Nuclear structure effects on calculated fast neutron reaction cross sections
International Nuclear Information System (INIS)
Avrigeanu, V.
1992-01-01
The importance of accurate low-lying level schemes for reaction cross section calculation and need for microscopically calculated levels are proved with reference to fast neutron induced reactions in the A = 50 atomic mass range. The uses of the discrete levels both for normalization of phenomenological level density approaches and within Hauser-Feshbach calculations are discussed in this respect. (Author)
Evaluation and calculation of neutron transactinide cross-sections
International Nuclear Information System (INIS)
Konshin, V.A.
1980-01-01
This paper reviews the state of the art of nuclear theory and its application to the evaluation and calculation of neutron reaction cross sections of transactinium isotopes. In particular, the paper describes the current evaluation of the total files of neutron reaction data for 240 Pu and 241 Pu in the energy range between 10 -5 eV and 15 MeV based on a thorough analysis of available experimental data and on the use of modern theoretical concepts, and the work in progress on the evaluation of the total neutron reaction data file for 242 Pu and 241 Am. (author)
Application of nuclear models to neutron nuclear cross section calculations
International Nuclear Information System (INIS)
Young, P.G.
1983-01-01
Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application and limitations of nuclear models for data evaluation are discussed in this paper, with emphasis on the 0.1 to 50 MeV energy range. (Auth.)
The shell structure effects in neutron cross section calculation by a ...
African Journals Online (AJOL)
The role of the shell structure properties of the nucleus in the calculation of neutron-induced reaction cross-section data based on nuclear reaction theory has been investigated. In this investigation, measured, evaluated and calculated (n.p) reaction cross-section data on la spherical nucleus (i.e. 112Sn) and a deformed ...
Hughes, Donald J; Dunworth, J V
1957-01-01
Neutron Cross Sections presents the principles of cross-section measurement and use, as well as sufficient theory so that the general behavior of cross sections is made understandable. This compilation is a direct result of experiences connected with the collection and evaluation of cross-section data during the past eight years at """"Sigma Centre"""", Brookhaven National Laboratory. Here, experimental results received from laboratories throughout the world are carefully evaluated and compiled in the curves and tables of the large volume Neutron Cross Sections, The most recent version of the
Neutron total cross section calculation within the framework of quasi-harmonic approximation
Cai, Xiao-Xiao; Klinkby, Esben
2017-10-01
The accuracy of neutron scattering cross sections is the gauge for the realistic outcome of a neutron transport simulation. To improve the traditional harmonic physics model used in such simulations, we revisit the slow neutron transport theory in crystalline materials and aim to develop a unified model that has good performance for neutron transport problems in crystals in a wide range of temperatures and pressures. The quasi-harmonic approximation (QHA) correlates phonon evolution explicitly with unit cell volume. Therefore, it is capable of evaluating a variety of material properties at finite temperatures. In this work, we show numerically that it is a very effective tool for our application as well. Within the framework of QHA, we calculate the temperature dependent characteristics of phonons in three elemental crystals, namely Be, Mg and Al. Based on the obtained results, our calculated neutron total cross sections agree closely with experimental transmission cross sections in a large temperature range below the melting point. We show that as the harmonic cross section model ignores the effects of phonon softening in these crystals, it underestimates the total inelastic cross sections at high temperatures. In the case of Al, we observe that such underestimation is up to 7% at room temperature. In addition, we study the phonon-phonon scatterings in Al. We observe that the cross section is insensitive to the finite phonon lifetimes even at 800 K.
Neutron total cross section calculation within the framework of quasi-harmonic approximation
International Nuclear Information System (INIS)
Cai, Xiao-Xiao; Klinkby, Esben
2017-01-01
The accuracy of neutron scattering cross sections is the gauge for the realistic outcome of a neutron transport simulation. To improve the traditional harmonic physics model used in such simulations, we revisit the slow neutron transport theory in crystalline materials and aim to develop a unified model that has good performance for neutron transport problems in crystals in a wide range of temperatures and pressures. The quasi-harmonic approximation (QHA) correlates phonon evolution explicitly with unit cell volume. Therefore, it is capable of evaluating a variety of material properties at finite temperatures. In this work, we show numerically that it is a very effective tool for our application as well. Within the framework of QHA, we calculate the temperature dependent characteristics of phonons in three elemental crystals, namely Be, Mg and Al. Based on the obtained results, our calculated neutron total cross sections agree closely with experimental transmission cross sections in a large temperature range below the melting point. We show that as the harmonic cross section model ignores the effects of phonon softening in these crystals, it underestimates the total inelastic cross sections at high temperatures. In the case of Al, we observe that such underestimation is up to 7% at room temperature. In addition, we study the phonon–phonon scatterings in Al. We observe that the cross section is insensitive to the finite phonon lifetimes even at 800 K. (paper)
Talys calculations for evaluation of neutron-induced single-event upset cross sections
Energy Technology Data Exchange (ETDEWEB)
Bourselier, Jean-Christophe
2005-08-15
The computer code TALYS has been used to calculate interactions between cosmic-ray neutrons and silicon nuclei with the goal to describe single-event upset (SEU) cross sections in microelectronics devices. Calculations for the Si(n,X) reaction extend over an energy range of 2 to 200 MeV. The obtained energy spectra of the resulting residuals and light-ions have been integrated using several different critical charges as SEU threshold. It is found that the SEU cross section seems largely to be dominated by {sup 28}Si recoils from elastic scattering. Furthermore, the shape of the SEU cross section as a function of the energy of the incoming neutron changes drastically with decreasing critical charge. The results presented in this report stress the importance of performing studies at mono-energetic neutron beams to advance the understanding of the underlying mechanisms causing SEUs.
Analysis of fusion neutronics calculations and appraisal of UW cross-section library
International Nuclear Information System (INIS)
Xie Jianping; Li Xingzhong; Ying Chuntong
1989-01-01
A series of calculations for different cases (especially for the values of tritium breeding ratio T, and the fuel breeding ratio F in the blanket of a hybrid reactor) were carried out by using ANISN program and UW cross-section library. The comparison with other results in China and abroad kalso was done. It was shownwn that the installation and execution of ANISN program on ELXSI machine at Tsinghua University are successful, and the UW cross-section library is reliable. It may be used for fusion neutronics calculation in the future. The paper also points out that the difference between the calculations and by the authors are due to jthe different in cross-section data used
Neutron total cross section calculation within the framework of quasi-harmonic approximation
DEFF Research Database (Denmark)
Cai, Xiao Xiao; Klinkby, Esben Bryndt
2017-01-01
The accuracy of neutron scattering cross sections is the gauge for the realistic outcome of a neutron transport simulation. To improve the traditional harmonic physics model used in such simulations, we revisit the slow neutron transport theory in crystalline materials and aim to develop a unified...... model that has good performance for neutron transport problems in crystals in a wide range of temperatures and pressures. The quasi-harmonic approximation (QHA) correlates phonon evolution explicitly with unit cell volume. Therefore, it is capable of evaluating a variety of material properties at finite...... temperatures. In this work, we show numerically that it is a very effective tool for our application as well. Within the framework of QHA, we calculate the temperature dependent characteristics of phonons in three elemental crystals, namely Be, Mg and Al. Based on the obtained results, our calculated neutron...
Calculated neutron-induced cross sections for 53Cr from 1 to 20 MeV
International Nuclear Information System (INIS)
Shibata, K.; Hetrick, D.M.
1987-05-01
Neutron-induced cross sections of 53 Cr have been calculated in the energy regions from 1 to 20 MeV. The quantities obtained are the cross sections for the reactions (n,n'γ), (n,2n), (n,np), (n,nα), (n,pγ), (n,pn), (n,αγ), (n,αn), (n,d), (n,t), (n, 3 He), and (n,γ), as well as the spectra of emitted neutrons, protons, alpha particles, and gamma rays. The precompound process was included above 5 MeV in addition to the compound process. For the inelastic scattering, the contribution of the direct interaction was calculated with DWBA. 36 refs., 23 figs., 11 tabs
Martinez, J. S.; Zwermann, W.; Gallner, L.; Puente-Espel, F.; Cabellos, O.; Velkov, K.; Hannstein, V.
2014-04-01
Propagation of nuclear data uncertainties in reactor calculations is interesting for design purposes and libraries evaluation. Previous versions of the GRS XSUSA library propagated only neutron cross section uncertainties. We have extended XSUSA uncertainty assessment capabilities by including propagation of fission yields and decay data uncertainties due to the their relevance in depletion simulations. We apply this extended methodology to the UAM6 PWR Pin-Cell Burnup Benchmark, which involves uncertainty propagation through burnup.
International Nuclear Information System (INIS)
Ku, L.P.; Price, W.G. Jr.
1977-08-01
The neutronic calculation for the Livermore mirror fusion/fission hybrid reactor blanket was performed using the PPPL cross section library. Significant differences were found in the tritium breeding and plutonium production in comparison to the results of the LLL calculation. The cross section sensitivity study for tritium breeding indicates that the response is sensitive to the cross section of 238 U in the neighborhood of 14 MeV and 1 MeV. The response is also sensitive to the cross sections of iron in the vicinity of 14 MeV near the first wall. Neutron transport in the resonance region is not important in this reactor model
Thermal-hydraulic feedback model to calculate the neutronic cross-section in PWR reactions
International Nuclear Information System (INIS)
Santiago, Daniela Maiolino Norberto
2011-01-01
In neutronic codes,it is important to have a thermal-hydraulic feedback module. This module calculates the thermal-hydraulic feedback of the fuel, that feeds the neutronic cross sections. In the neutronic co de developed at PEN / COPPE / UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. We used the finite volume technique of discretized the equation of temperature distribution, while calculation the moderator coefficient of heat transfer, was carried out using the ASME table, and using some of their routines to our program. The model allows one to calculate an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the neutronic code. The results were compared with to the empirical model. Our results show that for the fuel elements near periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. The proposed model was validated by the neutronic simulator developed in the PEN / COPPE / UFRJ for analysis of PWR reactors. (author)
232Th and 238U neutron emission cross section calculations and analysis of experimental data
International Nuclear Information System (INIS)
Tel, E.
2004-01-01
In this study, pre-equilibrium neutron-emission spectra produced by (n,xn) reactions on nuclei 2 32Th and 2 38U have been calculated. Angle-integrated cross sections in neutron induced reactions on targets 2 32Th and 2 38U have been calculated at the bombarding energies up to 18 MeV. We have investigated multiple pre-equilibrium matrix element constant from internal transition for 2 32Th (n,xn) neutron emission spectra. In the calculations, the geometry dependent hybrid model and the cascade exciton model including the effects of pre-equilibrium have been used. In addition, we have described how multiple pre-equilibrium emissions can be included in the Feshbach-Kerman-Koonin (FKK) fully quantum-mechanical theory. By analyzing (n,xn) reaction on 232 T h and 2 38U, with the incident energy from 2 Me V to 18 Me V, the importance of multiple pre-equilibrium emission can be seen cleady. All calculated results have been compared with experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other
Analytical calculations of neutron slowing down and transport in the constant-cross-section problem
International Nuclear Information System (INIS)
Cacuci, D.G.
1978-01-01
Some aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. In deriving these formulas, use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, is one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table
Analytical calculations of neutron slowing down and transport in the constant-cross-section problem
International Nuclear Information System (INIS)
Cacuci, D.G.
1978-04-01
Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u -5 . The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M 2 (u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table
Analytical calculations of neutron slowing down and transport in the constant-cross-section problem
Energy Technology Data Exchange (ETDEWEB)
Cacuci, D.G.
1978-04-01
Aspects of the problem of neutron slowing down and transport in an infinite medium consisting of a single nuclide that scatters elastically and isotropically and has energy-independent cross sections were investigated. The method of singular eigenfunctions was applied to the Boltzmann Equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. A new sufficient condition for the convergence of the coefficients of the expansion of the scattering kernel in Legendre polynomials was rigorously derived for this energy-dependent problem. Formulas were obtained for the lethargy-dependent spatial moments of the scalar flux that are valid for medium to large lethargies. Use was made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations were aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use was also made of the methods of combinatorial analysis and of computer evaluation of complicated sequences of manipulations. For the case of no absorption it was possible to obtain for materials of any atomic weight explicit corrections to the age-theory formulas for the spatial moments M/sub 2n/(u) of the scalar flux that are valid through terms of the order of u/sup -5/. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent one of the end products of this investigation. In addition, an exact expression for the second spatial moment, M/sub 2/(u), valid for arbitrary (constant) absorption, was derived. It is now possible to calculate analytically and rigorously the ''age'' for the constant-cross-section problem for arbitrary (constant) absorption and nuclear mass. 5 figures, 1 table.
Fission barrier theory and its application to the calculation of actinide neutron cross-sections
International Nuclear Information System (INIS)
Lynn, J.E.
1980-01-01
The lectures discuss the possibilities and realisations of applying nuclear fission theory to the calculation of unknown nuclear data required for applications, principally in the nuclear power field. A brief description of the fundamentals of fission theory, the nature of the potential energy surface in the deformation plane, and of the inertial tensor, is given, and the accuracy of the theoretical calculations is discussed. It is concluded that it is impracticable to obtain required quantities such as neutron cross-sections from such fundamental calculations at present. On the other hand the fundamental theory reveals a wealth of phenomenological aspects of the fission process which can be incorporated into nuclear reaction theory. It is then shown how reaction theory thus extended to take correct account of the structured (''double-humped'') fission barrier can be used to parametrise the barrier by analysis of experimental data, and subsequently to calculate new data. Descriptions of computer programmes and illustrations of the application of the methods to actual physical examples are included in this account. (author)
Kim, Do Heon; Gil, Choong-Sup; Chang, Jonghwa; Lee, Yong-Deok
2005-05-01
The neutron absorption cross sections for 18 fission products evaluated within the framework of the KAERI (Korea Atomic Energy Research Institute)-BNL (Brookhaven National Laboratory) international collaboration have been compared with ENDF/B-VI.7. Also, the influence of the new evaluations on the isotopic composition calculations of the fission products has been estimated through the OECD/NEA burnup credit criticality benchmarks (Phase 1B) and the LWR/Pu recycling benchmarks. These calculations were performed by WIMSD-5B with the 69-group libraries prepared from three evaluated nuclear data libraries: ENDF/B-VI.7, ENDF/B-VI.8 including the new evaluations in the resonance region covering the thermal region, and the expected ENDF/B-VII including those in the upper resonance region up to 20 MeV. For Xe-131, the composition calculated with ENDF/B-VI.8 shows a maximum difference of 5.02% compared to ENDF/B-VI.7. However, the isotopic compositions of all the fission products calculated with the expected ENDF/B-VII show no differences when compared to ENDF/B-VI.7 for the thermal reactor benchmark cases.
Basis calculation of phase cross section library in a low power fast reactor neutronic simulation
International Nuclear Information System (INIS)
Jachic, J.
1993-09-01
In order to implement the utilization of the efficient multidimensional cubic SPLINE interpolation, we determine the phase library bases for net like relevant state components. A generic cubic surface and a weighted plane pertinent alternative interpolating methods used capable to generate cross sections values for fixed coordinates from cell code calculated data points is used. It is verified that the phase library bases increases or decrease smoothly and monotonically with the spectrum asymmetry and total flux buckling. This justifies its use in cross section updating avoiding cell calculations. (author)
Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.
2015-10-01
Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).
International Nuclear Information System (INIS)
Greenwood, L.R.; Kneff, D.W.; Skowronski, R.P.; Mann, F.M.
1983-01-01
Fusion reactors will produce high levels of helium in surrounding materials with a helium (appm)-to-displacement ratio of about 10-to-1 in stainless steel. This high ratio can be obtained in mixed-spectrum reactors, which are used for fusion materials testing, due to unusually high thermal neutron cross sections for the sequential reactions 58 Ni(n,γ) 59 Ni(n,α) 56 Fe. The high-energy (approx. 340 keV) 56 Fe recoils also add significantly to the displacement damage at the rate of one DPA per 567 appm helium. Until now, the calculation of helium production in nickel has been done in a semi-empirical manner due to a lack of evaluated cross sections for 59 Ni. However, this approach cannot be readily transferred between different reactors since we do not know the contributions from epithermal neutrons in different neutron spectra. A new evaluation of the 59 Ni cross sections has recently been completed, permitting us to calculate all of the required reaction rates for any given neutron spectrum. Radiometric dosimetry and helium measurements have recently been completed for several different mixed-spectrum reactors. Precise comparisons of the helium production cross sections and measurements can thus be made in well-characterized neutron spectra. Data are presented for several recent fusion materials irradiations in the Oak Ridge Research Reactor and High Flux Isotopes Reactor at Oak Ridge National Laboratory and for the Experimental Breeder Reactor II at Argonne National Laboratory. Procedures are recommended for calculating helium production for nickel-bearing materials in any neutron spectrum
International Nuclear Information System (INIS)
Gardner, D.G.
1975-01-01
A large amount of cross section and spectral information for neutron-induced reactions will be required for the CTR design program. To undertake to provide the required data through a purely experimental measurement program alone may not be the most efficient way of attacking the problem. It is suggested that a preliminary theoretical calculation be made of all relevant reactions on the dozen or so elements that now seem to comprise the inventory of possible construction materials to find out which are actually important, and over what energy ranges they are important. A number of computer codes for calculating cross sections for neutron induced reactions have been evaluated and extended. These will be described and examples will be given of various types of calculations of interest to the CTR program. (U.S.)
MC2-2, Calculation of Fast Neutron Spectra and Multigroup Cross-Sections from ENDF/B Data
International Nuclear Information System (INIS)
2001-01-01
1 - Description of program or function: MC 2 -2 solves the neutron slowing-down equations using basic neutron data derived from ENDF/B data files to determine fundamental mode spectra for use in generating multigroup neutron cross sections. The current edition includes the ability to treat all ENDF/B-V and -VI data representations. It accommodates high-order P scattering representations and provides numerous capabilities such as isotope mixing, delayed neutron processing, free-format input, and flexibility in output data selection. This edition supersedes previous releases of the MC22 program and the earlier MC2 program. Improved physics algorithms and increased computational efficiency are incorporated. Input data files required by MC2-2 may be generated from ENDF/B data by the code ETOE-2. The hyper-fine-group integral transport theory module of MC2-2, RABANL, is an improved version of the RABBLE/RABID codes. Many of the MC2-2 modules are used in the SDX code. 2 - Methods: The extended transport P1, B1, consistent P1, and consistent B1 fundamental mode ultra-fine-group equations are solved using continuous slowing-down theory and multigroup methods. Fast and accurate resonance integral methods are used in the narrow resonance resolved and unresolved resonance treatments. A fundamental mode homogeneous unit cell calculation is performed using either a multigroup or a continuous slowing-down treatment. Multigroup neutron homogeneous cross sections are generated in an ISOTXS format for an arbitrary group structure. A hyper-fine-group integral transport slowing down calculation (RABANL) is available as an option. RABANL performs a homogeneous or heterogeneous (pin or slab) unit cell calculation over the resonance region (resolved and unresolved) and generates multigroup neutron cross sections in an ISOTXS format. Neutron cross sections are generated by RABANL for the homogeneous unit cell and for each heterogeneous region in the pin or slab unit cell calculation
International Nuclear Information System (INIS)
Yavshitz, S.G.; Rubchenya, V.A.; Rimski-Korsakov, A.A.
1993-01-01
The authors demonstrate the possibility of an approach to evaluate the radioactive inventory - induced activity of structural materials and surface contamination of reactor components, that will fit well into ORIGEN code structure and could be used on a modest PC directly on the decommissioning site. This approach would also require only one well tested set of pre-calculated and adjusted by experiment cross-section libraries (averaged by typical neutron spectra outside the reactor core). 15 refs, 1 fig
The background cross section method for calculating the epithermal neutron spectra
International Nuclear Information System (INIS)
Martinez, A.S.
1983-01-01
We have developed a new methodology to the multigroup constants calculations, for thermal and fast reactors. The method to obtain the constants is extremely fast and simple, and it avoid repeated computations of the detailed neutron spectrum for different cell configurations (composition, geometry and temperature). (author) [pt
International Nuclear Information System (INIS)
Jahn, H.
1980-01-01
Absolute values of secondary energy-dependent inelastic neutron scattering cross sections can be calculated either with the master equation pre-equilibrium formalism of Cline and Blann or with Blann's more recent geometry-dependent hybrid model. The master equation formalism was used at Dubna and Dresden to reproduce experimental results for 14 MeV incident energy. The geometry-dependent hybrid model was used at Karlsruhe to cover for a number of materials the whole range from 5 to 14 MeV incident energy and to reproduce smoothed experimental spectra at 7.45 and 14 MeV. Only the geometry-dependent hybrid model accounts for scattering in the diffuse nuclear surface and thus for a certain average over the direct interaction. It is also free of any fit parameters other than those of the usual optical model. The master equation calculations, on the other hand, are based on nucleon-nucleon scattering cross sections inserted into the high-energy approximation of Kikuchi and Kawai for the intranuclear transition rate. Other approaches require either mass- or energy-dependent or more global fit parameters for a satisfactory reproduction of experimental results, but a genuine prediction of the incident-energy dependence of the inelastic neutron cross section, especially below 14 MeV, is needed for transport and shielding calculations for instance in connection with fusion reactor design studies. (author)
Energy Technology Data Exchange (ETDEWEB)
Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.
2017-08-01
Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.
Calculated neutron-induced cross sections for 52Cr from 1 to 20 MeV and comparisons with experiments
International Nuclear Information System (INIS)
Hetrick, D.M.; Fu, C.Y.; Larson, D.C.
1987-01-01
Nuclear model codes were used to compute cross sections for neutron-induced reactions on 52 Cr for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Cr (MAT 1324) are included in this report. 103 refs., 67 figs., 12 tabs
Test of RIPL-2 cross section calculations
International Nuclear Information System (INIS)
Herman, M.
2002-01-01
The new levels and optical segments and microscopic HF-BCS level densities (part of the density segment) were tested in practical calculations of cross sections for neutron induced reactions on 22 targets (40-Ca, 47-Ti, 52-Cr, 55-Mn, 58-Ni, 63-Cu, 71-Ga, 80-Se, 92-Mo, 93-Nb, 100-Mo, 109-Ag, 114-Cd, 124-Sn, 127-I, 133-Cs, 140-Ce, 153-Eu, 169-Tm, 186-W, 197-Au, 208-Pb). For each target all reactions involving up to 3 neutron, 1 proton and 1 α-particle emissions (subject to actual reaction thresholds) were considered in the incident energy range from 1 keV up to 20 MeV (in some cases up to 27 MeV). In addition, total, elastic, and neutron capture cross sections were calculated
[Fast neutron cross section measurements
International Nuclear Information System (INIS)
Knoll, G.F.
1992-01-01
From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase
[Fast neutron cross section measurements
International Nuclear Information System (INIS)
1991-01-01
In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months
Neutron cross sections: Book of curves
International Nuclear Information System (INIS)
McLane, V.; Dunford, C.L.; Rose, P.F.
1988-01-01
Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs
International Nuclear Information System (INIS)
Smith, D.L.; Guenther, P.T.
1983-11-01
We suggest a procedure for estimating uncertainties in neutron cross sections calculated with a nuclear model descriptive of a specific mass region. It applies standard error propagation techniques, using a model-parameter covariance matrix. Generally, available codes do not generate covariance information in conjunction with their fitting algorithms. Therefore, we resort to estimating a relative covariance matrix a posteriori from a statistical examination of the scatter of elemental parameter values about the regional representation. We numerically demonstrate our method by considering an optical-statistical model analysis of a body of total and elastic scattering data for the light fission-fragment mass region. In this example, strong uncertainty correlations emerge and they conspire to reduce estimated errors to some 50% of those obtained from a naive uncorrelated summation in quadrature. 37 references
Calculation of cross sections for heavy isotopes
International Nuclear Information System (INIS)
Caner, M.
1976-04-01
In the present work an integrated system of codes for basic neutron data evaluation were assembled and built. Complete evaluations for the isotopes 240 Pu, 241 Pu, 242 Pu and 238 Pu were performed. The following cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n) and differential elastic were evaluated as well as the average number of neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system.The data for the plutonium isotopes were incorporated into the German KEDAK file. A method was developed for calculating the energy distributions of the second and third secondary neutrons from the A(n,2n) and (n,3n) reactions in the framework of the compound nucleus theory, and utilizing the nuclear data of the nuclei A, A-1, A-2. This method was used to generate the 238 U secondary neutron energy distributions in the incident neutron energy range of 6 to 15 MeV. A nuclear data evaluation for 237 U in the resolved inelastic scattering range (10-700 keV) was performed. The compound elastic and partial inelastic scattering cross sections were used in the 238 U secondary neutron energy distribution calculations. (B.G.)
Elastic and inelastic neutron cross-sections
International Nuclear Information System (INIS)
Wilmore, D.
1967-01-01
Computer programmes have been developed for the calculation of elastic and inelastic scattering of particles from nuclei. These programmes are written in the S2 dialect of FORTRAN, and run on an IBM-7030 computer. One programme calculates the shape elastic cross-section, the total cross-section and the absorption cross-section according to the optical model. The time taken in performing an optical calculation depends mainly upon the efficiency of the method used to perform the integration of the radial Schroedinger equation. A method is used which takes advantage of the absence of the first derivative term, and this gives a great improvement over more general methods. A least-squares fitting procedure is used which enables any number of parameters to be varied. The number of optical model calculations which are needed for a least-squares fit is less than with usual methods. Another programme will calculate compound nucleus reactions according to the Hauser-Feshbach theory, with or without the fluctuation correction. This programme will accept target and projectiles of any spin and parity, so that deuteron and alpha channels, as well as nucleon channels, may be taken into account. A third programme enables least-squares fits of elastic scattering to be done by taking into account the compound elastic contribution as calculated by the Hauser-Feshbach theory. The use of these programmes is illustrated by the analysis of the inelastic scattering of neutrons from 238 U. The elastic scattering cross-sections were used to obtain optical potentials by a least-squares fitting method. These potentials were subsequently used to predict the inelastic cross-sections to a large number of excited states. The results using the fluctuation correction are in good agreement with experiment. A further example of their use is shown in the analysis of neutron and proton scattering from light nuclei. Proton cross-sections were analysed to obtain potentials which were then used to
International Nuclear Information System (INIS)
Bozoian, M.; Arthur, E.D.; Perry, R.T.; Wilson, W.B.; Young, P.G.
1988-01-01
Activation problems associated with particle accelerators are commonly dominated by reactions of secondary neutrons produced in reactions of beam particles with accelerator or beam stop materials. Measured values of neutron-activation cross sections above a few MeV are sparse. Calculations with the GNASH code have been made for neutrons incident on all stable nuclides of a range of elements common to accelerator materials. These elements include B, C, N, O, Ne, Mg, Al, Si, P, S, Ar, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Nd, and Sm. Calculations were made for a grid of incident neutron energies extending to 100 MeV. Cross sections leading to the direct production of as many as 87 activation products for each of 84 target nuclide were tabulated on this grid of neutron energies, each beginning with the threshold for the product nuclide's formation. Multigrouped values of these cross sections have been calculated and are being integrated into the cross-section library of the REAC-2 neutron activation code. Illustrative cross sections are presented. 20 refs., 6 figs., 1 tab
International Nuclear Information System (INIS)
Brenner, D.J.
1984-01-01
A model has been developed for calculating fast neutron cross sections (E > 14 MeV) for light nuclei of biomedical interest. The model explicitly includes experimental nuclear structure information. Some calculations for 12 C, 14 N, and 16 O are presented
An empirical fit to estimated neutron emission cross sections from ...
Indian Academy of Sciences (India)
Neutron emission cross section for various elements from 9Be to 209Bi have been calculated using the hybrid model code ALICE-91 for proton induced reactions in the energy range 25 MeV to 105 MeV. An empirical expression relating neutron emission cross section to target mass number and incident proton energy has ...
Curves and tables of neutron cross sections
International Nuclear Information System (INIS)
Nakagawa, Tsuneo; Asami, Tetsuo; Yoshida, Tadashi
1990-07-01
Neutron cross-section curves from the Japanese Evaluated Nuclear Data Library version 3, JENDL-3, are presented in both graphical and tabular form for users in a wide range of application areas in the nuclear energy field. The contents cover cross sections for all the main reactions induced by neutrons with an energy below 20 MeV including; total, elastic scattering, capture, and fission, (n,n'), (n,2n), (n,3n), (n,α), (n,p) reactions. The 2200 m/s cross-section values, resonance integrals, and Maxwellian- and fission-spectrum averaged cross sections are also tabulated. (author)
Measurements of neutron capture cross sections
International Nuclear Information System (INIS)
Nakajima, Yutaka
1984-01-01
A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238 U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)
Directory of Open Access Journals (Sweden)
Rocchi Federico
2017-01-01
Full Text Available Gadolinium odd isotopes cross sections are crucial in assessing the neutronic performance and safety features of a light water reactor (LWR core. Accurate evaluations of the neutron capture behavior of gadolinium burnable poisons are necessary for a precise estimation of the economic gain due to the extension of fuel life, the residual reactivity penalty at the end of life, and the reactivity peak for partially spent fuel for the criticality safety analysis of Spent Fuel Pools. Nevertheless, present gadolinium odd isotopes neutron cross sections are somehow dated and poorly investigated in the high sensitivity thermal energy region and are available with an uncertainty which is too high in comparison to the present day typical industrial standards and needs. This article shows how the most recent gadolinium cross sections evaluations appear inadequate to provide accurate criticality calculations for a system with gadolinium fuel pins. In this article, a sensitivity and uncertainty analysis (S/U has been performed to investigate the effect of gadolinium odd isotopes nuclear cross sections data on the multiplication factor of some LWR fuel assemblies. The results have shown the importance of gadolinium odd isotopes in the criticality evaluation, and they confirmed the need of a re-evaluation of the neutron capture cross sections by means of new experimental measurements to be carried out at the n_TOF facility at CERN.
Mechanized evaluation of neutron cross-sections
International Nuclear Information System (INIS)
Horsley, A.; Parker, J.B.
1967-01-01
The evaluation work to provide accurate and consistent neutron cross-section data for multigroup neutronics calculations is not fully exploiting the available theoretical and experimental results; this has been so particularly since the introduction of on-line data handling techniques enabled experimenters to turn out vast quantities of numbers. This situation can be radically improved only by mechanizing the evaluation processes. Systems such as the SC1SRS tape will not only largely overcome the task of collecting data but will provide speedy access to it; by using computers and graph-plotting machines to tabulate and display this data, the labour of evaluation can be very greatly reduced. With some types of cross-section there is hope that by using modern curve-fitting techniques the actual evaluation and statistical accounting of the data can be performed automatically. Some areas where automatic evaluation would seem likely to succeed are specified and a discussion of the mathematical difficulties incurred, such as the elimination of anomalous data, is given. Particularly promising is the use of splines in the mechanized evaluation of data. Splines are the mathematical analogues of the draughtsman's spline used in drawing smooth curves. Their principal properties are the excellent approximations they give to the derivatives of a function; in contrast to conventional polynomial fitting, this feature ensures good interpolation and, when required, stable extrapolation. Various methods of using splines in data graduation and the problem of marrying these methods to standard statistical procedures are examined. The results of work done at AWRE with cubic splines on the mechanized evaluation of neutron scattering total cross-section and angular distribution data are presented. (author)
International Nuclear Information System (INIS)
Loens, H.P.; Langanke, K.; Martinez-Pinedo, G.; Sieja, K.
2012-01-01
We have computed magnetic dipole strength distributions for iron isotopes within shell-model calculations based on model spaces with 40 Ca and 48 Ca cores, respectively. These distributions have been incorporated into statistical model calculations of neutron capture cross-sections. We find significant differences if the cross-sections are compared to those obtained with empirical parametrizations of the M1 strength distributions, the latter being commonly used in applications of the statistical model to astrophysically important capture reactions. As this is traditionally done, these studies are based on the hypothesis that the strength functions for all excited states are the same as for the ground state. Using neutron capture on 68 Fe as an example we investigate the validity of this hypothesis and calculate the capture cross-section on the basis of individual strength distributions calculated within the shell model for the lowest 30 states in the compound nucleus 69 Fe. Finally we explore which effect the scissors mode, a fundamental orbital M1 excitation observed in deformed nuclei at rather low excitation energies, might have on capture cross-sections for nuclei with low neutron thresholds, a situation which typically occurs for r-process nuclei. The appendix compares the spin- and parity-dependent level densities for 69 Fe with those obtained with other models. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)
2015-05-28
Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γ_{γ}>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm^{2} thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured ^{238}U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.
Validation of evaluated neutron standard cross sections
International Nuclear Information System (INIS)
Badikov, S.; Golashvili, T.
2008-01-01
Some steps of the validation and verification of the new version of the evaluated neutron standard cross sections were carried out. In particular: -) the evaluated covariance data was checked for physical consistency, -) energy-dependent evaluated cross-sections were tested in most important neutron benchmark field - 252 Cf spontaneous fission neutron field, -) a procedure of folding differential standard neutron data in group representation for preparation of specialized libraries of the neutron standards was verified. The results of the validation and verification of the neutron standards can be summarized as follows: a) the covariance data of the evaluated neutron standards is physically consistent since all the covariance matrices of the evaluated cross sections are positive definite, b) the 252 Cf spectrum averaged standard cross-sections are in agreement with the evaluated integral data (except for 197 Au(n,γ) reaction), c) a procedure of folding differential standard neutron data in group representation was tested, as a result a specialized library of neutron standards in the ABBN 28-group structure was prepared for use in reactor applications. (authors)
Energy Technology Data Exchange (ETDEWEB)
Chadwick, M.B. [California Univ., Livermor, CA (United States). Lawrence Livermore National Lab.; Young, P.G.
1997-03-01
We present evaluations of the interaction of neutrons with energies between 20 and 100 MeV with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra for light ejectiles with A {<=} 4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. (author). 52 refs.
Damage energy and displacement cross sections: survey and sensitivity. [Neutrons
Energy Technology Data Exchange (ETDEWEB)
Doran, D.G.; Parkin, D.M.; Robinson, M.T.
1976-10-01
Calculations of damage energy and displacement cross sections using the recommendations of a 1972 IAEA Specialists' Meeting are reviewed. The sensitivity of the results to assumptions about electronic energy losses in cascade development and to different choices respecting the nuclear cross sections is indicated. For many metals, relative uncertainties and sensitivities in these areas are sufficiently small that adoption of standard displacement cross sections for neutron irradiations can be recommended.
Differential neutron cross section for free interstitial production in copper
International Nuclear Information System (INIS)
Goldstone, J.A.; Parkin, D.M.; Simpson, H.M.
1979-01-01
Free interstitials produced by monoenergetic neutrons were monitored by changes in Young's modulus of a vibrating foil specimen. These changes can be related to the number of pinners on dislocations which depends on the number of defects produced. The pinning rate is compared with displacement cross section calculations and agrees with the Norgett--Robinson--Torrens (NRT) model. Electron irradiations on the same sample yield estimates of the free interstitial production cross section to be approx. 1% of the NRT cross section
Covariance Evaluation Methodology for Neutron Cross Sections
Energy Technology Data Exchange (ETDEWEB)
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
International Nuclear Information System (INIS)
Iliescu, N.
1975-01-01
The theory of optical model and cross sections is developing. The neutron reactions considered in the high energy rate (0,1-15 MeV) were: total, elastic, elastic angular distributions, nonelastic, inelastic for resolved levels. This region was subdivided in two parts: in the first one, ranging from 0,1 to 1 MeV, the evaluation was mainly based on empirical fits of the experimental data, whereas in the second part the fits were carried out with theoretical models: optical and statistical. The potential parameters were obtained fitting the total, elastic, inelastic cross sections and elastic angular distributions. Using Hauser-Feshbach theory, angular distribution and cross sections for compound elastic scattering and inelastic scattering are calculated
Evaluation of cross sections and calculation of kerma factors for neutrons up to 80 MeV on {sup 12}C
Energy Technology Data Exchange (ETDEWEB)
Harada, M.; Watanabe, Y. [Kyushu Univ., Fukuoka (Japan); Chiba, S.; Fukahori, T.
1997-03-01
We have evaluated the cross sections for neutrons with incident energies from 20 to 80 MeV on {sup 12}C for the JENDL high-energy file. The total cross sections were determined by a generalized least-squares method with available experimental data. The cross sections of elastic and inelastic scattering to the first 2{sup +} were evaluated with the theoretical calculations. The optical potentials necessary for these calculations were derived using a microscopic approach by Jeukenne-Lejeune-Mahaux. For the evaluation of double differential emission cross sections (DDXs), we have developed a code system SCINFUL/DDX in which total 35 reactions including the 3-body simultaneous breakup process (n+{sup 12}C {yields} n+{alpha}+{sup 8}Be) can be taken into consideration in terms of a Monte Carlo method, and have calculated the DDXs of all light-emissions (A{<=}4) and heavier reaction products. The results for protons, deuterons, and alphas showed overall good agreement with experimental data. The code is also applicable for calculations of total and partial kerma factors. Total kerma factors calculated for energies from 20 to 80 MeV were compared with the measurements and the other latest evaluations from the viewpoints of medical application and nuclear heating estimation. (author)
International Nuclear Information System (INIS)
Konshin, V.A.
1995-06-01
Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10MeV to 1GeV. At energies up to 100MeV the nuclear theory code GNASH was used for nuclear data calculation for neutrons incident for on 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100MeV to 1GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was placed upon a simultaneous analysis of data for a variety of reaction channels for the nuclei considered, as well as of data that are available for nearby nuclei or for other incident particles. Comparisons with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicate that the calculations reproduce the trends, and often the details, of the measurements data. (author) 82 refs
International Nuclear Information System (INIS)
Konshin, V.A.
1995-01-01
Several nuclear model codes were applied to calculations of nuclear data in the energy region from 10 MeV to 1 GeV. At energies up to 100 MeV the nuclear theory code GNASH was used for nuclear data calculation for incident neutrons for 238 U, 233-236 U, 238-242 Pu, 237 Np, 232 Th, 241-243 Am and 242-247 Cm. At energies from 100 MeV to 1 GeV the intranuclear cascade exciton model including the fission process was applied to calculations of protons and neutrons with 233 U, 235 U, 238 U, 232 Th, 232 Pa, 237 Np, 238 Np, 239 Pu, 241 Am, 242 Am and 242-248 Cm. Determination of parameter systematics was a major effort in the present work that was aimed at improving the predictive capability of the models used. An emphasis was made on a simultaneous analysis of data for a variety of reaction channels for the nucleus considered, as well as of data that are available for nearby nuclei or other incident particles. Comparison with experimental data available on multiple reaction cross sections, isotope yields, fission cross sections, particle multiplicities, secondary particle spectra, and double differential cross sections indicates that the calculations reproduce the trends, and often the details, of the experimental data. (author)
Calculations of neutron-induced production cross-sections of {sup 180,182,183,184,186}W up to 20 MeV
Energy Technology Data Exchange (ETDEWEB)
Sarer, B. [Gazi Universitesi, Fen-Edebiyat Fakueltesi, Fizik Boeluemue, 06500 Ankara (Turkey)], E-mail: sarer@gazi.edu.tr; Aydin, A. [Kirikkale Universitesi, Fen-Edebiyat Fakueltesi, Fizik Boeluemue, Kirikkale (Turkey); Guenay, M. [Inoenue Universitesi, Fen-Edebiyat Fakueltesi, Fizik Boeluemue, Malatya (Turkey); Korkmaz, M.E.; Tel, E. [Gazi Universitesi, Fen-Edebiyat Fakueltesi, Fizik Boeluemue, 06500 Ankara (Turkey)
2009-05-01
Neutron-induced cross-sections for the stable isotopes {sup 180,182,183,184,186}W in the energy region up to 20 MeV have been calculated. Calculations were made with the codes CEM03.01 and ALICE/ASH, using the following models: the Dubna version of the intranuclear cascade model for the cascade stage of interaction; the hybrid, the geometry dependent hybrid and the exciton model for the pre-equilibrium component; the Hauser-Feshbach and the Weisskopf-Ewing statistical models for the equilibrium component. Effects of some important model parameters such as level density parameter and pairing correction were investigated. Calculated cross-sections were compared with available experimental data in the literature and with ENDF/B-VI T = 300 K and JENDL-3.3 T = 300 K evaluated data libraries.
Calculations of neutron-induced production cross-sections of 180,182,183,184,186W up to 20 MeV
International Nuclear Information System (INIS)
Sarer, B.; Aydin, A.; Guenay, M.; Korkmaz, M.E.; Tel, E.
2009-01-01
Neutron-induced cross-sections for the stable isotopes 180,182,183,184,186 W in the energy region up to 20 MeV have been calculated. Calculations were made with the codes CEM03.01 and ALICE/ASH, using the following models: the Dubna version of the intranuclear cascade model for the cascade stage of interaction; the hybrid, the geometry dependent hybrid and the exciton model for the pre-equilibrium component; the Hauser-Feshbach and the Weisskopf-Ewing statistical models for the equilibrium component. Effects of some important model parameters such as level density parameter and pairing correction were investigated. Calculated cross-sections were compared with available experimental data in the literature and with ENDF/B-VI T = 300 K and JENDL-3.3 T = 300 K evaluated data libraries.
Neutron standard cross sections in reactor physics - Need and status
International Nuclear Information System (INIS)
Carlson, A.D.
1990-01-01
The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community
Measurement of actinide neutron cross sections
International Nuclear Information System (INIS)
Firestone, Richard B.; Nitsche, Heino; Leung, Ka-Ngo; Perry, DaleL.; English, Gerald
2003-01-01
The maintenance of strong scientific expertise is critical to the U.S. nuclear attribution community. It is particularly important to train students in actinide chemistry and physics. Neutron cross-section data are vital components to strategies for detecting explosives and fissile materials, and these measurements require expertise in chemical separations, actinide target preparation, nuclear spectroscopy, and analytical chemistry. At the University of California, Berkeley and the Lawrence Berkeley National Laboratory we have trained students in actinide chemistry for many years. LBNL is a leader in nuclear data and has published the Table of Isotopes for over 60 years. Recently, LBNL led an international collaboration to measure thermal neutron capture radiative cross sections and prepared the Evaluated Gamma-ray Activation File (EGAF) in collaboration with the IAEA. This file of 35, 000 prompt and delayed gamma ray cross-sections for all elements from Z=1-92 is essential for the neutron interrogation of nuclear materials. LBNL has also developed new, high flux neutron generators and recently opened a 1010 n/s D+D neutron generator experimental facility
Neutron cross section measurements at WNR
International Nuclear Information System (INIS)
Lisowski, P.W.; Archampaugh, G.F.; Moore, M.S.; Morgan, G.L.; Shamu, R.E.
1980-01-01
The Weapons Neutron Research Facility has been used to obtain moderate-resolution total neutron cross section data for H, C, 208 Pb, 232 Th, 238 U, and 242 Pu over the energy range 5 to 200 MeV. Neutrons were produced by bombarding a 2.5-cm diam by 15-cm long Ta target with an 800 MeV pulsed proton beam from LAMPF. A 10.2-cm diam by 15.2-cm thick NE110 proton recoil detector was used at a flight path of 32 meters, giving a time-of-flight resolution of 60 ps/m. The total cross section results are compared to ENDF/BV evaluations and to previous data where possible
Neutron Capture Cross Section of 239Pu
Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.
2014-09-01
The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.
International Nuclear Information System (INIS)
Beckert, C.
2007-01-01
Conventionally the data preparation of the neutron cross sections for reactor-core calculations pursues with 2D cell codes. Aim of this thesis was, to develop a 3D cell code, to study with this code 3D effects, and to evaluate the necessarity of a 3D data preparation of the neutron cross sections. For the calculation of the neutron transport the method of the first-collision probabilities, which are calculated with the ray-tracing method, was chosen. The mathematical algorithms were implemented in the 2D/3D cell code TransRay. For the geometry part of the program the geometry module of a Monte Carlo code was used.The ray tracing in 3D was parallelized because of the high computational time. The program TransRay was verified on 2D test problems. For a reference pressured-water reactor following 3D problems were studied: A partly immersed control rod and void (vacuum or steam) around a fuel rod as model of a steam void. All problems were for comparison calculated also with the programs HELIOS(2D) and MCNP(3D). The dependence of the multiplication factor and the averaged two-group cross section on the immersion depth of the control rod respectively of the height of the steam void were studied. The 3D-calculated two-group cross sections were compared with three conventional approximations: Linear interpolation, interpolation with flux weighting, and homogenization, At the 3D problem of the control rod it was shown that the interpolation with flux weighting is a good approximation. Therefore here a 3D data preparation is not necessary. At the test case of the single control rod, which is surrounded by the void, the three approximation for the two-group cross sections were proved as unsufficient. Therefore a 3D data preparation is necessary. The single fuel-rod cell with void can be considered as the limiting case of a reactor, in which a phase interface has been formed [de
Neutron capture cross sections of Kr
Fiebiger, Stefan; Baramsai, Bayarbadrakh; Couture, Aaron; Krtička, Milan; Mosby, Shea; Reifarth, René; O'Donnell, John; Rusev, Gencho; Ullmann, John; Weigand, Mario; Wolf, Clemens
2018-01-01
Neutron capture and β- -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL) using the Detector for Advanced Neutron Capture Experiments (DANCE). 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.
Neutron capture cross sections of Kr
Directory of Open Access Journals (Sweden)
Fiebiger Stefan
2017-01-01
Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.
Total Neutron Cross Section Instrumentation at UML
Seo, P.-N.; Egan, J. J.; Kegel, G. H. R.; Mittler, A.; Tedesco, J.
1997-10-01
The UML type CN Van de Graaff accelerator incorporates a terminal pulsing system operating at 5 MHz. Proton bursts are Mobley-compressed to subnanosecond durations. When used with a thick metallic Li target, a pulsed pseudo-white neutron spectrum is produced suitable for neutron total cross section measurements. The spectrum is characterized by its sharp high energy cut-off, e.g. at 500 keV. Precautions are necessary because neutrons of different energies are recorded in the same time bin if their flight times differ by 200 ns. Pulse height discrimination may be used to eliminate lower energy neutrons; this is inefficient because higher energy neutron signals are also eliminated, to some degree. Two-dimensional data acquisition is the preferred approach. We review two systems of this type and we describe the system in use at UML.
Neutron elastic and inelastic cross section measurements for 28Si
Derdeyn, E. C.; Lyons, E. M.; Morin, T.; Hicks, S. F.; Vanhoy, J. R.; Peters, E. E.; Ramirez, A. P. D.; McEllistrem, M. T.; Mukhopadhyay, S.; Yates, S. W.
2017-09-01
Neutron elastic and inelastic cross sections are critical for design and implementation of nuclear reactors and reactor equipment. Silicon, an element used abundantly in fuel pellets as well as building materials, has little to no experimental cross sections in the fast neutron region to support current theoretical evaluations, and thus would benefit from any contribution. Measurements of neutron elastic and inelastic differential scattering cross sections for 28Si were performed at the University of Kentucky Accelerator Laboratory for incident neutron energies of 6.1 MeV and 7.0 MeV. Neutrons were produced by accelerated deuterons incident on a deuterium gas cell. These nearly mono-energetic neutrons then scattered off a natural Si sample and were detected using liquid deuterated benzene scintillation detectors. Scattered neutron energy was deduced using time-of-flight techniques in tandem with kinematic calculations for an angular distribution. The relative detector efficiency was experimentally determined over a neutron energy range from approximately 0.5 to 7.75 MeV prior to the experiment. Yields were corrected for multiple scattering and neutron attenuation in the sample using the forced-collision Monte Carlo correction code MULCAT. Resulting cross sections will be presented along with comparisons to various data evaluations. Research is supported by USDOE-NNSA-SSAP: NA0002931, NSF: PHY-1606890, and the Donald A. Cowan Physics Institute at the University of Dallas.
