WorldWideScience

Sample records for neutrino deep-inelastic scattering

  1. Radiative corrections to neutrino deep inelastic scattering revisited

    International Nuclear Information System (INIS)

    Arbuzov, Andrej B.; Bardin, Dmitry Yu.; Kalinovskaya, Lidia V.

    2005-01-01

    Radiative corrections to neutrino deep inelastic scattering are revisited. One-loop electroweak corrections are re-calculated within the automatic SANC system. Terms with mass singularities are treated including higher order leading logarithmic corrections. Scheme dependence of corrections due to weak interactions is investigated. The results are implemented into the data analysis of the NOMAD experiment. The present theoretical accuracy in description of the process is discussed

  2. On the radiative corrections to the neutrino deep inelastic scattering

    International Nuclear Information System (INIS)

    Bardin, D.Yu.; Dokuchaeva, V.A.

    1986-01-01

    A unique set of formulae is presented for the radiative corrections to the double differential cross section of deep inelastic neutrino scattering in channels of charged and neutral currents within a simple quark parton model in a renormalization scheme on mass-shell. It is shown that these cross sections when being integrated up to the one-dimensional distribution or up to the total cross section reproduce many results existing in the literature

  3. Deep inelastic lepton scattering

    International Nuclear Information System (INIS)

    Nachtmann, O.

    1977-01-01

    Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de

  4. Experimental study of inclusive deep inelastic neutrino--proton scattering

    International Nuclear Information System (INIS)

    Berge, J.P.; Bogert, D.; DiBianca, F.A.; Cundy, D.C.; Dunaitsev, A.; Efremenko, V.; Ermolov, P.; Fowler, W.; Hanft, R.; Harigel, G.; Huson, F.R.; Kolganov, V.; Mukhin, A.; Nezrick, F.A.; Rjabov, Y.; Scott, W.G.; Smart, W.; Coffin, C.T.; Diamond, R.N.; French, H.; Louis, W.; Roe, B.P.; Seidl, A.A.; Velde, J.C.V.

    1976-01-01

    A neutrino--proton scattering experiment has been performed at Fermilab by using a wide-band horn-focused neutrino beam and the 15-ft bubble chamber filled with hydrogen. For the inclusive reaction ν/sub μ/ + p → μ - + hadrons, the mean value of Q 2 is found to increase linearly with energy, as is expected from Bjorken scaling, and a fit to the data gives 2 > = (0.18 +- 0.01) E. The distribution in the Bjorken scaling variable x shows evidence for deviations from predictions based on electron-scattering data and the quark-parton model

  5. Nuclear corrections in neutrino deep inelastic scattering and the extraction of the strange quark distribution

    International Nuclear Information System (INIS)

    Boros, C.

    1999-01-01

    Recent measurement of the structure function F 2 υ in neutrino deep inelastic scattering allows us to compare structure functions measured in neutrino and charged lepton scattering for the first time with reasonable precision. The comparison between neutrino and muon structure functions made by the CCFR Collaboration indicates that there is a discrepancy between these structure functions at small Bjorken x values. In this talk I examine two effects which might account for this experimental discrepancy: nuclear shadowing corrections for neutrinos and contributions from strange and anti-strange quarks. Copyright (1999) World Scientific Publishing Co. Pte. Ltd

  6. Study of multimuon-final states in deep inelastic neutrino scattering

    International Nuclear Information System (INIS)

    Renk, B.

    1984-01-01

    In this thesis the measurement of the momentum spectra, angular correlations, and transverse momentum distributions of the secondary muons produced in deep inelastic neutrino scattering at the CERN 300 GeV narrow band neutrino beam is described. From the experimental results conclusions are drawn about neutrino oscillations and the quantum numbers of charm-violating neutral currents. Furthermore upper limits for the momentum part of the c quark in the nucleon, and the fragmentation function for c quarks at high energies were determined. The prompt μ - μ - events are interpreted as pair production of charmed particles. Finally dimuon events induced by axions were looked for. (HSI) [de

  7. Polarized parton distributions from charged-current deep-inelastic scattering and future neutrino factories

    CERN Document Server

    Forte, Stefano; Ridolfi, G; Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni

    2001-01-01

    We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Delta q-Delta qbar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure.

  8. Polarized parton distributions from charged-current deep-inelastic scattering and future neutrino factories

    International Nuclear Information System (INIS)

    Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni

    2001-01-01

    We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading-order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading-order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Δq-Δq-bar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure

  9. Deep inelastic scattering

    International Nuclear Information System (INIS)

    Zakharov, V.I.

