was accepted as the official exchange format of the neutron data centers at Saclay, Vienna, Brookhaven and Obninsk, at a meeting held in November 1969.3 As a result of two meetings held in 1975 and 1976 and attended by several charged-particle data centers, the format was further developed and adapted to cover all nuclear reaction data. The exchange format should not be confused with a center-to-user format. Although users may obtain data from the centers in the EXFOR format, other center-to-user formats have been developed to meet the needs of the users within each center's own sphere of responsibility. The EXFOR format, as outlined, allows a large variety of numerical data tables with explanatory and bibliographic information to be transmitted in a format: l that is machine-readable (for checking and indicating possible errors); l that can be read by personnel (for passing judgment on and correcting errors). The data presently included in the EXFOR exchange file include: a complete compilation of experimental neutron-induced reaction data, a selected compilation of charged-particle-induced reaction data, a selected compilation of photon-induced reaction data.

  12. Visualization of Guided Wave Propagation with Laser Doppler Vibrometer Scanning on Curved Surfaces

    Science.gov (United States)

    Hayashi, T.; Kojika, Y.; Kataoka, K.; Takikawa, M.

    2008-02-01

    In guided wave inspection for pipes, defect characterization is performed by echoes from defects. However, since detected signals become very complex due to mode conversion and multiple reflections, wave mechanics in a pipe with defects are not well studied. In this study, therefore, visualization technique for guided waves in a pipe is developed. In order to visualize guided wave propagation in a pipe, we need to scan an ultrasonic probe and measure ultrasonic waves at many points on a surface of a pipe. Position and posture of a laser doppler vibrometer are controlled by a robot arm, and ultrasonic vibration is detected at arbitrary points from arbitrary laser beam direction. Using the laser scanning technique, reflected guided waves from a shallow round defect was observed in the visualization results. From the defect, reflected waves propagated spirally in the oblique direction. From the view point of guided wave, the spiral waves were very high order modes that have not been measured in guided wave inspection. This result shows that such high order guided wave modes should be useful for defect characterization as well as low order modes.

  13. Functionalization and cellular uptake of boron carbide nanoparticles. The first step toward T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Björkdahl, O; Sørensen, P G; Hansen, T; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-01-01

    In this paper we present surface modification strategies of boron carbide nanoparticles, which allow for bioconjugation of the transacting transcriptional activator (TAT) peptide and fluorescent dyes. Coated nanoparticles can be translocated into murine EL4 thymoma cells and B16 F10 malignant melanoma cells in amounts as high as 0.3 wt. % and 1 wt. %, respectively. Neutron irradiation of a test system consisting of untreated B16 cells mixed with B16 cells loaded with boron carbide nanoparticles were found to inhibit the proliferative capacity of untreated cells, showing that cells loaded with boron-containing nanoparticles can hinder the growth of neighboring cells upon neutron irradiation. This could provide the first step toward a T cell-guided boron neutron capture therapy.

  14. Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces

    NARCIS (Netherlands)

    Abayazid, M.; Lopes da Frota Moreira, P.; Shahriari, N.; Patil, S.; Alterovitz, Ron; Misra, S.

    2015-01-01

    In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is perfo

  15. Learning curves for ultrasound guided lung biopsy in the hands of respiratory physicians

    DEFF Research Database (Denmark)

    Laursen, Christian; Naur, Therese Maria Henriette; Bodtger, Uffe

    2016-01-01

    a registered US-TTNB procedure at any of the three centers. The US-TTNB was defined as being successful if the result was diagnostic and otherwise as being unsuccessful. Histology or cytology results and clinical follow-up were used as a reference tests. The learning curves for physicians having performed...

  16. Monte-Carlo Simulation on Neutron Instruments at CARR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The design of high resolution neutron powder diffractometer(HRPD) and two cold neutron guides(CNGs) to be built at China advanced research reactor(CARR) are studied by Monte-Carlo simulation technique.The HRPD instrument is desiged to have a minimum resolution of 0.2% and neutron fluence rate of greater than 106 cm-2 ·s-1 at sample position. The resolution curves, neutron fluence rate and effective neutron beam size at sample position are given. Differences in resolutions and intensity between the

  17. Initial in-reactor performance of the Cornell cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Spern, S.A.; Clark, D.D.; Atwood, A.G. [Cornell Univ., Ithaca, NY (United States)

    1996-12-31

    The Cornell Cold Neutron Beam Facility consists of two major subsystems, a cold neutron source (CNS) and a 13-m-long curved neutron guide. This paper describes the initial in-reactor performance tests of the CNS. The results agree closely with predictions from out-of-reactor tests and meet the design criteria for safety and simplicity of operation. This phase of the project has therefore been completed. Three meters of neutron guide were in place during these tests, and a preliminary evaluation of neutronic properties is also presented.

  18. How much cooler would it be with some more neutrons? Exploring the asymmetry dependence of the nuclear caloric curve and the liquid-gas phase transition

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, A.B.; Mabiala, J.; Hagel, K. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Bonasera, A. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cammarata, P.; Heilborn, L.; May, L.W.; Raphelt, A.; Wuenschel, S.; Zarrella, A.; Yennello, S.J. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Texas A and M University, Chemistry Department, College Station, Texas (United States); Kohley, Z. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Texas A and M University, Chemistry Department, College Station, Texas (United States); Michigan State University, National Superconducting Cyclotron Laboratory and Department of Chemistry, East Lansing, Michigan (United States); Marini, P. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); GANIL, Bd Henri Becquerel, BP 55027-14076, CAEN Cedex 05 (France); Souliotis, G.A. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); National and Kapodistrian University of Athens, Laboratory of Physical Chemistry, Department of Chemistry, Athens (Greece); Zheng, H. [Texas A and M University, Cyclotron Institute, College Station, Texas (United States); Texas A and M University, Physics Department, College Station, Texas (United States)

    2014-02-15

    Despite the long-standing interest in the symmetry energy by the nuclear physics community, much work remains to characterize the equation of state away from the valley of stability and normal density. Although the correlations between the thermodynamic properties (temperature, density, pressure) has been explored, the dependence of these correlations on the neutron-proton asymmetry has only recently been probed experimentally. In this work, we provide evidence for the asymmetry dependence of the nuclear caloric curve using multiple independent probes. Correlations between the temperature, density and pressure when normalized to their critical values exhibit scaling, allowing extraction of the critical point. The location of the critical point shows a dependence on the neutron-proton asymmetry. (orig.)

  19. Curves and surfaces for computer-aided geometric design a practical guide

    CERN Document Server

    Farin, Gerald

    1992-01-01

    A leading expert in CAGD, Gerald Farin covers the representation, manipulation, and evaluation of geometric shapes in this the Third Edition of Curves and Surfaces for Computer Aided Geometric Design. The book offers an introduction to the field that emphasizes Bernstein-Bezier methods and presents subjects in an informal, readable style, making this an ideal text for an introductory course at the advanced undergraduate or graduate level.The Third Edition includes a new chapter on Topology, offers new exercises and sections within most chapters, combines the material on Geometric Continuity i

  20. Hydraulic conductivity obtained by instantaneous profile method using retention curve and neutron probes and Genuchten model; Condutividade hidraulica obtida pelo metodo do perfil instantaneo utilizando curva de retencao e sonda de neutrons e pelo modelo de Genuchten

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, Ana Lucia Olmedo

    1999-07-01

    The hydraulic conductivity is one of the most important parameters to understand the movement of water in the unsaturated zone. Reliable estimations are difficult to obtain, once the hydraulic conductivity is highly variable. This study was carried out at 'Escola Superior de Agricultura Luiz de Queiroz', Universidade de Sao Paulo, in a Kandiudalfic Eutrudox soil. The hydraulic conductivity was determined by a direct and an indirect method. The instantaneous profile method was described and the hydraulic conductivity as a function of soil water content was determined by solving the Richards equation. Tensiometers were used to estimate the total soil water potential, and the neutron probe and the soil retention curve were used to estimate soil water content in the direct method. The neutron probe showed to be not adequately sensible to the changes of soil water content in this soil. Despite of the soil retention curve provides best correlation values to soil water content as a function of water redistribution time, the soil water content in this soil did not vary too much till the depth of 50 cm, reflecting the influence of the presence of a Bt horizon. The soil retention curve was well fitted by the van Genuchten model used as an indirect method. The values of the van Genuchten and the experimental relative hydraulic conductivity obtained by the instantaneous profile method provided a good correlation. However, the values estimated by the model were always lower than that ones obtained experimentally. (author)

  1. Potential distribution and transmission characteristics in a curved quadrupole ion guide.

    Science.gov (United States)

    Zhou, Xiaoyu; Xiong, Caiqiao; Xu, Gaoping; Liu, Hao; Tang, Yin; Zhu, Zhiqiang; Chen, Rui; Qiao, Haoxue; Tseng, Yao-Hsin; Peng, Wen-Ping; Nie, Zongxiu; Chen, Yi

    2011-02-01

    The potential distribution in the curved quadrupole is exactly characterized by the Laplace equation, and an approximate solution to the Laplace equation is calculated. We represent the Laplace equation under the coordinates named minimal rotation frame (MRF) and derive an expression on the hexapole and octopole superposition. Our conclusion is in agreement with the results by the numerical (SIMION) method. Based on the Poincare-Lighthill-Kuo (PLK) method reported in our previous work, the nonlinear effects of ion motion are investigated in detail. The frequency shift of ion motion can be well eliminated by coupling the hexapole component with a positive octopole component, and the transmission efficiency of ions is found to decrease dramatically with the increase of the ionic kinetic energy in the z-direction. Furthermore, the transmission characteristics of ions are discussed with regards to the phase-space theory. The results show that the centrifugally introduced axis shift is mainly responsible for the ion losses. A modified direct current (dc) voltage supply pattern is hence proposed to compensate for this effect.

  2. Use of the cumulative sum method (CUSUM) to assess the learning curves of ultrasound-guided continuous femoral nerve block.

    Science.gov (United States)

    Kollmann-Camaiora, A; Brogly, N; Alsina, E; Gilsanz, F

    2017-10-01

    Although ultrasound is a basic competence for anaesthesia residents (AR) there is few data available on the learning process. This prospective observational study aims to assess the learning process of ultrasound-guided continuous femoral nerve block and to determine the number of procedures that a resident would need to perform in order to reach proficiency using the cumulative sum (CUSUM) method. We recruited 19 AR without previous experience. Learning curves were constructed using the CUSUM method for ultrasound-guided continuous femoral nerve block considering 2 success criteria: a decrease of pain score>2 in a [0-10] scale after 15minutes, and time required to perform it. We analyse data from 17 AR for a total of 237 ultrasound-guided continuous femoral nerve blocks. 8/17 AR became proficient for pain relief, however all the AR who did more than 12 blocks (8/8) became proficient. As for time of performance 5/17 of AR achieved the objective of 12minutes, however all the AR who did more than 20 blocks (4/4) achieved it. The number of procedures needed to achieve proficiency seems to be 12, however it takes more procedures to reduce performance time. The CUSUM methodology could be useful in training programs to allow early interventions in case of repeated failures, and develop competence-based curriculum. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. X-ray counterpart of gravitational waves due to binary neutron star mergers: light curves, luminosity functions, and event rate densities

    CERN Document Server

    Sun, Hui; Gao, He

    2016-01-01

    Zhang (2013) proposed a type of GRB-less X-ray transient associated with double neutron star (NS-NS) mergers under the conjecture of a rapidly-spinning magnetar merger product with the line of sight off the short GRB beam. We investigate possible light curves of these transients by considering different observer's viewing angles, including looking into a free zone where the emission due to direct dissipation of the magnetar wind is observable, and a trapped zone where X-rays are initially trapped by the ejecta launched during the merger, but later become transparent when the ejecta become optically thin. We perform Monte Carlo simulations to calculate the peak luminosity function (LF) and event rate density of these X-ray transients. By considering that a fraction of massive neutron stars may be supra-massive and collapse into black holes after a certain time, we investigate how the predicted luminosity functions depend on the equation of state (EoS) of the central object. In general, the luminosity functions...

  4. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES.

    Science.gov (United States)

    Wuttke, Joachim; Zamponi, Michaela

    2013-11-01

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  5. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  6. Determination of the survival curve of the cell irradiated with low dose rate neutrons; Determinacao da curva de sobrevivencia de celulas irradiadas com neutrons a baixa taxa de dose

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Bruno M.; Freitas, Marcelo H.A. de; Campos, Tarcisio P.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Silva, Luciana M.; Dias, Consuelo L.F. [Fundacao Ezequiel Dias, Belo Horizonte, MG (Brazil). Dept. de Pesquisa. Lab. de Bioquimica

    2000-07-01

    The effect of the radiation in tissue and cells are a theme of extreme importance and that is receiving large attention more and more now. This work purposes to evaluate the deleterious effects of the neutrons radiation at low dose rate in lineages of human cancerous cells through the analysis of survival curves. Deleterious effects due to radiation of low dose rate (3.8 mSv/hr) were observed in cells of the lineage HeLa S3. Previous studies, in lineage HN5 of tongue carcinoma, showed survive level to 0.2Sv of 80%, compatible to the value of 88,57% 0.4 Sv obtained for HeLa S3. In a close future, with the molecular biology characterization of a great number or possibly all cancer types (that will be accelerated largely with the conclusion of the human genome project), studies like this, can be much more specific, and could determine the efficiency of the neutrons or any other radiation type for each one of those types. Those data would have of great value for the medicine and they would help to plan the treatments better. (author)

  7. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.;

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...

  8. Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Y; Imai, M [Department of Physics, Ochanomizu University, Bunkyo, Tokyo 112-8610 (Japan); Urakami, N [Department of Physics and Information Sciences, Yamaguchi University, Yamaguchi 753-8512 (Japan); Taniguchi, T, E-mail: imai@phys.ocha.ac.jp [Department of Chemical Engineering, Kyoto University, Kyoto 606-8510 (Japan)

    2011-07-20

    We have investigated the lipid sorting in a binary small unilamellar vesicle (SUV) composed of cone-shaped (1,2-dihexanoyl-sn-glycero-3-phosphocholine: DHPC) and cylinder-shaped (1,2-dipalmitoyl-sn-glycero-3-phosphocholine: DPPC) lipids. In order to reveal the lipid sorting we adopted a contrast matching technique of small angle neutron scattering (SANS), which extracts the distribution of deuterated lipids in the bilayer quantitatively without steric modification of lipids as in fluorescence probe techniques. First the SANS profile of protonated SUVs at a film contrast condition showed that SUVs have a spherical shape with an inner radius of 190 A and a bilayer thickness of 40 A. The SANS profile of deuterated SUVs at a contrast matching condition showed a characteristic scattering profile, indicating an asymmetric distribution of cone-shaped lipids in the bilayer. The characteristic profile was described well by a spherical bilayer model. The fitting revealed that most DHPC molecules are localized in the outer leaflet. Thus the shape of the lipid is strongly coupled with the membrane curvature. We compared the obtained asymmetric distribution of the cone-shaped lipids in the bilayer with the theoretical prediction based on the curvature energy model.

  9. Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique

    Science.gov (United States)

    Sakuma, Y.; Urakami, N.; Taniguchi, T.; Imai, M.

    2011-07-01

    We have investigated the lipid sorting in a binary small unilamellar vesicle (SUV) composed of cone-shaped (1,2-dihexanoyl-sn-glycero-3-phosphocholine: DHPC) and cylinder-shaped (1,2-dipalmitoyl-sn-glycero-3-phosphocholine: DPPC) lipids. In order to reveal the lipid sorting we adopted a contrast matching technique of small angle neutron scattering (SANS), which extracts the distribution of deuterated lipids in the bilayer quantitatively without steric modification of lipids as in fluorescence probe techniques. First the SANS profile of protonated SUVs at a film contrast condition showed that SUVs have a spherical shape with an inner radius of 190 Å and a bilayer thickness of 40 Å. The SANS profile of deuterated SUVs at a contrast matching condition showed a characteristic scattering profile, indicating an asymmetric distribution of cone-shaped lipids in the bilayer. The characteristic profile was described well by a spherical bilayer model. The fitting revealed that most DHPC molecules are localized in the outer leaflet. Thus the shape of the lipid is strongly coupled with the membrane curvature. We compared the obtained asymmetric distribution of the cone-shaped lipids in the bilayer with the theoretical prediction based on the curvature energy model.

  10. Feasibility Study of Neutron Dose for Real Time Image Guided Proton Therapy: A Monte Carlo Study

    CERN Document Server

    Kim, Jin Sung; Kim, Daehyun; Shin, EunHyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-01-01

    Two full rotating gantry with different nozzles (Multipurpose nozzle with MLC, Scanning Dedicated nozzle) with conventional cyclotron system is installed and under commissioning for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to investigate neutron dose equivalent per therapeutic dose, H/D, to x-ray imaging equipment under various treatment conditions with monte carlo simulation. At first, we investigated H/D with the various modifications of the beam line devices (Scattering, Scanning, Multi-leaf collimator, Aperture, Compensator) at isocenter, 20, 40, 60 cm distance from isocenter and compared with other research groups. Next, we investigated the neutron dose at x-ray equipments used for real time imaging with various treatment conditions. Our investigation showed the 0.07 ~ 0.19 mSv/Gy at x-ray imaging equipments according to various treatment options and intestingly 50% neutron dose reduction effect of flat panel detector was observed due to multi- lea...

  11. SUPERNOVA NEUTRINO LIGHT CURVES AND SPECTRA FOR VARIOUS PROGENITOR STARS: FROM CORE COLLAPSE TO PROTO-NEUTRON STAR COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Nakazato, Ken' ichiro; Suzuki, Hideyuki [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan); Sumiyoshi, Kohsuke [Numazu Collage of Technology, 3600 Ooka, Numazu, Shizuoka 410-8501 (Japan); Totani, Tomonori [Department of Astronomy, Kyoto University, Kita-shirakawa Oiwake-cho, Sakyo, Kyoto 606-8502 (Japan); Umeda, Hideyuki [Department of Astronomy, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Yamada, Shoichi, E-mail: nakazato@rs.tus.ac.jp [Department of Physics, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2013-03-01

    We present a new series of supernova neutrino light curves and spectra calculated by numerical simulations for a variety of progenitor stellar masses (13-50 M {sub Sun }) and metallicities (Z = 0.02 and 0.004), which would be useful for a broad range of supernova neutrino studies, e.g., simulations of future neutrino burst detection by underground detectors or theoretical predictions for the relic supernova neutrino background. To follow the evolution from the onset of collapse to 20 s after the core bounce, we combine the results of neutrino-radiation hydrodynamic simulations for the early phase and quasi-static evolutionary calculations of neutrino diffusion for the late phase, with different values of shock revival time as a parameter that should depend on the still unknown explosion mechanism. We describe the calculation methods and basic results, including the dependence on progenitor models and the shock revival time. The neutrino data are publicly available electronically.

  12. Non-periodic multi-slit masking for a single counter rotating 2-disc chopper and channeling guides for high resolution and high intensity neutron TOF spectroscopy

    Science.gov (United States)

    Bartkowiak, M.; Hofmann, T.; Stüßer, N.

    2017-02-01

    Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.

  13. Attenuation curves in concrete of neutrons from 100 to 400 MeV per nucleon He, C, Ne, Ar, Fe and Xe ions on various targets

    Science.gov (United States)

    Agosteo, S.; Nakamura, T.; Silari, M.; Zajacova, Z.

    2004-04-01

    Data on transmission of neutrons in concrete generated by heavy ions of intermediate energies (of typically up to 1 GeV per nucleon) are of interest for shielding design of accelerators for use in both the research and in the medical field. The energy distributions of neutrons produced by ions of different species (from He to Xe) striking various targets at energies from 100 to 800 MeV per nucleon were recently measured by Kurosawa et al. in the angular range 0-90°. These spectra were used as input data for Monte Carlo simulations to determine source terms and attenuation lengths in ordinary concrete. The present paper presents calculations for 100 MeV/u helium ions on a Cu target, 100 MeV/u carbon ions on C, Al, Cu and Pb, 100 MeV/u neon ions on Cu and Pb, 400 MeV/u carbon ions on C, Al, Cu and Pb, 400 MeV/u neon ions on Cu, 400 MeV/u Ar ions on Cu, 400 MeV/u Fe ions on Cu and 400 MeV/u Xe ions on Cu. The results include the contributions of all secondaries. Some of the resulting attenuation curves are best fitted by a double-exponential function rather than the usual single-exponential. The effect of various approximations introduced in the simulations is discussed. A comparison is made with shielding data for protons scaled with the ion mass number. A comparison is also made with a simple analytical model in use at GANIL.

  14. User's guide for revised SPEC-4 neutron spectrum unfolding code

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.O.; Ingersoll, D.T.

    1980-08-01

    The SPEC-4 computer code was developed in the United Kingdom to solve the spectrum unfolding problem for spherical gas-filled proton-recoil neutron spectrometers. This report describes the ORNL version of SPEC-4 which has been applied to the analysis of data from the Tower Shielding Facility. Recent modifications are described which largely pertain to the graphical output routines. In addition, the input requirements are presented in considerable detail including suggestions and recommendations based on actual operating experience. Finally, auxiliary programs are discussed which can aid the SPEC-4 user.

  15. Shielding Calculation of Neutron Guide Tube in Scatter Hall%散射大厅内中子导管屏蔽计算

    Institute of Scientific and Technical Information of China (English)

    孙勇; 霍合勇; 曹超

    2013-01-01

    中子导管将冷中子束从冷源引出至散射大厅,为保证大厅工作人员的安全,提供低本底实验环境,必须设计相应的屏蔽体进行屏蔽.在已有中子导管屏蔽体初步结构设计方案的条件下,联合McStas、MCNP,采用分段计算的方法对其进行了屏蔽计算,得到了散射大厅内中子导管周围不同位置处的辐射剂量率,验证了中子导管屏蔽体结构设计方案的有效性,为进一步开展工程设计提供了依据.%The cold neutrons are guided to the scatter hall from the cold neutron source by the neutron guide tube. Designing a shielding system of the neutron guide tube is necessary for the safety of the workers and providing a low background experiment environment in the scatter hall. The primary design of the shielding system was completed. In this paper, the calculated shielding effects were presented by McStas and MCNP with the method of dividing the whole system into several sects. The results indicate that the primary design scheme of the shielding system is feasible.

  16. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy.

    Science.gov (United States)

    Mortensen, M W; Sørensen, P G; Björkdahl, O; Jensen, M R; Gundersen, H J G; Bjørnholm, T

    2006-03-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16 melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity.

  17. CT-guided percutaneous ethanol injection with disposable curved needle for treatment of malignant liver neoplasms and their metastases in retroperitoneal lymph nodes

    Institute of Scientific and Technical Information of China (English)

    Chang-Jing Zuo; Pei-Jun Wang; Cheng-Wei Shao; Min-Jie Wang; Jian-Ming Tian; Yi Xiao; Fang-Yuan Ren; Xi-Yan Hao; Min Yuan

    2004-01-01

    AIM: To explore the feasibility of computed tomography (CT)-guided percutaneous ethanol injection (PEI) using a disposable curved needle for treatment of malignant liver neoplasms and their metastases in retroperitoneal lymph nodes.METHODS: CT-guided PEI was conducted using a disposable curved needle in 26 malignant liver tumors smaller than 5 cm in diameter and 5 lymph node metastases of liver cancer in the retroperitoneal space. The disposable curved needle was composed of a straight trocar (21G) and stylet, a disposable curved tip (25 G) and a fine stylet. For the tumors found in deep sites and difficult to reach, or for hepatic masses inaccessible to the injection using a straight needle because of portal vein and bile ducts, the straight trocar was used at first to reach the side of the tumor. Then, the disposable curved needle was used via the trocar. When the needle reached the tumor center, appropriate amount of ethanol was injected. For relatively large malignant liver tumors,multi-point injection was carried out for a better distribution of the ethanol injected throughout the masses. The curved needle was also used for treatment of the metastasis in retroperitoneal lymph nodes blocked by blood vessels and inaccessible by the straight needle.RESULTS: All of the 26 liver tumors received 2 or more times of successful PEI, through which ethanol was distributed throughout the whole tumor mass. Effect of the treatment was monitored by contrast-enhanced multi-phase CT and magnetic resonance imaging (MRI) examinations three months later. Of the 18 lesions whose diameters were smaller than 3 cm, the necrotic change across the whole mass and that in most areas were observed in 15 and 3 tumors,respectively. Among the 8 tumors sizing up to 3 cm, 5 were completely necrotic and 3 largely necrotic. Levels of tumor seromarkers were significantly reduced in some of the cases.In 5 patients with metastases of liver cancer in retroperitoneal lymph nodes who received 1 to 3

  18. Cross-correlations between soft and hard light curves depending on luminosity in the transient neutron star XTE J1701-462

    CERN Document Server

    Wang, Ya-Nan; Ding, Guo-Qiang; Qu, Jin-Lu; Ge, Ming-Yu; Zhang, Cheng-Min; Ma, Xiang; Chen, Li

    2014-01-01

    Using all the observations from Rossi X-ray Timing Explorer for accreting neutron star XTE J1701-462, we carry out a systematic study on the cross-correlation between its soft and hard light curves. The anti-correlations appear at the hard vertex and on the upper normal branch (NB) in the Cyg-like interval, occur on the horizontal branch (HB) and/or upper NB in the first and second Sco-like intervals, and display at the upper flaring branch (FB) in the third Sco-like interval. We suggest that the anti-correlation might evolve with luminosity, because with decreasing of luminosity, the source evolved from a Cyg-like Z source, via a Sco-like Z source, to an atoll source. In the Cyg-like interval, the positive correlations are mostly distributed on the HB, which is not consistent with that of the Cyg-like Z source GX 5-1 and Cyg X-2 whose HBs host ambiguous correlations and anti-correlations. From our spectral analyses, it is found that the ratio of the hard emission to the soft emission basically keeps unvaried...

  19. Planning of the energetic operation based on storage guide-curves; Planejamento da operacao energetica baseado em curvas-guias de armazenamento

    Energy Technology Data Exchange (ETDEWEB)

    Zambelli, Monica de S.; Cicogna, Marcelo A.; Soares, Secundino [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Eletrica

    2006-07-01

    The proposal of this work is to present a long term hydrothermal scheduling operating policy based on the concept of storage guide-curves. According to this policy, at each stage of the planning period the decision of the amount of water to be discharged by each hydrothermal unit must be such that keep its reservoir at levels pre-determined by curves obtained by an optimization method. The performance analysis for this operating policy is given by simulation with historical inflow data, considering a single hydrothermal system, constituted by a single hydro plant, and a composite system, constituted by hydro plants in cascade, adopting as performance criteria the minimization of the expected operating cost. The results demonstrate that, although simple and clear, this operating policy presents a competitive performance in the long term hydrothermal scheduling. (author)

  20. A RVI/LAI-reference curve to detect N stress and guide N fertigation using combined information from spectral reflectance and leaf area measurements in potato

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Plauborg, Finn; Thomsen, Anton Gårde

    2017-01-01

    More user-friendly methods are needed to detect crop N status/stress and guide the timing of in-season N application. In the current study, a reference curve method of detecting N stress was proposed to remedy practical problems of methods that require leaf sampling or maintaining a N sufficient...... was applied during the season. The total N ranged from 0 to180 kg N ha−1. RVI and LAI from the economically optimum 180 kg N ha−1 treatments were used to derive the reference curve. RVI and LAI from 180 kg N ha−1 treatment had a high (R2 = 0.97) correlation and were best fitted with a 2nd order polynomial...... uptake between reference and the N deprived treatments, implying that a deviation from the reference curve occurred for small N deficits. Besides, running crop simulation model to alert for impendent N stress closely corresponded to the reference curve and was recommended as a second management tool...

  1. Curved Waveguide Based Nuclear Fission for Small, Lightweight Reactors

    Science.gov (United States)

    Coker, Robert; Putnam, Gabriel

    2012-01-01

    The focus of the presented work is on the creation of a system of grazing incidence, supermirror waveguides for the capture and reuse of fission sourced neutrons. Within research reactors, neutron guides are a well known tool for directing neutrons from the confined and hazardous central core to a more accessible testing or measurement location. Typical neutron guides have rectangular, hollow cross sections, which are crafted as thin, mirrored waveguides plated with metal (commonly nickel). Under glancing angles with incoming neutrons, these waveguides can achieve nearly lossless transport of neutrons to distant instruments. Furthermore, recent developments have created supermirror surfaces which can accommodate neutron grazing angles up to four times as steep as nickel. A completed system will form an enclosing ring or spherical resonator system to a coupled neutron source for the purpose of capturing and reusing free neutrons to sustain and/or accelerate fission. While grazing incidence mirrors are a known method of directing and safely using neutrons, no method has been disclosed for capture and reuse of neutrons or sustainment of fission using a circular waveguide structure. The presented work is in the process of fabricating a functional, highly curved, neutron supermirror using known methods of Ni-Ti layering capable of achieving incident reflection angles up to four times steeper than nickel alone. Parallel work is analytically investigating future geometries, mirror compositions, and sources for enabling sustained fission with applicability to the propulsion and energy goals of NASA and other agencies. Should research into this concept prove feasible, it would lead to development of a high energy density, low mass power source potentially capable of sustaining fission with a fraction of the standard critical mass for a given material and a broadening of feasible materials due to reduced rates of release, absorption, and non-fission for neutrons. This

  2. Nuclear reactor neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  3. Guide design study for the high-resolution backscattering spectrometer FIRES

    Energy Technology Data Exchange (ETDEWEB)

    Pelley, C; Kargl, F; Sakai, V Garcia; Telling, M T F; Fernandez-Alonso, F; Demmel, F, E-mail: franz.demmel@stfc.ac.uk

    2010-11-01

    Different options are considered to transport cold neutrons along 90 m for the proposed new spectrometer FIRES at the ISIS facility. Monte Carlo simulations using the McStas programme package are used to assess the performance of various guide designs from the biological shield to the sample position. By employing a curved geometry, to avoid the direct line of sight, a hybrid design which combines a curved ballistic guide and an elliptic focusing section appears to be the best solution.

  4. Neutron streak camera

    Science.gov (United States)

    Wang, Ching L.

    1983-09-13

    Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.

  5. Updated Users' Guide for RSAP -- A Code for Display and Manipulation of Neutron Cross Section Data and SAMMY Fit Results

    Energy Technology Data Exchange (ETDEWEB)

    Sayer, R.O.

    2003-07-29

    RSAP [1] is a computer code for display and manipulation of neutron cross section data and selected SAMMY output. SAMMY [2] is a multilevel R-matrix code for fitting neutron time-of-flight cross-section data using Bayes' method. This users' guide provides documentation for the recently updated RSAP code (version 6). The code has been ported to the Linux platform, and several new features have been added, including the capability to read cross section data from ASCII pointwise ENDF files as well as double-precision PLT output from SAMMY. A number of bugs have been found and corrected, and the input formats have been improved. Input items are parsed so that items may be separated by spaces or commas.

  6. Cross-correlations between soft and hard light curves depending on luminosity in the transient neutron star XTE J1701-462

    Science.gov (United States)

    Wang, Y. N.; Lei, Y. J.; Ding, G. Q.; Qu, J. L.; Ge, M. Y.; Zhang, C. M.; Chen, L.; Ma, X.

    2014-06-01

    Using all the observations from Rossi X-ray Timing Explorer for the accreting neutron star XTE J1701-462, we carry out a systematic study of the cross-correlation function between its soft and hard light curves. Over the entire outburst, XTE J1701-462 evolves from super-Eddington luminosities to quiescence and shows both Z and atoll behaviours. Following previous work, we divide the outburst into five intervals: one Cyg-like interval, three Sco-like intervals and one atoll interval, according to their different behaviours in the corresponding colour-colour diagrams (CCDs). With cross-correlation analyses, anti-correlation, positive and ambiguous correlations are found in the different intervals in this source. Both anti-correlated soft and hard time lags are detected, where hard lags mean that the hard photons lag behind the soft ones and soft lags mean the reverse. In the Cyg-like interval, anti-correlations are presented in the hard vertex and upper normal branch (NB) and positive correlations dominate the horizontal branch (HB) and lower NB. In the first two Sco-like intervals, anti-correlations are detected first and most of them are found in the HB and/or upper NB, while positive correlations are mostly detected in the lower NB and flaring branch (FB). In the following interval, i.e. the third Sco-like interval, anti-correlations occur on the upper FB and positive correlations are mainly distributed in the lower FB. The different intervals correspond to various luminosities; therefore, the position of anti-correlations in the CCD might depend on the luminosity. It is noted that, in the Cyg-like interval, positive correlations dominate the HB, which is not consistent with the behaviour of the Cyg-like Z sources GX 5-1 and Cyg X-2, the HBs of which host ambiguous correlations and anti-correlations. Hence, for comparison with GX 5-1, we analyse the spectra of the HB and the hard vertex of the Cyg-like interval. The fitting results show that, in contrast to GX 5

  7. Neutron Time of Flight Spectrometer for Velocity Selector Calibration

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Small angle neutron spectrometer on China Advanced Research Reactor (CARR) is located at neutron guide hall and is installed on the end of cold neutron guide. Velocity selector which can purify white light neutron beam into monochromatic neutron beam with wavelength

  8. Feasibility study of the neutron dose for real-time image-guided proton therapy: A Monte Carlo study

    Science.gov (United States)

    Kim, Jin Sung; Shin, Jung Suk; Kim, Daehyun; Shin, Eunhyuk; Chung, Kwangzoo; Cho, Sungkoo; Ahn, Sung Hwan; Ju, Sanggyu; Chung, Yoonsun; Jung, Sang Hoon; Han, Youngyih

    2015-07-01

    Two full rotating gantries with different nozzles (multipurpose nozzle with MLC, scanning dedicated nozzle) for a conventional cyclotron system are installed and being commissioned for various proton treatment options at Samsung Medical Center in Korea. The purpose of this study is to use Monte Carlo simulation to investigate the neutron dose equivalent per therapeutic dose, H/D, for X-ray imaging equipment under various treatment conditions. At first, we investigated the H/D for various modifications of the beamline devices (scattering, scanning, multi-leaf collimator, aperture, compensator) at the isocenter and at 20, 40 and 60 cm distances from the isocenter, and we compared our results with those of other research groups. Next, we investigated the neutron dose at the X-ray equipment used for real-time imaging under various treatment conditions. Our investigation showed doses of 0.07 ~ 0.19 mSv/Gy at the X-ray imaging equipment, depending on the treatment option and interestingly, the 50% neutron dose reduction was observed due to multileaf collimator during proton scanning treatment with the multipurpose nozzle. In future studies, we plan to measure the neutron dose experimentally and to validate the simulation data for X-ray imaging equipment for use as an additional neutron dose reduction method.