Energy Technology Data Exchange (ETDEWEB)
Hetrick, D.M.; Fu, C.Y.; Larson, D.C.
1987-09-15
Nuclear model codes were used to compute cross sections for neutron-induced reactions on /sup 52/Cr for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Cr (MAT 1324) are included in this report. 103 refs., 67 figs., 12 tabs.
Energy Technology Data Exchange (ETDEWEB)
Hetrick, D.M.; Fu, C.Y.; Larson, D.C.
1987-06-01
Nuclear model codes were used to compute cross sections for neutron-induced reactions on both /sup 58/Ni and /sup 60/Ni for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Ni (MAT 1328) are included in this report. 118 refs., 101 figs., 19 tabs.
Energy Technology Data Exchange (ETDEWEB)
Hetrick, D.M.; Fu, C.Y.; Larson, D.C.
1984-08-01
Nuclear model codes were used to compute cross sections for neutron-induced reactions on both /sup 63/Cu and /sup 65/Cu for incident energies from 1 to 20 MeV. The input parameters for the model codes were determined through analysis of experimental data in this energy region. Discussion of the models used, the input data, the resulting calculations, extensive comparisons to measured data, and comparisons to the Evaluated Nuclear Data File (ENDF/B-V) for Cu (MAT 1329) are included in this report.
Measurement of thermal neutron capture cross section
International Nuclear Information System (INIS)
Huang Xiaolong; Han Xiaogang; Yu Weixiang; Lu Hanlin; Zhao Wenrong
2001-01-01
The thermal neutron capture cross sections of 71 Ga(n, γ) 72 Ga, 94 Zr(n, γ) 95 Zr and 191 Ir(n, γ) 192 Ir m1+g,m2 reactions were measured by using activation method and compared with other measured data. Meanwhile the half-life of 72 Ga was also measured. The samples were irradiated with the neutron in the thermal column of heavy water reactor of China Institute of Atomic Energy. The activities of the reaction products were measured by well-calibrated Ge(Li) detector
Directory of Open Access Journals (Sweden)
Veli ÇAPALI
2016-05-01
Full Text Available BeO is one of the most common moderator material for neutron moderation; due to its high density, neutron capture cross section and physical-chemical properties that provides usage at elevated temperatures. As it’s known, for various applications in the field of reactor design and neutron capture, reaction cross–section data are required. The cross–sections of (n,α, (n,2n, (n,t, (n,EL and (n,TOT reactions for 9Be and 16O nuclei have been calculated by using TALYS 1.6 Two Component Exciton model and EMPIRE 3.2 Exciton model in this study. Hadronic interactions of low energetic neutrons and generated isotopes–particles have been investigated for a situation in which BeO was used as a neutron moderator by using GEANT4, which is a powerful simulation software. In addition, energy deposition along BeO material has been obtained. Results from performed calculations were compared with the experimental nuclear reaction data exist in EXFOR.
Neutron scattering cross sections of uranium-238
International Nuclear Information System (INIS)
Beghian, L.E.; Kegel, G.H.R.; Marcella, T.V.; Barnes, B.K.; Couchell, G.P.; Egan, J.J.; Mittler, A.; Pullen, D.J.; Schier, W.A.
1979-01-01
The University of Lowell high-resolution time-of-flight spectrometer was used to measure angular distributions and 90-deg excitation functions for neutrons scattered from 238 U in the energy range from 0.9 to 3.1 MeV. This study was limited to the elastic and the first two inelastic groups, corresponding to states of 238 U at 45 keV (2 + ) and 148 keV (4 + ). Angular distributions were measured at primary neutron energies of 1.1, 1.9, 2.5, and 3.1 MeV for the same three neutron groups. Whereas the elastic data are in fair agreement with the evaluation in the ENDF/B-IV file, there is substantial disagreement between the inelastic measurements and the evaluated cross sections. 12 figures
Curves and tables of neutron cross sections in JENDL-3.3
Nakagawa, T; Shibata, K
2002-01-01
Neutron cross sections of 337 nuclides in JENDL-3.3 are presented in figures and tables. In the tables, shown are cross sections at 0.0253 eV and 14 MeV, Maxwellian average cross sections (kT = 0.0253 eV), resonance integrals and fission spectrum average cross sections. The average cross sections calculated with typical reactor spectra are also tabulated. The numbers of delayed and total neutrons per fission are given in figures.
Neutron capture cross section of $^{93}$Zr
We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.
Measurement of the 242Pu neutron capture cross section
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration
2015-10-01
Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).
Evaluation of fission product neutron cross sections for JENDL
International Nuclear Information System (INIS)
1984-01-01
The recent activities on the evaluation of fission product (FP) neutron cross sections for JENDL (Japanese Evaluated Nuclear Data Library) are presented briefly. The integral test of JENDL-1 FP cross section file was performed using the CFRMF sample activation data and the STEK sample reactivity data, and the ratio of experiment to calculation was nearly constant for all the samples in the STEK measurement. Therefore, a tentative analysis was performed by applying the correction to the calculated scattering reactivity component. Better agreement with the experiment was obtained after applying this correction in most cases. The evaluation work on the JENDL-2 FP neutron cross sections is now in progress. The improvement of the data evaluation is presented in an itemized form. The JENDL-2 FP file will contain the evaluated data for 100 nuclides from Kr to Tb. The improvement and the future scope of the integral test for JENDL-2 FP data are summarized. (Asami, T.)
ISSUES IN NEUTRON CROSS SECTION COVARIANCES
Energy Technology Data Exchange (ETDEWEB)
Mattoon, C.M.; Oblozinsky,P.
2010-04-30
We review neutron cross section covariances in both the resonance and fast neutron regions with the goal to identify existing issues in evaluation methods and their impact on covariances. We also outline ideas for suitable covariance quality assurance procedures.We show that the topic of covariance data remains controversial, the evaluation methodologies are not fully established and covariances produced by different approaches have unacceptable spread. The main controversy is in very low uncertainties generated by rigorous evaluation methods and much larger uncertainties based on simple estimates from experimental data. Since the evaluators tend to trust the former, while the users tend to trust the latter, this controversy has considerable practical implications. Dedicated effort is needed to arrive at covariance evaluation methods that would resolve this issue and produce results accepted internationally both by evaluators and users.
Thermal Neutron Capture Cross Sections of the PalladiumIsotopes
Energy Technology Data Exchange (ETDEWEB)
Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.
2006-07-17
Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision comparable to the recommended values even when only onegamma-ray cross section was measured. The calculated and experimentallevel feedings could also be compared to determine spin and parityassignments for low-lying levels.
Theory of neutron resonance cross sections for safety applications
International Nuclear Information System (INIS)
Froehner, F.H.
1992-09-01
Neutron resonances exert a strong influence on the behaviour of nuclear reactors, especially on their response to the temperature changes accompanying power excursions, and also on the efficiency of shielding materials. The relevant theory of neutron resonance cross sections including the practically important approximations is reviewed, both for the resolved and the unresolved resonance region. Numerical techniques for Doppler broadening of resonances are presented, and the construction of group constants and especially of self-shielding factors for neutronics calculations is outlined. (orig.) [de
Theory of neutron resonance cross sections for safety applications
International Nuclear Information System (INIS)
Froehner, F.H.
1993-01-01
Neutron resonances exert a strong influence on the behaviour of nuclear reactors, especially on their response to the temperature changes accompanying power excursions, and also on the efficiency of shielding materials. The relevant theory of neutron resonance cross sections including the practically important approximations is reviewed, both for the resolved and the unresolved resonance region. Numerical techniques for Doppler broadening of resonance are presented, and the construction of group constants and especially of self-shielding factors for neutronics calculations is outlined. (author). 75 refs, 14 figs, 3 tabs
Thermal neutron scattering cross sections of beryllium and magnesium oxides
International Nuclear Information System (INIS)
Al-Qasir, Iyad; Jisrawi, Najeh; Gillette, Victor; Qteish, Abdallah
2016-01-01
Highlights: • Neutron thermalization in BeO and MgO was studied using Ab initio lattice dynamics. • The BeO phonon density of states used to generate the current ENDF library has issues. • The BeO cross sections can provide a more accurate ENDF library than the current one. • For MgO an ENDF library is lacking: a new accurate one can be built from our results. • BeO is a better filter than MgO, especially when cooled down to 77 K. - Abstract: Alkaline-earth beryllium and magnesium oxides are fundamental materials in nuclear industry and thermal neutron scattering applications. The calculation of the thermal neutron scattering cross sections requires a detailed knowledge of the lattice dynamics of the scattering medium. The vibrational properties of BeO and MgO are studied using first-principles calculations within the frame work of the density functional perturbation theory. Excellent agreement between the calculated phonon dispersion relations and the experimental data have been obtained. The phonon densities of states are utilized to calculate the scattering laws using the incoherent approximation. For BeO, there are concerns about the accuracy of the phonon density of states used to generate the current ENDF/B-VII.1 libraries. These concerns are identified, and their influences on the scattering law and inelastic scattering cross section are analyzed. For MgO, no up to date thermal neutron scattering cross section ENDF library is available, and our results represent a potential one for use in different applications. Moreover, the BeO and MgO efficiencies as neutron filters at different temperatures are investigated. BeO is found to be a better filter than MgO, especially when cooled down, and cooling MgO below 77 K does not significantly improve the filter’s efficiency.
International Nuclear Information System (INIS)
Reupke, W.A.; Davidson, J.N.; Muir, D.W.
1982-01-01
The authors present algorithms, describe a computer program, and gives a computational procedure for the statistical consistency analysis of neutron cross-section data, S /SUB N/ calculations, and measured tritium production in 14-MeV neutron-driven integral assemblies. Algorithms presented include a reduced matrix manipulation technique suitable for manygroup, 14-MeV neutron transport calculations. The computer program incorporates these algorithms and is expanded and improved to facilitate analysis of such integral experiments. Details of the computational procedure are given for a natural lithium deuteride experiment performed at the Los Alamos National Laboratory. Results are explained in terms of calculated cross-section sensitivities and uncertainty estimates. They include a downward adjustment of the 7 Li(n,xt) 14-MeV cross section from 328 + or - 22 to 284 + or - 24 mb, which is supported by the trend of recent differential and integral measurements. It is concluded that with appropriate refinements, the techniques of consistency analysis can be usefully applied to the analysis of 14-MeV neutron-driven tritium production integral experiments
determination of neutron-induced activation cross sections using nirr ...
African Journals Online (AJOL)
DR. AMINU
2010-06-01
Jun 1, 2010 ... Keywords: RNAA, Thermal capture cross section, Resonance integral, k0-factors. INTRODUCTION. A database of activation cross sections for neutron energies (of up to 20MeV) is required for the design of a D-T fusion reactor, neutron dosimetry and neutron shielding in a reactor facility, and for confirming.
Generation of neutron scattering cross sections for silicon dioxide
International Nuclear Information System (INIS)
Ramos, R; Marquez Damian, J.I; Granada, J.R.; Cantargi, F
2009-01-01
A set of neutron scattering cross sections for silicon and oxygen bound in silicon dioxide were generated and validated. The cross sections were generated in the ACE format for MCNP using the nuclear data processing system NJOY, and the validation was done with published experimental data. This cross section library was applied to the calculation of five critical configurations published in the benchmark Critical Experiments with Heterogeneous Compositions of Highly Enriched Uranium, Silicon Dioxide and Polyethylene. The original calculations did not use the thermal scattering libraries generated in this work and presented significant differences with the experimental results. For this reason, the newly generated library was added to the input and the multiplication factor for each configuration was recomputed. The utilization of the thermal scattering libraries did not result in an improvement of the computational results. Based on this we conclude that integral experiments to validate this type of thermal cross sections need to be designed with a higher influence of thermal scattering in the measured result, and the experiments have to be performed under more controlled conditions. [es
Energy Technology Data Exchange (ETDEWEB)
Derrien, H
2005-12-05
The neutron resonance parameters of {sup 238}U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990, and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 pcm to 200 pcm.
Status of neutron dosimetry cross sections
International Nuclear Information System (INIS)
Griffin, P.J.; Kelly, J.G.
1992-01-01
Several new cross section libraries, such as ENDF/B-VI(release 2), IRDF-90,JEF-2.2, and JENDL-3 Dosimetry, have recently been made available to the dosimetry community. the Sandia National Laboratories (SNL) Radiation Metrology Laboratory (RML) has worked with these libraries since pre-release versions were available. this paper summarizes the results of the intercomparison and testing of dosimetry cross sections. As a result of this analysis, a compendium of the best dosimetry cross sections was assembled from the available libraries for use within the SNL RML. this library, referred to as the SNLRML Library, contains 66 general dosimetry sensors and 3 special dosimeters unique to the RML sensor inventory. The SNLRML cross sections have been put into a format compatible with commonly used spectrum determination codes
Neutron displacement damage cross sections for SiC
International Nuclear Information System (INIS)
Huang Hanchen; Ghoniem, N.
1993-01-01
Calculations of neutron displacement damage cross sections for SiC are presented. We use Biersack and Haggmark's empirical formula in constructing the electronic stopping power, which combines Lindhard's model at low PKA energies and Bethe-Bloch's model at high PKA energies. The electronic stopping power for polyatomic materials is computed on the basis of Bragg's Additivity Rule. A continuous form of the inverse power law potential is used for nuclear scattering. Coupled integro-differential equations for the number of displaced atoms j, caused by PKA i, are then derived. The procedure outlined above gives partial displacement cross sections, displacement cross sections for each specie of the lattice, and for each PKA type. The corresponding damage rates for several fusion and fission neutron spectra are calculated. The stoichiometry of the irradiated material is investigated by finding the ratio of displacements among various atomic species. The role of each specie in displacing atoms is also investigated by calculating the fraction of displacements caused by each PKA type. The study shows that neutron displacement damage rates of SiC in typical magnetic fusion reactor first walls will be ∝10-15 dpa MW -1 m 2 ; in typical lead-protected inertial confinement fusion reactor first walls they will be ∝15-20 dpa MW -1 m 2 . For fission spectra, we find that the neutron displacement damage rate of SiC is ∝74 dpa per 10 27 n/m 2 in FFTF, ∝39 dpa per 10 27 n/m 2 in HFIR, and 25 dpa per 10 27 n/m 2 in NRU. Approximately 80% of displacement atoms are shown to be of the carbon-type. (orig.)
Radiative neutron capture cross sections on 176Lu at DANCE
Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.
2016-03-01
The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.
Neutron capture cross section standards for BNL 325, Fourth Edition
International Nuclear Information System (INIS)
Holden, N.E.
1981-01-01
This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: 55 Mn(n,γ), 59 Co(n,γ) and 197 Au(n,γ). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed
Assessment and modification of neutron cross sections via interactive graphics
International Nuclear Information System (INIS)
Danchak, M.
1974-01-01
A unique interactive graphics analysis system, RIGAS, was devised to allow a user to calculate, display, compare, manipulate, and modify his data without requiring any programming expertise on the part of that user. This was accomplished by establishing human primacy, through extensive human factor considerations, and designing a man--machine dialog. This system resulted in an instrument which maximizes man$s decision-making capability and the computer's speed to improve graphic communications and bring data analysis to a point commensurate with twentieth century technology. RIGAS was applied to neutron cross section assessment and modification, using continous slowing-down theory, to provide a technique which was previously considered feasible but impractical. The slowing-down parameters XI and Age were visually and interactively iterated and coupled with an on-line flux calculation to allow real-time matching of experimental and theoretical neutron spectra. The resulting slowing-down parameters then reflected areas of discrepancy in cross section sets and provided a basis from which recommendations for changes in these sets could be made. The resulting tool conservatively decreased analysis time by a factor of 80 and produced initial recommendations for changes to the cross section sets of depleted uranium and iron. It was found that ENDF/B-II overestimated the effects of inelastic scattering in the keV region for depleted uranium and requires modification of the secondary distributions. The self- shielded capture cross sections in the 10 to 40 keV region also require reduction. The Iron-1124 data set was likewise determined to have too strong a contribution from scattering in the high-keV-- low-MeV region. (U.S.)
Neutron cross-section determination in geological samples (U)
International Nuclear Information System (INIS)
Harris, J.M.; McDaniel, P.J.
1982-01-01
The Prompt Gamma Neutron Activation Analysis (PGAA) technique yields elemental composition data which can be used to calculate the macroscopic cross section for any sample. The Small Sample Reactivity Measurements (SSRM) technique yields the macroscopic thermal absorption directly. Experimentally, PGAA is somewhat more difficult because of the calibration and data handling than is SSRM. However, SSRM requires a mathematical model of the reactor which means a rather complicated analysis. Once the model and calibration are completed, data analysis is routine. The SSRM technique is production oriented. 9 figures
Evaluation of Cm-247 neutron cross sections in the resonance region
International Nuclear Information System (INIS)
Martinelli, T.; Menapace, E.; Motta, M.; Vaccari, M.
1980-01-01
The neutron cross sections of Cm-247 are evaluated in the resonance (resolved and unresolved) region up to 10 keV. Average resonance parameters (i.e. spacing D, fission and radiative widths, neutron strength functions) are determined for unresolved region calculations. Moreover for a better comparison with the experimental data, fission cross section is calculated up to 10 MeV. In addition, the average number of neutrons emitted per fission as a function of energy is estimated
Neutron total scattering cross sections of elemental antimony
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-11-01
Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V
Actinide neutron-induced fission cross section measurements at LANSCE
Energy Technology Data Exchange (ETDEWEB)
Tovesson, Fredrik K [Los Alamos National Laboratory; Laptev, Alexander B [Los Alamos National Laboratory; Hill, Tony S [INL
2010-01-01
Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.
Microscopic cross-section measurements by thermal neutron activation
International Nuclear Information System (INIS)
Avila L, J.
1987-08-01
Microscopic cross sections measured by thermal neutron activation using RP-0 reactor at the Peruvian Nuclear Energy Institute. The method consists in measuring microscopic cross section ratios through activated samples, requiring being corrected in thermal and epithermal energetic range by Westcott formalism. Furthermore, the comptage ratios measured for each photopeak to its decay fraction should be normalized from interrelation between both processes above, activation microscopic cross sections are obtained
Benchmark of neutron production cross sections with Monte Carlo codes
Tsai, Pi-En; Lai, Bo-Lun; Heilbronn, Lawrence H.; Sheu, Rong-Jiun
2018-02-01
Aiming to provide critical information in the fields of heavy ion therapy, radiation shielding in space, and facility design for heavy-ion research accelerators, the physics models in three Monte Carlo simulation codes - PHITS, FLUKA, and MCNP6, were systematically benchmarked with comparisons to fifteen sets of experimental data for neutron production cross sections, which include various combinations of 12C, 20Ne, 40Ar, 84Kr and 132Xe projectiles and natLi, natC, natAl, natCu, and natPb target nuclides at incident energies between 135 MeV/nucleon and 600 MeV/nucleon. For neutron energies above 60% of the specific projectile energy per nucleon, the LAQGMS03.03 in MCNP6, the JQMD/JQMD-2.0 in PHITS, and the RQMD-2.4 in FLUKA all show a better agreement with data in heavy-projectile systems than with light-projectile systems, suggesting that the collective properties of projectile nuclei and nucleon interactions in the nucleus should be considered for light projectiles. For intermediate-energy neutrons whose energies are below the 60% projectile energy per nucleon and above 20 MeV, FLUKA is likely to overestimate the secondary neutron production, while MCNP6 tends towards underestimation. PHITS with JQMD shows a mild tendency for underestimation, but the JQMD-2.0 model with a modified physics description for central collisions generally improves the agreement between data and calculations. For low-energy neutrons (below 20 MeV), which are dominated by the evaporation mechanism, PHITS (which uses GEM linked with JQMD and JQMD-2.0) and FLUKA both tend to overestimate the production cross section, whereas MCNP6 tends to underestimate more systems than to overestimate. For total neutron production cross sections, the trends of the benchmark results over the entire energy range are similar to the trends seen in the dominate energy region. Also, the comparison of GEM coupled with either JQMD or JQMD-2.0 in the PHITS code indicates that the model used to describe the first
Differences between cross-section libraries for neutron dosimetry
International Nuclear Information System (INIS)
Tardelli, T.C.; Stecher, L.C.; Coelho, T.S.; Castro, V.A. De; Cavalieri, T.A.; Menzel, F.; Giarola, R.S.; Domingos, D.B.; Yoriyaz, H.
2013-01-01
Absorbed dose calculations depend on a consistent set of nuclear data used in simulations in computer codes. Nuclear data are stored in libraries, however, the information available about the differences in dose caused by different libraries are rare. The libraries are processed by a computer system to be able to be used by a radiation transport code. One of the systems capable of processing nuclear data is the NJOY system. The objective of this study is to evaluate the nuclear data libraries for neutrons available in the literature, and to quantify the differences in absorbed dose obtained using the libraries JENDL 4.0, JEFF 3.3.1 and ENDF/B.VII. The absorbed dose calculation was performed on a simple geometric model, as spheres, and in anthropomorphic model of the human body based on the ICRP-110 for neutron transport simulation using the MCNP5 code. The results were compared with literature data. The results obtained with cross sections from the libraries JEFF and ENDF/B.VII have shown to be identical in most cases, except for one case where the difference has exceeded 10%. The results obtained with JENDL library has shown to be considerably different in most cases comparing to other two libraries. Some differences were over 200%. The dose calculations showed differences between the libraries, which is justified by differences in the cross sections. It has been observed that the cross sections values of certain nuclides assume quite different values in different libraries. These differences in turn cause considerable differences in dose calculations. (author)
Graphs of neutron cross section data for fusion reactor development
International Nuclear Information System (INIS)
Asami, Tetsuo; Tanaka, Shigeya
1979-03-01
Graphs of neutron cross section data relevant to fusion reactor development are presented. Nuclides and reaction types in the present compilation are based on a WRENDA request list from Japan for fusion reactor development. The compilation contains various partial cross sections for 55 nuclides from 6 Li to 237 Np in the energy range up to 20 MeV. (author)
Neutron-induced cross-sections via the surrogate method
International Nuclear Information System (INIS)
Boutoux, G.
2011-11-01
The surrogate reaction method is an indirect way of determining neutron-induced cross sections through transfer or inelastic scattering reactions. This method presents the advantage that in some cases the target material is stable or less radioactive than the material required for a neutron-induced measurement. The method is based on the hypothesis that the excited nucleus is a compound nucleus whose decay depends essentially on its excitation energy and on the spin and parity state of the populated compound state. Nevertheless, the spin and parity population differences between the compound-nuclei produced in the neutron and transfer-induced reactions may be different. This work reviews the surrogate method and its validity. Neutron-induced fission cross sections obtained with the surrogate method are in general good agreement. However, it is not yet clear to what extent the surrogate method can be applied to infer radiative capture cross sections. We performed an experiment to determine the gamma decay probabilities for 176 Lu and 173 Yb by using the surrogate reactions 174 Yb( 3 He,pγ) 176 Lu * and 174 Yb( 3 He,αγ) 173 Yb * , respectively, and compare them with the well-known corresponding probabilities obtained in the 175 Lu(n,γ) and 172 Yb(n,γ) reactions. This experiment provides answers to understand why, in the case of gamma-decay, the surrogate method gives significant deviations compared to the corresponding neutron-induced reaction. In this work, we have also assessed whether the surrogate method can be applied to extract capture probabilities in the actinide region. Previous experiments on fission have also been reinterpreted. Thus, this work provides new insights into the surrogate method. This work is organised in the following way: in chapter 1, the theoretical aspects related to the surrogate method will be introduced. The validity of the surrogate method will be investigated by means of statistical model calculations. In chapter 2, a review on
7Li neutron-induced elastic scattering cross section measurement using a slowing-down spectrometer
Directory of Open Access Journals (Sweden)
Heusch M.
2010-10-01
Full Text Available A new integral measurement of the 7Li neutron induced elastic scattering cross section was determined in a wide neutron energy range. The measurement was performed on the LPSC-PEREN experimental facility using a heterogeneous graphite-LiF slowing-down time spectrometer coupled with an intense pulsed neutron generator (GENEPI-2. This method allows the measurement of the integral elastic scattering cross section in a slowing-down neutron spectrum. A Bayesian approach coupled to Monte Carlo calculations was applied to extract naturalC, 19F and 7Li elastic scattering cross sections.
Numerical estimates of multiple reaction corrections in neutron cross-section measurements
International Nuclear Information System (INIS)
Magnusson, G.
1979-04-01
A method to evaluate the effect of secondary neutrons in 14-15 MeV neutron cross-section measurements is presented. The emission spectra of secondary neutrons are calculated by means of the preequilibrium and statistical models. An expression for the collision probability in a homogenous body has been utilized in the calculations. (author)
Re/Os cosmochronometer: measurement of neutron cross sections
International Nuclear Information System (INIS)
Mosconi, M.
2007-01-01
This experimental work is devoted to the improved assessment of the Re/Os cosmochronometer. The dating technique is based on the decay of 187 Re (t 1/2 =41.2 Gyr) into 187 Os and determines the age of the universe by the time of onset of nucleosynthesis. The nucleosynthesis mechanisms, which are responsible for the 187 Re/ 187 Os pair, provide the possibility to identify the radiogenic fraction of 187 Os exclusively by nuclear physics considerations. Apart from its radiogenic component, 187 Os can be synthesized otherwise only by the s process, which means that this missing fraction can be reliably determined and subtracted by proper s-process modeling. On the other hand, 187 Re is almost completely produced by the r process. The only information needed for the interpretation as a cosmic clock is the production rate of 187 Re as a function of time. The accuracy of the s-process calculations that are needed to determine the nucleosynthetic abundance of 187 Os depends on the quality of the neutron capture cross sections averaged over the thermal neutron spectrum at the s-process sites. Laboratory measurements of these cross sections have to be corrected for the effect of nuclear levels, which can be significantly populated at the high stellar temperatures during the s process. The neutron capture cross sections of 186 Os, 187 Os and 188 Os have been measured at the CERN n TOF facility in the range between 0.7 eV and 1 MeV. From these data, Maxwellian averaged cross sections have been determined for thermal energies from 5 to 100 keV with an accuracy around 4%, 3%, and 5% for 186 Os, 187 Os, and 188 Os, respectively. Since, the first excited state in 187 Os occurs at 9.75 keV, the cross section of this isotope requires a substantial correction for thermal population of low lying nuclear levels. This effect has been evaluated on the basis of resonance data derived in the (n, γ) experiments and by an improved measurements of the inelastic scattering cross section for
Neutron cross sections in the unresolved resonance region
International Nuclear Information System (INIS)
Janeva, N.; Lukyanov, A.; Koyumdjieva, N.; Volev, K.
2005-01-01
In this work a development of the characteristic function model, created to reveal the resonance cross section structure in the unresolved resonance region is presented. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. To determine average values of the cross sections and their functionals the function of joint statistical distribution of the R-matrix real and imaginary parts should be used. The characteristic function of such distribution is determined and the resonance ladder for the unresolved region is optimized to calculate the group averaged functionals in the same way as it is in the resolved resonance region. The main advantage of this model is the calculation of resonance averaged self-shielding factors analytically. The neutron width energy dependence leads to some deformation in the shape of resonances. This deformation is most apparent near the inelastic scattering threshold. For the case when the inelastic channel momentum is zero we present the formula for level shape bellow and over the inelastic threshold and the calculated resonance deformation in dependence of the position of the resonance in respect to the threshold. (authors)
Neutron cross sections for 3He at epithermal energies
International Nuclear Information System (INIS)
Keith, C.D.; Chowdhuri, Z.; Rich, D.R.; Snow, W.M.; Bowman, J.D.; Penttilae, S.L.; Smith, D.A.; Leuschner, M.B.; Pomeroy, V.R.; Jones, G.L.; Sharapov, E.I.
2004-01-01
High accuracy, absolute measurements of the neutron total cross section for 3 He are reported for incident neutron energies 0.1-400 eV. The measurements were performed at the LANSCE short-pulse neutron spallation source. Using the previously determined cross section for neutron elastic scattering, 3.367±0.019 b, we extract a new value for the energy dependence of the 3 He(n,p) 3 He reaction cross section, σ np =(849.77±0.14±1.02)E -1/2 -(1.253±0.00± -0.049 +0.008 )b, where the neutron energy is expressed in eV. The first uncertainty is statistical, the second systematic.
Porosity effects in the neutron total cross section of graphite
International Nuclear Information System (INIS)
Santisteban, J. R; Dawidowski, J; Petriw, S. N
2009-01-01
Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes. [es
Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; Blyth, D.; Bowman, J. D.; Calarco, J.; Crawford, C.; Craycraft, K.; Evans, D.; Fomin, N.; Fry, J.; Gericke, M.; Gillis, R. C.; Greene, G. L.; Hamblen, J.; Hayes, C.; Kucuker, S.; Mahurin, R.; Maldonado-Velázquez, M.; Martin, E.; McCrea, M.; Mueller, P. E.; Musgrave, M.; Nann, H.; Penttilä, S. I.; Snow, W. M.; Tang, Z.; Wilburn, W. S.
2015-05-01
Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g (r ) inferred from neutron scattering measurements of the differential cross section d/σ d Ω from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.
Evaluation of neutron cross sections for 244Cm, 246Cm, and 248Cm
International Nuclear Information System (INIS)
Benjamin, R.W.; McCrosson, F.J.; Gettys, W.E.
1977-01-01
An evaluation of neutron cross sections for 244 246 248 Cm using the ENDF/B format is presented. Primary data input included differential measurements, integral measurements, nuclear model calculations, and reactor production experience
The poisoning of samples by elements with high thermal neutron absorption cross section
International Nuclear Information System (INIS)
Tran Dai Nghiep; Nguyen Duc Kien; Tran Van Vuong; Nguyen Thanh Hung
1990-01-01
The macroscopic thermal neutron absorption cross section for small samples was calculated in framework of diffusion theory and poisoning technique. The theoretical formulae agree with the experimental data. (author). 6 refs., 3 figs
Determination of Unknown Neutron Cross Sections for the Production of Medical Isotopes
Energy Technology Data Exchange (ETDEWEB)
Stephen E. Binney
2004-04-09
Calculational assessment and experimental verification of certain neutron cross sections that are related to widely needed new medical isotopes. Experiments were performed at the Oregon State University TRIGA Reactor and the High Flux Irradiation Reactor at Oak Ridge National Laboratory.
Evaluation of neutron cross sections for /sup 244/Cm, /sup 246/Cm, and /sup 248/Cm
Energy Technology Data Exchange (ETDEWEB)
Benjamin, R.W.; McCrosson, F.J.; Gettys, W.E.
1977-01-01
An evaluation of neutron cross sections for /sup 244/ /sup 246/ /sup 248/Cm using the ENDF/B format is presented. Primary data input included differential measurements, integral measurements, nuclear model calculations, and reactor production experience. (SDF)
Cross section for inelastic neutron acceleration by 178Hfm2
International Nuclear Information System (INIS)
Karamyan, S.A.; Carroll, J.J.
2009-01-01
The scattering of thermal neutrons from isomeric nuclei may include events in which the outgoing neutrons have increased kinetic energy. This process has been called Inelastic Neutron Acceleration (INNA) and occurs when the final nucleus after emission of the neutron is left in a state with lower energy than that of the isomer. The result, therefore, is an induced depletion of the isomeric population to the ground state. A cascade of several gammas must accompany the neutron emission to release the high angular momentum of the initial isomeric state. INNA was previously observed in a few cases and the associated cross sections were only in modest agreement with theoretical estimates. The most recent measurement of an INNA cross section was σ INNA = (258 ± 58) b for neutron scattering by 177 Lu m . In the present work, an INNA cross section of σ INNA = 152 -36 +51 b was deduced from measurements of the total burn-up of the high-spin, four-quasiparticle isomer 178 Hf m2 during irradiation by thermal neutrons. Statistical estimates for the probability of different reaction channels past neutron absorption were used in the analysis, and the deduced σ INNA is compared to the theoretically predicted cross section
The measurement of neutron scattering cross sections at small angles
International Nuclear Information System (INIS)
Qi, H.Q.; Liu, Y.C.; Chen, Z.P.; Wu, X.C.; Wang, W.H.; Zhang, J.
1985-08-01
A position sensitive neutron detector was used to measure the scattering cross sections of 14.7 MeV neutrons from Pb between 3 0 and 9 0 . The method to correct the effects of finite positional resolution by unfolding positional spectrum was studied. (author)
Radiative neutron capture cross section from 236U
Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Roman, A. R.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Kawano, T.
2017-08-01
The 236U(n ,γ ) reaction cross section has been measured for the incident neutron energy range from 10 eV to 800 keV by using the Detector for Advanced Neutron Capture Experiments (DANCE) γ -ray calorimeter at the Los Alamos Neutron Science Center. The cross section was determined with the ratio method, which is a technique that uses the 235U(n ,f ) reaction as a reference. The results of the experiment are reported in the resolved and unresolved resonance energy regions. Individual neutron resonance parameters were obtained below 1 keV incident energy by using the R -matrix code sammy. The cross section in the unresolved resonance region is determined with improved experimental uncertainty. It agrees with both ENDF/B-VII.1 and JEFF-3.2 nuclear data libraries. The results above 10 keV agree better with the JEFF-3.2 library.
Neutron cross section standards for the energy region above 20 MeV
International Nuclear Information System (INIS)
1991-01-01
These proceedings of a specialists' meeting on Neutron cross section standards for the energy region above 20 MeV are divided into 6 sessions bearing on: - session 1: status of the date base for (n-p) scattering (2 conferences) - session 2: status of nucleon-nucleon phase shift calculations (1 conference) - session 3: recent and planned experimental work on n-p cross section measurements and facilities (7 conferences) - session 4: Instruments for utilizing the H (n.n) standard for neutron fluence measurement (4 conferences) - session 5: proposal for other neutron cross-section standards (4 conferences) - session 6: monitor reactions for radiation dosimetry (3 conferences)
Methods for calculating group cross sections for doubly heterogeneous thermal reactor systems
International Nuclear Information System (INIS)
Stamatelatos, M.G.; LaBauve, R.J.
1977-01-01
The report discusses methods used at LASL for calculating group cross sections for doubly heterogeneous HTGR systems of the General Atomic design. These cross sections have been used for the neutronic safety analysis calculations of such HTGR systems at various points in reactor lifetime (e.g., beginning-of-life, end-of-equilibrium cycle). They were also compared with supplied General Atomic cross sections generated with General Atomic codes. The overall agreement between the LASL and the GA cross sections has been satisfactory
Neutron method and apparatus for determining total cross-section
International Nuclear Information System (INIS)
Flaum, C.
1984-01-01
This invention relates to the determination of the macroscopic neutron absorption cross section of the geological formation surrounding a borehole. The method comprises passing a logging sonde through the borehole while continuously irradiating the formation with neutrons. The radiation emanating from the formation is monitored to generate a first signal indicative of thermal neutrons and a second signal indicative of epithermal neutrons. Output signals are generated indicative of the spatial distribution of thermal and epithermal neutrons, and are combined to generate a signal representative of the macroscopic neutron absorption cross section of the formation. The apparatus comprises a logging sonde adapted for movement through the borehole and carrying a neutron source; detector means on the sonde for monitoring radiation emanating from the formation to generate signals indicative of thermal and epithermal neutrons; means for generating output signals indicative of the spatial distribution of thermal and epithermal neutrons; and means for combining the two output signals to generate a signal indicative of the macroscopic neutron absorption cross section of the material
Effective thermal neutron absorption cross section for heterogeneous mixture
International Nuclear Information System (INIS)
Gabanska, B.; Igielski, A.; Krynicka-Drozdowicz, E.; Woznicka, U.
1989-01-01
The first estimations (basing on Umiastowski's theory) of the influence of the sample heterogeneity of the effective thermal neutron absorption cross section were compared with the results obtained for the homogeneous mixture which components and concentration were the same as those of the heterogeneous sample. An experiment was prepared to determine how good this estimate is. Three artificial heterogeneous cylindrical samples (2R = H = 9 cm) were manufactured from pure silver cylinders embedded in plexiglass, keeping the Ag content and varying the size of cylinders (2R = H = 1.0 cm, 0.6 cm and 0.4 cm). Calculations performed show that the experimental effect of the sample heterogeneity can be significant. 5 figs., 5 tabs, 11 refs. (author)
242Pu absolute neutron-capture cross section measurement
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.
2017-09-01
The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.
242Pu absolute neutron-capture cross section measurement
Directory of Open Access Journals (Sweden)
Buckner M.Q.
2017-01-01
Full Text Available The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ cross section could be set according to the known 239Pu(n,f resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ cross section.
Evaluation of the 238U neutron total cross section
International Nuclear Information System (INIS)
Smith, A.; Poenitz, W.P.; Howerton, R.J.
1982-12-01
Experimental energy-averaged neutron total cross sections of 238 U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V
Measurement of neutron capture cross sections of Tc-99
International Nuclear Information System (INIS)
Igashira, Masayuki
2000-02-01
For studies on nuclear transmutation of long-lived fission products(LLFPs) in a fast reactor, detailed characteristics of reactor core such as transmutation performance have to be investigated, so accurate neutron cross section data of LLFPs become necessary. Therefore, the keV-neutron capture cross sections of Tc-99, which is one of important LLFPs, were measured in the present study to obtain the accurate data. The measurement was relative to the standard capture cross sections of Au-197. A neutron time-of-flight method was adopted with a ns-pulsed neutron source by a Pelletron accelerator and a large anti-Compton Nal(Tl) gamma-ray detector. As a result, the capture cross sections of Tc-99 were obtained with the error of about 5% in the incident neutron energy region of 10 to 600 keV. The present data were compared with other experimental data and the evaluated values of JENDL-3.2, and it was found that the evaluations of JENDL-3.2 were 15-20% smaller than the present measurements. (author)
Neutron Scattering Differential Cross Sections for 12C
Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.
2016-09-01
Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).
International Nuclear Information System (INIS)
Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.
1990-09-01
Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations
Measurement of neutron captured cross-sections in 1-2 MeV
Energy Technology Data Exchange (ETDEWEB)
Kim, Gi Dong; Kim, Young Sek; Kim, Jun Kon; Yang, Tae Keun [Korea Institutes of Geoscience and Mineral Resources, Taejeon (Korea)
2001-04-01
The measurement of neutron captured reaction cross sections was performed to build the infra system for the production of nuclear data. MeV neutrons were produced with TiT target and {sup 3}T(p,n){sup 3}He reaction. The characteristics of TiT thin film was analyzed with ERD-TOF and RBS. The results was published at Journal of the Korea Physical Society (SCI registration). The energy, the energy spread and the flux of the produced neutron were measured. The neutron excitation functions of {sup 12}C and {sup 16}O were obtained to confirm the neutron energy and neutron energy spread. The neutron energy spread found to be 1.3 % at the neutron energy of 2.077 MeV. The {sup 197}Au(n,{gamma}) reaction was performed to obtain the nerutron flux. The maximum neutron flux found to be 1 x 10{sup 8} neutrons/sec at the neutron energy of 2 MeV. The absolute efficiency of liquid scintillation detector was obtained in the neutron energy of 1 - 2 MeV. The fast neutron total reaction cross sections of Cu, Fe, and Au were measured with sample in-out method. Also the neutron captured reaction cross sections of {sup 63}Cu were measured with fast neutron activation method. The measurement of neutron total reaction cross sections and the neutron captured reaction cross sections with fast neutrons were first tried in Korea. The beam pulsing system was investigated and the code of calculating the deposition spectrums for primary gamma rays was made to have little errors at nuclear data. 25 refs., 28 figs., 14 tabs. (Author)
Cross-sections for hydrogen production from vanadium in a fusion neutron environment
International Nuclear Information System (INIS)
Smith, D.L.; Meadows, J.W.; Gomes, I.C.
1999-01-01
The experimental and evaluated information available from the literature on neutron cross-sections for hydrogen production from vanadium in a fusion neutron environment has been reviewed. Discrepancies in these results were identified and likely explanations for their existence are suggested. Nuclear-model calculations were performed using the statistical pre-compound code GNASH. The results from this analysis are compared with existing information. Revised cross-section values for use in contemporary calculations of hydrogen gas production in fusion reactors are recommended. The impact of these revisions on other neutron cross-sections of vanadium that affect neutronic calculations for fusion reactors is also discussed. Finally, integral calculations of hydrogen production were performed for a typical fusion reactor using the present recommended cross-section values. It was found that this alternative cross-section set leads to a calculated value of hydrogen production at the fusion reactor first wall which is a factor of 3.25 smaller than obtained from similar calculations that employ evaluated cross-sections from the ENDF/B-6.4 Library exclusively. (orig.)
Fast-neutron total and scattering cross sections of niobium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-07-01
Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V
Fast-neutron total and scattering cross sections of niobium
Energy Technology Data Exchange (ETDEWEB)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-07-01
Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V.
An Ada environment for relativistic cross section calculations
International Nuclear Information System (INIS)
Nilsson, E.
1990-01-01
We have developed an Ada environment adapted to relativistic cross section calculations. Objects such as four-vectors, γ- matrices and propagators are defined as well as operations between these objects. In this environment matrix elements can be expressed in a compact and readable way as Ada code. Unpolarized cross sections are calculated numerically by explicitly summing and averaging over spins and polarizations. A short presentation of the technique is given
International Nuclear Information System (INIS)
Fukahori, Tokio; Iwamoto, Osamu; Chiba, Satoshi
2003-01-01
For an accelerator-driven nuclear waste transmutation system, it is very important to estimate sub-criticality of core system for feasibility and design study of the system. The fission cross section in the intermediate energy range has an important role. A program FISCAL has been developed to calculate neutron-, proton- and photon-induced fission cross sections in the energy region from several tens of MeV to 3 GeV. FISCAL adopts the systematics considering experimental data for Ag- 243 Am. It is found that unified description of neutron-, proton- and photon-induced fission cross sections is available. (author)
Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA
Energy Technology Data Exchange (ETDEWEB)
Winters, R. R.
2000-08-25
This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + {sup 88}Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model.
Nuclear Astrophysics and Neutron Cross Section Measurements Using the ORELA
International Nuclear Information System (INIS)
Winters, R. R.
2000-01-01
This is the final report for a research program which has been continuously supported by the AEC, ERDA, or USDOE since 1973. The neutron total and capture cross sections for n + 88 Sr have been measured over the neutron energy range 100 eV to 1 MeV. The report briefly summaries our results and the importance of this work for nucleosynthesis and the optical model
Status of neutron cross sections for reactor dosimetry
International Nuclear Information System (INIS)
Vlasov, M.F.; Fabry, A.; McElroy, W.N.
1977-03-01
The status of current international efforts to develop standardized sets of evaluated energy-dependent (differential) neutron cross sections for reactor dosimetry is reviewed. The status and availability of differential data are considered, some recent results of the data testing of the ENDF/B-IV dosimetry file using 252 Cf and 235 U benchmark reference neutron fields are presented, and a brief review is given of the current efforts to characterize and identify dosimetry benchmark radiation fields
Removal cross section for 14 mev neutrons in constructional materials
International Nuclear Information System (INIS)
Vasvary, L.; Divos, F.; Peto, G.; Csikai, J.; Mumba, N.K.
1985-01-01
Using flight time difference the direct and scattered neutrons and gammas produced in the target head and samples were separated. With this method the attenuation of primary neutrons and gammas originating from the target head has been studied. Thickness dependence of the secondary gamma yield from extended samples of Al, Fe, Pb, paraffin and reinforced concrete was also measured. Results indicate a geometry dependence of the removal cross sections
The determination of thermal neutron cross section of 81Br
International Nuclear Information System (INIS)
Kovacs, Luciana; Zamboni, Cibele B.; Dalaqua Junior, Leonardo
2009-01-01
In this investigation several standard materials were used to determine the thermal neutron cross section of 81 Br. This nuclear parameter is an important data to perform several quantitative investigations, mainly in medical area. In other to confirm and to reduce the uncertainty, a new measurement was preformed using thermal neutron at IEA-R1 nuclear reactor of IPEN/CNEN-SP. The result obtained is compatible with the tabulated value and present small uncertainly. (author)
A New Measurement of Neutron Induced Fission Cross Sections
Magee, Joshua; Niffte Collaboration
2017-09-01
Neutron induced fission cross sections of actinides are of great interest in nuclear energy and stockpile stewardship. Traditionally, measurements of these cross sections have been made with fission chambers, which provide limited information on the actual fragments, and ultimately result in uncertainties on the order of several percent. The Neutron Induced Fission ragment Tracking Experiment (NIFFTE) collaboration designed and built a fission Time Projection Chamber (fissionTPC), which provides additional information on these processes, through 3-dimensional tracking, improved particle identification, and in-situ profiles of target and beam non-uniformities. Ultimately, this should provide sub-percent measurements of (n,f) cross-sections. During the 2016 run cycle, measurements of the 238U(n,f)/235U(n,f) cross section shape was performed at the Los Alamos Neutron Science Center (LANSCE) Weapons Neutron Research (WNR) facility. An overview of the fission TPC will be given, as well as these recently reported results. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Measured and evaluated fast neutron cross sections of elemental nickel
International Nuclear Information System (INIS)
Guenther, P.; Smith, A.; Smith, D.; Whalen, J.; Howerton, R.
1975-07-01
Fast neutron total and scattering cross sections of elemental nickel are measured. Differential elastic scattering cross sections are determined from incident energies of 0.3 to 4.0 MeV. The cross sections for the inelastic neutron excitation of states at: 1.156 +- 0.015, 1.324 +- 0.015, 1.443 +- 0.015, 2.136 +- 0.013, 2.255 +- 0.030, 2.449 +- 0.030, 2.614 +- 0.020 and 2.791 +- 0.025 MeV are measured to incident neutron energies of 4.0 MeV. The total neutron cross sections are determined from 0.25 to 5.0 MeV. The experimental results are discussed in the context of optical and statistical models. It is shown that resonance width-fluctuation and correlation effects are significant. The present experimental and theoretical results, together with previously reported values, are used to construct a comprehensive evaluated elemental data file in the ENDF format. Some comparisons are made with previously reported evaluated files. In addition, some selected reactions which are widely used in dosimetry and other applications are presented as supplemental evaluated isotopic-data files. The numerical quantities are presented in tabular form. (3 tables, 29 figures)
Measurements of neutron cross sections of radioactive waste nuclides
Energy Technology Data Exchange (ETDEWEB)
Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi
1998-01-01
Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)
View-CXS neutron and photon cross-sections viewer
International Nuclear Information System (INIS)
Subbaiah, K.V.; Sunil Sunny, C.