    1977-01-01

    The present status of the quark-parton-gluon picture of deep inelastic scattering is reviewed. The general framework is mostly theoretical and covers investigations since 1970. Predictions of the parton model and of the asymptotically free field theories are compared with experimental data available. The valence quark approximation is concluded to be valid in most cases, but fails to account for the data on the total momentum transfer. On the basis of gluon corrections introduced to the parton model certain predictions concerning both the deep inelastic structure functions and form factors are made. The contributions of gluon exchanges and gluon bremsstrahlung are highlighted. Asymptotic freedom is concluded to be very attractive and provide qualitative explanation to some experimental observations (scaling violations, breaking of the Drell-Yan-West type relations). Lepton-nuclear scattering is pointed out to be helpful in probing the nature of nuclear forces and studying the space-time picture of the parton model

  10. Inclusive observables and hard gluon emission in neutrino deep inelastic scattering

    International Nuclear Information System (INIS)

    Bouchiat, C.; Meyer, P.; Mezard, M.

    1980-01-01

    We derive the predictions of perturbative QCD together with non-perturbative corrections for a set of inclusive observables connected with the angular distribution of light-cone energy in deep inelastic neutrino scattering. Our particular choice of observables has been made in order to meet important physical requirements besides the necessary condition of infrared regularity. Our inclusive observables receive their dominant contribution from the quark fragmentation region. The non-perturbative contribution is calculable in a rather model-independent way and stays at an acceptable level in realistic experimental conditions. The QCD perturbative contribution, which takes the simple form of a convolution product, exhibits a strongly decreasing behaviour as a function of the Bjorken scaling variable x, superimposed on a constant background associated with the non-perturbative terms, allowing a rather clean separation of the two effects. The perturbative term being dominated by the process of hard-gluon emission, an experimental investigation of the observables discussed here may be a good way to detect the effect of gluon emission in deep inelastic neutrino scattering. (orig.)

  11. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA

    Science.gov (United States)

    Mousseau, J.; Wospakrik, M.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Minerν A Collaboration

    2016-04-01

    The MINERvA Collaboration reports a novel study of neutrino-nucleus charged-current deep inelastic scattering (DIS) using the same neutrino beam incident on targets of polystyrene, graphite, iron, and lead. Results are presented as ratios of C, Fe, and Pb to CH. The ratios of total DIS cross sections as a function of neutrino energy and flux-integrated differential cross sections as a function of the Bjorken scaling variable x are presented in the neutrino-energy range of 5-50 GeV. Based on the predictions of charged-lepton scattering ratios, good agreement is found between the data and prediction at medium x and low neutrino energy. However, the ratios appear to be below predictions in the vicinity of the nuclear shadowing region, x <0.1 . This apparent deficit, reflected in the DIS cross-section ratio at high Eν, is consistent with previous MINERvA observations [B. Tice et al. (MINERvA Collaboration), Phys. Rev. Lett. 112, 231801 (2014).] and with the predicted onset of nuclear shadowing with the axial-vector current in neutrino scattering.

  12. Deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Mayers, J.

    1989-03-01

    The report is based on an invited talk given at a conference on ''Neutron Scattering at ISIS: Recent Highlights in Condensed Matter Research'', which was held in Rome, 1988, and is intended as an introduction to the techniques of Deep Inelastic Neutron Scattering. The subject is discussed under the following topic headings:- the impulse approximation I.A., scaling behaviour, kinematical consequences of energy and momentum conservation, examples of measurements, derivation of the I.A., the I.A. in a harmonic system, and validity of the I.A. in neutron scattering. (U.K.)

  13. Measurement of sin2θw and ϱ in deep inelastic neutrino-nucleon scattering

    Science.gov (United States)

    Reutens, P. G.; Merritt, F. S.; Macfarlane, D. B.; Messner, R. L.; Novikoff, D. B.; Purohit, M. V.; Blair, R. E.; Sciulli, F. J.; Shaevitz, M. H.; Fisk, H. E.; Fukushima, Y.; Jin, B. N.; Kondo, T.; Rapidis, P. A.; Yovanovitch, D. D.; Bodek, A.; Coleman, R. N.; Marsh, W. L.; Fackler, O. D.; Jenkins, K. A.

    1985-03-01

    We describe a high statistics measurement from deep inelastic neutrino-nucleon scattering of the electroweak parameters ϱ and sin2θw, performed in the Fermilab narrow-band neutrino beam. Our measurement uses a radius-dependent cut in y = EH/Ev which reduces the systematic error in sin2θw, and incorporates electromagnetic and electroweak radiative corrections. In a renormalization scheme where sin2θw ≡ 1-m2W/m2Z, a value of sin2θw = 0.242+/-0.011+/-0.005 is obtained fixing ϱ = 1. If both sin2θw and ϱ are allowed to vary in a fit to our data, we measure ϱ = 0.991 +/- 0.025 +/- 0.009. Present address: IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.

  14. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    Energy Technology Data Exchange (ETDEWEB)

    Mousseau, Joel A. [Univ. of Florida, Gainesville, FL (United States)

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  15. Deep inelastic scattering

    International Nuclear Information System (INIS)

    Aubert, J.J.