  9. Grazing Incidence Neutron Optics

    Science.gov (United States)

    Gubarev, Mikhail V. (Inventor); Ramsey, Brian D. (Inventor); Engelhaupt, Darell E. (Inventor)

    2013-01-01

    Neutron optics based on the two-reflection geometries are capable of controlling beams of long wavelength neutrons with low angular divergence. The preferred mirror fabrication technique is a replication process with electroform nickel replication process being preferable. In the preliminary demonstration test an electroform nickel optics gave the neutron current density gain at the focal spot of the mirror at least 8 for neutron wavelengths in the range from 6 to 20.ANG.. The replication techniques can be also be used to fabricate neutron beam controlling guides.

  10. Monte-Carlo simulations of a high-resolution neutron TOF instrument

    Science.gov (United States)

    Bernhardt, Ph; Demmel, F.; Magerl, A.

    2000-03-01

    It is proposed to build a flexible, high-resolution time-of-flight diffractometer and spectrometer at the new reactor FRM II of the Technische Universität München. To optimize the layout of individual components and to estimate the performance of the entire instrument, we have made analytical calculations and Monte-Carlo simulations mainly with “McStas”, programmed by RISØ, Denmark. MC simulation routines for neutron devices like curved guides, disc- and Fermi choppers have been added. The influence of curved guides in neutron phase space has been developed and will be presented. Line shapes of neutron pulses and transmission have been studied for a Fermi chopper with straight slits and will be compared with the results of simulation.

  11. Prototype Stilbene Neutron Collar

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shumaker, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Snyderman, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Verbeke, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wong, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceeds the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.

  12. User and programmers guide to the neutron ray-tracing package McStas, version 1.2

    DEFF Research Database (Denmark)

    Nielsen, K.; Lefmann, K.

    2000-01-01

    The software package McStas is a tool for writing Monte Carlo ray-tracing simulations of neutron scattering instruments with very high complexity and precision. The simulations can compute all aspects of the performance of instruments and can thus be usedto optimize the use of existing equipment...

  13. Monitoring Chandra observations of the quasi-persistent neutron-star X-ray transient MXB 1659-29 in quiescence: the cooling curve of the heated neutron-star crust

    CERN Document Server

    Wijnands, R; Miller, J M; Lewin, W H G; Wijnands, Rudy; Homan, Jeroen; Miller, Jon M.; Lewin, Walter H. G.

    2004-01-01

    We have observed the quasi-persistent neutron-star X-ray transient and eclipsing binary MXB 1659-29 in quiescence on three occasions with Chandra. The purpose of our observations was to monitor the quiescent behavior of the source after its last prolonged (~2.5 years) outburst which ended in September 2001. The X-ray spectra of the source are consistent with thermal radiation from the neutron-star surface. We found that the bolometric flux of the source decreased by a factor of 7-9 over the time-span of 1.5 years between our first and last Chandra observations. The effective temperature also decreased, but by a factor of 1.6-1.7. The decrease in time of the bolometric flux and effective temperature can be described using exponential decay functions, with e-folding times of ~0.7 and ~3 years, respectively. Our results are consistent with the hypothesis that we observed a cooling neutron-star crust which was heated considerably during the prolonged accretion event and which is still out of thermal equilibrium w...

  14. The curve shortening problem

    CERN Document Server

    Chou, Kai-Seng

    2001-01-01

    Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson''s convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.

  15. Vertical neutron beam focusing with bent mosaic crystals

    Science.gov (United States)

    Courtois, P.

    2016-09-01

    We report on the performance of bent mosaic crystals when used as a vertical focusing neutron monochromator. High-quality Cu(200) and Ge(335) mosaic crystals with a controlled curvature have been successfully produced at the ILL using plastic deformation at high temperature. As expected from simple geometrical considerations, they exhibit excellent properties for focusing a neutron beam vertically when examined on a high-resolution diffractometer installed on an m = 1 thermal neutron guide. Both Cu(200) and Ge(335) curved crystals allow a significant reduction of the focal image size at the sample position compared with a flat crystal with the same defect concentration. As a result, significant gain factors of 6 to 7 in intensity were obtained by replacing a flat crystal of 30 mm with a bent crystal.

  16. Assessment of (10)B concentration in boron neutron capture therapy: potential of image-guided therapy using (18)FBPA PET.

    Science.gov (United States)

    Shimosegawa, Eku; Isohashi, Kayako; Naka, Sadahiro; Horitsugi, Genki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of (10)B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The (10)B concentration in normal organs after loading with (10)B, however, has not been established in humans. In this study, we performed 4-borono-2-[(18)F]-fluoro-phenylalanine ((18)FBPA) PET in healthy volunteers and estimated the chronological changes in the (10)B concentrations of normal organs. In 6 healthy volunteers, whole-body (18)FBPA PET scans were repeated 7 times during 1 h, and the mean (18)FBPA distributions of 13 organs were measured. Based on the (18)FBPA PET data, we then estimated the changes in the (10)B concentrations of the organs when the injection of a therapeutic dose of (10)BPA-fructose complex ((10)BPA-fr; 30 g, 500 mg/kg body weight) was assumed. The maximum mean (18)FBPA concentrations were reached at 2-6 min after injection in all the organs except the brain and urinary bladder. The mean (18)FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of (10)BPA-fr was assumed, the estimated mean (10)B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean (10)B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean (10)B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min. (18)FBPA PET has a potential to estimate (10)B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

  17. Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kuthala, Naresh; Vankayala, Raviraj; Li, Yi-Nan; Chiang, Chi-Shiun; Hwang, Kuo Chu

    2017-08-01

    Glioblastoma multiforme (GBM) is a very common type of "incurable" malignant brain tumor. Although many treatment options are currently available, most of them eventually fail due to its recurrence. Boron neutron capture therapy (BNCT) emerges as an alternative noninvasive therapeutic treatment modality. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting, and sufficient accumulation of boron-containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, this study demonstrates for the first time that an unprecedented (10) B-enriched (96% (10) B enrichment) boron nanoparticle nanomedicine ((10) BSGRF NPs) surface-modified with a Fluorescein isothiocyanate (FITC)-labeled RGD-K peptide can pass through the brain blood barrier, selectively target at GBM brain tumor sites, and deliver high therapeutic dosage (50.5 µg (10) B g(-1) cells) of boron atoms to tumor cells with a good tumor-to-blood boron ratio of 2.8. The (10) BSGRF NPs not only can enhance the contrast of magnetic resonance (MR) imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via MR imaging-guided BNCT, prolonging the half-life of mice from 22 d (untreated group) to 39 d. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Quality assessment of neutron delivery system for small-angle neutron scattering diffractometers of the Jülich Centre for Neutron Science at the FRM II

    Science.gov (United States)

    Radulescu, Aurel; Pipich, Vitaliy; Ioffe, Alexander

    2012-10-01

    Following the shutdown of FRJ-2 research reactor in Jülich, the pinhole small-angle neutron diffractometers KWS-1 and KWS-2 have been moved to the research reactor FRM II in Garching. The installation of these 40 m long instruments required the design and setup of new neutron guides with geometrical and optical features imposed by the instruments' positioning in the neutron guide hall, such as, the predetermined length and beam height as well as the foreseen improvement of the instrument performance. We report here about the quality assessment of the newly constructed neutron guides with respect to the optical, geometrical and alignment characteristics and the positioning of the velocity selector integrated in the neutron guide system by comparing the features of the measured neutron beams (in terms of neutron flux, intensity distribution and beam profile) with the results of the simulations of optimal neutron guide systems.

  19. Marginal cost curves for water footprint reduction in irrigated agriculture : Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    NARCIS (Netherlands)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-01-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce

  20. Measurement of neutron excitation functions using wide energy neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loevestam, Goeran [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium)], E-mail: goeran.loevestam@ec.europa.eu; Hult, Mikael; Fessler, Andreas; Gamboni, Thierry; Gasparro, Joel; Geerts, Wouter; Jaime, Ricardo; Lindahl, Patric; Oberstedt, Stephan [EC-JRC-Institute for Reference Materials and Measurements (IRMM), Retieseweg 111, B-2440 Geel (Belgium); Tagziria, Hamid [EC-JRC-Institute for the Protection and the Security of the Citizen (IPSC), Via E. Fermi 1, I-21020 Ispra (Italy)

    2007-10-11

    A technique for measuring neutron excitation functions using wide energy neutron beams is explored. Samples are activated with a set of neutron fields, each covering a relatively wide energy interval and created using an ion accelerator and conventional nuclear reactions. Measured activities are determined using gamma-ray spectrometry and reduced to excitation curves using spectrum unfolding. The technique is demonstrated on the measurement of the excitation function curve up to 5.6 MeV for {sup 113}In(n,n'){sup 113}In{sup m} using the {sup 115}In(n,n'){sup 115}In{sup m} reaction as an internal standard.

  1. Marginal cost curves for water footprint reduction in irrigated agriculture: a policy and decision making guide for efficient water use in crop production

    Science.gov (United States)

    Chukalla, Abebe; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Reducing water footprints (WF) in irrigated crop production is an essential element in water management, particularly in water-scarce areas. To achieve this, policy and decision making need to be supported with information on marginal cost curves that rank measures to reduce the WF according to their cost-effectiveness and enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a certain reasonable WF benchmark. This paper aims to develop marginal cost curves (MCC) for WF reduction. The AquaCrop model is used to explore the effect of different measures on evapotranspiration and crop yield and thus WF that is used as input in the MCC. Measures relate to three dimensions of management practices: irrigation techniques (furrow, sprinkler, drip and subsurface drip); irrigation strategies (full and deficit irrigation); and mulching practices (no mulching, organic and synthetic mulching). A WF benchmark per crop is calculated as resulting from the best-available production technology. The marginal cost curve is plotted using the ratios of the marginal cost to WF reduction of the measures as ordinate, ranking with marginal costs rise with the increase of the reduction effort. For each measure, the marginal cost to reduce WF is estimated by comparing the associated WF and net present value (NPV) to the reference case (furrow irrigation, full irrigation, no mulching). The NPV for each measure is based on its capital costs, operation and maintenances costs (O&M) and revenues. A range of cases is considered, including: different crops, soil types and different environments. Key words: marginal cost curve, water footprint benchmark, soil water balance, crop growth, AquaCrop

  2. Centrifugal quantum states of neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Petukhov, A. K.; Protasov, K. V.; Voronin, A. Yu.

    2008-09-01

    We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  3. Attenuation curves in concrete of neutrons from 1 GeV/u C and U ions on a Fe target for the shielding design of RIB in-flight facilities

    CERN Document Server

    Agosteo, S; Silari, M

    2004-01-01

    Experimental data on neutron emission from the interaction of heavy ion beams with matter are far less abundant than data on neutron production from protons. The aim of the present work is to extend the available computational shielding data to high-energy neutrons produced by heavy ion beams (uranium and carbon) of 1 GeV/u slowed down in a thick iron target. Source terms and attenuation lengths for neutron attenuation in a concrete shield were calculated starting from experimental neutron energy distributions measured at GSI in the angular range from 0 degree to 90 degree . A comparison is also made with previous calculations performed for different ions and energies and with earlier estimates made at GSI for neon beams with 0.8 and 2 GeV/u energy stopped in thick iron, lead and uranium targets.

  4. Reactor neutrons in nuclear astrophysics

    Science.gov (United States)

    Reifarth, René; Glorius, Jan; Göbel, Kathrin; Heftrich, Tanja; Jentschel, Michael; Jurado, Beatriz; Käppeler, Franz; Köster, Ulli; Langer, Christoph; Litvinov, Yuri A.; Weigand, Mario

    2017-09-01

    The huge neutron fluxes offer the possibility to use research reactors to produce isotopes of interest, which can be investigated afterwards. An example is the half-lives of long-lived isotopes like 129I. A direct usage of reactor neutrons in the astrophysical energy regime is only possible, if the corresponding ions are not at rest in the laboratory frame. The combination of an ion storage ring with a reactor and a neutron guide could open the path to direct measurements of neutron-induced cross sections on short-lived radioactive isotopes in the astrophysically interesting energy regime.

  5. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.

    2006-01-01

    transmission electron microscopy, photon correlation spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, vibrational spectroscopy, gel electrophoresis and chemical assays and reveal profound changes in surface chemistry and structural characteristics. In vitro thermal neutron irradiation of B16...

  6. Superfluids in Curved Spacetime

    CERN Document Server

    Villegas, Kristian Hauser A

    2015-01-01

    Superfluids under an intense gravitational field are typically found in neutron star and quark star cores. Most treatments of these superfluids, however, are done in a flat spacetime background. In this paper, the effect of spacetime curvature on superfluidity is investigated. An effective four-fermion interaction is derived by integrating out the mediating scalar field. The fermions interacting via the mediating gauge vector bosons is also discussed. Two possible cases are considered in the mean-field treatment: antifermion-fermion and fermion-fermion pairings. An effective action, quadratic in fermion field, and a self-consistent equation are derived for both cases. The effective Euclidean action and the matrix elements of the heat kernel operator, which are very useful in curved-spacetime QFT calculations, are derived for the fermion-fermion pairing. Finally, explicit numerical calculation of the gravitational correction to the pairing order parameter is performed for the scalar superfluid case. It is foun...

  7. A large-angle cold-neutron bender using sequential garland reflections

    CERN Document Server

    Suzuki, J; Tasaki, S; Ebisawa, T

    2002-01-01

    We discuss the principle and performance of a new cold-neutron bender using sequential garland reflections in order to bend a neutron beam with a large divergence to a large angle. Using this bender for a pulsed neutron source, we can distribute cold neutrons or polarized cold neutrons if necessary to plural spectrometers at a cold-neutron-guide tube to avoid the frame-overlap problem of cold neutrons. (orig.)

  8. Using MCNP in the design of neutron sources and neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Hergenreder, Daniel F.; Lecot, Carlos A.; Lovotti, Osvaldo P. [INVAP S.A., San Carlos de Bariloche (Argentina). Nuclear Projects Department. Nuclear Engineering Division

    2002-07-01

    The calculation methodology used to design cold, thermal and hot neutron sources and their associated neutron beam transport systems is presented. The design goal is to evaluate the performance of the neutron sources, their beam tubes and neutron guides at specific experimental locations in the reactor hall as well as in the neutron hall. The Monte Carlo method is a unique and powerful tool to transport neutrons. Its use in a bootstrap scheme appears to be an appropriate solution for this type of system. The proper use of MCNP as the main tool leads to a fast and reliable method to perform calculations in a relatively short time with low statistical errors. (author)

  9. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Science.gov (United States)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water

  10. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2017-07-01

    Full Text Available Reducing the water footprint (WF of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season or to a certain WF benchmark (expressed in m3  t−1 of crop. This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip; irrigation strategy (full or deficit irrigation; and mulching practice (no, organic or synthetic mulching. The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour. Different cases are considered, including three crops (maize, tomato and potato; four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel; three hydrologic years (wet, normal and dry years and three soil types (loam, silty clay loam and sandy loam. For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF

  11. Phonon dispersion curves of CsCN

    Indian Academy of Sciences (India)

    N K Gaur; Preeti Singh; E G Rini; Jyotsna Galgale; R K Singh

    2004-08-01

    The motivation for the present work was gained from the recent publication on phonon dispersion curves (PDCs) of CsCN from the neutron scattering technique. We have applied the extended three-body force shell model (ETSM) by incorporating the effect of coupling between the translation modes and the orientation of cyanide molecules for the description of phonon dispersion curves of CsCN between the temperatures 195 and 295 K. Our results on PDCs in symmetric direction are in good agreement with the experimental data measured with inelastic neutron scattering technique.

  12. Neutron Repulsion

    OpenAIRE

    Manuel, Oliver K.

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch...

  13. Initial characterization of the Cornell Cold Neutron Source

    Science.gov (United States)

    Spern, Stuart Alan

    1998-06-01

    A device to moderate reactor spectrum neutrons to subthermal energies and filter out photons and higher energy neutrons has been designed, constructed and tested at Ward Laboratory, Cornell University. The Cornell Cold Neutron Source, which houses a chamber containing an organic moderator (mesitylene), the cryogenic cooling apparatus, and the first three one-meter long neutron guide elements, is physically inserted into a beamport in the reactor biological shield. The remaining 10 guide elements, which act as the filter, are mounted on a horizontal I-beam, and surrounded with suitable radiation shielding. The elements are horizontally displaced from the beamport axis in a combination curved/straight layout to eliminate directly transmitted radiation. The guide penetrates the reactor bay wall, terminating in a dedicated room to provide a location for low background experiments. Out-of-reactor bench thermal tests were conducted on the cryorefrigerator itself, then on a shortened version of the cryogenic cooling apparatus, and finally on the full scale system using heaters to simulate reactor induced nuclear heating in upstream cryogenic components. Temperature results, measured by silicon diodes, were close to predicted values. In-reactor tests were conducted to benchmark thermal performance, and to ascertain reliability of temperature and flux measurement systems. Type E thermocouples were selected for temperature measurement in the hostile reactor environment; although they depart from standard output at cryogenic temperatures due to inhomogeneities in the wire, crucial thermocouples located on the moderator chamber are calibrated against the in situ gas thermometer formed with the chamber as the sense bulb and a canister of known volume as the gas reservoir. In- reactor trials demonstrated reproducibility of thermocouple results. Moderator temperatures of 11 K at zero reactor power up to 28.5 K at 500 kW were obtained. Time-of-flight measurements were taken at 10

  14. Effects of the neutron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Alcober, V. (Junta de Energia Nuclear, Madrid (Spain)); Martinez Ruis, F.; Manuzi, M.A. (Dpto. de Traumatologia Centro Ramon y Cajal, Madrid (Spain))

    1984-01-01

    An introduction to the cortical bone neutron irradiation subject and to the effect of the irradiation on the mechanical properties of bone considered as a composite material is presented. Only the special case of the simple flexion has been treated. The evolution of the load-deflection curve as a function of the epithermal neutron dose has been studied. Some hypotheses on the role performed by the organic and mineral phases are introduced.

  15. Advanced Neutron Source (ANS) Project

    Science.gov (United States)

    Campbell, J. H.

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  16. Measurement of neutron scattering lengths using neutron interferometry

    Science.gov (United States)

    Shahi, Chandra B.

    This thesis describes the details on building a new Neutron Interferometry and Optics Facility (NIOFa), the measurement of the incoherent neutron scattering length bi of 3He, and the measurement of the coherent neutron scattering length bc of 4He at National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR). A new monochromatic beamline and facility has been installed at the NCNR devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. This new facility, NIOFa, is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The measurement of the incoherent neutron scattering length bi of 3He was done using a (220) single silicon crystal skew symmetric interferometer. This experiment requires both a polarized beam and a polarized target. We report bi = -2.35 +/- 0.014 (stat.) +/- 0.014 (syst.). This experiment is a revision of the previous experiment which was done in 2008, and partially explains the non-zero phase shift seen in 2008 experiment even if target cell was completely unpolarized. The measurement of the coherent neutron scattering length b c of the 4He was done using a (111) single silicon crystal interferometer. The neutron interferometry and optics facility at NIST had been used previously to determine the coherent scattering lengths for n- 1H, n-2H, and n-3He to less than 1% relative uncertainty. We report bc of the 4He

  17. 基于CFD的前置导叶轴流泵通用特性曲线预报%General characteristic curve forecast for axial flow pump with front guide vane by CFD

    Institute of Scientific and Technical Information of China (English)

    戴原星; 王立祥

    2013-01-01

    Based on the solution of relative steady time-averaged Reynolds equation enclosed by the RNG k-εtwo-equation turbulence model,general characteristic curve for axial flow pump with front guide vane has been drawn out by full 3D numerical simulation during preliminary design. The design point is evaluated by analysis whether the design operation point has optimal efficiency. The internal flow field is captured to observe whether the prerotation reaches proper position and whether there is rotational flow in the wake. The results have important significance for improvement and optimization of axial flow pump with front guide vane during the preliminary design.%通过求解由RNG k-ε二方程湍流模型封闭的相对定常雷诺时均方程,对初始设计的前置导叶轴流泵进行全三维数值模拟,得到通用特性曲线。分析设计工况点是否在最佳效率处,设计点是否成功。捕捉前置导叶轴流泵内流场,观察导叶预旋是否到位,尾流场是否有旋流。所得的结果对初始设计的前置导叶轴流泵的改进和优化具有十分重要的意义。

  18. Neutronic design and characteristics of the RRR

    Energy Technology Data Exchange (ETDEWEB)

    Villarino, Eduardo A.; Korochinsky, Sergio; Hergenreder, Daniel [INVAP S.E., Bariloche, Rio Negro (Argentina)

    2002-07-01

    This paper describes the general neutronic characteristics of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the neutronic design: fuel assemblies (FA) characteristics, irradiation facilities, requirements, operational requirements, etc. An important neutronic characteristic of the RRR design is that it handles two types of FA, the well-known and qualified U{sub 3}Si{sub 2} fuel type and the under qualification process U-Mo FA type. Several irradiation facilities are located around the reactor core. Three types of neutron sources: a cold neutron source with two tangential beams and several neutron guides, a thermal neutron beam with two beams and several neutron guides, and a room reserved for a future hot neutron source with a beam. The core has also 17 vertical irradiation tubes with 5 targets each for bulk radioisotope production (for example: Ir, Mo and I), 19 pneumatic rigs with 58 target positions for different purposes: radioisotope production, neutron activation analysis (NAA). Finally it has 6 neutron transmutation doping (NTD) facilities. A general description and main characteristics of the present core design is also given. (author)

  19. An empirical formula for scattered neutron components in fast neutron radiography

    Institute of Scientific and Technical Information of China (English)

    DOU Hai-Feng; TANG Bin

    2011-01-01

    Scattering neutrons are one of the key factors that may affect the images of fast neutron radiog- raphy. In this paper, a mathematical model for scattered neutrons is developed on a cylinder sample, and an empirical formula for scattered neutrons is obtained. According to the results given by Monte Carlo methods, the parameters in the empirical formula are obtained with curve fitting, which confirms the logicality of the empirical formula. The curve-fitted parameters of common materials such as LiD are given.

  20. Neutron whispering gallery

    Science.gov (United States)

    Nesvizhevsky, Valery V.; Voronin, Alexei Yu.; Cubitt, Robert; Protasov, Konstantin V.

    2010-02-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for atoms and neutrons. For matter waves, it would include a new feature: a massive particle would be settled in quantum states, with parameters depending on its mass. Here, we present for the first time the quantum whispering-gallery effect for cold neutrons. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to the recently discovered gravitationally bound quantum states of neutrons . These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a pure quantum state. Deeply bound whispering-gallery states are long-living and weakly sensitive to surface potential; highly excited states are short-living and very sensitive to the wall potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects.

  1. Neutron Radiography

    Science.gov (United States)

    Heller, A. K.; Brenizer, J. S.

    Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.

  2. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    OpenAIRE

    Klinkby, Esben Bryndt; Willendrup, Peter Kjær; Bergbäck Knudsen, Erik; Lauritzen, Bent; Nonbøl, Erik; Bentley, Philip; Filges, Uwe

    2013-01-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides. The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are han...

  3. Instruments and accessories for neutron scattering research

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yoshinobu; Morii, Yukio [eds.] [Advanced Science Research Center (Tokai Site), Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan)

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  4. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  5. A clean, bright, and versatile source of neutron decay products

    CERN Document Server

    Dubbers, D; Baessler, S; Maerkisch, B; Schumann, M; Soldner, T; Zimmer, O

    2007-01-01

    We present a case study on a new type of cold neutron beam station for the investigation of angular correlations in the beta-decay of free neutrons. With this beam station, called PERC, the 'active decay volume' lies inside the neutron guide, and the charged neutron decay products are magnetically guided towards the end of the neutron guide. Hence, the guide delivers at its exit a beam of decay electrons and protons, under well-defined and precisely variable conditions, which can be well separated from the cold neutron beam. In this way a general-purpose source of neutron decay products is obtained which can be used for various different experiments in neutron decay correlation spectroscopy. A gain in phase space density of several orders of magnitude can be achieved with PERC, as compared to existing neutron decay spectrometers. Neutron beam related background is separately measurable in PERC, and magnetic mirror effects on the charged neutron decay products and edge effects in the active neutron beam volume...

  6. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  7. Design Analyses and Shielding of HFIR Cold Neutron Scattering Instruments

    Energy Technology Data Exchange (ETDEWEB)

    Gallmeier, F.X.; Selby, D.L.; Winn, B.; Stoica, D.; Jones, A.B.; Crow, L. [Neutron Sciences Directorate, Oak Ridge National Laboratory (United States)

    2011-07-01

    Research reactor geometries and special characteristics present unique dosimetry analysis and measurement issues. The introduction of a cold neutron moderator and the production of cold neutron beams at the Oak Ridge National Laboratory High Flux Isotope Reactor have created the need for modified methods and devices for analyzing and measuring low energy neutron fields (0.01 to 100 meV). These methods include modifications to an MCNPX version to provide modeling of neutron mirror reflection capability. This code has been used to analyze the HFIR cold neutron beams and to design new instrument equipment that will use the beams. Calculations have been compared with time-of-flight measurements performed at the start of the neutron guides and at the end of one of the guides. The results indicate that we have a good tool for analyzing the transport of these low energy beams through neutron mirror and guide systems for distance up to 60 meters from the reactor. (authors)

  8. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  9. The Response of an Albedo Neutron Dosimeter to Moderated AmBe and 252(Cf) Neutron Sources.

    Science.gov (United States)

    2014-09-26

    neutrons is deter- mined by making multiple integrations on the glow curves from the detectors [41, or by computer analysis of the glow curves [5-61...Falk, "A Personnel Neutron Dosimeter Using Lithium Fluoride Thermoluminescent Dosim- eters," Report No. RFP-1581, Dow Chemical Co., Golden CO (1971...Addison Wesley, Reading, MA, 1953). 18. D.E. Hankins, "Factors Affecting the Design of Albedo Neutron Dosimeters Containing Lithium Fluoride

  10. Updated User's Guide for Sammy: Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Nancy M [ORNL

    2008-10-01

    In 1980 the multilevel multichannel R-matrix code SAMMY was released for use in analysis of neutron-induced cross section data at the Oak Ridge Electron Linear Accelerator. Since that time, SAMMY has evolved to the point where it is now in use around the world for analysis of many different types of data. SAMMY is not limited to incident neutrons but can also be used for incident protons, alpha particles, or other charged particles; likewise, Coulomb exit hannels can be included. Corrections for a wide variety of experimental conditions are available in the code: Doppler and resolution broadening, multiple-scattering corrections for capture or reaction yields, normalizations and backgrounds, to name but a few. The fitting procedure is Bayes' method, and data and parameter covariance matrices are properly treated within the code. Pre- and post-processing capabilities are also available, including (but not limited to) connections with the Evaluated Nuclear Data Files. Though originally designed for use in the resolved resonance region, SAMMY also includes a treatment for data analysis in the unresolved resonance region.

  11. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2012-12-01

    A feasibility study was conducted to design a beam shaping assembly for BNCT based on D-T neutron generator. The optimization of this configuration has been realized in different steps. This proposed system consists of metallic uranium as neutron multiplier, TiF(3) and Al(2)O(3) as moderators, Pb as reflector, Ni as shield and Li-Poly as collimator to guide neutrons toward the patient position. The in-air parameters recommended by IAEA were assessed for this proposed configuration without using any filters which enables us to have a high epithermal neutron flux at the beam port. Also a simulated Snyder head phantom was used to evaluate dose profiles due to the irradiation of designed beam. The dose evaluation results and depth-dose curves show that the neutron beam designed in this work is effective for deep-seated brain tumor treatments even with D-T neutron generator with a neutron yield of 2.4×10(12) n/s. The Monte Carlo Code MCNP-4C is used in order to perform these calculations.

  12. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...

  13. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  14. Delayed neutrons as a probe of nuclear charge distribution in fission of heavy nuclei by neutrons

    CERN Document Server

    Isaev, S G; Piksaikin, V M; Roshchenko, V A

    2001-01-01

    A method of the determination of cumulative yields of delayed neutron precursors is developed. This method is based on the iterative least-square procedure applied to delayed neutron decay curves measured after irradiation of sup 2 sup 3 sup 5 U sample by thermal neutrons. Obtained cumulative yields in turns were used for deriving the values of the most probable charge in low-energy fission of the above-mentioned nucleus.

  15. Basic Design of the Cold Neutron Research Facility in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hark Rho; Lee, K. H.; Kim, Y. K. (and others)

    2005-09-15

    The HANARO Cold Neutron Research Facility (CNRF) Project has been embarked in July 2003. The CNRF project has selected as one of the radiation technology development project by National Science and Technology Committee in June 2002. In this report, the output of the second project year is summarized as a basic design of cold neutron source and related systems, neutron guide, and neutron scattering instruments.

  16. Powder neutron diffractometers HRPT and DMCG

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, P.; Doenni, A.; Staub, U.; Zolliker, M. [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)

    1996-11-01

    Basic properties and applications of SINQ powder neutron diffractometers are described. For optimum use of the continuous neutron beams these instruments are equipped with position sensitive detectors, and both high-intensity and high-resolution modes of operation are possible. HRPT attaining resolutions {delta}d/d{<=}10{sup -3}, d=lattice spacing, at a thermal neutron channel of the target station and DMCG at a cold neutron guide coated with m=2 supermirrors, are complementary concerning the applications: the former will be mainly used for structural studies and the latter to investigate magnetic ordering phenomena. (author) figs., tabs., refs.

  17. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2014-01-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides....... The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide...

  18. Synchrotron radiation from a curved plasma channel laser wakefield accelerator

    CERN Document Server

    Palastro, J P; Hafizi, B; Chen, Y -H; Johnson, L A; Penano, J R; Helle, M H; Mamonau, A A

    2016-01-01

    A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and simulations examining laser pulse guiding, wakefield generation, electron steering, and synchrotron emission in curved plasma channels. For experimentally realizable parameters, a ~2 GeV electron emits 0.1 photons per cm with an average photon energy of multiple keV.

  19. Dosimetry methods in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Artuso, E.; Felisi, M.; Regazzoni, V.; Giove, D. [Universita degli Studi di Milano, Department of Physics, Via Festa del Patrono 7, 20122 Milano (Italy); Agosteo, S.; Barcaglioni, L. [Istituto Nazionale di Fisica Nucleare, Milano (Italy); Campi, F.; Garlati, L. [Politecnico di Milano, Energy Department, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); De Errico, F. [Universita degli Studi di Pisa, Department of Civil and Industrial Engineering, Lungamo Pacinotti 43, 56126 Pisa (Italy); Borroni, M.; Carrara, M. [Fondazione IRCCS Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, 20133 Milano (Italy); Burian, J.; Klupak, V.; Viererbl, L.; Marek, M. [Research Centre Rez, Department of Neutron Physics, 250-68 Husinec-Rez (Czech Republic)

    2014-08-15

    Dosimetry studies have been carried out at thermal and epithermal columns of Lvr-15 research reactor for investigating the spatial distribution of gamma dose, fast neutron dose and thermal neutron fluence. Two different dosimetry methods, both based on solid state detectors, have been studied and applied and the accuracy and consistency of the results have been inspected. One method is based on Fricke gel dosimeters that are dilute water solutions and have good tissue equivalence for neutrons and also for all the secondary radiations produced by neutron interactions in tissue or water phantoms. Fricke gel dosimeters give the possibility of separating the various dose contributions, i.e. the gamma dose, the fast neutron dose and the dose due to charged particles generated during thermal neutron reactions by isotopes having high cross section, like 10-B. From this last dose, thermal neutron fluence can be obtained by means of the kerma factor. The second method is based on thermoluminescence dosimeters. In particular, the developed method draw advantage from the different heights of the peaks of the glow curve of such phosphors when irradiated with photons or with thermal neutrons. The results show that satisfactory results can be obtained with simple methods, in spite of the complexity of the subject. However, the more suitable dosimeters and principally their utilization and analysis modalities are different for the various neutron beams, mainly depending on the relative intensities of the three components of the neutron field, in particular are different for thermal and epithermal columns. (Author)

  20. Multiphasic growth curve analysis.

    NARCIS (Netherlands)

    Koops, W.J.