2004-01-01
A graphical user-friendly interface is developed in Visual Basic (VB)-6 to view the variation of neutron and photon interaction cross-sections of different isotopes as a function of energy. VB subroutines developed read the binary data files of cross-sections created in MCNP-ACE (Briesmeister, J.F., 1993. MCNP - a general purpose Monte Carlo N-Particle Transport code. Version 4A. LANL, USA), ANISN-DLC (Engle W.W. Jr., 1967, A User's Manual for ANISN, K-1693; ORNL, 1974. 100 group neutron cross section data based on ENDF/B-III. Oak Ridge National Laboratory, USA) and KENO-AMPX (Petrie, L.M., Landers, N.F., 1984 KENO-Va- An Improved Monte Carlo Criticality Program with Super Grouping. RSICC-CCC-548, USA) formats using LAHEY-77 Fortran Compiler. The information on isotopes present in each library will be displayed with the help of database files prepared using Micro-Soft ACESS. The cross-section data can be viewed in different presentation styles namely, line graphs, bar graphs, histograms etc., with different color and symbol options. The cross-section plots generated can be saved as Bit-Map file to embed in any other text files. This software enables inter comparison of cross-sections from different type of libraries for isotopes as well as mixtures. Provision is made to view the cross-sections for nuclear reactions such as (n,γ), (n,f), (n,α), etc. The software can be obtained from Radiation Safety Information and Computational Centre (RSICC), ORNL, USA with the code package identification number PSR-514. The software package needs a hard disk space of about 80 MB when installed and works in WINDOWS-95/98/2000 operating systems
International Nuclear Information System (INIS)
Genreith, Christoph
2015-01-01
demonstrated. Compared to existing literature data on prompt γ-ray energies and emission probabilities the uncertainties of the data were improved. In addition to the basic nuclear data necessary for PGAA, the thermal radiative neutron capture cross sections of 237 Np and of 241 Am were determined from decay measurements after neutron irradiation. The thermal radiative neutron capture cross section of 237 Np was determined as σ 0 c =176.3(47) b. The thermal radiative neutron capture cross section of 241 Am was determined as σ 0 c =667.7(312) b. The thermal radiative neutron capture cross section of 242 Pu was calculated as σ 0 c =21.9(15) b using nuclear structure simulations with the statistical decay code DICEBOX, constraint by the measured prompt γ-ray data. In the corresponding simulation the total radiative width of the capture state was found to be 28(1) meV. Also, the neutron separation energies of 238 Np and of 243 Pu were derived. The neutron separation energy of 238 Np was calculated as S n =5488.02(17) keV. The neutron separation energy of 243 Pu was calculated as S n =5036.33(59) keV. Detection limits for PGAA at FRM II were calculated for 237 Np as 0.056 μg, for 241 Am as 0.017 μg and for 242 Pu as 0.20 μg.
Neutron cross section standards and instrumentation: Annual report
International Nuclear Information System (INIS)
1987-01-01
This annual report from the National Bureau of Standards contains a summary of the results of the Neutron Cross Section Standards and Instrumentation Program. The technical measurements for the past year are given along with the proposed program and budget needs for the next three years. The neutron standards measurements have concentrated on the most important 235 U(n,f) cross section in the thermal to 20 MeV energy range along with the development of neutron detectors required for these measurements. The NBS measurements have made a significant contribution to the improvement in the understanding of this reaction. Measurements were performed with numerous neutron detectors at overlapping energies and at different neutron sources in order to reduce the systematic errors to achieve the required accuracy in this important neutron standard. Significant progress was also made in the development of a detector to utilize the 3 He(n,p) reaction as a standard in the eV to MeV energy region. Improvements in data acquisition systems as well as additional studies of advanced neutron sources were accomplished. Contacts with private industry were maintained and coordination of the neutron standards evaluation was continued. The report also includes biographical listings of the research staff along with copies of a few of our recent publications. 13 figs., 1 tab
Improved neutron capture cross section of Pu239
Mosby, S.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Henderson, R.; Jandel, M.; Kwan, E.; O'Donnell, J. M.; Ullmann, J.; Wu, C. Y.
2014-03-01
The 239Pu(n ,γ) cross section has been measured over the energy range 10 eV to 1 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center as part of a campaign to produce precision (n ,γ) measurements on 239Pu. Fission coincidences were measured with a parallel-plate avalanche counter and used to measure the prompt fission γ-ray spectrum in this region to accurately characterize background. The resulting (n ,γ) cross section is generally in agreement with current evaluations. The experimental method utilizes much more detailed information than past measurements on 239Pu and can be used to extend the measurement to higher incident neutron energies.
Fast-neutron scattering cross sections of elemental zirconium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1982-12-01
Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V
Multi-group helium and hydrogen production cross section libraries for fusion neutronics design
International Nuclear Information System (INIS)
Mori, Seiji; Zimin, S.; Takatsu, Hideyuki
1993-09-01
The helium and hydrogen production cross section libraries based on the JENDL-3 data file were compiled for use in neutronics and shielding design calculation of a fusion reactor. These libraries have the same group structures as the transport cross section sets, FUSION-J3 and FUSION-40 which are often used in fusion neutronics design and can be used as the response function libraries for the reaction rate calculation code, APPLE-3. These libraries were processed from the JENDL gas production cross section file which is one of the JENDL special purpose files. Some sample calculations using the discrete ordinate code, ANISN with these libraries were performed and the results were compared with the existing results. Consequently it was found that the appropriate results can be obtained with these libraries. The generated multi-group cross sections for helium and hydrogen production are presented in graphs and tables in appendices. (author)
Nuclear fission and neutron-induced fission cross-sections
James, G D; Michaudon, A; Michaudon, A; Cierjacks, S W; Chrien, R E
2013-01-01
Nuclear Fission and Neutron-Induced Fission Cross-Sections is the first volume in a series on Neutron Physics and Nuclear Data in Science and Technology. This volume serves the purpose of providing a thorough description of the many facets of neutron physics in different fields of nuclear applications. This book also attempts to bridge the communication gap between experts involved in the experimental and theoretical studies of nuclear properties and those involved in the technological applications of nuclear data. This publication will be invaluable to those interested in studying nuclear fis
Neutron total and scattering cross sections of 6Li in the few MeV region
International Nuclear Information System (INIS)
Smith, A.; Guenther, P.; Whalen, J.
1980-02-01
Neutron total cross sections of 6 Li are measured from approx. 0.5 to approx. 4.8 MeV at intervals of approx. 10 scattering angles and at incident-neutron intervals of approx.< 100 keV. Neutron differential inelastic-scattering cross sections are measured in the incident-energy range 3.5 to 4.0 MeV. The experimental results are extended to lower energies using measured neutron total cross sections recently reported elsewhere by the authors. The composite experimental data (total cross sections from 0.1 to 4.8 MeV and scattering cross sections from 0.22 to 4.0 MeV) are interpreted in terms of a simple two-level R-matrix model which describes the observed cross sections and implies the reaction cross section in unobserved channels; notably the (n;α)t reaction (Q = 4.783 MeV). The experimental and calculational results are compared with previously reported results as summarized in the ENDF/B-V evaluated nuclear data file
International Nuclear Information System (INIS)
Van'kov, A.A.
1994-01-01
The contradiction between a measured integral neutron absorption cross-section averaged over a fast reactor spectrum and the corresponding value which was calculated with the use of evaluated microscopic cross-sections and a theoretical neutron spectrum has been investigated. The possible systematic error of a correction factor which takes into account multiple resonance neutron scattering in samples used in the measurement of the absorption cross-section is investigated. It is proposed that this error may be one of the main reason for the contradiction mentioned above which arises in the measurement of the 236 U neutron absorption cross-section. (author). 13 refs, 3 figs
International Nuclear Information System (INIS)
White, Morgan C.
2000-01-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V and V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to
Energy Technology Data Exchange (ETDEWEB)
White, Morgan C. [Univ. of Florida, Gainesville, FL (United States)
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second
Fission neutron spectrum averaged cross sections for threshold reactions on arsenic
International Nuclear Information System (INIS)
Dorval, E.L.; Arribere, M.A.; Kestelman, A.J.; Comision Nacional de Energia Atomica, Cuyo Nacional Univ., Bariloche; Ribeiro Guevara, S.; Cohen, I.M.; Ohaco, R.A.; Segovia, M.S.; Yunes, A.N.; Arrondo, M.; Comision Nacional de Energia Atomica, Buenos Aires
2006-01-01
We have measured the cross sections, averaged over a 235 U fission neutron spectrum, for the two high threshold reactions: 75 As(n,p) 75 mGe and 75 As(n,2n) 74 As. The measured averaged cross sections are 0.292±0.022 mb, referred to the 3.95±0.20 mb standard for the 27 Al(n,p) 27 Mg averaged cross section, and 0.371±0.032 mb referred to the 111±3 mb standard for the 58 Ni(n,p) 58m+g Co averaged cross section, respectively. The measured averaged cross sections were also evaluated semi-empirically by numerically integrating experimental differential cross section data extracted for both reactions from the current literature. The calculations were performed for four different representations of the thermal-neutron-induced 235 U fission neutron spectrum. The calculated cross sections, though depending on analytical representation of the flux, agree with the measured values within the estimated uncertainties. (author)
International Nuclear Information System (INIS)
Smith, D.L.
1987-11-01
Ratio measurements are routinely employed in studies of neutron interaction processes in order to generate new differential cross-section data or to test existing differential cross-section information through examination of the corresponding response in integral neutron spectra. Interpretation of such data requires that careful attention be given to details of the neutron spectra involved in these measurements. Two specific tasks are undertaken in the present investigation: (1) Using perturbation theory, a formula is derived which permits one to relate the ratio measured in a realistic quasimonoenergetic spectrum to the desired pure monoenergetic ratio. This expression involves only the lowest-order moments of the neutron energy distribution and corresponding parameters which serve to characterize the energy dependence of the differential cross sections, quantities which can generally be estimated with reasonable precision from the uncorrected data or from auxiliary information. (2) Using covariance methods, a general formalism is developed for calculating the uncertainty of a measured integral cross-section ratio which involves an arbitrary neutron spectrum. This formalism is employed to further examine the conditions which influence the sensitivity of such measured ratios to details of the neutron spectra and to their uncertainties. Several numerical examples are presented in this report in order to illustrate these principles, and some general conclusion are drawn concerning the development and testing of neutron cross-section data by means of ratio experiments. 16 refs., 1 fig., 4 tabs
The concept of measurement of thermal neutron absorption cross section in small samples
International Nuclear Information System (INIS)
Czubek, J.A.
1980-01-01
Theoretical principles of the method of measurement of the absorption cross section for thermal neutrons are presented in the one velocity approach. In consecutive measurements the sample investigated is enveloped in shells of a known moderator of varying thickness and irradiated with the pulsed beam of fast neutrons. The die-away rate of thermal neutrons escaping from such a system is measured. The absorption cross section of the unknown sample is found as the intersection of the experimental curve (die-away rate viz. thickness of the moderator) with the theoretical one calculated for the case of the zero value of the material buckling of the sample. (author)
Neutron cross section measurements on {sup 241}Am
Energy Technology Data Exchange (ETDEWEB)
Sage, C.; Gunsing, F. [CEA Saclay, DSM/IRFUISPhN, 91 - Gif-sur-Yvette (France); Sage, C.; Borella, A.; Kopecky, S.; Plompen, A.J.M.; Schillebeeckx, P.; Semkova, V.; Siegler, P. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, Geel (Belgium); Sage, C.; Dessagne, P.; Rudolf, G. [IPHC Strasbourg, IN2P3, 67 - Strasbourg (France); Sage, C.; Bouland, O.; Noguere, G. [CEA Cadarache, DEN/CAD/DERISPRC/LEPh, 13 - St Paul-lez-Durance (France); Brossard, C.; Fernandez, A.; Holzhauser, M.; Nastren, C.; Ottmar, H.; Somers, J.; Wastin, F. [European Commission, Joint Research Centre, Institute for Transuranium elements, Karlsruhe (Germany); Bouland, O. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, New Mexico (United States); Semkova, V. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Science, Sofia (Bulgaria)
2009-07-01
Several measurements of neutron induced reaction cross sections on {sup 241}Am have been performed at the JRC-IRMM in Geel, Belgium. Raw material coming from the Atalante facility of CEA Marcoule has been transformed by JRC-ITU Karlsruhe into suitable {sup 241}AmO{sub 2} samples embedded in Al{sub 2}O{sub 3} and Y{sub 2}O{sub 3} matrices. They were specifically designed for activation and time-of-flight measurements. The irradiations for the {sup 241}Am(n,2n){sup 240}Am reaction cross section were carried out at the 7 MV Van de Graaff accelerator using the activation technique. The measurements were performed in 4 sessions, using quasi mono-energetic neutrons with energies ranging from 8 to 21 MeV produced via the D(d,n){sup 3}He and the T(d,n){sup 4}He reactions. The {sup 241}Am(n,2n) reaction cross section was determined relative to the {sup 27}Al(n,{alpha}){sup 24}Na standard cross section and was investigated for the first time above 15 MeV. The induced activity was measured off-line after the irradiation by standard gamma-ray spectrometry using a high purity germanium detector. A different sample of the same isotope {sup 241}Am has been measured in transmission and capture experiments in the resonance region at the neutron time-of-flight facility Gelina. Concerning the transmission, the experiments were performed during two measurement campaigns, the second one after a recent upgrade of the data acquisition system. The neutron flux was measured using a Li-glass scintillator via the {sup 6}Li(n,{alpha}){sup 3}He reaction. The same sample was used for the capture measurement, in which the detection of the photons produced in the capture events was accomplished by two cylindrical C{sub 6}D{sub 6} detectors. The neutron flux shape was determined with a Frisch gridded {sup 10}B ionisation chamber. This paper will describe the results of the (n,2n) measurement campaign, compared with previously existing data and the current evaluated data libraries Jeff-3.1, BROND-2
Neutron cross section standards and instrumentation. Annual report
Energy Technology Data Exchange (ETDEWEB)
Wasson, O.A.
1993-07-01
The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base.
Neutron cross section standards and instrumentation. Annual report
International Nuclear Information System (INIS)
Wasson, O.A.
1993-01-01
The objective of this interagency program is to provide accurate neutron interaction measurements for the US Department of Energy nuclear programs which include waste disposal, fusion, safeguards, defense, fission, and personnel protection. These measurements are also useful to other energy programs which indirectly use the unique properties of the neutron for diagnostic and analytical purposes. The work includes the measurement of reference cross sections and related neutron data employing unique facilities and capabilities at NIST and other laboratories as required; leadership and participation in international intercomparisons and collaborations; the preservation of standard reference deposits and the development of improved neutron detectors and measurement methods. A related and essential element of the program is critical evaluation of neutron interaction data including international coordinations. Data testing of critical data for important applications is included. The program is jointly supported by the Department of Energy and the National Institute of Standards and Technology. This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the third year of this three-year interagency agreement. The proposed program and required budget for the following three years are also presented. The program continues the shifts in priority instituted in order to broaden the program base
Reaction cross section calculation of some alkaline earth elements
Tel, Eyyup; Kavun, Yusuf; Sarpün, Ismail Hakki
2017-09-01
Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.
Fast-neutron scattering cross sections of elemental silver
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1982-05-01
Differential neutron elastic- and inelastic-scattering cross sections of elemental silver are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV and at 10 to 20 scattering angles distributed between 20 and 160 0 . Inelastically-scattered neutron groups are observed corresponding to the excitation of levels at; 328 +- 13, 419 +- 50, 748 +- 25, 908 +- 26, 1150 +- 38, 1286 +- 25, 1507 +- 20, 1623 +- 30, 1835 +- 20 and 1944 +- 26 keV. The experimental results are used to derive an optical-statistical model that provides a good description of the observed cross sections. The measured values are compared with corresponding quantities given in ENDF/B-V
Overview of recent U235 neutron cross section evaluation work
International Nuclear Information System (INIS)
Lubitz, C.
1998-10-01
This report is an overview (through 1997) of the U235 neutron cross section evaluation work at Oak Ridge National Laboratory (ORNL), AEA Technology (Harwell) and Lockheed Martin Corp.-Schenectady (LMS), which has influenced, or appeared in, ENDF/B-VI through Release 5. The discussion is restricted to the thermal and resolved resonance regions, apart from some questions about the unresolved region which still need investigation. The important role which benchmark testing has played will be touched on
International Nuclear Information System (INIS)
Mori, Takamasa; Nakagawa, Masayuki; Kaneko, Kunio.
1996-05-01
A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author)
Energy Technology Data Exchange (ETDEWEB)
Mori, Takamasa; Nakagawa, Masayuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kaneko, Kunio
1996-05-01
A code system has been developed to produce neutron cross section libraries for the MVP continuous energy Monte Carlo code from an evaluated nuclear data library in the ENDF format. The code system consists of 9 computer codes, and can process nuclear data in the latest ENDF-6 format. By using the present system, MVP neutron cross section libraries for important nuclides in reactor core analyses, shielding and fusion neutronics calculations have been prepared from JENDL-3.1, JENDL-3.2, JENDL-FUSION file and ENDF/B-VI data bases. This report describes the format of MVP neutron cross section library, the details of each code in the code system and how to use them. (author).
Neutron cross-sections database for amino acids and proteins analysis
Energy Technology Data Exchange (ETDEWEB)
Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin, E-mail: dante@ien.gov.br, E-mail: fferreira@ien.gov.br, E-mail: Chaffin@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Helio F. da, E-mail: hrocha@gbl.com.br [Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pediatria
2015-07-01
Biological materials may be studied using neutrons as an unconventional tool of analysis. Dynamics and structures data can be obtained for amino acids, protein and others cellular components by neutron cross sections determinations especially for applications in nuclear purity and conformation analysis. The instrument used for this is the crystal spectrometer of the Instituto de Engenharia Nuclear (IEN-CNEN-RJ), the only one in Latin America that uses neutrons for this type of analyzes and it is installed in one of the reactor Argonauta irradiation channels. The experimentally values obtained are compared with calculated values using literature data with a rigorous analysis of the chemical composition, conformation and molecular structure analysis of the materials. A neutron cross-section database was constructed to assist in determining molecular dynamic, structure and formulae of biological materials. The database contains neutron cross-sections values of all amino acids, chemical elements, molecular groups, auxiliary radicals, as well as values of constants and parameters necessary for the analysis. An unprecedented analytical procedure was developed using the neutron cross section parceling and grouping method for data manipulation. This database is a result of measurements obtained from twenty amino acids that were provided by different manufactories and are used in oral administration in hospital individuals for nutritional applications. It was also constructed a small data file of compounds with different molecular groups including carbon, nitrogen, sulfur and oxygen, all linked to hydrogen atoms. A review of global and national scene in the acquisition of neutron cross sections data, the formation of libraries and the application of neutrons for analyzing biological materials is presented. This database has further application in protein analysis and the neutron cross-section from the insulin was estimated. (author)
Neutron cross-sections database for amino acids and proteins analysis
International Nuclear Information System (INIS)
Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin; Rocha, Helio F. da
2015-01-01
Biological materials may be studied using neutrons as an unconventional tool of analysis. Dynamics and structures data can be obtained for amino acids, protein and others cellular components by neutron cross sections determinations especially for applications in nuclear purity and conformation analysis. The instrument used for this is the crystal spectrometer of the Instituto de Engenharia Nuclear (IEN-CNEN-RJ), the only one in Latin America that uses neutrons for this type of analyzes and it is installed in one of the reactor Argonauta irradiation channels. The experimentally values obtained are compared with calculated values using literature data with a rigorous analysis of the chemical composition, conformation and molecular structure analysis of the materials. A neutron cross-section database was constructed to assist in determining molecular dynamic, structure and formulae of biological materials. The database contains neutron cross-sections values of all amino acids, chemical elements, molecular groups, auxiliary radicals, as well as values of constants and parameters necessary for the analysis. An unprecedented analytical procedure was developed using the neutron cross section parceling and grouping method for data manipulation. This database is a result of measurements obtained from twenty amino acids that were provided by different manufactories and are used in oral administration in hospital individuals for nutritional applications. It was also constructed a small data file of compounds with different molecular groups including carbon, nitrogen, sulfur and oxygen, all linked to hydrogen atoms. A review of global and national scene in the acquisition of neutron cross sections data, the formation of libraries and the application of neutrons for analyzing biological materials is presented. This database has further application in protein analysis and the neutron cross-section from the insulin was estimated. (author)
Attempts to infer the neutron inelastic cross sections using charged particle induced reactions
Negret, A; Borcea, C; Bucurescu, D; Deleanu, D; Dessagne, Ph; Filipescu, D; Ghita, D; Glodariu, T; Kerveno, M; Marginean, N; Marginean, R; Mihai, C; Olacel, A; Pascu, S; Plompen, A J M; Sava, T; Stroe, L; Suliman, G
2014-01-01
Two experiments were performed at the Tandem accelerator of the Horia Hulubei National Institute for Physics and Nuclear Engineering, IFIN-HH with the purpose to investigate the possibility to use alpha-induced reactions for the calculation of neutron inelastic cross sections based on the Bohr hypothesis of the compound nucleus. A first experiment compared the gamma production cross sections excited in the $^{25}$Mg($\\alpha, n\\gamma$ )$^{28}$Si and the $^{28}Si(n, n′\\gamma)^{28}$Si reactions. A second measurement, supported by the ERINDA project, was dedicated to the measurement of $^{70}Zn(\\alpha, n\\gamma )^{73}$Ge cross sections with the purpose of inferring the neutron inelastic cross sections on $^{73}$Ge.
An empirical fit to estimated neutron emission cross sections from ...
Indian Academy of Sciences (India)
dominated by neutrons spanning a wide range of energy from slow neutrons to several tens of MeV [1]. Moreover, protons ... expression to calculate neutron emission from proton induced reactions in the energy range. 25–105 MeV. ..... nuclear model calculations for nuclear technology applications, Trieste, Italy, SMR/284-1.
Measurement, calculation and evaluation of photon production cross-sections
International Nuclear Information System (INIS)
Kocherov, N.P.
1990-11-01
The meeting proceedings were divided into three sessions devoted to the following topics: Experimental measurement and techniques (3 papers), calculation of photon cross-sections (9 papers), and evaluation (2 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs
Total reaction cross section calculations in proton-nucleus scattering
International Nuclear Information System (INIS)
Wellisch, H.P.; Axen, D.
1996-01-01
We have developed a general semiempirical total reaction cross section formula for proton-nucleus reactions. It is applicable for all materials with nuclear charge Z greater than 5, and all proton kinetic energies from the lowest measured energies up to ≅20 GeV. While the regime of applicability is greatly enlarged, agreement between the calculated cross sections and the experimental data is comparable to or better than all earlier published results in their regime of applicability. copyright 1996 The American Physical Society
Surrogate Measurements of Actinide (n,2n) Cross Sections with NeutronSTARS
Energy Technology Data Exchange (ETDEWEB)
Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, R. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Akindele, O. A. [Univ. of California, Berkeley, CA (United States); Koglin, J. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wang, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tamashiro, A. [Oregon State Univ., Corvallis, OR (United States)
2016-09-27
Directly measuring (n,2n) cross sections on short-lived actinides presents a number of experimental challenges. The surrogate reaction technique is an experimental method for measuring cross sections on short-lived isotopes, and it provides a unique solution for measuring (n,2n) cross sections. This technique involves measuring a charged-particle reaction cross section, where the reaction populates the same compound nucleus as the reaction of interest. To perform these surrogate (n,2n) cross section measurements, a silicon telescope array has been placed along a beam line at the Texas A&M University Cyclotron Institute, which is surrounded by a large tank of gadolinium-doped liquid scintillator, which acts as a neutron detector. The combination of the charge-particle and neutron-detector arrays is referred to as NeutronSTARS. In the analysis procedure for calculating the (n,2n) cross section, the neutron detection efficiency and time structure plays an important role. Due to the lack of availability of isotropic, mono-energetic neutron sources, modeling is an important component in establishing this efficiency and time structure. This report describes the NeutronSTARS array, which was designed and commissioned during this project. It also describes the surrogate reaction technique, specifically referencing a ^{235}U(n,2n) commissioning measurement that was fielded during the past year. Advanced multiplicity analysis techniques have been developed for this work, which should allow for efficient analysis of ^{241}Pu(n,2n) and ^{239}Pu(n,2n) cross section measurements
Amino acids analysis by total neutron cross-sections determinations: part V
Energy Technology Data Exchange (ETDEWEB)
Voi, Dante L.; Ferreira, Francisco de O., E-mail: dante@ien.gov.br, E-mail: fferreira@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Helio F. da, E-mail: helionutro@hotmail.com [Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pediatria
2013-07-01
Total neutron cross-sections of twenty essential and non-essential amino acids to human were determined using crystal spectrometer installed on the Argonauta reactor of IEN (Instituto de Engenharia Nuclear (CNEN-RJ) and compared with data generated by parceling and grouping methodologies developed at this institution. For each amino acid was calculated the respective neutron cross-section by molecular structure, conformation and chemistry analysis. The results obtained for eighteen of twenty amino acids confirm the specifications and product formulations indicated by manufactures. These initial results allow to build a neutron cross-sections database as part of quality control of the amino supplied to hospitals for production of nutriments for parenteral or enteral formulations used in critical patients dependent on artificial feed, and for application in future studies of structure and dynamics for more complex molecules, including proteins, enzymes, fatty acids, membranes, organelles and other cell components. (author)
Amino acids analysis by total neutron cross-sections determinations: part V
International Nuclear Information System (INIS)
Voi, Dante L.; Ferreira, Francisco de O.; Rocha, Helio F. da
2013-01-01
Total neutron cross-sections of twenty essential and non-essential amino acids to human were determined using crystal spectrometer installed on the Argonauta reactor of IEN (Instituto de Engenharia Nuclear (CNEN-RJ) and compared with data generated by parceling and grouping methodologies developed at this institution. For each amino acid was calculated the respective neutron cross-section by molecular structure, conformation and chemistry analysis. The results obtained for eighteen of twenty amino acids confirm the specifications and product formulations indicated by manufactures. These initial results allow to build a neutron cross-sections database as part of quality control of the amino supplied to hospitals for production of nutriments for parenteral or enteral formulations used in critical patients dependent on artificial feed, and for application in future studies of structure and dynamics for more complex molecules, including proteins, enzymes, fatty acids, membranes, organelles and other cell components. (author)
Energy Technology Data Exchange (ETDEWEB)
Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-03-05
There are many (n,γ) cross sections of great interest to radiochemical diagnostics and to nuclear astrophysics which are beyond the reach of current measurement techniques, and likely to remain so for the foreseeable future. In contrast, total neutron cross sections currently are feasible for many of these nuclides and provide almost all the information needed to accurately calculate the (n,γ) cross sections via the nuclear statistical model (NSM). I demonstrate this for the case of ^{151}Sm; NSM calculations constrained using average resonance parameters obtained from total cross section measurements made in 1975, are in excellent agreement with recent ^{151}Sm (n,γ) measurements across a wide range of energy. Furthermore, I demonstrate through simulations that total cross section measurements can be made at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center for samples as small as 10μg. Samples of this size should be attainable for many nuclides of interest. Finally, I estimate that over half of the radionuclides identified ~20 years ago as having (n,γ) cross sections of importance to s-process nucleosynthesis studies (24/43) and radiochemical diagnostics (11/19), almost none of which have been measured, can be constrained using this technique.
Energy Technology Data Exchange (ETDEWEB)
Beckert, C.
2007-12-19
Conventionally the data preparation of the neutron cross sections for reactor-core calculations pursues with 2D cell codes. Aim of this thesis was, to develop a 3D cell code, to study with this code 3D effects, and to evaluate the necessarity of a 3D data preparation of the neutron cross sections. For the calculation of the neutron transport the method of the first-collision probabilities, which are calculated with the ray-tracing method, was chosen. The mathematical algorithms were implemented in the 2D/3D cell code TransRay. For the geometry part of the program the geometry module of a Monte Carlo code was used.The ray tracing in 3D was parallelized because of the high computational time. The program TransRay was verified on 2D test problems. For a reference pressured-water reactor following 3D problems were studied: A partly immersed control rod and void (vacuum or steam) around a fuel rod as model of a steam void. All problems were for comparison calculated also with the programs HELIOS(2D) and MCNP(3D). The dependence of the multiplication factor and the averaged two-group cross section on the immersion depth of the control rod respectively of the height of the steam void were studied. The 3D-calculated two-group cross sections were compared with three conventional approximations: Linear interpolation, interpolation with flux weighting, and homogenization, At the 3D problem of the control rod it was shown that the interpolation with flux weighting is a good approximation. Therefore here a 3D data preparation is not necessary. At the test case of the single control rod, which is surrounded by the void, the three approximation for the two-group cross sections were proved as unsufficient. Therefore a 3D data preparation is necessary. The single fuel-rod cell with void can be considered as the limiting case of a reactor, in which a phase interface has been formed. [German] Standardmaessig erfolgt die Datenaufbereitung der Neutronenwirkungsquerschnitte fuer
Neutron cross section standards evaluations for ENDF/B-VI
International Nuclear Information System (INIS)
Carlson, A.D.; Poenitz, W.P.; Hale, G.M.; Peelle, R.W.
1985-01-01
The neutron cross section standards are now being evaluated as the initial phase in the development of the new ENDF/B-VI file. These standards evaluations are following a somewhat different process compared with that used for earlier versions of ENDF. The primary effort is concentrated on a simultaneous evaluation using a generalized least squares program, R-matrix evaluations, and a procedure for combining the results of these evaluations. The ENDF/B-VI standards evaluation procedure is outlined, and preliminary simultaneous evaluation and R-matrix results are presented. 16 refs., 7 figs
An exact formalism for Doppler-broadened neutron cross-sections
International Nuclear Information System (INIS)
Catsaros, Nicolas.
1985-07-01
An exact formalism (Ψ, Φ) is proposed for the calculation of Breit-Wigner or Adler-Adler Doppler-broadened neutron cross-sections. The well-known (Ψ, Φ) formalism is shown to be a zero-order approximation of the generalized (Ψ, Φ) formalism. (author)
Double-differential cross-sections of slow neutron scattering by water at high temperatures
International Nuclear Information System (INIS)
Novikov, A.G.; Lisichkin, Yu.V.; Liforov, V.G.; Parfenov, V.A.
1976-01-01
The absolute double-differential scattering cross-sections for light water are measured for two incident neutron energies of 25 meV and 256 meV in the temperature range from 300 to 600 K. The experimental curves are compared with calculations based on two models for frequency distribution functions of water
HADES. A computer code for fast neutron cross section from the Optical Model
International Nuclear Information System (INIS)
Guasp, J.; Navarro, C.
1973-01-01
A FORTRAN V computer code for UNIVAC 1108/6 using a local Optical Model with spin-orbit interaction is described. The code calculates fast neutron cross sections, angular distribution, and Legendre moments for heavy and intermediate spherical nuclei. It allows for the possibility of automatic variation of potential parameters for experimental data fitting. (Author) 55 refs
International Nuclear Information System (INIS)
Tang Hongqing; Qi Bujia; Zhou Zuying; Sa Jun; Ke Zunjian; Sui Qingchang; Xia Haihong; Shen Guanren
1992-01-01
The status and technique of double differential cross section measurement of secondary neutrons in the incident neutron energy range 9 to 13 MeV is reviewed with emphasis on the work done at CIAE. There are scarce measurements of secondary neutron double differential cross sections in this energy region up to now. A main difficulty for this is lack of an applicable monoenergetic neutron source. When monoenergetic neutron energy reaches 8 Me/v, the break-up neutrons from the d + D or p + T reaction starts to become significant. It is difficult to get a pure secondary neutron spectrum induced only by monoenergetic neutrons. To solve this problem an abnormal fast neutron TOF facility was designed and tested. Double differential neutron emission cross sections of 238 U and 209 Bi at 10 MeV were obtained by combining the data measured by both normal and abnormal TOF spectrometers and a good agreement between measurement and calculation was achieved
Thermal neutron cross section measurements for technetium-99
International Nuclear Information System (INIS)
Yates, M.A.; Schroeder, N.C.; Fowler, M.M.
1993-01-01
Technetium, because of its long half-like (213,000 years) and ability to migrate in the environment, is a primary contributor to the long-term radioactivity related risk associated with geologic nuclear waste disposal. One proposal for converting technetium to an environmentally benign element investigating transmutation with an accelerator-based system, (i.e., Accelerator Transmutation of Waste, ATW). Planning for efficient processing of technetium through the transmuter will require knowledge of the thermal neutron cross section for the 99 Tc (n,γ) 100 Tc reaction. The authors have recently remeasured this cross section. Weighed aliquots (19-205 μg) of a NIST traceable 99 Tc standard were irradiated for 30-150 sec using the pneumatic open-quotes rabbitclose quotes system of LANL's Omega West Reactor. The two gamma rays from the 15.7-sec half-life product were measured immediately after irradiation on a high-resolution Ge detector. Thermal fluxes were measured using gold foils and Cd wrapped gold foils. The observation cross section is 19 ± 1 b. This agrees well with the 1977 value but has half the uncertainty
Resonance structure of 32S+n from measurements of neutron total and capture cross sections
International Nuclear Information System (INIS)
Halperin, J.; Johnson, C.H.; Winters, R.R.; Macklin, R.L.
1980-01-01
Neutron total and capture cross sections of 32 S have been measured up to 1100 keV neutron energy [E/sub exc/( 33 S) =9700 keV]. Spin and parity assignments have been made for 28 of the 64 resonances found in this region. Values of total radiation widths, reduced neutron widths, level spacings, and neutron strength functions have been evaluated for s/sub 1/2/, p/sub 1/2/, p/sub 3/2/, and d/sub 5/2/ levels. Single particle contributions using the valency model account for a significant portion of the total radiation width only for the p/sub 1/2/-wave resonances. A significant number of resonances can be identified with reported levels excited in 32 S(d,p) and 29 Si(α,n) reactions. A calculation of the Maxwellian average cross section appropriate to stellar interiors indicates an average capture cross section at 30 keV, sigma-bar approx. = 4.2(2) mb, a result that is relatively insensitive to the assumed stellar temperature. Direct (potential) capture and the s-wave resonance capture contributions to the thermal capture cross section do not fully account for the reported thermal cross section (530 +- 40 mb) and a bound state is invoked to account for the discrepancy
International Nuclear Information System (INIS)
Brenner, D.J.; Prael, R.E.; Little, R.C.
1987-01-01
Realistic simulations of the passage of fast neutrons through tissue require a large quantity of cross-sectional data. What are needed are differential (in particle type, energy and angle) cross sections. A computer code is described which produces such spectra for neutrons above ∼14 MeV incident on light nuclei such as carbon and oxygen. Comparisons have been made with experimental measurements of double-differential secondary charged-particle production on carbon and oxygen at energies from 27 to 60 MeV; they indicate that the model is adequate in this energy range. In order to utilize fully the results of these calculations, they should be incorporated into a neutron transport code. This requires defining a generalized format for describing charged-particle production, putting the calculated results in this format, interfacing the neutron transport code with these data, and charged-particle transport. The design and development of such a program is described. 13 refs., 3 figs
A compact fast-neutron producing target for high resolution cross section measurements
Flaska, M.
2006-01-01
A proper knowledge of neutron cross sections is very important for the operation safety of various nuclear facilities. Reducing uncertainties in the neutron cross sections can lead to an enhanced safety of present and future nuclear power systems. Accurate neutron cross sections also play a relevant
Measurement, calculation and evaluation of photon production cross-sections
International Nuclear Information System (INIS)
Kocherov, N.P.
1990-03-01
The IAEA Specialists' Meeting on Measurement, Calculation and Evaluation of Photon Production Cross-Sections was held in Smolenice, Czechoslovakia, 5-7 February 1990. The meeting was hosted by the Institute of Physics of the Electro-Physical Research Centre, Slovak Academy of Sciences, Bratislava. This report contains the conclusions and recommendations of this meeting. The papers which the participants have presented at the meeting will be published as an INDC Report. (author)
Calculation of vibrational excitation cross-sections in resonant ...
Indian Academy of Sciences (India)
WINTEC
grid Hamiltonian (FGH) approach29,30 to ECO(R). In. Figure 2. Calculated cross correlation functions 〈φn|ψ0(t)〉. [(a)–(e)] and corresponding vibrational excitation cross sections σn←0(E) [(f)–(j)] for e-CO scattering. time evolution of the ground vibrational state φ0(R) of the CO target under the influence of CO–Hamiltonian.
Secondary neutron double differential cross sections from 209Bi at 14.2 MeV
International Nuclear Information System (INIS)
Shen Guanren; Xia Haihong; Tang Hongqing
1992-01-01
The secondary neutron double differential cross sections from 209 Bi at 14.2 MeV have been measured at 6 angles between 25 degree-150 degree using an associated particle TOF spectrometer. Flight path was 2.7 m. The neutron detector was biased at 1.3 MeV. The time resolution was about 1.2 ns. The data were compared with existing data and theoretical calculated results. Good agreement is achieved
International Nuclear Information System (INIS)
Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi
2012-01-01
The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. - Highlights: ► The effects of silicon cross section and neutron spectrum on the radial uniformity in NTD were experimentally investigated. ► The numerical results using silicon single crystal cross section reveal good agreements. ► The radial uniformity in hard neutron spectrum was more flat than that in soft spectrum. ► The silicon single crystal cross section and hard neutron spectrum are recommended for numerical analyses and radial uniformity flattening in NTD, respectively.
Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection
Energy Technology Data Exchange (ETDEWEB)
Chadwick, M.B.
1998-09-10
The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.
Energy Technology Data Exchange (ETDEWEB)
Blideanu, Valentin [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Garcia, Mauricio [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Joyer, Philippe, E-mail: philippe.joyer@cea.fr [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Ortiz, Felix [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Sanz, Javier; Sauvan, Patrick [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain)
2011-10-01
In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.
International Nuclear Information System (INIS)
Blideanu, Valentin; Garcia, Mauricio; Joyer, Philippe; Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco; Ortiz, Felix; Sanz, Javier; Sauvan, Patrick
2011-01-01
In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.
International Nuclear Information System (INIS)
Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.
1976-01-01
This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field
International Nuclear Information System (INIS)
Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.
1976-10-01
The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field
Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu
Directory of Open Access Journals (Sweden)
Nyman Markus
2017-01-01
Full Text Available The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC method. Experiments for studying neutrinoless double-β decay (2β0ν or other very rare processes require greatly reducing the background radiation level (both intrinsic and external. Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.
Calculation of the fine spectrum and integration of the resonance cross sections in the cells
International Nuclear Information System (INIS)
Paratte, J.M.
1986-10-01
The code BOXER is used for the neutronics calculations of two-dimensional LWR arrays. During the calculation of the group constants of the cells (pin, clad and moderator), the program SLOFIN, a BOXER module, allows taking into account the self-shielding of the resonances. The resonance range is devided into two parts: - above 907 eV the cross sections are condensed into groups by the library code ETOBOX. In SLOFIN, these values are interpolated over the equivalent cross section and the temperature. The interpolation formula chosen gives an accuracy better than 1% for values of the equivalent cross section larger than 5 barns. - between 4 and 907 eV, the cross sections are given in pointwise form as a function of the lethargy. At first a list of pointwise macroscopic cross section is established. Then the fine spectrum in the cell is calculated in 2 or 3 zones by means of the collision probability theory. In the central zone one resonant pseudo-nuclide is considered for the calculation of the scattering source, while the light nuclides are explicitly treated but under the assumption of energy independent cross sections. The fine spectrum is then used as a weihting function for the condensation of the pointwise cross sections of the resonant nuclides into energy groups. The procedure was checked on the basis of the TRX-1 to -4 and BAPL-UO 2 -1 to -3 experiments which are used as benchmarks for the tests of the ENDF/B libraries. The comparisons with other calculation results show that the deviations observed are typical for the basic cross sections. The method proposed shows a good accuracy in the application range foreseen for BOXER. It is also fast enough to be used as a standard method in a cell code. (author)
Erriquez, O; Bisi, V; Bonetti, S; Bullock, F W; Cavalli, D; Engel, J P; Eranzinetti, C; Escubes, B; Esten, M J; Fogli-Muciaccia, M T; Gamba, D; Guyonnet, J L; Halsteinslid, A; Henderson, R C W; Huss, D; Jones, T W; Marzari-Chiesa, A; Mauri, F; Myklebost, K; Natali, S; Nuzzo, S; Paty, M; Pullia, A; Racca, C; Ramzan, F A; Riccati, L; Riester, J L; Rognebakke, A; Rollier, M; Romero, A; Skjeggestad, O
1979-01-01
On a selected sample of 2171 events, observed in the heavy liquid bubble chamber Gargamelle at CERN, the charged current total cross section for antineutrino on nucleons has been determined to the laboratory energy 8 GeV. (7 refs).
Contribution to the study of the unresolved resonance range of the neutrons cross sections
International Nuclear Information System (INIS)
Noguere, Gilles
2014-01-01
This document presents the statistical description of neutron cross sections in the unresolved resonance range. The modeling of the total cross section and of the 'shape - elastic' cross section is based on the 'average R-Matrix' formalism. The partial cross sections describing the radiative capture, elastic scattering, inelastic scattering and fission process are calculated using the Hauser-Feshbach formalism with width fluctuation corrections. In the unresolved resonance range, these models depend on the average resonance parameters (neutron strength function Sc, mean level spacing D c , average partial reaction widths Γ c , channel radius a c , effective radius R' and distant level parameter R-bar c ∞ ). The codes (NJOY, CALENDF...) dedicated to the processing of nuclear data libraries (JEFF, ENDF/B, JENDL, CENDL, BROND... ) use the average parameters to take into account the self-shielding phenomenon for the simulation of the neutron transport in Monte-Carlo (MCNP, TRIPOLI... ) and deterministic (APOLLO, ERANOS...) codes. The evaluation work consists in establishing a consistent set of average parameters as a function of the total angular momentum J of the system and of the orbital moment of the incident neutron l. The work presented in this paper aims to describe the links between the S-Matrix and the 'average R-Matrix' formalism for the calculation of Sc, R-bar c ∞ , ac and R'. (author) [fr
Contribution to uncertainties evaluation for fast reactors neutronic cross sections
International Nuclear Information System (INIS)
Privas, Edwin
2015-01-01
The thesis has been motivated by a wish to increase the uncertainty knowledge on nuclear data, for safety criteria. It aims the cross sections required by core calculation for sodium fast reactors (SFR), and new tools to evaluate its.The main objective of this work is to provide new tools in order to create coherent evaluated files, with reliable and mastered uncertainties. To answer those problematic, several methods have been implemented within the CONRAD code, which is developed at CEA of Cadarache. After a summary of all the elements required to understand the evaluation world, stochastic methods are presented in order to solve the Bayesian inference. They give the evaluator more information about probability density and they also can be used as validation tools. The algorithms have been successfully tested, despite long calculation time. Then, microscopic constraints have been implemented in CONRAD. They are defined as new information that should be taken into account during the evaluation process. An algorithm has been developed in order to solve, for example, continuity issues between two energy domains, with the Lagrange multiplier formalism. Another method is given by using a marginalization procedure, in order to either complete an existing evaluation with new covariance or add systematic uncertainty on an experiment described by two theories. The algorithms are well performed along examples, such the 238 U total cross section. The last parts focus on the integral data feedback, using methods of integral data assimilation to reduce the uncertainties on cross sections. This work ends with uncertainty reduction on key nuclear reactions, such the capture and fission cross sections of 238 U and 239 Pu, thanks to PROFIL and PROFIL-2 experiments in Phenix and the Jezebel benchmark. (author) [fr
Fast-neutron total and scattering cross sections of Cr, Fe and 60Ni
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1979-01-01
Neutron total cross sections are measured with broad resolutions (50 to 100 keV) from approx. = 1.0 to 4.5 MeV at intervals of less than or equal to 50 keV and to accuracies of approx. = 1% using a variety of sample thicknesses. Differential elastic-scattering cross sections are measured at greater than or equal to 10 scattering angles distributed between 20 to 160 deg. from approx. = 1.5 to 4.0 MeV at intervals of less than or equal to 50 keV. Angle-integrated elastic scattering cross sections are deduced from the measured values to accuracies greater than or equal to 5%. Inelastic-neutron-scattering cross sections are determined up to incident neutron energies of 4.0 MeV, at scattering angles distributed between 20 to 160 deg., and for 5 observed excitations in Cr, for 7 in Fe and for 6 in 60 Ni. The experimental results are discussed in terms of conventional optical-statistical models with attention to cross section fluctuations and in the context of direct-scattering processes. The experimental and calculational results are compared with the corresponding evaluated quantities given in the ENDF/B file with attention to regions of agreement and inconsistency. 14 references
Methods and procedures for evaluation of neutron-induced activation cross sections
Energy Technology Data Exchange (ETDEWEB)
Gardner, M.A.
1981-09-01
One cannot expect measurements alone to supply all of the neutron-induced activation cross-section data required by the fission reactor, fusion reactor, and nuclear weapons development communities, given the wide ranges of incident neutron energies, the great variety of possible reaction types leading to activation, and targets both stable and unstable. Therefore, the evaluator must look to nuclear model calculations and systematics to aid in fulfilling these cross-section data needs. This review presents some of the recent developments and improvements in the prediction of neutron activation cross sections, with specific emphasis on the use of empirical and semiempirical methods. Since such systematics require much less nuclear informaion as input and much less computational time than do the multistep Hauser-Feshbach codes, they can often provide certain cross-section data at a sufficient level of accuracy within a minimum amount of time. The cross-section information that these systematics can and cannot provide and those cases in which they can be used most reliably are discussed.
Amino acids analysis by neutron cross-section techniques - Part III
Energy Technology Data Exchange (ETDEWEB)
Voi, Dante L.; Ferreira, Francisco de O. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: dante@ien.gov.br; Rocha, Helio F. da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Puericultura e Pediatria Martagao Gesteira (IPPMG)]. E-mail: hrocha@gbl.com.br
2007-07-01
To continue the work initiated some time ago, about neutron cross section determinations of amino acids, which are directly encoded for protein synthesis by the standard genetic code, we are now measuring six more amino acids samples, with more complex structures to complete the project. All these amino acids are used in enteral and parenteral administration in hospital patients for nutritional applications. The present calculations are a little more difficult because of a new proceeding introduced in the method to explain its molecular structures and obtain its molecular formulae. These amino acids present different radical and elements related to the compounds available in the previous works. Each one, present different structure and freedom grade of movement related to the types of radicals linked in the repetitive structure. In that way, neutron cross section values change with the chemical binding intensities. These details obligate us to search new compounds with new molecular structures to obtain neutron cross sections for posterior comparison , meanly compounds including nitrogen, sulfur and oxygen groups linked to hydrogen atoms. At this time, individual amino acid samples of proline, glutamine, lysine, arginine, histidine, and glutamic acid were measured. It was used the neutron crystal spectrometer installed at the J-9 irradiation channel of the 1 kW Argonauta Reactor of the Instituto de Engenharia Nuclear (IEN). Gold and D{sub 2}O high purity samples were used for the experimental system calibration. Neutron cross section values were calculated from chemical composition, conformation and molecular structure analysis of the materials. Literature data were manipulated by parceling and grouping neutron cross-sections. (author)
Curves and tables of neutron cross sections of fission product nuclei in JENDL-3
International Nuclear Information System (INIS)
Nakagawa, Tsuneo
1992-06-01
Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10 -5 eV to 20 MeV. Almost all the cross section data are reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in other tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum. (author)
Curves and tables of neutron cross sections of fission product nuclei in JENDL-3
Energy Technology Data Exchange (ETDEWEB)
Nakagawa, Tsuneo [ed.