    1982-01-01

    Deep inelastic lepton-nucleon interaction experiments are renewed. Singlet and non-singlet structure functions are measured and the consistency of the different results is checked. A detailed analysis of the scaling violation is performed in terms of the quantum chromodynamics predictions [fr

  16. On the radiative corrections of deep inelastic scattering of muon neutrino on nucleon

    International Nuclear Information System (INIS)

    So Sang Guk

    1986-01-01

    The radiative corrections of deep inelastic scattering process VΜP→ ΜN are considered. Matrix element which takes Feynman one photon exchange diagrams into account at high transfer momentum are used. Based on calculation of the matrix element one can obtain matrix element for given process. It is shown that the effective cross section which takes one photon exchange into account is obtained. (author)

  17. Some consequences of a scale-breaking model in electron and neutrino deep inelastic scattering

    International Nuclear Information System (INIS)

    Fernandez Pacheco, A.; Grifols, J.A.; Schmidt, I.A.

    1978-01-01

    Electron and neutrino deep inelastic processes, extending a simple parton model explanation of the approach to scaling observed in electroproduction at large x are analyzed. The model is successful in fitting the present experimental data without any explicit effects from asymptotic freedom or new quarks. This model has a large q 2 behaviour which is quite different from that expected in asymptotic freedom (AF) theories and comparisons to data can be used to sharpen any experimental demonstration of AF effects. Of course, the model is consistent with AF and both effects could be present

  18. Charm-Quark Production in Deep-Inelastic Neutrino Scattering at Next-to-Next-to-Leading Order in QCD.

    Science.gov (United States)

    Berger, Edmond L; Gao, Jun; Li, Chong Sheng; Liu, Ze Long; Zhu, Hua Xing

    2016-05-27

    We present a fully differential next-to-next-to-leading order calculation of charm-quark production in charged-current deep-inelastic scattering, with full charm-quark mass dependence. The next-to-next-to-leading order corrections in perturbative quantum chromodynamics are found to be comparable in size to the next-to-leading order corrections in certain kinematic regions. We compare our predictions with data on dimuon production in (anti)neutrino scattering from a heavy nucleus. Our results can be used to improve the extraction of the parton distribution function of a strange quark in the nucleon.

  19. Topics in deep inelastic scattering

    International Nuclear Information System (INIS)

    Wandzura, S.M.

    1977-01-01

    Several topics in deep inelastic lepton--nucleon scattering are discussed, with emphasis on the structure functions appearing in polarized experiments. The major results are: infinite set of new sum rules reducing the number of independent spin dependent structure functions (for electroproduction) from two to one; the application of the techniques of Nachtmann to extract the coefficients appearing in the Wilson operator product expansion; and radiative corrections to the Wilson coefficients of free field theory. Also discussed are the use of dimensional regularization to simplify the calculation of these radiative corrections

  20. Parity violation in deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Taylor, R.E.

    1979-11-01

    Neutral currents in electron scattering and the Weinberg-Salam model are reviewed. This generally accepted model is consistent with experimental results from neutrino interactions; an appropriate deep inelastic electron scattering experiment would measure couplings that don't involve neutrinos to see if they are also correctly described by the theory. The SLAC-Yale experiment measures a difference in the e-d inelastic cross section for right- and left-handed electrons. The polarized source, beam monitors, scattering experiment, checks of helicity dependence, and results are described. It is concluded that the data obtained are in agreement with the Weinberg-Salam model, and that the best value of sin 2 theta/sub W/ for these data is in excellent agreement with the average values of that parameter deduced from neutrino experiments. Future experiments with polarized electrons are discussed. 12 figures, 2 tables

  1. Deep inelastic electron and muon scattering

    International Nuclear Information System (INIS)

    Taylor, R.E.

    1975-07-01

    From the review of deep inelastic electron and muon scattering it is concluded that the puzzle of deep inelastic scattering versus annihilation was replaced with the challenge of the new particles, that the evidence for the simplest quark-algebra models of deep inelastic processes is weaker than a year ago. Definite evidence of scale breaking was found but the specific form of that scale breaking is difficult to extract from the data. 59 references

  2. Jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Joensson, L.

    1995-01-01

    Jet production in deep inelastic scattering provides a basis for the investigation of various phenomena related to QCD. Two-jet production at large Q 2 has been studied and the distributions with respect to the partonic scaling variables have been compared to models and to next to leading order calculations. The first observations of azimuthal asymmetries of jets produced in first order α s processes have been obtained. The gluon initiated boson-gluon fusion process permits a direct determination of the gluon density of the proton from an analysis of the jets produced in the hard scattering process. A comparison of these results with those from indirect extractions of the gluon density provides an important test of QCD. (author)

  3. Deep inelastic scattering and disquarks

    International Nuclear Information System (INIS)

    Anselmino, M.