    1986-01-01

    Application of a multiphasic growth curve is demonstrated with 4 data sets, adopted from literature. The growth curve used is a summation of n logistic growth functions. Human height growth curves of this type are known as "double logistic" (n = 2) and "triple logistic" (n = 3) growth curves (Bock

  1. Neutron Repulsion

    CERN Document Server

    Manuel, Oliver K

    2011-01-01

    Earth is connected gravitationally, magnetically and electrically to its heat source - a neutron star that is obscured from view by waste products in the photosphere. Neutron repulsion is like the hot filament in an incandescent light bulb. Excited neutrons are emitted from the solar core and decay into hydrogen that glows in the photosphere like a frosted light bulb. Neutron repulsion was recognized in nuclear rest mass data in 2000 as the overlooked source of energy, the keystone of an arch that locked together these puzzling space-age observations: 1.) Excess 136Xe accompanied primordial helium in the stellar debris that formed the solar system (Fig. 1); 2.) The Sun formed on the supernova core (Fig. 2); 3.) Waste products from the core pass through an iron-rich mantle, selectively carrying lighter elements and lighter isotopes of each element into the photosphere (Figs. 3-4); and 4.) Neutron repulsion powers the Sun and sustains life (Figs. 5-7). Together these findings offer a framework for understanding...

  2. TLD determination of neutron dose contribution in medical linac

    Energy Technology Data Exchange (ETDEWEB)

    Cano, A.; Rivera, T.; Calderon A, J. A. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Villasenor N, L. F. [Hospital General de Mexico, Dr. Balmis No. 148, Col. Doctores, 06726 Mexico D. F. (Mexico); Vega C, H. R., E-mail: azorin@xanum.uam.m [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2011-02-15

    The increased use of Linacs with accelerating voltage higher than 10 MV in clinical radiotherapy is producing and increasing demand of accurate dosimetric measurements of the photon induced neutron contamination of the radiotherapy beams, due that the associated Bremsstrahlung X rays may produce neutrons as a result of subsequent photonuclear reactions with the different materials constituting the accelerator head. Thermal neutron fluences can be measured with TLD-600/TLD-700 pairs arranged in both a bare and a cadmium (Cd) foil covered methacry-late box. Neutron response of Tl dosemeters irradiated with two different neutron sources has been investigated. The shape of the glow curve of these TLDs after irradiation in a medical Linac and in a Pu Be neutron source has been studied to verify the contribution of neutrons to an additional dose to staff, patients and the general public, due to photonuclear reactions generating neutrons from medical Linacs. (Author)

  3. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  4. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  5. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Bergbäck Knudsen, Erik; Willendrup, Peter Kjær

    2013-01-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed[1]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides....... The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide and by using newly...

  6. Radiation Fields in the Vicinity of Compact Accelerator Neutron Generators

    Energy Technology Data Exchange (ETDEWEB)

    David L. Chichester; Brandon W. Blackburn; Augustine J. Caffrey

    2006-10-01

    Intense pulsed radiation fields emitted from sealed tube neutron generators provide a challenge for modern health physics survey instrumentation. The spectral sensitivity of these survey instruments requires calibration under realistic field conditions while the pulsed emission characteristics of neutron generators can vary from conditions of steady-state operation. As a general guide for assessing radiological conditions around neutron generators, experiments and modeling simulations have been performed to assess radiation fields near DD and DT neutron generators. The presence of other materials and material configurations can also have important effects on the radiation dose fields around compact accelerator neutron generators.

  7. Neutron beam facilities at the Australian Replacement Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Shane; Robinson, Robert; Hunter, Brett [Physics Division, ANSTO, Lucas Heights (Australia)

    2001-03-01

    Australia is building a research reactor to replace the HIFAR reactor at Lucas Heights by the end of 2005. Like HIFAR, the Replacement Research Reactor will be multipurpose with capabilities for both neutron beam research and radioisotope production. It will be a pool-type reactor with thermal neutron flux (unperturbed) of 4 x 10{sup 14} n/cm{sup 2}/sec and a liquid D{sub 2} cold neutron source. Cold and thermal neutron beams for neutron beam research will be provided at the reactor face and in a large neutron guide hall. Supermirror neutron guides will transport cold and thermal neutrons to the guide hall. The reactor and the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP S.E. under contract. The neutron beam instruments will be developed by ANSTO, in consultation with the Australian user community. This status report includes a review the planned scientific capabilities, a description of the facility and a summary of progress to date. (author)

  8. Advanced Neutron Source (ANS) Project progress report

    Energy Technology Data Exchange (ETDEWEB)

    McBee, M.R.; Chance, C.M. (eds.) (Oak Ridge National Lab., TN (USA)); Selby, D.L.; Harrington, R.M.; Peretz, F.J. (Oak Ridge National Lab., TN (USA))

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I C research and development; facility concepts; design; and safety.

  9. Neutron detectors for scattering experiments at HANARO

    Indian Academy of Sciences (India)

    Myungkook Moon; Changhee Lee; Jongkyu Cheon; Younghyun Choi; Harkrho Kim; Shraddha S Desai

    2008-11-01

    Position sensitive detectors (PSD) measure the distribution of scattered neutrons and are essential tools for neutron scattering experiments. Various types of neutron detectors used at neutron diffractometers are conventional tube detectors, 1-D and 2-D PSDs. Korea Atomic Energy Research Institute (KAERI) has been developing various kinds of PSDs to improve the instrument performance and to develop new scattering instruments. Our development work is initiated with 1-D PSD for residual stress analysis spectrometer and finally the technology is extended to development of 2-D PSD with planar and curved geometry. All PSDs are based on multiwire grid assembly with delay line readout method for position encoding, as the response is faster than charge division method and enables higher count rate capability. Design details and operational characteristics of some of the PSDs developed, for application at neutron scattering instruments are presented.

  10. Spinal curves (image)

    Science.gov (United States)

    There are four natural curves in the spinal column. The cervical, thoracic, lumbar, and sacral curvature. The curves, along with the intervertebral disks, help to absorb and distribute stresses that occur from everyday activities such as walking or from ...

  11. Contractibility of curves

    Directory of Open Access Journals (Sweden)

    Janusz Charatonik

    1991-11-01

    Full Text Available Results concerning contractibility of curves (equivalently: of dendroids are collected and discussed in the paper. Interrelations tetween various conditions which are either sufficient or necessary for a curve to be contractible are studied.

  12. Parametrizing Algebraic Curves

    OpenAIRE

    Lemmermeyer, Franz

    2011-01-01

    We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.

  13. Neutron tomography

    Science.gov (United States)

    Crump, James C., III; Richards, Wade J.; Shields, Kevin C.

    1995-07-01

    The McClellan Nuclear Radiation Center's (MNRC) staff in conjunction with a Cooperative Research and Development Agreement (CRDA) with the U.C. Santa Barbara facility has developed a system that can be used for aircraft inspection of jet engine blades. The problem was to develop an inspection system that can detect very low concentrations of hydrogen (i.e., greater than 100 ppm) in metal matricies. Specifically in Titanium alloy jet engine blades. Entrapment and precipitation of hydrogen in metals is an undesirable phenomenon which occurs in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties after long exposures to hydrogen, especially at high temperatures and pressures, thereby becoming embrittled. Neutron radiography has been used as a nondestructive testing technique for many years. Neutrons, because of their unique interactions with materials, are especially useful in the detection of hydrogen. They have an extremely high interaction cross section for low atomic number nuclei (i.e., hydrogen). Thus hydrogen in a metal matrix can be visualized using neutrons. Traditional radiography is sensitive to the total attenuation integrated over the path of radiation through the material. Increased sensitivity and quantitative cross section resolution can be obtained using three-dimensional volumetric imaging techniques such as tomography. The solution used to solve the problem was to develop a neutron tomography system. The neutron source is the McClellan Nuclear Radiation Center's 1 MW TRIGA reactor. This paper describes the hardware used in the system as well as some of the preliminary results.

  14. Factors Affecting the Application of a Simple Ratio Technique for Spectral Correction of a Neutron Personnel Albedo Dosimeter.

    Science.gov (United States)

    1983-11-01

    nY reaction (Ha79). The effect pof the Boron-lO pouch can be theoretically calculated for known spectra by using the Boron-lO neutron absorption cross section curve...14 MeV the 6LiF response curve can be appropriately approximated by utilizing the Lithium-6 neutron absorption cross section curve (Ga76,GI83

  15. Neutron Scattering in Biology Techniques and Applications

    CERN Document Server

    Fitter, Jörg; Katsaras, John

    2006-01-01

    The advent of new neutron facilities and the improvement of existing sources and instruments world wide supply the biological community with many new opportunities in the areas of structural biology and biological physics. The present volume offers a clear description of the various neutron-scattering techniques currently being used to answer biologically relevant questions. Their utility is illustrated through examples by some of the leading researchers in the field of neutron scattering. This volume will be a reference for researchers and a step-by-step guide for young scientists entering the field and the advanced graduate student.

  16. The Effects of δ Meson on the Neutron Star Cooling

    Institute of Scientific and Technical Information of China (English)

    许妍; 刘广洲; 吴姚睿; 朱明枫; 喻孜; 王红岩; 赵恩广

    2012-01-01

    In the framework of the relativistic mean field theory, the isovector scalar interaction is considered by exchanging δ meson to study the influence of δ meson on the cooling properties of neutron star matter. The calculation results show that with the inclusion of δ meson, the neutrino emissivity of the direct Urca processes increases, and thus enhances the cooling of neutron star matter. When strong proton superfluidity is considered, the theoretical cooling curves agree with the observed thermal radiation for isolated neutron stars.

  17. ECM using Edwards curves

    DEFF Research Database (Denmark)

    Bernstein, Daniel J.; Birkner, Peter; Lange, Tanja;

    2013-01-01

    This paper introduces EECM-MPFQ, a fast implementation of the elliptic-curve method of factoring integers. EECM-MPFQ uses fewer modular multiplications than the well-known GMP-ECM software, takes less time than GMP-ECM, and finds more primes than GMP-ECM. The main improvements above the modular......-arithmetic level are as follows: (1) use Edwards curves instead of Montgomery curves; (2) use extended Edwards coordinates; (3) use signed-sliding-window addition-subtraction chains; (4) batch primes to increase the window size; (5) choose curves with small parameters and base points; (6) choose curves with large...

  18. Asymmetry Dependence of the Nuclear Caloric Curve

    CERN Document Server

    McIntosh, Alan B; Cammarata, Paul; Hagel, Kris; Heilborn, Lauren; Kohley, Zachary; Mabiala, Justin; May, Larry W; Marini, Paola; Raphelt, Andrew; Souliotis, George A; Wuenschel, Sara; Zarrella, Andrew; Yennello, Sherry J

    2012-01-01

    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A=50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry (N-Z)/A. An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei.

  19. Focusing neutron beams to sub-millimeter size

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Moxana; Boeni, Peter [Physik-Department E21, Technische Universitaet Muenchen, Garching (Germany)

    2010-07-01

    Focusing neutron guides are a well-established means to significantly increase the neutron flux for the investigation of small samples or samples subject to extreme conditions such as pressure or high magnetic fields. Parabolic and elliptic guides can focus the beam in a single point beyond the guide exit with well defined beam characteristics and a gain in intensity of over 30 compared to a non-focused beam. Focusing guides find applications in elastic and inelastic neutron scattering as well as in neutron imaging to increase the spatial resolution and for magnification. The aim of the Monte Carlo simulations using McStas was to produce focal spots with a diameter of the order of 0.1 mm using supermirrors with large angles of reflection. We will discuss the results of our simulations, i.e. the gains obtained, their variation with wavelength as well as the evolution of the beam size.

  20. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    to hundreds of nanometers. Thickness resolution for flat surfaces is in the range of few Ǻngstrøm, and as a peculiar benefit, the presence and properties of buried interfaces are accessible. Focus here will be on neutron reflectometry, a technique that is unique in applications involving composite organic...... of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films...... and the detection on nanoscopic roughnesses will be shown. The potential of neutron reflectometry is not only of academic origin. It may turn out to be useful in the design and development of new functional materials even though it will never develop into a standard method to be applied in the product control...

  1. Development of educational program for neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Moon, Jong Hwa; Kim, Sun Ha; Ryel, Sung; Kang, Young Hwan; Lee, Kil Yong; Yeon, Yeon Yel; Cho, Seung Yeon

    2000-08-01

    This technical report is developed to apply an educational and training program for graduate student and analyst utilizing neutron activation analysis. The contents of guide book consists of five parts as follows; introduction, gamma-ray spectrometry and measurement statistics, its applications, to understand of comprehensive methodology and to utilize a relevant knowledge and information on neutron activation analysis.

  2. Conception d'un nouveau système de distribution de neutrons pour source à haut flux

    OpenAIRE

    Boffy, Romain

    2016-01-01

    The building of new experimental neutron beam facilities as well as the renewal programmes under development at some of the already existing installations have pinpointed the urgent need to develop neutron guide technology in order to make such neutron transport devices more efficient and durable. In fact, a number of mechanical failures of neutron guides have been reported by several research centres. It is therefore important to understand the behaviour of the glass substrates on top of whi...

  3. Low Loss S-Bend Structure With Tapered Curved Waveguides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel S-bend with tapered curved waveguides is proposed. The normalized transmitted power is greater than the conventional bend with weakly guided waveguides. Small size and low loss can be reached by the proposed S-bend.

  4. Spallation Neutron Source (SNS)

    Data.gov (United States)

    Federal Laboratory Consortium — The SNS at Oak Ridge National Laboratory is a next-generation spallation neutron source for neutron scattering that is currently the most powerful neutron source in...

  5. The OSIRIS user guide

    CERN Document Server

    Telling, M T F

    2003-01-01

    This user guide contains all the information necessary to perform a successful neutron scattering experiment on the OSIRIS spectrometer at ISIS, RAL, UK. Since OSIRIS is a continually evolving and improving instrument some information contained within this manual may become redundant. However, the basic instrument operating procedures should remain essentially unchanged. While updated manuals will be produced when appropriate, the most comprehensive source of information concerning OSIRIS is the Instrument Scientist/Local Contact. It would be appreciated, however, if this user guide were the first point of call should problems arise

  6. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  7. Pencils on real curves

    CERN Document Server

    Coppens, Marc

    2011-01-01

    We consider coverings of real algebraic curves to real rational algebraic curves. We show the existence of such coverings having prescribed topological degree on the real locus. From those existence results we prove some results on Brill-Noether Theory for pencils on real curves. For coverings having topological degree 0 we introduce the covering number k and we prove the existence of coverings of degree 4 with prescribed covering number.

  8. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  9. JUMPING THE CURVE

    Directory of Open Access Journals (Sweden)

    René Pellissier

    2012-01-01

    Full Text Available This paper explores the notion ofjump ing the curve,following from Handy 's S-curve onto a new curve with new rules policies and procedures. . It claims that the curve does not generally lie in wait but has to be invented by leadership. The focus of this paper is the identification (mathematically and inferentially ofthat point in time, known as the cusp in catastrophe theory, when it is time to change - pro-actively, pre-actively or reactively. These three scenarios are addressed separately and discussed in terms ofthe relevance ofeach.

  10. Neutron Therapy Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutron Therapy Facility provides a moderate intensity, broad energy spectrum neutron beam that can be used for short term irradiations for radiobiology (cells)...

  11. Application of the MCNPX-McStas interface for shielding calculations and guide design at ESS

    Science.gov (United States)

    Klinkby, E. B.; Knudsen, E. B.; Willendrup, P. K.; Lauritzen, B.; Nonbøl, E.; Bentley, P.; Filges, U.

    2014-07-01

    Recently, an interface between the Monte Carlo code MCNPX and the neutron ray-tracing code MCNPX was developed [1, 2]. Based on the expected neutronic performance and guide geometries relevant for the ESS, the combined MCNPX-McStas code is used to calculate dose rates along neutron beam guides. The generation and moderation of neutrons is simulated using a full scale MCNPX model of the ESS target monolith. Upon entering the neutron beam extraction region, the individual neutron states are handed to McStas via the MCNPX-McStas interface. McStas transports the neutrons through the beam guide, and by using newly developed event logging capability, the neutron state parameters corresponding to un-reflected neutrons are recorded at each scattering. This information is handed back to MCNPX where it serves as neutron source input for a second MCNPX simulation. This simulation enables calculation of dose rates in the vicinity of the guide. In addition the logging mechanism is employed to record the scatterings along the guides which is exploited to simulate the supermirror quality requirements (i.e. m-values) needed at different positions along the beam guide to transport neutrons in the same guide/source setup.

  12. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Science.gov (United States)

    Gozani, Tsahi; King, Michael J.

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time ("E-T" correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple "one-group" models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E-T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  13. Neutron kinetics in moderators and SNM detection through epithermal-neutron-induced fissions

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi, E-mail: tgmaven@gmail.com [1050 Harriet St., Palo Alto, CA 94301 (United States); King, Michael J. [Rapiscan Laboratories Inc., 520 Almanor Ave., Sunnyvale, CA 94085 (United States)

    2016-01-01

    Extension of the well-established Differential Die Away Analysis (DDAA) into a faster time domain, where more penetrating epithermal neutrons induce fissions, is proposed and demonstrated via simulations and experiments. In the proposed method the fissions stimulated by thermal, epithermal and even higher-energy neutrons are measured after injection of a narrow pulse of high-energy 14 MeV (d,T) or 2.5 MeV (d,D) source neutrons, appropriately moderated. The ability to measure these fissions stems from the inherent correlation of neutron energy and time (“E–T” correlation) during the process of slowing down of high-energy source neutrons in common moderating materials such as hydrogenous compounds (e.g., polyethylene), heavy water, beryllium and graphite. The kinetic behavior following injection of a delta-function-shaped pulse (in time) of 14 MeV neutrons into such moderators is studied employing MCNPX simulations and, when applicable, some simple “one-group” models. These calculations served as a guide for the design of a source moderator which was used in experiments. Qualitative relationships between slowing-down time after the pulse and the prevailing neutron energy are discussed. A laboratory system consisting of a 14 MeV neutron generator, a polyethylene-reflected Be moderator, a liquid scintillator with pulse-shape discrimination (PSD) and a two-parameter E–T data acquisition system was set up to measure prompt neutron and delayed gamma-ray fission signatures in a 19.5% enriched LEU sample. The measured time behavior of thermal and epithermal neutron fission signals agreed well with the detailed simulations. The laboratory system can readily be redesigned and deployed as a mobile inspection system for SNM in, e.g., cars and vans. A strong pulsed neutron generator with narrow pulse (<75 ns) at a reasonably high pulse frequency could make the high-energy neutron induced fission modality a realizable SNM detection technique.

  14. Simulating Supernova Light Curves

    Energy Technology Data Exchange (ETDEWEB)

    Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.

  15. Tempo curves considered harmful

    NARCIS (Netherlands)

    Desain, P.; Honing, H.

    1993-01-01

    In the literature of musicology, computer music research and the psychology of music, timing or tempo measurements are mostly presented in the form of continuous curves. The notion of these tempo curves is dangerous, despite its widespread use, because it lulls its users into the false impression th

  16. Pairings on hyperelliptic curves

    CERN Document Server

    Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn

    2009-01-01

    We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.

  17. Retrospectives: Engel Curves

    National Research Council Canada - National Science Library

    Andreas Chai; Alessio Moneta

    2010-01-01

    ..., Professor of Economics, University of Illinois, Chicago, at jpersky@uic.edu jpersky@uic.edu.. Introduction Introduction Engel curves describe how household expenditure on particular goods or Engel curves describe how household expenditure on particular goods or services depends on household income. The name comes from the German st...

  18. Tornado-Shaped Curves

    Science.gov (United States)

    Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio

    2017-01-01

    In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.

  19. A new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Xie Zhong Shen; Cao Jin Yun; Niu Shen Gli; Ouyang Xia Opin

    2002-01-01

    A new scintillating-fiber-array neutron detector has been developed. The detector consists of a bee-hive-shaped lead absorber, a scintillating fiber array, a light guide, a filter and a photomultiplier tube. The experimental results show that the new detector's neuron-to-gamma sensitivity ratio is improved about six times compared to traditional plastic scintillation detectors to 2.5 MeV neutrons and 1.25 MeV gamma rays. Hence, the detector should be very useful in the measurements of pulsed neutrons from fission reactions in a neutron-gamma mixed field.

  20. Computational evaluation oa a neutron field facility

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Jose Julio de O.; Pazianotto, Mauricio T., E-mail: jjfilos@hotmail.com, E-mail: mpazianotto@gmail.com [Instituto Tecnologico de Aeronautica (ITA/DCTA), Sao Jose dos Campos, SP (Brazil); Federico, Claudio A.; Passaro, Angelo, E-mail: claudiofederico@ieav.cta.br, E-mail: angelo@ieav.cta.br [Instituto de Estudos Avancados (IEAv/DCTA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    This paper describes the results of a study based on computer simulation for a realistic 3D model of Ionizing Radiation Laboratory of the Institute for Advanced Studies (IEAv) using the MCNP5 (Monte Carlo N-Particle) code, in order to guide the installing a neutron generator, produced by reaction {sup 3}H(d,n){sup 4}He. The equipment produces neutrons with energy of 14.1 MeV and 2 x 10{sup 8} n/s production rate in 4 πgeometry, which can also be used for neutron dosimetry studies. This work evaluated the spectra and neutron fluence provided on previously selected positions inside the facility, chosen due to the interest to evaluate the assessment of ambient dose equivalent so that they can be made the necessary adjustments to the installation to be consistent with the guidelines of radiation protection and radiation safety, determined by the standards of National Nuclear Energy Commission (CNEN). (author)

  1. Neutron Imaging Calibration to Measure Void Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Bilheux, Hassina Z [ORNL; Sharma, Vishaldeep [ORNL; Fricke, Brian A [ORNL

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  2. Neutron Decay with PERC: a Progress Report

    Science.gov (United States)

    Konrad, G.; Abele, H.; Beck, M.; Drescher, C.; Dubbers, D.; Erhart, J.; Fillunger, H.; Gösselsberger, C.; Heil, W.; Horvath, M.; Jericha, E.; Klauser, C.; Klenke, J.; Märkisch, B.; Maix, R. K.; Mest, H.; Nowak, S.; Rebrova, N.; Roick, C.; Sauerzopf, C.; Schmidt, U.; Soldner, T.; Wang, X.; Zimmer, O.; Perc Collaboration

    2012-02-01

    The PERC collaboration will perform high-precision measurements of angular correlations in neutron beta decay at the beam facility MEPHISTO of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich, Germany. The new beam station PERC, a clean, bright, and versatile source of neutron decay products, is designed to improve the sensitivity of neutron decay studies by one order of magnitude. The charged decay products are collected by a strong longitudinal magnetic field directly from inside a neutron guide. This combination provides the highest phase space density of decay products. A magnetic mirror serves to perform precise cuts in phase space, reducing related systematic errors. The new instrument PERC is under development by an international collaboration. The physics motivation, sensitivity, and applications of PERC as well as the status of the design and preliminary results on uncertainties in proton spectroscopy are presented in this paper.

  3. A multilayer surface detector for ultracold neutrons

    CERN Document Server

    Wang, Zhehui; Callahan, N B; Adamek, E R; Bacon, J D; Blatnik, M; Brandt, A E; Broussard, L J; Clayton, S M; Cude-Woods, C; Currie, S; Dees, E B; Ding, X; Gao, J; Gray, F E; Hoffbauer, M A; Holley, A T; Ito, T M; Liu, C -Y; Makela, M; Ramsey, J C; Pattie,, R W; Salvat, D J; Saunders, A; Schmidt, D W; Schulze, R K; Seestrom, S J; Sharapov, E I; Sprow, A; Tang, Z; Wei, W; Wexler, J W; Womack, T L; Young, A R; Zeck, B A

    2015-01-01

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top $^{10}$B layer is exposed to the vacuum chamber and directly captures UCNs. The ZnS:Ag layer beneath the $^{10}$B layer is a few microns thick, which is sufficient to detect the charged particles from the $^{10}$B(n,$\\alpha$)$^7$Li neutron-capture reaction, while thin enough so that ample light due to $\\alpha$ and $^7$Li escapes for detection by photomultiplier tubes. One-hundred-nm thick $^{10}$B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials and others. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparisons with other existing $^3$He and $^{10}$B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  4. A multilayer surface detector for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hoffbauer, M.A.; Morris, C.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Callahan, N.B.; Adamek, E.R. [Indiana University, Bloomington, IN 47405 (United States); Bacon, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Blatnik, M. [Cleveland State University, Cleveland, OH 44115 (United States); Brandt, A.E. [North Carolina State University, Raleigh, NC 27695 (United States); Broussard, L.J.; Clayton, S.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cude-Woods, C. [North Carolina State University, Raleigh, NC 27695 (United States); Currie, S. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Dees, E.B. [North Carolina State University, Raleigh, NC 27695 (United States); Ding, X. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Gao, J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hickerson, K.P. [University of California Los Angeles, Los Angeles, CA 90095 (United States); Holley, A.T. [Tennessee Technological University, Cookeville, TN 38505 (United States); Ito, T.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, C.-Y. [Indiana University, Bloomington, IN 47405 (United States); and others

    2015-10-21

    A multilayer surface detector for ultracold neutrons (UCNs) is described. The top {sup 10}B layer is exposed to vacuum and directly captures UCNs. The ZnS:Ag layer beneath the {sup 10}B layer is a few microns thick, which is sufficient to detect the charged particles from the {sup 10}B(n,α){sup 7}Li neutron-capture reaction, while thin enough that ample light due to α and {sup 7}Li escapes for detection by photomultiplier tubes. A 100-nm thick {sup 10}B layer gives high UCN detection efficiency, as determined by the mean UCN kinetic energy, detector materials, and other parameters. Low background, including negligible sensitivity to ambient neutrons, has also been verified through pulse-shape analysis and comparison with other existing {sup 3}He and {sup 10}B detectors. This type of detector has been configured in different ways for UCN flux monitoring, development of UCN guides and neutron lifetime research.

  5. The NIST NBSR and Cold Neutron Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rush, J.J. [National Inst. of Standards and Technology, Guthersburg, MD (United States)

    1994-12-31

    The 20 MW Neutron Beam Split-Core Reactor (NBSR) has nine radial thermal beam tubes, and a large, highly accessible (35cm) cold source serving an extensive network of eight guide tubes. In operation or under construction are twenty-five neutron beam instruments (20 for neutron scattering) and about a dozen other facilities for neutron trace analysis, dosimetry and irradiation. The 6 x 15cm cold neutron guides are coated with {sup 58}Ni, and the last three being installed this fall are coated top and bottom with supermirrors for further increases in intensity. The new semi-spherical liquid hydrogen source will be described, along with the eight scattering instruments (reflectometry, SANS and high-resolution spectroscopy) which have, or will have, an extensive use in biological research. These instruments will likely provide the best overall capability in the U.S. for the next decade for a number of applications in biomolecular structure and dynamics.

  6. A new polarized neutron interferometry facility at the NCNR

    Science.gov (United States)

    Shahi, C. B.; Arif, M.; Cory, D. G.; Mineeva, T.; Nsofini, J.; Sarenac, D.; Williams, C. J.; Huber, M. G.; Pushin, D. A.

    2016-03-01

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  7. A new polarized neutron interferometry facility at the NCNR

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, C.B. [Physics and Engineering Physics Department, Tulane University, New Orleans, LA 70188 (United States); Arif, M. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Cory, D.G. [Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L 2Y5 (Canada); Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Mineeva, T. [Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Canadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8 (Canada); Nsofini, J.; Sarenac, D. [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Williams, C.J. [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Huber, M.G., E-mail: michael.huber@nist.gov [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Pushin, D.A., E-mail: dmitry.pushin@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada N2L 3G1 (Canada)

    2016-03-21

    A new monochromatic beamline and facility has been installed at the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR) devoted to neutron interferometry in the research areas of spin control, spin manipulation, quantum mechanics, quantum information science, spintronics, and material science. This facility is possible in part because of advances in decoherence free subspace interferometer designs that have demonstrated consistent contrast in the presence of vibrational noise; a major environmental constraint that has prevented neutron interferometry from being applied at other neutron facilities. Neutron interferometry measures the phase difference between a neutron wave function propagating along two spatially separated paths. It is a practical example of self interference and due to its modest path separation of a few centimeters allows the insertion of samples and macroscopic neutron spin rotators. Phase shifts can be caused by gravitational, magnetic and nuclear interactions as well as purely quantum mechanical effects making interferometer a robust tool in neutron research. This new facility is located in the guide hall of the NCNR upstream of the existing Neutron Interferometry and Optics Facility (NIOF) and has several advantages over the NIOF including higher incident flux, better neutron polarization, and increased accessibility. The long term goal for the new facility is to be a user supported beamline and makes neutron interferometer more generally available to the scientific community. This paper addresses both the capabilities and characteristics of the new facility.

  8. Learning Curve? Which One?

    Directory of Open Access Journals (Sweden)

    Paulo Prochno

    2004-07-01

    Full Text Available Learning curves have been studied for a long time. These studies provided strong support to the hypothesis that, as organizations produce more of a product, unit costs of production decrease at a decreasing rate (see Argote, 1999 for a comprehensive review of learning curve studies. But the organizational mechanisms that lead to these results are still underexplored. We know some drivers of learning curves (ADLER; CLARK, 1991; LAPRE et al., 2000, but we still lack a more detailed view of the organizational processes behind those curves. Through an ethnographic study, I bring a comprehensive account of the first year of operations of a new automotive plant, describing what was taking place on in the assembly area during the most relevant shifts of the learning curve. The emphasis is then on how learning occurs in that setting. My analysis suggests that the overall learning curve is in fact the result of an integration process that puts together several individual ongoing learning curves in different areas throughout the organization. In the end, I propose a model to understand the evolution of these learning processes and their supporting organizational mechanisms.

  9. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  10. Neutron Capture Nucleosynthesis

    CERN Document Server

    Kiss, Miklos

    2016-01-01

    Heavy elements (beyond iron) are formed in neutron capture nucleosynthesis processes. We have proposed a simple unified model to investigate the neutron capture nucleosynthesis in arbitrary neutron density environment. We have also investigated what neutron density is required to reproduce the measured abundance of nuclei assuming equilibrium processes. We found both of these that the medium neutron density has a particularly important role at neutron capture nucleosynthesis. About these results most of the nuclei can formed at medium neutron capture density environment e.g. in some kind of AGB stars. Besides these observations our model is capable to use educational purpose.

  11. Development of cold neutron depth profiling system at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, B.G. [Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-355 (Korea, Republic of); Sun, G.M., E-mail: gmsun@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-355 (Korea, Republic of); Choi, H.D. [Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2014-07-01

    A neutron depth profiling (NDP) system has been designed and developed at HANARO, a 30 MW research reactor at the Korea Atomic Energy Research Institute (KAERI). The KAERI-NDP system utilizes cold neutrons that are transported along the CG1 neutron guide from the cold neutron source and it consists of a neutron beam collimator, a target chamber, a beam stopper, and charged particle detectors along with NIM-standard modules for charged particle pulse-height analysis. A 60 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The energy distribution of the cold neutron beam at the end of the neutron guide was calculated by using the Monte Carlo simulation code McStas, and a neutron flux of 1.8×10{sup 8} n/cm{sup 2} s was determined by using the gold foil activation method at the sample position. The performance of the charged particle detection of the KAERI-NDP system was tested by using Standard Reference Materials. The energy loss spectra of alpha particles and Li ions emitted from {sup 10}B, which was irradiated by cold neutrons, were measured. The measured peak concentration and the areal density of {sup 10}B in the Standard Reference Material are consistent with the reference values within 1% and 3.4%, respectively.

  12. Development of cold neutron depth profiling system at HANARO

    Science.gov (United States)

    Park, B. G.; Sun, G. M.; Choi, H. D.

    2014-07-01

    A neutron depth profiling (NDP) system has been designed and developed at HANARO, a 30 MW research reactor at the Korea Atomic Energy Research Institute (KAERI). The KAERI-NDP system utilizes cold neutrons that are transported along the CG1 neutron guide from the cold neutron source and it consists of a neutron beam collimator, a target chamber, a beam stopper, and charged particle detectors along with NIM-standard modules for charged particle pulse-height analysis. A 60 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The energy distribution of the cold neutron beam at the end of the neutron guide was calculated by using the Monte Carlo simulation code McStas, and a neutron flux of 1.8×108 n/cm2 s was determined by using the gold foil activation method at the sample position. The performance of the charged particle detection of the KAERI-NDP system was tested by using Standard Reference Materials. The energy loss spectra of alpha particles and Li ions emitted from 10B, which was irradiated by cold neutrons, were measured. The measured peak concentration and the areal density of 10B in the Standard Reference Material are consistent with the reference values within 1% and 3.4%, respectively.

  13. Investigation of Isfahan miniature neutron source reactor (MNSR for boron neutron capture therapy by MCNP simulation

    Directory of Open Access Journals (Sweden)

    S.Z Kalantari

    2015-01-01

    Full Text Available One of the important neutron sources for Boron Neutron Capture Therapy (BNCT is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA. In this paper, Miniature Neutron Source Reactor (MNSR as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA for the reactor and the neutron transport from the core of the reactor to the output windows of BSA was simulated by MCNPX code. To optimize the BSA performance, two sets of parameters should be evaluated, in-air and in-phantom parameters. For evaluating in-phantom parameters, a Snyder head phantom was used and biological dose rate and dose-depth curve were calculated in brain normal and tumor tissues. Our calculations showed that the neutron flux of the MNSR reactor can be used for BNCT, and the designed BSA in optimum conditions had a good therapeutic characteristic for BNCT.