1992-06-15
Neutron cross sections of 172 nuclei in the fission product region stored in JENDL-3 are shown in graphs and tables. The evaluation work of these nuclei was made by the Fission Product Nuclear Data Working Group of the Japanese Nuclear Data Committee, in the neutron energy region from 10{sup {minus}5} eV to 20 MeV. Almost of the cross section data reproduced in graphs in this report. The cross section averaged over 38 energy intervals are listed in a table. Shown in order tables are thermal cross sections, resonance integrals, Maxwellian neutron flux average cross sections, fission spectrum average cross sections, 14-MeV cross sections, one group average cross sections in neutron flux of typical types of fission reactors and average cross sections in the 30-keV Maxwellian spectrum.
A new approach to make collapsed cross section for burnup calculation of subcritical system
International Nuclear Information System (INIS)
Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao
2008-01-01
A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)
Intermediate structure in the 238U neutron capture cross section
International Nuclear Information System (INIS)
Perez, R.B.; de Saussure, G.
1975-01-01
Recent measurements of the 238 U neutron capture cross section show large fluctuations in the unresolved resonance region. To test whether or not the observed long-range fluctuation of the neutron capture represent departures from the compound nuclear model, the Wald-Wolfowitz runs and correlation tests were applied to the 238 U neutron capture data obtained at ORELA. The Wald-Wolfowitz runs test deals with the statistic, R, which is the number of unbroken sequences of data points above or below a given reference line. This statistic is to be compared with the expected value of runs E(R) +- sigma(R) arising from randomly distributed data. In the correlation test we have computed the first serial correlation coefficient of the data as well as its expected value and variance for a set of random data. In both tests one computes the probability, P, for the given statistical entity to depart from its expected value by more than epsilon standard deviations. Both tests confirm the presence of intermediate structure between 5 and 100 keV. The range of the structure far exceeds the width of the experimental resolution and level widths. 3 tables, 2 figures
New evaluations of neutron cross sections for 14N and 16O
International Nuclear Information System (INIS)
Hale, G.M.; Young, P.G.; Chadwick, M.; Chen, Z.P.
1991-01-01
New evaluations of the neutron cross sections for 14 N and 16 O have been made for ENDF/B=VI. The evaluations are based at low energies on R-matrix analyses of reactions in the 15 N and 17 O systems, and at higher energies on GNASH calculations and experimental data evaluations, including covariance analyses. The 15 N system R-matrix analysis includes data from reactions among the channels n+ 14 N, p+ 14 C, and α+ 11 B at energies corresponding to excitations in 15 N below E x =13 MeV. The resonance structure of all cross sections in this energy range is fairly well reproduced. New data indicate a different J-value for the first resonance, however. Sub-threshold S-wave levels required to explain the large n+ 14 N total and elastic cross sections near zero energy give scattering lengths that differ significantly from the previous values. The R-matrix analysis of the 17 O system includes many new measurements of the n+ 16 O total cross section, done primarily at Oak Ridge and at Karlsruhe. The resonance structure of all the cross sections [total, (n,n), (n,α), and (α,α)] is well represented by the fit in the region below E n = 6.5 MeV. The new total cross section information gives different positions for some of the resonances and implies a different normalization for the (n,α) cross sections than that obtained in the ENDF/B-IV analysis. The evaluations at energies above the ranges of the R-matrix analyses incorporate results from a number of experiments performed since the previous ENDF/B evaluations. Especially important are new measurements of the total cross sections and differential elastic, and gamma-ray production cross sections
Miah, M M H; Faruque, M R I
2003-01-01
Neutron total cross sections and differential elastic scattering cross sections for the nuclides sup 9 sup 0 Zr, sup 2 sup 0 sup 8 Pb and sup 2 sup 0 sup 9 Bi were calculated using different global spherical optical potential (SOP) parameter sets at neutron energies from 0.5-25 MeV. Calculated cross sections for the corresponding nuclides were compared with their experimental data obtained by the EXFOR file to select the best fit parameter sets. It is found that the parameter sets of Ferer Rapaport for sup 9 sup 0 Zr and Bechetti and Greenless for sup 2 sup 0 sup 8 Pb and sup 2 sup 0 sup 9 Bi are the best fitted set to obtain the experimental data of total cross sections and angular distributions of these nuclides. (author)
AFCI-2.0 Neutron Cross Section Covariance Library
Energy Technology Data Exchange (ETDEWEB)
Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.
2011-03-01
The cross section covariance library has been under development by BNL-LANL collaborative effort over the last three years. The project builds on two covariance libraries developed earlier, with considerable input from BNL and LANL. In 2006, international effort under WPEC Subgroup 26 produced BOLNA covariance library by putting together data, often preliminary, from various sources for most important materials for nuclear reactor technology. This was followed in 2007 by collaborative effort of four US national laboratories to produce covariances, often of modest quality - hence the name low-fidelity, for virtually complete set of materials included in ENDF/B-VII.0. The present project is focusing on covariances of 4-5 major reaction channels for 110 materials of importance for power reactors. The work started under Global Nuclear Energy Partnership (GNEP) in 2008, which changed to Advanced Fuel Cycle Initiative (AFCI) in 2009. With the 2011 release the name has changed to the Covariance Multigroup Matrix for Advanced Reactor Applications (COMMARA) version 2.0. The primary purpose of the library is to provide covariances for AFCI data adjustment project, which is focusing on the needs of fast advanced burner reactors. Responsibility of BNL was defined as developing covariances for structural materials and fission products, management of the library and coordination of the work; LANL responsibility was defined as covariances for light nuclei and actinides. The COMMARA-2.0 covariance library has been developed by BNL-LANL collaboration for Advanced Fuel Cycle Initiative applications over the period of three years, 2008-2010. It contains covariances for 110 materials relevant to fast reactor R&D. The library is to be used together with the ENDF/B-VII.0 central values of the latest official release of US files of evaluated neutron cross sections. COMMARA-2.0 library contains neutron cross section covariances for 12 light nuclei (coolants and moderators), 78 structural
Gamma-ray production cross sections for MeV neutrons
International Nuclear Information System (INIS)
Kitazawa, Hideo; Harima, Yoshiko; Yamakoshi, Hisao; Sano, Yuji; Kobayashi, Tsuguyuki.
1979-01-01
Gamma-ray production cross section and spectra for 1- to 20-MeV neutrons were theoretically obtained, which were requested for heating calculations, for shielding design calculations, and for material damage estimates. Calculations were carried out for Al, Si, Ca, Fe, Ni, Cu, Nb, Ta, Au, and Pb, using a spin-dependent evaporation model without the parity conservation and including the dipole and quardupole gamma-ray transitions. The results were compared with the experimental data measured in ORNL to confirm the availability of this model in applications. In addition, the effects on the gamma-ray production cross section of the optical potential, level density, yrast level, and radiation width were investigated in detail. The conclusions are: 1) the use of the optical potential which gives the correct total reaction cross section is essential to gamma-ray production calculations, 2) the gamma-ray production cross section is not so sensitive to the choice of level density parameters, 3) the inclusion of yrast levels is necessary in dealing with the competition of the neutron and gamma-ray emissions from highly excited states, and 4) the Brink-Axel type's radiation width is unsuitable to be applied to radiative capture processes. (author)
EJ2-MCNPlib. Contents of the JEF-2.2 based neutron cross-section library for MCNP4A
International Nuclear Information System (INIS)
Hogenbirk, A.; Oppe, J.
1995-05-01
In this report a description is given of the EJ2-MCNPlib library. The EJ2-MCNPlib library is to be used for reactivity/critically calculations and general neutron/photon transport calculations with the Monte Carlo code MCNP4A. The library is based on the European JEF-2.2 nuclear data evaluation and contains data for all (i.e. 313) nuclides available on this evaluation.The cross-section data were generated using the NJOY cross-section processing code system, version 91.118. For easy reference cross-section plots are given in this report for the total, elastic and absorption cross sections for all nuclides on the EJ2-MCNPlib library. Furthermore, for verification purposes a graphical intercomparison is given of the results of standard benchmark calculations performed with JEF-2.2 cross-section data and with ENDF/B-V cross-section data (whenever available). 6 refs
Energy Technology Data Exchange (ETDEWEB)
Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.
1994-08-01
The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ({sup 14}N{sub 7}, {sup 15}N{sub 7}, {sup 16}O{sub 8}, {sup 154Eu}{sub 63}, and {sup 155}Eu{sub 63}). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections.
Consistent evaluation of neutron cross sections for the 242-244Cm isotopes
International Nuclear Information System (INIS)
Ignatyuk, A.V.; Maslov, V.M.
1989-01-01
The knowledge of neutron cross-sections for Curium isotopes is necessary for solving the problems of the external fuel cycle. Experimental information on the cross-sections is very meager and does not satisfy requirements and existing evaluations in different libraries differ substantially for fission and (n,2n) reaction cross-sections. This situation requires a critical review of the entire set of evaluations of the neutron cross-sections for Curium. 17 refs, 3 figs
International Nuclear Information System (INIS)
Gastaldi, B.
1986-07-01
This study intends to improve then to check on integral experiments, the calculation of the main neutronic parameters in light water moderated lattices: Uranium 238 capture and consequently Plutonium 239 build-up, multiplication factor, temperature coefficient. The first part of this work concerns the resonant reaction rate calculation method implemented in the APOLLO code, the so-called LIVOLANT and JEANPIERRE formalism. The errors introduced by the corresponding assumptions are quantified and we propose substitution methods which avoid large biases and supply satisfactory results. The second part is dedicated to the cross-section evaluation of uranium major isotopes and to the achievement of APOLLO multigroup cross-sections. This cross-section set takes into considerations on the one hand the recent differential information and the other hand the various integral information obtained in the French Atomic Energy Commission facilities. The nuclear data file (JEF abd ENDF/B5) processing, for multigroup and self-shielded cross-sections achieving enable us to check the new THEMIS computer code. In the last part, the experimental validation of the proposed procedure (accurate formalism mutuel shielding and new multigroup library) is presented. This qualification is based on the reinterpretation of critical experiments performed in the EOLE reactor at Cadarache and spent fuel analysis. The corresponding results demonstrate that our propositions provide improvements on the computation of the PWR neutronic parameters; calculation-experiment discrepancies are now consistent with experimental uncertainty margins. 46 refs; 31 figs; 23 tabl [fr
NEUTRON CROSS SECTION EVALUATIONS OF FISSION PRODUCTS BELOW THE FAST ENERGY REGION
Energy Technology Data Exchange (ETDEWEB)
OH,S.Y.; CHANG,J.; MUGHABGHAB,S.
2000-05-11
Neutron cross section evaluations of the fission-product isotopes, {sup 95}Mo, {sup 99}Tc, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, {sup 141}Nd, {sup 147}Sm, {sup 149}Sm, {sup 150}Sm, {sup 151}Sm, {sup 152}Sm, {sup 153}Eu, {sup 155}Gd, and {sup 157}Gd were carried out below the fast neutron energy region within the framework of the BNL-KAERI international collaboration. In the thermal energy region, the energy dependence of the various cross-sections was calculated by applying the multi-level Breit-Wigner formalism. In particular, the strong energy dependence of the coherent scattering lengths of {sup 155}Gd and {sup 157}Gd were determined and were compared with recent calculations of Lynn and Seeger. In the resonance region, the recommended resonance parameters, reported in the BNL compilation, were updated by considering resonance parameter information published in the literature since 1981. The s-wave and, if available, p-wave reduced neutron widths were analyzed in terms of the Porter-Thomas distribution to determine the average level spacings and the neutron strength functions. Average radiative widths were also calculated from measured values of resolved energy resonances. The average resonance parameters determined in this study were compared with those in the BNL and other compilations, as well as the ENDF/B-VI, JEF-2.2, and JENDL-3.2 data libraries. The unresolved capture cross sections of these isotopes, computed with the determined average resonance parameters, were compared with measurements, as well as the ENDF/B-VI evaluations. To achieve agreement with the measurements, in a few cases minor adjustments in the average resonance parameters were made. Because of astrophysical interest, the Maxwellian capture cross sections of these nuclides at a neutron temperature of 30 keV were computed and were compared with other compilations and evaluations.
Neutron-scattering cross section of the S=1/2 Heisenberg triangular antiferromagnet
DEFF Research Database (Denmark)
Lefmann, K.; Hedegård, P.
1994-01-01
In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with lo...... no elastic, but a set of broader dispersive spin excitations around kappa almost-equal-to (1/2, 0) and around kappa almost-equal-to (1/3, 1/3) for omega/E(g) = 2.5-4. It should thus be possible to distinguish these two states in a neutron-scattering experiment.......In this paper we use a Schwinger-boson mean-field approach to calculate the neutron-scattering cross section from the S = 1/2 antiferromagnet with nearest-neighbor isotropic Heisenberg interaction on a two-dimensional triangular lattice. We investigate two solutions for T = 0: (i) a state with long......-range order resembling the Neel state and (ii) a resonating valence bond or ''spin liquid'' state with an energy gap, E(g) almost-equal-to 0.17J, for the elementary excitations (spinons). For solution (ii) the neutron cross section shows Bragg rods at kappa = K = (1/3, 1/3), whereas solution (ii) shows...
Energy Technology Data Exchange (ETDEWEB)
Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Nadeem, Muhammad [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Naik, Haladhara [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Bhabha Atomic Research Centre, Radiochemistry Division, Mumbai (India); Lee, Manwoo [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of)
2017-09-15
The neutron induced cross sections of the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reactions were measured in the neutron energy range of 15.2 to 37.2 MeV by using an activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutrons used for the above reactions are based on a {sup 9}Be(p, n) reaction. Simulations of the neutron spectra from the Be target were done using the MCNPX 2.6.0 program. Theoretical calculations were performed for the {sup 89}Y(n, 2n){sup 88}Y, {sup 89}Y(n, 3n){sup 87}Y and {sup 89}Y(n, 4n){sup 86}Y reaction cross sections using nuclear model code Talys 1.8. The measured and calculated cross sections were compared with the literature data given in EXFOR and the TENDL-2015 data libraries. The present data of the {sup 89}Y(n, xn) reaction were also compared with the similar data of the {sup 89}Y(γ, xn) reaction to examine the effect of the entrance channel parameters as well as the role of projectiles and ejectiles. (orig.)
Neutron capture cross section of unstable 63Ni implications for stellar nucleosynthesis
Lederer, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Becares, V; Becvar, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calvino, F; Cano-Ott, D; Carrapico, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortes, G; Cortes-Giraldo, M.A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; Garcia, A R; Giubrone, G; Gomez-Hornillos, M B; Goncalves, I F; Gonzalez-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Kappeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krticka, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martinez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrio, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Zugec, P
2013-01-01
The $^{63}$Ni($n, \\gamma$) cross section has been measured for the first time at the neutron time-of-flight facility n\\_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian Averaged Cross Sections were calculated for thermal energies from kT = 5 keV to 100 keV with uncertainties around 20%. Stellar model calculations for a 25 M$_\\odot$ star show that the new data have a significant effect on the $s$-process production of $^{63}$Cu, $^{64}$Ni, and $^{64}$Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.
A unified Monte Carlo approach to fast neutron cross section data evaluation.
Energy Technology Data Exchange (ETDEWEB)
Smith, D.; Nuclear Engineering Division
2008-03-03
A unified Monte Carlo (UMC) approach to fast neutron cross section data evaluation that incorporates both model-calculated and experimental information is described. The method is based on applications of Bayes Theorem and the Principle of Maximum Entropy as well as on fundamental definitions from probability theory. This report describes the formalism, discusses various practical considerations, and examines a few numerical examples in some detail.
High resolution neutron total and capture cross-sections in separated isotopes of copper (6365Cu)
International Nuclear Information System (INIS)
Pandey, M.S.
1975-01-01
High resolution neutron total and capture cross section measurements have been performed on separated isotopes of copper ( 63 65 Cu). Measurements for capture cross section were made from about 1 keV to a few hundreds of keV. The total cross section measurements were made in the energy interval of approximately 10 keV to 150 keV. The resulting capture data have been analyzed by a generalized least square peak fitting computer code in the energy interval of 2.5 keV to 50 keV. Photon strengths are determined using the data up to approximately 250 keV. The resulting total cross section data have been analyzed by area-analysis on the transmission values and by R-matrix multilevel code on cross section values. Average s- and p-wave level spacing and s- and p-wave strength function values are determined. From the resonance parameters thus obtained, by the analysis, statistical distribution is studied for s- and p-wave level spacings and reduced neutron widths. A comparison has been made for adjacent level spacings with the theoretical predictions of level repulsion (of same J/sup π/) by Wigner considering levels with various spin states separately for s-wave resonances where confident spin assignment has been possible. Reduced neutron widths are compared with the Porter-Thomas distribution. Optical model formulated by Feshbach, Porter and Weiskopf describes the neutron-nucleus interaction. A comparison has been made between experimentally determined values of the s- and p-wave strength functions and that obtainable from optical model calculations, thereby determining the appropriate optical model parameters. The experimental arrangement, pertinent theoretical discussion, and the processes of data reduction and the analyses along with the comparison of the previously reported results with the present work are presented in detail
Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections
International Nuclear Information System (INIS)
Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane
2001-01-01
The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However, it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy
Model for neutron total cross-section at low energies for nuclear grade graphite
International Nuclear Information System (INIS)
Galván Josa, V.M.; Dawidowski, J.; Santisteban, J.R.; Malamud, F.; Oliveira, R.G.
2015-01-01
At subthermal neutron energies, polycrystalline graphite shows a large total cross-section due to small angle scattering processes. In this work, a new methodology to determine pore size distributions through the neutron transmission technique at subthermal energies is proposed and its sensitivity is compared with standard techniques. A simple model based on the form factor for spherical particles, normally used in the Small Angle Neutron Scattering technique, is employed to calculate the contribution of small angle effect to the total scattering cross-section, with the width and center of the radii distributions as free parameters in the model. Small Angle X-ray Scattering experiments were performed to compare results as a means to validate the method. The good agreement reached reveals that the neutron transmission technique is a useful tool to explore small angle scattering effects. This fact can be exploited in situations where large samples must be scanned and it is difficult to investigate them with conventional methods. It also opens the possibility to apply this method in energy-resolved neutron imaging. Also, since subthermal neutron transmission experiments are perfectly feasible in small neutron sources, the present findings open new possibilities to the work done in such kind of facilities
International Nuclear Information System (INIS)
Lachkar, J.; Haouat, G.; Lagrange, C.; Cates, M.; Patin, Y.; Sigaud, J.; Jary, J.; Ferguson, S.; Shamu, R.E.
1978-01-01
In order to study the neutron-nucleus interaction for nuclei in the mass region from A=248 to A=240, neutron data have been taken which include total cross sections for 208 Pb, 232 Th, 235 U, 238 U and 239 Pu between 1.4 and 14 MeV, elastic scattering cross sections for 208 Pb at 2.5 and 3.4 MeV, and elastic and inelastic scattering cross sections for 208 Pb at 7.5 - 9.5 - 11.5 and 13.5 MeV, for 232 Th and 238 U at 0.7 - 2.5 and 3.4 MeV and for 235 U and 239 Pu at 0.7 and 3.4 MeV. These data have been analysed using the DWBA formalism for 208 Pb and the coupled-channels formalism for the actinides. Optical potential parameters and nuclear deformation parameters have been deduced from these analyses. (author) [fr
Activation measurements of neutron-capture cross sections in the MeV region
International Nuclear Information System (INIS)
Andersson, P.
1985-04-01
Activation measurements in the MeV region are frequently disturbed by accompanying low-energy background neutrons. These neutrons are produced by nonelastic neutron reactions (e.g. (n.n'), (n,np) and (n,2n) reactions) in the irradiated sample and surrounding materials as well as by charged-particle reactions in the target materials. Capture measurements are particularly sensitive, and the contribution to the activation yield may be significant already at 1-2 MeV. Experimental techniques for cross-section measurements were developed in which the background influence was minimized by the appropriate choice of target materials and experimental arrangements. The remaining contributions were determined by systematically varying the experimental conditions. The methods were applied to capture cross-section measurements for 115 In and 197 Au in the neutron energy region 2.0-7.7 MeV, and for 23 Na, 55 Mn, 89 Y, 127 I, 138 Ba, 186 W and 197 Au at 14.7 MeV. Cross sections for the reactions 27 Al(n,np) 27 Mg, 27 Al(n,α) 24 Na, 115 In(n,n') 115 sup(m)In and 197 Au(n,2n) 198 Au were also measured at 14.9 MeV. Some of the results are compared with statistical model calculations. (Author)
Neutron-capture Cross Sections from Indirect Measurements
Energy Technology Data Exchange (ETDEWEB)
Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J
2011-10-18
Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.
Analytical methods for analysis of neutron cross sections of amino acids and proteins
Energy Technology Data Exchange (ETDEWEB)
Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin; Carvalheira, Luciana, E-mail: dante@ien.gov.br, E-mail: fferreira@ien.gov.br, E-mail: Chaffin@ien.gov.br, E-mail: luciana@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Hélio F. da, E-mail: helionutro@gmail.com.br [Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pediatria
2017-07-01
Two unpublished analytical processes were developed at IEN-CNEN-RJ for the analysis of neutron cross sections of chemical compounds and complex molecules, the method of data parceling and grouping (P and G) and the method of data equivalence and similarity (E and S) of cross-sections. The former allows the division of a complex compound or molecule so that the parts can be manipulated to construct a value of neutron cross section for the compound or the entire molecule. The second method allows by comparison obtain values of neutron cross-sections of specific parts of the compound or molecule, as the amino acid radicals or its parts. The processes were tested for the determination of neutron cross-sections of the 20 human amino acids and a small database was built for future use in the construction of neutron cross-sections of proteins and other components of the human being cells, also in other industrial applications. (author)
Analytical methods for analysis of neutron cross sections of amino acids and proteins
International Nuclear Information System (INIS)
Voi, Dante L.; Ferreira, Francisco de O.; Nunes, Rogerio Chaffin; Carvalheira, Luciana; Rocha, Hélio F. da
2017-01-01
Two unpublished analytical processes were developed at IEN-CNEN-RJ for the analysis of neutron cross sections of chemical compounds and complex molecules, the method of data parceling and grouping (P and G) and the method of data equivalence and similarity (E and S) of cross-sections. The former allows the division of a complex compound or molecule so that the parts can be manipulated to construct a value of neutron cross section for the compound or the entire molecule. The second method allows by comparison obtain values of neutron cross-sections of specific parts of the compound or molecule, as the amino acid radicals or its parts. The processes were tested for the determination of neutron cross-sections of the 20 human amino acids and a small database was built for future use in the construction of neutron cross-sections of proteins and other components of the human being cells, also in other industrial applications. (author)
SCWR Once-Through Calculations for Transmutation and Cross Sections
Energy Technology Data Exchange (ETDEWEB)
ganda, francesco (090771)
2012-07-01
It is the purpose of this report to document the calculation of (1) the isotopic evolution and of (2) the 1-group cross sections as a function of burnup of the reference Super Critical Water Reactor (SCWR), in a format suitable for the Fuel Cycle Option Campaign Transmutation Data Library. The reference SCWR design was chosen to be that described in [McDonald, 2005]. Super Critical Water Reactors (SCWR) are intended to operate with super-critical water (i.e. H2O at a pressure above 22 MPa and a temperature above 373oC) as a cooling – and possibly also moderating – fluid. The main mission of the SCWR is to generate lower cost electricity, as compared to current standard Light Water Reactors (LWR). Because of the high operating pressure and temperature, SCWR feature a substantially higher thermal conversion efficiency than standard LWR – i.e. about 45% versus 33%, mostly due to an increase in the exit water temperature from ~300oC to ~500oC – potentially resulting in a lower cost of generated electricity. The coolant remains single phase throughout the reactor and the energy conversion system, thus eliminating the need for pressurizers, steam generators, steam separators and dryers, further potentially reducing the reactor construction capital cost. The SCWR concept presented here is based on existing LWR technology and on a large number of existing fossil-fired supercritical boilers. However, it was concluded in [McDonald, 2005], that: “Based on the results of this study, it appears that the reference SCWR design is not feasible.” This conclusion appears based on the strong sensitivity of the design to small deviations in nominal conditions leading to small effects having a potentially large impact on the peak cladding temperature of some fuel rods. “This was considered a major feasibility issue for the SCWR” [McDonald, 2005]. After a description of the reference SCWR design, the Keno V 3-D single assembly model used for this analysis, as well as the
54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV
Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.
2018-04-01
Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.
Statistical Model Analysis of (n, α Cross Sections for 4.0-6.5 MeV Neutrons
Directory of Open Access Journals (Sweden)
Khuukhenkhuu G.
2016-01-01
Full Text Available The statistical model based on the Weisskopf-Ewing theory and constant nuclear temperature approximation is used for systematical analysis of the 4.0-6.5 MeV neutron induced (n, α reaction cross sections. The α-clusterization effect was considered in the (n, α cross sections. A certain dependence of the (n, α cross sections on the relative neutron excess parameter of the target nuclei was observed. The systematic regularity of the (n, α cross sections behaviour is useful to estimate the same reaction cross sections for unstable isotopes. The results of our analysis can be used for nuclear astrophysical calculations such as helium burning and possible branching in the s-process.
Status of measured neutron cross sections of transactinium isotopes in the fast region
International Nuclear Information System (INIS)
Igarasi, S.
1976-01-01
This paper reviews present status of measured neutron cross sections of transactinium isotopes from a viewpoint of requested data in application field of the nuclear data. The measured cross sections from 1 keV to 15 MeV are examined. Comparison between different data sets is mainly performed on the fission cross sections
Analytical technique for satellite projected cross-sectional area calculation
Ben-Yaacov, Ohad; Edlerman, Eviatar; Gurfil, Pini
2015-07-01
Calculating the projected cross-sectional area (PCSA) of a satellite along a given direction is essential for implementing attitude control modes such as Sun pointing or minimum-drag. The PCSA may also be required for estimating the forces and torques induced by atmospheric drag and solar radiation pressure. This paper develops a new analytical method for calculating the PCSA, the concomitant torques and the satellite exposed surface area, based on the theory of convex polygons. A scheme for approximating the outer surface of any satellite by polygons is developed. Then, a methodology for calculating the projections of the polygons along a given vector is employed. The methodology also accounts for overlaps among projections, and is capable of providing the true PCSA in a computationally-efficient manner. Using the Space Autonomous Mission for Swarming and Geo-locating Nanosatellites mechanical model, it is shown that the new analytical method yields accurate results, which are similar to results obtained from alternative numerical tools.
Cross-section model for cold neutron scattering in solid and liquid methane
Morishima, N
2002-01-01
Incoherent neutron scattering cross-sections for solid CH sub 4 in the temperature range of 20.4-90.7 K and liquid CH sub 4 at temperatures between 90.7 and 111.7 K are evaluated. A space-time correlation approach is used to describe a double-differential scattering cross-section which is basically expressed by a generalized frequency distribution. The cross-section model includes molecular translations and rotations as well as intramolecular vibrations. The former are concerned with very short-time free-gas like translation, short-lived vibration and long-time diffusion (only in liquid state). The latter consists of short-time free rotation and long-time isotropic rotational diffusion. Numerical calculations on double-differential and total cross-sections are carried out for incident neutron energies covered 0.1 mu eV to 10 eV. Good agreement with experimental results at many different temperatures is found.
Measurement of neutron-induced activation cross-sections using ...
Indian Academy of Sciences (India)
Manish Sharma et al. Table 1. Geometrical details of Co- and Ta-activation detectors used in Gam- ma-2 experiment. Element. 181Ta. 59Co. Cross-sectional area. 2.64 cm2 ... the details of the activated detectors, Au, Bi, and Th as well as the methodology of analysis for the estimation of 'one group cross-section'. Further ...
A subroutine for the calculation of resonance cross sections of U-238 in HTR fuel elements
Energy Technology Data Exchange (ETDEWEB)
Cuniberti, R.; Marullo, G.C.
1971-02-15
In this paper, a survey of the codes used at Ispra for the calculations of resonance absorption in HTR fuel elements is presented and a subroutine for the calculation of resonance cross-sections, in a seven groups energy structure, for a HTR lattice of annular type is described. A library of homogeneous resonance integrals and a wide tabulation of lump and kernel Bell factors, and moderators efficiency is given. This paper deals mainly with the problem of taking into account the correct slowing down of neutrons in the graphite and with the derivation of Bell factors to be used in a multigroup calculation scheme.
International Nuclear Information System (INIS)
Kobayashi, Katsuhei; Kobayashi, Tooru
1992-01-01
The 235 U fission spectrum-averaged cross sections for 13 threshold reactions were measured with the fission plate (27 cm in diameter and 1.1 cm thick) at the heavy water thermal neutron facility of the Kyoto University Reactor. The Monte Carlo code MCNP was applied to check the deviation from the 235 U fission neutron spectrum due to the room-scattered neutrons, and it was found that the resultant spectrum was close to that of 235 U fission neutrons. Supplementally, the relations to derive the absorbed dose rates with the fission plate were also given using the calculated neutron spectra and the neutron Kerma factors. Finally, the present values of the fission spectrum-averaged cross sections were employed to adjust the 235 U fission neutron spectrum with the NEUPAC code. The adjusted spectrum showed a good agreement with the Watt-type fission neutron spectrum. (author)
Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.
2017-12-01
Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.
Evaluation of chromium neutron and gamma production cross sections for ENDF/IV
International Nuclear Information System (INIS)
Prince, A.
1976-08-01
A re-evaluation has been made of neutron and gamma production cross sections for reactions of neutrons with 50 , 52 , 53 , 54 Cr and natural Cr. In addition, energy level schemes and Q values are presented. 97 references
Effects of shape differences in the level densities of three formalisms on calculated cross-sections
International Nuclear Information System (INIS)
Fu, C.Y.; Larson, D.C.
1998-01-01
Effects of shape differences in the level densities of three formalisms on calculated cross-sections and particle emission spectra are described. Reactions for incident neutrons up to 20 MeV on 58 Ni are chosen for illustrations. Level density parameters for one of the formalisms are determined from the available neutron resonance data for one residual nuclide in the binary channels and from fitting the measured (n,n'), (n,p) and (n,α) cross-sections for the other two residual nuclides. Level density parameters for the other two formalisms are determined such that they yield the same values as the above one at two selected energies. This procedure forces the level densities from the three formalisms used for the binary pat of the calculation to be as close as possible. The remaining differences are in their energy dependences (shapes). It is shown that these shape differences alone are enough to cause the calculated cross-sections and particle emission spectra to be different by up to 60%. (author)
International Nuclear Information System (INIS)
Erradi, L.; Karouani, K.
1994-01-01
Many multigroup neutron cross section libraries have been processed from basic evaluated nuclear data for use in neutron dosimetry, reactor shielding calculation and in the development of fusion reactors. Most of these libraries have been tested only for fission spectra and were not validated for fusion spectra. Fifteen of these libraries such as DOSCROS84, IRDF85 and ENDFB5 have been used along with the neutron spectra unfolding code SAND II to evaluate about fifteen threshold detector saturated activities. The comparison between these computed activities and the measured ones of a set of foils placed in different places along the axis of a paraffin cylinder and irradiated by 14 MeV neutrons generated by a D-T source, hence giving rise to complex spectra, leads to different types of discrepancies. The analysis of these discrepancies allows to select from these libraries the ones that can be recommended. 1 fig., 4 refs. (author)
NEW ENDF/B-VII.0 EVALUATIONS OF NEUTRON CROSS SECTIONS FOR 32 FISSION PRODUCTS.
Energy Technology Data Exchange (ETDEWEB)
KIM,H.; LEE, Y.-O.; HERMAN, M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.
2007-04-22
Neutron cross sections for fission products play important role not only in the design of extended burnup core and fast reactors, but also in the study of the backend fuel cycle and the criticality analysis of spent fuel. New evaluations in both the resonance and fast neutron regions were performed by the KAERI-BNL collaboration for 32 fission products. These were {sup 95}Mo, {sup 101}Ru, {sup 103}Rh, {sup 105}Pd, {sup 109}Ag, {sup 131}Xe, {sup 133}Cs, {sup 141}Pr, and complete isotope chains of {sup 142-148,150}Nd, {sup 144,147,148-154}Sm, and {sup 156,158,160-164}Dy. The evaluations cover a large amount of reaction channels, including all those needed for neutronics calculations. Also, they cover the entire energy range, from 10{sup -5} eV to 20 MeV, including the thermal, resolved, and unresolved resonance regions, and the fast neutron region.
International Nuclear Information System (INIS)
Alonso V, G.; Viais J, J.
1990-10-01
There is developed a method to generate the library of neutron cross sections for the Thermos code by means of the database ENDF-B/IV and the NJOY code. The obtained results are compared with the version previous of the library of neutron cross sections which was processed using the version ENDF-B/III. (Author)
The total neutron cross sections for 14N and 24Mg
International Nuclear Information System (INIS)
Bommer, J.
This report contains tables of the total neutron cross sections of 14 N and 24 Mg as determined in a recent measurement for neutron energies between 1 and 5.3 MeV. Graphic representations and details on the evaluation of the cross sections are included. (orig.) [de
Determination of neutron-induced fission cross-sections of unstable ...
Indian Academy of Sciences (India)
2014-11-04
Nov 4, 2014 ... ... some of these reactions have been used as tools to serve as surrogates of neutron-induced compound nuclear fission cross-sections involving unstable targets. In this paper, we report some of the recent results on the determination of neutron-induced fission cross-sections of unstable actinides present ...
Mei, B.; Balabanski, D. L.; Constantin, P.; Anh, L. T.; Cuong, P. V.
2017-12-01
An empirical parametrization for the production cross sections of 238U photofission fragments at low energies (Eγelemental and mass yields and can accurately reproduce experimental isotopic yields. Production cross sections (yields) of photofission fragments calculated by this parametrization indicate that many neutron-rich nuclei approaching the r -process path can be accessed via photofission of 238U at radioactive-beam facilities.
International Nuclear Information System (INIS)
Wienke, H.; Herman, M.
1998-01-01
Evaluated neutron reaction data and photon-atom interaction cross sections for materials contained in the general purpose Fusion Evaluated Nuclear Data Library (FENDL/E2.0) have been processed with the NJOY code system into VITAMIN-J multigroup structure, for use in discrete-ordinates transport codes, and into continuous energy ACE format, for use in the Monte Carlo transport code MCNP. This document summarizes the resulting data libraries FENDL/MG-2.0 version 1 and FENDL/MC-2.0 version 1. The data are available costfree from the IAEA Nuclear Data Section online or on magnetic tape. (author)
Simple, empirical approach to predict neutron capture cross sections from nuclear masses
Couture, A.; Casten, R. F.; Cakirli, R. B.
2017-12-01
Background: Neutron capture cross sections are essential to understanding the astrophysical s and r processes, the modeling of nuclear reactor design and performance, and for a wide variety of nuclear forensics applications. Often, cross sections are needed for nuclei where experimental measurements are difficult. Enormous effort, over many decades, has gone into attempting to develop sophisticated statistical reaction models to predict these cross sections. Such work has met with some success but is often unable to reproduce measured cross sections to better than 40 % , and has limited predictive power, with predictions from different models rapidly differing by an order of magnitude a few nucleons from the last measurement. Purpose: To develop a new approach to predicting neutron capture cross sections over broad ranges of nuclei that accounts for their values where known and which has reliable predictive power with small uncertainties for many nuclei where they are unknown. Methods: Experimental neutron capture cross sections were compared to empirical mass observables in regions of similar structure. Results: We present an extremely simple method, based solely on empirical mass observables, that correlates neutron capture cross sections in the critical energy range from a few keV to a couple hundred keV. We show that regional cross sections are compactly correlated in medium and heavy mass nuclei with the two-neutron separation energy. These correlations are easily amenable to predict unknown cross sections, often converting the usual extrapolations to more reliable interpolations. It almost always reproduces existing data to within 25 % and estimated uncertainties are below about 40 % up to 10 nucleons beyond known data. Conclusions: Neutron capture cross sections display a surprisingly strong connection to the two-neutron separation energy, a nuclear structure property. The simple, empirical correlations uncovered provide model-independent predictions of
Energy Technology Data Exchange (ETDEWEB)
Drake, D.M.; Auchampaugh, G.F.; Arthur, E.D.; Ragan, C.E.; Young, P.G.
1976-08-01
Beryllium neutron-production cross sections were measured using the time-of-flight technique at incident neutron energies of 5.9, 10.1, and 14.2 MeV, and at laboratory angles of 25, 27.5, 30, 35, 45, 60, 80, 100, 110, 125, and 145/sup 0/. The differential elastic and inelastic cross sections are presented. Inelastic is defined here as those reactions that proceed through the states at 1.69-, 2.43-, 2.8-, and 3.06-MeV excitation energy in /sup 9/Be. Comparison of emission energy spectra with calculations using the ENDF/B-IV beryllium cross sections shows that the ENDF/B cross sections strongly overemphasize the low lying states in /sup 9/Be.
International Nuclear Information System (INIS)
Smith, D.L.; Meadows, J.W.; Greenwood, L.R.
1990-01-01
Integral neutron-reaction cross sections have been measured, relative to the U-238 neutron fission cross-section standard, for 27 reactions which are of contemporary interest in various nuclear applications (e.g., fast-neutron dosimetry, neutron radiation damage and the production of long-lived activities which affect nuclear waste disposal). The neutron radiation field employed in this study was produced by bombarding a thick Be-metal target with 7-MeV deuterons from an accelerator. The experimental results are reported along with detailed information on the associated measurement uncertainties and their correlations. These data are also compared with corresponding calculated values, based on contemporary knowledge of the differential cross sections and of the Be(d,n) neutron spectrum. Some conclusions are reached on the utility of this procedure for neutron-reaction data testing
Calculation of the photoionization cross section of the 4d10 subshell of the La atom
International Nuclear Information System (INIS)
Amusia, M.Ya.; Sheftel, S.I.
1976-01-01
The photoionization cross section of 4d 10 subshell of La atom is calculated. The cross section curve near its threshold is strongly modified by rearrangement of outer shells in the process of photoionization. (Auth.)
Latkowski, J F; Sanz, J
2000-01-01
Recent modifications to the TART Monte Carlo neutron and photon transport code allow enable calculation of 566-group neutron spectra. This expanded group structure represents a significant improvement over the 50- and 175-group structures that have been previously available. To support use of this new capability, neutron activation cross-section libraries have been created in the 175- and 566-group structures starting from the FENDL/A-2.0 pointwise data. Neutron spectra have been calculated for the first walls of the HYLIFE-II and Sombrero inertial fusion energy power plant designs and have been used in subsequent neutron activation calculations. The results obtained using the two different group structures are compared with each other as well as to those obtained using a 175-group version of the EAF3.1 activation cross-section library.
Comprehensive Amm242 neutron-induced reaction cross sections and resonance parameters
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.
2017-06-01
The 242Am metastable isomer's neutron-induced destruction mechanisms were studied at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array with a compact parallel-plate avalanche counter. New Amm242 neutron-capture cross sections were determined from 100 meV to 10 keV, and the absolute scale was set with respect to a concurrent measurement of the well-known Amm242 neutron-induced-fission cross section. The new fission cross section spans an energy range from 100 meV to 1 MeV and was normalized to the ENDF/B-VII.1 evaluated cross section to set the absolute scale. Our Amm242(n ,f ) cross section agrees well with the cross section of Browne et al. [Phys. Rev. C 29, 2188 (1984)], 10.1103/PhysRevC.29.2188 over this large energy interval. The new neutron-capture cross section measurement complements and agrees well with our recent results reported below 1 eV in Buckner et al. [Phys. Rev. C 95, 024610 (2017)], 10.1103/PhysRevC.95.024610. This new work comprises the most comprehensive study of Amm242(n ,γ ) above thermal energy. Neutron-induced resonance energies and parameters were deduced with the sammy R -matrix code for incident neutron energies up to 45 eV, and the new average Γγ is 13 % higher than the evaluated average γ width.
Measurement of secondary gamma-ray production cross sections of vanadium induced by D-T neutrons
International Nuclear Information System (INIS)
Kondo, Tetsuo; Murata, Isao; Takahashi, Akito
1999-01-01
The secondary gamma-ray production cross sections of vanadium induced by D-T neutrons have been measured. The experimental values were compared with the theoretical calculation results by SINCROS-II and the evaluation result based on experimental data compiled by Simakov. The calculation results supported our data, while Simakov's evaluation did not agree with the present result very well. (author)
Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region
International Nuclear Information System (INIS)
Pigni, M.T.; Herman, M.; Oblozinsky, P.
2008-01-01
We completed estimates of neutron cross section covariances for 55 Mn and 90 Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices
Estimated 55Mn and 90Zr cross section covariances in the fast neutron energy region
Energy Technology Data Exchange (ETDEWEB)
Pigni,M.T.; Herman, M.; Oblozinsky, P.
2008-06-24
We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from keV range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.
Sisterson, J. M.; Kim, K. J.; Reedy, R. C.
2004-01-01
The interactions of galactic cosmic rays (GCR) with extraterrestrial bodies produce small amounts of radionuclides and stable isotopes. The production rates of many relatively short-lived radionuclides, including 2.6-year Na-22 and 312-day Mn-54, have been measured in several meteorites collected very soon after they fell. Theoretical models used to calculate production rates for comparison with the measured values rely on input data containing good cross section measurements for all relevant reactions. Most GCR particles are protons, but secondary neutrons make most cosmogenic nuclides. Calculated production rates using only cross sections for proton-induced reactions do not agree well with measurements. One possible explanation is that the contribution to the production rate from reactions initiated by secondary neutrons produced in primary GCR interactions should be included explicitly. This, however, is difficult to do because so few of the relevant cross sections for neutron-induced reactions have been measured.
Thermal neutron capture cross section of chromium, vanadium, titanium and nickel isotopes
International Nuclear Information System (INIS)
Venturini, L.; Pecequilo, B.R.S.
1990-04-01
The thermal neutron cross section of chromium, vanadium, titanium and nickel can be determined by measuring the pair spectrum of prompt gamma-rays emitted targets of these elements are irradiated by a thermal neutron beam. Such measurements were carried out by irradiating the natural element mixed with a nitrogen standard (melamine) in the tangential beam hole of the IEA-R1 research reactor. The pair spectrometer efficiency calibration curve in the 1.5 to 11 MeV energy range was performed with a melamine plus ammonium chloride mixed target. The cross section was calculated for the most prominent gamma transitions of each isotope, using nitrogen as standard and averaged over the obtained values. The resulting mean cross sections are as follows: (13.4 ± 0.7)b for 50 Cr, (0.79 ± 0,02)b for 52 Cr, (18.1 ± 0,7)b for 53 Cr, (4.9 ± 0.2)b for 51 V, (8.4 ± 0.1)b for 48 Ti, (4.41 ± 0.08)b 58 Ni, (2.54 ± 0.07)b for 60 Ni, (15.2 ± 0.5)b for 62 Ni and (1.6 ± 0.1) for 64 Ni. (author) [pt
Influence of vibrations of gas molecules on neutron reaction cross sections
Bowman, C. D.; Schrack, R. A.
1980-01-01
The change in molecular vibrational energy upon absorption of a neutron by a nucleus bound in a free molecule can influence resonance shape and other aspects of neutron reaction cross sections. A formalism is developed for centrosymmetric molecules such as UF6 and applied to the shape of the 6.67 eV resonance in 238U. The ratio of the resonance shape for 238UF6 gas and for solid 238U3O8 has been measured and compared with the calculation. Reasonable agreement is obtained indicating the validity of the calculation and the necessity to include vibration effects to avoid large errors in measurements and calculations on gascontaining systems. NUCLEAR REACTIONS 238U(n,γ) measured at 6.67 eV resonance; Effect of molecular vibrations studied experimentally and theoretically.
Neutron total cross section measurements of gold and tantalum at the nELBE photoneutron source
Hannaske, Roland; Beyer, Roland; Junghans, Arnd; Bemmerer, Daniel; Birgersson, Evert; Ferrari, Anna; Grosse, Eckart; Kempe, Mathias; Kögler, Toni; Marta, Michele; Massarczyk, Ralph; Matic, Andrija; Schramm, Georg; Schwengner, Ronald; Wagner, Andreas
2014-01-01
Neutron total cross sections of 197 Au and nat Ta have been measured at the nELBE photoneutron source in the energy range from 0.1 - 10 MeV with a statistical uncertainty of up to 2 % and a total systematic uncertainty of 1 %. This facility is optimized for the fast neutron energy range and combines an excellent t ime structure of the neutron pulses (electron bunch width 5 ps) with a short flight path of 7 m. Because of the low instantaneous neutron flux transmission measurements of neutron total cross sections are possible, that exhibit very different beam and back ground conditions than found at other neutron sources.
Calculation of vibrational excitation cross-sections in resonant ...
Indian Academy of Sciences (India)
WINTEC
tron is re-emitted after the anion has completed at least one vibration, the nuclear wave function for A– exhibits a reflection from the right turning point, and there is vibrational structure in the resonant scattering cross-sections even for the lowest vibrational excita- tion of the target.1–5 The pronounced vibrational struc-.
Evaluation of the neutron cross sections for Pu-240
International Nuclear Information System (INIS)
Weston, L.W.; Arthur, E.D.
1987-04-01
The present evaluation is proposed to supersede the ENDF/B-V, Revision 2 file for 240 Pu. In this work, resonance parameters, cross sections, energy distributions, and angular distributions have been modified. These changes are outlined in detail and appropriate references included. 37 refs., 21 figs., 2 tabs
International Nuclear Information System (INIS)
Kondoh, Takehiro; Takahashi, Akito; Nishizawa, Hiroshi.
1995-01-01
Double differential cross sections for nat Ni(n,xα) and nat Cu(n,xα) reactions with 14.1 MeV incident neutrons were measured based on the E-TOF two dimensional analysis. Measured data were compared with the other experimental data reported by N. Ito et al. and by S.M. Grimes et al, evaluated data of the ENDF/B-VI and SINCROS-II calculation. Concerning the nat Ni(n,xα) reaction, it was observed in this experiment that the angular distributions of α-particle emission showed a forward-peaked tendency except for the low energy region. (author)
Aquelarre. A computer code for fast neutron cross sections from the statistical model
International Nuclear Information System (INIS)
Guasp, J.
1974-01-01
A Fortran V computer code for Univac 1108/6 using the partial statistical (or compound nucleus) model is described. The code calculates fast neutron cross sections for the (n, n'), (n, p), (n, d) and (n, α reactions and the angular distributions and Legendre moments.for the (n, n) and (n, n') processes in heavy and intermediate spherical nuclei. A local Optical Model with spin-orbit interaction for each level is employed, allowing for the width fluctuation and Moldauer corrections, as well as the inclusion of discrete and continuous levels. (Author) 67 refs
DEFF Research Database (Denmark)
Lindgård, Per-Anker; Kowalska, A.; Laut, Peter
1967-01-01
A general bilinear two-Bose Hamiltonian is diagonalized and the result used in a discussion of non-imteracting spin waves in a two-sub-lattice ferromagnet having not negligible anisotropy in the spin interaction. Model-independent functions suitable for the analysis of experimental dispersion...... curves are suggested. The magnon cross section for unpolarized neutrons is calculated and shown to be dependent on the anisotropy in the spin interaction. Thus in principle it allows the detection of anisotropy in the exchange interaction. Some remarks are made concerning antiferromagnetic and plane...