    1993-01-01

    The most comprehensive and detailed analyses of the existing data on the structure function F 2 (x, Q 2 ) of free nucleons, from the deep inelastic scattering (DIS) of charged leptons on hydrogen and deuterium targets, have proved beyond any doubt that higher twist, 1/Q 2 corrections are needed in order to obtain a perfect agreement between perturbative QCD predictions and the data. These higher twist corrections take into account two quark correlations inside the nucleon; it is then natural to try to model them in the quark-diquark model of the proton. In so doing all interactions between the two quarks inside the diquark, both perturbative and non perturbative, are supposed to be taken into account. (orig./HSI)

  4. A Measurement of Nuclear Structure Functions in the Large $X$ Large $Q^{2}$ Kinematic Region in Neutrino Deep Inelastic Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Vakili, Masoud [Cincinnati U.

    1997-01-01

    Data from the CCFR E770 Neutrino Deep Inelastic Scatter- ing (DIS) experiment at Fermilab contain large Bjorken x, high $Q^2$ events. A comparison of the data with a model, based on no nuclear effects at large $x$, shows an excess of events in the data. Addition of Fermi gas motion of the nucleons in the nucleus to the model does not explain the model's deficit. Adding higher momentum tail due to the formation of "quasi-deuterons" makes the agreement better. Certain models based on "multi- quark clusters" and "few-nucleon correlations" predict an exponentially falling behavior for $F_2$ as $F_2 \\sim e^{s(x -x_0)}$ at large $x$. We measure a $s$ = 8.3 $\\pm$ 0.8 for the best fit to our data. This corresponds to a value of $F_2$($x = 1, Q^2 > 50) \\approx 2$ x $10^{-3}$ in neutrino DIS. These values agree with results from theoretical models and the $SLAC$ $E133$ experiment but seem to be different from the result of the BCDMS experiment

  5. Leading particle in deep inelastic scattering

    International Nuclear Information System (INIS)

    Petrov, V.A.

    1984-01-01

    The leading particle effect in deep inelastic scattering is considered. The change of the characteris cs shape of the leading particle inclusive spectrum with Q 2 is estimated to be rather significant at very high Q 2

  6. Photon diffractive dissociation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Ryskin, M.G.

    1990-01-01

    The new ep-collider HERA gives us the possibility to study the diffractive dissociation of virtual photon in deep inelastic ep-collision. The process of photon dissociation in deep inelastic scattering is the most direct way to measure the value of triple-pomeron vertex G 3P . It was shown that the value of the correct bare vertex G 3P may more than 4 times exceeds its effective value measuring in the triple-reggeon region and reaches the value of about 40-50% of the elastic pp-pomeron vertex. On the contrary in deep inelastic processes the perpendicular momenta q t of the secondary particles are large enough. Thus in deep inelastic reactions one can measure the absolute value of G 3P vertex in the most direct way and compare its value and q t dependence with the leading log QCD predictions

  7. Parity violation in deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Souder, P. [Syracuse Univ., NY (United States)

    1994-04-01

    AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.

  8. Particle Production in Deep Inelastic Muon Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, John James [MIT

    1991-01-01

    The E665 spectrometer at Fermila.b measured Deep-Inelastic Scattering of 490 GeV /c muons off several targets: Hydrogen, Deuterium, and Xenon. Events were selected from the Xenon and Deuterium targets, with a range of energy exchange, $\

  9. Coherence effects in deep inelastic scattering

    International Nuclear Information System (INIS)

    Andersson, B.; Gustafson, G.; Loennblad, L.; Pettersson, U.

    1988-09-01

    We present a framework for deep inelastic scattering, with bound state properties in accordance with a QCD force field acting like a vortex line in a colour superconducting vacuum, which implies some simple coherence effects. Within this scheme one may describe the results of present energies very well, but one obtains an appreciable depletion of gluon radiation in the HERA energy regime. (authors)

  10. Deep inelastic scattering near the Coulomb barrier

    International Nuclear Information System (INIS)

    Gehring, J.; Back, B.; Chan, K.

    1995-01-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems 124,112 Sn + 58,64 Ni by Wolfs et al. We previously extended these measurements to the system 136 Xe + 64 Ni and currently measured the system 124 Xe + 58 Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring

  11. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  12. Deep Inelastic Scattering at the Amplitude Level

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances

  13. Deep inelastic scattering and asymptotic freedom

    International Nuclear Information System (INIS)

    Nachtmann, O.

    1985-01-01

    I recall some facets of the history of the field of deep inelastic scattering. I show how there was a very fruitful interplay between phenomenology on the one side and more abstract field theoretical considerations on the other side, where Kurt Symanzik, whose memory we honour today, made important contributions. Finally I make some remarks on the most recent developments in this field which have to do with the so-called EMC-effect, where EMC stands for European Muon Collaboration. (orig./HSI)

  14. Radiative corrections to deep inelastic muon scattering

    International Nuclear Information System (INIS)

    Akhundov, A.A.; Bardin, D.Yu.; Lohman, W.