  14. Specular neutron reflectivity and beyond

    Indian Academy of Sciences (India)

    Saibal Basu

    2008-10-01

    A polarized neutron reflectometer for vertical samples is available at Dhruva reactor guide hall, Trombay. The reflectometer has been designed for horizontal scattering vector. It uses a position-sensitive detector for obtaining the reflectivity pattern. This arrangement allows one to obtain diffuse or off-specular intensity around any specular peak at one go. We have used this instrument for studying the structure of various metal-metal and metal-semiconductor multilayers by specular reflectometry. We have also been successful in understanding interface morphology of several films through diffuse neutron reflectometry (DNR) on this reflectometer. Some of the recent results are presented in this paper to demonstrate the strength of these two techniques.

  15. Characterization of neutron beams for boron neutron capture therapy: in-air radiobiological dosimetry.

    Science.gov (United States)

    Yamamoto, Tetsuya; Matsumura, Akira; Yamamoto, Kazuyoshi; Kumada, Hiroaki; Hori, Naohiko; Torii, Yoshiya; Shibata, Yasushi; Nose, Tadao

    2003-07-01

    The survival curves and the RBE for the dose components generated in boron neutron capture therapy (BNCT) were determined separately in neutron beams at Japan Research Reactor No. 4. The surviving fractions of V79 Chinese hamster cells with or without 10B were obtained using an epithermal neutron beam (ENB), a mixed thermal-epithermal neutron beam (TNB-1), and a thermal (TNB-2) neutron beam; these beams were used or are planned for use in BNCT clinical trials. The cell killing effect of the neutron beam in the presence or absence of 10B was highly dependent on the neutron beam used and depended on the epithermal and fast-neutron content of the beam. The RBEs of the boron capture reaction for ENB, TNB-1 and TNB-2 were 4.07 +/- 0.22, 2.98 +/- 0.16 and 1.42 +/- 0.07, respectively. The RBEs of the high-LET dose components based on the hydrogen recoils and the nitrogen capture reaction were 2.50 +/- 0.32, 2.34 +/- 0.30 and 2.17 +/- 0.28 for ENB, TNB-1 and TNB-2, respectively. The RBEs of the neutron and photon components were 1.22 +/- 0.16, 1.23 +/- 0.16, and 1.21 +/- 0.16 for ENB, TNB-1 and TNB-2, respectively. The approach to the experimental determination of RBEs outlined in this paper allows the RBE-weighted dose calculation for each dose component of the neutron beams and contributes to an accurate inter-beam comparison of the neutron beams at the different facilities employed in ongoing and planned BNCT clinical trials.

  16. TIME INTERVAL APPROACH TO THE PULSED NEUTRON LOGGING METHOD

    Institute of Scientific and Technical Information of China (English)

    赵经武; 苏为宁

    1994-01-01

    The time interval of neibouring neutrons emitted from a steady state neutron source can be treated as that from a time-dependent neutron source,In the rock space.the neutron flux is given by the neutron diffusion equation and is composed of an infinite number of “modes”,EaCh“mode”,is composed of two die-away curves.The delay action has been discussed and used to measure the time interval with only one detector in the experiment,Nuclear reactions with the time distribution due to different types of radiations observed in the neutron well-logging methods are presented with a view to getting the rock nuclear parameters from the time interval technique.

  17. SRHA calibration curve

    Data.gov (United States)

    U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...

  18. ROBUST DECLINE CURVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sutawanir Darwis

    2012-05-01

    Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.

  19. Large Curved Surface Measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measurement principle of large curved surface through theodolite industry survey system is introduced. Two methods are suggested with respect to the distribution range of curved surface error. The experiments show that the measurement precision can be up to 0.15mm with relative precision of 3×10-5. Finally, something needed paying attention to and the application aspects on theodolite industry survey system are given.

  20. Counting curves on surfaces

    OpenAIRE

    2015-01-01

    In this paper we consider an elementary, and largely unexplored, combinatorial problem in low-dimensional topology. Consider a real 2-dimensional compact surface $S$, and fix a number of points $F$ on its boundary. We ask: how many configurations of disjoint arcs are there on $S$ whose boundary is $F$? We find that this enumerative problem, counting curves on surfaces, has a rich structure. For instance, we show that the curve counts obey an effective recursion, in the general framework of to...

  1. Arithmetic of Shimura curves

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This is the note for a series of lectures that the author gave at the Centre de Recerca Matemtica (CRM), Bellaterra, Barcelona, Spain on October 19–24, 2009. The aim is to give a comprehensive description of some recent work of the author and his students on generalisations of the Gross-Zagier formula, Euler systems on Shimura curves, and rational points on elliptic curves.

  2. Highly curved microchannel plates

    Science.gov (United States)

    Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.

    1990-01-01

    Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.

  3. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  4. Weapons Neutron Research Facility (WNR)

    Data.gov (United States)

    Federal Laboratory Consortium — The Weapons Neutron Research Facility (WNR) provides neutron and proton beams for basic, applied, and defense-related research. Neutron beams with energies ranging...

  5. Influence of density and chemical composition of soils in the neutrons probes answer; Influencia da densidade e da composicao quimica dos solos na resposta de sondas de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Crispino, Marcos Luiz; Antonino, Antonio Celso Dantas; Dall`Olio, Attilio; Oliveira Lira, Carlos Alberto Brayner de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Carneiro, Clemente J. Gusmao [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    1996-08-01

    The determination of soil humidity with neutron probes is based in the measure of the thermal neutron flux intensity and its behavior with the soil depend: soil`s chemical composition; soils physical parameters; neutrons` energetic spectrum and neutron-source detector geometry.The objective of this paper is to apply the multigroup function theory to calculate a neutron probe calibration curve utilizing representatives parameters and coefficients of soils horizons in a experimental station in Zona da Mata, Pernambuco, Brazil 2 tabs., 3 figs.

  6. Colloquium: Measuring the neutron star equation of state using x-ray timing

    Science.gov (United States)

    Watts, Anna L.; Andersson, Nils; Chakrabarty, Deepto; Feroci, Marco; Hebeler, Kai; Israel, Gianluca; Lamb, Frederick K.; Miller, M. Coleman; Morsink, Sharon; Özel, Feryal; Patruno, Alessandro; Poutanen, Juri; Psaltis, Dimitrios; Schwenk, Achim; Steiner, Andrew W.; Stella, Luigi; Tolos, Laura; van der Klis, Michiel

    2016-04-01

    One of the primary science goals of the next generation of hard x-ray timing instruments is to determine the equation of state of matter at supranuclear densities inside neutron stars by measuring the radius of neutron stars with different masses to accuracies of a few percent. Three main techniques can be used to achieve this goal. The first involves waveform modeling. The flux observed from a hotspot on the neutron star surface offset from the rotational pole will be modulated by the star's rotation, and this periodic modulation at the spin frequency is called a pulsation. As the photons propagate through the curved spacetime of the star, information about mass and radius is encoded into the shape of the waveform (pulse profile) via special and general-relativistic effects. Using pulsations from known sources (which have hotspots that develop either during thermonuclear bursts or due to channeled accretion) it is possible to obtain tight constraints on mass and radius. The second technique involves characterizing the spin distribution of accreting neutron stars. A large collecting area enables highly sensitive searches for weak or intermittent pulsations (which yield spin) from the many accreting neutron stars whose spin rates are not yet known. The most rapidly rotating stars provide a clean constraint, since the limiting spin rate where the equatorial surface velocity is comparable to the local orbital velocity, at which mass shedding occurs, is a function of mass and radius. However, the overall spin distribution also provides a guide to the torque mechanisms in operation and the moment of inertia, both of which can depend sensitively on dense matter physics. The third technique is to search for quasiperiodic oscillations in x-ray flux associated with global seismic vibrations of magnetars (the most highly magnetized neutron stars), triggered by magnetic explosions. The vibrational frequencies depend on stellar parameters including the dense matter equation of

  7. Neutron scattering at Australia's replacement research reactor

    Science.gov (United States)

    Robinson, R. A.; Kennedy, S. J.

    2002-01-01

    On August 25 1999, the Australian government gave final approval to build a research reactor to replace the existing HIFAR reactor at Lucas Heights. The replacement reactor, which will commence operation in 2005, will be multipurpose in function, with capabilities for both neutron-beam research and radioisotope production. Regarding beams, cold and thermal neutron sources are to be installed and the intent is to use supermirror guides, with coatings with critical angles up to 3 times that of natural Ni, to transport cold and thermal neutron beams into a large modern guide hall. The reactor and all the associated infrastructure, with the exception of the neutron beam instruments, is to be built by INVAP, SE and subcontractors in a turnkey contract. The goal is to have at least eight leading-edge neutron-beam instruments ready in 2005, and they will be developed by ANSTO and other contracted organisations, in consultation with the Australian user community and interested overseas parties. A review of the planned scientific capabilities, a description of the facility and a status report on the activities so far is given.

  8. 13/2 ways to count curves

    CERN Document Server

    Pandharipande, R

    2011-01-01

    In the past 20 years, compactifications of the families of curves in algebraic varieties X have been studied via stable maps, Hilbert schemes, stable pairs, unramified maps, and stable quotients. Each path leads to a different enumeration of curves. A common thread is the use of a 2-term deformation/obstruction theory to define a virtual fundamental class. The richest geometry occurs when X is a nonsingular projective variety of dimension 3. We survey here the 13/2 principal ways to count curves with special attention to the 3-fold case. The different theories are linked by a web of conjectural relationships which we highlight. Our goal is to provide a guide for graduate students looking for an elementary route into the subject.

  9. Point Scattered Function (PScF) for fast neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mohamed H. [Nuclear and Radiation Engineering Department, Alexandria University, Alexandria 21544 (Egypt)], E-mail: mhmheg@yahoo.com

    2009-08-01

    Fast neutron radiography opened up a new range of possibilities to image extremely dense objects. The removal of the scattering effect is one of the most challenging problems in neutron imaging. Neutron scattering in fast neutron radiography did not receive much attention compared with X-ray and thermal neutron radiography. The purpose of this work is to investigate the behavior of the Point Scattered Function (PScF) as applied in fast neutron radiography. The PScF was calculated using MCNP as a spatial distribution of scattered neutrons over the detector surface for one emitting source element. Armament and explosives materials, namely, Rifle steel, brass, aluminum and trinitrotoluene (TNT) were simulated. Effect of various sample thickness and sample-to-detector distance were considered. Simulated sample geometries included a slab with varying thickness, a sphere with varying radii, and a cylinder with varying base radii. Different neutron sources, namely, Cf-252, DT as well as DD neutron sources were considered. Neutron beams with zero degree divergence angle; and beams with varying angles related to the normal to the source plane were simulated. Curve fitting of the obtained PScF, in the form of Gaussian function, were given to be used in future work using image restoration codes. Analytical representation of the height as well as the Full Width at Half Maximum (FWHM) of the obtained Gaussian functions eliminates the need to calculate the PScF for sample parameters that were not investigated in this study.

  10. A 2D Acceptance Diagram Description of Neutron Primary Spectrometer Beams

    CERN Document Server

    Cussen, Leo D

    2016-01-01

    Many types of neutron spectrometer use a conventional primary spectrometer consisting of some collimator, a crystal monochromator and a second collimator. Conventional resolution descriptions use instrument parameter values to deduce the beam character and thence the instrument transmission and resolution. This article solves the inverse problem of choosing beam elements to deliver some desired beam character and shows that there are many possible choices of elements to deliver any given beam character. Dealing with this multiplicity seems to be a central issue in the search for optimal instrument designs especially if using numerical methods. The particular approach adopted here is to extend the 2D "Acceptance Diagram" view of the in-scattering-plane component of primary spectrometer beams to include horizontally curved monochromators and a variety of collimator types (beamtubes, guides, Soller collimators and radial Soller collimators). This visual approach clarifies the effect of primary spectrometer varia...

  11. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  12. Superheated drop neutron spectrometer

    CERN Document Server

    Das, M; Roy, B; Roy, S C; Das, Mala

    2000-01-01

    Superheated drops are known to detect neutrons through the nucleation caused by the recoil nuclei produced by the interactions of neutrons with the atoms constituting the superheated liquid molecule. A novel method of finding the neutron energy from the temperature dependence response of SDD has been developed. From the equivalence between the dependence of threshold energy for nucleation on temperature of SDD and the dependence of dE/dx of the recoil ions with the energy of the neutron, a new method of finding the neutron energy spectrum of a polychromatic as well as monochromatic neutron source has been developed.

  13. Concrete enclosure to shield a neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Villagrana M, L. E.; Rivera P, E.; De Leon M, H. A.; Soto B, T. G.; Hernandez D, V. M.; Vega C, H. R., E-mail: emmanuelvillagrana@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Apdo. Postal 336, 98000 Zacatecas (Mexico)

    2012-10-15

    In the aim to design a shielding for a {sup 239}PuBe isotopic neutron source several Monte Carlo calculations were carried out using MCNP5 code. First, a point-like source was modeled in vacuum and the neutron spectrum and the ambient dose equivalent were calculated at several distances ranging from 5 up to 150 cm, these calculations were repeated including air, and a 1 x 1 x 1 m{sup 3} enclosure that was shielded with 5, 15, 20, 25, 30, 50 and 80 cm-thick Portland type concrete walls. At all the points located inside the enclosure neutron spectra from 10{sup -8} up 0.5 MeV were the same regardless the distance from the source showing the room-return effect, for energies larger than 0.5 MeV neutron spectra are diminished as the distance increases. Outside the enclosure it was noticed that neutron spectra becomes -softer- as the concrete thickness increases due to reduction of mean neutron energy. With the ambient dose values the attenuation curve in terms of concrete thickness was calculated. (Author)

  14. Moduli of Trigonal Curves

    CERN Document Server

    Stankova-Frenkel, Z E

    1997-01-01

    We study the moduli of trigonal curves. We establish the exact upper bound of ${36(g+1)}/(5g+1)$ for the slope of trigonal fibrations. Here, the slope of any fibration $X\\to B$ of stable curves with smooth general member is the ratio Hodge class $\\lambda$ on the moduli space $\\bar{\\mathfrak{M}}_g$ to the base $B$. We associate to a trigonal family $X$ a canonical rank two vector bundle $V$, and show that for Bogomolov-semistable $V$ the slope satisfies the stronger inequality ${\\delta_B}/{\\lambda_B}\\leq 7+{6}/{g}$. We further describe the rational Picard group of the {trigonal} locus $\\bar{\\mathfrak T}_g$ in the moduli space $\\bar{\\mathfrak{M}}_g$ of genus $g$ curves. In the even genus case, we interpret the above Bogomolov semistability condition in terms of the so-called Maroni divisor in $\\bar{\\mathfrak T}_g$.

  15. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  16. The sales learning curve.

    Science.gov (United States)

    Leslie, Mark; Holloway, Charles A

    2006-01-01

    When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.

  17. Measurements of thermal- and slow-neutron dose distributions in ordinary concrete shield using a reactor neutron beam of different energy ranges

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, R.M.; Makarious, A.S.; El-Kolaly, M.A.; Afifi, Y.A.

    1980-01-01

    Experimental studies on the distribution and attenuation of thermal and slow neutron doses in ordinary concrete shield have been carried-out. A collimated beam of reactor neutrons emitted from one of the horizontal channels of the ET-RR-1 reactor was used. Measurements were performed using, a direct beam, cadmium filtered beam and boron carbide filtered beam. The neutron doses were measured using thermolumin-escent Li/sub 2/B/sub 4/O/sub 7/ detectors. The measured data have been analyzed and a group of attenuation curves were given for beams of reactor neutrons of different energy. These curves show that cadmium and boron carbide filters tend to decrease the neutron doses specially at the beginning of penetration. The data were transformed to that which would be obtained using neutron sources of different geometries.

  18. Algebraic curves and cryptography

    CERN Document Server

    Murty, V Kumar

    2010-01-01

    It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on

  19. Power Curve Measurements REWS

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...

  20. Power curve investigation

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Vesth, Allan

    are not performed according to IEC 61400-12-1 [1]. Therefore, the results presented in this report cannot be considered a power curve according to the reference standard, and are referred to as “power curve investigation” instead. The measurements have been performed by a customer and the data analysis has been......This report describes the analysis carried out with data from a given turbine in a wind farm and a chosen period. The purpose of the analysis is to correlate the power output of the wind turbine to the wind speed measured by a nacelle-mounted anemometer. The measurements and analysis...

  1. Neutron anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, G.E. [Univ. of Sheffield (United Kingdom)

    1994-12-31

    The familiar extremes of crystalline material are single-crystals and random powders. In between these two extremes are polycrystalline aggregates, not randomly arranged but possessing some preferred orientation and this is the form taken by constructional materials, be they steel girders or the bones of a human or animal skeleton. The details of the preferred orientation determine the ability of the material to withstand stress in any direction. In the case of bone the crucial factor is the orientation of the c-axes of the mineral content - the crystals of the hexagonal hydroxyapatite - and this can readily be determined by neutron diffraction. In particular it can be measured over the volume of a piece of bone, utilizing distances ranging from 1mm to 10mm. The major practical problem is to avoid the intense incoherent scattering from the hydrogen in the accompanying collagen; this can best be achieved by heat-treatment and it is demonstrated that this does not affect the underlying apatite. These studies of bone give leading anatomical information on the life and activities of humans and animals - including, for example, the life history of the human femur, the locomotion of sheep, the fracture of the legs of racehorses and the life-styles of Neolithic tribes. We conclude that the material is placed economically in the bone to withstand the expected stresses of life and the environment. The experimental results are presented in terms of the magnitude of the 0002 apatite reflection. It so happens that for a random powder the 0002, 1121 reflections, which are neighboring lines in the powder pattern, are approximately equal in intensity. The latter reflection, being of manifold multiplicity, is scarcely affected by preferred orientation so that the numerical value of the 0002/1121 ratio serves quite accurately as a quantitative measure of the degree of orientation of the c-axes in any chosen direction for a sample of bone.

  2. Paths of algebraic hyperbolic curves

    Institute of Scientific and Technical Information of China (English)

    Ya-juan LI; Li-zheng LU; Guo-zhao WANG

    2008-01-01

    Cubic algebraic hyperbolic (AH) Bezier curves and AH spline curves are defined with a positive parameter α in the space spanned by {1, t, sinht, cosht}. Modifying the value of α yields a family of AH Bezier or spline curves with the family parameter α. For a fixed point on the original curve, it will move on a defined curve called "path of AH curve" (AH Bezier and AH spline curves) when α changes. We describe the geometric effects of the paths and give a method to specify a curve passing through a given point.

  3. Optimizing moderator dimensions for neutron scattering at the spallation neutron source.

    Science.gov (United States)

    Zhao, J K; Robertson, J L; Herwig, Kenneth W; Gallmeier, Franz X; Riemer, Bernard W

    2013-12-01

    In this work, we investigate the effect of neutron moderator dimensions on the performance of neutron scattering instruments at the Spallation Neutron Source (SNS). In a recent study of the planned second target station at the SNS facility, we have found that the dimensions of a moderator play a significant role in determining its surface brightness. A smaller moderator may be significantly brighter over a smaller viewing area. One of the immediate implications of this finding is that for modern neutron scattering instrument designs, moderator dimensions and brightness have to be incorporated as an integrated optimization parameter. Here, we establish a strategy of matching neutron scattering instruments with moderators using analytical and Monte Carlo techniques. In order to simplify our treatment, we group the instruments into two broad categories: those with natural collimation and those that use neutron guide systems. For instruments using natural collimation, the optimal moderator selection depends on the size of the moderator, the sample, and the moderator brightness. The desired beam divergence only plays a role in determining the distance between sample and moderator. For instruments using neutron optical systems, the smallest moderator available that is larger than the entrance dimension of the closest optical element will perform the best (assuming, as is the case here that smaller moderators are brighter).

  4. The spectrometer PERKEO III and the decay of free neutrons; Das Spektrometer PERKEO III und der Zerfall des freien Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Maerkisch, B.M.

    2006-10-18

    The Standard Model of particle physics describes neutron decay with three parameters. In contrast to that, a multitude of observables are accessible experimentally. With precision measurements sensitive tests of the Standard Model are thus possible. The neutron decay spectrometer PERKEO III was designed and built as part of this work. It will replace its predecessor PERKEO II, which has reached its systematical and statistical limits. With the new instrument measurements with continuous and pulsed neutron beams become feasible. This either provides an increase in statistics of up to two orders of magnitude, or eliminates the two major instrument specific sources of systematical corrections. In our first measurement in winter 2006/2007, the available event rate will be used to determine weak magnetism from the electron asymmetry A. Previously, this value was not statistically accessible in neutron decay. Systematics are analyzed with the help of our measurement with PERKEO II. For this measurement PERKEO III will be installed at the neutron guide H113 at the Institute Laue-Langevin, Grenoble. The neutron beam from this guide is characterized and a model is given, which allows the rapid calculation of beam profiles and absolute event rates from such a beam. In preparation of a future neutron decay instrument the reflective properties of two non-magnetic neutron mirrors were measured. (orig.)

  5. Nacelle lidar power curve

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Wagner, Rozenn

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  6. Graphs, Curves and Dynamics

    NARCIS (Netherlands)

    Kool, J.

    2013-01-01

    This thesis has three main subjects. The first subject is Measure-theoretic rigidity of Mumford Curves. One can describe isomorphism of two compact hyperbolic Riemann surfaces of the same genus by a measure-theoretic property: a chosen isomorphism of their fundamental groups corresponds to a homeomo

  7. Power Curve Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present anal...

  8. Power Curve Measurements

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  9. Power Curve Measurements FGW

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Villanueva, Héctor

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  10. Fitting a Gompertz curve

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1994-01-01

    textabstractIn this paper, a simple Gompertz curve-fitting procedure is proposed. Its advantages include the facts that the stability of the saturation level over the sample period can be checked, and that no knowledge of its value is necessary for forecasting. An application to forecasting the stoc

  11. Gompertz curves with seasonality

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1994-01-01

    textabstractThis paper considers an extension of the usual Gompertz curve by allowing the parameters to vary over the seasons. This means that, for example, saturation levels can be different over the year. An estimation and testing method is proposed and illustrated with an example.

  12. Power Curve Measurements

    DEFF Research Database (Denmark)

    Gómez Arranz, Paula; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  13. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Vesth, Allan; Yordanova, Ginka

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...

  14. Graphing Polar Curves

    Science.gov (United States)

    Lawes, Jonathan F.

    2013-01-01

    Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…

  15. Power Curve Measurements, REWS

    DEFF Research Database (Denmark)

    Villanueva, Héctor; Gómez Arranz, Paula

    This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere...

  16. Power Curve Measurements

    DEFF Research Database (Denmark)

    Federici, Paolo; Kock, Carsten Weber

    This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...

  17. Straightening Out Learning Curves

    Science.gov (United States)

    Corlett, E. N.; Morecombe, V. J.

    1970-01-01

    The basic mathematical theory behind learning curves is explained, together with implications for clerical and industrial training, evaluation of skill development, and prediction of future performance. Brief studies of textile worker and typist training are presented to illustrate such concepts as the reduction fraction (a consistent decrease in…

  18. Carbon Lorenz Curves

    NARCIS (Netherlands)

    Groot, L.F.M.

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across

  19. Power Curve Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Federici, Paolo

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  20. Power Curve Measurements, FGW

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....

  1. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  2. Intense fusion neutron sources

    Science.gov (United States)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  3. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  4. Advanced neutron absorber materials

    Science.gov (United States)

    Branagan, Daniel J.; Smolik, Galen R.

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  5. Prototype Neutron Energy Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Mitchell, Sanjoy Mukhopadhyay, Richard Maurer, Ronald Wolff

    2010-06-16

    The project goals are: (1) Use three to five pressurized helium tubes with varying polyethylene moderators to build a neutron energy spectrometer that is most sensitive to the incident neutron energy of interest. Neutron energies that are of particular interest are those from the fission neutrons (typically around 1-2 MeV); (2) Neutron Source Identification - Use the neutron energy 'selectivity' property as a tool to discriminate against other competing processes by which neutrons are generated (viz. Cosmic ray induced neutron production [ship effect], [a, n] reactions); (3) Determine the efficiency as a function of neutron energy (response function) of each of the detectors, and thereby obtain the composite neutron energy spectrum from the detector count rates; and (4) Far-field data characterization and effectively discerning shielded fission source. Summary of the presentation is: (1) A light weight simple form factor compact neutron energy spectrometer ready to be used in maritime missions has been built; (2) Under laboratory conditions, individual Single Neutron Source Identification is possible within 30 minutes. (3) Sources belonging to the same type of origin viz., (a, n), fission, cosmic cluster in the same place in the 2-D plot shown; and (4) Isotopes belonging to the same source origin like Cm-Be, Am-Be (a, n) or Pu-239, U-235 (fission) do have some overlap in the 2-D plot.

  6. Neutron scattering at Australia's replacement research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, S.J.; Robinson, R.A.; Hunter, B.A. [Physics Division, ANSTO, Lucas Heights, NSW (Australia)

    2001-03-01

    On August 25{sup th} 1999, the Australian government gave final approval to build a research reactor to replace the existing HIFAR reactor at Lucas Heights. The replacement reactor, which will commence operation in 2005, will be multipurpose with capabilities for both neutron beam research and radioisotope production. Cold, and thermal neutron sources are to be installed and supermirror guides will transport cold and thermal neutron beams into a large modern guide hall. The reactor and associated infrastructure is to be built by INVAP, SE and subcontractors under contract. The neutron beam instruments will be developed by ANSTO in consultation with the Australian user community and interested overseas parties. We review the planned scientific capabilities, give a description of the facility and a status report on the activities so far. (author)

  7. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  8. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  9. Irradiation facilities at the spallation neutron source SINQ

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, E.; Ledermann, J.; Aebersold, H.; Kuehne, G.; Kohlik, K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Four independent experiments for sample irradiation are under construction and in preparation for operational tests at the spallation source SINQ. Three of them are located inside a thermal beam port with end positions inside or near the moderator tank. The other experiment will be established at the end position of a super mirror lined neutron guide for applications with cold neutrons. (author) 3 figs., 1 tab., 6 refs.

  10. Carbon Lorenz Curves

    Energy Technology Data Exchange (ETDEWEB)

    Groot, L. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)

    2008-11-15

    The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across countries. These tools allow policy-makers and the general public to grasp at a single glance the impact of conventional distribution rules such as equal caps or grandfathering, or more sophisticated ones, on the distribution of greenhouse gas emissions. Second, using the Samuelson rule for the optimal provision of a public good, the Pareto-optimal distribution of carbon emissions is compared with the distribution that follows if countries follow Nash-Cournot abatement strategies. It is shown that the Pareto-optimal distribution under the Samuelson rule can be approximated by the equal cap division, represented by the diagonal in the Lorenz curve diagram.

  11. Managing curved canals

    Directory of Open Access Journals (Sweden)

    Iram Ansari

    2012-01-01

    Full Text Available Dilaceration is the result of a developmental anomaly in which there has been an abrupt change in the axial inclination between the crown and the root of a tooth. Dilaceration can be seen in both the permanent and deciduous dentitions, and is more commonly found in posterior teeth and in maxilla. Periapical radiographs are the most appropriate way to diagnose the presence of root dilacerations. The controlled regularly tapered preparation of the curved canals is the ultimate challenge in endodontics. Careful and meticulous technique will yield a safe and sufficient enlargement of the curved canals. This article gives a review of the literature and three interesting case reports of root dilacerations.

  12. Limiting rotational period of neutron stars

    Science.gov (United States)

    Glendenning, Norman K.

    1992-11-01

    We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass shedding would occur, is 0.33 ms for a M=1.442Msolar neutron star (the mass of PSR1913+16). A still lower curve, based only on the structure of Einstein's equations, limits any star whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

  13. LCC: Light Curves Classifier

    Science.gov (United States)

    Vo, Martin

    2017-08-01

    Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.

  14. Dynamics of curved fronts

    CERN Document Server

    Pelce, Pierre

    1989-01-01

    In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.

  15. Estimating Corporate Yield Curves

    OpenAIRE

    Antionio Diaz; Frank Skinner

    2001-01-01

    This paper represents the first study of retail deposit spreads of UK financial institutions using stochastic interest rate modelling and the market comparable approach. By replicating quoted fixed deposit rates using the Black Derman and Toy (1990) stochastic interest rate model, we find that the spread between fixed and variable rates of interest can be modeled (and priced) using an interest rate swap analogy. We also find that we can estimate an individual bank deposit yield curve as a spr...

  16. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: The thermal triple axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot single-crystal diffractometer HEiDi for structure analysis with neutrons, the backscattering spectrometer SPHERES, neutron polarization analysis with tht time-of-flight spectrometer DNS, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering with the KWS-1 and KWS-2 diffractometers, the very-small-angle neutron scattering diffractrometer with focusing mirror KWS-3, the resonance spin-echo spectrometer RESEDA, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  17. Neutron scatter camera

    Science.gov (United States)

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  18. Atypical Light Curves

    CERN Document Server

    Steenwyk, Steven D; Molnar, Lawrence A

    2013-01-01

    We have identified some two-hundred new variable stars in a systematic study of a data archive obtained with the Calvin-Rehoboth observatory. Of these, we present five close binaries showing behaviors presumably due to star spots or other magnetic activity. For context, we first present two new RS CVn systems whose behavior can be readily attribute to star spots. Then we present three new close binary systems that are rather atypical, with light curves that are changing over time in ways not easily understood in terms of star spot activity generally associated with magnetically active binary systems called RS CVn systems. Two of these three are contact binaries that exhibit gradual changes in average brightness without noticeable changes in light curve shape. A third system has shown such large changes in light curve morphology that we speculate this may be a rare instance of a system that transitions back and forth between contact and noncontact configurations, perhaps driven by magnetic cycles in at least o...

  19. Joule heating governing the cooling of magnetized neutron stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2008-01-01

    We present two-dimensional simulations for the cooling of neutron stars with strong magnetic fields (B > 1e13 Gauss). We study how the cooling curves are influenced by magnetic field decay. We show that the Joule heating effects are very large and in some cases control the thermal evolution. We characterize the temperature anisotropy induced by the magnetic field and predict the surface temperature distribution for the early and late stages of the evolution of isolated neutron stars, comparing our results with available observational data of isolated neutron stars.

  20. Methods of observation of the centrifugal quantum states of neutrons

    Science.gov (United States)

    Cubitt, R.; Nesvizhevsky, V. V.; Petukhov, A. K.; Voronin, A. Yu.; Pignol, G.; Protasov, K. V.; Gurshijants, P.

    2009-12-01

    We propose methods for observation of the quasi-stationary states of neutrons, localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror's optical potential. This phenomenon is an example of an exactly solvable "quantum bouncer" problem that can be studied experimentally. It could provide a new tool for studying fundamental neutron-matter interactions, neutron quantum optics and surface physics effects. The feasibility of observation of such quantum states has been proven in first experiments.

  1. Methods of observation of the centrifugal quantum states of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cubitt, R. [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Nesvizhevsky, V.V., E-mail: nesvizhevsky@ill.e [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Petukhov, A.K. [Institut Laue-Langevin (ILL), 6 rue Jules Horowitz, F-38042 Grenoble (France); Voronin, A.Yu., E-mail: dr.a.voronin@gmail.co [P.N. Lebedev Physical Institute, 53 Leninsky Prospekt, 119991 Moscow (Russian Federation); Pignol, G.; Protasov, K.V. [Laboratoire de Physique Subatomique et de Cosmologie (LPSC), IN2P3-CNRS, UJF, 53, Avenue des Martyrs, F-38026 Grenoble (France); Gurshijants, P. [Institute of Solid State Physics (ISSP), Institutskaya Street 2, 142432 Chernogolovka, Moscow Region (Russian Federation)

    2009-12-11

    We propose methods for observation of the quasi-stationary states of neutrons, localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror's optical potential. This phenomenon is an example of an exactly solvable 'quantum bouncer' problem that can be studied experimentally. It could provide a new tool for studying fundamental neutron-matter interactions, neutron quantum optics and surface physics effects. The feasibility of observation of such quantum states has been proven in first experiments.

  2. Recent neutron scattering research and development in India

    Indian Academy of Sciences (India)

    S L Chaplot

    2006-07-01

    A national facility for neutron beam research is operated at the research reactor Dhruva at Trombay in India. The research activities involve various nanoscale structural, dynamical and magnetic investigations on materials of scientific interest and technological importance. Thermal neutron has certain special properties that enable, e.g., selective viewing of parts of an organic molecule, hydrogen or water in materials, investigations on minerals and ceramics, and microscopic and mesoscopic characterization of bulk samples. The national facility comprises of eight neutron-scattering spectrometers in the reactor hall, and another four spectrometers in the neutron-guide laboratory. In addition, a neutron radiography facility and a detector development laboratory are located at APSARA reactor. All the instruments including the detectors and electronics have been developed within BARC. A new powder diffractometer (PD-3) is being developed by UGC-DAE-CSR. The national facility is utilized in collaboration with various universities and other institutions.