An empirical fit to estimated neutron emission cross sections from ...
Indian Academy of Sciences (India)
dominated by neutrons spanning a wide range of energy from slow neutrons to several tens of MeV [1]. Moreover, protons in the energy region below 200 MeV are constituents of cosmic rays (solar protons) which directly or through secondary neutrons induce radiation damage to the electronic components in airplanes, ...
Neutron-induced reaction cross-section measurements using a ...
Indian Academy of Sciences (India)
The experimental setup of Louvain-la-Neuve (UCL-Belgium) used to perform lightcharged particle production experiment in fast neutron-induced reactions is presented. A short description of the neutron modular detector DEMON is also given. DEMON is a detector array for neutrons emitted in heavy ion induced reactions at ...
Neutron-induced reaction cross-section measurements using a ...
Indian Academy of Sciences (India)
Abstract. The experimental setup of Louvain-la-Neuve (UCL-Belgium) used to perform light- charged particle production experiment in fast neutron-induced reactions is presented. A short de- scription of the neutron modular detector DEMON is also given. DEMON is a detector array for neutrons emitted in heavy ion induced ...
International Nuclear Information System (INIS)
Pina, C.M. de
1981-01-01
One of the most important part in neutronics calculations is the study of core behavior with inserted control rods. The first stage of this calculations consists in generating equivalent microscopic cross sections for the basic cells containing fuel or absorbed material. The cross sections will be then adjusted. The choice of parameters that help in those adjustments, were obtained by the comparisons of data coming from the control rod supercell calculations with the Hammer and Citation computer codes. The effect of those adjustments in core integral parameters was evaluated; in this work only the core power two-dimensional distribution calculations with the D bank completely inserted, is studied. (E.G.) [pt
Measurement of reaction cross sections of fission products induced by DT neutrons
Energy Technology Data Exchange (ETDEWEB)
Nakano, Daisuke; Murata, Isao; Takahashi, Akito [Osaka Univ., Suita (Japan)
1998-03-01
With the view of future application of fusion reactor to incineration of fission products, we have measured the {sup 129}I(n,2n){sup 128}I reaction cross section by DT neutrons with the activation method. The measured cross section was compared with the evaluated nuclear data of JENDL-3.2. From the result, it was confirmed that the evaluation overestimated the cross section by about 20-40%. (author)
Neutron cross sections of 28 fission product nuclides adopted in JENDL-1
International Nuclear Information System (INIS)
Kikuchi, Yasuyuki; Nakagawa, Tsuneo; Igarasi, Sin-iti; Matsunobu, Hiroyuki; Kawai, Masayoshi; Iijima, Shungo.
1981-02-01
This is the final report concerning the evaluated neutron cross sections of 28 fission product nuclides adopted in the first version of Japanese Evaluated Nuclear Data Library (JENDL-1). These 28 nuclides were selected as being most important for fast reactor calculations, and are 90 Sr, 93 Zr, 95 Mo, 97 Mo, 99 Tc, 101 Ru, 102 Ru, 103 Rh, 104 Ru, 105 Pd, 106 Ru, 107 Pd, 109 Ag, 129 I, 131 Xe, 133 Cs, 135 Cs, 137 Cs, 143 Nd, 144 Ce, 144 Nd, 145 Nd, 147 Pm, 147 Sm, 149 Sm, 151 Sm, 153 Eu and 155 Eu. The status of the experimental data was reviewed over the whole energy range. The present evaluation was performed on the basis of the measured data with the aid of theoretical calculations. The optical and statical models were used for evaluation of the smooth cross sections. An improved method was developed in treating the multilevel Breit-Wigner formula for the resonance region. Various physical parameters and the level schemes, adopted in the present work are discussed by comparing with those used in the other evaluations such as ENDF/B-IV, CEA, CNEN-2 and RCN-2. Furthermore, the evaluation method and results are described in detail for each nuclide. The evaluated total, capture and inelastic scattering cross sections are compared with the other evaluated data and some recent measured data. Some problems of the present work are pointed out and ways of their improvement are suggested. (author)
Determination of neutron-induced activation cross sections using nirr-1
African Journals Online (AJOL)
Thermal Activation cross-sections for the (n, γ) reaction were experimentally measured using NIRR-1 facilities. The irradiated target isotopes were 71Ga, 109Ag, 55Mn 94Zr; 96Zr; 238U, 74Se, 75As and 48Ca. In order to obtain reliable activation cross sections, careful attention was paid to neutron irradiation and to the ...
Measurement of neutron-induced activation cross-sections using ...
Indian Academy of Sciences (India)
A beam of 1 GeV proton coming from Dubna Nuclotron colliding with a lead target surrounded by 6 cm paraffin produces spallation neutrons. A Th-foil was kept on lead target (neutron spallation source) in a direct stream of neutrons for activation and other samples of 197Au, 209Bi, 59Co, 115In and 181Ta were irradiated by ...
Neutron-induced cross sections of short-lived nuclei via the surrogate reaction method
Directory of Open Access Journals (Sweden)
Tassan-Got L.
2012-02-01
Full Text Available The measurement of neutron-induced cross sections of short-lived nuclei is extremely difficult due to the radioactivity of the samples. The surrogate reaction method is an indirect way of determining cross sections for nuclear reactions that proceed through a compound nucleus. This method presents the advantage that the target material can be stable or less radioactive than the material required for a neutron-induced measurement. We have successfully used the surrogate reaction method to extract neutron-induced fission cross sections of various short-lived actinides. In this work, we investigate whether this technique can be used to determine neutron-induced capture cross sections in the rare-earth region.
Elsayed, A A
2003-01-01
The present work deals with the study of the attenuation properties and determination of the cross sections of fast neutrons and gamma rays for structure steel used in different applications in nuclear power plants, particle accelerators, research reactors and different radiation attenuation fields. Investigation has been performed by measuring the transmitted fast neutron and gamma ray spectra behind cylindrical samples of steel (rho=7.87 gem sup - sup 3) of different thicknesses. A reactor collimated beam and neutron - gamma spectrometer with stiblbene scintillator were used for measurements. The pluse shape disriminate technique based on zero cross over method was used to discriminate between neutron and gamma ray pulses. Effective removal cross-section (sigma sub R) and total mass attenuation coefficient (mu) of neureons and gamma rays have been achieved using the attenuation relations. Microscopic removal cross sections sigma sup 9 sup 8 and mass removal cross sections sigma sub R sub / subrho of fast ne...
International Nuclear Information System (INIS)
Pokotilovskij, Yu.N.; Novopol'tsev, M.I.; Geltenbort, P.; Brenner, T.
2003-01-01
Some results of the test of the time-of-flight neutron spectrometers in the energy range (0.05-2.5)μeV are described. The measurements of total and differential cross sections were performed for several substances relevant to the experiments in the physics of ultracold neutrons: Zr, Al, polyethylene and liquid fluoropolymers
Neutron capture cross-section measurements for 238U between 0.4 and 1.4 MeV
Krishichayan, Fnu; Finch, S. W.; Howell, C. R.; Tonchev, A. P.; Tornow, W.
2017-09-01
Neutron-induced radiative-capture cross-section data of 238U are crucial for fundamental nuclear physics as well as for Stewardship Science, for advanced-fuel-cycle calculations, and for nuclear astrophysics. Based on different techniques, there are a large number of 238U(n, γ) 239U cross-section data available in the literature. However, there is a lack of systematic and consistent measurements in the 0.1 to 3.0 MeV energy range. The goal of the neutron-capture project at TUNL is to provide accurate 238U(n, γ) 239U cross-section data in this energy range. The 238U samples, sandwiched between gold foils of the same size, were irradiated for 8-14 hours with monoenergetic neutrons. To avoid any contribution from thermal neutrons, the 238U and 197Au targets were placed inside of a thin-walled pill-box made of 238U. Finally, the whole pill-box was wrapped in a gold foil as well. After irradiation, the samples were gamma-counted at the TUNL's low-background counting facility using high-efficient HPGe detectors. The 197Au monitor foils were used to calculate the neutron flux. The experimental technique and 238U(n, γ) 239U cross-section results at 6 energies will be discussed during the meeting.
Energy Dependent Removal Cross-Sections in Fast Neutron Shielding Theory
International Nuclear Information System (INIS)
Groenroos, Henrik
1965-05-01
The analytical approximations behind the energy dependent removal cross-section concept of Spinney is investigated and its predictions compared with exact values calculated by Case's singular integral method. The exact values are obtained in plane infinite geometry for the two absorption ratios Σ a /Σ t = 0. 1 and Σ a /Σ t = 0.7 over a range of 20 mfp and for varying degrees of forward anisotrophy in the elastic scattering. The latter is characterized by choosing a suitable general scattering function. It is shown that Spinney's original definition follows if Grosjean's formalism, i. e. the matching of moments, is applied. The prediction of the neutron flux is remarkably accurate, and mostly within 50 % for the spatial range and cases investigated. A definition of the removal cross-sections based on matching the exact asymptotic solution to the exponential part of the approximate solution is found to give less accurate flux values than Spinney's model. A third way to define a removal cross-section independent of the spatial coordinates is the variational method. The possible uses of this technique is briefly commented upon
International Nuclear Information System (INIS)
Chiang, Min-Han; Wang, Jui-Yu; Sheu, Rong-Jiun; Liu, Yen-Wan Hsueh
2014-01-01
The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects
Energy Technology Data Exchange (ETDEWEB)
Chiang, Min-Han; Wang, Jui-Yu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Sheu, Rong-Jiun, E-mail: rjsheu@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Yen-Wan Hsueh [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China); Department of Engineering System and Science, National Tsing Hua University, 101, Section 2, Kung-Fu Road, Hsinchu 30013, Taiwan (China)
2014-05-01
The High Temperature Engineering Test Reactor (HTTR) in Japan is a helium-cooled graphite-moderated reactor designed and operated for the future development of high-temperature gas-cooled reactors. Two detailed full-core models of HTTR have been established by using SCALE6 and MCNP5/X, respectively, to study its neutronic properties. Several benchmark problems were repeated first to validate the calculation models. Careful code-to-code comparisons were made to ensure that two calculation models are both correct and equivalent. Compared with experimental data, the two models show a consistent bias of approximately 20–30 mk overestimation in effective multiplication factor for a wide range of core states. Most of the bias could be related to the ENDF/B-VII.0 cross-section library or incomplete modeling of impurities in graphite. After that, a series of systematic analyses was performed to investigate the effects of cross sections on the HTTR criticality and burnup calculations, with special interest in the comparison between continuous-energy and multigroup results. Multigroup calculations in this study were carried out in 238-group structure and adopted the SCALE double-heterogeneity treatment for resonance self-shielding. The results show that multigroup calculations tend to underestimate the system eigenvalue by a constant amount of ∼5 mk compared to their continuous-energy counterparts. Further sensitivity studies suggest the differences between multigroup and continuous-energy results appear to be temperature independent and also insensitive to burnup effects.
Comparative analysis of the neutron cross-sections of iron from various evaluated data libraries
International Nuclear Information System (INIS)
Bychkov, V.M.; Vozyakov, V.V.; Manokhin, V.N.; Smoll, F.; Resner, P.; Seeliger, D.; Hermsdorf, D.
1983-09-01
The comparative analysis of neutron cross-sections of iron from evaluated nuclear data libraries SOKRATOR, KEDAK, ENDL is done in energy interval from 0.025 eV to 20 MeV. Some of iron cross-sections from SOKRATOR library are revised and new data, which are obtained by using new experimental data and more comprehensive theoretical methods, are recommended. As a result the new version of the iron neutron cross-section file (BNF-2012) is produced for SOKRATOR library. (author)
International Nuclear Information System (INIS)
Meadows, J.W.; Smith, D.L.
1980-05-01
Experimental methods related to the production of neutrons for cross section studies at the Argonne Fast-Neutron Generator are reviewed. Target assemblies commonly employed in these measurements are described, and some of the relevant physical properties of the neutron source reactions are discussed. Various measurements have been performed to ascertain knowledge about these source reaction that is required for cross section data analysis purposes. Some results from these studies are presented, and a few specific examples of neutron-source-related corrections to cross section data are provided. 16 figures, 3 tables
Calculated cross sections for elastic scattering of slow positrons by silane
Barbosa, Alessandra Souza; Bettega, Márcio H. F.
2017-10-01
In this work we investigate elastic collisions of low-energy positrons with silane (SiH4). We employed the Schwinger multichannel method to calculate integral and differential cross sections for impact energies up to 10 eV. The calculations were performed within the static plus polarization approximation. We carried out a systematic study employing different schemes to account for the polarization effects of the target due the presence of the incoming positron. We investigate how the inclusion of extra functions in different extra (chargeless) centers affects the calculated cross sections and the physical phenomena such as the Ramsauer-Townsend minimum and the virtual state formation. Our results are compared with available experimental total cross sections and with integral and differential cross sections computed with a model correlation-polarization potential. In particular, our integral cross section agrees well with the experiment at low energies and our differential cross sections agree well with the results from previous calculations.
International Nuclear Information System (INIS)
Pashchenko, A.B.; Wienke, H.
1998-01-01
This document presents the description of a physical tape containing the basic evaluated nuclear data library of neutron-nucleus interaction cross sections, photon production cross sections and photon-atom interaction cross sections for fusion applications. It is part of the evaluated nuclear data library for fusion applications FENDL-2. The data are available cost-free from the Nuclear Data Section upon request. The data can also be retrieved by the user via online access through international computer networks. (author)
Molecular dynamical and structural studies for the bakelite by neutron cross section measurements
International Nuclear Information System (INIS)
Voi, D.L.
1992-05-01
Neutron reaction cross sections were determined by transmission and scattering measurements, to study the dynamics and molecular structure of calcined bakelites. Total cross sections were determined, with a deviation smaller than 5%, from the literature values, by neutron transmission method and a specially devised approximation. These cross sections were then correlated with data obtained with infra-red spectroscopy, elemental analysis and other techniques to get the probable molecular formulae of bakelite. Double differential scattering cross sections, scattering law values and frequency distributions were determined with 15% error using the neutron inelastic scattering method. The frequency distributions as well as the overall results from all experimental techniques used in this work allowed to suggest a structural model like polycyclic hydrocarbons, for calcined bakelite at 800 0 C. (author)
Energy Technology Data Exchange (ETDEWEB)
Voi, Dante Luiz Voi [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil); Rocha, Helio Fenandes da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Puericultura e Pediatria Martagao Gesteira
2002-07-01
Amino acids used in parenteral administration in hospital patients with special importance in nutritional applications were analyzed to compare with the manufactory data. Individual amino acid samples of phenylalanine, cysteine, methionine, tyrosine and threonine were measured with the neutron crystal spectrometer installed at the J-9 irradiation channel of the 1 kW Argonaut Reactor of the Instituto de Engenharia Nuclear (IEN). Gold and D{sub 2}O high purity samples were used for the experimental system calibration. Neutron cross section values were calculated from chemical composition, conformation and molecular structure analysis of the materials. Literature data were manipulated by parceling and grouping neutron cross sections. (author)
Energy Technology Data Exchange (ETDEWEB)
Michael A. Pope; Javier Ortensi; Abderafi Ougouag
2010-10-01
In Very High Temperature Reactors (VHTRs), the long mean-free-path and large migration area of neutrons leads to spectral influences between fuel and reflector zones over long distances. This presents significant challenges to the validity of the classic two-step approach of cross section preparation wherein infinite lattice transport calculations are performed on relatively small physical domains (e.g. single assembly) in order to compute homogenized few-group cross sections for whole core analysis. Effects of the inner and outer reflectors render infinite lattice calculations on a single peripheral fuel assembly quite inaccurate, while burnable poison locations affect neighboring assemblies as well. Use of transuranics-only (TRU) Deep Burn fuel in a prismatic VHTR (DB-VHTR) presents the additional challenge of producing vastly different neutron spectra between fresh and burned fuel. ?This paper presents the progress in seeking a systematic method for generation of diffusion theory data in optically thin, multiply-heterogeneous reactors in a production context. A companion paper presents the underlying theory and systematic development of the methodology. In the context of this work, a supercell refers to an extended domain surrounding a region of interest. The extended domain is used to decouple the solution in this region of interest from the boundary conditions of the problem. This is an extension of the concept of color set, which was demonstrated to work very well for light water reactors (LWR). However, a half-assembly in an LWR presents a greater neutronic depth (in mean free paths) than in a VHTR. ??In order to make the supercell calculations more computationally manageable, an initial calculation is performed on a small domain and individual cells (individual compacts or coolant channels with graphite surrounding) are homogenized then used in the supercell calculations. This allows faster computation on the larger domain while retaining the overall
Semiclassical model of cross section for fast neutrons
International Nuclear Information System (INIS)
Rosato, A.; D'Oliveira, A.A.
1977-01-01
A study for main aspects of fast neutron scattering is presented and, a semiclassical approximation applying to several pratic cases is described. The obtained results are compared with experimental data for deformed nuclei, and, with theoretical data based on optical model without treatment of deformations. (M.C.K.) [pt
Directory of Open Access Journals (Sweden)
О. О. Gritzay
2016-12-01
Full Text Available Development of the technique for determination of the total neutron cross sections from the measurements of sample transmission by filtered neutrons, scattered on hydrogen is described. One of the methods of the transmission determination TH52Cr from the measurements of 52Cr sample, using average energy shift method for filtered neutron beam is presented. Using two methods of the experimental data processing, one of which is presented in this paper (another in [1], there is presented a set of transmissions, obtained for different samples and for different measurement angles. Two methods are fundamentally different; therefore, we can consider the obtained processing results, using these methods as independent. In future, obtained set of transmissions is planned to be used for determination of the parameters E0, Гn and R/ of the resonance 52Cr at the energy of 50 keV.
Calculation of inelastic cross-sections for: H++Cs→H(n=2)+Cs+
International Nuclear Information System (INIS)
Valance, A.; Spiess, G.
1975-01-01
The cross sections for the processes H + + Cs→H(2p and 2s) + Cs + were calculated in the center of mass energy range 250-2400eV using a pseudo-potential formalism for the potential curves and coupling matrix elements and a perturbated stationary state formulation for the calculation of the cross sections [fr
Energy dependent neutron sputtering and surface damage cross sections
International Nuclear Information System (INIS)
Odette, G.R.; Doiron, D.R.; Kennerley, R.J.
1976-01-01
The results clearly indicate that damage function analysis might be usefully applied to define both the neutron and primary recoil energy dependence of sputtering yields. Even with relatively large data errors, it appears that it is possible to both detect the existence and indicate the form of the deviation of sputtering yield from linear damage energy dependence (if such deviation exists). This information would be very useful in developing improved models of the sputtering phenomena
Photo cross-sections for stellar atmosphere calculations - Compilation of references and data
International Nuclear Information System (INIS)
Mathisen, R.
1984-09-01
Photo cross-section data for continuum absorption and scattering processes of importance to stellar model atmosphere calculations are reviewed, and the results of an evaluation of the most reliable cross-section data available are presented. The paper contains two parts. In part I a compilation of references to recent work on photo cross-sections is given. Part II contains a selected set of cross-section data. It is believed that reliable data for most continuum processes, operating in normal stellar atmospheres, are included. The data are presented in a way easy to use in practical model calculations. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Hoffman, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-09-06
We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from Terbium (Z = 65) to Rhenium (Z = 75). Of particular interest are the cross sections on Tm, Lu, and Ta including reactions on isomeric targets.
COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program
Energy Technology Data Exchange (ETDEWEB)
Woo Y. Yoon; David W. Nigg
2009-08-01
COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete
COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program
Energy Technology Data Exchange (ETDEWEB)
Woo Y. Yoon; David W. Nigg
2008-09-01
COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete
Measurement of the Amm242 neutron-induced reaction cross sections
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Wimer, N.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; Ullmann, J. L.; Dance Collaboration
2017-02-01
The neutron-induced reaction cross sections of Amm242 were measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. A new neutron-capture cross section was determined, and the absolute scale was set according to a concurrent measurement of the well-known Amm242(n ,f ) cross section. The (n ,γ ) cross section was measured from thermal energy to an incident energy of 1 eV at which point the data quality was limited by the reaction yield in the laboratory. Our new Amm242 fission cross section was normalized to ENDF/B-VII.1 to set the absolute scale, and it agreed well with the (n ,f ) cross section reported by Browne et al. (1984) from thermal energy to 1 keV. The average absolute capture-to-fission ratio was determined from thermal energy to En=0.1 eV, and it was found to be 26(4)% as opposed to the ratio of 19 % from the ENDF/B-VII.1 evaluation.
Measurement of the neutron capture cross section of 99Tc using ANNRI at J-PARC
Katabuchi, Tatsuya; Mizumoto, Motoharu; Igashira, Masayuki; Terada, Kazushi; Kimura, Atsushi; Nakamura, Shoji; Nakao, Taro; Iwamoto, Osamu; Iwamoto, Nobuyuki; Mizuyama, Kazuhito; Harada, Hideo; Hori, Jun-ich; Kino, Koichi
2017-09-01
The neutron capture cross section of 99Tc was measured using NaI(Tl) detectors of the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex (J-PARC) in the energy range from thermal to the keV energy region. Preliminary results were presented and compared with previous measurements and evaluations.
Expected anomalies of the neutron cross section near the liquid-glass transition
International Nuclear Information System (INIS)
Gotze, W.
1987-01-01
In the frameworks of a microscopic theory the anomalies of the neutron cross section near the liquid-glass transition are discussed. The central concept of the theory is the correlation function for density fluctuations of wave vector q and frequency ω. Its absorptive part is proportional to the dynamical structure factor S(q, ω), this is the scattering law for coherent neutron scattering. Tagged particle motion is evaluated as well and it yields the incoherent neutron scattering cross section S i (q, ω) in. The predictions of the theory for S(q, ω) and Si (q, ω) a q-ω domain are given
Status of measured neutron cross sections of transactinium isotopes for thermal reactors
International Nuclear Information System (INIS)
Benjamin, R.W.
1976-01-01
Experimentally determined neutron cross sections, resonance parameters, and the average number of neutrons per fission for neutron-induced fission of actinide nuclides in the production chains associated with thermal and near-thermal reactors are summarized and compared with user requests for experimental data. The primary fertile and fissile isotopes 232 Th, 233 U, 235 U, 238 U, and 239 Pu are excluded from this survey. Integral data, i.e., spectrum-averaged thermal cross sections and resonance integrals, are included, but the emphasis is placed on energy-dependent differential cross sections because of their general utility with any specified neutron energy spectrum. Included with the data summaries are an extensive survey of the literature through August 1975, brief descriptions of measurements known to be in progress or firmly planned for the immediate future, and recommendations for needed measurements. (author)
Status of measured neutron cross sections of transactinium isotopes for thermal reactors
International Nuclear Information System (INIS)
Benjamin, R.W.
1975-01-01
Experimentally determined neutron cross sections, resonance parameters, and the average number of neutrons per fission for neutron-induced fission of actinide nuclides in the production chains associated with thermal and near-thermal reactors are summarized and compared with user requests for experimental data. The primary fertile and fissile isotopes 232 Th, 233 U, 235 U, 238 U, and 239 Pu are excluded from this survey. Integral data, i.e., spectrum-averaged thermal cross sections and resonance integrals, are included, but the emphasis is placed on energy-dependent differential cross sections because of their general utility with any specified neutron energy spectrum. Included with the data summaries are an extensive survey of the literature through August 1975, brief descriptions of measurements known to be in progress or firmly planned for the immediate future, and recommendations for needed measurements. (3 figures, 5 tables)
High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209
Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C
2011-01-01
The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.
Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections
Tagliente, G; Fujii, K; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Bisterzo, S; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Goncalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tain, J.L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M.C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K
2011-01-01
The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.
Nuclear Forensics and Radiochemistry: Cross Sections
Energy Technology Data Exchange (ETDEWEB)
Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-08
The neutron activation of components in a nuclear device can provide useful signatures of weapon design or sophistication. This lecture will cover some of the basics of neutron reaction cross sections. Nuclear reactor cross sections will also be presented to illustrate the complexity of convolving neutron energy spectra with nuclear excitation functions to calculate useful effective reactor cross sections. Deficiencies in the nuclear database will be discussed along with tools available at Los Alamos to provide new neutron cross section data.
Study on keV-neutron capture cross sections and capture γ-ray spectra of 117,119Sn
International Nuclear Information System (INIS)
Nishiyama, J.; Igashira, M.; Ohsaki, T.; Kim, G.N.; Chung, W.C.; Ro, T.I.
2006-01-01
The capture cross sections and capture γ-ray spectra of 117,119 Sn were measured in an incident neutron energy region from 10 to 100 keV and at 570 keV, using a 1.5-ns pulsed neutron source by the 7 Li(p,n) 7 Be reaction and a large anti-Compton NaI(Tl) γ-ray spectrometer. A pulse-height weighting technique was applied to observed capture γ-ray pulse-height spectra to derive capture yields. The capture cross sections of 117,119 Sn were obtained with the error of about 5% by using the standard capture cross sections of 197 Au. The present cross sections were compared with previous experimental data and the evaluated values in JENDL-3.3 and ENDF/B-VI. The capture γ-ray spectra of 117,119 Sn were derived by unfolding the observed capture γ-ray pulse-height spectra. The calculations of capture cross sections and capture γ-ray spectra of 117,119 Sn were performed with the EMPIRE-II code. The calculated results were compared with the present experimental ones. (author)
Evaluation of neutron cross sections for a complete set of Dy isotopes
International Nuclear Information System (INIS)
Kim, Hyeong Il; Herman, M.; Mughabghab, S.F.; Oblozinsky, P.; Lee, Young-Ouk
2008-01-01
Neutron cross sections for a complete set of Dy isotopes, 156,158,160,161,162,163,164 Dy, were evaluated in the incident energy range from 10 -5 eV to 20 MeV. In the low energy region, including thermal and resolved resonances, our evaluations are based on the latest data published in the Atlas of Neutron Resonances. In the unresolved resonance region we performed additional evaluation by using the averages of the resolved resonances and adjusting them to the experimental data. In the fast neutron region, we used the nuclear reaction model code EMPIRE-2.19 with the model parameters adjusted to the experimental data. The results are compared with the available experimental data and with the existing nuclear data libraries, including ENDF/B-VI.8 and JEFF-3.1. The new evaluations are suitable for neutron transport calculations and they were adopted by the new US evaluated nuclear data library, ENDF/B-VII.0, released in December 2006
INTER, ENDF/B Thermal Cross-Sections, Resonance Integrals, G-Factors Calculation
International Nuclear Information System (INIS)
Dunford, Charles L.
2007-01-01
1 - Description of program or function: INTER calculates thermal cross sections, g-factors, resonance integrals, fission spectrum averaged cross sections and 14.0 MeV (or other energy) cross sections for major reactions in an ENDF-6 or ENDF-5 format data file. Version 7.01 (Jan 2005): set success flag after return from beginning. 2 - Method of solution: INTER performs integrations by using the trapezoidal rule
239Pu neutron cross-sections in the resolved-resonance region
International Nuclear Information System (INIS)
Luk'yanov, A.A.; Kolesov, V.V.; Toshkov, S.; Yaneva, N.
1988-01-01
The authors have determined the multi-level parameters for description of the total and fission cross-sections for 239 Pu in the resolved-resonance region up to 500 eV. A method has been developed for the construction of the elastic scattering and radiative capture resonance cross-sections using these parameters. The group-averaged cross-sections for experimental and evaluated data have been calculated in the energy region considered. (author). Refs, 4 tabs
Total cross section measurement of radioactive isotopes with a thin beam neutron spectrometer
International Nuclear Information System (INIS)
Razbudej, V.F.; Vertebnyj, V.P.; Padun, G.S.; Muravitskij, A.V.
1975-01-01
The method for measuring the neutron total cross sections of radioactive isotopes by a time-of-flight spectrometer with a narrow (0.17 mm in diameter) beam of thermal neutrons is described. The distinguishing feature of this method is the use of capillary samples with a small amount of substance (0.05-1.0 mg). The energy range is 0.01-0.3 eV. The total cross sections of irradiated samples of sub(153)Eu and sub(151)Eu are measured. From them are obtained the cross sections of sub(152)Eu (Tsub(1/2)=12.4 g) and of sub(154)E (Tsub(1/2)=8.6 yr); they equal 11400+-1400 and 1530+-190 barn at E=0.0253 eV. The cross section of the sub(152)Eu absorption for the thermal spectrum (T=333 K) is determined by the activation method; it is 8900+-1200 barn
Formalism for neutron cross section covariances in the resonance region using kernel approximation
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho,Y-S.; Matoon,C.M.; Mughabghab,S.F.
2010-04-09
We describe analytical formalism for estimating neutron radiative capture and elastic scattering cross section covariances in the resolved resonance region. We use capture and scattering kernels as the starting point and show how to get average cross sections in broader energy bins, derive analytical expressions for cross section sensitivities, and deduce cross section covariances from the resonance parameter uncertainties in the recently published Atlas of Neutron Resonances. The formalism elucidates the role of resonance parameter correlations which become important if several strong resonances are located in one energy group. Importance of potential scattering uncertainty as well as correlation between potential scattering and resonance scattering is also examined. Practical application of the formalism is illustrated on {sup 55}Mn(n,{gamma}) and {sup 55}Mn(n,el).
Application of a simple Ramsauer model for neutron total cross sections
International Nuclear Information System (INIS)
Bauer, R.W.; Anderson, J.D.; Grimes, S.M.; Knapp, D.A.; Madsen, V.A.
1998-01-01
A companion paper presented arguments that support the applicability of a simple Ramsauer model to describe neutron total cross sections. Such a model yields a simple equation for the energy dependence of the cross section of a given nucleus and also allows extrapolation to nuclei of other A values. Fits of the Ramsauer form to very precise total cross sections recently measured over an extended energy range are presented. Very good fits are obtained for neutron energies between 6 and 60 MeV, suggesting that this approach will be useful for estimating cross sections in cases where experimental data are unavailable. Extension of this model to 120 MeV was only moderately successful
Absolute measurement of the 242Pu neutron-capture cross section
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration
2016-04-01
The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.
Energy Technology Data Exchange (ETDEWEB)
Tardelli, T.C.; Stecher, L.C.; Coelho, T.S.; Castro, V.A. De; Cavalieri, T.A.; Menzel, F.; Giarola, R.S.; Domingos, D.B.; Yoriyaz, H., E-mail: tiago.tardelli@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear
2013-08-15
Absorbed dose calculations depend on a consistent set of nuclear data used in simulations in computer codes. Nuclear data are stored in libraries, however, the information available about the differences in dose caused by different libraries are rare. The libraries are processed by a computer system to be able to be used by a radiation transport code. One of the systems capable of processing nuclear data is the NJOY system. The objective of this study is to evaluate the nuclear data libraries for neutrons available in the literature, and to quantify the differences in absorbed dose obtained using the libraries JENDL 4.0, JEFF 3.3.1 and ENDF/B.VII. The absorbed dose calculation was performed on a simple geometric model, as spheres, and in anthropomorphic model of the human body based on the ICRP-110 for neutron transport simulation using the MCNP5 code. The results were compared with literature data. The results obtained with cross sections from the libraries JEFF and ENDF/B.VII have shown to be identical in most cases, except for one case where the difference has exceeded 10%. The results obtained with JENDL library has shown to be considerably different in most cases comparing to other two libraries. Some differences were over 200%. The dose calculations showed differences between the libraries, which is justified by differences in the cross sections. It has been observed that the cross sections values of certain nuclides assume quite different values in different libraries. These differences in turn cause considerable differences in dose calculations. (author)
Thermal-neutron fission cross section of 26. 1-min /sup 235/U/sup m/
Energy Technology Data Exchange (ETDEWEB)
Talbert W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep M. Jr.; Efurd, D.W.; Roensch, F.R.
1987-11-01
The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio sigma/sub m//sigma/sub g/.
Photoneutron cross sections measurements in 13C with thermal neutron capture gamma-rays
International Nuclear Information System (INIS)
Semmler, Renato; Carbonari, Artur W.; Terremoto, Luis A.A.; Goncalez, Odair L.
2007-01-01
Photoneutrons cross sections measurements of 13 C have been obtained in energy interval between 5,3 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 - 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (2MW) research reactor. The sample have been irradiated inside a 4p geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm 3 , 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A methodology for unfolding the set of experimental compound cross sections, have been used in order to obtain the cross sections at specific excitation energy values (principal gamma lines energies of the capture targets). The cross sections were compared with experimental data, reported by other authors, using different gamma-ray sources. A good agreement was observed between in this work and reported in the literature. (author)
Photoneutron cross sections measurements in {sup 13}C with thermal neutron capture gamma-rays
Energy Technology Data Exchange (ETDEWEB)
Semmler, Renato; Carbonari, Artur W.; Terremoto, Luis A.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: rsemmler@ipen.br; carbonar@ipen.br; laaterre@ipen.br; Goncalez, Odair L. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados]. E-mail: odairl@ieav.cta.br
2007-07-01
Photoneutrons cross sections measurements of {sup 13}C have been obtained in energy interval between 5,3 and 10,8 MeV, using neutron capture gamma-rays with high resolution in energy (3 - 21 eV), produced by 21 target materials, placed inside a tangential beam port, near the core of the IPEN/CNEN-SP IEA-R1 (2MW) research reactor. The sample have been irradiated inside a 4p geometry neutron detector system 'Long Counter', 520,5 cm away from the capture target. The capture gamma-ray flux was determined by means of the analysis of the gamma spectrum obtained by using a Ge(Li) solid-state detector (EG and G ORTEC, 25 cm{sup 3}, 5%), previously calibrated with capture gamma-rays from a standard target of Nitrogen (Melamine). The neutron photoproduction cross section has been measured for each target capture gamma-ray spectrum (compound cross section). A methodology for unfolding the set of experimental compound cross sections, have been used in order to obtain the cross sections at specific excitation energy values (principal gamma lines energies of the capture targets). The cross sections were compared with experimental data, reported by other authors, using different gamma-ray sources. A good agreement was observed between in this work and reported in the literature. (author)
COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program
Energy Technology Data Exchange (ETDEWEB)
Woo Y. Yoon; David W. Nigg
2011-09-01
COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be
Neutron-induced capture cross sections of short-lived actinides with the surrogate reaction method
Directory of Open Access Journals (Sweden)
Gunsing F.
2010-03-01
Full Text Available Determination of neutron-capture cross sections of short-lived nuclei is opening the way to understand and clarify the properties of many nuclei of interest for nuclear structure physics, nuclear astrophysics and particularly for transmutation of nuclear wastes. The surrogate approach is well-recognized as a potentially very useful method to extract neutron cross sections for low-energy compound-nuclear reactions and to overcome the difficulties related to the target radioactivity. In this work we will assess where we stand on these neutron-capture cross section measurements and how we can achieve the short-lived Minor Actinides nuclei involved in the nuclear fuel cycle. The CENBG collaboration applied the surrogate method to determine the neutron-capture cross section of 233Pa (T1/2 = 27 d. The 233Pa (n,γ cross section is then deduced from the measured gamma decay probability of 234Pa compound nucleus formed via the surrogate 232Th(3He,p reaction channel. The obtained cross section data, covering the neutron energy range 0.1 to 1 MeV, have been compared with the predictions of the Hauser-Feshbach statistical model. The importance of establishing benchmarks is stressed for the minor actinides region. However, the lack of desired targets led us to propose recently the 174Yb (3He,pγ reaction as a surrogate reaction for the (n,γ predetermined benchmark cross section of 175Lu. An overview of the experimental setup combining gamma ray detectors such as Ge and C6D6 in coincidence with light charged particles ΔE-E Telescopes will be presented and preliminary results will be discussed.
Isomeric cross sections of neutron induced reactions on Ge and Ir isotopes
International Nuclear Information System (INIS)
Vlastou, R.; Papadopoulos, C.T.; Kokkoris, M.; Perdikakis, G.; Galanopoulos, S.; Patronis, N.; Serris, M.; Perdikakis, G.; Harissopulos, S.; Demetriou, P.
2008-01-01
The 72 Ge(n,α) 69m Zn, 74 Ge(n,α) 71m Zn, 76 Ge(n,2n) 75g+m Ge and 191 Ir(n,2n) 190 Ir g+m1 and 191 Ir(n,2n) 190 Ir m2 reaction cross sections were measured from 9.6 to 11.4 MeV relative to the 27 Al(n,α) 24 Na reference reaction via the activation method. The quasi-monoenergetic neutron beams were produced via the 2 H(d,n) 3 He reaction at the 5 MV VdG Tandem T11/25 accelerator of NCSR 'Demokritos'. Statistical model calculations using the codes STAPRE-F and EMPIRE (version 2.19) and taking into account pre-equilibrium emission were performed on the data measured in this work as well as on data reported in literature. (authors)
International Nuclear Information System (INIS)
Suwoto
2002-01-01
The integral testing of neutron cross-sections for Stainless Steel SUS-310 contained in various nuclear data files have been performed. The shielding benchmark calculations for Stainless Steel SUS-310 has been analysed through ORNL-Broomstick Experiment calculation which performed by MAERKER, R.E. at ORNL - USA ( 1) . Assessment with JENDL-3.1, JENDL-3.2, ENDF/B-IV, ENDF/B-VI nuclear data files and data from GEEL have also been carried out. The overall calculation results SUS-310 show in a good agreement with the experimental data, although, underestimate results appear below 3 MeV for all nuclear data files. These underestimation tendencies clearly caused by presented of iron nuclide which more than half in Stainless Steel compound. The total neutron cross-sections of iron nuclide contained in various nuclear data files relatively lower on that energy ranges
Energy Technology Data Exchange (ETDEWEB)
Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-04-11
Calculations for total cross sections and compound-nucleus (CN) formation cross sections for americium isotopes are described, for use in the 2017 NA-22 evaluation effort. The code ECIS 2006 was used in conjunction with Frank Dietrich's wrapper `runtemplate'.
MUXS: a code to generate multigroup cross sections for sputtering calculations
Energy Technology Data Exchange (ETDEWEB)
Hoffman, T.J.; Robinson, M.T.; Dodds, H.L. Jr.
1982-10-01
This report documents MUXS, a computer code to generate multigroup cross sections for charged particle transport problems. Cross sections generated by MUXS can be used in many multigroup transport codes, with minor modifications to these codes, to calculate sputtering yields, reflection coefficients, penetration distances, etc.
On calculating phase shifts and performing fits to scattering cross sections or transport properties
International Nuclear Information System (INIS)
Hepburn, J.W.; Roy, R.J. Le
1978-01-01
Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)
Covariances of the few-group homogenized cross-sections for diffusion calculation
Energy Technology Data Exchange (ETDEWEB)
Sánchez-Cervera, S.; Castro, S.; García-Herranz, N.
2015-07-01
In the context of the NEA/OECD benchmark for Uncertainty Analysis in Modelling (UAM), Exercise I-3 consists of neutronic calculations to propagate uncertainties to core parameters such as k-effective or power distribution. In core simulators, the input uncertainties arise, among others, from few-group lattice-averaged cross-section uncertainties. In this paper, an analysis of those uncertainties due to nuclear data is performed. The core analyzed in Exercise I-3 is the initial loading of the PWR TMI-1, composed by 11 different types of fuel assemblies. By statistically sampling the nuclear data input, the sequence SAMPLER from SCALE system (using its NEWT lattice code) allows to obtain the few-group homogenized cross-sections and with a statistical analysis generates the covariance matrices. The correlations among different reactions and energy groups of the covariance matrices are analyzed. The impact of burnable poisons, control rods or the environment of the assembly is also assessed. It is shown the importance of the correlation between different assembly types. The global covariance matrix will permit to compute the uncertainties in k-eff in a core simulator, once sensitivity coefficients are known. Only if the complete covariance matrix is considered, similar uncertainties to the ones provided by other methodologies are obtained. (Author)
New Standard Evaluated Neutron Cross Section Libraries for the GEANT4 Code and First Verification
Mendoza, Emilio; Koi, Tatsumi; Guerrero, Carlos
2014-01-01
The Monte Carlo simulation of the interaction of neutrons with matter relies on evaluated nuclear data libraries and models. The evaluated libraries are compilations of measured physical parameters (such as cross sections) combined with predictions of nuclear model calculations which have been adjusted to reproduce the experimental data. The results obtained from the simulations depend largely on the accuracy of the underlying nuclear data used, and thus it is important to have access to the nuclear data libraries available, either of general use or compiled for specific applications, and to perform exhaustive validations which cover the wide scope of application of the simulation code. In this paper we describe the work performed in order to extend the capabilities of the GEANT4 toolkit for the simulation of the interaction of neutrons with matter at neutron energies up to 20 MeV and a first verification of the results obtained. Such a work is of relevance for applications as diverse as the simulation of a n...
Neutron cross section covariances in the resonance region: 52Cr, 56Fe, 58Ni
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho, Y.-S.; Mattoon, C.M.; Mughabghab, S.F.
2010-08-03
We evaluated covariances for neutron capture and elastic scattering cross sections on major structural materials, {sup 52}Cr, {sup 56}Fe and {sup 58}Ni, in the resonance region which extends beyond 800 keV for each of them. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. The data of most interest for AFCI applications, elastic scattering cross section uncertainties at energies above about few hundred keV, are on the level of about 12% for {sup 52}Cr, 7-8% for {sup 56}Fe and 5-6% for {sup 58}Ni.
Kitis, G; Wiescher, M; Dahlfors, M; Soares, J
2002-01-01
We propose to measure the neutron capture cross sections of $^{139}$La, of $^{93}$Zr (t$_{1/2}$)=1.5 10$^{6}$ yr), and of all the stable Zr isotopes at n_TOF. The aim of these measurements is to improve the accuracy of existing results by at least a factor of three in order to meet the quality required for using the s-process nucleosynthesis as a diagnostic tool for neutron exposure and neutron flux during the He burning stages of stellar evolution. Combining these results with a wealth of recent information coming from high-resolution stellar spectroscopy and from the detailed analysis of presolar dust grains will shed new light on the chemical history of the universe. The investigated cross sections are also needed for technological applications, in particular since $^{93}$Zr is one of the major long-lived fission products.
International Nuclear Information System (INIS)
Petrov, Nikolay; Todorova, Galina; Kolev, Nikola; Damian, Frederic
2011-01-01
The accurate and efficient MOC calculation scheme in APOLLO2, developed by CEA for generating multi-parameterized cross-section libraries for PWR assemblies, has been adapted to hexagonal assemblies. The neutronic part of this scheme is based on a two-level calculation methodology. At the first level, a multi-cell method is used in 281 energy groups for cross-section definition and self-shielding. At the second level, precise MOC calculations are performed in a collapsed energy mesh (30-40 groups). In this paper, the application and validation of the two-level scheme for hexagonal assemblies is described. Solutions for a VVER assembly are compared with TRIPOLI4® calculations and direct 281g MOC solutions. The results show that the accuracy is close to that of the 281g MOC calculation while the CPU time is substantially reduced. Compared to the multi-cell method, the accuracy is markedly improved. (author)
International Nuclear Information System (INIS)
Peter Bosted; M. E. Christy
2007-01-01
An empirical fit is described to measurements of inclusive inelastic electron-deuteron cross sections in the kinematic range of four-momentum transfer 0 (le) Q 2 2 and final state invariant mass 1.2 p of longitudinal to transverse cross sections for the proton, and the assumption R p =R n . The underlying fit parameters describe the average cross section for proton and neutron, with a plane-wave impulse approximation (PWIA) used to fit to the deuteron data. Pseudo-data from MAID 2007 were used to constrain the average nucleon cross sections for W<1.2 GeV. The mean deviation of data from the fit is 3%, with less than 5% of the data points deviating from the fit by more than 10%
Energy Technology Data Exchange (ETDEWEB)
Iga, Kiminori; Ishibashi, Kenji; Shigyo, Nobuhiro [Kyushu Univ., Fukuoka (Japan)] [and others
1998-03-01
Neutron and gamma-ray production double differential cross sections were measured for iron by the use of 1.5 GeV {pi}{sup +} mesons. The measured cross sections were compared with the calculated values by HETC-KFA2. For the neutrons, the calculated results deviate from the experimental data in the neutron energy region below 30 MeV. The calculated values of gamma-ray production agree with the experimental data at gamma-ray energies from 1 to 7 MeV within a factor of three. (author)
Andrianova, Olga; Lomakov, Gleb; Manturov, Gennady
2017-09-01
The neutron transmission experiments are one of the main sources of information about the neutron cross section resonance structure and effect in the self-shielding. Such kind of data for niobium and silicon nuclides in energy range 7 keV to 3 MeV can be obtained from low-resolution transmission measurements performed earlier in Russia (with samples of 0.027 to 0.871 atom/barn for niobium and 0.076 to 1.803 atom/barn for silicon). A significant calculation-to-experiment discrepancy in energy range 100 to 600 keV and 300 to 800 keV for niobium and silicon, respectively, obtained using the evaluated nuclear data library ROSFOND, were found. The EVPAR code was used for estimation the average resonance parameters in energy range 7 to 600 keV for niobium. For silicon a stochastic optimization method was used to modify the resolved resonance parameters in energy range 300 to 800 keV. The improved ROSFOND evaluated nuclear data files were tested in calculation of ICSBEP integral benchmark experiments.
Energy Technology Data Exchange (ETDEWEB)
Piñera, Ibrahin, E-mail: ipinera@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Cruz, Carlos M.; Leyva, Antonio; Abreu, Yamiel; Cabal, Ana E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Espen, Piet Van; Remortel, Nick Van [University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)
2014-11-15
Highlights: • We present a calculation procedure for dpa cross section in solids under irradiation. • Improvement about 10–90% for the gamma irradiation induced dpa cross section. • Improvement about 5–50% for the electron irradiation induced dpa cross section. • More precise results (20–70%) for thin samples irradiated with electrons. - Abstract: Several authors had estimated the displacements per atom cross sections under different approximations and models, including most of the main gamma- and electron-material interaction processes. These previous works used numerical approximation formulas which are applicable for limited energy ranges. We proposed the Monte Carlo assisted Classical Method (MCCM), which relates the established theories about atom displacements to the electron and positron secondary fluence distributions calculated from the Monte Carlo simulation. In this study the MCCM procedure is adapted in order to estimate the displacements per atom cross sections for gamma and electron irradiation. The results obtained through this procedure are compared with previous theoretical calculations. An improvement in about 10–90% for the gamma irradiation induced dpa cross section is observed in our results on regard to the previous evaluations for the studied incident energies. On the other hand, the dpa cross section values produced by irradiation with electrons are improved by our calculations in about 5–50% when compared with the theoretical approximations. When thin samples are irradiated with electrons, more precise results are obtained through the MCCM (in about 20–70%) with respect to the previous studies.
International Nuclear Information System (INIS)
Belanova, T.S.