    1986-01-01

    A summary is given of the most recent results for the calculaion of radiative corrections to deep inelastic muon-nucleon scattering. Contributions from leptonic electromagnetic processes up to the order a 4 , vacuum polarization by leptons and hadrons, hadronic electromagnetic processes approximately a 3 and γZ interference have been taken into account. The dependence of the individual contributions on kinematical variables is studied. Contributions, not considered in earlier calculations of radiative corrections, reach in certain kinematical regions several per cent at energies above 100 GeV

  15. Theory of deep inelastic lepton-hadron scattering

    International Nuclear Information System (INIS)

    Geyer, B.; Robaschik, D.; Wieczorek, E.

    1979-01-01

    The description of deep inelastic lepton-nucleon scattering in the lowest order of the electromagnetic and weak coupling constants leads to a study of virtual Compton amplitudes and their absorptive parts. Some aspects of quantum chromodynamics are discussed. Deep inelastic scattering enables a central quantity of quantum field theory, namely the light cone behaviour of the current commutator. The moments of structure functions are used for the description of deep inelastic scattering. (author)

  16. Charged current deep-inelastic scattering at three loops

    International Nuclear Information System (INIS)

    Moch, S.; Rogal, M.

    2007-04-01

    We derive for deep-inelastic neutrino(ν)-proton(P) scattering in the combination νP- anti νP the perturbative QCD corrections to three loops for the charged current structure functions F 2 , F L and F 3 . In leading twist approximation we calculate the first five odd-integer Mellin moments in the case of F 2 and F L and the first five even-integer moments in the case of F 3 . As a new result we obtain the coefficient functions to O(α 3 s ) while the corresponding anomalous dimensions agree with known results in the literature. (orig.)

  17. Measurement of the nucleon structure function in the deep inelastic neutrino-iron scattering with a wide-band neutrino beam

    International Nuclear Information System (INIS)

    Flottmann, T.

    1982-01-01

    In this thesis the nucleon structure function xF 3 is determined from the inclusive measurement of the deep inelastic neutrino nucleon charged current interaction. The data were taken in the CERN wide band neutrino beam using the detector of the CERN-Dortmund-Heidelberg-Saclay collaboration. This detector serves at the same time as target, as hadron energy calorimeter and as muon spectrometer. One major aspect of this work was to study the possibility of using high statistics wide band beam data for structure function analysis. The systematic errors specific to this kind of beam are investigated. To obtain the differential cross sections about 100000 neutrino and 75000 antineutrino events in the energy range 20-200 GeV are analysed. The differential cross sections are normalized to the total cross sections, as measured in the narrow band beam by the same collaboration. The calculated structure function xF 3 shows significant deviations from scaling. These scaling violations are compared quantitatively with the predictions of quantum chromodynamics. (orig.) [de

  18. Current fragmentation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Hamer, C.J.

    1975-04-01

    It is argued that the current fragmentation products in deep inelastic electron scattering will not be distributed in a 'one-dimensional' rapidity plateau as in the parton model picture of Feynman and Bjorken. A reaction mechanism with a multiperipheral topology, but which the above configuration might have been achieved, does not in fact populate the current fragmentation plateau; and unless partons are actually observed in the final state, it cannot lead to Bjorken scaling. The basic reason for this failure is shown to be the fact that when a particle is produced in the current fragmentation plateau, the adjacent momentum transfer in the multiperipheral chain becomes large and negative: such processes are inevitably suppressed. Instead, the current fragmentation products are likely to be generated by a fragmentation, or sequential decay process. (author)

  19. Mass corrections in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Gross, D.J.; Treiman, S.B.; Wilczek, F.A.

    1977-01-01

    The moment sum rules for deep-inelastic lepton scattering are expected for asymptotically free field theories to display a characteristic pattern of logarithmic departures from scaling at large enough Q 2 . In the large-Q 2 limit these patterns do not depend on hadron or quark masses m. For modest values of Q 2 one expects corrections at the level of powers of m 2 /Q 2 . We discuss the question whether these mass effects are accessible in perturbation theory, as applied to the twist-2 Wilson coefficients and more generally. Our conclusion is that some part of the mass effects must arise from a nonperturbative origin. We also discuss the corrections which arise from higher orders in perturbation theory for very large Q 2 , where mass effects can perhaps be ignored. The emphasis here is on a characterization of the Q 2 , x domain where higher-order corrections are likely to be unimportant

  20. Polarized parton distributions from charged-current deep-inelastic scattering

    International Nuclear Information System (INIS)