  3. Radiation fields from neutron generators shielded with different materials

    Science.gov (United States)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  4. Advances in neutron tomography

    Indian Academy of Sciences (India)

    W Treimer

    2008-11-01

    In the last decade neutron radiography (NR) and tomography (NCT) have experienced a number of improvements, due to the well-known properties of neutrons interacting with matter, i.e. the low attenuation by many materials, the strong attenuation by hydrogenous constituent in samples, the wavelength-dependent attenuation in the neighbourhood of Bragg edges and due to better 2D neutron detectors. So NR and NCT were improved by sophisticated techniques that are based on the attenuation of neutrons or on phase changes of the associated neutron waves if they pass through structured materials. Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works. Now one can present much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neutrons. Magnetic fields in different coils and in samples (superconductors) at low temperatures could be visualized. In this lecture a summary about standard signals (attenuation) and the more `sophisticated' imaging signals as refraction, small angle scattering and polarized neutrons will be given.

  5. Upgrades to the ultracold neutron source at the Los Alamos Neutron Science Center

    Science.gov (United States)

    Pattie, Robert; LANL-nEDM Collaboration

    2015-10-01

    The spallation-driven solid deutrium-based ultracold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to increase the UCN output is underway. The ultimate goal is to provide a density of 100 UCN/cc or greater in the nEDM storage cell. This upgrade includes redesign of the cold neutron moderator and UCN converter geometries, improved coupling and coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the results of the MCNP and UCN transport simulations that led to the new design, which will be installed spring 2016, and UCN guide tests performed at LANSCE and the Institut Laue-Langevin to study the UCN transport properties of a new nickel-based guide coating.

  6. Neutronic Reactor Shield

    Science.gov (United States)

    Fermi, Enrico; Zinn, Walter H.

    The argument of the present Patent is a radiation shield suitable for protection of personnel from both gamma rays and neutrons. Such a shield from dangerous radiations is achieved to the best by the combined action of a neutron slowing material (a moderator) and a neutron absorbing material. Hydrogen is particularly effective for this shield since it is a good absorber of slow neutrons and a good moderator of fast neutrons. The neutrons slowed down by hydrogen may, then, be absorbed by other materials such as boron, cadmium, gadolinium, samarium or steel. Steel is particularly convenient for the purpose, given its effectiveness in absorbing also the gamma rays from the reactor (both primary gamma rays and secondary ones produced by the moderation of neutrons). In particular, in the present Patent a shield is described, made of alternate layers of steel and Masonite (an hydrolized ligno-cellulose material). The object of the present Patent is not discussed in any other published paper.

  7. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  8. Advanced Neutron Source: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  9. Shielding of elliptic guides with direct sight to the moderator

    Science.gov (United States)

    Böni, P.; Grünauer, F.; Schanzer, C.

    2010-12-01

    With the invention of elliptic guides, the neutron flux at instruments can be increased significantly even without sacrificing resolution. In addition, the phase space homogeneity of the delivered neutrons is improved. Using superpolished metal substrates that are coated with supermirror, it is now possible to install neutron guides close to the moderator thus decreasing the illumination losses of the guide and reducing the background because the entrance window of the elliptic guide can be decreased significantly. We have performed Monte Carlo simulations using the program package MCNP5 to calculate the shielding requirements for an elliptic guide geometry assuming that the initial guide section elements are composed of Al substrates. We show that shielding made from heavy concrete shields the neutron and γ-radiation effectively to levels below 1 μSv/h. It is shown that the elliptic geometry allows to match the phase space of the transported neutrons easily to the needs of the instruments to be installed. In particular it is possible to maintain a compact phase space during the transport of the neutrons because the reflection losses are strongly reduced.

  10. Measurements of gamma dose and thermal neutron fluence in phantoms exposed to a BNCT epithermal beam with TLD-700.

    Science.gov (United States)

    Gambarini, G; Magni, D; Regazzoni, V; Borroni, M; Carrara, M; Pignoli, E; Burian, J; Marek, M; Klupak, V; Viererbl, L

    2014-10-01

    Gamma dose and thermal neutron fluence in a phantom exposed to an epithermal neutron beam for boron neutron capture therapy (BNCT) can be measured by means of a single thermoluminescence dosemeter (TLD-700). The method exploits the shape of the glow curve (GC) and requires the gamma-calibration GC (to obtain gamma dose) and the thermal-neutron-calibration GC (to obtain neutron fluence). The method is applicable for BNCT dosimetry in case of epithermal neutron beams from a reactor because, in most irradiation configurations, thermal neutrons give a not negligible contribution to the TLD-700 GC. The thermal neutron calibration is not simple, because of the impossibility of having thermal neutron fields without gamma contamination, but a calibration method is here proposed, strictly bound to the method itself of dose separation.

  11. Development of the RRR cold neutron beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Lovotti, Osvaldo; Masriera, Nestor; Lecot, Carlos; Hergenreder, Daniel [INVAP S.E., Bariloche, Rio Negro (Argentina)

    2002-07-01

    This paper describes some general design issues on the neutron beam facilities (cold neutron source and neutron beam transport system) of the Replacement Research Reactor (RRR) for the Australian Nuclear Science and Technology Organisation (ANSTO). The description covers different aspect of the design: the requirements that lead to an innovative design, the overall design itself, the definition of a technical approach in order to develop the necessary design solutions, and finally the organizational framework by which international expertise from five different institutions is integrated. From the technical viewpoint, the RRR-CNS is a liquid Deuterium (LD2) moderator, sub-cooled to ensure maximum moderation efficiency, flowing within a closed natural circulation thermosyphon loop. The thermosyphon is surrounded by a zirconium alloy CNS vacuum containment that provides thermal insulation and a multiple barriers scheme to prevent Deuterium from mixing with water or air. Consistent with international practice, this vessel is designed to withstand any hypothetical energy reaction should Deuterium and air mix in its interior. The 'cold' neutrons are then taken by the NBTS and transported by the neutron guide system into the reactor beam hall and neutron guide hall, where neutron scattering instruments are located. From the management viewpoint, the adopted distributed scheme is successful to manage the complex interfacing between highly specialized technologies, allowing a smooth integration within the project. (author)

  12. Cold Neutron Research Facility begins operating at NIST

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, E.J.

    1991-09-01

    Steady-state neutron beams are generally produced by fission in a nuclear reactor, whereas pulsed beams come from spallation neutron sources. Beams from a reactor have a distribution of wavelengths that is roughly Maxwellian, with a peak wavelength that depends on the temperature of the moderator that surrounds the fuel. Cold neutrons can be selected from the low-energy tail of the distribution, but the flux drops as 1/{lambda}{sup 4}. However, by shifting the whole spectrum to longer wavelengths one can dramatically increase the cold neutron flux. This is achieved by replacing part of the core moderator with a cold moderator, or cold source,' such as liquid deuterium (at about 30 K) or D{sub 2}O ice (at about 40 K). Neutrons lose energy to the moderator through collisions, producing a shifted spectrum from which one can select lower-energy neutrons with a roughly ten-fold improvement in the flux. Neutrons exhibit optical behavior such as refraction and total reflection. Thus one can use neutron guides - analogous to optical fibers - to conduct intense beams of neutrons from the reactor into a large experimental hall, dubbed a guide hall,' where background radiation is low. The Cold Neutron Research Facility was finally funded in 1987 and opened its doors this past June. CNRF is located at the 20-MW NIST research reactor, which began continuous operation in 1969. With some foresight, the designers of the original reactor allowed space for the addition of a cryogenic moderator, which is only now being exploited. NIST will develop 10 experimental stations for use by the research science community. Additional help in financing the facility comes from participating research teams made up of groups from industry, academe and government.

  13. Fractal Approach in Petrology: Combining Ultra-Small Angle (USANA) and Small Angle Neutron Scattering (SANS)

    Energy Technology Data Exchange (ETDEWEB)

    LoCelso, F.; Triolo, F.; Triolo, A.; Lin, J.S.; Lucido, G.; Triolo, R.

    1999-10-14

    Ultra small angle neutron scattering instruments have recently covered the gap between the size resolution available with conventional intermediate angle neutron scattering and small angle neutron scattering instruments on one side and optical microscopy on the other side. Rocks showing fractal behavior in over two decades of momentum transfer and seven orders of magnitude of intensity are examined and fractal parameters are extracted from the combined USANS and SANS curves.

  14. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  15. Curved PVDF airborne transducer.

    Science.gov (United States)

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  16. Magnetism in curved geometries

    Science.gov (United States)

    Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys

    2016-09-01

    Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.

  17. Elliptic Tales Curves, Counting, and Number Theory

    CERN Document Server

    Ash, Avner

    2012-01-01

    Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of 1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem. The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from

  18. A phased rotating collimator for a pulsed-neutron fixed scattering angle spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Wahba, M. (Ain Shams Univ., Cairo (Egypt). Dept. of Engineering Physics and Mathematics)

    1991-06-01

    The design principle of a phased rotating collimator for a pulsed-neutron fixed scattering angle spectrometer is given. The collimator's dimensions were selected to match the curved slot rotor of the spectrometer which is in operation at the ET-RR-1 reactor. The collimator has one slot, whose shape was determined to satisfy a 100% transmission of the polyenergetic neutron bursts produced by the curved slot rotor. (orig.).

  19. PINS Spectrum Identification Guide

    Energy Technology Data Exchange (ETDEWEB)

    A.J. Caffrey

    2012-03-01

    The Portable Isotopic Neutron Spectroscopy—PINS, for short—system identifies the chemicals inside munitions and containers without opening them, a decided safety advantage if the fill chemical is a hazardous substance like a chemical warfare agent or an explosive. The PINS Spectrum Identification Guide is intended as a reference for technical professionals responsible for the interpretation of PINS gamma-ray spectra. The guide is divided into two parts. The three chapters that constitute Part I cover the science and technology of PINS. Neutron activation analysis is the focus of Chapter 1. Chapter 2 explores PINS hardware, software, and related operational issues. Gamma-ray spectral analysis basics are introduced in Chapter 3. The six chapters of Part II cover the identification of PINS spectra in detail. Like the PINS decision tree logic, these chapters are organized by chemical element: phosphorus-based chemicals, chlorine-based chemicals, etc. These descriptions of hazardous, toxic, and/or explosive chemicals conclude with a chapter on the identification of the inert chemicals, e.g. sand, used to fill practice munitions.

  20. Study on a focusing, low-background neutron delivery system

    Science.gov (United States)

    Stahn, J.; Panzner, T.; Filges, U.; Marcelot, C.; Böni, P.

    2011-04-01

    In various fields of neutron scattering there is a tendency to use smaller and smaller samples. There are various reasons for this, e.g. the limited size in high pressure cells, the restrictions given by growth methods of thin films, or the impossibility to grow larger single crystals. With conventional guides this leads to the situation that a white beam with some 50 cm2 cross-section and a broad divergence is to illuminate a sample of some mm2 area. Thus more than 99% of the neutrons leaving the guide are not needed and cause background and radiation problems.It is suggested to change the order of the optical elements and the design of the guide section to filter neutrons not intended to hit the sample as early as possible. As an example a set-up for specular reflectivity on small samples is presented. A double monochromator some meters behind the source cuts away all neutrons of the wrong wavelength even before they enter the guide. The guide itself is one branch of an ellipse. It maps the divergent beam from the monochromator to a convergent beam at the sample position. An entry aperture at the first focal point, a bit larger than the sample, guarantees that just enough neutrons enter the guide to bath the sample. There is no direct line of sight to the source and the guide ends far away from the sample position, so that there are only few spacial restrictions.Detailed McStas calculations and a design study for a down-scaled test device, both for reflectometry and diffraction, are presented.

  1. Study on a focusing, low-background neutron delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Stahn, J., E-mail: jochen.stahn@psi.c [Laboratory for Neutron Scattering, Paul Scherrer Institut, WHGA/142, 5232 Villigen PSI (Switzerland); Panzner, T.; Filges, U. [Laboratory for Development and Methods, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Marcelot, C. [Laboratory for Neutron Scattering, Paul Scherrer Institut, WHGA/142, 5232 Villigen PSI (Switzerland); Boeni, P. [Physics Department E21, Technical University of Munich, 85748 Garching (Germany)

    2011-04-01

    In various fields of neutron scattering there is a tendency to use smaller and smaller samples. There are various reasons for this, e.g. the limited size in high pressure cells, the restrictions given by growth methods of thin films, or the impossibility to grow larger single crystals. With conventional guides this leads to the situation that a white beam with some 50 cm{sup 2} cross-section and a broad divergence is to illuminate a sample of some mm{sup 2} area. Thus more than 99% of the neutrons leaving the guide are not needed and cause background and radiation problems. It is suggested to change the order of the optical elements and the design of the guide section to filter neutrons not intended to hit the sample as early as possible. As an example a set-up for specular reflectivity on small samples is presented. A double monochromator some meters behind the source cuts away all neutrons of the wrong wavelength even before they enter the guide. The guide itself is one branch of an ellipse. It maps the divergent beam from the monochromator to a convergent beam at the sample position. An entry aperture at the first focal point, a bit larger than the sample, guarantees that just enough neutrons enter the guide to bath the sample. There is no direct line of sight to the source and the guide ends far away from the sample position, so that there are only few spacial restrictions. Detailed McStas calculations and a design study for a down-scaled test device, both for reflectometry and diffraction, are presented.

  2. Status of spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Existing and planned facilities using proton accelerator driven spallation neutron source are reviewed. These include new project of neutron science proposed from Japan Atomic Energy Research Institute. The present status of facility requirement and accelerator technology leads us to new era of neutron science such as neutron scattering research and nuclear transmutation study using very intense neutron source. (author)

  3. Voluminous D2 source for intense cold neutron beam production at the ESS

    DEFF Research Database (Denmark)

    Klinkby, Esben Bryndt; Batkov, K.; Mezei, F.

    2014-01-01

    the target for the complementary needs of certain fundamental physics experiments. To facilitate experiments depending on the total number of neutrons in a sizable beam, the option of a voluminous D2 moderator, in a large cross-section extraction guide is discussed and its neutronic performance is assessed....

  4. Design and Fabrication of Ni/Ti Multilayer for Neutron Supermirror

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong; WANG Zhan-Shan; ZHU Jing-Tao; WANG Feng-Li; WU Yong-Rong; QIN Shu-Ji; CHEN Ling-Yan

    2006-01-01

    @@ In the applications of neutron guides and focusing devices, by using the Ni/Ti multilayer supermirrors (SM),the neutron flux is significantly enhanced, because the critical reflective angle of supermirrors increases m times compared to the one of natural bulk Ni.

  5. In the wonderland of ultra-parallel neutron beams

    Indian Academy of Sciences (India)

    Appoorva G Wagh

    2008-10-01

    Bragg reflections from single crystals yield angular widths of a few arcsec for thermal neutron beams. The Bonse-Hart proposal to attain a sharp, nearly rectangular profile by Bragg reflecting neutrons multiply from a channel-cut single crystal, was realized in its totality three and a half decades later by achieving the corresponding Darwin reflection curves for 5.23 Å neutrons. This facilitated SUSANS (Super USANS) measurements in the ∼ 10-5 Å-1 range. The polarized neutron option was introduced into the SUSANS set-up by separating the up- and down-spin neutron beams by ∼ 10 arcsec with a magnetic (air) prism. The neutron angular width has recently been reduced further by an order of magnitude to ∼ 0.6 arcsec by diffracting 5.3 Å neutrons from a judiciously optimized Bragg prism. This constitutes the most parallel monochromatic neutron beam produced to date. I present the first SUSANS spectra probing the ∼ 10-6 Å-1 domain, recorded with this beam.

  6. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  7. Deployment Guide

    Science.gov (United States)

    1994-02-01

    family/unit briefings (to include POA/wills/ consumer law /insurance war clauses) - Provide fill-in-blank sheets to send coordinators of pre- deployment...services. 2. SGLI designations and "By Law" implications. 3. Wills for both spouses. 4. Powers of Attorney. 5. Consumer law issues. 1-7 B. Typically...Relief Act JA 261 Real Property Guide JA 262 Wills Guide JA 263 Family Law Guide JA 265 Consumer Law Guide JA 267 Legal Assistance Office Directory

  8. Enhancing Neutron Beam Production with a Convoluted Moderator

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Erik B [ORNL; Baxter, David V [Center for the Exploration of Energy and Matter, Indiana University; Muhrer, Guenter [Los Alamos National Laboratory (LANL); Ansell, Stuart [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Gallmeier, Franz X [ORNL; Dalgliesh, Robert [ISIS Facility, Rutherford Appleton Laboratory (ISIS); Lu, Wei [ORNL; Kaiser, Helmut [Center for the Exploration of Energy and Matter, Indiana University

    2014-10-01

    We describe a new concept for a neutron moderating assembly resulting in the more efficient production of slow neutron beams. The Convoluted Moderator, a heterogeneous stack of interleaved moderating material and nearly transparent single-crystal spacers, is a directionally-enhanced neutron beam source, improving beam effectiveness over an angular range comparable to the range accepted by neutron beam lines and guides. We have demonstrated gains of 50% in slow neutron intensity for a given fast neutron production rate while simultaneously reducing the wavelength-dependent emission time dispersion by 25%, both coming from a geometric effect in which the neutron beam lines view a large surface area of moderating material in a relatively small volume. Additionally, we have confirmed a Bragg-enhancement effect arising from coherent scattering within the single-crystal spacers. We have not observed hypothesized refractive effects leading to additional gains at long wavelength. In addition to confirmation of the validity of the Convoluted Moderator concept, our measurements provide a series of benchmark experiments suitable for developing simulation and analysis techniques for practical optimization and eventual implementation at slow neutron source facilities.

  9. The DIORAMA Neutron Emitter

    Energy Technology Data Exchange (ETDEWEB)

    Terry, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-05

    Emission of neutrons in a given event is modeled by the DioramaEmitterNeutron object, a subclass of the abstract DioramaEmitterModule object. The GenerateEmission method of this object is the entry point for generation of a neutron population for a given event. Shown in table 1, this method requires a number of parameters to be defined in the event definition.

  10. The status of neutron beam utilization in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hae-Seop; Lee, Chang-Hee; Seong, Baek-Seok; Lee, Jeong-Soo [Neutron Beam Application Project, HANARO Center, Korea Atomic Energy Research Institute., Taejon (Korea)

    1999-10-01

    HANARO (30 MWth) at Korea Atomic Energy Research Institute (KAERI), which reached its first criticality on February 1995, is the multi-purpose research reactor for the application of reactor radiation in a variety of fields such as physics and materials science, irradiation technology, biomedical technology, and neutron activation analysis. For the neutron beam research, seven horizontal beam tubes of different types are available, and HANARO has performed its development plan for a basic set of neutron beam instruments since 1992. A High Resolution Powder Diffractometer (HRPD) and a Neutron Radiography Facility (NRF) has been installed and operated since 1997 and 1996 each. A Four Circle Diffractometer (FCD) and a Small Angle Neutron Spectrometer (SANS) will be operational on 1999 and in 2000 respectively, and a Polarized Neutron Spectrometer (PNS) in 2001. SANS at CN (Cold Neutron) beam tube will be operated using liquid nitrogen cooled Be filter until the cold neutron source is made available. Then, it will be moved to a guide laboratory with proper modification. Research works using the instruments in operation started by internal and external users since their full operation and have been rapidly increasing. Most in-house resources available are being used for on-going development of instruments due to rapidly increasing demands of external users nationwide. In addition to above instruments, a Triple Axis Spectrometer (TAS) and a Neutron Reflectometer which have been strongly requested by external users from universities and industries are under discussion. Then, HANARO will provide the best combination of neutron instruments to meet national research demands and international collaborations, and will be well prepared for future researches by cold neutrons. (author)

  11. Prompt fission neutron investigation in 235U(nth,f) reaction

    Science.gov (United States)

    Zeynalov, Shakir; Sedyshev, Pavel; Shvetsov, Valery; Sidorova, Olga

    2017-09-01

    The prompt neutron emission in thermal neutron induced fission of 235U has been investigated applying digital signal electronics. The goal was to compare the results of this digital data acquisition and digital signal processing analysis to the results of the pioneering work of Apalin et al. Using a twin Frisch grid ionization chamber for the fission fragment detection and a NE213 equivalent neutron detector in total about 106 neutron coincidences have been registered. The fission fragment kinetic energy, mass and angular distribution has been investigated along with prompt neutron time of flight and pulse shape using a six channel synchronous waveform digitizer with sampling frequency of 250 MHz and 12 bit resolution. The signals have been analyzed using digital pulse processing algorithms, developed by authors. The thermal neutron beam was transported from the IBR-2 reactor to the target with bent mirror neutron guide.

  12. Neutron scattering. Experiment manuals

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2014-07-01

    The following topics are dealt with: The thermal triple-axis spectrometer PUMA, the high-resolution powder diffractometer SPODI, the hot-single-crystal diffractometer HEiDi, the three-axis spectrometer PANDA, the backscattering spectrometer SPHERES, the DNS neutron-polarization analysis, the neutron spin-echo spectrometer J-NSE, small-angle neutron scattering at KWS-1 and KWS-2, a very-small-angle neutron scattering diffractometer with focusing mirror, the reflectometer TREFF, the time-of-flight spectrometer TOFTOF. (HSI)

  13. Neutron-emission measurements at a white neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Robert C [Los Alamos National Laboratory

    2010-01-01

    Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.

  14. Polymers in Curved Boxes

    CERN Document Server

    Yaman, K; Solis, F J; Witten, T A

    1996-01-01

    We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when $D < 3$, stays the same when $D = 3$, and is higher when lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\\em {any}} shell in $D = 3$ induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.

  15. Evolutes of Hyperbolic Plane Curves

    Institute of Scientific and Technical Information of China (English)

    Shyuichi IZUMIYA; Dong He PEI; Takashi SANO; Erika TORII

    2004-01-01

    We define the notion of evolutes of curves in a hyperbolic plane and establish the relationships between singularities of these subjects and geometric invariants of curves under the action of the Lorentz group. We also describe how we can draw the picture of an evolute of a hyperbolic plane curve in the Poincar(e) disk.

  16. The Arithmetic of Elliptic Curves

    CERN Document Server

    Silverman, Joseph H

    2009-01-01

    Treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. This book discusses the necessary algebro-geometric results, and offers an exposition of the geometry of elliptic curves, and the formal group of an elliptic curve.

  17. Curved-Duct

    Directory of Open Access Journals (Sweden)

    Je Hyun Baekt

    2000-01-01

    Full Text Available A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a 90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a 90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.

  18. NSCool: Neutron star cooling code

    Science.gov (United States)

    Page, Dany

    2016-09-01

    NSCool is a 1D (i.e., spherically symmetric) neutron star cooling code written in Fortran 77. The package also contains a series of EOSs (equation of state) to build stars, a series of pre-built stars, and a TOV (Tolman- Oppenheimer-Volkoff) integrator to build stars from an EOS. It can also handle “strange stars” that have a huge density discontinuity between the quark matter and the covering thin baryonic crust. NSCool solves the heat transport and energy balance equations in whole GR, resulting in a time sequence of temperature profiles (and, in particular, a Teff - age curve). Several heating processes are included, and more can easily be incorporated. In particular it can evolve a star undergoing accretion with the resulting deep crustal heating, under a steady or time-variable accretion rate. NSCool is robust, very fast, and highly modular, making it easy to add new subroutines for new processes.

  19. First Measurement of the Neutron $\\beta$-Asymmetry with Ultracold Neutrons

    CERN Document Server

    Pattie, R W

    2008-01-01

    We report the first measurement of angular correlation parameters in neutron $\\beta$-decay using polarized ultracold neutrons (UCN). We utilize UCN with energies below about 200 neV, which we guide and store for $\\sim 30$ s in a Cu decay volume. The $\\vec{\\mu}_n \\cdot \\vec{B}$ potential of a static 7 T field external to the decay volume provides a 420 neV potential energy barrier to the spin state parallel to the field, polarizing the UCN before they pass through an adiabatic fast passage (AFP) spin-flipper and enter a decay volume, situated within a 1 T, $2 \\times 2\\pi$ superconducting solenoidal spectrometer. We determine a value for the $\\beta$-asymmetry parameter $A_0$, proportional to the angular correlation between the neutron polarization and the electron momentum, of $A_0 = -0.1138 \\pm 0.0051$.

  20. RAMA Methodology for the Calculation of Neutron Fluence; Metodologia RAMA para el Calculo de la Fluencia Neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Villescas, G.; Corchon, F.

    2013-07-01

    he neutron fluence plays an important role in the study of the structural integrity of the reactor vessel after a certain time of neutron irradiation. The NRC defined in the Regulatory Guide 1.190, the way must be estimated neutron fluence, including uncertainty analysis of the validation process (creep uncertainty is ? 20%). TRANSWARE Enterprises Inc. developed a methodology for calculating the neutron flux, 1,190 based guide, known as RAMA. Uncertainty values obtained with this methodology, for about 18 vessels, are less than 10%.

  1. Designing new guides and instruments using McStas

    DEFF Research Database (Denmark)

    Farhi, E.; Hansen, T.; Wildes, A.

    2002-01-01

    of guides, neutron optics and instruments [1]. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers...

  2. Fast neutrons set the pace. [Radiobiological investigations with fast neutrons at the CSIR cyclotron in Pretoria

    Energy Technology Data Exchange (ETDEWEB)

    Hough, J.H.; Slabbert, J.P. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Accelerator Centre)

    1985-01-01

    Radiobiological investigations with fast neutrons have been initiated at the CSIR cyclotron in Pretoria. It was proposed some years ago to create a neutron therapy facility using the CSIR cyclotron. Neutrons are classified as high linear energy transfer (LET) particles. Biological damage occurring in tissue is a direct function of the LET of the incident radiation. To quantify the biological effects of different types of radiation on mammalian cells, several procedures and concepts have evolved from radiobiological research. Probably the most significant laboratory techniques developed, were the derivation of cell survival curves which are obtained by determining the number of cell colonies that have survived a certain radiation dose. A semi-logarithmic plot of surviving fraction versus the absorbed dose yields the survival curve. Dose modifying factors such as the relative biological effectiveness (RBE) of the radiation can be quantified in terms of this relationship. A radiobiological programme has to be undertaken before patients can receive neutron therapy at the CSIR cyclotron. The article is a discussion of this programme.

  3. Soil Water Retention Curve

    Science.gov (United States)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  4. Energy dependence of collective flow of neutrons and protons in [sup 197]Au + [sup 197]Au collisions

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, D.; Blaich, T.; Elze, T.W.; Emling, H.; Freiesleben, H.; Grimni, K.; Henning, W.; Holzmann, R.; Keller, J.G.; Klingler, H.; Kratz, J.V.; Kulessa, R.; Lange, S.; Leifels, Y.; Lubkiewicz, E.; Moore, E.F.; Prokopowicz, W.; Schmidt, R.; Schuetter, C.; Spies, H.; Stelzer, K.; Stroth, J.; Wajda, E.; Walus, W.; Zinser, M.; Zude, E.; Alard, J.P.; Basrak, Z.; Bastid, N.; Belayev, I.M.; Bini, M.; Bock, R.; Buta, A.; Caplar, R.; Cerruti, C.; Cindro, N.; Coffin, J.P.; Crouau, M.; Dupieux, P.; Eroe, J.; Fan, Z.G.; Fintz, P.; Fodor, Z.; Freifelder, R.; Fraysse, L.; Frolov, S.; Gobbi, A.; Grigorian, Y.; Guillaume, G.; Herrmann, N.; Hildenbrand, K.D.; Hoelbling, S.; Houari, O.; Jeong, S.C.; Jorio, M.; Jundt, F.; Kecskemeti, J.; Koncz, P.; Korchagin, Y.; Kotte, R.; Kraemer, M.; Kuhn, C.; Legrand, I.; Lebedev, A.; Maguire, C.; Manko, V.; Matulewicz, T.; Mgebrishvili, G.; Moesner, J.; Moisa, D.; Montarou, G.; Morel, P.; Neubert, W.; Olmi, A.; Pasquali, G.; Pelte, D.; Petrovici, M.; Poggi, G.; FOPI-collaboration

    1994-11-01

    We investigate the beam energy dependence of neutron and proton squeeze-out in collisions of [sup 197]Au + [sup 197]Au at E/A=400-800 MeV. The azimuthal anisotropy that describes the enhanced emission of mid-rapidity neutrons perpendicular to the reaction plane rises strongly with the transverse momentum of the neutrons. This dependence of the azimuthal anisotropy follows a universal curve - independent of beam energy - if the neutron momenta are measured in fractions of the projectile momentum per mass unit. Analogously, the kinetic energy spectra of mid-rapidity neutrons exhibit a universal behaviour as a function of the kinetic energy of the projectile. (orig.)

  5. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  6. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  7. Neutron Star Matter

    CERN Document Server

    Wambach, Jochen

    2013-01-01

    In this presentation I discuss two aspects of the neutron-matter equation of state. One relates to the symmetry energy of nuclear matter and empirical constraints on its slope parameter at saturation density. The second deals with spatially inhomogeneous chiral phases of deconfined quark matter in the inner core of a neutron star.

  8. Neutron Multiplicity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Frame, Katherine Chiyoko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    Neutron multiplicity measurements are widely used for nondestructive assay (NDA) of special nuclear material (SNM). When combined with isotopic composition information, neutron multiplicity analysis can be used to estimate the spontaneous fission rate and leakage multiplication of SNM. When combined with isotopic information, the total mass of fissile material can also be determined. This presentation provides an overview of this technique.

  9. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, Jacquelyn C. (Cambridge, MA); Shefer, Ruth E. (Newton, MA); Klinkowstein, Robert E. (Winchester, MA)

    1999-01-01

    In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  10. Neutron capture therapies

    Energy Technology Data Exchange (ETDEWEB)

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.

    1999-11-02

    In one embodiment there is provided an application of the {sup 10}B(n,{alpha}){sup 7}Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g. using deuterium, tritium or beryllium targets) are very prolific at relatively low deuteron energies.

  11. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  12. THERMAL NEUTRON BACKSCATTER IMAGING.

    Energy Technology Data Exchange (ETDEWEB)

    VANIER,P.; FORMAN,L.; HUNTER,S.; HARRIS,E.; SMITH,G.

    2004-10-16

    Objects of various shapes, with some appreciable hydrogen content, were exposed to fast neutrons from a pulsed D-T generator, resulting in a partially-moderated spectrum of backscattered neutrons. The thermal component of the backscatter was used to form images of the objects by means of a coded aperture thermal neutron imaging system. Timing signals from the neutron generator were used to gate the detection system so as to record only events consistent with thermal neutrons traveling the distance between the target and the detector. It was shown that this time-of-flight method provided a significant improvement in image contrast compared to counting all events detected by the position-sensitive {sup 3}He proportional chamber used in the imager. The technique may have application in the detection and shape-determination of land mines, particularly non-metallic types.

  13. Pocked surface neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas (Whitmore Lake, MI); Klann, Raymond (Bolingbrook, IL)

    2003-04-08

    The detection efficiency, or sensitivity, of a neutron detector material such as of Si, SiC, amorphous Si, GaAs, or diamond is substantially increased by forming one or more cavities, or holes, in its surface. A neutron reactive material such as of elemental, or any compound of, .sup.10 B, .sup.6 Li, .sup.6 LiF, U, or Gd is deposited on the surface of the detector material so as to be disposed within the cavities therein. The portions of the neutron reactive material extending into the detector material substantially increase the probability of an energetic neutron reaction product in the form of a charged particle being directed into and detected by the neutron detector material.

  14. Neutron stars - General review

    Science.gov (United States)

    Cameron, A. G. W.; Canuto, V.

    1974-01-01

    A review is presented of those properties of neutron stars upon which there is general agreement and of those areas which currently remain in doubt. Developments in theoretical physics of neutron star interiors are summarized with particular attention devoted to hyperon interactions and the structure of interior layers. Determination of energy states and the composition of matter is described for successive layers, beginning with the surface and proceeding through the central region into the core. Problems encountered in determining the behavior of matter in the ultra-high density regime are discussed, and the effects of the magnetic field of a neutron star are evaluated along with the behavior of atomic structures in the field. The evolution of a neutron star is outlined with discussion centering on carbon detonation, cooling, vibrational damping, rotation, and pulsar glitches. The role of neutron stars in cosmic-ray propagation is considered.

  15. Experience with fast neutron therapy for unresectable carcinoma of the pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abdulla, A.S.M. (Univ. of Texas Medical Branch, Galveston); Hussey, D.H.; Olson, M.H.; Wright, A.E.

    1981-02-01

    The records of 70 patients with adenocarcinoma of the pancreas treated with radiotherapy were reviewed. Fifteen were treated with 50-MeV/sub d ..-->.. Be/ neutrons or a combination of 50-MeV/sub d ..-->.. Be/ neutrons and 25 to 32 MeV photons (neutron group), 30 with external beam photons alone (photon group), and 25 with radioactive gold-grain implantation (/sup 198/Au-implant group). The 12-month survival rate was 40% (6/15) for the neutron group; three patients in this group were living at the time of analysis, 16, 19, and 42 months from the date of diagnosis. By comparison, the 12-month survival rate was 23% (7/30) for the photon group and 32% (8/25) or the /sup 198/Au-implant group. The actuarial survival curve for the neutron group was significantly better than the survival curve for the photon group (Wilcoxon test/sup 7/: p = 0.3). Although the difference between the survival curves for the neutron and /sup 198/Au-implant groups is not statistically significant, the neutron patients presented more advanced disease than those treated with radioactive gold-grain implants. No radiotherapy complications were observed in the neutron group, whereas 3% (1/30) of patients in the photon group and 24% (6/25) of patients in the /sup 198/Au-implant group developed major complications.