1994-12-01
Data on the thermal neutron fission and capture cross-sections as well as their corresponding resonance integrals are reviewed and analysed. The data are classified according to the form of neutron spectra under investigation. The weighted mean values of the cross-sections and resonance integrals for every type of neutron spectra were adopted as evaluated data. (author). 87 refs, 2 tabs
Thermal-hydraulically corrected neutron cross-sections for PWR reactors
Energy Technology Data Exchange (ETDEWEB)
Santiago, Daniela M.N.; Alvim, Antonio C.M.; Silva, Fernando C., E-mail: dsantiago@con.ufrj.b, E-mail: alvim@con.ufrj.b, E-mail: fernando@con.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear
2011-07-01
Reactor core simulation codes ought to have a thermal-hydraulics feedback module. This module calculates, among other effects, the fuel temperature thermal-hydraulics feedback, that corrects neutron cross sections. In the nodal code developed at PEN/COPPE/UFRJ, the fuel temperature is obtained through an empirical model. This work presents a physical model to calculate this temperature. A finite volume technique was used to discretize the equation for temperature distribution, while the moderator coefficient of heat transfer was calculated using ASME routines, appended to the developed code. This model allows calculation of an average radial temperature per node, since the thermal-hydraulic feedback must follow the conditions imposed by the nodal code. The results obtained were compared with the ones obtained by the empirical model. The results show that, for fuel elements near core periphery, the empirical model overestimates the temperature in the fuel, as compared to our model, which may indicate that the physical model is more appropriate to calculate the thermal-hydraulic feedback temperatures. (author)
Evaluation of Neutron-induced Cross Sections and their Related Covariances with Physical Constraints
De Saint Jean, C.; Archier, P.; Privas, E.; Noguère, G.; Habert, B.; Tamagno, P.
2018-02-01
Nuclear data, along with numerical methods and the associated calculation schemes, continue to play a key role in reactor design, reactor core operating parameters calculations, fuel cycle management and criticality safety calculations. Due to the intensive use of Monte-Carlo calculations reducing numerical biases, the final accuracy of neutronic calculations increasingly depends on the quality of nuclear data used. This paper gives a broad picture of all ingredients treated by nuclear data evaluators during their analyses. After giving an introduction to nuclear data evaluation, we present implications of using the Bayesian inference to obtain evaluated cross sections and related uncertainties. In particular, a focus is made on systematic uncertainties appearing in the analysis of differential measurements as well as advantages and drawbacks one may encounter by analyzing integral experiments. The evaluation work is in general done independently in the resonance and in the continuum energy ranges giving rise to inconsistencies in evaluated files. For future evaluations on the whole energy range, we call attention to two innovative methods used to analyze several nuclear reaction models and impose constraints. Finally, we discuss suggestions for possible improvements in the evaluation process to master the quantification of uncertainties. These are associated with experiments (microscopic and integral), nuclear reaction theories and the Bayesian inference.
Numerical calculation of the cross section by the solution of the wave equation
International Nuclear Information System (INIS)
Drewko, J.
1982-01-01
A numerical method of solving of the wave equation is described for chosen vibrational eigenfunctions. A prepared program calculates the total cross sections for the resonant vibrational excitation for diatomic molecules on the basis of introduced molecular data. (author)
KAPSIES: A program for the calculation of multi-step direct reaction cross sections
International Nuclear Information System (INIS)
Koning, A.J.; Akkermans, J.M.
1994-09-01
We present a program for the calculation of continuum cross sections, sepctra, angular distributions and analyzing powers according to various quantum-mechanical theories for statistical multi-step direct nuclear reactions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brown, Nicholas [Pennsylvania State University, University Park; Burns, Joseph R. [ORNL
2017-12-01
The aftermath of the Tōhoku earthquake and the Fukushima accident has led to a global push to improve the safety of existing light water reactors. A key component of this initiative is the development of nuclear fuel and cladding materials with potentially enhanced accident tolerance, also known as accident-tolerant fuels (ATF). These materials are intended to improve core fuel and cladding integrity under beyond design basis accident conditions while maintaining or enhancing reactor performance and safety characteristics during normal operation. To complement research that has already been carried out to characterize ATF neutronics, the present study provides an initial investigation of the sensitivity and uncertainty of ATF systems responses to nuclear cross section data. ATF concepts incorporate novel materials, including SiC and FeCrAl cladding and high density uranium silicide composite fuels, in turn introducing new cross section sensitivities and uncertainties which may behave differently from traditional fuel and cladding materials. In this paper, we conducted sensitivity and uncertainty analysis using the TSUNAMI-2D sequence of SCALE with infinite lattice models of ATF assemblies. Of all the ATF materials considered, it is found that radiative capture in 56Fe in FeCrAl cladding is the most significant contributor to eigenvalue uncertainty. 56Fe yields significant potential eigenvalue uncertainty associated with its radiative capture cross section; this is by far the largest ATF-specific uncertainty found in these cases, exceeding even those of uranium. We found that while significant new sensitivities indeed arise, the general sensitivity behavior of ATF assemblies does not markedly differ from traditional UO2/zirconium-based fuel/cladding systems, especially with regard to uncertainties associated with uranium. We assessed the similarity of the IPEN/MB-01 reactor benchmark model to application models with FeCrAl cladding. We used TSUNAMI-IP to calculate
Energy Technology Data Exchange (ETDEWEB)
Leal, L.C.; Wright, R.Q.
1996-10-01
In this report we investigate the adequacy of the available {sup 233}U cross-section data for calculation of experimental critical systems. The {sup 233}U evaluations provided in two evaluated nuclear data libraries, the U.S. Data Bank [ENDF/B (Evaluated Nuclear Data Files)] and the Japanese Data Bank [JENDL (Japanese Evaluated Nuclear Data Library)] are examined. Calculations were performed for six thermal and ten fast experimental critical systems using the S{sub n} transport XSDRNPM code. To verify the performance of the {sup 233}U cross-section data for nuclear criticality safety application in which the neutron energy spectrum is predominantly in the epithermal energy range, calculations of four numerical benchmark systems with energy spectra in the intermediate energy range were done. These calculations serve only as an indication of the difference in calculated results that may be expected when the two {sup 233}U cross-section evaluations are used for problems with neutron spectra in the intermediate energy range. Additionally, comparisons of experimental and calculated central fission rate ratios were also made. The study has suggested that an ad hoc {sup 233}U evaluation based on the JENDL library provides better overall results for both fast and thermal experimental critical systems.
Energy Technology Data Exchange (ETDEWEB)
Leal, L.C.
1993-01-01
In this report we investigate the adequacy of the available {sup 233}U cross-section data for calculation of experimental critical systems. The {sup 233}U evaluations provided in two evaluated nuclear data libraries, the U. S. Data Bank [ENDF/B (Evaluated Nuclear Data Files)] and the Japanese Data Bank [JENDL (Japanese Evaluated Nuclear Data Library)] are examined. Calculations were performed for six thermal and ten fast experimental critical systems using the Sn transport XSDRNPM code. To verify the performance of the {sup 233}U cross-section data for nuclear criticality safety application in which the neutron energy spectrum is predominantly in the epithermal energy range, calculations of four numerical benchmark systems with energy spectra in the intermediate energy range were done. These calculations serve only as an indication of the difference in calculated results that may be expected when the two {sup 233}U cross-section evaluations are used for problems with neutron spectra in the intermediate energy range. Additionally, comparisons of experimental and calculated central fission rate ratios were also made. The study has suggested that an ad hoc {sup 233}U evaluation based on the JENDL library provides better overall results for both fast and thermal experimental critical systems.
Neutron cross section measurements at n-TOF for ADS related studies
Mastinu, P F; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, P A; Audouin, L; Badurek, G; Bustreo, N; Aumann, P; Beva, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Segura, M E; Ferrant, L; Ferrari, A; Ferreira-Marques, R; itzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Guerrero, C; Gonçalves, I; Gallino, R; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Massimi, C; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescherand, M; Wisshak, K
2006-01-01
A neutron Time-of-Flight facility (n_TOF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n_TOF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed.
Neutron cross section measurements at n-TOF for ADS related studies
International Nuclear Information System (INIS)
Mastinu, P F; Abbondanno, U; Aerts, G
2006-01-01
A neutron Time-of-Flight facility (n T OF) is available at CERN since 2001. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron induced reactions relevant to the field of Emerging Nuclear Technologies, as well as to Nuclear Astrophysics and Fundamental Nuclear Physics. The scientific motivations that have led to the construction of this new facility are here presented. The main characteristics of the n T OF neutron beam are described, together with the features of the experimental apparata used for cross-section measurements. The main results of the first measurement campaigns are presented. Preliminary results of capture cross-section measurements of minor actinides, important to ADS project for nuclear waste transmutation, are finally discussed
The CERN n_TOF Facility: Neutron Beams Performances for Cross Section Measurements
Chiaveri, E; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Hernández-Prieto, A; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Krtička, M; Kroll, J; Lampoudis, C; Langer, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Mallick, A; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Robles, M S; Roman, F; Rubbia, C; Sabaté-Gilarte, M; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Žugec, P
2014-01-01
This paper presents the characteristics of the existing CERN n\\_TOF neutron beam facility (n\\_TOF-EAR1 with a flight path of 185 meters) and the future one (n\\_TOF EAR-2 with a flight path of 19 meters), which will operate in parallel from Summer 2014. The new neutron beam will provide a 25 times higher neutron flux delivered in 10 times shorter neutron pulses, thus offering more powerful capabilities for measuring small mass, low cross section and/or high activity samples.
TEMPEST-2, Thermalization Program for Neutron Spectra and Multigroup Cross-Sections
International Nuclear Information System (INIS)
Gowins, G.
1984-01-01
Description of problem or function: TEMPEST2 is a neutron thermalization program based upon the Wigner-Wilkins approximation for light moderators and the Wilkins approximation for heavy moderators. A Maxwellian distribution may also be used. The model used may be selected as a function of energy. The second-order differential equations are integrated directly rather than transformed to the Riccati equation. The program provides microscopic and macroscopic cross-section averages over the thermal neutron spectrum
Removal cross section for 14 MeV neutrons in constructional materials
International Nuclear Information System (INIS)
Vasvary, L.; Divos, F.; Peto, G.; Csikai, J.; Mumba, N.K.
1986-01-01
Using flight time difference the direct and scattered neutrons and gammas produced in the target head and samples were separated. With this method the attenuation of primary neutrons and gammas originating from the target head has been studied. Thickness dependence of the secondary gamma yield from extended samples of Al, Fe, Pb, paraffin and reinforced concrete was also measured. Results indicate a geometry dependence of the removal cross sections. (author)
International Nuclear Information System (INIS)
James, G.D.
1976-01-01
A review of the status of transactinium isotope cross sections in the resonance region and of resolved resonance parameters is given by summarising the work submitted by fourteen contributors and also by highlighting other work where notable progress has been made in our knowledge of neutron resonance phenomena. (author)
Measurements of thermal neutron capture cross sections for some FP nuclides
International Nuclear Information System (INIS)
Nakamura, Shoji; Furutaka, Kazuyoshi; Harada, Hideo; Katoh, Toshio
1999-01-01
The thermal neutron capture cross sections (σ 0 ) and the resonance integrals (I 0 ) of some FP elements, such as 80 Se, 94 Zr, 124 Sn, 127 I and 133 Cs, were measured by the activation and γ-ray spectroscopic method. (author)
New evaluated neutron cross section libraries for the GEANT4 code
International Nuclear Information System (INIS)
Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Capote, R.
2012-04-01
The so-called High Precision neutron physics model implemented in the GEANT4 simulation package allows simulating the transport of neutrons with energies up to 20 MeV. It relies on the G4NDL cross section libraries, prepared by the GEANT4 collaboration from evaluated cross section files and distributed freely together with the code. Even though the performance of the G4NDL library has been improved over the time, users running complex simulations which involve the transport of neutrons do need more flexibility, in particular when assessing the uncertainties in the simulation results due to the neutron (and hence the nuclear) data library used. For this reason, a software tool has been developed for transforming any evaluated neutron cross section library in the ENDF-6 format into the G4NDL format. Furthermore, eight different releases of ENDF-B, JEFF, JENDL, CENDL and BROND national libraries have been translated into the G4NDL format and are distributed by the IAEA nuclear data service at www-nds.iaea.org/geant4. In this way, GEANT4 users have access to the complete list of standard evaluated neutron data libraries when performing Monte Carlo simulations with GEANT4. Consistency checks and a first validation of the libraries have been made following the methods described in this report. (author)
International Nuclear Information System (INIS)
Simakov, S.P.; Fischer, U.; Moellendorff, U. von; Schmuck, I.; Konobeev, A.Yu.; Korovin, Yu.A.; Pereslavtsev, P.
2002-01-01
A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ 6,7 Li cross section data. A new code M c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M c DeLicious code was checked against available experimental data and calculation results of M c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M c DeLicious along with newly evaluated d+ 6,7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data
Simakov, S P; Moellendorff, U V; Schmuck, I; Konobeev, A Y; Korovin, Y A; Pereslavtsev, P
2002-01-01
A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ sup 6 sup , sup 7 Li cross section data. A new code M sup c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M sup c DeLicious code was checked against available experimental data and calculation results of M sup c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M sup c DeLicious along with newly evaluated d+ sup 6 sup , sup 7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data.
Measurement of Neutron Reaction Cross Sections in Carbon using a Single Crystal Diamond Detector
Energy Technology Data Exchange (ETDEWEB)
Pillon, M.; Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, ENEA C.R. Frascati, via E. Fermi, 45 0044 Frascati, Rome (Italy); Krasa, A.; Plompen, A. J. M.; Schillebeeckx, P. [European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, - 2440 Geel (Belgium); Sergi, M. L. [Dipartimento di Fisica e Astronomia, Universita di Catania e INFN-Laboratori Nazionali del Sud, Catania (Italy)
2011-12-13
A single crystal diamond detector was exposed to the quasi mono-energetic neutron fields in the energy range from 7 MeV to 20.5 MeV produced by the Van de Graaff neutron generator of the EC-JRC-IRMM. Pulse Height Spectra (PHS) of the neutron interaction with the diamond (carbon) were recorded in order to derive the experimental response function of this detector to neutrons in view of its use as a compact fast neutron spectrometer. Several peaks produced by outgoing charged particles produced when neutrons interact with carbon were identified using the reaction Q-values. The corresponding nuclear reactions, such as (n,{alpha}), (n,p), (n,d) for different excitation states were identified in the PHS. The analysis of the peaks allows the derivation of some neutron reaction cross sections in carbon. The results are presented in this paper together with the associated uncertainties.
Measurement of Neutron Reaction Cross Sections in Carbon using a Single Crystal Diamond Detector
Pillon, M.; Angelone, M.; Krása, A.; Plompen, A. J. M.; Schillebeeckx, P.; Sergi, M. L.
2011-12-01
A single crystal diamond detector was exposed to the quasi mono-energetic neutron fields in the energy range from 7 MeV to 20.5 MeV produced by the Van de Graaff neutron generator of the EC-JRC-IRMM. Pulse Height Spectra (PHS) of the neutron interaction with the diamond (carbon) were recorded in order to derive the experimental response function of this detector to neutrons in view of its use as a compact fast neutron spectrometer. Several peaks produced by outgoing charged particles produced when neutrons interact with carbon were identified using the reaction Q-values. The corresponding nuclear reactions, such as (n,α), (n,p), (n,d) for different excitation states were identified in the PHS. The analysis of the peaks allows the derivation of some neutron reaction cross sections in carbon. The results are presented in this paper together with the associated uncertainties.
International Nuclear Information System (INIS)
Chernukhin, Yu.G.; Kandiev, Ya.Z.; Lartsev, V.D.; Levakov, B.G.; Modestov, D.G.; Simonenko, V.A.; Streltsov, S.I.; Khmel'nitskij, D.V.
2006-01-01
The main stage of experiment for direct measurement of cross section of neutron-neutron scattering σ nn at low energies (E nn determination. It was shown, that for achieving the criterion ε ∼ 4% it will be necessary to have 40-50 pulses of a reactor [ru
Neutron slowing down and transport in a medium of constant cross section. I. Spatial moments
International Nuclear Information System (INIS)
Cacuci, D.G.; Goldstein, H.
1977-01-01
Some aspects of the problem of neutron slowing down and transport have been investigated in an infinite medium consisting of a single nuclide scattering elastically and isotropically without absorption and with energy-independent cross sections. The method of singular eigenfunctions has been applied to the Boltzmann equation governing the Laplace transform (with respect to the lethargy variable) of the neutron flux. Formulas have been obtained for the lethargy dependent spatial moments of the scalar flux applicable in the limit of large lethargy. In deriving these formulas, use has been made of the well-known connection between the spatial moments of the Laplace-transformed scalar flux and the moments of the flux in the ''eigenvalue space.'' The calculations have been greatly aided by the construction of a closed general expression for these ''eigenvalue space'' moments. Extensive use has also been made of the methods of combinatorial analysis and of computer evaluation, via FORMAC, of complicated sequences of manipulations. It has been possible to obtain for materials of any atomic weight explicit corrections to the age theory formulas for the spatial moments M/sub 2n/(u), of the scalar flux, valid through terms of order of u -5 . Higher order correction terms could be obtained at the expense of additional computer time. The evaluation of the coefficients of the powers of n, as explicit functions of the nuclear mass, represent the end product of this investigation
A facility for measurements of nuclear cross sections for fast neutron cancer therapy
Energy Technology Data Exchange (ETDEWEB)
Dangtip, S.; Atac, A.; Bergenwall, B.; Blomgren, J.; Elmgren, K.; Johansson, C.; Klug, J.; Olsson, N. E-mail: nils.olsson@tsl.uu.se; Carlsson, G. Alm; Soederberg, J.; Jonsson, O.; Nilsson, L.; Renberg, P.-U.; Nadel-Turonski, P.; Brun, C. Le; Lecolley, F.-R.; Lecolley, J.-F.; Varignon, C.; Eudes, Ph.; Haddad, F.; Kerveno, M.; Kirchner, T.; Lebrun, C
2000-10-01
A facility for measurements of neutron-induced double-differential light-ion production cross-sections, for application within, e.g., fast neutron cancer therapy, is described. The central detection elements are three-detector telescopes consisting of two silicon detectors and a CsI crystal. Use of {delta}E-{delta}E-E techniques allows good particle identification for p, d, t, {sup 3}He and alpha particles over an energy range from a few MeV up to 100 MeV. Active plastic scintillator collimators are used to define the telescope solid angle. Measurements can be performed using up to eight telescopes at 20 deg. intervals simultaneously, thus covering a wide angular range. The performance of the equipment is illustrated using experimental data taken with a carbon target at E{sub n}=95 MeV. Distortions of the measured charged-particle spectra due to energy and particle losses in the target are corrected using a newly developed computer code. Results from such correction calculations are presented.
A facility for measurements of nuclear cross sections for fast neutron cancer therapy
Dangtip, S.; Ataç, A.; Bergenwall, B.; Blomgren, J.; Elmgren, K.; Johansson, C.; Klug, J.; Olsson, N.; Carlsson, G. A.; Söderberg, J.; Jonsson, O.; Nilsson, L.; Renberg, P.-U.; Nadel-Turonski, P.; Brun, C. L.; Lecolley, F.-R.; Lecolley, J.-F.; Varignon, C.; Eudes, P.; Haddad, F.; Kerveno, M.; Kirchner, T.; Lebrun, C.
2000-10-01
A facility for measurements of neutron-induced double-differential light-ion production cross-sections, for application within, e.g., fast neutron cancer therapy, is described. The central detection elements are three-detector telescopes consisting of two silicon detectors and a CsI crystal. Use of /ΔE-ΔE-E techniques allows good particle identification for p, d, t, 3He and alpha particles over an energy range from a few MeV up to 100 MeV. Active plastic scintillator collimators are used to define the telescope solid angle. Measurements can be performed using up to eight telescopes at /20° intervals simultaneously, thus covering a wide angular range. The performance of the equipment is illustrated using experimental data taken with a carbon target at En=95 MeV. Distortions of the measured charged-particle spectra due to energy and particle losses in the target are corrected using a newly developed computer code. Results from such correction calculations are presented.
Leconte, Pierre; Bernard, David
2017-09-01
EXCALIBUR is an integral transmission experiment based on the fast neutron source produced by the bare highly enriched fast burst reactor CALIBAN, located in CEA/DAM Valduc (France). Two experimental campaigns have been performed, one using a sphere of diameter 17 cm and one using two cylinders of 17 cm diameter 9 cm height, both made of metallic Uranium 238. A set of 15 different dosimeters with specific threshold energies have been employed to provide information on the neutron flux attenuation as a function of incident energy. Measurements uncertainties are typically in the range of 0.5-3% (1σ). The analysis of these experiments is performed with the TRIPOLI4 continuous energy Monte Carlo code. A calculation benchmark with validated simplifications is defined in order to improve the statistical convergence under 2%. Various 238U evaluations have been tested: JEFF-3.1.1, ENDF/B-VII.1 and the IB36 evaluation from IAEA. A sensitivity analysis is presented to identify the contribution of each reaction cross section to the integral transmission rate. This feedback may be of interest for the international effort on 238U, through the CIELO project.
International Nuclear Information System (INIS)
Robinson, G.S.
1986-03-01
The EDITAR module of the AUS neutronics code system edits one and two-dimensional flux data pools produced by other AUS modules to form reaction rates for materials and their constituent nuclides, and to average cross sections over space and energy. The module includes a Bsub(L) flux calculation for application to cell leakage. The STATUS data pool of the AUS system is used to enable the 'unsmearing' of fluxes and nuclide editing with minimal user input. The module distinguishes between neutron and photon groups, and printed reaction rates are formed accordingly. Bilinear weighting may be used to obtain material reactivity worths and to average cross sections. Bilinear weighting is at present restricted to diffusion theory leakage estimates made using mesh-average fluxes
International Nuclear Information System (INIS)
Takaki, S.; Kondo, K.; Shido, S.; Miyamaru, H.; Murata, I.; Ochiai, Kentaro; Nishitani, Takeo
2006-01-01
Angle-correlated differential cross-section for 9 Be(n,2n) reaction has been measured with the coincidence detection technique and a pencil-beam DT neutron source at FNS, JAEA. Energy spectra of two emitted neutrons were obtained for azimuthal and polar direction independently. It was made clear from the experiment that there are noise signals caused by inter-detector scattering. The ratio of the inter-detector scattering components in the detected signals was estimated by MCNP calculation to correct the measured result. By considering the inter-detector scattering components, the total 9 Be(n,2n) reaction cross-section agreed with the evaluated nuclear data within the experimental error. (author)
On unambiguous parametrization of neutron cross-sections in the low-energy region
International Nuclear Information System (INIS)
Novoselov, G.M.; Kolomiets, V.M.
1982-08-01
One of the most important aims of analysis in the resonance region is the evaluation of neutron resonance parameters on the basis of a given formalism of the theory of nuclear reactions. However, the task of finding resonance parameters from experimental data on the energy dependence of cross-sections is subject to a number of difficulties. These difficulties are not only of a theoretical character associated with the selection of one version or another of the theory taking into account the effects necessary (interference between resonances, Doppler effect etc.), but also involve problems of principle. Whether the set of parameters found is the only possible one within the context of a single formalism used remains open. The specific features of processing the experimental data are such that even with good resolution a number of overlapping resonances (occurring as a result of the fluctuation in inter-level distances or the Doppler effect) may be classified as an isolated resonance. Moreover, even given a very weak inter-level interference and Doppler effect, unambiguous parametrization of the cross-sections is not always possible. In the present paper these questions (the choice of the approximation needed for describing experimentally observed cross-sections, allowance for inter-level interference and the Doppler effect and the possibility of ambiguous reproduction of the resonance structure of cross-sections) are examined with reference to the parametrization of the total cross-sections for non-fissionable nuclei in the low-neutron-energy region
Analytically approximate screened calculations of atomic-field pair production cross sections
International Nuclear Information System (INIS)
Dugne, J.J.
1976-01-01
A new method is described to obtain analytically approximate screened cross sections of atomic-field pair production. The Thomas-Fermi-Csavinszky potential model is expanded at the first order and put in the place of the point Coulomb potential in the Dirac equation. That method can be very useful to calculate approximate screened cross sections for the intermediate photon energy range (5m 0 c 2 to about 50m 0 c 2 ) where numerically exact screened cross sections are needing a prohibitive computer time and when the form factor approach based on Born approximation is not always valid. (Auth.)
Guarini, E
2003-01-01
A review of the available tools for the calculation of the neutron double-differential cross-section of fundamental molecules, such as hydrogen and methane, is reported here. The most common cases occurring in neutron data analysis are treated in detail with the aim of providing the reader with intelligible and efficient procedures. The utility nowadays of these kinds of computation are widely described, and applications discussed, with examples based on the comparison with experimental data. New advances and refinement/corrections of earlier work are given throughout the paper, as well as suggestions for practical implementation. (topical review)
International Nuclear Information System (INIS)
Odano, Naoteru; Miura, Toshimasa; Yamaji, Akio.
1996-01-01
To validate the dosimetry cross sections in fast neutron energy range, activation reaction rates were measured for 5 types of dosimetry cross sections which have sensitivity in the energy rage above 10 MeV utilizing JRR-4 reactor of JAERI. The measured reaction rates were compared with the calculations reaction rates by a continuous energy monte carlo code MVP. The calculated reaction rates were based on two dosimetry files, JENDL Dosimetry File and IRDF-90.2. (author)
International Nuclear Information System (INIS)
Bray, I.; Stelbovics, A.T.
1993-10-01
The total and total ionization cross sections for positron scattering on atomic hydrogen are calculated by applying the Convergent Close-Coupling (CCC) method to the model where positronium formation channels are omitted. This model accurately describes the physics of the scattering whenever the positronium formation cross section is negligible, in particular, above 100 eV for this system. The total ionization cross section results in this energy region are in excellent agreement with the recent measurements of Jones et al., and so lie below the earlier measurements of Spicher et al., and the recent calculations of Acacia et al.. The total cross section is in very good agreement with the recent measurements of Zhou et al. down to 30 eV. 12 refs., 2 figs
Development of a Multi-Group Neutron Cross Section Library Generation System for PWR
Energy Technology Data Exchange (ETDEWEB)
Kim, Kang Seog; Hong, Ser Gi; Song, Jae Seung; Lee, Kyung Hoon; Cho, Jin Young; Kim, Ha Yong; Koo, Bon Seung; Shim, Hyung Jin; Park, Sang Yoon
2008-10-15
This report describes a generation system of multi-group cross section library which is used in the KARMA lattice calculation code. In particular, the theoretical methodologies, program structures, and input preparations for the constituent programs of the system are described in detail. The library generation system consists of the following five programs : ANJOY, GREDIT, MERIT, SUBDATA, and LIBGEN. ANJOY generates automatically the NJOY input files and two batch files for automatic NJOY run for all the nuclides considered. The automatic NJOY run gives TAPE 23 (PENDF output file of BROADR module of NJOY) and TAPE24 (GENDF output file of GROUPR module of NJOY) files for each nuclide. GREDIT prepares a formatted multi-group cross section file in which the cross sections are tabulated versus temperature and background cross section after reading the TAPE24 file. MERIT generates the hydrogen equivalence factors and the resonance integral tables by solving the slowing down equation with ultra-fine group cross sections which are prepared with the TAPE 23 file. SUBDATA generates the subgroup data including subgroup levels and weights after reading the MERIT output file. Finally, LIBGEN generates the final multi-group library file by assembling the data prepared in the previous steps and by reading the other data such as fission product yield data and decay data.The multi-group cross section library includes general multi-group cross sections, resonance data, subgroup data, fission product yield data, kappa-values (energy release per fission), and all the data which are required in the depletion calculation. The addition or elimination of the cross sections for some nuclides can be easily done by changing the LIBGEN input file if the general multi-group cross section and the subgroup data files are prepared.
Energy Technology Data Exchange (ETDEWEB)
Abramo; vich, S.N.; Andreev, M.F.; Bol`shakov, Y.M. [Institute of Experimental Physics, Arzamas (Russian Federation)] [and others
1995-10-01
Measurements have been carried out of {sup 238}Np fission cross-section by thermal neutrons. The isotope {sup 238}Np was built up through the reaction {sup 238}U(p,n) on an electrostatic accelerator. Extraction and cleaning of the sample were done by ion-exchange chromatography. Fast neutrons were generated on the electrostatic accelerator through the reaction {sup 9}Be(d,n); a polyethylene block was used to slow down neutrons. Registration of fission fragments was performed with dielectric track detectors. Suggesting that the behavior of {sup 238}Np and {sup 238}U. Westscott`s factors are indentical the fission cross-section of {sup 238}Np was obtained: {sigma}{sub fo}=2110 {plus_minus} 75 barn.
Neutron capture cross section of $^{25}$Mg and its astrophysical implications
We propose to measure the neutron capture cross section of the stable $^{25}$Mg isotope. This experiment aims at the improvement of existing results for nuclear astrophysics.The measurement will be carried out under similar conditions as for the Mgexperiment that was completed at n_TOF during 2003. A metal $^{25}$Mg-enriched sample will be used in the proposed experiment instead of a MgO powder sample, which was used in the previous measurement and prevented us to minimize the uncertainty of the measured cross section. This experiment will be part of an ongoing study for a comprehensive discussion of the s-process abundances in massive stars.
Fast-neutron total and elastic-scattering cross sections of elemental indium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-11-01
Broad-resolution neutron total cross sections of elemental indium were measured from 0.8 to 4.5 MeV. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 3.8 MeV at intervals of approx. = 50 to 200 keV and at scattering angles in the range 20 to 160 degrees. The experimental results are interpreted in terms of the optical-statistical model and are compared with respective values given in ENDF/B-V
Neutron-induced reaction cross-sections of 93Nb with fast neutron based on 9Be(p,n) reaction
Naik, H.; Kim, G. N.; Kim, K.; Zaman, M.; Nadeem, M.; Sahid, M.
2018-02-01
The cross-sections of the 93Nb (n , 2 n)92mNb, 93Nb (n , 3 n)91mNb and 93Nb (n , 4 n)90Nb reactions with the average neutron energies of 14.4 to 34.0 MeV have been determined by using an activation and off-line γ-ray spectrometric technique. The fast neutrons were produced using the 9Be (p , n) reaction with the proton energies of 25-, 35- and 45-MeV from the MC-50 Cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The neutron flux-weighted average cross-sections of the 93Nb(n , xn ; x = 2- 4) reactions were also obtained from the mono-energetic neutron-induced reaction cross-sections of 93Nb calculated using the TALYS 1.8 code, and the neutron flux spectrum based on the MCNPX 2.6.0 code. The present results for the 93Nb(n , xn ; x = 2- 4) reactions are compared with the calculated neutron flux-weighted average values and found to be in good agreement.
Measurements of integral cross sections in the californium-252 fission neutron spectrum
International Nuclear Information System (INIS)
Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.
1977-01-01
In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed
International Nuclear Information System (INIS)
Padron, I.; Dominguez, O.; Sarria, P. Sandin, C.
1996-01-01
The time -of-Flight neutron spectrometry technique by associated particle method was improved using a D-T neutron generator at Laboratory of Nuclear Analysis. This technique was implemented for double differential cross section measurements and supported by the IAEA Project CUB/01/005. An stilbene scintillation detector (dia=100 mm, length=50 mm) was used as principal neutron detector detector and was situated outside a hole in the concrete wall. This way the fligth path was extended and the scattered neutron cone accurate collimated throught the 2 m concrete wall. For the associated particle α detection a thin plastic NE-102 scint illator was used, as well as, two scintilation detectors and a long counter for the neutron flux monitoring. In this TOF neutron spectrometer (3.40 m flight path) a 1.7 nseg. temporal resolution was obtained
Energy Technology Data Exchange (ETDEWEB)
Dralle, A V; Candelore, N R; Gast, R C
1978-08-01
RCPL1 is a FORTRAN digital computer program designed and developed to prepare neutron and photon cross section libraries for the RCP01 Monte Carlo computer program for solving neutron and photon transport problems in three-dimensional geometry with detailed energy description. The neutron libraries prepared by RCPL1 contain detailed Doppler-broadened resonance cross sections from unresolved and either single-level or multilevel resonance parameters, for any number of nuclides, within an arbitrary energy structure, and the photon libraries contain tabulations of the interaction cross sections and gamma emission spectra. This report describes the various RCPL1 program options, calculational details, and input requirements. All data used for library construction are extracted from a multigroup cross section library system XAP, described in an appendix to the report, which contains Evaluated Nuclear Data File (ENDF) data. 5 figures, 6 tables.
International Nuclear Information System (INIS)
Konobeev, A.Yu.; Korovin, Yu.A.
1992-01-01
Recently, effects related to the formation of helium in irradiated construction materials have been studied extensively. Data on the nuclear cross sections for producing helium in these materials form the initial information necessary for such investigations. If the spectrum of the incoming particles is known, the value of the helium production cross section makes it possible to calculate the helium generation rate. In recent years, plans and simulating experiments on radiating materials with high-energy particles made it necessary to determine the helium production cross sections in constructionmaterials, which are irradiated by protons and neutrons with energies to 800 MeV. Helium-formation cross sections have been calculated at these energies. However, a correct description of the experimental data for various construction materials does not yet exist. For example, the calculated helium-formation cross sections turned out to overestimate the experimental data, and to underestimate the experimental data. The objective here is to calculate the helium-formation cross sections for various construction materials, which are irradiated by protons and neutrons to energies from 20 to 800 MeV, and to analyze the probable causes of deviations between experimental and earlier calculated cross sections
Ullmann, J. L.; Kawano, T.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Krtička, M.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Mitchell, G. E.
2017-08-01
The cross section for neutron capture in the continuum region has been difficult to calculate accurately. Previous results for 238U show that including an M 1 scissors-mode contribution to the photon strength function resulted in very good agreement between calculation and measurement. This paper extends that analysis to U,236234 by using γ -ray spectra measured with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center to constrain the photon strength function used to calculate the capture cross section. Calculations using a strong scissors-mode contribution reproduced the measured γ -ray spectra and were in excellent agreement with the reported cross sections for all three isotopes.
International Nuclear Information System (INIS)
Refeat, R.; Amin, E.; Elmorsy, M.; Gaafar, M.; Noah, S.
2007-01-01
The elimination of a large number of approximations that lead to numerous errors in the neutronic reactor calculations was the main purpose behind developing Monte Carlo codes. The MCNP series of codes (Monte Carlo Nuclear Particle) are developed and extensively used in neutronic core calculations. Although the neutronic data input to these codes is the pointwise cross section files as presented by ENDF libraries or similar ones, are comprehensive and detailed. Yet the major sources of errors in the core calculations stem from the uncertainty in the cross section data. In this paper the effect of estimated uncertainty in the values of cross sections in the ENDF/B-V1 library, on the neutronic parameters of the ETRR-2 reactor is studied. MCNP code is used to simulate a three dimensional model for the reactor core considering all the materials composition and geometrical details. Perturbation technique is used to determine the effect of uncertainty in cross sections for a number of isotopes in the reactor on the fission rates and a comparison is made between the fission rate values with and without the uncertainty values for the different cross section types and different energy ranges. It is shown that for all the considered isotopes the effect of uncertainty in the cross section data on the fission rate values is very small, where the differences in fission rates do not exceed 10% and this value is accepted
Neutron-induced cross sections of actinides via the surrogate-reaction method
Directory of Open Access Journals (Sweden)
Tveten G. M.
2013-03-01
Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method for extracting capture cross sections has to be investigated. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutroninduced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. First results are presented and discussed.
International Nuclear Information System (INIS)
Bor-Jing Chang; Yen-Wan H. Liu
1992-01-01
The HYBRID, or mixed group and point, method was developed to solve the neutron transport equation deterministically using detailed treatment at cross section minima for deep penetration calculations. Its application so far is limited to one-dimensional calculations due to the enormous computing time involved in multi-dimensional calculations. In this article, a collapsing method is developed for the mixed group and point cross section sets to provide a more direct and practical way of using the HYBRID method in the multi-dimensional calculations. A testing problem is run. The method is then applied to the calculation of a deep penetration benchmark experiment. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provide a better cross section set than the VITAMIN-C cross sections for the deep penetrating calculations
Energy Technology Data Exchange (ETDEWEB)
Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.
2011-12-01
The ENDF/B-VII.1 library is the latest revision to the United States Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., 'ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data,' Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected {sup 235}U and {sup 239}Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also
Neutron-capture-activation cross sections of 9496Zr and 98100Mo at thermal and 30 keV energy
International Nuclear Information System (INIS)
Wyrick, J.M.; Poenitz, W.P.
1982-01-01
Neutron-capture cross sections of 94 96 Zr and 98 100 Mo were measured relative to the standard-capture cross section of gold at thermal and 30 keV neutron energies using the activation technique. The reported values are based upon available decay-scheme information
Elastic and inelastic neutron scattering cross sections for 12C at En = 5.9, 6.1, and 7.0 MeV
Lyons, Elizabeth; Hicks, Sally; Morin, Theodore; Derdeyn, Elizabeth; Peters, Erin
2017-09-01
Measurements of neutron elastic and inelastic scattering differential cross sections from 12C have been performed at incident neutron energies of 5.9, 6.1, and 7.0 MeV. Comparisons of existing experimental cross sections (NNDC) at these incident neutron energies reveal large discrepancies. Accurate measurements of 12C cross sections are vital to facilitate precise calculations regarding criticality conditions for nuclear reactors, advances in security screening methods, and better understanding astrophysical and nuclear phenomenon. During preliminary measurements of 12C cross sections at the University of Kentucky Accelerator Laboratory (UKAL), we realized the relative efficiency of the deuterated benzene (main) detector was needed over an unusually large range of neutron energies due to the high Q value of the first excited state of 12C. Those experiments were repeated during the summer of 2017 to measure in situ the relative detector efficiency with better beam conditions and a better understanding of background observed from the 2H(d, n)3He source reaction. The resulting improved detector efficiency was used in determining the neutron elastic and inelastic scattering cross sections. While the former were found to be in excellent agreement with evaluated cross sections from ENDF, the latter show some discrepancies, especially at 6.1 MeV. Our results will be presented. Research is supported by USDOE-NNSA-SSAP: NA0002931, NSF: PHY-1606890, and the Donald A. Cowan Physics Institute at the University of Dallas.
Total and (n, 2n) neutron cross section measurements on 241Am
International Nuclear Information System (INIS)
Sage, C.
2009-01-01
Neutron induced reaction cross sections on 241 Am have been measured at the IRMM in Geel, Belgium, in the frame of a collaboration between the EC Joint Research Centres IRMM and ITU and French laboratories from CNRS and CEA. Raw material coming from the Atalante facility of CEA Marcoule has been transformed into suitable AmO 2 samples embedded in Al 2 O 3 and Y 2 O 3 matrices. The irradiations for the 241 Am(n, 2n) 240 Am reaction cross section measurement were carried out at the 7 MV Van de Graaff accelerator using the activation technique with quasi mono-energetic neutrons from 8 to 21 MeV produced via the D(d, n) 3 He and the T(d, n) 4 He reactions. The cross section was determined relative to the 27 Al(n, α) 24 Na standard cross section and was investigated for the first time above 15 MeV. The induced activity was measured off-line by standard γ-ray spectrometry using a high purity Ge detector. A special effort was made for the estimation of the uncertainties and the correlations between our experimental points. A different sample of the same isotope 241 Am has been measured in transmission and capture experiments in the resolved resonance region at the neutron ToF facility GELINA. The transmission measurement was performed in two campaigns, with an upgrade of the whole data acquisition system in between, followed by an investigation of its new performances. A preliminary analysis of the resonance parameters tends to confirm the recent evaluation to a higher value for the cross section at the bottom of the first resonances. A new design of C 6 D 6 detectors for capture measurements has been studied, but the data reduction and analysis of the measurement are not part of this work. (author) [fr
Neutron cross sections for defect production by high-energy displacement cascades in copper
International Nuclear Information System (INIS)
Heinisch, H.L.; Mann, F.M.
1983-08-01
Defect production cross sections for copper have been devised, based on computer simulations of displacement cascades. One thousand cascades ranging in energy from 200 eV to 200 keV were generated with the MARLOWE computer code. The cascades were subjected to a semi-empirical cascade quenching procedure and to short-term annealing with the ALSOME computer code. Functions were fitted to the numbers of defects produced as a function of primary knock-on atom (PKA) damage energy for the following defect types: 1) the total number of point defects after quenching and after short-term annealing, 2) the numbers of free interstitials and free vacancies after shortterm annealing, and 3) the numbers and sizes of vacancy and interstitial clusters after shortterm annealing. In addition, a function describing the number of distinct damage regions (lobes) per cascade was fitted to results of a graphical analysis of the cascade configurations. The defect production functions have been folded into PKA spectra using the NJOY nuclear data processing code system with ENDF/B-V nuclear data to yield neutron cross sections for defect production in copper. The free vacancy cross section displays much less variation with neutron energy than the cross sections for damage energy or total point defects
Review of magnetic fusion energy neutron cross section needs: neutronics viewpoint
International Nuclear Information System (INIS)
Dudziak, D.J.; Muir, D.W.
1977-01-01
In the overall context of fusion nucleonic analysis, most cross section deficiencies lie in the energy range 14 MeV and below. This review deals not only with new data requirements generated by current interest in d-Li sources but also with the needs of conventional nucleonic studies (i.e., 14-MeV source calculations). The many compilations of requirements are referenced, and the current assessment of high-priority needs is succinctly summarized. Then typical methodology and results (sensitivity and uncertainty analysis) are given for quantitative data assessments of the Tokamak Fusion Test Reactor and a fusion Experimental Power Reactor. Finally, a summary is presented of some probings into data above 14 MeV, which have potential applications for d-Li irradiation facilities, d-Be medical therapy sources, and electronuclear fuel production facilities. 2 figures, 9 tables
Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN
Barbagallo, M.; Mastromarco, M.; Colonna, N.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.
2014-12-01
The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.
Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN
Directory of Open Access Journals (Sweden)
Barbagallo M.
2014-01-01
Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.
International Nuclear Information System (INIS)
Czubek, J.A.; Drozdowicz, K.; Krynicka-Drozdowicz, E.; Igielski, A.; Woznicka, U.
1983-01-01
In consecutive measurements the rock sample (having a fixed and well known shape -in our case it is a sphere or a cylinder and the sample is powdered or liquid) is enveloped in shells of a plexiglass moderator (the neutron parameters of which are known) of variable thickness and irradiated with the pulsed beam of fast neutrons. The die-away rate of thermal neutrons escaping from the whole system is measured. The absorption cross-section of the sample is found as the intersection of the experimental curve (i.e. die -away rate vs thickness of the moderator) with the theoretical one. The theoretical curve is calculated for a given moderator under the assumption of a constant value of the neutron flux inside the sample. This method is independent of the value of the transport cross-section of the sample. It has been checked on artificial materials with a well known elemental composition (liquid or solid) and on the natural brines and rock samples (basalts and dolomite). A special method of calculation of the variance of the measurement has been established. It is based on the multiple computer simulations of all experimental data used in the computation. The one standard deviation of our methods is of the order of 1 up to 3 capture units (1 c.u. = 10 -3 cm -1 ). The volume of the sample needed is of the order of 500ccm. (author)
Calculations of H+ + Cs→H(2s or 2p) + Cs+ reaction cross sections
International Nuclear Information System (INIS)
Valance, A.; Spiess, G.
1975-01-01
The H(2s) and H(2p) atom production cross-sections are calculated and compared with experimental results in the incident proton energy range 250-2400eV. The calculation method used involves a perturbation of the stationary molecular states, these adiabatic potentials being obtained from a pseudo-potential describing the core of cesium [fr
Equilibrium and pre-equilibrium calculations of cross-sections of (p ...
Indian Academy of Sciences (India)
In this study, the pre-equilibrium and equilibrium calculations of cross-sections of 89Y(, ), 90Zr ( p , x n ) and 94Mo(, ) reactions, which were used for the production of 89Zr, 90Nb and 94Tc positron-emitting radioisotopes, have been investigated. Pre-equilibrium calculations have been performed at different proton ...
Heinitz, S; Schumann, D; Dressler, R; Kivel, N; Guerrero, C; Köster, U; Tessler, M; Paul, M; Halfon, S
2015-01-01
The knowledge of the neutron capture cross sections of s-process branching point isotopes represents a basic requirement for the understanding of star evolution. Since such branching point isotopes are by definition radioactive, the measurement of their cross sections from thermal to stellar energies becomes a challenging task. Considerable amounts of material have to be produced, representing a significant radioactive hazard. We report here on the production and separation of 3.5 mg 171Tm from 240 mg 170Er2O3 and 72 µg 147Pm from 100 mg 146Nd2O3 irradiated at the ILL high flux reactor. Thin targets were prepared with high chemical and radioisotopic purity suitable for neutron capture measurements at n_TOF CERN and the SARAF-LiLiT facility.
Fast-neutron total and scattering cross sections of 103Rh
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-07-01
Fast-neutron total cross sections of 103 Rh are measured with 30 to 50 keV resolutions from 0.7 to 4.5 MeV. Differential elastic- and inelastic-scattering cross sections are measured from 1.45 to 3.85 MeV. Scattered-neutron groups corresponding to excited levels at 334 +- 13, 536 +- 7, 648 +- 25, 796 +- 20, 864 +- 22, 1120 +- 22, 1279 +- 50, 1481 +- 27, 1683 +- 39, 1840 +- 79, 1991 +- 71 and 2050 (tentative) keV are observed. An optical-statistical model is derived from the elastic-scattering results. The experimental values are compared with comparable quantities given in the ENDF/B-V evaluation
Fast-neutron total and scattering cross sections of elemental palladium
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.; Whalen, J.F.
1982-06-01
Neutron total cross sections of palladium are measured from approx. = 0.6 to 4.5 MeV with resolutions of approx. = 30 to 70 keV at intervals of less than or equal to 50 keV. Differential neutron elastic- and inelastic-scattering cross sections are measured from 1.4 to 3.85 MeV at intervals of 50 to 100 keV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 0 . The experimental results are compared with respective quantities given in ENDF/B-V and used to deduce an optical potential that provides a good description of the measured values
Neutron-induced cross sections of actinides via the surrogate-reaction method
Directory of Open Access Journals (Sweden)
Ducasse Q.
2013-12-01
Full Text Available The surrogate-reaction method is an indirect way of determining cross sections for reactions that proceed through a compound nucleus. This technique may enable neutron-induced cross sections to be extracted for short-lived nuclei that otherwise cannot be measured. However, the validity of the surrogate method has to be investigated. In particular, the absence of a compound nucleus formation and the Jπ dependence of the decay probabilities may question the method. In this work we study the reactions 238U(d,p239U, 238U(3He,t238Np, 238U(3He,4He237U as surrogates for neutron-induced reactions on 238U, 237Np and 236U, respectively, for which good quality data exist. The experimental set-up enabled the measurement of fission and gamma-decay probabilities. The first results are hereby presented.
R-Matrix Evaluation of Cl Neutron Cross Sections up to 1.2 MeV
Sayer, R O
2003-01-01
We have performed an evaluation of sup 3 sup 5 Cl, sup 3 sup 7 Cl, and sup n sup a sup t Cl neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were carried out with the computer code SAMMY, which utilizes Bayes' method, a generalized least squares technique. A recent modification of SAMMY enabled us to calculate charged particle penetrabilities for the proton exit channel. Our resonance parameter representation describes the data much better than does ENDF/B-VI, and it should lead to improved criticality safety calculations for systems where Cl is present.
R-Matrix Evaluation of Cl Neutron Cross Sections up to 1.2 MeV
Energy Technology Data Exchange (ETDEWEB)
Sayer, R.O.