    Ridolfi, G

    2003-01-01

    We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure

  1. Deep Inelastic Scattering in Conformal QCD

    CERN Document Server

    Cornalba, Lorenzo; Penedones, Joao

    2010-01-01

    We consider the Regge limit of a CFT correlation function of two vector and two scalar operators, as appropriate to study small-x deep inelastic scattering in N=4 SYM or in QCD assuming approximate conformal symmetry. After clarifying the nature of the Regge limit for a CFT correlator, we use its conformal partial wave expansion to obtain an impact parameter representation encoding the exchange of a spin j Reggeon for any value of the coupling constant. The CFT impact parameter space is the three-dimensional hyperbolic space H3, which is the impact parameter space for high energy scattering in the dual AdS space. We determine the small-x structure functions associated to the exchange of a Reggeon. We discuss unitarization from the point of view of scattering in AdS and comment on the validity of the eikonal approximation. We then focus on the weak coupling limit of the theory where the amplitude is dominated by the exchange of the BFKL pomeron. Conformal invariance fixes the form of the vector impact factor a...

  2. Inclusive deep-inelastic muon scattering

    CERN Multimedia

    This experiment aims at measuring deep-inelastic inclusive muon scattering to the highest energy and Q$^{2}$ made available by the high intensity muon beam M$^{2}$ and at investigating events in which several muons are simultaneously produced. The momentum of the incident beam is measured with momentum hodoscopes, its time and space coordinates at several positions along the target with additional hodoscopes. The beam halo is detected by an array of anticounters. The target has a length of 40 m of either graphite or liquid hydrogen or liquid deuterium and is surrounded by a magnetized torus which acts as a spectrometer for scattered muons. \\\\ \\\\This magnet has a diameter of 2.75 m and is divided into 10 separate supermodules, 8 of which are presently in use. Each supermodule consists of 8 modules (each module contains 0.44 m of steel), 8 planes of (3m x 3m) MWPC, and 2 planes of circular trigger counters subdivided in rings. The first 6 supermodules are equipped each with a 5 m long target. Muons scattered i...

  3. Quantum effects in deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Mayers, J.

    1989-07-01

    In the Impulse Approximation (IA), which is used to interpret deep inelastic neutron scattering (DINS) measurements, it is assumed both that the target system can be treated as a gas of free atoms and that the struck atom recoils freely after the collision with the neutron. Departures from the IA are generally attributed to final state effects (FSE), which are due to the inaccuracy of the latter assumption. However it is shown that even when FSE are neglected, significant departures from the IA occur at low temperatures due to inaccuracies in the former assumption. These are referred to as initial state effects (ISE) and are due to the quantum nature of the initial state. Comparison with experimental data and exactly soluble models shows that ISE largely account for observed asymmetries and peak shifts in the neutron scattering function S(q,ω), compared with the IA prediction. It is shown that when FSE are neglected, ISE can also be neglected when either the momentum transfer or the temperature is high. Finally it is shown that FSE should be negligible at high momentum transfers in systems other than quantum fluids and that therefore in this regime the IA is reached in such systems. (author)

  4. Hard diffraction and deep inelastic scattering

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space

  5. Sterman-Weinberg formula in deep inelastic scattering

    International Nuclear Information System (INIS)

    Dzhaparidze, G.Sh.; Kartvelishvili, V.G.

    1981-01-01

    The jet cross-section in current fragmentation region in deep inelastic scattering is obtained. It is shown that this jet produced in ep reaction is narrower, then the one from e + e - -annihilation [ru

  6. Structure functions in electron-nucleon deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1982-06-26

    The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.

  7. Deep inelastic lepton scattering from nucleons and nuclei

    International Nuclear Information System (INIS)

    Berger, E.L.

    1986-02-01

    A pedagogical review is presented of results obtained from inclusive deep inelastic scattering of leptons from nucleons and nuclei, with particular emphasis on open questions to be explored in future experiments

  8. Deep inelastic scattering in spontaneously broken gauge models

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Mikhov, S.G.; Morozov, P.T.; Stamenov, D.B.

    1975-01-01

    Deep inelastic lepton hadron scattering in the simplest spontaneously broken symmetry (the Kibble model) is analyzed. A hypothesis that the invariant coupling constant of the quartic selfinteraction for large spacelike momenta tends to a finite asymptotic value without spoiling the asymptotic freedom for the invariant coupling constant of the Yang-Mills field is used. It is shown that Biorken scaling for the moments of the structure functions of the deep inelastic lepton hadron scattering is violated by powers of logarithms