  16. Basic Design Report of DC-TOF Inelastic Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    So, Ji Yong; Park, Je Geun; Moon, Myung Kook; Cho, Sang Jin; Choi, Yung Hyun; Lee, Chang Hee

    2006-04-15

    We made Basic designs of neutron guide, choppers, and detectors in order to optimize the design parameters of DC-TOF to be built in the HANARO Cold Neutron Guide Hall. In addition, we calculated the expected performance of DC-TOF using Monte Carlo simulations and evaluated the properties of neutron beam. Based on the results we obtained, we have compared the expected performance of the DC-TOF with those of existing instruments overseas. In conclusion, we believe that we will be able to construct the DC-TOF at HANARO as one of the best instruments of its kinds and it will become an invaluable instrument to researchers in the related field.

  17. Applied research of environmental monitoring using instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Sam; Moon, Jong Hwa; Chung, Young Ju

    1997-08-01

    This technical report is written as a guide book for applied research of environmental monitoring using Instrumental Neutron Activation Analysis. The contents are as followings; sampling and sample preparation as a airborne particulate matter, analytical methodologies, data evaluation and interpretation, basic statistical methods of data analysis applied in environmental pollution studies. (author). 23 refs., 7 tabs., 9 figs.

  18. Extraction of neutron spectral information from Bonner-Sphere data

    CERN Document Server

    Haney, J H; Zaidins, C S

    1999-01-01

    We have extended a least-squares method of extracting neutron spectral information from Bonner-Sphere data which was previously developed by Zaidins et al. (Med. Phys. 5 (1978) 42). A pulse-height analysis with background stripping is employed which provided a more accurate count rate for each sphere. Newer response curves by Mares and Schraube (Nucl. Instr. and Meth. A 366 (1994) 461) were included for the moderating spheres and the bare detector which comprise the Bonner spectrometer system. Finally, the neutron energy spectrum of interest was divided using the philosophy of fuzzy logic into three trapezoidal regimes corresponding to slow, moderate, and fast neutrons. Spectral data was taken using a PuBe source in two different environments and the analyzed data is presented for these cases as slow, moderate, and fast neutron fluences. (author)

  19. Cubic B-spline curve approximation by curve unclamping

    OpenAIRE

    Chen, Xiao-Diao; Ma, Weiyin; Paul, Jean-Claude

    2010-01-01

    International audience; A new approach for cubic B-spline curve approximation is presented. The method produces an approximation cubic B-spline curve tangent to a given curve at a set of selected positions, called tangent points, in a piecewise manner starting from a seed segment. A heuristic method is provided to select the tangent points. The first segment of the approximation cubic B-spline curve can be obtained using an inner point interpolation method, least-squares method or geometric H...

  20. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  1. Optical polarizing neutron devices designed for pulsed neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, M.; Kurahashi, K.; Endoh, Y. [Tohoku Univ, Sendai (Japan); Itoh, S. [National Lab. for High Energy Physics, Tsukuba (Japan)

    1997-09-01

    We have designed two polarizing neutron devices for pulsed cold neutrons. The devices have been tested at the pulsed neutron source at the Booster Synchrotron Utilization Facility of the National Laboratory for High Energy Physics. These two devices proved to have a practical use for experiments to investigate condensed matter physics using pulsed cold polarized neutrons.

  2. Effect of double false pulses in calibrated neutron coincidence collar during measuring time-correlated neutrons from PuBe neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam Cong, E-mail: tam.nguyen.cong@energia.mta.hu; Huszti, Jozsef; Nguyen, Quan Van

    2015-09-01

    Effect of double false pulses of preamplifiers in neutron coincidence collar was investigated to explain non-parallel shape of calibrated D/S–M{sub Pu} curves of two commercial neutron coincidence collars, JCC-31 and JCC-13. Two curves, which were constructed from D/S ratio (doubles and singles count rate), and Pu content M{sub Pu}, of the same set of secondary standard PuBe neutron sources, should be parallel. Non-parallelism rises doubt about usability of the method based on this curve for determination of Pu content in PuBe neutron sources. We have shown in three steps that the problem originates from double false pulses of preamplifiers in JCC-13. First we used a pulse train diagram for analyzing the non-parallel shape, second we used Rossi-Alpha distribution measured by pulse train recorder developed in our institute and finally, we investigated the effect of inserted noise pulses. This implies a new type of QA test option in traditional multiplicity shift registers for excluding presence of double false pulses.

  3. Precise determination of the degree of polarization of a cold neutron beam

    Energy Technology Data Exchange (ETDEWEB)

    Nastoll, H.; Schreckenbach, K. (Institut Laue - Langevin, 38 - Grenoble (France)); Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P. (LAPP Annecy, 74 - Annecy (France))

    1991-08-15

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.).

  4. Research for the concept of Hanaro cold neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Oong; Cho, M. S.; Lee, M. W.; Sohn, J. M.; Park, K. N.; Park, S. H.; Yang, S. Y.; Kang, S. H.; Yang, S. H.; Chang, J. H.; Lee, Y. W.; Chang, C. I.; Cho, Y. S.

    1997-09-01

    This report consists of two parts, one is the conceptual design performed on the collaboration work with PNPI Russia and another is review of Hanaro CNS conceptual design report by Technicatome France, both of which are contained at vol. I and vol. II. representatively. In the vol. I, the analysis for the status of technology development, the technical characteristics of CNS is included, and the conceptual design of Hanaro cold neutron source is contained to establish the concept suitable to Hanaro. The cold neutron experimental facilities, first of all, have been selected to propose the future direction of physics concerning properties of the matter at Korea. And neutron guide tubes, the experimental hall and cold neutron source appropriate to these devices have been selected and design has been reviewed in view of securing safety and installing at Hanaro. (author). 38 refs., 49 tabs., 17 figs.

  5. Neutron spectra and dose equivalents calculated in tissue for high-energy radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kry, Stephen F.; Howell, Rebecca M.; Salehpour, Mohammad; Followill, David S. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

    2009-04-15

    Neutrons are by-products of high-energy radiation therapy and a source of dose to normal tissues. Thus, the presence of neutrons increases a patient's risk of radiation-induced secondary cancer. Although neutrons have been thoroughly studied in air, little research has been focused on neutrons at depths in the patient where radiosensitive structures may exist, resulting in wide variations in neutron dose equivalents between studies. In this study, we characterized properties of neutrons produced during high-energy radiation therapy as a function of their depth in tissue and for different field sizes and different source-to-surface distances (SSD). We used a previously developed Monte Carlo model of an accelerator operated at 18 MV to calculate the neutron fluences, energy spectra, quality factors, and dose equivalents in air and in tissue at depths ranging from 0.1 to 25 cm. In conjunction with the sharply decreasing dose equivalent with increased depth in tissue, the authors found that the neutron energy spectrum changed drastically as a function of depth in tissue. The neutron fluence decreased gradually as the depth increased, while the average neutron energy decreased sharply with increasing depth until a depth of approximately 7.5 cm in tissue, after which it remained nearly constant. There was minimal variation in the quality factor as a function of depth. At a given depth in tissue, the neutron dose equivalent increased slightly with increasing field size and decreasing SSD; however, the percentage depth-dose equivalent curve remained constant outside the primary photon field. Because the neutron dose equivalent, fluence, and energy spectrum changed substantially with depth in tissue, we concluded that when the neutron dose equivalent is being determined at a depth within a patient, the spectrum and quality factor used should be appropriate for depth rather than for in-air conditions. Alternately, an appropriate percent depth-dose equivalent curve

  6. Fail-safe neutron shutter used for thermal neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, R.D.; Morris, R.A.

    1976-11-01

    A fail-safe, reliable, easy-to-use neutron shutter was designed, built, and put into operation at the Omega West Reactor, Los Alamos Scientific Laboratory. The neutron shutter will be used primarily to perform thermal neutron radiography, but is also available for a highly collimated source of thermal neutrons (neutron flux = 3.876 x 10/sup 6/ (neutrons)/(cm/sup 2/.s)). Neutron collimator sizes of either 10.16 by 10.16 cm or 10.16 by 30.48 cm are available.

  7. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Science.gov (United States)

    Grimes, T. F.; Taleyarkhan, R. P.

    2016-09-01

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs - via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C7H16) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu-Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  8. Fast neutron spectroscopy with tensioned metastable fluid detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, T.F.; Taleyarkhan, R.P., E-mail: rusi@purdue.edu

    2016-09-11

    This paper describes research into development of a rapid-turnaround, neutron-spectroscopy capable (gamma-beta blind), high intrinsic efficiency sensor system utilizing the tensioned metastable fluid detector (TMFD) architecture. The inability of prevailing theoretical models (developed successfully for the classical bubble chamber) to adequately predict detection thresholds for tensioned metastable fluid conditions is described. Techniques are presented to overcome these inherent shortcomings, leading thereafter, to allow successful neutron spectroscopy using TMFDs – via the newly developed Single Atom Spectroscopy (SAS) approach. SAS also allows for a unique means for rapidly determining neutron energy thresholds with TMFDs. This is accomplished by simplifying the problem of determining Cavitation Detection Events (CDEs) arising from neutron interactions with one in which several recoiling atom species contribute to CDEs, to one in which only one dominant recoil atom need be considered. The chosen fluid is Heptane (C{sub 7}H{sub 16}) for which only recoiling C atoms contribute to CDEs. Using the SAS approach, the threshold curve for Heptane was derived using isotope neutron source data, and then validated against experiments with mono-energetic (2.45/14 MeV) neutrons from D-D and D-T accelerators. Thereafter the threshold curves were used to produce the response matrix for various geometries. The response matrices were in turn combined with experimental data to recover the continuous spectra of fission (Cf-252) and (α,n) Pu–Be isotopic neutron sources via an unfolding algorithm. A generalized algorithm is also presented for performing neutron spectroscopy using any other TMFD fluid that meets the SAS approach assumptions.

  9. The plain truth about forming a plane wave of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Wagh, Apoorva G., E-mail: nintsspd@barc.gov.i [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Abbas, Sohrab [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Treimer, Wolfgang [Helmholtz Zentrum Berlin, Glienicker Str. 100, D-14109 Berlin (Germany)

    2011-04-01

    We have attained the first sub-arcsecond collimation of a monochromatic neutron beam by diffracting neutrons from a Bragg prism, viz. a single crystal prism operating in the vicinity of Bragg incidence. Analytical as well numerical computations based on the dynamical diffraction theory, led to the optimised collimator configuration of a silicon {l_brace}1 1 1{r_brace} Bragg prism for 5.26 A neutrons. We fabricated a Bragg prism to these specifications, tested and operated it at the double diffractometer setup in Helmholtz Zentrum Berlin to produce a 0.58 arcsec wide monochromatic neutron beam. With a similarly optimised Bragg prism analyser of opposite asymmetry, we recorded a 0.62 arcsec wide virgin rocking curve for this ultra-parallel beam. With this nearly plane-wave neutron beam, we have recorded the first ever USANS spectrum in Q{approx}10{sup -6} A{sup -1} range with a hydroxyapatite casein protein sample and demonstrated the instrument capability to characterise agglomerates up to 150 {mu}m in size. The super-collimated monochromatic beam has also enabled us to record the first neutron diffraction pattern from a macroscopic grating of 200 {mu}m period. The transverse coherence length of 175 {mu}m (FWHM) of the ultra-parallel beam derived from the analysis of this pattern, is the greatest achieved to date for A wavelength neutrons.

  10. Neutron optics concept for the materials engineering diffractometer at the ESS

    Science.gov (United States)

    Šaroun, J.; Fenske, J.; Rouijaa, M.; Beran, P.; Navrátil, J.; Lukáš, P.; Schreyer, A.; Strobl, M.

    2016-09-01

    The Beamline for European Materials Engineering Research (BEER) has been recently proposed to be built at the European Spallation Source (ESS). The presented concept of neutron delivery optics for this instrument addresses the problems of bi-spectral beam extraction from a small moderator, optimization of neutron guides profile for long-range neutron transport and focusing at the sample under various constraints. They include free space before and after the guides, a narrow guide section with gaps for choppers, closing of direct line of sight and cost reduction by optimization of the guides cross-section and coating. A system of slits and exchangeable focusing optics is proposed in order to match various wavelength resolution options provided by the pulse shaping and modulation choppers, which permits to efficiently trade resolution for intensity in a wide range. Simulated performance characteristics such as brilliance transfer ratio are complemented by the analysis of the histories of “useful” neutrons obtained by back tracing neutrons hitting the sample, which helps to optimize some of the neutron guide parameters such as supermirror coating.

  11. Focusing adaptive-optics for neutron spectroscopy at extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Simeoni, G. G., E-mail: ggsimeoni@outlook.com [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Valicu, R. G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Physics Department E13, Technical University of Munich, D-85748 Garching (Germany); Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Borchert, G. [Heinz Maier-Leibnitz Zentrum (MLZ), FRM II, Technical University of Munich, D-85748 Garching (Germany); Böni, P. [Physics Department E21, Technical University of Munich, D-85748 Garching (Germany); Rasmussen, N. G. [Nanoscience Center, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Yang, F.; Kordel, T.; Holland-Moritz, D.; Kargl, F.; Meyer, A. [Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, D-51170 Köln (Germany)

    2015-12-14

    Neutron Spectroscopy employing extreme-conditions sample environments is nowadays a crucial tool for the understanding of fundamental scientific questions as well as for the investigation of materials and chemical-physical properties. For all these kinds of studies, an increased neutron flux over a small sample area is needed. The prototype of a focusing neutron guide component, developed and produced completely at the neutron source FRM II in Garching (Germany), has been installed at the time-of-flight (TOF) disc-chopper neutron spectrometer TOFTOF and came into routine-operation. The design is based on the compressed Archimedes' mirror concept for finite-size divergent sources. It represents a unique device combining the supermirror technology with Adaptive Optics, suitable for broad-bandwidth thermal-cold TOF neutron spectroscopy (here optimized for 1.4–10 Å). It is able to squeeze the beam cross section down to a square centimeter, with a more than doubled signal-to-background ratio, increased efficiency at high scattering angles, and improved symmetry of the elastic resolution function. We present a comparison between the simulated and measured beam cross sections, as well as the performance of the instrument within real experiments. This work intends to show the unprecedented opportunities achievable at already existing instruments, along with useful guidelines for the design and construction of next-generation neutron spectrometers.

  12. Reflection of curved shock waves

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  13. Reflection of curved shock waves

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  14. Heegner modules and elliptic curves

    CERN Document Server

    Brown, Martin L

    2004-01-01

    Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.

  15. Closed planar curves without inflections

    CERN Document Server

    Ohno, Shuntaro; Umehara, Masaaki

    2011-01-01

    We define a computable topological invariant $\\mu(\\gamma)$ for generic closed planar regular curves $\\gamma$, which gives an effective lower bound for the number of inflection points on a given generic closed planar curve. Using it, we classify the topological types of locally convex curves (i.e. closed planar regular curves without inflections) whose numbers of crossings are less than or equal to five. Moreover, we discuss the relationship between the number of double tangents and the invariant $\\mu(\\gamma)$ on a given $\\gamma$.

  16. Section curve reconstruction and mean-camber curve extraction of a point-sampled blade surface.

    Directory of Open Access Journals (Sweden)

    Wen-long Li

    Full Text Available The blade is one of the most critical parts of an aviation engine, and a small change in the blade geometry may significantly affect the dynamics performance of the aviation engine. Rapid advancements in 3D scanning techniques have enabled the inspection of the blade shape using a dense and accurate point cloud. This paper proposes a new method to achieving two common tasks in blade inspection: section curve reconstruction and mean-camber curve extraction with the representation of a point cloud. The mathematical morphology is expanded and applied to restrain the effect of the measuring defects and generate an ordered sequence of 2D measured points in the section plane. Then, the energy and distance are minimized to iteratively smoothen the measured points, approximate the section curve and extract the mean-camber curve. In addition, a turbine blade is machined and scanned to observe the curvature variation, energy variation and approximation error, which demonstrates the availability of the proposed method. The proposed method is simple to implement and can be applied in aviation casting-blade finish inspection, large forging-blade allowance inspection and visual-guided robot grinding localization.

  17. Etude de la diagraphie neutron du granite de Beauvoir. Effet neutron des altérations et de la matrice du granite. Calibration granite. Porosité totale à l'eau et porosité neutron Analysis of the Beauvoir Granite Neutron Log. Neutron Effect of Alterations and of the Granite Matrix. Granite Calibration. Total Water Porosity and Neutron Porosity

    Directory of Open Access Journals (Sweden)

    Galle C.

    2006-11-01

    chemical analysis to evaluate the PorosityN(ox thermal neutron porosity linked to neutron capture (Schlumberger's Nuclear Parameter Code, SNUPAR. A calibration curve (Fig. 1 between the (Sigmamac macroscopic capture cross-section and the PorosityN neutron porosity enabled us to determine the PorosityN(ox neutron capture porosity for all samples. The macroscopic capture cross-section of the Beauvoir granite, compared to other rocks (Table 2, is very high, about 86 cu. For the Beauvoir granite, the neutron capture porosity was estimated at about 2. 7% (Table 4. The lithium, with Li2O contents varying from 0. 3 to 1. 7%, is the one element which accounts for 85% of this effect (Table 3. Although the response of a neutron tool is not linear for low porosities (especially lower than 5% and although in some cases the neutron effect of the matrix highly depends on the hydrogen index (close imbrication of neutron slowing and capture phenomena, we restored the PorosityNR total neutron porosity of the Beauvoir granite by stacking n, PorosityN(OH- and PorosityN(ox linearly. This porosity is 9% on the average. For this granite, the PorosityNma neutron matrix effect (PorosityNma = PorosityN(OH- + PorosityN(ox is significant and accounts for 75% of the PorosityNR total neutron porosity corresponding to about 7%. This porosity thus cannot be neglected if the objective is to obtain representative water content values of the granite from neutron porosity log. This is why the second part of our project took up the problem of calibrating neutron tool for analyzing a granitic formation. For the Beauvoir granite, the neutron porosity data were obtained from standard calibration in limestone blocks. As the neutron effect of the granite matrix was not negligible, we performed our own calibration using seven granite samples with a perfectly well-known total neutron porosity (free water content and neutron matrix effect. We determined a PorosityNg granitecalibration neutron porosity. For this, the

  18. Monte Carlo simulations for focusing elliptical guides

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Roxana [FRM2 Garching, Muenchen (Germany); Boeni, Peter [E20, TU Muenchen (Germany)

    2009-07-01

    The aim of the Monte Carlo simulations using McStas Programme was to improve the focusing of the neutron beam existing at PGAA (FRM II) by prolongation of the existing elliptic guide (coated now with supermirrors with m=3) with a new part. First we have tried with an initial length of the additional guide of 7,5cm and coatings for the neutron guide of supermirrors with m=4,5 and 6. The gain (calculated by dividing the intensity in the focal point after adding the guide by the intensity at the focal point with the initial guide) obtained for this coatings indicated that a coating with m=5 would be appropriate for a first trial. The next step was to vary the length of the additional guide for this m value and therefore choosing the appropriate length for the maximal gain. With the m value and the length of the guide fixed we have introduced an aperture 1 cm before the focal point and we have varied the radius of this aperture in order to obtain a focused beam. We have observed a dramatic decrease in the size of the beam in the focal point after introducing this aperture. The simulation results, the gains obtained and the evolution of the beam size will be presented.

  19. The upgraded S18 neutron interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner, G. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)

    1999-11-01

    The instrument S18, the perfect-crystal neutron interferometer was reopened in October 1998. The instrument, which was dismantled during the reactor shutdown, has been set up again within the last two years. The upgraded version allows more advanced neutron optics experiments for fundamental, nuclear and condensed-matter physics. The instrument also takes advantage of the new super-mirror guide which provides considerably higher intensities. Several types of large perfect-crystal interferometers are available for different applications. A new multipurpose monochromator allows the use of a wide wavelength range and the configuration of the system as an advanced high-resolution Bonse-Hart small-angle scattering camera. Another instrument option is the use of completely polarised beams which are obtained using permanent magnetic prism deflection. An additional third analyser axis permits novel post-selection experiments concerning momentum distribution and polarisation analysis of the interfering beams. (author) 11 refs., 2 figs.

  20. Neutron scattering in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Barocchi, F. [Florence Univ. (Italy). Ist. di Fisica

    1996-12-31

    Together with X-rays, thermal neutrons are the ideal probe to study the microscopic structure of condensed matter, however the precision attainable usually with neutrons for the measurement of atomic position correlation functions in liquids is, at least, one order of magnitude better than for X-rays. In order to measure properly the microscopic dynamics a wide range of momentum transfer with corresponding energy transfer must be available in the range of liquid state excitations. This again is only attainable, with good resolution, with neutrons. (author) 7 figs., 3 refs.

  1. Neutrons in soft matter

    CERN Document Server

    Imae, Toyoko; Furusaka, Michihiro; Torikai, Naoya

    2011-01-01

    Neutron and synchrotron facilities, which are beyond the scale of the laboratory, and supported on a national level in countries throughout the world.  These tools for probing micro- and nano-structure research and on fast dynamics research of atomic location in materials have been key in the development of new polymer-based materials. Different from several existing professional books on neutron science, this book focuses on theory, instrumentation, an applications. The book is divided into five parts: Part 1 describes the underlying theory of neutron scattering. Part 2 desc

  2. Guided labworks

    DEFF Research Database (Denmark)

    Jacobsen, Lærke Bang

    For the last 40 years physics education research has shown poor learning outcomes of guided labs. Still this is found to be a very used teaching method in the upper secodary schools. This study explains the teacher's choice of guided labs throught the concept of redesign as obstacle dislodgement...

  3. The calibration of DD neutron indium activation diagnostic for Shenguang-III facility

    CERN Document Server

    Song, Zi-Feng; Liu, Zhong-Jie; Zhan, Xia-Yu; Tang, Qi

    2014-01-01

    The indium activation diagnostic was calibrated on an accelerator neutron source in order to diagnose deuterium-deuterium (DD) neutron yields of implosion experiments on Shenguang-III facility. The scattered neutron background of the accelerator room was measured by placing a polypropylene shield in front of indium sample, in order to correct the calibrated factor of this activation diagnostic. The proper size of this shield was given by Monte Carlo simulation software. The affect from some other activated nuclei on the calibration was verified by judging whether the measured curve obeys exponential decay and contrasting the half life of the activated sample. The calibration results showed that the linear range reached up to 100 cps net count rate in the full energy peak of interest, the scattered neutron background of accelerator room was about 9% of the total neutrons and the possible interferences mixed scarcely in the sample. Subtracting the portion induced by neutron background, the calibrated factor of ...

  4. Migration and the Wage Curve:

    DEFF Research Database (Denmark)

    Brücker, Herbert; Jahn, Elke J.

      Based on a wage curve approach we examine the labor market effects of migration in Germany. The wage curve relies on the assumption that wages respond to a change in the unemployment rate, albeit imperfectly. This allows one to derive the wage and employment effects of migration simultaneously...

  5. The ion beam sputtering facility at KURRI: Coatings for advanced neutron optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Masahiro, E-mail: hino@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto university, Kumatori, Osaka 590-0494 (Japan); Oda, Tatsuro [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kitaguchi, Masaaki [Center for Experimental Studies, KMI, Nagoya University, Nagoya 464-8602 (Japan); Yamada, Norifumi L. [Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Tasaki, Seiji [Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540 (Japan); Kawabata, Yuji [Research Reactor Institute, Kyoto university, Kumatori, Osaka 590-0494 (Japan)

    2015-10-11

    We describe a film coating facility for the development of multilayer mirrors for use in neutron optical devices that handle slow neutron beams. Recently, we succeeded in fabricating a large neutron supermirror with high reflectivity using an ion beam sputtering system (KUR-IBS), as well as all neutron supermirrors in two neutron guide tubes at BL06 at J-PARC/MLF. We also realized a large flexible self-standing m=5 NiC/Ti supermirror and very small d-spacing (d=1.65 nm) multilayer sheets. In this paper, we present an overview of the performance and utility of non-magnetic neutron multilayer mirrors fabricated with the KUR-IBS.

  6. NURBS curve blending using extension

    Institute of Scientific and Technical Information of China (English)

    Yong-jin LIU; Rong-qi QIU; Xiao-hui LIANG

    2009-01-01

    Curve and surface blending is an important operation in CAD systems, in which a non-uniform rational B-spline (NURBS) has been used as the de facto standard. In local comer blending, two curves intersecting at that comer are first made disjoint, and then the third blending curve is added-in to smoothly join the two curves with G1-or G2-continuity. In this paper we present a study to solve the joint problem based on curve extension. The following nice properties of this extension algorithm are exploited in depth: (1) The parameterization of the original shapes does not change; (2) No additional fragments are created.Various examples are presented to demonstrate that our solution is simple and efficient.

  7. Neutron signal transfer analysis

    CERN Document Server

    Pleinert, H; Lehmann, E

    1999-01-01

    A new method called neutron signal transfer analysis has been developed for quantitative determination of hydrogenous distributions from neutron radiographic measurements. The technique is based on a model which describes the detector signal obtained in the measurement as a result of the action of three different mechanisms expressed by signal transfer functions. The explicit forms of the signal transfer functions are determined by Monte Carlo computer simulations and contain only the distribution as a variable. Therefore an unknown distribution can be determined from the detector signal by recursive iteration. This technique provides a simple and efficient tool for analysis of this type while also taking into account complex effects due to the energy dependency of neutron interaction and single and multiple scattering. Therefore this method provides an efficient tool for precise quantitative analysis using neutron radiography, as for example quantitative determination of moisture distributions in porous buil...

  8. Temperature of neutron stars

    Science.gov (United States)

    Tsuruta, Sachiko

    2016-07-01

    We start with a brief introduction to the historical background in the early pioneering days when the first neutron star thermal evolution calculations predicted the presence of neutron stars hot enough to be observable. We then report on the first detection of neutron star temperatures by ROSAT X-ray satellite, which vindicated the earlier prediction of hot neutron stars. We proceed to present subsequent developments, both in theory and observation, up to today. We then discuss the current status and the future prospect, which will offer useful insight to the understanding of basic properties of ultra-high density matter beyond the nuclear density, such as the possible presence of such exotic particles as pion condensates.

  9. Decoherence Free Neutron Interferometry

    CERN Document Server

    Pushin, Dmitry A; Cory, David G

    2016-01-01

    Perfect single-crystal neutron interferometers are adversely sensitive to environmental disturbances, particularly mechanical vibrations. The sensitivity to vibrations results from the slow velocity of thermal neutrons and the long measurement time that are encountered in a typical experiment. Consequently, to achieve a good interference solutions for reducing vibration other than those normally used in optical experiments must be explored. Here we introduce a geometry for a neutron interferometer that is less sensitive to low-frequency vibrations. This design may be compared with both dynamical decoupling methods and decoherence-free subspaces that are described in quantum information processing. By removing the need for bulky vibration isolation setups, this design will make it easier to adopt neutron interferometry to a wide range of applications and increase its sensitivity.

  10. Neutron Stars Recent Developments

    CERN Document Server

    Heiselberg, H

    1999-01-01

    Recent developments in neutron star theory and observation are discussed. Based on modern nucleon-nucleon potentials more reliable equations of state for dense nuclear matter have been constructed. Furthermore, phase transitions such as pion, kaon and hyperon condensation, superfluidity and quark matter can occur in cores of neutron stars. Specifically, the nuclear to quark matter phase transition and its mixed phases with intriguing structures is treated. Rotating neutron stars with and without phase transitions are discussed and compared to observed masses, radii and glitches. The observations of possible heavy $\\sim 2M_\\odot$ neutron stars in X-ray binaries and QPO's require relatively stiff equation of states and restrict strong phase transitions to occur at very high nuclear densities only.

  11. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  12. Photon and neutron kerma coefficients for polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    El-Khayatt, A.M., E-mail: Ahmed_el_khayatt@yahoo.com [Physics Department, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU) (Saudi Arabia); Reactor Physics Department, Nuclear Research Centre, Atomic Energy Authority, 13759 Cairo (Egypt); Vega-Carrillo, Hector Rene [Unidad Academica de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Peñuela, 98068 Zacatecas, Zac. (Mexico)

    2015-08-21

    Neutron and gamma ray kerma coefficients were calculated for 17 3D dosimeters, for the neutron and gamma ray energy ranges extend from 2.53×10{sup −8} to 29 MeV and from 1.0×10{sup −3} to 20 MeV, respectively. The calculated kermas given here for discrete energies and the kerma coefficients are referred to as “point-wise data”. Curves of gamma ray kermas showed slight dips at about 60 keV for most 3D dosimeters. Also, a noticeable departure between thermal and epithermal neutrons kerma sets for water and polymers has been observed. Finally, the obtained results could be useful for dose estimation in the studied 3D dosimeters. - Highlights: • Neutron and gamma ray kerma coefficients were calculated in 17 3D dosimeters. • Curves of gamma-ray kermas showed slight dips at about 60 keV. • Disagreement between neutron kermas for water and polymers has been observed. • The obtained results could be useful for dose estimation in the studied dosimeters.

  13. MAXED, a computer code for the deconvolution of multisphere neutron spectrometer data using the maximum entropy method

    Energy Technology Data Exchange (ETDEWEB)

    Reginatto, M.; Goldhagen, P.

    1998-06-01

    The problem of analyzing data from a multisphere neutron spectrometer to infer the energy spectrum of the incident neutrons is discussed. The main features of the code MAXED, a computer program developed to apply the maximum entropy principle to the deconvolution (unfolding) of multisphere neutron spectrometer data, are described, and the use of the code is illustrated with an example. A user`s guide for the code MAXED is included in an appendix. The code is available from the authors upon request.

  14. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  15. Neutron scattering in dimers

    DEFF Research Database (Denmark)

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  16. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  17. HBR guides

    CERN Document Server

    Duarte, Nancy; Dillon, Karen

    2015-01-01

    Master your most pressing professional challenges with this seven-volume set that collects the smartest best practices from leading experts all in one place. "HBR Guide to Better Business Writing" and "HBR Guide to Persuasive Presentations" help you perfect your communication skills; "HBR Guide to Managing Up and Across" and "HBR Guide to Office Politics" show you how to build the best professional relationships; "HBR Guide to Finance Basics for Managers" is the one book you'll ever need to teach you about the numbers; "HBR Guide to Project Management" addresses tough questions such as how to manage stakeholder expectations and how to manage uncertainty in a complex project; and "HBR Guide to Getting the Right Work Done" goes beyond basic productivity tips to teach you how to prioritize and focus on your work. This specially priced set of the most popular books in the series makes a perfect gift for aspiring leaders looking for trusted advice. Arm yourself with the advice you need to succeed on the job, from ...

  18. Evaluation of using a phototransistor as a neutron sensor

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Fabio R.; Santos, Luiz A.P., E-mail: fbarros@cnen.gov.b, E-mail: lasantos@cnen.gov.b [Centro Regional de Ciencias Nucleares, (CRCN/NE-CNEN-PE), Recife, PE (Brazil); Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Antonio Filho, Joao, E-mail: jaf@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    The purpose of this paper is to evaluate some effects on the TEKT5400S phototransistor about the electrical and optical characteristics when it is exposed to the radiation from a neutron source of {sup 241} Am-{sup 9}Be, and therefore the study aims to verify if the phototransistor can be used as a neutron sensor. The neutrons interact with the crystal structure of the device yielding displacement of atoms in the semiconductor, creating defects in the phototransistor and these defects can modify its electrical state. To have a triplicate sample, five sets of three phototransistor were irradiated: one of them in thermal neutrons, three sets in fast neutrons, and the latter one was irradiated in a {sup 60} Co source to verify the contribution of gamma radiation in the device response. To understand the changes in the crystal structure, it was measured the dark current of the device, I, and plotting its (IxV) curve which is known in instrumentation as the characteristic curve of the electronic device. This technique aims to check how the phototransistor response is: the effect of accumulated dose; optical properties changing; and its permanence over time. The results showed that the device has some changing in the electrical and optical properties. It was also found that the response depends on the dose, D; it is linear up to 0.64 Gy; and the damage caused by the irradiation process is irreversible. Actually, such a damage is the parameter that is used to estimate the received dose by the phototransistor. Then one can conclude that a phototransistor type works as a neutron sensor depending on the knowledge of the the electrical state of the device, i.e., it is a function of its calibration curve: D(I). (author)

  19. Neutron scattering in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, R.B. [Australian Nuclear Science and Technology Organisation, Menai (Australia)

    1994-12-31

    Neutron scattering techniques have been part of the Australian scientific research community for the past three decades. The High Flux Australian Reactor (HIFAR) is a multi-use facility of modest performance that provides the only neutron source in the country suitable for neutron scattering. The limitations of HIFAR have been recognized and recently a Government initiated inquiry sought to evaluate the future needs of a neutron source. In essence, the inquiry suggested that a delay of several years would enable a number of key issues to be resolved, and therefore a more appropriate decision made. In the meantime, use of the present source is being optimized, and where necessary research is being undertaken at major overseas neutron facilities either on a formal or informal basis. Australia has, at present, a formal agreement with the Rutherford Appleton Laboratory (UK) for access to the spallation source ISIS. Various aspects of neutron scattering have been implemented on HIFAR, including investigations of the structure of biological relevant molecules. One aspect of these investigations will be presented. Preliminary results from a study of the interaction of the immunosuppressant drug, cyclosporin-A, with reconstituted membranes suggest that the hydrophobic drug interdigitated with lipid chains.