2003-03-27
We have performed an evaluation of {sup 35}Cl, {sup 37}Cl, and {sup nat}Cl neutron cross sections in the resolved resonance region with the multilevel Reich-Moore R-matrix formalism. Resonance analyses were carried out with the computer code SAMMY, which utilizes Bayes' method, a generalized least squares technique. A recent modification of SAMMY enabled us to calculate charged particle penetrabilities for the proton exit channel. Our resonance parameter representation describes the data much better than does ENDF/B-VI, and it should lead to improved criticality safety calculations for systems where Cl is present.
International Nuclear Information System (INIS)
Alekseev, A.A.; Bergman, A.A.; Berlev, A.I.; Koptelov, E.A.; Egorov, A.S.; Samylin, B.F.; Trufanov, A.M.; Fursov, B.I.; Shorin, V.S.
2012-01-01
The neutron induced fission cross sections of Am and Cm isotopes were measured relative to 239 Pu in the neutron energy range from 1 eV to 20 keV at the INR RAS lead slowing down spectrometer LSDS-100. The fission resonance integrals were also estimated using the measured cross section data. The results have been compared with the available experimental and evaluated data. This analysis has shown the present status of the measured fission cross sections and the necessity to revise the evaluated cross sections libraries for the minor actinides. (author)
Status report and measurement of total cross-sections at the Pohang Neutron Facility
International Nuclear Information System (INIS)
Kim, G.N.; Meaze, A.K.M.M.H.; Ahmed, H.
2004-01-01
We report the status of the Pohang Neutron Facility which consists of an electron linear accelerator, a water-cooled Ta target, and an 11-m time-of-flight path. It has been equipped with a four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows simultaneous accumulation of the neutron time of flight spectra from 4 different detectors. It is possible to measure the neutron total cross-sections in the neutron energy range from 0.1 eV to 100 eV by using the neutron time of flight method. A 6 LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 10.81±0.02 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from Bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements are in general agreement with the evaluated data in ENDF/B-VI. The resonance parameters were extracted from the transmission data from the SAMMY fitting and compared with the previous ones. (author)
The Radiative Capture Cross-Section of U 238 for Fast Neutrons
International Nuclear Information System (INIS)
Broda, E.
1945-01-01
This report was written by E. Broda and D.H. Wilkinson at the Cavendish Laboratory (Cambridge) in January 1945 and is about the radiative capture cross-section of U238 for fast neutrons. The Chemical procedure and beta counting, the notes on the activation of the samples, the results and an appendix as well as a short introduction can be found in this report. (nowak)
Thermal neutron capture cross section for Fe-56(n,gamma)
Czech Academy of Sciences Publication Activity Database
Firestone, R. B.; Belgya, T.; Krtička, M.; Bečvář, F.; Szentmiklosi, L.; Tomandl, Ivo
2017-01-01
Roč. 95, č. 1 (2017), č. článku 014328. ISSN 2469-9985 R&D Projects: GA ČR GA13-07117S; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : neutron cross section * gamma gamma-coincidence data Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 3.820, year: 2016
Above-threshold structure in {sup 244}Cm neutron-induced fission cross section
Energy Technology Data Exchange (ETDEWEB)
Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus)
1997-03-01
The quasi-resonance structure appearing above the fission threshold in neutron-induced fission cross section of {sup 244}Cm(n,f) is interpreted. It is shown to be due to excitation of few-quasiparticle states in fissioning {sup 245}Cm and residual {sup 244}Cm nuclides. The estimate of quasiparticle excitation thresholds in fissioning nuclide {sup 245}Cm is consistent with pairing gap and fission barrier parameters. (author)
Study of U235 neutron fission spectrum by the knowledge of cross sections average over that spectrum
International Nuclear Information System (INIS)
Suarez, P.M.
1997-01-01
A literature search of cross sections averaged over the fission neutron spectrum confirms inconsistencies between calculated and experimental values for high threshold reactions. Since, in this case, calculated averaged cross sections are systematically lower than measured values, it is concluded that the representations used to carry out these calculations underestimate the number of neutrons in the high energy region of the spectrum. A careful measurement of the averaged cross section for the 45 Sc(n,2n) 44g Sc and 45 Sc(n,2n) 44m Sc high threshold reactions had been performed in the RA-6 Neutron Activation Analysis Laboratory after carefully checking that the neutron flux at the core position where the samples were being irradiated was indeed an undisturbed fission spectrum. The experimental values are greater than those calculated with either, Watt type representations or the one based on the Madland and Nix model for the prompt fission spectrum. In many areas of nuclear engineering, like validation of nuclear data, reactor calculations, applied nuclear physics, shielding design, etc., it is of great practical importance to have a representation for the neutron flux that can be expressed in a closed analytical form and that agrees with experimental results, specially for the most widely fissile nuclide, 235 U. The results of the calculations mentioned above lead us to propose an analytical form for the 235 U fission neutron spectrum that better agrees with experimental results in the whole energy spectrum. We propose two different forms; both are a modification of the Watt-type form that has been adopted within the ENDF/B-V files. One of the new analytical representations is defined in two regions: below 9.5 MeV it is exactly the same formula as that used within the ENDF/B-V files, above this energy the parameters of this formula are changed. The other proposed analytical representation is expressed by a single formula in the whole energy range. These two new
Energy Technology Data Exchange (ETDEWEB)
Radhakrishnan, Archana, E-mail: anju.archana@gmail.com [B.Tech, Engineering Physics, National Institute Of Technology, Calicut (India); Murugesan, Dr V., E-mail: murugesh@serc.iisc.in [Assistant Professor, Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore (India)
2014-10-15
The electromagnetic theory of light explains the behavior of light in most of the domains quite accurately. The problem arises when the exact solution of the Maxwell's equation is not present, in case of objects with arbitrary geometry. To find the extinction cross-section and lifetime of the gold nanoparticle, the software FDTD solutions 8.6 by Lumerical is employed. The extinction cross-sections and lifetimes of Gold nanospheres of different sizes and arrangements are studied using pulse lengths of the order of femtoseconds. The decay constant and other properties are compared. Further, the lifetimes are calculated using frequency and time domain calculations.
Cross section calculations of randomly oriented bispheres in the small particle regime
Quirantes, A
2003-01-01
The T-matrix is used to calculate the extinction cross section of bispherical particle systems in random orientation for a monospherical size parameter x=0.01. Differences between bispherical and monospherical (Mie) results are shown for a range of values of the refractive index. It is found that the size of the T-matrix that needs to be calculated can be large, thus preventing simple dipole approximations from being used. Once the T-matrix is computed, however, only a small number of terms is needed to obtain cross section values.
Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN
Directory of Open Access Journals (Sweden)
Barbagallo M.
2014-03-01
Full Text Available The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns.
Contribution of direct processes to cross sections of fast neutron scattering by copper nuclei
Korzh, Y O
2002-01-01
Adaptability of the optical-statistical approach, based on the spherical optical model, excited core model, and modern versions of the statistical model, for description of the experimental data on neutron total and scattering cross sections for sup 6 sup 3 sup , sup 6 sup 5 Cu and Cu nuclei in the 0.5-15 MeV energy range is studied. It is shown that these experimental data can be adequately described in this approach by using the individual set of optical potential parameters only. The results of theoretical analysis are used for study of fast neutron interaction mechanism with the nuclei under consideration.
Vranckx, S.; Loreau, J.; Desouter-Lecomte, M.; Vaeck, N.
2013-08-01
We illustrate some of the difficulties that may be encountered when computing photodissociation and radiative association cross sections from the same time-dependent approach based on wavepacket propagation. The total and partial photodissociation cross sections from the 33 vibrational levels of the b 3Σ+ state of HeH+ towards the nine other 3Σ+ and 6 3Π n = 2, 3 higher lying electronic states are calculated, using the autocorrelation method introduced by Heller (1978 J. Chem. Phys. 68 3891) and the method based on the asymptotic behaviour of wavepackets introduced by Balint-Kurti et al (1990 J. Chem. Soc. Faraday Trans. 86 1741). The corresponding radiative association cross sections are extracted from the same calculations, and the photodissociation and radiative association rate constants are determined.
Neutron induced fission cross section measurements of 240Pu and 242Pu
Directory of Open Access Journals (Sweden)
Belloni F.
2017-01-01
Full Text Available Accurate neutron induced fission cross section of 240Pu and 242Pu are required in view of making nuclear technology safer and more efficient to meet the upcoming needs for the future generation of nuclear power plants (GEN-IV. The probability for a neutron to induce such reactions figures in the NEA Nuclear Data High Priority Request List [1]. A measurement campaign to determine neutron induced fission cross sections of 240Pu and 242Pu at 2.51 MeV and 14.83 MeV has been carried out at the 3.7 MV Van De Graaff linear accelerator at Physikalisch-Technische Bundesanstalt (PTB in Braunschweig. Two identical Frisch Grid fission chambers, housing back to back a 238U and a APu target (A = 240 or A = 242, were employed to detect the total fission yield. The targets were molecular plated on 0.25 mm aluminium foils kept at ground potential and the employed gas was P10. The neutron fluence was measured with the proton recoil telescope (T1, which is the German primary standard for neutron fluence measurements. The two measurements were related using a De Pangher long counter and the charge as monitors. The experimental results have an average uncertainty of 3–4% at 2.51 MeV and for 6–8% at 14.81 MeV and have been compared to the data available in literature.
Neutron cross sections of cryogenic materials: a synthetic kernel for molecular solids
International Nuclear Information System (INIS)
Granada, J.R.; Gillette, V.H.; Petriw, S.; Cantargi, F.; Pepe, M.E.; Sbaffoni, M.M.
2004-01-01
A new synthetic scattering function aimed at the description of the interaction of thermal neutrons with molecular solids has been developed. At low incident neutron energies, both lattice modes and molecular rotations are specifically accounted for, through an expansion of the scattering law in few phonon terms. Simple representations of the molecular dynamical modes are used, in order to produce a fairly accurate description of neutron scattering kernels and cross sections with a minimum set of input data. As the neutron energies become much larger than that corresponding to the characteristic Debye temperature and to the rotational energies of the molecular solid, the 'phonon formulation' transforms into the traditional description for molecular gases. (orig.)
Production cross section of neutron-rich Pb and Bi isotopes in the fragmentation of 238U
Alvarez-Pol, H; Benlliure, J; Casarejos, E; Cortina-GilL, D; Napolitani, P; Enqvist, T; Schmidt, K-H; Yordanov, O; Junghans, A.R; Fernández, B; Pereira, P; Jurado, B; Rejmund, F; 10.1140/epja/i2009-10856-8
Neutron-rich lead and bismuth isotopes have been produced by cold-fragmentation reactions induced by 238U projectiles at 1 AGeV impinging on a beryllium target. The high-resolving power FRagment Separator at GSI allowed us to identify and determine the production cross sections of 22 nuclei, nine of them for the first time 215Pb, 216Pb, 217Pb, 218Pb and 217Bi, 218Bi, 219Bi, 220Bi, 221Bi, 222Bi. These data are compared to other previously measured cross sections in similar reactions and model calculations. The validation of the codes is of utmost importance for estimating of the new limits accessible with the new generation radioactive beam facilities.
Energy Technology Data Exchange (ETDEWEB)
Kahler, A. [Los Alamos National Laboratory (LANL); Macfarlane, R E [Los Alamos National Laboratory (LANL); Mosteller, R D [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Frankle, S C [Los Alamos National Laboratory (LANL); Chadwick, M. B. [Los Alamos National Laboratory (LANL); Mcknight, R D [Argonne National Laboratory (ANL); Lell, R M [Argonne National Laboratory (ANL); Palmiotti, G [Idaho National Laboratory (INL); Hiruta, h [Idaho National Laboratory (INL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Arcilla, r [Brookhaven National Laboratory (BNL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Sublet, J C [Culham Science Center, Abington, UK; Trkov, A. [Jozef Stefan Institute, Slovenia; Trumbull, T H [Knolls Atomic Power Laboratory; Dunn, Michael E [ORNL
2011-01-01
The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical
International Nuclear Information System (INIS)
Garg, S.B.; Sinha, A.
1985-01-01
A 35 group cross-section library with P/sub 3/-anisotropic scattering matrices and resonance self-shielding factors has been generated from the basic ENDF/B-IV cross-section files for 57 elements. This library covers the neutron energy range from 0.005 ev to 15 MeV and is well suited for the neutronics and safety analysis of fission, fusion and hybrid systems. The library is contained in two well known files, namely, ISOTXS and BRKOXS. In order to test the efficacy of this library and to bring out the importance of resonance self-shielding, a few selected fast critical assemblies representing large dilute oxide and carbide fueled uranium and plutonium based systems have been analysed. These assemblies include ZPPR/sub 2/, ZPR-3-48, ZPR-3-53, ZPR-6-6A, ZPR-6-7, ZPR-9-31 and ZEBRA-2 and are amongst those recommended by the US Nuclear Data Evaluation Working Group for testing the accuracy of cross-sections. The evaluated multiplication constants of these assemblies compare favourably with those calculated by others
International Nuclear Information System (INIS)
Youinou, G.; Palmiotti, G.; Salvatorre, M.; Imel, G.; Pardo, R.; Kondev, F.; Paul, M.
2010-01-01
An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL's Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.
Evaluated cross-section libraries and kerma factors for neutrons up to 100 MeV on 12C
International Nuclear Information System (INIS)
Chadwick, M.B.; Blann, M.; Cox, L.; Young, P.G.; Meigooni, A.
1995-01-01
A program is being carried out at Lawrence Livermore National Laboratory to develop high-energy evaluated nuclear data libraries for use in Monte Carlo simulations of cancer radiation therapy. In this report we describe evaluated cross sections and kerma factors for neutrons with incident energies up to 100 MeV on 12 C. The aim of this effort is to incorporate advanced nuclear physics modeling methods, with new experimental measurements, to generate cross section libraries needed for an accurate simulation of dose deposition in fast neutron therapy. The evaluated libraries are based mainly on nuclear model calculations, benchmarked to experimental measurements where they exist. We use the GNASH code system, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms. The libraries tabulate elastic and nonelastic cross sections, angle-energy correlated production spectra for light ejectiles with A≤and kinetic energies given to light ejectiles and heavy recoil fragments. The major steps involved in this effort are: (1) development and validation of nuclear models for incident energies up to 100 MeV; (2) collation of experimental measurements, including new results from Louvain-la-Nueve and Los Alamos; (3) extension of the Livermore ENDL formats for representing high-energy data; (4) calculation and evaluation of nuclear data; and (5) validation of the libraries. We describe the evaluations in detail, with particular emphasis on our new high-energy modeling developments. Our evaluations agree well with experimental measurements of integrated and differential cross sections. We compare our results with the recent ENDF/B-VI evaluation which extends up to 32 MeV
Evaluation of neutron- and proton-induced cross sections of 27Al up to 2 GeV
International Nuclear Information System (INIS)
Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio; Chiba, Satoshi
1999-01-01
We have evaluated neutron and proton nuclear data of 27 Al for energies up to 2 GeV. The best set of optical model parameters were obtained above 20 MeV for neutron and above reaction threshold for proton up to 250 MeV with the phenomenological potential forms proposed by Chiba. The transmission coefficients for neutron and proton derived from the optical models are fed into the GNASH code system to calculate angle-energy correlated emission spectra for light ejectiles and gamma rays. For energies above 250 MeV and below 2 GeV, the total, reaction and elastic scattering cross sections were evaluated by an empirical fit and recent systematics. Emitted nucleon and pion were estimated by use of QMD + SDM (Quantum Molecular Dynamics + Statistical Decay Model). (author)
Calculational tools for the evaluation of nuclear cross-section and spectra data
International Nuclear Information System (INIS)
Gardner, M.A.
1985-01-01
A technique based on discrete energy levels rather than energy level densities is presented for nuclear reaction calculations. The validity of the technique is demonstrated via theoretical and experimental agreement for cross sections, isomer-ratios and gamma-ray strength functions. 50 refs., 7 figs
Adjust of effective cross sections of some actinides in inventory calculation with HAMOR-2
International Nuclear Information System (INIS)
Guimaraes, L.N.F.; Marzo, M.A.S.
1985-01-01
A comparative study of the adjustment of effective cross sections generated by HAMOR-2 for the following actinides U-238, Pu-239 and Pu-240 is done. The adjustment were made to calculate the inventory of two different PWRs reactors. (M.C.K.) [pt
Model inverse calculation of current distributions in the cross-section of a superconducting cable
International Nuclear Information System (INIS)
Usak, P.; Sastry, P.V.P.S.S.; Schwartz, J.
2006-01-01
The solution of an inverse problem for magnetic field mapping, and the related current distribution in the cross-section of a superconducting cable are generally not unique. Nevertheless, for many natural configurations of a transport current distribution in the cross-section of a superconducting cable, the resulting magnetic field can be used for the reconstruction of a current distribution even in the presence of noise to a degree. We show it using several examples. To perform the inverse calculation, the Tichonov method of regularization was successfully applied. The approach was applied for superconducting cables, but its application is general
Evaluation of neutron cross-sections for 242Cm to obtain a complete file
International Nuclear Information System (INIS)
Bakhanovich, L.A.; Klepetskij, A.B.; Maslov, V.M.; Porodzinskij, Yu.V.; Sukhovitskij, E.Sh.
1994-01-01
Experimental fission, capture, inelastic scattering, (n2n), (n3n) and other cross-sections are scarce or unavailable. As a consequence, theoretical models and parameters systematics have been used extensively in the calculation of these data. Data obtained in this work are compared with previous evaluations. Severe discrepancies were found. (author). 10 refs, 2 figs, 2 tabs
MANTRA: Measuring Neutron Capture Cross Sections in Actinides with Accelerator Mass Spectrometry
Bauder, W.; Pardo, R. C.; Collon, P.; Palchan, T.; Scott, R.; Vondrasek, R.; Nusair, O.; Nair, C.; Paul, M.; Kondev, F.; Chen, J.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.
2013-10-01
With rising global energy needs, there is substantial interest in nuclear energy research. To explore possibilities for advanced fuel cycles, better neutron cross section data are needed for the minor actinides. The MANTRA (Measurement of Actinide Neutron TRAsmutation) project will improve these data by measuring integral (n, γ) cross sections. The cross sections will be extracted by measuring isotopic ratios in pure actinide samples, irradiated in the Advanced Test Reactor at Idaho National Lab, using Accelerator Mass Spectrometry(AMS) at the Argonne Tandem Linac Accelerator System (ATLAS). MANTRA presents a unique AMS challenge because of the goal to measure multiple isotopic ratios on a large number of samples. To meet these challenges, we have modified the AMS setup at ATLAS to include a laser ablation system for solid material injection into our ECR ion source. I will present work on the laser ablation system and modified source geometry, as well as preliminary measurements of unirradiated actinide samples at ATLAS. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
Hartree-Fock calculation of the differential photoionization cross sections of small Li clusters.
Galitskiy, S A; Artemyev, A N; Jänkälä, K; Lagutin, B M; Demekhin, Ph V
2015-01-21
Cross sections and angular distribution parameters for the single-photon ionization of all electron orbitals of Li2-8 are systematically computed in a broad interval of the photoelectron kinetic energies for the energetically most stable geometry of each cluster. Calculations of the partial photoelectron continuum waves in clusters are carried out by the single center method within the Hartree-Fock approximation. We study photoionization cross sections per one electron and analyze in some details general trends in the photoionization of inner and outer shells with respect to the size and geometry of a cluster. The present differential cross sections computed for Li2 are in a good agreement with the available theoretical data, whereas those computed for Li3-8 clusters can be considered as theoretical predictions.
Energy Technology Data Exchange (ETDEWEB)
Kalbach, C.
1985-02-01
The code PRECO-D2 uses the exciton model for preequilibrium nuclear reactions to describe the emission of particles with mass numbers of 1 to 4 from an equilibrating composite nucleus. A distinction is made between open and closed configurations in this system and between the multi-step direct (MSD) and multi-step compound (MSC) components of the preequilibrium cross section. Additional MSD components are calculated semi-empirically to account for direct nucleon transfer reactions and direct knockout processes involving cluster degrees of freedom. Evaporation from the equilibrated composite nucleus is included in the full MSC cross section. Output of energy differential and double differential cross sections is provided for the first particle emitted from the composite system. Multiple particle emission is not considered. This report describes the reaction models used in writing PRECO-D2 and explains the organization and utilization of the code. 21 refs.
International Nuclear Information System (INIS)
Hirasawa, Yoshitaka; Baba, Mamoru; Nauchi, Yasushi
2000-01-01
We have performed the measurements of double differential charged-particle production cross section ((n,xz)DDXs) of iron and nickel for 55, 65, 75 MeV neutrons using the 7 Li(p,n) quasi-monoenergetic source of TIARA(Takasaki Ion Accelerator for Radiation Application). The experimental data were compared with the LA-150 data library, which agreed generally with the present data. KERMA(Kinetic Energy Released in MAtter) coefficients(of Fe) were deduced from the experimental data and compared with the integral measurement and calculations by the LA-150 data library. (author)
Liu, Yuan; Ning, Chuangang
2015-10-14
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li(-), C(-), O(-), F(-), CH(-), OH(-), NH2 (-), O2 (-), and S2 (-) show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.
Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1
We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.
International Nuclear Information System (INIS)
Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Petrie, L.M.; Primm, R.T. III; Waddell, M.W.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.
1987-01-01
Multigroup P3 neutron, P0-P3 secondary gamma ray production (SGRP), and P6 gamma ray interaction (GRI) cross section libraries have been generated to support design work on the Advanced Neutron Source (ANS) reactor. The libraries, designated ANSL-V (Advanced Neutron Source Cross-Section Libraries), are data bases in a format suitable for subsequent generation of problem dependent cross sections. The ANSL-V libraries are available on magnetic tape from the Radiation Shielding Information Center at Oak Ridge National Laboratory
Cross section calculation for electron impact ionization and elastic scattering from cisplatin
International Nuclear Information System (INIS)
Zywicka, B.; Mozejko, P.
2012-01-01
One of the drugs which is typically used in chemotherapy is cisplatin (H 6 N 2 Cl 2 Pt). Chemotherapy is often successfully connected with the ionizing radiation treatment. Our work deals with the elastic electron scattering and electron impact ionization of cisplatin molecule. Total cross section for single electron-impact ionization of cisplatin molecule has been calculated with the binary-encounter-Bethe (BEB) model from the ionization threshold up to 5 keV. To obtain input data for the BEB calculations, geometric and electronic structures of the cisplatin have been studied with quantum chemical methods. Elastic cross section for electron collisions with cisplatin have also been evaluated using independent atom method with static-polarization model potential for incident energies ranging from 50 to 3000 eV. The obtained geometric structure of cisplatin is compared with available experimental and theoretical data. Calculated cross sections have been compared with related cross sections for selected purine and pyrimidine bases, they appear to be similar in values
Measurement of the fission cross-section of 235U and 239Pu for thermal neutrons
International Nuclear Information System (INIS)
Fraysse, G.; Prosdocimi, A.; Netter, F.; Samour, C.
1965-01-01
Improved techniques of fast detection have been applied for determining the fission cross-sections of 235 U and 239 Pu with reference to the absorption cross-section of Boron. Monochromatic neutron beams of 0.0322 eV, 0.0626 eV and 0.275 eV have been employed. Use has been made of a Xe-filled gaseous scintillator and of a low-geometry solid state ion chamber. Both measured alpha and fission rates. The results at the reference energy of 0.0253 eV are: (σ F ) 0 235 U = 588 ± 10 barns (σ F ) 0 239 Pu = 738 ± 7 barns. (authors) [fr
Improved Neutron Capture Cross Section Measurements with the n_TOF Total Absorption Calorimeter
Mendoza, E; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Saarmento, H; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Guerrero, C; Andrzejewski, J; Karadimos, D; Mengoni, A; Ganesan, S; Vlachoudis, V; Becares, V; Cortes, G; Variale, V; Losito, H; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Becvar, F; Goncalves, I F; Cerutti, F; Ventura, A; Mosconi, M; Tagliente, G; Duran, I; Casado, A; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Vidriales, J J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F
2011-01-01
The n\\_TOF collaboration operates a Total Absorption Calorimeter (TAC) {[}1] for measuring neutron capture cross-sections of low-mass and/or radioactive samples. The results obtained with the TAC have led to a substantial improvement of the capture cross sections of (237)Np and (240)Pu {[}2]. The experience acquired during the first measurements has allowed us to optimize the performance of the TAC and to improve the capture signal to background ratio, thus opening the way to more complex and demanding measurements on rare radioactive materials. The new design has been reached by a series of detailed Monte Carlo simulations of complete experiments and dedicated test measurements. The new capture setup will be presented and the main achievements highlighted.
Neutron cross-sections for next generation reactors: New data from n_TOF
Colonna, N; Eleftheriadis, C; Leeb, H; Tain, J L; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Konovalov, V; Marques, L; Wiescher, M; de Albornoz, A Carrillo; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Pigni, M T; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Kaeppeler, F; Cortes, G; Cox, J; Voss, F; Pretel, C; Berthoumieux, E; Dolfini, R; Vaz, P; Griesmayer, E; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Wendler, H; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Gramegna, F; Kerveno, M; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Baumann, P; Moreau, C; Oshima, M; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Vicente, M C; Tassan-Got, L; Cano-Ott, D; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Rosetti, M; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I
2010-01-01
In 2002, an innovative neutron time-of-flight facility started operation at CERN: n\\_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n\\_TOF is presented, together with plans for new measurements related to nuclear industry. (C) 2010 Elsevier Ltd. All rights reserved.
Preparation of iridium targets by electrodeposition for neutron capture cross section measurements
International Nuclear Information System (INIS)
Bond, E.M.; Bredeweg, T.A.; Jandel, Marian; Rusev, G.Y.; Moody, W.A.; Arnold, Charles
2016-01-01
The preparation of 191 Ir and 193 Ir electrodeposits for neutron capture cross-section measurements at the detector for advanced neutron capture experiments located at the at Los Alamos Neutron Science Center is described. The electrodeposition of iridium in the desired thickness of 0.4-1 mg/cm 2 is challenging. Better yields and thicknesses were obtained using electrodeposition from isopropyl alcohol solutions than from ammonium sulfate solutions. 191 Ir and 193 Ir targets were initially prepared using the standard single-sided electrodeposition cell. Iridium electrodepositions using a double-sided electrodeposition cell were developed and were optimized, resulting in thick, uniform iridium deposits. LA UR 15-22475. (author)
The 234U neutron capture cross section measurement at the n TOF facility
International Nuclear Information System (INIS)
Lampoudis, C.; Abbondanno, U.; Aerts, G.; A lvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, O.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K.
2008-01-01
The neutron capture cross-section of 234 U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n-TOF, based on a spallation source located at CERN. A 4π BaF 2 array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt γ-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of Endf in the relevant energy region, indicating the good performance of the n-TOF facility and the TAC. (authors)
Measurement of small-angle elastic scattering cross sections of fast neutron
International Nuclear Information System (INIS)
Wan Dairong; Dai Yunsheng; Liang Xuecai; Cao Jianhua
1993-11-01
A position-sensitive detector has been developed for studying small angle scattering of fast neutrons. The detector mainly consists of two photomultiplier tubes to monitor the liquid scintillator. The time difference between two signals from two photomultiplier tubes is used to determine the position of light emitted. The 14.7 MeV neutron elastic scattering differential cross section of Zr, Nb, Ti and Pb were measured by position-sensitive detector and associated particle time-of-flight method at the angles from 3 deg to 15 deg. The corrections for neutron fluence attenuation, multiple scattering and finite geometry are performed by using Monte-Carlo method. The experimental results provide data needed in nuclear engineering design
Neutron cross-section measurements at the nTOF facility at CERN
Colonna, N
2004-01-01
A neutron Time-of-Flight facility (n_TOF) has recently become operative at CERN. The innovative features of the neutron beam, in particular the high instantaneous flux, the wide energy range, the high resolution and the low background, make this facility unique for measurements of neutron-induced reactions relevant to the field of emerging nuclear technologies, as well as to Nuclear Astrophysics and fundamental Nuclear Physics. The n_TOF facility is here described, together with the main features of the experimental apparata used for cross-section measurements. The results of the first measurement campaign, which have confirmed the innovative aspects of the facility, are presented. The measurement plan of the n_TOF collaboration, in particular with regard to implications to ADS, is briefly discussed.
Measurements and analysis of the 127I and 129I neutron capture and total cross sections
International Nuclear Information System (INIS)
Noguere, G.
2005-01-01
Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of 129 I produced yearly in the reactors of the EU countries and a very long β - half-life of 1.57 x 10 7 years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, 129 I is potentially a key long-lived fission product for transmutation applications, since 129 I transmutes in 130 I after a single neutron capture and decays to 130 Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI 2 samples used in this work contain natural and radioactive iodine, extensive measurements of 129 I have been carried out under the same experimental conditions as for the 129 I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)
International Nuclear Information System (INIS)
Tain, J. L.; Guadilla, V.; Valencia, E.; Algora, A.
2017-01-01
Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γ emission from neutron-unbound states populated in the β-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission one can deduce information on the (n,γ) cross section for unstable neutron-rich nuclei of interest in r process abundance calculations. A surprisingly large γ branching was observed for a number of isotopes. Here, the results are compared with Hauser-Feshbach calculations and discussed.
International Nuclear Information System (INIS)
Young, P.G.; Arthur, E.D.
1977-11-01
A new multistep Hauser--Feshbach code that includes corrections for preequilibrium effects is described. The code can calculate up to 60 decay reactions (cross sections and energy spectra) in one computation, and thereby provide considerable flexibility for handling processes with complicated reaction chains. Input parameter setup, problem output, and subroutine descriptions are given along with a sample problem calculation. A brief theoretical description is also included. 8 figures, 3 tables
Evaluation of sodium-23 neutron capture cross section data for the ENDF/B V-III file
International Nuclear Information System (INIS)
Paik, N.C.; Pitterle, T.A.
1975-01-01
The evaluation of neutron cross sections of 23 Na, material number 1156, for the ENDF/B File is described. Cross sections were evaluated between 10 -5 eV and 15 MeV. Experimental data available up to March 1971 were included in the evaluation
International Nuclear Information System (INIS)
Dhouioui Raja; Teulet Philippe; Cressault Yann; Ghalila Hassen; Riahi Riadh; Jaidane Nejm Eddine; Ben Lakhdar Zohra
2014-01-01
A method based upon the weighted total cross section (WTCS) theory is proposed to calculate the photo-ionisation cross sections and the radiative recombination rate coefficients between the fundamental level of CO and the main electronic states of its corresponding ion. Total photo-ionisation cross sections and radiative recombination rate coefficients are determined from the calculation of elementary vibrational photo-ionisation cross sections. Transitions between CO + (X, A and B) and CO(X) are considered. Total photo-ionisation cross sections and recombination coefficients are computed in the temperature interval 500–15000 K. (low temperature plasma)
COMBINE/PC - a portable neutron spectrum and cross-section generation program
International Nuclear Information System (INIS)
Nigg, D.W.; Grimesey, R.A.; Curtis, R.L.
1990-01-01
Use of personal computers and engineering workstations for complex scientific computations has expanded rapidly in the past few years. This trend is expected to continue in the future with the introduction of increasingly sophisticated microprocessors and microcomputer systems. In response to this, an integrated system of neutronics and radiation transport software suitable for operation in an IBM personal computer (PC)-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past 3 years. A key component of this system will be module to produce application-specific multigroup cross-section libraries that can be used in various neutron transport and diffusion theory code modules. This software module, referred to as COMBINE/PC, was recently completed at INEL and is the subject of this paper. COMBINE/PC was developed to provide an ENDF/B-based neutron cross-section generation capability of sufficient sophistication to handle a wide variety of practical fission and fusion-related applications while maintaining a compact machine-independent structure
Influence of target-scattered neutrons on cross-section measurements
International Nuclear Information System (INIS)
Lesiecki, H.; Cosack, M.; Siebert, B.R.L.
1985-01-01
Monoenergetic neutrons produced with accelerators are usually accompanied by degraded and secondary neutrons which arise from reactions of source neutrons in the material of the target construction. A Monte Carlo code was written which takes into account the kinematics and the angular source strength of the neutron producing reaction and the interactions of the neutrons with the material in the immediate vicinity of their production. The calculation of the spectral distribution of the neutron fluence is compared with the result of a time-of-flight measurement. (author)
International Nuclear Information System (INIS)
Thorlaksen, B.
1981-05-01
Nuclear cross sections for fuel assemblies of the more recent Westinghouse designs, representing two different PWR reactor cores, are calculated as functions of average fuel temperature, moderator density, and moderator poison concentration. The cross-section functions are verified by referring to Westinghouse power-shape calculations and other analysis. Computations on the side reflector resulted in significantly higher albedo values than used previously for BWR's in similar nodal codes. This led to an investigation of the influence of the internodal coupling coefficients on the power shape. It is concluded that the calculated power shape is strongly dependent, on the choise of coupling coefficients. However, it is shown that ''the correct'' set of coupling coefficients depends mostly on the nodal configuration, and that it is fairly independent of the power condition. (author)
International Nuclear Information System (INIS)
Senesi, R.; Colognesi, D.; Pietropaolo, A.; Abdul-Redah, T.
2005-01-01
Deep inelastic neutron scattering measurements from orthorhombic ordered HCl are presented and analyzed in order to clarify the problem of an anomalous deficit in the neutron-proton cross section found in previous experiments on various materials. A reliable model for the HCl short-time single-particle dynamics, including atomic vibrational anisotropies and deviations from the impulsive approximation, is set up. The model HCl response function is transformed into simulated time-of-flight spectra, taking carefully into account the effects of instrumental resolution and the filter absorption profile used for neutron energy analysis. Finally, the experimental values of the anomalous reduction factor for the neutron-proton cross section are extracted by comparing simulated and experimental data. Results show a 34% reduction of the H cross section, varying with the scattering angle in a range centered at 53 deg. In addition, the same approximate procedure used in earlier studies is also employed, providing results in reasonable agreement with the more rigorous ones, and confirming the substantial reliability of the past work on this subject
Neutron-induced fission cross sections of uraniums up to 40 MeV
Energy Technology Data Exchange (ETDEWEB)
Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.
1998-11-01
Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)
Fast-neutron elastic-scattering cross sections of elemental tin
International Nuclear Information System (INIS)
Budtz-Jorgensen, C.; Guenther, P.T.; Smith, A.
1982-07-01
Broad-resolution neutron-elastic-scattering cross sections of elemental tin are measured from 1.5 to 4.0 MeV. Incident-energy intervals are approx. 50 keV below 3.0 MeV and approx. 200 keV at higher energies. Ten to twenty scattering angles are used, distributed between approx. 20 and 160 0 . The experimental results are used to deduce the parameters of a spherical optical-statistical model and they are also compared with corresponding values given in ENDF/B-V
International Nuclear Information System (INIS)
Murata, Toru
2000-01-01
Simple formulae to reproduce the optical model compound nucleus formation cross sections for neutron, proton, deuteron, triton, 3 He and alpha particles are presented for target nuclei of light to medium weight mass region. (author)
Energy Technology Data Exchange (ETDEWEB)
Guasp, J.; Navarro, C.
1973-07-01
A FORTRAN V computer code for UNIVAC 1108/6 using a local Optical Model with spin-orbit interaction is described. The code calculates fast neutron cross sections, angular distribution, and Legendre moments for heavy and intermediate spherical nuclei. It allows for the possibility of automatic variation of potential parameters for experimental data fitting. (Author) 55 refs.
International Nuclear Information System (INIS)
Tassan, S.
1978-01-01
A selection of technical documents is given concerning the experimental determination of the neutron capture cross-sections of fast reactor structural materials (Fe, Cr, Ni...) integrated over the intermediate energy spectra. The experimental structure project and modifications of the reactor RB2 for this experiment, together with criticality and safety calculations, are presented
Fast-neutron total and scattering cross sections of 58Ni
International Nuclear Information System (INIS)
Jorgensen, C.B.; Guenther, P.T.; Smith, A.B.; Whalen, J.F.
1981-09-01
Neutron total cross sections of 58 Ni were measured at 25 keV intervals from 0.9 to 4.5 MeV with 50 to 100 keV resolutions. Attention was given to self-shielding corrections to the observed total cross sections. Differential elastic- and inelastic-scattering cross sections were measured at 50 keV intervals from 1.35 to 4.0 MeV with 50 to 100 keV resolutions. Inelastic excitation of levels at 1.458 +- 0.009, 2.462 +- 0.010, 2.791 +- 0.015, 2.927 +- 0.012 and 3.059 +- 0.025 MeV was observed. The experimental results were interpreted in terms of optical-statistical and coupled-channels models. A spherical optical-statistical model was found generally descriptive of an energy-average of the experimental results. However, detailed considerations suggested significant contributions from direct-vibrational interactions, particularly associated with the excitation of the first 2+ level
Some remarks on the neutron elastic- and enelastic-scattering cross sections of palladium
International Nuclear Information System (INIS)
Chiba, S.; Guenther, P.T.; Smith, A.B.
1989-05-01
The cross sections for the elastic-scattering of 5.9, 7.1 and 8.0 MeV neutrons from elemental palladium were measured at forty scattering angles distributed between ∼15/degree/ and 160/degree/. The inelastic-scattering cross sections for the excitation of palladium levels at energies of 260 keV to 560 keV were measured with high resolution at the same energies, and at a scattering angle of 80/degree/. The experimental results were combined with lower-energy values previously obtained by this group to provide a comprehensive data base extending from near the inelastic-scattering threshold to 8 MeV. That data base was interpreted in terms of a coupled-channel model, including the inelastic excitation of one- and two-phonon vibrational levels of the even isotopes of palladium. It was concluded that the palladium inelastic-scattering cross section, at the low energies of interest in assessment of fast-fission-reactor performance, are large (∼50% greater than given in widely used evaluated fission-product data files). They primarily involve compound-nucleus processes, with only a small direct-reaction component attributable to the excitation of the one-phonon, 2 + , vibrational levels of the even isotopes of palladium. 24 refs., 6 figs
Measurements of neutron cross section of the {sup 243}Am(n,{gamma}){sup 244}Am reaction
Energy Technology Data Exchange (ETDEWEB)
Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
The effective thermal neutron cross section of {sup 243}Am(n,{gamma}){sup 244}Am reaction was measured by the activation method. Highly-purified {sup 243}Am target was irradiated in an aluminum capsule by using a research reactor JRR-3M. The tentative effective thermal neutron cross sections are 3.92 b, and 84.44 b for the production of {sup 244g}Am and {sup 244m}Am, respectively. (author)
New procedure calculation of K-shell ionization cross sections by proton impact
International Nuclear Information System (INIS)
Kahoul, A.; Deghfel, B.; Abdellatif, A.; Nekkab, M.
2011-01-01
The database, which relies on different compilations available in the literature and on other experimental values extracted from papers published from 1992 till 2010, is used, within the individual treatment of the elements from beryllium ( 4 Be) to uranium ( 92 U), to deduce the empirical cross sections. These experimental data can be presented in a single curve, depending on a scaling law extracted from studies in the most familiar theories of collision (PWBA and BEA). Then, a fourth order polynomial was used to fit very well the existing database of K-shell ionization cross sections by proton. This procedure generates a new set of parameters to calculate empirical cross sections. Following the present procedure, our results are compared with those obtained using the ECPSSR model where a discrepancy is observed in the low-proton energy regime. - Highlights: → We used the experimental data to define the K-shell ionization cross sections. → These values are presented in a single curve used PWBA and BEA theories. → The empirical values are defined for each element separately.
Covariance matrices for nuclear cross sections derived from nuclear model calculations
International Nuclear Information System (INIS)
Smith, D. L.
2005-01-01
The growing need for covariance information to accompany the evaluated cross section data libraries utilized in contemporary nuclear applications is spurring the development of new methods to provide this information. Many of the current general purpose libraries of evaluated nuclear data used in applications are derived either almost entirely from nuclear model calculations or from nuclear model calculations benchmarked by available experimental data. Consequently, a consistent method for generating covariance information under these circumstances is required. This report discusses a new approach to producing covariance matrices for cross sections calculated using nuclear models. The present method involves establishing uncertainty information for the underlying parameters of nuclear models used in the calculations and then propagating these uncertainties through to the derived cross sections and related nuclear quantities by means of a Monte Carlo technique rather than the more conventional matrix error propagation approach used in some alternative methods. The formalism to be used in such analyses is discussed in this report along with various issues and caveats that need to be considered in order to proceed with a practical implementation of the methodology
International Nuclear Information System (INIS)
Barabanov, A.L.; Grechukhin, D.P.
1985-01-01
General analysis is conducted, and formulae for fission cross section and angular distribution of fission fragments of oriented nuclei by fast neutrons are presented. Geometrical coefficients making up the formulae permitting to carry out calculations for target nuclei with spins I=3/2, 5/2, 7/2 at interaction energies epsilon < or approximately 1 MeV are tabulated. Results of demonstrative calculation of fission fragment angular distribution of oriented sup(235)U nuclei by 0.1 <= epsilon <= 1.0 MeV neutrons reveal that angular distribution weakly depends on the set of permeability factors of neutron waves applied in the calculations
Effect of XCOM photoelectric cross-sections on dosimetric quantities calculated with EGSnrc
International Nuclear Information System (INIS)
Hobeila, F.; Seuntjens, J.P.
2002-01-01
The EGSnrc Monte-Carlo code system incorporates improved low energy photon physics such as atomic relaxations and the implementation of bound Compton cross-sections using the impulse approximation. The total cross-section for photoelectric absorption however, still relies on the data by Storm and Israel (S and I). Yet, low energy applications such as brachytherapy (e.g. 125 I) require up-to-date low-energy photoelectric cross-section data. In this paper, we study the dosimetric effects of a simple implementation of NIST XCOM-based photoelectric cross-sections in EGSnrc. This is done by calculating mass energy-absorption coefficients, absorbed dose from point sources, kilovoltage x-ray beams and ion chamber response. In the EGS code system, the PEGS4 routine reads the photoelectric and pair cross-sections for elements from a file (pgspepr.dat) and provides numerical fits for compounds which will be used by EGSnrc. We updated the photoelectric cross-sections of the pgspepr.dat file with the XCOM total photoelectric absorption cross-sections from NIST. After validation of this new implementation, we studied its effects on a number of dosimetrically relevant quantities. Firstly, we calculated mass energy-absorption coefficients by scoring energy transferred in a thin slab of water and air using the DOSRZnrc user code. Secondly, we calculated inverse-square corrected absorbed dose distributions from point sources in water by using an internally developed user code, KERNELph. Thirdly, we studied the differences in free-air ion chamber response calculations. Ion chamber response is defined as the dose to the cavity of an ionization chamber, D gas , positioned with its effective point of measurement at a reference point divided by air-kerma measured free-in-air at the same point. The ion chamber response was calculated using monoenergetic photon beams of energy 10 keV to 200 keV. The comparison of the Storm and Israel photoelectric cross-sections with the XCOM cross-sections
Faddeev calculations of pμ+p collisions: Effect of hyperfine splitting on the cross sections
International Nuclear Information System (INIS)
Hu, Chi-Yu; Kvitsinsky, A.
1995-01-01
The Faddeev equations, modified to remove long-range coupling between different channels, are solved in the total-angular-momentum representation for pμ + p collisions. S-wave elastic and hyperfine-transition cross sections are calculated with and without explicit inclusion of the hyperfine splitting ΔE. For hyperfine quenching the simpler approach without hyperfine splitting is found adequate at collision energies above about ΔE, but for elastic scattering it becomes adequate at somewhat higher energies. The present cross sections tend to fall in between earlier calculations done using a large Standard adiabatic expansion and those done using a two-state improved adiabatic expansion, but are closer to the former
A general algorithm for calculating jet cross sections in NLO QCD
Catani, S.; Catani, Stefano; Seymour, Michael H
1997-01-01
We present a new general algorithm for calculating arbitrary jet cross sections in arbitrary scattering processes to next-to-leading accuracy in perturbative QCD. The algorithm is based on the subtraction method. The key ingredients are new factorization formulae, called dipole formulae, which implement in a Lorentz covariant way both the usual soft and collinear approximations, smoothly interpolating the two. The corresponding dipole phase space obeys exact factorization, so that the dipole contributions to the cross section can be exactly integrated analytically over the whole of phase space. We obtain explicit analytic results for any jet observable in any scattering or fragmentation process in lepton, lepton-hadron or hadron-hadron collisions. All the analytical formulae necessary to construct a numerical program for next-to-leading order QCD calculations are provided. The algorithm is straightforwardly implementable in general purpose Monte Carlo programs.
Measurement of the polarized neutron---polarized {sup 3}He total cross section
Energy Technology Data Exchange (ETDEWEB)
Keith, C.D.; Gould, C.R.; Haase, D.G.; Seely, M.L. [North Carolina State University, Raleigh, North Carolina 27695 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States); Huffman, P.R.; Roberson, N.R.; Tornow, W.; Wilburn, W.S. [Duke University, Durham, North Carolina 27708 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708 (United States)
1995-05-10
The first measurements of polarized neutron--polarized {sup 3}He scattering in the few MeV energy region are reported. The total cross section difference {Delta}{sigma}{sub {ital T}} for transversely polarized target and beam has been measured for neutron energies between 1.9 and 7.5 MeV. Comparison is made to predictions of {Delta}{sigma}{sub {ital T}} using various descriptions of the {sup 4}He continuum. A brute-force polarized target of solid {sup 3}He has been developed for these measurements. The target is 4.3{times}10{sup 22} atoms/cm{sup 2} thick and is polarized to 38% at 7 Telsa and 12 mK. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
The rapid calculation of rotationally and vibrationally inelastic molecular collision cross sections
International Nuclear Information System (INIS)
Balint-Kurti, G.G.; Eno, L.
1979-01-01
Several new approximate methods for the calculation of rotationally and vibrationally inelastic molecular collision cross sections are presented. Simple calculations have been performed in all cases and comparison made with exactly calculated cross sections. For rotationally inelastic scattering the authors present the Centrifugally Decoupled Exponential Distorted Wave (CDEDW) approximation. This approximation uses the same centrifugal decoupling technique as is used in the coupled states or p-helicity decoupling approximations, to reduce the number of channels which are coupled together in the differential equations of scattering theory. The simplified set of equations which results is then solved using the exponential distorted wave approximation. The method is applied to rotationally inelastic scattering in the Ar+N 2 system and is shown to give highly reliable results. For processes involving simultaneous vibrational and rotational inelasticity the authors have developed a fast, nearly entirely analytic, method which treats the rotational inelasticity using the infinite order sudden approximation and the vibrational inelasticity using an adiabatic distorted wave approximation. Results are presented for vibrationally inelastic cross sections in the He+H 2 system. For this very light system, the sudden approx- imation for the rotational inelasticity breaks down. It is argued, however, that for heavier systems, for which exact computations are presently impossible, the approximation will be valid. (Auth.)
232Th, 233Pa, and 234U capture cross-section measurements in moderated neutron flux
Bringer, O.; Isnard, H.; AlMahamid, I.; Chartier, F.; Letourneau, A.