  9. Photon diffractive dissociation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1995-09-01

    The cross section of the Photon Diffractive Dissociation in Deep Inelastic Scattering is calculated in the frame work of perturbative QCD. In the triple Regge region the BFKL-approximation is used to evaluate the leading contributions of the corresponding Feynman diagrams with a subsequent resummation in terms of integral equations. These equations are partly solved leading to an effective two to four gluons transition vertex. This exhibits remarkable properties like the total symmetry under the interchange of gluons, the conformal invariance and a simple colour structure. The presence of four interacting gluons in the t-channel does not support the simple triple Pomeron picture with solely a local vertex. A dimensional conservation law is found for zero momentum transfer with the consequence that a direct coupling of the three BFKL-singularities is absent. Another consequence is the dominance of small transverse momenta at the triple Pomeron vertex. Beyond the triple Regge limit a slightly different approach is used in which the diagrams are calculated with leading log(Q 2 ) accuracy. Higher twist contributions are neglected except for the longitudinal part of the cross section which dominates at small invariant masses M in accordance with QCD-predictions and measurements for the exclusive production of vector mesons. For the comparison with the recently measured Photon Diffractive Dissociation-data from H1 and ZEUS a model for the Pomeron is introduced based on the F 2 -data. In the spirit of the k t -factorization theorem this model is inserted in place of the BFKL-Pomeron. Considering the fact that this approach does not contain free parameters the agreement between the theoretical prediction and the data is found to be good. (orig.)

  10. Hard Distraction and Deep Inelastic Scattering

    International Nuclear Information System (INIS)

    BJORKEN, J.D.

    1994-01-01

    Since the advent of hard-collision physics, the study of diffractive processes- 'shadow physics' - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word 'diffraction' is sometimes used by high-energy physicists in a loose way. So I here begin by defining what I mean by the term: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the 'lego' phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing sub energy Δη, but behaves at most like some power of pseudorapidity Δη∼ logs. The term 'hard diffraction' shall simply refer to those diffractive processes which have jets in the final-state phase-space. We may also distinguish, if desired, two subclasses, as suggested by Ingelman i) Diffractive hard processes have jets on only one side of the rapidity gap. ii) Hard diffractive processes have jets on both sides of the rapidity gap

  11. Structure functions and parton distributions in deep inelastic lepton-hadron scattering at high energies

    International Nuclear Information System (INIS)

    Bluemlein, J.

    1993-08-01

    The possibilities to measure structure functions, to extract parton distributions, and to measure α s and Λ QCD in current and future high energy deep inelastic scattering experiments are reviewed. A comparison is given for experiments at HERA, an ep option at LEP xLHC, and a high energy neutrino experiment. (orig.)

  12. Colour coherence in deep inelastic Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A.I.; Vazdik, J.A. (Lebedev Physical Inst., Academy of Sciences, Moscow (USSR))

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p{sub t} and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.).

  13. Colour coherence in deep inelastic Compton scattering

    International Nuclear Information System (INIS)

    Lebedev, A.I.; Vazdik, J.A.

    1992-01-01

    MC simulation of Deep Inelastic Compton on proton - both QED and QCD - was performed on the basis of LUCIFER program for HERA energies. Charged hadron flow was calculated for string and independent fragmentation with different cuts on p t and x. It is shown that interjet colour coherence leads in the case of QCD Compton to the drag effects diminishing the hadron flow in the direction between quark jet and proton remnant jet. (orig.)

  14. Deep inelastic scattering of heavy ions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1980-01-01

    These lectures developed path integral methods for use in the theory of heavy ion reactions. The effects of internal degrees of freedom on the relative motion were contained in an influence functional which was calculated for several simple models of the internal structure. In each model the influence functional had a simple Gaussian structure suggesting that the relative motion of the nuclei in a deep inelastic collision could be described by a Langevin equation. The form of the influence functional determines the average damping force and the correlation function of the fluctuating Langevin force. (author)

  15. Deep inelastic scattering of heavy ions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1980-01-01

    These lecture notes show how path integral methods can be used in the theory of heavy ion reactions. The effects of internal degrees of freedom on the relative motion are contained in an influence functional which is calculated for several simple models of the internal structure. In each model the influence functional has a simple Gaussian structure which suggests that the relative motion of the nuclei in a deep inelastic collision can be described by a Langevin equation. The form of the influence functional determines the average damping force and the correlation function of the fluctuating Langevin force. (author)

  16. QCD expectations for deep inelastic scattering at small x

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1993-01-01

    The basic QCD expectations concerning the deep inelastic scattering at low x where x is the Bjorken scaling variable are reviewed. This includes discussion of the Lipatov equation which sums the leading powers of Ln(1/x) and the shadowing effects. Phenomenological implications of the theoretical expectations for the deep inelastic lepton-hadron scattering in the small x region which will be accessible at the HERA ep collider are described. We give predictions for structure functions F 2 and F L based on the k T factorization theorem and discuss jet production in deep inelastic lepton scattering. The list of other topical problems relevant for the small x physics is given. (author). 46 refs, 7 figs

  17. Evaluation of systematic uncertainties caused by radiative corrections in experiments on deep inelastic νsub(l)N-scattering

    International Nuclear Information System (INIS)

    Bardin, D.Yu.