  20. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  1. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  2. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  3. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  4. MAGNETIC NEUTRON SCATTERING

    Energy Technology Data Exchange (ETDEWEB)

    ZALIZNYAK,I.A.; LEE,S.H.

    2004-07-30

    Much of our understanding of the atomic-scale magnetic structure and the dynamical properties of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron spectroscopy provided physicists with an unprecedented, detailed access to spin structures, magnetic-excitation spectra, soft-modes and critical dynamics at magnetic-phase transitions, which is unrivaled by other experimental techniques. Because the neutron has no electric charge, it is an ideal weakly interacting and highly penetrating probe of matter's inner structure and dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons, muons) that significantly modify the local electronic environment, neutron spectroscopy allows determination of a material's intrinsic, unperturbed physical properties. The method is not sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe the microscopic properties of bulk materials (not just their surface layers) and study samples embedded in complex environments, such as cryostats, magnets, and pressure cells, which are essential for understanding the physical origins of magnetic phenomena. Neutron scattering is arguably the most powerful and versatile experimental tool for studying the microscopic properties of the magnetic materials. The magnitude of the cross-section of the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-range nuclear forces, and is large enough to provide measurable scattering by the ordered magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed since neutron beams with sufficient intensity for scattering applications became available with the advent of the nuclear reactors, they have became indispensable tools for studying a variety of important areas of modern

  5. Fundamental neutron physics at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.

    1995-10-01

    Modern neutron sources and science share a common origin in mid-20th-century scientific investigations concerned with the study of the fundamental interactions between elementary particles. Since the time of that common origin, neutron science and the study of elementary particles have evolved into quite disparate disciplines. The neutron became recognized as a powerful tool for studying condensed matter with modern neutron sources being primarily used (and justified) as tools for neutron scattering and materials science research. The study of elementary particles has, of course, led to the development of rather different tools and is now dominated by activities performed at extremely high energies. Notwithstanding this trend, the study of fundamental interactions using neutrons has continued and remains a vigorous activity at many contemporary neutron sources. This research, like neutron scattering research, has benefited enormously by the development of modern high-flux neutron facilities. Future sources, particularly high-power spallation sources, offer exciting possibilities for continuing this research.

  6. Overview of the Neutron Radiography and Computed Tomography at the Oak Ridge National Laboratory and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Bilheux, Jean-Christophe [ORNL; Tremsin, Anton S [University of California, Berkeley; Santodonato, Louis J [ORNL; Dehoff, Ryan R [ORNL; Kirka, Michael M [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Herwig, Kenneth W [ORNL

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) Neutron Sciences Directorate (NScD) has installed a neutron imaging (NI) beam line at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beam line produces cold neutrons for a broad range of user research spanning from engineering to material research, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. Recent efforts have focused on increasing flux and spatial resolution. A series of selected engineering applications is presented here. Historically and for more than four decades, neutron imaging (NI) facilities have been installed exclusively at continuous (i.e. reactor-based) neutron sources rather than at pulsed sources. This is mainly due to (1) the limited number of accelerator-based facilities and therefore the fierce competition for beam lines with neutron scattering instruments, (2) the limited flux available at accelerator-based neutron sources and finally, (3) the lack of high efficiency imaging detector technology capable of time-stamping pulsed neutrons with sufficient time resolution. Recently completed high flux pulsed proton-driven neutron sources such as the ORNL Spallation Neutron Source (SNS) at ORNL and the Japanese Spallation Neutron Source (JSNS) of the Japan Proton Accelerator Research Complex (J-PARC) in Japan produce high neutron fluxes that offer new and unique opportunities for NI techniques. Pulsed-based neutron imaging facilities RADEN and IMAT are currently being built at J-PARC and the Rutherford National Laboratory in the U.K., respectively. ORNL is building a pulsed neutron imaging beam line called VENUS to respond to the U.S. based scientific community. A team composed of engineers, scientists and designers has developed a conceptual design of the future VENUS imaging instrument at the SNS.

  7. Light output of EJ228 scintillation neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Stevanato, L., E-mail: luca.stevanato@pd.infn.i [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Hao, Xin [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2011-02-15

    The light output of neutron detectors based on the plastic scintillator EJ228 is studied as a function of neutron energy using a time tagged {sup 252}Cf source. Calibration of the light output scale is performed by fitting the experimental distribution of Compton scattering events of photons from a {sup 22}Na source with a response function obtained by Gaussian smearing of the predicted line-shape. The light output curve as well as the pulse height resolution for the EJ228 scintillators is very close (within 5%) to those recently reported for NE213 type organic liquid scintillators.

  8. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  9. Equations of hyperelliptic Shimura curves

    CERN Document Server

    Molina, Santiago

    2010-01-01

    We describe an algorithm that computes explicit models of hyperelliptic Shimura curves attached to an indefnite quaternion algebra over Q and Atkin-Lehner quotients of them. It exploits Cerednik-Drinfeld's non-archimedean uniformisation of Shimura curves, a formula of Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the connection between Ribet's bimodules and the specialization of Heegner points. As an application, we provide a list of equations of Shimura curves and quotients of them obtained by our algorithm that had been conjectured by Kurihara.

  10. Poiseuille flow in curved spaces

    CERN Document Server

    Debus, J -D; Succi, S; Herrmann, H J

    2015-01-01

    We investigate Poiseuille channel flow through intrinsically curved (campylotic) media, equipped with localized metric perturbations (campylons). To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the campylon parameters (amplitude, range and density). We find that the flux depends only on a specific combination of campylon parameters, which we identify as the average campylon strength, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.

  11. Colostomy Guide

    Science.gov (United States)

    ... Side Effects Managing Cancer-related Side Effects Ostomies Colostomy Guide Colostomy surgery is done for many different diseases and problems. Some colostomies are done because of cancer; others are not. ...

  12. Black Holes: A Traveler's Guide

    Science.gov (United States)

    Pickover, Clifford A.

    1998-03-01

    BLACK HOLES A TRAVELER'S GUIDE Clifford Pickover's inventive and entertaining excursion beyond the curves of space and time. "I've enjoyed Clifford Pickover's earlier books . . . now he has ventured into the exploration of black holes. All would-be tourists are strongly advised to read his traveler's guide." -Arthur C. Clarke. "Many books have been written about black holes, but none surpass this one in arousing emotions of awe and wonder towards the mysterious structure of the universe." -Martin Gardner. "Bucky Fuller thought big. Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." -Wired. "The book is fun, zany, in-your-face, and refreshingly addictive." -Times Higher Education Supplement.

  13. Estimates of the neutron emission during large solar flares in the rising and maximum period of solar cycle 24

    Science.gov (United States)

    Lopez, D.; Matsubara, Y.; Muraki, Y.; Sako, T.; Valdés-Galicia, J. F.

    2016-03-01

    We searched for solar neutrons using the data collected by six detectors from the International Network of Solar Neutron Telescopes and one Neutron Monitor between January 2010 and December 2014. We considered the peak time of the X-ray intensity of thirty five ≥ X1.0 class flares detected by GOES satellite as the most probable production time of solar neutrons. We prepared a light-curve of the solar neutron telescopes and the neutron monitor for each flare, spanning ± 3 h from the peak time of GOES. Based on these light curves, we performed a statistical analysis for each flare. Setting a significance level at greater than 3σ, we report that no statistically significant signals due to solar neutrons were found. Therefore, upper limits are determined by the background level and solar angle of these thirty five solar flares. Our calculation assumed a power-law neutron energy spectrum and an impulsive emission profile at the Sun. The estimated upper limits of the neutron emission are consistent within the order of magnitude of the successful detections of solar neutrons made in solar cycle 23.

  14. Enhanced off-specular scattering in magnetic neutron waveguides

    Science.gov (United States)

    Kozhevnikov, S. V.; Ott, F.; Kentzinger, E.; Paul, A.

    2007-07-01

    We are developing magnetic neutron waveguides (NWG) consisting of thin films of low-optical index sandwiched between two layers of high-optical index. In such structures, the neutron wave function is strongly localized in the guiding layer and the sensitivity to interface scattering effects is enhanced. The samples were characterized on the reflectometer HADAS (FZ Jülich, Germany) by specular reflectivity and off-specular scattering for different magnetic states of the permalloy layers. We show that the waveguide structure strongly enhances the off-specular scattering.

  15. Enhanced off-specular scattering in magnetic neutron waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S.V. [Frank Laboratory of Neutron Physics, JINR, 141980 Dubna, Moscow Region (Russian Federation) and Laboratoire Leon Brillouin, CEA/CNRS, UMR12, CEA Saclay, 91191 Gif sur Yvette Cedex (France)]. E-mail: kozhevn@nf.jinr.ru; Ott, F. [Laboratoire Leon Brillouin, CEA/CNRS, UMR12, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Kentzinger, E. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D-52425 Juelich (Germany); Paul, A. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, D-52425 Juelich (Germany)

    2007-07-15

    We are developing magnetic neutron waveguides (NWG) consisting of thin films of low-optical index sandwiched between two layers of high-optical index. In such structures, the neutron wave function is strongly localized in the guiding layer and the sensitivity to interface scattering effects is enhanced. The samples were characterized on the reflectometer HADAS (FZ Juelich, Germany) by specular reflectivity and off-specular scattering for different magnetic states of the permalloy layers. We show that the waveguide structure strongly enhances the off-specular scattering.

  16. Deuterated polyethylene coatings for ultra-cold neutron applications

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Th.; Geltenbort, P. [Institut Laue-Langevin, 38042 Grenoble Cedex 9 (France); Fierlinger, P.; Gutsmiedl, E.; Hollering, A.; Petzoldt, G.; Ruhstorfer, D.; Stuiber, St.; Taubenheim, B.; Windmayer, D. [Physikdepartment, Technische Universität München, D-85748 Garching (Germany); Lauer, T.; Schroffenegger, J.; Zechlau, T. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universität München, D-85748 Garching (Germany); Seemann, K. M. [Physik-Department E21 & Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85747 Garching (Germany); Soltwedel, O. [Max-Planck-Institute for Solid State Research, Outstation at MLZ, Lichtenbergstr. 1, 85747 Garching (Germany)

    2015-09-21

    We report on the fabrication and use of deuterated polyethylene as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214 neV, and the wall loss coefficient η is 1.3 × 10{sup 4} per wall collision. The coating technique allows for a wide range of applications in this field of physics. In particular, flexible and quasi-massless UCN guides with slit-less shutters and seamless UCN storage volumes become possible. These properties enable the use in next-generation measurements of the electric dipole moment of the neutron.

  17. A new bridge technique for neutron tomography and diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burca, G., E-mail: G.Burca@open.ac.uk [Materials Engineering, Open University, Milton Keynes, MK7 6AA (United Kingdom); James, J.A. [Materials Engineering, Open University, Milton Keynes, MK7 6AA (United Kingdom); Kockelmann, W. [ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Fitzpatrick, M.E. [Materials Engineering, Open University, Milton Keynes, MK7 6AA (United Kingdom); Zhang, S.Y. [ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Hovind, J. [Paul Scherrer Institute (PSI), CH-5232, Villigen (Switzerland); Langh, R. van [Delft University of Technology, Department of Materials Science, Faculty 3mE, Mekelweg 2, 2628 CD Delft (Netherlands); Rijksmuseum Amsterdam, P.O. Box 74888, 1070 DN Amsterdam (Netherlands)

    2011-09-21

    An attractive feature of neutron techniques is the ability to identify hidden materials and structures inside engineering components and objects of art and archaeology. Bearing this in mind we are investigating a new technique, 'Tomography Driven Diffraction' (TDD), that exploits tomography data to guide diffraction experiments on samples with complex structures and shapes. The technique can be used utilising combinations of individual tomography and diffraction instruments, such as NEUTRA (PSI, CH) and ENGIN-X (ISIS, UK), but is also suitable for new combined imaging and diffraction instruments such as the JEEP synchrotron engineering instrument (DIAMOND, UK) and the proposed IMAT neutron imaging and diffraction instrument (ISIS, UK).

  18. Neutron-Induced Failures in Semiconductor Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wender, Stephen Arthur [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This slide presentation explores single event effect, environmental neutron flux, system response, the Los Alamos Neutron Science Center (LANSCE) neutron testing facility, examples of SEE measurements, and recent interest in thermal neutrons.

  19. Designing new guides and instruments using McStas

    CERN Document Server

    Farhi, E; Wildes, A R; Ghosh, R; Lefmann, K

    2002-01-01

    With the increasing complexity of modern neutron-scattering instruments, the need for powerful tools to optimize their geometry and physical performances (flux, resolution, divergence, etc.) has become essential. As the usual analytical methods reach their limit of validity in the description of fine effects, the use of Monte Carlo simulations, which can handle these latter, has become widespread. The McStas program was developed at Riso National Laboratory in order to provide neutron scattering instrument scientists with an efficient and flexible tool for building Monte Carlo simulations of guides, neutron optics and instruments. To date, the McStas package has been extensively used at the Institut Laue-Langevin, Grenoble, France, for various studies including cold and thermal guides with ballistic geometry, diffractometers, triple-axis, backscattering and time-of-flight spectrometers. In this paper, we present some simulation results concerning different guide geometries that may be used in the future at th...

  20. Description of dose response curve

    OpenAIRE

    Al-Samarai, Firas

    2011-01-01

    The book included several methods to estimate LD50, in addition to explain how to use several programs to estimate LD50. Moreover the book illustrate the description of the dose response curves. Firas Al-Samarai

  1. Normal origamis of Mumford curves

    CERN Document Server

    Kremer, Karsten

    2010-01-01

    An origami (also known as square-tiled surface) is a Riemann surface covering a torus with at most one branch point. Lifting two generators of the fundamental group of the punctured torus decomposes the surface into finitely many unit squares. By varying the complex structure of the torus one obtains easily accessible examples of Teichm\\"uller curves in the moduli space of Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves. A p-adic origami is defined as a covering of Mumford curves with at most one branch point, where the bottom curve has genus one. A classification of all normal non-trivial p-adic origamis is presented and used to calculate some invariants. These can be used to describe p-adic origamis in terms of glueing squares.

  2. Neutron drip transition in accreting and nonaccreting neutron star crusts

    CERN Document Server

    Chamel, N; Zdunik, J L; Haensel, P

    2015-01-01

    The neutron-drip transition in the dense matter constituting the interior of neutron stars generally refers to the appearance of unbound neutrons as the matter density reaches some threshold density $\\rho_\\textrm{drip}$. This transition has been mainly studied under the cold catalyzed matter hypothesis. However, this assumption is unrealistic for accreting neutron stars. After examining the physical processes that are thought to be allowed in both accreting and nonaccreting neutron stars, suitable conditions for the onset of neutron drip are derived and general analytical expressions for the neutron drip density and pressure are obtained. Moreover, we show that the neutron-drip transition occurs at lower density and pressure than those predicted within the mean-nucleus approximation. This transition is studied numerically for various initial composition of the ashes from X-ray bursts and superbursts using microscopic nuclear mass models.

  3. String networks as tropical curves

    CERN Document Server

    Ray, Koushik

    2008-01-01

    A prescription for obtaining supergravity solutions for planar (p,q)-string networks is presented, based on earlier results. It shows that networks may be looked upon as tropical curves emerging as the spine of the amoeba of a holomorphic curve in M-theory. The Kaehler potential of supergravity is identified with the corresponding Ronkin function. Implications of this identification in counting dyons is discussed.

  4. Growth curves for Laron syndrome.

    OpenAIRE

    Laron, Z; Lilos, P; Klinger, B.

    1993-01-01

    Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls co...

  5. Flow over riblet curved surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)

    2011-12-22

    The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).

  6. The Learning Curve for a Fetal Cardiac Intervention Team

    OpenAIRE

    Emery, Stephen P.; Jacqueline Kreutzer; McCaffrey, Frances M.; Fredrick S. Sherman; Simhan, Hyagriv N; Keller, Bradley B.

    2010-01-01

    Objectives. Multiple technical difficulties are encountered when a multidisciplinary team of subspecialists begins a minimally-invasive fetal cardiac interventional program. We describe the learning curve. Study Design. Ten pregnant sheep underwent ultrasound-guided balloon valvuloplasty of the aortic valve. Team members and their roles remained constant through the trial. The time between needle insertion and entrance of the left ventricle at the aortic root was recorded. F-test was used to ...

  7. Linear Systems on Tropical Curves

    CERN Document Server

    Haase, Christian; Yu, Josephine

    2009-01-01

    A tropical curve \\Gamma is a metric graph with possibly unbounded edges, and tropical rational functions are continuous piecewise linear functions with integer slopes. We define the complete linear system |D| of a divisor D on a tropical curve \\Gamma analogously to the classical counterpart. We investigate the structure of |D| as a cell complex and show that linear systems are quotients of tropical modules, finitely generated by vertices of the cell complex. Using a finite set of generators, |D| defines a map from \\Gamma to a tropical projective space, and the image can be extended to a tropical curve of degree equal to \\deg(D). The tropical convex hull of the image realizes the linear system |D| as a polyhedral complex. We show that curves for which the canonical divisor is not very ample are hyperelliptic. We also show that the Picard group of a \\Q-tropical curve is a direct limit of critical groups of finite graphs converging to the curve.

  8. Influence of the neutron transport tube on neutron resonance densitometry

    Directory of Open Access Journals (Sweden)

    Kitatani Fumito

    2017-01-01

    Full Text Available Neutron Resonance Densitometry (NRD is a non-destructive assay technique of nuclear materials in particle-like debris that contains various materials. An aim of NRD is to quantify nuclear materials in a melting fuel of Fukusima Daiichi plant, spent nuclear fuel and annihilation disposal fuel etc. NRD consists of two techniques of Neutron Resonance Transmission Analysis (NRTA and Neutron Resonance Capture Analysis (NRCA or Prompt Gamma-ray Analysis (PGA. A density of nuclear material isotopes is decided with NRTA. The materials absorbing a neutron in a wide energy range such as boron in a sample are identified by NRCA/PGA. The information of NRCA/PGA is used in NRTA analysis to quantify nuclear material isotopes. A neutron time of flight (TOF method is used in NRD measurements. A facility, consisting of a neutron source, a neutron flight path, and a detector is required. A short flight path and a strong neutron source are needed to downsize such a facility and put NRD into practical use. A neutron transport tube covers a flight path to prevent noises. In order to investigate the effect of neutron transport tube and pulse width of a neutron source, we carried out NRTA experiments with a 2-m short neutron transport tube constructed at Kyoto University Research Reactor Institute - Linear Accelerator (KURRI-LINAC, and impacts of shield of neutron transport tube and influence of pulse width of a neutron source were examined. A shield of the neutron transport tube reduced a background and had a good influence on the measurement. The resonance dips of 183W at 27 eV was successfully observed with a pulse width of a neutron source less than 2 μs.

  9. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  10. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  11. Neutron counting with cameras

    Energy Technology Data Exchange (ETDEWEB)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo [Institut Laue Langevin, Grenoble (France)

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  12. Ultrasonic guided wave focusing by a generalized phased array

    Science.gov (United States)

    Zhang, Bixing; Xie, Fuli; Dong, Hefeng; Gong, Junjie

    2013-01-01

    Ultrasonic guided wave focusing by a generalized phased array is studied based on dispersion curves in a multi-layered medium. The different phase of the guided waves with different frequency is added on the excitation signal on each element of the transducer array for focusing. This can be realized by designing a proper excitation pulse based on the dispersion curves of the guided waves for each of the transducer array elements. The numerical simulation results show that the guided waves with different modes, different frequency components, and from different elements of the transducer array can all be focused at the target and focusing is achieved.

  13. Neutron Scattering in Hydrogenous Moderators, Studied by Time Dependent Reaction Rate Method

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, L.G.; Moeller, E.; Purohit, S.N.

    1966-03-15

    The moderation and absorption of a neutron burst in water, poisoned with the non-1/v absorbers cadmium and gadolinium, has been followed on the time scale by multigroup calculations, using scattering kernels for the proton gas and the Nelkin model. The time dependent reaction rate curves for each absorber display clear differences for the two models, and the separation between the curves does not depend much on the absorber concentration. An experimental method for the measurement of infinite medium reaction rate curves in a limited geometry has been investigated. This method makes the measurement of the time dependent reaction rate generally useful for thermalization studies in a small geometry of a liquid hydrogenous moderator, provided that the experiment is coupled to programs for the calculation of scattering kernels and time dependent neutron spectra. Good agreement has been found between the reaction rate curve, measured with cadmium in water, and a calculated curve, where the Haywood kernel has been used.

  14. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    Ian S Anderson

    2008-11-01

    The spallation neutron source (SNS) facility became operational in the spring of 2006, and is now well on its way to become the world-leading facility for neutron scattering. Furthermore, the SNS and the HFIR reactor facility, newly outfitted with a brilliant cold source and guide hall, were brought together within a single Neutron Sciences Directorate at ORNL providing the opportunity to develop science and instrumentation programs which take advantage of the unique characteristics of each source. SNS and HFIR will both operate as scientific user facilities. Access to these facilities is being managed under an integrated proposal system, which also includes the Center for Nanophase Materials Sciences (CNMS) and the electron microscopes in the Shared Research Equipment (SHARE) program. Presently, SNS has three instruments operating in the user program and seven more will begin operations in 2008. When complete, the facility will accommodate 25 instruments enabling researchers from the United States and abroad to study materials science that forms the basis for new technologies in telecommunications, manufacturing, transportation, information technology, biotechnology, and health.

  15. Curved plasma channels: Kerr lens and Airy prism

    CERN Document Server

    Kasparian, Jérôme; 10.2971/jeos.2009.09039

    2010-01-01

    We analytically calculate the transverse energy fluxes that would be respectively induced in high-power Airy beams by the Kerr self-focusing and the Airy profile itself if they were the only active process. In experimental condition representative of laser filamentation experiments of high-power ultrashort laser pulses in air and condensed media, the Kerr lens induces transverse energy fluxes much larger than the Airy "prism" at the main peak. As a consequence, the curved plasma channels in Airy beams are not only a plasma spark on a curved focus, but indeed self-guided filaments, and their curved trajectory appears as a perturbation due to the linear Airy propagation regime.

  16. The Crime Curve of Turkey: Does crime decrease with age?

    Directory of Open Access Journals (Sweden)

    Mehmet Akalın

    2016-06-01

    Full Text Available Age distribution of crime is one of the few issues in criminology that received sufficient attention in the West. Some scholars argued that this age distribution is adequately invariant over time, place and type of crime; whereas, others admit that this distribution differs over place and type of crime. Although age-crime curve looks similar in many ways, in fact, a slight difference has been recognized in most countries. This age-crime curve may also help out to focus more on the causes of criminality of specific age groups. Establishing this age distribution is also important because it may play a guiding role for law enforcement personnel and in constructing preventive programs. This article is written primarily to find out how age-crime curve looks like in Turkey. In doing this, prison statistics used here as the primary source.

  17. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2017-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  18. Virtual neutron scattering experiments

    DEFF Research Database (Denmark)

    Overgaard, Julie Hougaard; Bruun, Jesper; May, Michael

    2016-01-01

    We describe how virtual experiments can be utilized in a learning design that prepares students for hands-on experiments at large-scale facilities. We illustrate the design by showing how virtual experiments are used at the Niels Bohr Institute in a master level course on neutron scattering....... In the last week of the course, students travel to a large-scale neutron scattering facility to perform real neutron scattering experiments. Through student interviews and survey answers, we argue, that the virtual training prepares the students to engage more fruitfully with experiments by letting them focus...... on physics and data rather than the overwhelming instrumentation. We argue that this is because they can transfer their virtual experimental experience to the real-life situation. However, we also find that learning is still situated in the sense that only knowledge of particular experiments is transferred...

  19. Direction sensitive neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis; Wellenstein, Hermann F.; Inglis, Andrew

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-finding to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.

  20. Neutron absorbing alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Masayuki

    1998-12-04

    The neutron absorbing alloy of the present invention comprises Ti or an alloy thereof as a mother material, to which from 2 to 40% by weight of Hf and Gd within a range of from 4 to 50% by weight in total are added respectively. Ti is excellent in specific strength, corrosion resistance and workability, and produces no noxious intermetallic compound with Hf and Gd. In addition, since the alloy can incorporate a great quantity of Hf and Gd, a neutron absorbing material having excellent neutron absorbing performance than usual and excellent in specific strength, corrosion resistance and workability can be manufactured conveniently and economically not by a special manufacturing method. (T.M.)

  1. Carbon neutron star atmospheres

    CERN Document Server

    Suleimanov, V F; Pavlov, G G; Werner, K

    2013-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in chemical composition of their atmospheres. For example, atmospheres of thermally - emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in CasA, a pure carbon atmosphere has recently been suggested by Ho & Heinke (2009). To test such a composition for other similar sources, a publicly available detailed grid of carbon model atmosphere spectra is needed. We have computed such a grid using the standard LTE approximation and assuming that the magnetic field does not exceed 10^8 G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra.

  2. Uniformly rotating neutron stars

    CERN Document Server

    Boshkayev, Kuantay

    2016-01-01

    In this chapter we review the recent results on the equilibrium configurations of static and uniformly rotating neutron stars within the Hartle formalism. We start from the Einstein-Maxwell-Thomas-Fermi equations formulated and extended by Belvedere et al. (2012, 2014). We demonstrate how to conduct numerical integration of these equations for different central densities ${\\it \\rho}_c$ and angular velocities $\\Omega$ and compute the static $M^{stat}$ and rotating $M^{rot}$ masses, polar $R_p$ and equatorial $R_{\\rm eq}$ radii, eccentricity $\\epsilon$, moment of inertia $I$, angular momentum $J$, as well as the quadrupole moment $Q$ of the rotating configurations. In order to fulfill the stability criteria of rotating neutron stars we take into considerations the Keplerian mass-shedding limit and the axisymmetric secular instability. Furthermore, we construct the novel mass-radius relations, calculate the maximum mass and minimum rotation periods (maximum frequencies) of neutron stars. Eventually, we compare a...

  3. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Investigating Transmission Efficiency of Light Guide by Monte Carlo Simulation

    Institute of Scientific and Technical Information of China (English)

    LiChen; XiaoGuoqing; GuoZhongyan; ZhanWenlongt; SunZhiyu; WangMeng; ChenZhiqiang; MaoRuishi; BaiJie; HuZhengguo; ChenLixin

    2003-01-01

    A large area neutron detector to detect the energy of about 1 GeV neutron by time-of flight method will be installed at RIBLL II of CSR. To obtain good energy resolution, the time resolution of the detector is a crucial parameter. For this purpose, the transmission efficiency of the light guide to transport the photons from detec-tor unit to light sensitive detector has been investigated by Monte-Carlo simulation. Here, the simulations were done mainly with two types of the light guides, namely type A and type B as shown in Figs.1 and 2 respectively.

  5. Neutron beams. Understanding and characterizing matter; Les faisceaux de neutrons. Comprendre et caracteriser la matiere

    Energy Technology Data Exchange (ETDEWEB)

    Pepy, G. [Laboratoire Leon Brillouin (LLB) - Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    2007-01-15

    This article treats of the numerous methods that use the undulatory properties of neutrons (their scattering in matter). Content: 1 - structure of crystallized matter: determination of a magnetic structure, hydrogen localization inside an alloy, 3D mapping of internal stresses inside materials, determination of the crystallographic structure, structure of a monocrystal by 4 circles diffraction; 2 - reflectometry, surface profiles: super-mirrors for neutron guides, giant magnetoresistance thin film devices; 3 - small angle scattering: protein and polyelectrolyte complexes, ropes integrity and microstructure, aggregates growth inside irradiated steels, microstructural evolution of defects inside race car engine pistons; 4 - dynamics: collective mode dynamics - three axis spectrometer, Mn Te magnons in thin film, scattering dynamics - quasi-elastic time-of-flight spectrometer, water diffusion inside cement. (J.S.)

  6. Atmospheres around Neutron Stars

    Science.gov (United States)

    Fryer, Chris L.; Benz, Willy

    1994-12-01

    Interest in the behavior of atmospheres around neutron stars has grown astronomically in the past few years. Some of this interest arrived in the wake of the explosion of Supernova 1987A and its elusive remnant; spawning renewed interest in a method to insure material ``fall-back'' onto the adolescent neutron star in an effort to transform it into a silent black hole. However, the bulk of the activity with atmospheres around neutron stars is concentrated in stellar models with neutron star, rather than white dwarf, cores; otherwise known as Thorne-Zytkow objects. First a mere seed in the imagination of theorists, Thorne-Zytkow objects have grown into an observational reality with an ever-increasing list of formation scenarios and observational prospects. Unfortunately, the analytic work of Chevalier on supernova fall-back implies that, except for a few cases, the stellar simulations of Thorne-Zytkow objects are missing an important aspect of physics: neutrinos. Neutrino cooling removes the pressure support of these atmospheres, allowing accretion beyond the canonical Eddington rate for these objects. We present here the results of detailed hydrodynamical simulations in one and two dimensions with the additional physical effects of neutrinos, advanced equations of state, and relativity over a range of parameters for our atmosphere including entropy and chemical composition as well as a range in the neutron star size. In agreement with Chevalier, we find, under the current list of formation scenarios, that the creature envisioned by Thorne and Zytkow will not survive the enormous appetite of a neutron star. However, neutrino heating (a physical effect not considered in Chevalier's analysis) can play an important role in creating instabilities in some formation schemes, leading to an expulsion of matter rather than rapid accretion. By placing scrutiny upon the formation methods, we can determine the observational prospects for each.

  7. Pixelated neutron image plates

    Science.gov (United States)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  8. POLARIZED NEUTRONS IN RHIC

    Energy Technology Data Exchange (ETDEWEB)

    COURANT,E.D.

    1998-04-27

    There does not appear to be any obvious way to accelerate neutrons, polarized or otherwise, to high energies by themselves. To investigate the behavior of polarized neutrons the authors therefore have to obtain them by accelerating them as components of heavier nuclei, and then sorting out the contribution of the neutrons in the analysis of the reactions produced by the heavy ion beams. The best neutron carriers for this purpose are probably {sup 3}He nuclei and deuterons. A polarized deuteron is primarily a combination of a proton and a neutron with their spins pointing in the same direction; in the {sup 3}He nucleus the spins of the two protons are opposite and the net spin (and magnetic moment) is almost the same as that of a free neutron. Polarized ions other than protons may be accelerated, stored and collided in a ring such as RHIC provided the techniques proposed for polarized proton operation can be adapted (or replaced by other strategies) for these ions. To accelerate polarized particles in a ring, one must make provisions for overcoming the depolarizing resonances that occur at certain energies. These resonances arise when the spin tune (ratio of spin precession frequency to orbit frequency) resonates with a component present in the horizontal field. The horizontal field oscillates with the vertical motion of the particles (due to vertical focusing); its frequency spectrum is dominated by the vertical oscillation frequency and its modulation by the periodic structure of the accelerator ring. In addition, the magnet imperfections that distort the closed orbit vertically contain all integral Fourier harmonics of the orbit frequency.

  9. Curve Digitizer – A software for multiple curves digitizing

    Directory of Open Access Journals (Sweden)

    Florentin ŞPERLEA

    2010-06-01

    Full Text Available The Curve Digitizer is software that extracts data from an image file representing a graphicand returns them as pairs of numbers which can then be used for further analysis and applications.Numbers can be read on a computer screen stored in files or copied on paper. The final result is adata set that can be used with other tools such as MSEXCEL. Curve Digitizer provides a useful toolfor any researcher or engineer interested in quantifying the data displayed graphically. The image filecan be obtained by scanning a document

  10. New compact neutron polarizer

    Science.gov (United States)

    Krist, Th; Kennedy, S. J.; Hicks, T. J.; Mezei, F.

    A new type of a neutron polarizing bender was developed in co-operation with BENSC and ANSTO. It is based upon bent thin silicon wafers coated on one side with SiFeCo polarizing supermirrors and on the other side with Gd. Initial tests at BENSC in a 300 Oe magnetic field yielded a transmission of spin-up neutrons of about 55% over an angle range of 0.75° and flipping ratios > 30. Subsequent tests at ANSTO at 1200 Oe yielded a transmission of 48% with a flipping ratio > 45.

  11. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  12. Helium 3 neutron precision polarimetry

    Science.gov (United States)

    Menard, Christopher

    2009-10-01

    Measuring neutron polarization to a high degree of precision is critical for the next generation of neutron decay correlation experiments. Polarized neutrons are also used in experiments to probe the hadronic weak interaction which contributes a small portion (˜10-7) of the force between nucleons. Using a beam of cold neutrons at Los Alamos Neutron Science Center (LANSCE), we polarized neutrons and measured their absolute polarization to ˜0.1%. Neutrons were polarized by passing them through a ^3He spin filter, relying on the maximally spin dependent 3He neutron absorption cross section. The neutron polarization can be determined by measuring the wavelength-dependent neutron transmission through the ^3He cell. An independent measurement of the neutron polarization was also obtained by passing the polarized beam through an RF spin flipper and a second polarized ^3He cell, used as an analyzer. To measure the efficiency of the spin flipper, the same measurements were made after reversing the ^3He polarization in the polarizer by using NMR techniques (adiabatic fast passage). We will show the consistency of these two measurements and the resulting precision of neutron polarimetry using these techniques.