2008-07-01
The Th-U cycle was studied through the evolution of a 100 μg 232Th sample irradiated in a moderated neutron flux of 8.010 14 n/cm 2/s, intensity close to that of a thermal molten salt reactor. After 43 days of irradiation and 6 months of cooling, a precise mass spectrometric analysis, using both TIMS and MC-ICP-MS techniques, was performed, according to a rigorous methodology. The measured thorium and uranium isotopic ratios in the final irradiated sample were then compared with integral simulations based on evaluated data; an overall good agreement was seen. Four important thermal neutron-capture cross-sections were also extracted from the measurements, 232Th (7.34±0.21 b), 233Pa (38.34±1.78 b), 234U (106.12±3.34 b), and 235U (98.15±11.24 b). Our 232Th and 235U results confirmed existing values whereas the cross-sections of 233Pa and 234U (both key parameters) have been redefined.
The neutron capture cross section of the ${s}$-process branch point isotope $^{63}$Ni
Neutron capture nucleosynthesis in massive stars plays an important role in Galactic chemical evolution as well as for the analysis of abundance patterns in very old metal-poor halo stars. The so-called weak ${s}$-process component, which is responsible for most of the ${s}$ abundances between Fe and Sr, turned out to be very sensitive to the stellar neutron capture cross sections in this mass region and, in particular, of isotopes near the seed distribution around Fe. In this context, the unstable isotope $^{63}$Ni is of particular interest because it represents the first branching point in the reaction path of the ${s}$-process. We propose to measure this cross section at n_TOF from thermal energies up to 500 keV, covering the entire range of astrophysical interest. These data are needed to replace uncertain theoretical predicitons by first experimental information to understand the consequences of the $^{63}$Ni branching for the abundance pattern of the subsequent isotopes, especially for $^{63}$Cu and $^{...
Integral tests of some high-threshold activation cross-sections of neutrons
International Nuclear Information System (INIS)
Vasil'eva, E.G.; Bukanov, V.N.; Kolotyj, V.V.; Pasechnik, V.M.; Trofimova, N.A.
1993-01-01
The coordination of differential data of excitation functions of activation reactions has been studied in the neutron energy ranges 3 - 55 MeV. Experiments have been performed in neutron fields got in reactions 9 Be(d,n) 10 B and 9 Be(p,n) 9 B at E d = 30, 40, 50 MeV and E p = 50 MeV. It is shown that differential data of reaction cross-sections 47 Ti(n,p) 47 Sc, nat. Ti(n,x) 47 Sc, 90 Zr(n,p) 90m Y, 93 Nb(n,a) 90m Y, 202 Tl(n,2 n) 203 Tl, 58 Ni(n,2 n) 57 Ni, 89 Y(n,2 n) 88 Y, 23 Na(n,2 n) 22 Na, 59 Co(n,3 n) 57 Co, 90 Zr(n,3 n) 88 Zr, 203 Tl(n,3 n) 201 Tl, 197 Au(n,4 n) 194 Au have not been determined for sure. These cross-sections demand further clarification. (author). 14 refs., 1 tab., 3 figs
International Nuclear Information System (INIS)
Meadows, J.W.
1987-03-01
The error information from the recent measurements of the fission cross section ratios of nine isotopes, 230 Th, 232 Th, 233 U, 234 U, 236 U, 238 U, 237 Np, 239 Pu, and 242 Pu, relative to 235 U at 14.74 MeV neutron energy was used to calculate their correlations. The remaining 36 non-trivial and non-reciprocal cross section ratios and their errors were determined and compared to evaluated (ENDF/B-V) values. There are serious differences but it was concluded that the reduction of three of the evaluated cross sections would remove most of them. The cross sections to be reduced are 230 Th - 13%, 237 Np - 9.6% and 239 Pu - 7.6%. 5 refs., 6 tabs
Energy Technology Data Exchange (ETDEWEB)
Sirakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Capote, R.; Trkov, A. [International Atomic Energy Agency, NAPC-Nuclear Data Section, Vienna (Austria); Gritzay, O. [Institute for Nuclear Research, Kyiv (Ukraine); Kim, H.I. [Korea Atomic Energy Research Institute, Nuclear Data Center, Daejeon (Korea, Republic of); Kopecky, S.; Paradela, C.; Schillebeeckx, P. [European Commission, Joint Research Centre, Geel (Belgium); Kos, B. [Jozef Stefan Institute, Ljubljana (Slovenia); Pronyaev, V.G. [Rosatom State Corporation, Atomsrandart, Moscow (Russian Federation)
2017-10-15
Cross sections for neutron interactions with {sup 238}U in the energy region from 5 keV to 150 keV have been evaluated. Average total and capture cross sections have been derived from a least squares analysis using experimental data reported in the literature. The resulting cross sections have been parameterised in terms of average resonance parameters maintaining full consistency with results of optical model calculations by using a dispersive coupled channel optical model potential. The average compound partial cross sections have been expressed in terms of transmission coefficients by applying the Hauser-Feshbach statistical reaction theory including width-fluctuations. A generalized single-level representation compatible with the energy-dependent options of the ENDF-6 format has been applied using standard boundary conditions. The results have been transferred into a full ENDF-6 compatible data file. (orig.)
Investigation of the 93Nb neutron cross-sections in resonance energy range
International Nuclear Information System (INIS)
Grigoriev, Yu.V.; Kitaev, V.Ya.; Zhuravlev, B.V.; Sinitsa, V.V.; Borzakov, S.B.; Faikov-Stanchik, H.; Ilchev, G.; Mezentseva, Zh.V.; Panteleev, Ts.Ts.; Kim, G.N.
2002-01-01
The results of gamma-ray multiplicity spectra and transmission measurements for 93 Nb in energy range 21.5 eV-100 keV are presented. Gamma spectra from 1 to 7 multiplicity were measured on the 501 m and 121 m flight paths of the IBR-30 using a 16-section scintillation detector with a NaI(Tl) crystals of a total volume of 36 l and a 16-section liquid scintillation detector of a total volume of 80 l for metallic samples of 50, 80 mm in diameter and 1, 1.5 mm thickness with 100% 93 Nb. Besides, the total and scattering cross-section of 93 Nb were measured by means batteries of B-10 and He-3 counters on the 124 m, 504 m and 1006 m flight paths of the IBR-30. Spectra of multiplicity distribution were obtained for resolved resonances in the energy region E=30-6000 eV and for energy groups in the energy region E=21.5 eV- 100 keV. They were used for determination of the average multiplicity, resonance parameters and capture cross-section in energy groups and for low-laying resonances of 93 Nb. Standard capture cross-sections of 238 U and experimental gamma-ray multiplicity spectra were also used for determination of capture cross section 93 Nb in energy groups. Similar values were calculated using the ENDF/B-6 and JENDL-3 evaluated data libraries with the help of the GRUKON computer program. Within the limits of experimental errors there is observed an agreement between the experiment and calculation, but in some groups the experimental values differ from the calculated ones. (author)
Hirose, K.; Nishio, K.; Makii, H.; Nishinaka, I.; Ota, S.; Nagayama, T.; Tamura, N.; Goto, S.; Andreyev, A. N.; Vermeulen, M. J.; Gillespie, S.; Barton, C.; Kimura, A.; Harada, H.; Meigo, S.; Chiba, S.; Ohtsuki, T.
2017-06-01
Fission and capture reactions were simultaneously measured in the neutron-induced reactions of 241Am at the spallation neutron facility of the Japan Proton Accelerator Research Complex (J-PARC). Data for the neutron energy range of En=0.1-20 eV were taken with the TOF method. The fission events were observed by detecting prompt neutrons accompanied by fission using liquid organic scintillators. The capture reaction was measured by detecting γ rays emitted in the deexcitation of the compound nuclei using the same detectors, where the prompt fission neutrons and capture γ rays were separated by a pulse shape analysis. The cross sections were obtained by normalizing the relative yields at the first resonance to evaluations or other experimental data. The ratio of the fission to capture cross sections at each resonance is compared with those from an evaluated nuclear data library and other experimental data. Some differences were found between the present values and the library/literature values at several resonances.
Aorta cross-section calculation and 3D visualization from CT or MRT data using VRML
Grabner, Guenther; Modritsch, Robert; Stiegmaier, Wolfgang; Grasser, Simon; Klinger, Thomas
2005-04-01
Quantification of vessel diameters of artherosclerotic or congenital stenosis is very important for the diagnosis of vascular diseases. The aorta extraction and cross-section calculation is a software-based application that offers a three-dimensional, platform-independent, colorized visualization of the extracted aorta with augmented reality information of MRT or CT datasets. This project is based on different types of specialized image processing algorithms, dynamical particle filtering and complex mathematical equations. From this three-dimensional model a calculation of minimal cross sections is performed. In user specified distances, the aorta is cut in differently defined directions which are created through vectors with varying length. The extracted aorta and the derived minimal cross-sections are then rendered with the marching cube algorithm and represented together in a three-dimensional virtual reality with a very high degree of immersion. The aim of this study was to develop an imaging software that delivers cardiologists the possibility of (i) furnishing fast vascular diagnosis, (ii) getting precise diameter information, (iii) being able to process exact, local stenosis detection (iv) having permanent data storing and easy access to former datasets, and (v) reliable documentation of results in form of tables and graphical printouts.
Formation cross section of iron-60 with reactor neutrons in 59Fe(n, γ)60Fe reaction
International Nuclear Information System (INIS)
Sato, T.; Suzuki, T.
1993-01-01
Ingrowth of 60 Co radioactivity in an iron sample irradiated in a nuclear reactor has been measured for determination of formation cross section of 60 Fe in the 59 Fe(n, γ) 60 Fe reaction with reactor neutrons. After 5 years cooling, the irradiated iron was purified from 60 Co and other radioactive nuclides by an anion exchange separation method and isopropyl ether extraction in hydrochloric acid. The amount of 60 Co ingrowth was measured by γ-spectrometry using a Ge-detector coupled to a multichannel pulse height analyzer 4 years after the purification of iron. Neutron flux of the irradiation position was calculated from the amount of 55 Fe produced. The observed value of 12.5 ± 2.8 barn is slightly greater than reported value for burnup cross section of 59 Fe(n, x)X, where x refers γ, α, d, p and 2n, and X is any nuclide produced by the above reactions. (author) 8 refs.; 2 tabs
Semenov, Alexander; Babikov, Dmitri
2014-01-16
For computational treatment of rotationally inelastic scattering of molecules, we propose to use the mixed quantum/classical theory, MQCT. The old idea of treating translational motion classically, while quantum mechanics is used for rotational degrees of freedom, is developed to the new level and is applied to Na + N2 collisions in a broad range of energies. Comparison with full-quantum calculations shows that MQCT accurately reproduces all, even minor, features of energy dependence of cross sections, except scattering resonances at very low energies. The remarkable success of MQCT opens up wide opportunities for computational predictions of inelastic scattering cross sections at higher temperatures and/or for polyatomic molecules and heavier quenchers, which is computationally close to impossible within the full-quantum framework.
Measurement of the subthermal neutron induced fission cross-section of 241Pu
International Nuclear Information System (INIS)
Wagemans, C.; Schillebeeckx, P.; Deruytter, A.J.; Barthelemy, R.
1992-01-01
The 241 Pu(n, f) cross-section has been measured from 2 meV up to 20 eV. The experiments were performed at GELINA, using a dedicated set-up optimized for cross-section measurements below 1 eV. The present σ f (E)-data below 40 meV are clearly compatible with a 1/v-shape, in contradiction to the measurements reported in the literature. Consequently, there is a probability of errors in the thermal normalization of these measurements. Furthermore, the Westcott g f -factor calculated from the present σ f (E)-data yields a value of 1.041±0.003, which is lower than generally adopted. (orig.)
Measurement of activation cross-sections for high-energy neutron-induced reactions of Bi and Pb
Energy Technology Data Exchange (ETDEWEB)
Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Shahid, Muhammad [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Naik, Haladhara [Kyungpook National University, Department of Physics and Center for High Energy Physics, Daegu (Korea, Republic of); Bhabha Atomic Research Centre, Radiochemistry Division, Trombay, Mumbai (India); Lee, Manwoo [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of)
2015-08-15
The cross-sections for {sup 209}Bi(n, 4n){sup 206}Bi, {sup 209}Bi(n, 5n){sup 205}Bi, {sup nat}Pb(n,xn){sup 204m}Pb, {sup nat}Pb(n,xn){sup 203}Pb, {sup nat}Pb(n,xn){sup 202m}Pb,{sup nat}Pb(n,xn){sup 201}Pb, {sup nat}Pb(n,xn){sup 200}Pb, {sup nat}Pb(n,αxn){sup 203}Hg and {sup nat}Pb(n, pxn){sup 202}Tl reactions were determined at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea in the neutron energy range of 15.2 to 37.2 MeV. The above cross-sections were obtained by using the activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutron used for the above reactions are based on the {sup 9}Be(p, n) reaction. Simulations of the spectral flux from the Be target were done using the MCNPX program. The cross-sections were estimated with the TALYS 1.6 code using the default parameter. The data from the present work and literature were compared with the data from the EAF-2010 and the TENDL-2013 libraries, and calculated values of TALYS 1.6 code. It shows that appropriate level density model, the γ-ray strength function, and the spin cut-off parameter are needed to obtain a good agreement between experimental data and theoretical values from TALYS 1.6 code. (orig.)
Evaluation of 240Pu neutron cross-sections in the unresolved resonance region
International Nuclear Information System (INIS)
Antsipov, G.V.; Konshin, V.A.; Sukhovitskij, E.S.
1976-01-01
The mean resonance parameters for 240 Pu were evaluated using both available experimental data and theoretical concepts. The assumption of a double-humped fission barrier structure was used for accurate calculation of the fission widths and the width fluctuation factor. The parameters of a double-humped fission barrier were evaluated. The mean resonance parameters permit calculation of the cross-sections sigmasub(t), sigmasub(nγ), sigmasub(f) and sigmasub(nn), in the 1-142 keV energy region. (author)
Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.
2014-05-01
A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yuan [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Ning, Chuangang, E-mail: ningcg@tsinghua.edu.cn [Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2015-10-14
Recently, the development of photoelectron velocity map imaging makes it much easier to obtain the photoelectron angular distributions (PADs) experimentally. However, explanations of PADs are only qualitative in most cases, and very limited works have been reported on how to calculate PAD of anions. In the present work, we report a method using the density-functional-theory Kohn-Sham orbitals to calculate the photodetachment cross sections and the anisotropy parameter β. The spherical average over all random molecular orientation is calculated analytically. A program which can handle both the Gaussian type orbital and the Slater type orbital has been coded. The testing calculations on Li{sup −}, C{sup −}, O{sup −}, F{sup −}, CH{sup −}, OH{sup −}, NH{sub 2}{sup −}, O{sub 2}{sup −}, and S{sub 2}{sup −} show that our method is an efficient way to calculate the photodetachment cross section and anisotropy parameter β for anions, thus promising for large systems.
HATHOR - HAdronic Top and Heavy quarks crOss section calculatoR
Aliev, M.; Lacker, H.; Langenfeld, U.; Moch, S.; Uwer, P.; Wiedermann, M.
2011-04-01
We present a program to calculate the total cross section for top-quark pair production in hadronic collisions. The program takes into account recent theoretical developments such as approximate next-to-next-to-leading order perturbative QCD corrections and it allows for studies of the theoretical uncertainty by separate variations of the factorization and renormalization scales. In addition it offers the possibility to obtain the cross section as a function of the running top-quark mass. The program can also be applied to a hypothetical fourth quark family provided the QCD couplings are standard. Program summaryProgram title: Hathor Catalogue identifier: AEID_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEID_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 5405 No. of bytes in distributed program, including test data, etc.: 327 718 Distribution format: tar.gz Programming language: C++, Fortran, Java Computer: Standard PCs (x86, x86_64 processors) Operating system: Linux RAM: 256 MB Classification: 11.1 External routines: Interface to LHAPDF for the user's choice of parton distribution functions, see http://projects.hepforge.org/lhapdf/ Nature of problem: Computation of total cross section in perturbative QCD. Solution method: Numerical integration of hard parton cross section convoluted with parton distribution functions. Running time: A few seconds to a few minutes on standard desktop PCs or notebooks, depending on the chosen options.
A new calculation formula of the nuclear cross-section of therapeutic protons
Directory of Open Access Journals (Sweden)
Waldemar Ulmer
2014-03-01
Full Text Available Purpose: We have previously developed for nuclear cross-sections of therapeutic protons a calculation model, which is founded on the collective model as well as a quantum mechanical many particle problem to derive the S matrix and transition probabilities. In this communication, we show that the resonances can be derived by shifted Gaussian functions, whereas the unspecific nuclear interaction compounds can be represented by an error function, which also provides the asymptotic behavior. Method: The energy shifts can be interpreted in terms of necessary domains of energy to excite typical nuclear processes. Thus the necessary formulas referring to previous calculations of nuclear cross-sections will be represented. The mass number AN determines the strong interaction range, i.e. RStrong = 1.2·10-13·AN1/3cm. The threshold energy ETh of the energy barrier is determined by the condition Estrong = ECoulomb. Results and Conclusion: A linear combination of Gaussians, which contain additional energy shifts, and an error function incorporate a possible representation of Fermi-Dirac statistics, which is applied here to nuclear excitations and reaction with release of secondary particles. The new calculation formula provides a better understanding of different types of resonances occurring in nuclear interactions with protons. The present study is mainly a continuation of published papers.1-3--------------------------------Cite this article as: Ulmer W. A new calculation formula of the nuclear cross-section of therapeutic protons. Int J Cancer Ther Oncol 2014; 2(2:020211. DOI: 10.14319/ijcto.0202.11
International Nuclear Information System (INIS)
Androsenko, A.A.; Androsenko, P.A.; Blokhin, A.I.; Kulagin, N.T.; Pronyaev, V.G.; Simakov, S.P.
1997-01-01
The effect of angular anisotropy in inelastic secondary neutron scattering on neutron leakage spectra from the surface of spherical specimens is investigated. It is shown how inadequate representation of the cross-section structure in the neutron energy resonance region can affect the neutron leakage spectrum. (author). 19 refs, 5 figs, 6 tabs
Domingo-Pardo, C.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.
2007-01-01
The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 600 keV by using two optimized C6D6 detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture gamma-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched 208Pb sample. The effect of the lower energy cutoff in the pulse height spectra of the C6D6 detectors was carefully corrected via Monte Carlo simulations. Compared to previous 206Pb values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results hav...
Measurement of thermal neutron cross section for {sup 241}Am(n,f) reaction
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Miyoshi, Mitsuharu; Kimura, Itsuro; Kanno, Ikuo; Shinohara, Nobuo
1997-03-01
Making use of a standard neutron spectrum field with a pure Maxwellian distribution, the thermal neutron cross section for the {sup 241}Am(n,f) reaction has been measured relative to the reference value of 586.2b for the {sup 235U}(n,f) reaction. For the present measurement, electrodeposited layers of {sup 241}Am and {sup 235}U have been employed as back-to-back type double fission chambers. The present result at neutron energy of 0.0253 eV is 3.15 {+-} 0.097b. The ENDF/B-VI data is in good agreement with the present value, while the JENDL-3.2 data is lower by 4.2%. The evaluated data in JEF-2.2 and by Mughabghab are higher by 0.9% and 1.6%, respectively than the present result. The ratios of the earlier experimental data to the present value are distributed between 0.89 and 1.02. (author)
Cross sections needed for investigations into track phenomena and Monte-Carlo calculations
International Nuclear Information System (INIS)
Paretzke, H.G.
1983-01-01
Investigations into basic radiation action mechanisms as well as into applied radiation transport problems (e.g. electron microscopy) greatly benefit from detailed computer simulations of charged particle track structures in matter. The first and in fact most important and most difficult step in any such calculation is the derivation of reliable cross sections for the most relevant interaction processes in the material(s) under consideration. The second step in radiation transport calculations is the testing of results or intermediate results for quantitative or qualitative consistency with other experimental or theoretical information (e.g. yields, backscatter factors). This paper discusses the types of the most important collision cross sections for studies on track phenomena by detailed Monte-Carlo calculations, the necessary accuracy of such data and various means of consistency checks of calculated results. This will be done mainly with examples taken from radiation physics as applied to dosimetric and biological problems (i.e. to gaseous and condensed targets). 12 references, 8 figures
International Nuclear Information System (INIS)
Paratte, J.M.; Grimm, P.
1998-01-01
1 - Description of program or function: Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. 2 - Method of solution: Resonance treatment: pointwise calculation of flux in 2 zones in the resonance range, and interpolation in tables out of this range. Cell calculation: integral transport method. 2-D x-y: diffusion or transport (quadruple P1). Burnup: coupling of nuclides through matrices, development of nuclide densities as polynomials of the time. 3 - Restrictions on the complexity of the problem: Cells: cylindrical or slabs. 2-D: only x-y meshes, with homogenised cells
Hamiltonian guiding center drift orbit calculation for toroidal plasmas of arbitrary cross section
Energy Technology Data Exchange (ETDEWEB)
White, R.B.; Chance, M.S.
1984-02-01
A Hamiltonian guiding center drift orbit formalism is developed which permits the efficient calculation of particle trajectories in toroidal devices of arbitrary cross section with arbitrary plasma ..beta... The magnetic field is assumed to be a small perturbation from a zero order toroidal equilibrium field possessing either axial or helical symmetry. The equilibrium field can be modelled analytically or obtained numerically from equilibrium codes. A numerical code based on the formalism is used to study particle orbits in circular and bean-shaped tokamak configurations.
Space charge calculations of elliptical cross-section electron pulses in PARMELA
Koltenbah, B E C
1999-01-01
The Boeing version of the PARMELA code has been modified to compute the space charge effects for electron pulses with highly elliptical transverse cross-sections. A dynamic gridding routine has been added to allow good resolution for pulses as they evolve in time. The results from calculations for the chicane buncher in the 1 kW visible FEL beam line at Boeing indicate that the old circular algorithm of the SCHEFF subroutine overestimates the emittance growth in the bend plane by 30-40%.
Neutron inelastic-scattering cross sections of 232Th, 233U, 235U, 238U, 239Pu and 240Pu
International Nuclear Information System (INIS)
Smith, A.B.; Guenther, P.T.
1982-01-01
Differential-neutron-emission cross sections of 232 Th, 233 U, 235 U, 238 U, 239 Pu and 240 Pu are measured between approx. = 1.0 and 3.5 MeV with the angle and magnitude detail needed to provide angle-integrated emission cross sections to approx. 232 Th, 233 U, 235 U and 238 U inelastic-scattering values, poor agreement is observed for 240 Pu, and a serious discrepancy exists in the case of 239 Pu
Thermal-neutron fission cross section of 26.1-min /sup 235/U/sup m/
International Nuclear Information System (INIS)
Talbert, W.L. Jr.; Starner, J.W.; Estep, R.J.; Balestrini, S.J.; Attrep, M. Jr.; Efurd, D.W.; Roensch, F.R.
1987-01-01
The thermal-neutron fission cross section of /sup 235/U/sup m/ has been measured relative to the ground-state cross section. A rapid radiochemical separation procedure was developed to provide sizeable (10/sup 10/ to 10/sup 11/ atom) samples that were reasonably free of the parent /sup 239/Pu. From a series of eight measurements, the value of 1.42 +- 0.04 was obtained for the ratio σ/sub m//σ/sub g/
Measurement of Th(n,γ) and Th(n,2n) cross-sections at neutron ...
Indian Academy of Sciences (India)
Abstract. The 232Th(n,γ) reaction cross-section at average neutron energies of 13.5, 15.5 and. 17.28 MeV from the 7Li(p, n) reaction has been determined for the first time using activation and off-line γ-ray spectrometric technique. The 232Th(n, 2n) cross-section at 17.28 MeV neu- tron energy has also been determined ...
International Nuclear Information System (INIS)
Calloo, A.A.
2012-01-01
In reactor physics, calculation schemes with deterministic codes are validated with respect to a reference Monte Carlo code. The remaining biases are attributed to the approximations and models induced by the multigroup theory (self-shielding models and expansion of the scattering law using Legendre polynomials) to represent physical phenomena (resonant absorption and scattering anisotropy respectively). This work focuses on the relevance of a polynomial expansion to model the scattering law. Since the outset of reactor physics, the latter has been expanded on a truncated Legendre polynomial basis. However, the transfer cross sections are highly anisotropic, with non-zero values for a very small range of the cosine of the scattering angle. Besides, the finer the energy mesh and the lighter the scattering nucleus, the more exacerbated is the peaked shape of this cross section. As such, the Legendre expansion is less suited to represent the scattering law. Furthermore, this model induces negative values which are non-physical. In this work, various scattering laws are briefly described and the limitations of the existing model are pointed out. Hence, piecewise-constant functions have been used to represent the multigroup scattering cross section. This representation requires a different model for the diffusion source. The discrete ordinates method which is widely employed to solve the transport equation has been adapted. Thus, the finite volume method for angular discretization has been developed and implemented in Paris environment which hosts the S n solver, Snatch. The angular finite volume method has been compared to the collocation method with Legendre moments to ensure its proper performance. Moreover, unlike the latter, this method is adapted for both the Legendre moments and the piecewise-constant functions representations of the scattering cross section. This hybrid-source method has been validated for different cases: fuel cell in infinite lattice
García, Mauricio; Sauvan, Patrick; García, Raquel; Ogando, Francisco; Sanz, Javier
2017-09-01
The aim of this paper is to check the performance of last versions of EAF and TENDL libraries (EAF2007, EAF2010, and TENDL2014) in the prediction of concrete activation under the neutron irradiation environment expected in IFMIF, an accelerator-based neutron source conceived for fusion materials testing. For this purpose Activity and dose rate responses of three types of concrete (ITER-Bioshield kind, barite and magnetite concretes) have been studied. For these quantities, dominant nuclides and production pathways have been determined and, then, a qualitative analysis of the relevant activation cross-sections involved has been performed by comparing data from mentioned libraries with experimental data from EXFOR database. Concrete activation studies have been carried out with IFMIF-like neutron irradiation conditions using the ACAB code and EAF and TENDL libraries. The cooling times assessed are related to safety and maintenance operations, specifically 1 hour, 1 day and 12 days. Final conclusions are focused on the recommendations for the activation library to be used among those analyzed and cross-section data to be improved.
Energy Technology Data Exchange (ETDEWEB)
Chadwick, M.B.; Young, P.G.
1995-07-01
We present evaluations of the interaction of 20 to 100 MeV neutrons with oxygen and nitrogen nuclei, which follows on from our previous work on carbon. Our aim is to accurately represent integrated cross sections, inclusive emission spectra, and kerma factors, in a data library which can be used in radiation transport calculations. We apply the FKK-GNASH nuclear model code, which includes Hauser-Feshbach, preequilibrium, and direct reaction mechanisms, and use experimental measurements to optimize the calculations. We determine total, elastic, and nonelastic cross sections, angle-energy correlated emission spectra, for light ejectiles with A{<=}4 and gamma-rays, and average energy depositions. Our results for charged-particle emission spectra agree well with the measurements of Subramanian et al.. We compare kerma factors derived from our evaluated cross sections with experimental data, providing an integral benchmarking of our work. The evaluated data libraries are available as electronic files.
International Nuclear Information System (INIS)
Gerstl, S.A.W.; Dudziak, D.J.; Muir, D.W.
1975-09-01
A computational method to determine cross-section requirements quantitatively is described and applied to the Tokamak Fusion Test Reactor (TFTR). In order to provide a rational basis for the priorities assigned to new cross-section measurements or evaluations, this method includes quantitative estimates of the uncertainty of currently available data, the sensitivity of important nuclear design parameters to selected cross sections, and the accuracy desired in predicting nuclear design parameters. Perturbation theory is used to combine estimated cross-section uncertainties with calculated sensitivities to determine the variance of any nuclear design parameter of interest
242Pu neutron-induced fission cross-section measurement from 1 to 2 MeV neutron energy
Marini, P.; Mathieu, L.; Aïche, M.; Belier, G.; Czajkowski, S.; Ducasse, Q.; Jurado, B.; Kessedjian, G.; Matarranz, J.; Plompen, A.; Salvador-Castiñeira, P.; Taieb, J.; Tsekhanovich, I.
2017-11-01
Relative values of the neutron-induced fission cross section σ (n ,f ) of 242Pu have been measured with respect to the standard 1H(n ,p ) elastic scattering cross section, at average energies of 1.0, 1.4, and 1.9 MeV . The measurements are part of an international effort to reduce uncertainties and provide independent nuclear data relevant for fast-spectrum reactors. The shape of the measured cross section is in good agreement with data from Tovesson et al. [Phys. Rev. C 79, 014613 (2009), 10.1103/PhysRevC.79.014613] and with the most recent data from Matei et al. [Phys. Rev. C 95, 024606 (2017), 10.1103/PhysRevC.95.024606], but disagrees with the shapes of ENDF/B-VII.1 and JEFF3.2 evaluations. Absolute values of σ (n ,f ) , obtained under some assumptions, indicate an overestimation of σ (n ,f ) in the evaluated libraries at 1.0 and 1.4 MeV , while a good agreement is found with ENDF/B-VII.1 at 1.9 MeV . A careful analysis of the impact of scattered neutrons and anisotropy of the fission fragment angular distribution has been performed. The measurement of the neutron flux by means of a proton-recoil detector is discussed. A comprehensive study of corrections applied to the data, of associated uncertainties, and of correlations between the measurements at the different energies is presented.
International Nuclear Information System (INIS)
Desthuilliers, M.G.
1973-01-01
The measurement of 14 MeV neutron radiative capture cross-section can be made in 2 ways. First way: the counting of the resulting nuclei (activation method) through the counting of the beta or gamma released during their decay; Second way the integration of the gamma spectra released during the decay of the resulting nuclei. The 2 methods disagree and particularly for nuclei situated between the closed neutron shells, the activation method gives a cross-section that presents shell effects. Drake and colleagues have proposed an explanation: secondary neutrons produced through (n,n'), (n,2n), (n,3n) reactions with materials surrounding the 14 MeV neutron source could lead to the activation measurement of a too high capture cross-section. The work is dedicated to the experimental validation of this assumption. We have chosen 6 nuclei that either near closed neutron shells or that are in mid-position: 27 Al, 50 Ti, 51 V, 103 Rh, 127 I and 139 La. Since these 2 types of nucleus have a very different behaviour concerning secondary neutrons, we will be able to assess the impact of secondary neutrons on radiative capture cross-section measurement. We recall in the first part the theoretical framework of the radiative capture, particularly the model of direct capture and the model of indirect capture and another model combining interferences between the 2 captures and a new formalism leading to the excitation of the giant dipolar resonance of the target-nucleus. The second part is dedicated to the experimental method and the way to eliminate the contribution of secondary neutrons to the capture cross-section. In the last part we present our results, the conclusion is that the main part of the shell effects that appear in the activation method is due to the capture of secondary neutrons [fr
Fast neutron cross section measurements. Final technical report, March 1, 1987--September 30, 1995
International Nuclear Information System (INIS)
Knoll, G.F.
1997-06-01
The time-of-flight technique was used with the ring scattering geometry in a laboratory with low neutron scattering background to measure the angular distributions of the cross sections for elastic and inelastic scattering of 14 MeV neutrons in natural chromium, iron, nickel, and niobium. Specifically for inelastic scattering included were: the 1.43 MeV and 4.56 MeV levels of 52 Cr, the 0.85 MeV level, and (2.94-3.12) MeV and (4.46-4.51) MeV level groups of 56 Fe, the 1.33 MeV level of 60 Ni combined with the 1.45 MeV level of 58 Ni, and the 4.48 MeV level of 58 Ni. Pulses of neutrons with time width of 0.9-1.1 ns were produced via the 3 H(d,n) 4 He reaction in a 150 keV Cockcroft-Walton linear accelerator, with average intensities of 9x10 8 n/s. The energy of the incident neutrons was between 14.75 MeV (at 16 degree) and 13.48 MeV (at 160 degree). High purity scattering ring samples were used. The scattering angles ranged from ∼16 degree to ∼150 degree, for iron, chromium, and nickel, and from ∼16 degree to ∼160 degree for niobium, with a typical step of ∼10 degree. High purity ring samples were used
Fast neutron cross section measurements. Final technical report, March 1, 1987--September 30, 1995
Energy Technology Data Exchange (ETDEWEB)
Knoll, G.F.
1997-06-01
The time-of-flight technique was used with the ring scattering geometry in a laboratory with low neutron scattering background to measure the angular distributions of the cross sections for elastic and inelastic scattering of 14 MeV neutrons in natural chromium, iron, nickel, and niobium. Specifically for inelastic scattering included were: the 1.43 MeV and 4.56 MeV levels of {sup 52}Cr, the 0.85 MeV level, and (2.94-3.12) MeV and (4.46-4.51) MeV level groups of {sup 56}Fe, the 1.33 MeV level of {sup 60}Ni combined with the 1.45 MeV level of {sup 58}Ni, and the 4.48 MeV level of {sup 58}Ni. Pulses of neutrons with time width of 0.9-1.1 ns were produced via the {sup 3}H(d,n){sup 4}He reaction in a 150 keV Cockcroft-Walton linear accelerator, with average intensities of 9x10{sup 8} n/s. The energy of the incident neutrons was between 14.75 MeV (at 16{degree}) and 13.48 MeV (at 160{degree}). High purity scattering ring samples were used. The scattering angles ranged from {approx}16{degree} to {approx}150{degree}, for iron, chromium, and nickel, and from {approx}16{degree} to {approx}160{degree} for niobium, with a typical step of {approx}10{degree}. High purity ring samples were used.
Directory of Open Access Journals (Sweden)
О. О. Gritzay
2017-12-01
Full Text Available Unshielded value of the total neutron cross section of the natHf at the neutron 2 keV energy was obtained. The MCNP 4С code and measurement results obtained with using six samples for thicknesses from 0.00236 to 0.01257 nucl/b were used for determination of the unshielded value of the natHf cross section. Obtained value of the total neutron cross section of the natHf was compared with the data of other authors and with data from the evaluated nuclear data libraries.
Measurement and calculation of cross section for (p,x) reactions on natural Fe for 650 MeV protons
International Nuclear Information System (INIS)
Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Loska, L.; Taczanowski, S.; Shvetsov, V.
2006-01-01
Cross sections for production of radionuclides in (p,x) reactions on natural iron were measured for protons of 650 ± 4 MeV with the use of HPGe gamma spectrometry and calculated with the MCNPX code. The determined cross section values were compared with the computed and other experimental ones
Huang, Jiayu; Liu, Shu; Zhang, Dong H.; Krems, Roman V.
2018-04-01
Because the de Broglie wavelength of ultracold molecules is very large, the cross sections for collisions of molecules at ultracold temperatures are always computed by the time-independent quantum scattering approach. Here, we report the first accurate time-dependent wave packet dynamics calculation for reactive scattering of ultracold molecules. Wave packet dynamics calculations can be applied to molecular systems with more dimensions and provide real-time information on the process of bond rearrangement and/or energy exchange in molecular collisions. Our work thus makes possible the extension of rigorous quantum calculations of ultracold reaction properties to polyatomic molecules and adds a new powerful tool for the study of ultracold chemistry.
International Nuclear Information System (INIS)
Poenitz, W.P.
1982-01-01
Measurements of the neutron-radioactive-capture cross sections of Y, Zr, Mo, Ag, Cd, In, Sb, La, Eu, Gd, Tb, Dy, Er, Yb, Hf, W, Re, and Pt in the 0.5 to 4.0-MeV-energy range are presented. A large-liquid-scintillator detector was used for detecting the capture events. A grey neutron detector was used as neutron monitor. The reported cross sections are relative to the capture cross section of gold at 0.5 MeV. Where prior data exist the present data are lower for most elements. However, good agreement was obtained with very recent results reported by the group from Bruyeres-le-Chatel
International Nuclear Information System (INIS)
Grenier, Gerard; Voignier, Jacques; Joly, Serge.
1981-03-01
Neutron capture cross-sections have been measured for the nuclides: Rb, Y, Nb, Gd, W, Pt, Tl, and for the isotopes 155 Gd, 156 Gd, 157 Gd, 158 Gd, 160 Gd, 182 W, 183 W, 184 W, 186 W, 203 Tl and 205 Tl in the 0.5 MeV to 3.0 MeV neutron energy range. Neutron capture cross-sections are determined through direct γ-ray spectrum emitted by the sample. The gamma-rays are detected by a NaI scintillator surrounded by an annular NaI detector. The time-of-flight method is used. Our results are compared with previous data, evaluations and statistical model calculations [fr
Neutron induced fission cross sections for 232Th, 235,238U, 237Np, and 239Pu
International Nuclear Information System (INIS)
Lisowski, P.W.; Ullmann, J.L.; Balestrini, S.J.; Hill, N.W.; Carlson, A.D.; Wasson, O.A.
1989-01-01
Neutron-induced fission cross section ratios for samples of 232 Th, 235,238 U, 237 Np and 239 Pu have been measured from 1 to 400 MeV. The fission reaction rate was determined for all samples simultaneously using a fast parallel plate ionization chamber at a 20-m flight path. A well characterized annular proton recoil telescope was used to measure the neutron fluence from 3 to 30 MeV. Those data provided the shape of the 235 U(n,f) cross section relative to the hydrogen scattering cross section. That shape was then normalized to the very accurately known value for 235 U(n,f) at 14.178 MeV. From 30 to 400 MeV cross section values were determined using the neutron fluence measured with a plastic scintillator. Cross section values of 232 Th, 235,238 U, 237 Np and 239 Pu were computed from the ratio data using the authors' values for 235 U(n,f). In addition to providing new results at high neutron energies, these data highlight several areas of deficiency in the evaluated nuclear data files and provide new information for the 235 U(n,f) standard
International Nuclear Information System (INIS)
Li, Zeguang; Wang, Kan; Zhang, Xisi
2011-01-01
In traditional Monte Carlo method, the material properties in a certain cell are assumed to be constant, but this is no longer applicable in continuous varying materials where the material's nuclear cross-sections vary over the particle's flight path. So, three Monte Carlo methods, including sub stepping method, delta-tracking method and direct sampling method, are discussed in this paper to solve the problems with continuously varying materials. After the verification and comparison of these methods in 1-D models, the basic specialties of these methods are discussed and then we choose the delta-tracking method as the main method to solve the problems with continuously varying materials, especially 3-D problems. To overcome the drawbacks of the original delta-tracking method, an improved delta-tracking method is proposed in this paper to make this method more efficient in solving problems where the material's cross-sections vary sharply over the particle's flight path. To use this method in practical calculation, we implemented the improved delta-tracking method into the 3-D Monte Carlo code RMC developed by Department of Engineering Physics, Tsinghua University. Two problems based on Godiva system were constructed and calculations were made using both improved delta-tracking method and the sub stepping method, and the results proved the effects of improved delta-tracking method. (author)
Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems
Energy Technology Data Exchange (ETDEWEB)
Maslov,V.M.; Oblozinsky, P.; Herman, M.
2008-12-01
In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.
Neutron Cross section Covariances in the Resonance region: 50,53Cr, 54,57Fe and 60Ni
Energy Technology Data Exchange (ETDEWEB)
Oblozinsky, P.; Cho,Y.-S.; Mattoon,C.M.; Mughabghab,S.F.
2010-11-23
We evaluated covariances in the neutron resonance region for capture and elastic scattering cross sections on minor structural materials, {sup 50,53}Cr, {sup 54,57}Fe and {sup 60}Ni. Use was made of the recently developed covariance formalism based on kernel approximation along with data in the Atlas of Neutron Resonances. Our results of most interest for advanced fuel cycle applications, elastic scattering cross section uncertainties at energies around 100 keV, are on the level of about 7-10%.
Calculations on neutron irradiation damage in reactor materials
International Nuclear Information System (INIS)
Sone, Kazuho; Shiraishi, Kensuke
1976-01-01
Neutron irradiation damage calculations were made for Mo, Nb, V, Fe, Ni and Cr. Firstly, damage functions were calculated as a function of neutron energy with neutron cross sections of elastic and inelastic scatterings, and (n,2n) and (n,γ) reactions filed in ENDF/B-III. Secondly, displacement damage expressed in displacements per atom (DPA) was estimated for neutron environments such as fission spectrum, thermal neutron reactor (JMTR), fast breeder reactor (MONJU) and two fusion reactors (The Conceptual Design of Fusion Reactor in JAERI and ORNL-Benchmark). then, damage cross section in units of dpa. barn was defined as a factor to convert a given neutron fluence to the DPA value, and was calculated for the materials in the above neutron environments. Finally, production rates of helium and hydrogen atoms were calculated with (n,α) and (n,p) cross sections in ENDF/B-III for the materials irradiated in the above reactors. (auth.)
Correlation effects in R-matrix calculations of electron-F2 elastic scattering cross sections.
Tarana, Michal; Horácek, Jirí
2007-10-21
Correlation effects are studied in electron scattering off the fluorine molecule. Fixed-nuclei approximation R-matrix calculations of the elastic collision cross sections are presented for a set of internuclear distances at three levels of correlation. The aim of this work is to study the role of electronic correlation on the properties of the 2Sigmau resonance. The Feshbach-Fano R-matrix method of resonance-background separation is used to study the effect of inclusion of various levels of correlation on the energy and width of the 2Sigmau resonance. Data required for construction of the nonlocal resonance model (construction of a discrete state and its coupling to the continuum) which allows the calculation of inelastic processes such as dissociative electron attachment and vibrational excitation [W. Domcke, Phys. Rep. 208, 97 (1991)] including the correlation are presented.
Development of a methodology for analysis of the impact of modifying neutron cross sections
International Nuclear Information System (INIS)
Wenner, M. T.; Haghighat, A.; Adams, J. M.; Carlson, A. D.; Grimes, S. M.; Massey, T. N.
2004-01-01
Monte Carlo analysis of a Time-of-Flight (TOF) experiment can be utilized to examine the accuracy of nuclear cross section data. Accurate determination of this data is paramount in characterization of reactor lifetime. We have developed a methodology to examine the impact of modifying the current cross section libraries available in ENDF-6 format (1) where deficiencies may exist, and have shown that this methodology may be an effective methodology for examining the accuracy of nuclear cross section data. The new methodology has been applied to the iron scattering cross sections, and the use of the revised cross sections suggests that reactor pressure vessel fluence may be underestimated. (authors)
Neutron emission cross sections on 93Nb at 20 MeV incident energy
International Nuclear Information System (INIS)
Marcinkowski, A.; Kielan, D.
1991-01-01
Over the last years fully quantum-mechanical theories of nuclear reactions have been developed that provide, at least in principle, parameter-free methods of calculating double-differential continuum cross sections. The DWBA-based theory of direct processes to the continuum was derived by Tamura et al. The statistical theory of Feshback, Kerman and Koonin (FKK) introduced two reaction types in parallel as complementary mechanisms contributing to the preequilibrium decay. The multistep compound mechanism (MSC) results in symmetric angular distributions of the emitted particles, whereas the multistep direct mechanism (MSD) gives rise to the forward-peaked angular distributions. The theories of the MSC reactions differ in that the FKK theory incorporates the ''never come back'' hypothesis, which allowed the formulation of an applicable model that was successfully used in practical calculations. On the other hand the FKK theory of the MSD reactions differs conceptually from the theory of Tamura et al. and from the more general theory developed most recently by Nishioka et al. The latter theories were shown to be founded upon a postulated chaos located in the residual nucleus. In contrast, the theory of FKK assumes a chaotic interaction of the continuum particle to be emitted with the residual nucleus. The continuum or leading-particle statistics of the FKK theory results in the simple, convolution like, MSD cross section formula, which facilitates numerical calculations. Nevertheless two-step statistical DWBA calculations have been also performed. This paper extends the application of the FKK theory to the 93 Nb(n,xn) reaction at 20 MeV incident energy. (author). 14 refs, 1 fig
International Nuclear Information System (INIS)
Pavlik, A.; Priller, A.; Steier, P.; Vonach, H.; Winkler, G.
1994-01-01
In order to improve the present experimental data base of energy- and angle-differential neutron emission cross sections at 14 MeV incident-neutron energy, a new time-of-flight (TOF) facility was installed at the Institut fuer Radiumforschung und Kernphysik (IRK), Vienna. The set-up was particularly designed to more precisely measure the high-energy part of the secondary neutron spectra and consists of three main components: (1) a pulsed neutron generator of Cockcroft-Walton type producing primary neutrons via the T(d,n)-reaction, (2) a tube system which can be evacuated containing the neutron flight path, the sample, collimators and the sample positioning system, and (3) the neutron detectors with the data acquisition equipment. Removing the air along the neutron flight path results in a drastic suppression of background due to air-scattered neutrons in the spectrum of the secondary neutrons. For every secondary neutron detected in the main detector, the time-of-flight, the pulse-shape information and the recoil energy are recorded in list-mode via a CAMAC system connected to a PDP 11/34 on-line computer. Using a Micro VAX, the multiparameter data are sorted and reduced to double-differential cross sections
International Nuclear Information System (INIS)
Lisichkin, Yu.V.; Dovbenko, A.G.; Efimenko, B.A.; Novikov, A.G.; Smirenkina, L.D.; Tikhonova, S.I.
1979-01-01
Described is a method of taking account of finite sample dimensions in processing measurement results of double differential cross sections (DDCS) of slow neutron scattering. A necessity of corrective approach to the account taken of the effect of sample finite dimensions is shown, and, in particular, the necessity to conduct preliminary processing of DDCS, the account being taken of attenuation coefficients of single scattered neutrons (SSN) for measurements on the sample with a container, and on the container. Correction for multiple scattering (MS) calculated on the base of the dynamic model should be obtained, the account being taken of resolution effects. To minimize the effect of the dynamic model used in calculations it is preferred to make absolute measurements of DDCS and to use the subraction method. The above method was realized in the set of programs for the BESM-5 computer. The FISC program computes the coefficients of SSN attenuation and correction for MS. The DDS program serves to compute a model DDCS averaged as per the resolution function of an instrument. The SCATL program is intended to prepare initial information necessary for the FISC program, and permits to compute the scattering law for all materials. Presented are the results of using the above method while processing experimental data on measuring DDCS of water by the DIN-1M spectrometer
Cross Sections Calculations of ( d, t) Nuclear Reactions up to 50 MeV
Tel, E.; Yiğit, M.; Tanır, G.
2013-04-01
In nuclear fusion reactions two light atomic nuclei fuse together to form a heavier nucleus. Fusion power is the power generated by nuclear fusion processes. In contrast with fission power, the fusion reaction processes does not produce radioactive nuclides. The fusion will not produce CO2 or SO2. So the fusion energy will not contribute to environmental problems such as particulate pollution and excessive CO2 in the atmosphere. Fusion powered electricity generation was initially believed to be readily achievable, as fission power had been. However, the extreme requirements for continuous reactions and plasma containment led to projections being extended by several decades. In 2010, more than 60 years after the first attempts, commercial power production is still believed to be unlikely before 2050. Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. In the fusion reactor, tritium self-sufficiency must be maintained for a commercial power plant. Therefore, for self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. Working out the systematics of ( d, t) nuclear reaction cross sections is of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at different energies. Since the experimental data of charged particle induced reactions are scarce, self-consistent calculation and analyses using nuclear theoretical models are very important. In this study, ( d, t) cross sections for target nuclei 19F, 50Cr, 54Fe, 58Ni, 75As, 89Y, 90Zr, 107Ag, 127I, 197Au and 238U have been investigated up to 50 MeV deuteron energy. The excitation functions for ( d, t) reactions have been calculated by pre-equilibrium reaction mechanism. Calculation results have been also compared with the available measurements in