  13. Systematic analysis of symmetry energy effects in the neutron star crust properties

    CERN Document Server

    Kubis, Sebastian

    2012-01-01

    The functional form of the nuclear symmetry energy in the whole range of densities relevant for the neutron stars is still unknown. Discrepancies concern both the low as well as the high density behaviour of this function. By use of Bezier curves three different families of the symmetry energy shapes, relevant for different density range were introduced. Their consequences for the crustal properties of neutron stars are presented.

  14. Detection efficiency evaluation for a large area neutron sensitive microchannel plate detector

    CERN Document Server

    Wang, Yiming; Liu, Ren

    2016-01-01

    In this paper, the detection efficiency of a large area neutron sensitive microchannel plate detector has been evaluated. A 6LiF/ZnS detector was employed as the benchmark detector, the TOF spectra of these two detectors were simultaneously measured and the energy spectra were then deduced to calculate the detection efficiency curve of the nMCP detector. Tests show the detection efficiency@25.3 meV thermal neutron is 34% for this nMCP detector.

  15. Mergers of binary neutron stars with realistic spin

    CERN Document Server

    Bernuzzi, Sebastiano; Tichy, Wolfgang; Bruegmann, Bernd

    2013-01-01

    Simulations of binary neutron stars have seen great advances in terms of physical detail and numerical quality. However, the spin of the neutron stars, one of the simplest global parameters of binaries, remains mostly unstudied. We present the first, fully nonlinear general relativistic dynamical evolutions of the last three orbits for constraint satisfying initial data of spinning neutron star binaries, with astrophysically realistic spins aligned and anti-aligned to the orbital angular momentum. The initial data is computed with the constant rotational velocity approach. The dynamics of the systems is analyzed in terms of gauge-invariant binding energy vs. orbital angular momentum curves. By comparing to a binary black hole configuration we can estimate the different tidal and spin contributions to the binding energy for the first time. First results on the gravitational wave forms are presented. The phase evolution during the orbital motion is significantly affected by spin-orbit interactions, leading to d...

  16. Neutron storage time measurement for the neutron EDM experiment

    Science.gov (United States)

    Griffith, W. Clark; Ito, Takeyasu; Ramsey, John; Makela, Mark; Clayton, Steven; Hennings-Yeomans, Raul; Saidur Rahaman, M.; Currie, Scott; Womack, Todd; Sondheim, Walter; Cooper, Martin

    2010-11-01

    A new experiment to search for the neutron electric dipole moment (nEDM) is under development for installation at the Spallation Neutron Source (SNS) at Oakridge National Laboratory. The experiment will use ultra-cold neutrons (UCN) stored in superfluid helium, along with ^3He atoms acting as a neutron spin analyzer and comagnetometer. One crucial factor affecting the ultimate sensitivity of the experiment is the neutron storage time that can be obtained in the acrylic measurement cell. The acrylic cell walls will be coated with deuterated polystyrene (dPS), which is expected to give a wall loss factor of ˜room temperature and below 20 K.

  17. Neutron recognition in LAND detector for large neutron multiplicity

    CERN Document Server

    Pawłowski, P; Leifels, Y; Trautmann, W; Adrich, P; Aumann, T; Bacri, C O; Barczyk, T; Bassini, R; Bianchin, S; Boiano, C; Boretzky, K; Boudard, A; Chbihi, A; Cibor, J; Czech, B; De Napoli, M; Ducret, J -E; Emling, H; Frankland, J D; Gorbinet, T; Hellström, M; Henzlova, D; Hlavac, S; Immè, J; Iori, I; Johansson, H; Kezzar, K; Kupny, S; Lafriakh, A; Fèvre, A Le; Gentil, E Le; Leray, S; Łukasik, J; Lühning, J; Lynch, W G; Lynen, U; Majka, Z; Mocko, M; Müller, W F J; Mykulyak, A; Orth, H; Otte, A N; Palit, R; Panebianco, S; Pullia, A; Raciti, G; Rapisarda, E; Rossi, D; Salsac, M -D; Sann, H; Schwarz, C; Simon, H; Sfienti, C; Sümmerer, K; Tsang, M B; Verde, G; Veselsky, M; Volant, C; Wallace, M; Weick, H; Wiechula, J; Wieloch, A; Zwiegliński, B

    2012-01-01

    The performance of the LAND neutron detector is studied. Using an event-mixing technique based on one-neutron data obtained in the S107 experiment at the GSI laboratory, we test the efficiency of various analytic tools used to determine the multiplicity and kinematic properties of detected neutrons. A new algorithm developed recently for recognizing neutron showers from spectator decays in the ALADIN experiment S254 is described in detail. Its performance is assessed in comparison with other methods. The properties of the observed neutron events are used to estimate the detection efficiency of LAND in this experiment.

  18. Neutron beam imaging at neutron spectrometers at Dhruva

    Science.gov (United States)

    Desai, Shraddha S.; Rao, Mala N.

    2012-06-01

    A low efficiency, 2-Dimensional Position Sensitive Neutron Detector based on delay line position encoding is developed. It is designed to handle beam flux of 106-107 n/cm2/s and for monitoring intensity profiles of neutron beams. The present detector can be mounted in transmission mode, as the hardware allows maximum neutron transmission in sensitive region. Position resolution of 1.2 mm in X and Y directions, is obtained. Online monitoring of beam images and intensity profile of various neutron scattering spectrometers at Dhruva are presented. It shows better dynamic range of intensity over commercial neutron camera and is also time effective over the traditionally used photographic method.

  19. Expert Guide

    DEFF Research Database (Denmark)

    Heiselberg, Per

    This guide summarizes the work of Subtask B of IEA-ECBCS Annex 44 “Integrating Environmentally Responsive Elements in Buildings” and is based on the contributions from the participating countries. The publication is an official Annex report. With a focus on innovative building concepts...... that dynamically respond to changes in climate and user demands, the report describes building concepts, design methods and tools that have been tested in theory and practice in buildings around the world. This guide is aimed at designers and consultants and describes the principles of responsive building concepts...

  20. Some Implications of Neutron Mirror Neutron Oscillation

    CERN Document Server

    Mohapatra, Rabindra N; Nussinov, S

    2005-01-01

    We comment on a recently discussed possibility of oscillations between neutrons and degenerate mirror neutrons in the context of mirror models for particles and forces. It has been noted by Bento and Berezhiani that if these oscillations occurred at a rate of $\\tau^{-1}_{NN'}\\sim sec^{-1}$, it would help explain putative super GKZ cosmic ray events provided the temperature of the mirror radiation is $\\sim 0.3-0.4$ times that of familiar cosmic microwave background radiation. We discuss how such oscillation time scales can be realized in mirror models and find that the simplest nonsupersymmetric model for this idea requires the existence of a low mass (30-3000 GeV) color triplet scalar or vector boson. A supersymmetric model, where this constraint can be avoided is severely constrained by the requirement of maintaining a cooler mirror sector. We also find that the reheat temperature after inflation in generic models that give fast $n-n'$ oscillation be less than about 100 GeV in order to maintain the required ...

  1. Polymer Crystallization at Curved Liquid/Liquid Interface

    Science.gov (United States)

    Wang, Wenda

    Liquid/liquid interface, either flat or curved, is a unique template for studying self-assembly of a variety of nanomaterials such as nanoparticles and nanorods. The resultant monolayer films can be ordered or disordered depending on the regularity of the nanomaterials. Integration of nanoparticles into two-dimensional structure leads to intriguing collective properties of the nanoparticles. Crystallization can also be guided by liquid/liquid interface. Due to the particular shape of the interface, crystallization can happen in a different manner comparing to the normal solution crystallization. In this dissertation, liquid/liquid interface is employed to guide the crystallization of polymers, mainly focusing on using curved liquid/liquid interface. Due to the unique shape of the interface and feasibility to control the curvature, polymer crystallization can take place in different manner and lead to the formation of curved or vesicular crystals. Curved liquid/liquid interface is typically created through o/w emulsions. With the presence of surfactant, the emulsions are controlled to be stable at least for the polymer crystallization periods. The difference to normal solution crystallization is: the nuclei will diffuse to the curved interface due to the Pickering effect and guide the crystallization along the curved liquid/liquid interface. If the supercooling can be controlled to be very small, crystal growth in the bulk droplets can be avoided. The advantages of this strategy are: 1) the formation process of vesicular type crystals can be monitored by controlling the polymer supply; 2) curved crystals, bowl-like structures and enclosed capsules can be easily obtained comparing to the self-assembly method for vesicle formation; 3) the obtained vesicles will be made of polymer crystals, which will possess the extraordinary mechanical properties. Based on the nucleation type, this dissertation is divided into two parts. The first part is focused on the self

  2. Neutron spin-echo spectrometer at BARC, Trombay

    CERN Document Server

    Chaplot, S L; Goel, P

    2002-01-01

    At one of the cold-neutron guides at the Dhruva reactor at Trombay, we are testing a modestly designed neutron spin-echo spectrometer, which would be suitable for the study of dynamics at an intermediate length of about 1 nm and a time up to 1 ns. We use a BeO-filtered quasi-monochromatic beam and a multi-stage soller-type design of the supermirror polarizer and analyser, which allows focussing of the neutron beam by a suitable choice of the angles between the various columns of the supermirrors. The spin-echo signal has been observed for the direct beam, and further calibration experiments are in progress. (orig.)

  3. Neutron mirror development for VCN/UCN sources

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Y.; Tasaki, S.; Hino, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Suzuki, M. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Somemiya, K. [Kyoto Univ. (Japan). Faculty of Engineering; Wakata, A. [R and D center, Mitsubishi pencil Co., Fujioka, Gumma (Japan); Nakayama, M. [R and D center, TDK Co., Ichikawa, Chiba (Japan)

    2001-03-01

    Several types of neutron mirrors and monochromator have been developed for VCN and UCN facilities. As the VCN guide tube must be set very close to the CNS cell, it will suffer a severe irradiation. Neutron mirrors enduring a hard environment are essential. Replica supermirrors and polished glassy carbon mirrors have been developed for VCN extraction. A wide band monochromator consisting of a stack of four multilayers on two Si wafers has been developed. One multilayer has 201 Ni/Ti layers. The layer thickness is gradually changed in order to extend the neutron reflection wavelength range similar to a supermirror. It is required as blades of a proposed new type UCN turbine. Development of deuterated diamond-like carbon mirrors is also in progress for the UCN transportation. (author)

  4. Neutron Scattering Investigations of Correlated Electron Systems and Neutron Instrumentation

    DEFF Research Database (Denmark)

    Holm, Sonja Lindahl

    are a unique probe for studying the atomic and molecular structure and dynamics of materials. Even though neutrons are very expensive to produce, the advantages neutrons provide overshadow the price. As neutrons interact weakly with materials compared to many other probes, e.g. electrons or photons......, it is possible to make a neutron scattering experiment through sample environment equipment like cryostats or pressure cells. Another advantage of neutron experiments is that the wavelength and energy of the neutron match the inter-atomic distances and basic excitations of solid materials. The scattering cross...... is not taken into account in previous reports on the field effect of magnetic scattering, since usually only L 0 is probed. A paper draft submitted for publication describing the results of elastic and inelastic neutron scattering experiments performed on the oxygen-doped La2CuO4+y HTSC is appended (Tc 40 K...

  5. Neutronic studies of the coupled moderators for spallation neutron sources

    Institute of Scientific and Technical Information of China (English)

    Yin Wen; Liang Jiu-Qing

    2005-01-01

    We investigate the neutronic performance of coupled moderators to be implemented in spallation neutron sources by Monte-Carlo simulation and give the slow neutron spectra for the cold and thermal moderators. CH4 moderator can provide slow neutrons with highly desirable characteristics and will be used in low-power spallation neutron soureces. The slow neutron intensity extracted from different angles has been calculated. The capability of moderation of liquid H2 is lower than H2O and liquid CH4 due to lower atomic number density of hydrogen but we can compensate for this disadvantage by using a premoderator. The H2O premoderator of 2cm thickness can reduce the heat deposition in the cold moderator by about 33% without spoiling the neutron pulse.

  6. Topological recursion and mirror curves

    CERN Document Server

    Bouchard, Vincent

    2012-01-01

    We study the constant contributions to the free energies obtained through the topological recursion applied to the complex curves mirror to toric Calabi-Yau threefolds. We show that the recursion reproduces precisely the corresponding Gromov-Witten invariants, which can be encoded in powers of the MacMahon function. As a result, we extend the scope of the "remodeling conjecture" to the full free energies, including the constant contributions. In the process we study how the pair of pants decomposition of the mirror curves plays an important role in the topological recursion. We also show that the free energies are not, strictly speaking, symplectic invariants, and that the recursive construction of the free energies does not commute with certain limits of mirror curves.

  7. Laffer Curves and Home Production

    Directory of Open Access Journals (Sweden)

    Kotamäki Mauri

    2017-06-01

    Full Text Available In the earlier related literature, consumption tax rate Laffer curve is found to be strictly increasing (see Trabandt and Uhlig (2011. In this paper, a general equilibrium macro model is augmented by introducing a substitute for private consumption in the form of home production. The introduction of home production brings about an additional margin of adjustment – an increase in consumption tax rate not only decreases labor supply and reduces the consumption tax base but also allows a substitution of market goods with home-produced goods. The main objective of this paper is to show that, after the introduction of home production, the consumption tax Laffer curve exhibits an inverse U-shape. Also the income tax Laffer curves are significantly altered. The result shown in this paper casts doubt on some of the earlier results in the literature.

  8. Rational points on elliptic curves

    CERN Document Server

    Silverman, Joseph H

    2015-01-01

    The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and ...

  9. Canonical curves with low apolarity

    CERN Document Server

    Ballico, Edoardo; Notari, Roberto

    2010-01-01

    Let $k$ be an algebraically closed field and let $C$ be a non--hyperelliptic smooth projective curve of genus $g$ defined over $k$. Since the canonical model of $C$ is arithmetically Gorenstein, Macaulay's theory of inverse systems allows to associate to $C$ a cubic form $f$ in the divided power $k$--algebra $R$ in $g-2$ variables. The apolarity of $C$ is the minimal number $t$ of linear form in $R$ needed to write $f$ as sum of their divided power cubes. It is easy to see that the apolarity of $C$ is at least $g-2$ and P. De Poi and F. Zucconi classified curves with apolarity $g-2$ when $k$ is the complex field. In this paper, we give a complete, characteristic free, classification of curves $C$ with apolarity $g-1$ (and $g-2$).

  10. Curved spacetimes in the lab

    CERN Document Server

    Szpak, Nikodem

    2014-01-01

    We present some new ideas on how to design analogue models of quantum fields living in curved spacetimes using ultra-cold atoms in optical lattices. We discuss various types of static and dynamical curved spacetimes achievable by simple manipulations of the optical setup. Examples presented here contain two-dimensional spaces of positive and negative curvature as well as homogeneous cosmological models and metric waves. Most of them are extendable to three spatial dimensions. We mention some interesting phenomena of quantum field theory in curved spacetimes which might be simulated in such optical lattices loaded with bosonic or fermionic ultra-cold atoms. We also argue that methods of differential geometry can be used, as an alternative mathematical approach, for dealing with realistic inhomogeneous optical lattices.

  11. The New Keynesian Phillips Curve

    DEFF Research Database (Denmark)

    Ólafsson, Tjörvi

    This paper provides a survey on the recent literature on the new Keynesian Phillips curve: the controversies surrounding its microfoundation and estimation, the approaches that have been tried to improve its empirical fit and the challenges it faces adapting to the open-economy framework. The new...... Keynesian Phillips curve has been severely criticized for poor empirical dynamics. Suggested improvements involve making some adjustments to the standard sticky price framework, e.g. introducing backwardness and real rigidities, or abandoning the sticky price model and relying on models of inattentiveness......, learning or state-dependant pricing. The introduction of openeconomy factors into the new Keynesian Phillips curve complicate matters further as it must capture the nexus between price setting, inflation and the exchange rate. This is nevertheless a crucial feature for any model to be used for inflation...

  12. Algebraic curves of maximal cyclicity

    Science.gov (United States)

    Caubergh, Magdalena; Dumortier, Freddy

    2006-01-01

    The paper deals with analytic families of planar vector fields, studying methods to detect the cyclicity of a non-isolated closed orbit, i.e. the maximum number of limit cycles that can locally bifurcate from it. It is known that this multi-parameter problem can be reduced to a single-parameter one, in the sense that there exist analytic curves in parameter space along which the maximal cyclicity can be attained. In that case one speaks about a maximal cyclicity curve (mcc) in case only the number is considered and of a maximal multiplicity curve (mmc) in case the multiplicity is also taken into account. In view of obtaining efficient algorithms for detecting the cyclicity, we investigate whether such mcc or mmc can be algebraic or even linear depending on certain general properties of the families or of their associated Bautin ideal. In any case by well chosen examples we show that prudence is appropriate.

  13. Neutron capture gamma-ray spectroscopy and its analytical applications for gold ore sample using the reactor neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, A.M.; El-Kady, A.A.; Rofail, N.B.; Hamouda, I.

    1981-01-01

    Prompt gamma-rays which immediately follow thermal neutrons capture have been used as a technique for non-destructive elemental analysis for gold ore sample. The thermal column of the Egyptian Research Reactor - 1 (ET-RR-1) was used. This requires a design of a well collimated and thermalized neutron beam. A high resolution and high efficiency Ge (Li) detector was required. In order to estimate the content of gold in its ore, calibration curves were constructed. For testing the results obtained, an empirical formula including the thermal neutron flux, the microscopic cross-section and the absolute efficiency of the detection system were applied. The concentration of gold in its ore sample was found to be as low as 5 ppM. Several elements beside gold could be identified in the ore sample. 10 references.

  14. Transport of ultracold neutrons through a mirror system with surface roughness as a velocity filter

    CERN Document Server

    Chizhova, L A; Jenke, T; Cronenberg, G; Geltenbort, P; Abele, H; Burgdörfer, J

    2012-01-01

    We perform classical Monte Carlo simulations of ultracold neutron transport through an absorbing-reflecting mirror system in the Earth's gravitational field. We show that the underlying mixed phase space of regular skipping motion and random motion due to disorder scattering can be exploited to realize a velocity filter for ultracold neutrons. The range of velocities selected is controlled by geometric parameters of the wave guide. Possible applications include investigations of transport and scattering dynamics in confined systems.

  15. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  16. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al{sub 2}O{sub 3}:C

    Energy Technology Data Exchange (ETDEWEB)

    Mittani, J.C.R. [Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072 (United States); Silva, A.A.R. da [Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072 (United States); Vanhavere, F. [SCK.CEN, Belgian Nuclear Research Centre, Boeretang 200, 2400 Mol (Belgium); Akselrod, M.S. [Landauer, Inc., Stillwater Crystal Growth Division, 723 1/2 Eastgate Rd., Stillwater, OK 74074 (United States); Yukihara, E.G. [Department of Physics, Oklahoma State University, Stillwater, OK 74078-3072 (United States)]. E-mail: eduardo.yukihara@okstate.edu

    2007-07-15

    This paper presents the optically stimulated luminescence (OSL) properties of neutron dosimeters in powder and in the form of pellets prepared with a mixture of Al{sub 2}O{sub 3}:C and neutron converters. The neutron converters investigated were high density polyethylene (HDPE), lithium fluoride (LiF), lithium fluoride 95% enriched with {sup 6}Li ({sup 6}LiF), lithium carbonate 95% enriched with {sup 6}Li ({sup 6}Li{sub 2}CO{sub 3}), boric acid enriched with 99% of {sup 10}B (H{sub 3}{sup 10}BO{sub 3}) and gadolinium oxide (Gd{sub 2}O{sub 3}). The proportion of Al{sub 2}O{sub 3}:C and neutron converter in the mixture was varied to optimize the total OSL signal and neutron sensitivity. The neutron sensitivity and dose-response were determined for the OSL dosimeters using a bare {sup 252}Cf source and compared to the response of Harshaw TLD-600 and TLD-700 dosimeters ({sup 6}LiF:Mg,Ti and {sup 7}LiF:Mg,Ti). The results demonstrate the possibility of developing an OSL dosimeter made of Al{sub 2}O{sub 3}:C powder and neutron converter with a neutron sensitivity (defined as the ratio between the {sup 60}Co equivalent gamma dose and the reference neutron absorbed dose) and neutron-gamma discrimination comparable to the TLD-600/TLD-700 combination. It was shown that the shape of the OSL decay curves varied with the type of the neutron converter, demonstrating the influence of the energy deposition mechanism and ionization density on the OSL process in Al{sub 2}O{sub 3}:C.

  17. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  18. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-09-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  19. Caloric Curves and Nuclear Expansion

    CERN Document Server

    Natowitz, J B; Ma, Y; Murray, M; Qin, L; Shlomo, S; Wada, R; Wang, J

    2002-01-01

    Nuclear caloric curves have been analyzed using an expanding Fermi gas hypothesis to extract average nuclear densities. In this approach the observed flattening of the caloric curves reflects progressively increasing expansion with increasing excitation energy. This expansion results in a corresponding decrease in the density and Fermi energy of the excited system. For nuclei of medium to heavy mass apparent densities $~0.3\\rho_0$ are reached at the higher excitation energies. The average densities derived in this manner are in good agreement with those derived using other, more complicated, techniques.

  20. Curved branes with regular support

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universites, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, ITP, Bern (Switzerland); Cotsakis, Spiros; Klaoudatou, Ifigeneia [American University of the Middle East, Department of Mathematics, P. O. Box 220, Dasman (Kuwait)

    2016-09-15

    We study spacetime singularities in a general five-dimensional braneworld with curved branes satisfying four-dimensional maximal symmetry. The bulk is supported by an analog of perfect fluid with the time replaced by the extra coordinate. We show that contrary to the existence of finite-distance singularities from the brane location in any solution with flat (Minkowski) branes, in the case of curved branes there are singularity-free solutions for a range of equations of state compatible with the null energy condition. (orig.)

  1. A review on neutron reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Soo; Lee, Chang Hee; Shim, Hae Seop; Seong, Baek Seok

    1999-03-01

    This report contains principle and characteristic of neutron reflectometry. Therefore, in case of operating neutron reflectometer at HANARO in future, it will be a reference to the user who wishes to use the instrument effectively. Also, the current situation of neutron reflectometer operating in the world was examined. The detail of neutron reflectometer such as GANS(MURR), ADAM(ILL), POSY II(ANL), ROG(IRI) was described. The recent research situation on neutron reflectometry was also examined and it helps us to determine research field. (author)

  2. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  3. Neutron detection efficiency determinations for the TUNL neutron-neutron and neutron-proton scattering-length measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trotter, D.E. Gonzalez [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: crowell@tunl.duke.edu; Meneses, F. Salinas [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Tornow, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)], E-mail: tornow@tunl.duke.edu; Crowell, A.S.; Howell, C.R. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Schmidt, D. [Physikalisch-Technische Bundesanstalt, D-38116, Braunschweig (Germany); Walter, R.L. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2009-02-11

    The methods employed and the results obtained from measurements and calculations of the detection efficiency for the neutron detectors used at Triangle Universities Nuclear Laboratory (TUNL) in the simultaneous determination of the {sup 1}S{sub 0} neutron-neutron and neutron-proton scattering lengths a{sub nn} and a{sub np}, respectively, are described. Typical values for the detector efficiency were 0.3. Very good agreement between the different experimental methods and between data and calculation has been obtained in the neutron energy range below E{sub n}=13MeV.

  4. Homebuyer's Guide.

    Science.gov (United States)

    Sindt, Roger P.; Harris, Jack

    Designed to assist prospective buyers in making such important decisions as whether to buy a new or older home and within what price range, the guide provides information on the purchase process. Discussion of the purchase process covers the life-cycle costs (recurring homeownership costs that must be met every month); selection of a home;…

  5. New Neutron Dosimeter

    CERN Multimedia

    2001-01-01

    CERN has been operating an Individual Dosimetry Service for neutrons for about 35 years. The service was based on nuclear emulsions in the form of film packages which were developed and scanned in the Service. In 1999, the supplier of theses packages informed CERN that they will discontinue production of this material. TIS-RP decided to look for an external service provider for individual neutron dosimetry. After an extensive market survey and an invitation for tender, a supplier that met the stringent technical requirements set up by CERN's host states for personal dosimeters was identified. The new dosimeter is based on a track-etching technique. Neutrons have the capability of damaging plastic material. The microscopic damage centres are revealed by etching them in a strong acid. The resulting etch pits can be automatically counted and their density is proportional to dose equivalent from neutrons. On the technical side, the new dosimeter provides an improved independence of its response from energy and th...

  6. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  7. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    Science.gov (United States)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  8. Radiological Shielding Design for the Neutron High-Resolution Backscattering Spectrometer EMU at the OPAL Reactor

    Science.gov (United States)

    Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de

    2017-09-01

    The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.

  9. Precision Measurement of the Position-space Wave Functions of Gravitationally Bound Ultracold Neutrons

    CERN Document Server

    Kamiya, Y; Komamiya, S

    2015-01-01

    Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states, and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.

  10. Notes on neutron flux measurement; Notas sobre medida de flujos neutronicos

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    The main purpose of this work is to get an useful guide to carry out topical neutron flux measurements. Although the foil activation technique is used in the majority of the cases, other techniques, such as those based on fission chambers and self-powered neutron detectors, are also shown. Special interest is given to the description and application of corrections on the measurement of relative and absolute induced activities by several types of detectors (scintillators, G-M and gas proportional counters). The thermal arid epithermal neutron fluxes, as determined in this work, are conventional or effective (West cots fluxes), which are extensively used by the reactor experimentalists; however, we also give some expressions where they are related to the integrated neutron fluxes, which are used in neutron calculations. (Author) 16 refs.

  11. Precision Measurement of the Position-Space Wave Functions of Gravitationally Bound Ultracold Neutrons

    Directory of Open Access Journals (Sweden)

    Y. Kamiya

    2014-01-01

    Full Text Available Gravity is the most familiar force at our natural length scale. However, it is still exotic from the view point of particle physics. The first experimental study of quantum effects under gravity was performed using a cold neutron beam in 1975. Following this, an investigation of gravitationally bound quantum states using ultracold neutrons was started in 2002. This quantum bound system is now well understood, and one can use it as a tunable tool to probe gravity. In this paper, we review a recent measurement of position-space wave functions of such gravitationally bound states and discuss issues related to this analysis, such as neutron loss models in a thin neutron guide, the formulation of phase space quantum mechanics, and UCN position sensitive detectors. The quantum modulation of neutron bound states measured in this experiment shows good agreement with the prediction from quantum mechanics.

  12. Neutron Imaging at the Oak Ridge National Laboratory: Application to Biological Research

    Energy Technology Data Exchange (ETDEWEB)

    Bilheux, Hassina Z [ORNL; Cekanova, Maria [University of Tennessee, Knoxville (UTK); Bilheux, Jean-Christophe [ORNL; Bailey, William Barton [ORNL; Keener, Wylie S [ORNL; Davis, Larry E [ORNL; Herwig, Kenneth W [ORNL

    2014-01-01

    The Oak Ridge National Laboratory Neutron Sciences Directorate (NScD) has recently installed a neutron imaging beamline at the High Flux Isotope Reactor (HFIR) cold guide hall. The CG-1D beamline supports a broad range of user research spanning from engineering to material research, energy storage, additive manufacturing, vehicle technologies, archaeology, biology, and plant physiology. The beamline performance (spatial resolution, field of view, etc.) and its utilization for biological research are presented. The NScD is also considering a proposal to build the VENUS imaging beamline (beam port 10) at the Spallation Neutron Source (SNS). Unlike CG-1D which provides cold neutrons, VENUS will offer a broad range of neutron wavelengths, from epithermal to cold, and enhanced contrast mechanisms. This new capability will also enable the imaging of thicker biological samples than is currently available at CG-1D. A brief overview of the VENUS capability for biological research is discussed.

  13. Comparison of Reg. Guide 1.99 fluence attenuation methods

    Energy Technology Data Exchange (ETDEWEB)

    Jones, E.N. [TransWare Enterprises Inc., 1565 Mediterranean Dr., Sycamore, IL 60178 (United States)

    2011-07-01

    U.S. Regulatory Guide 1.99 Revision 2 (U.S. Nuclear Regulatory Commission, 1988, 'Radiation Embrittlement of Reactor Vessel Materials,' Regulatory Guide 1.99, Revision 2, Washington, D.C.) provides for the use of two substantially different methods for determining through-wall fluence in nuclear reactor pressure vessels. One method is a generic attenuation curve based on a simplistic exponential decay equation. Partly due to the simplicity of its application, the generic attenuation method is predominantly used for licensing calculations. However, it has a limitation in that at increasing distances away from the core belt-line, it becomes increasingly less accurate because it cannot account for neutron streaming effects in the cavity region surrounding the pressure vessel. The other attenuation method is based on a displacement per atom (dpa) calculation specific to the reactor vessel structure. The dpa method provides a more accurate representation of fluence attenuation through the reactor pressure vessel (RPV) wall at all elevations of the pressure vessel because it does account for neutron streaming in the cavity region. A requirement for using the dpa method, however, is an accurate flux solution through the RPV wall. This requirement has limited the use of traditional transport methods, such as discrete ordinates, that are limited by their treatment of cavity regions (i.e., air) outside the pressure vessel wall. TransWare Enterprises, under the sponsorship of EPRI and BWRVIR has developed an advanced three-dimensional transport methodology capable of producing fully converged flux solutions throughout the entire reactor system, including in the cavity region and primary shield structures. This methodology provides an accurate and reliable determination of through-wall fluence in boiling water reactor (BWR) and pressurized water reactor (PWR) pressure vessels, thus allowing the dpa method to be implemented with high reliability. Using this advanced 3

  14. Neutron capture reactions at DANCE

    Science.gov (United States)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  15. Nanostructure Neutron Converter Layer Development

    Science.gov (United States)

    Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Kang, Jin Ho (Inventor); Lowther, Sharon E. (Inventor); Thibeault, Sheila A. (Inventor); Bryant, Robert G. (Inventor)

    2016-01-01

    Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.

  16. Advanced Neutron Source: Plant Design Requirements. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  17. Advanced Neutron Source: Plant Design Requirements. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS.

  18. Characterizing ICF Neutron Scintillation Diagnostics on the nTOF line at SUNY Geneseo

    Science.gov (United States)

    Lawson-Keister, Pat; Padawar-Curry, Jonah; Visca, Hannah; Fletcher, Kurt; Padalino, Stephen; Sangster, T. Craig; Regan, Sean

    2015-11-01

    Neutron scintillator diagnostics for ICF and HEDP can be characterized using the neutron time-of-flight (nTOF) line on Geneseo's 1.7 MV tandem Pelletron accelerator. Neutron signals can be differentiated from gamma signals by employing coincidence methods. A 1.8-MeV beam of deuterons incident on a deuterated polyethylene target produces neutrons via the 2H(d,n)3He reaction. Neutrons emerging at a lab angle of 88° have an energy of 2.96 MeV; the 3He ions associated with these neutrons are detected at a scattering angle of 43° using a surface barrier detector. The time of flight of the neutron can be measured by using the 3He detection as a ``start'' signal and the scintillation detection as a ``stop'' signal. This time of flight requirement is used to identify the 2.96-MeV neutron signals in the scintillator. To measure the light curve produced by these monoenergetic neutrons, two photomultiplier (PMT) tubes are attached to the scintillator. The full aperture PMT establishes the nTOF coincidence. The other PMT is fitted with a pinhole to collect single events. The time between the full aperture PMT signal and the arrival of the signal in the pinhole PMT is used to determine the light curve for the scintillator. This system will enable the neutron response of various scintillators to be compared. Supported in part by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. A magnetic trap for high-field seeking neutron spin states

    Directory of Open Access Journals (Sweden)

    Th. Brenner

    2015-02-01

    Full Text Available A first experimental demonstration of a new type of magnetic trap for ultra-cold neutrons is presented. High-field seeking spin-states are trapped in a potential formed by the magnetic field of a straight wire and a repulsive coating on the wire surface. Life-times of the trapped neutrons of 60 s could be observed. This configuration can in principle be used to form bound states of the wave function on the surface of the wire to probe new forces at short distances. Further applications include the use as a guide and selector for perfectly polarized neutrons.

  20. A magnetic trap for high-field seeking neutron spin states

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Th. [Institut Laue-Langevin, 38042 Grenoble Cedex 9 (France); Chesnevskaya, S. [Physik Department, Technische Universität München, D-85748 Garching (Germany); Fierlinger, P., E-mail: peter.fierlinger@tum.de [Physik Department, Technische Universität München, D-85748 Garching (Germany); Geltenbort, P. [Institut Laue-Langevin, 38042 Grenoble Cedex 9 (France); Gutsmiedl, E. [Physik Department, Technische Universität München, D-85748 Garching (Germany); Lauer, T. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universität München, D-85748 Garching (Germany); Rezai, K. [University of California at Berkeley, CA 94720 (United States); Rothe, J. [Physik Department, Technische Universität München, D-85748 Garching (Germany); Zechlau, T. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universität München, D-85748 Garching (Germany); Zou, R. [University of California at Berkeley, CA 94720 (United States)

    2015-02-04

    A first experimental demonstration of a new type of magnetic trap for ultra-cold neutrons is presented. High-field seeking spin-states are trapped in a potential formed by the magnetic field of a straight wire and a repulsive coating on the wire surface. Life-times of the trapped neutrons of 60 s could be observed. This configuration can in principle be used to form bound states of the wave function on the surface of the wire to probe new forces at short distances. Further applications include the use as a guide and selector for perfectly polarized neutrons.