    1979-01-01

    Basing on the simple quark-parton model of strong interaction and on the Weinberg-Salam theory compact formulae are derived for the radiative correction to the charged current induced deep inelastic scattering of neutrinos on nucleons. The radiative correction is found to be around 20-30%, i.e., the value typical for deep inelastic lN-scattering. The results obtained are rather different from the presently available estimations of the effect under consideration

  18. Transverse momentum in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Ceccopieri, Federico Alberto; Trentadue, Luca

    2006-01-01

    Within the framework of perturbative quantum chromodynamics we derive the evolution equations for transverse momentum dependent distributions and apply them to the case of semi-inclusive deep inelastic scattering. The evolution equations encode the perturbative component of transverse momentum generated by collinear parton branchings. The current fragmentation is described via transverse momentum dependent parton densities and fragmentation functions. Target fragmentation instead is described via fracture functions. We present, to leading logarithmic accuracy, the corresponding semi-inclusive deep inelastic scattering cross-section, which applies to the entire phase space of the detected hadron. Some phenomenological implications and further developments are briefly outlined

  19. Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering

    Science.gov (United States)

    Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten

    2015-04-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  20. Highlights of electron-proton deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Feltesse, J.

    1996-02-01

    Salient results on deep inelastic scattering from the H1 and ZEUS collaborations are reviewed. These include preliminary measurements of the proton structure function F 2 extending to new regimes at both high Q 2 and low Q 2 and x, studies of the hadronic final states and discussion on QCD interpretations of low x data. New determination of α s from jet rates in deep inelastic scattering based on 1994 data are presented. A consistent picture of the gluon density in the proton at low x from a variety of processes is obtained. (author)

  1. Higher order heavy quark corrections to deep-inelastic scattering

    International Nuclear Information System (INIS)

    Bluemlein, J.; Freitas, A. de; Johannes Kepler Univ., Linz; Schneider, C.

    2014-11-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q 2 . We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring α s (M Z ), the charm quark mass m c , and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  2. Scaled momentum spectra in deep inelastic scattering at HERA

    NARCIS (Netherlands)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Aushev, V.; Aushev, Y.; Bachynska, O.; Bamberger, A.; Barakbaev, A. N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bold, T.; Boos, E. G.; Borodin, M.; Borras, K.; Boscherini, D.; Boutle, S. K.; Brock, I.; Brownson, E.; Brugnera, R.; Bruemmer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P. J.; Butterworth, J. M.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C. D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Pellegrino, A.

    Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb(-1). Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution

  3. Inclusive deep inelastic scattering at HERA and related phenomenology

    International Nuclear Information System (INIS)

    Zomer, F.

    1999-12-01

    Recent measurements of inclusive deep inelastic scattering differential cross-section in the range 1.5 GeV 2 ≤ Q 2 ≤ 30000 GeV 2 and 5.10 -6 ≤ x ≤ 0.65 are presented. Phenomenological analyses performed from these measurements are also described. (author)

  4. Instantons in the QCD vacuum and in deep inelastic scattering

    International Nuclear Information System (INIS)

    Ringwald, A.; Schrempp, F.

    1999-01-01

    We give a brief status report on our on-going investigation of the prospects to discover QCD instantons in deep inelastic scattering (DIS) at HERA. A recent high-quality lattice study of the topological structure of the QCD vacuum is exploited to provide crucial support of our predictions for DIS, based on instanton perturbation theory

  5. Quantum chromodynamics and deep inelastic e - N scattering at TRISTAN

    International Nuclear Information System (INIS)

    Muta, Taizo

    1979-04-01

    An introductory survey is given on the formulation of QCD in deep inelastic lepton-hadron scatterings. Typical predictions of QCD are presented in the kinematical region of TRISTAN, including detailed descriptions of the scaling violation, QCD correction to the current algebra sum rules, problem of quark masses and higher order effects. Some suggestions for experiments at TRISTAN are made. (author)

  6. Inclusive quasielastic and deep inelastic electron scattering at high energies

    International Nuclear Information System (INIS)

    Day, D.B.

    1990-01-01

    With high electron energies a kinematic regime can be reached where it will be possible to separate quasielastic and deep inelastic scattering. We present a short description of these processes which dominate the inclusive spectrum. Using the highest momentum transfer data available to guide our estimates, we give the kinematic requirements and the cross sections expected. These results indicate that inclusive scattering at high q has a yet unfilled potential. 18 refs., 13 figs

  7. Dijet production in diffractive deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-08-01

    The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 61 pb -1 . The dijet cross section has been measured for virtualities of the exchanged virtual photon, 5 2 2 , and γ * p centre-of-mass energies, 100 T algorithm in the γ * p frame, were required to have a transverse energy E * T,jet >4 GeV and the jet with the highest transverse energy was required to have E * T,jet >5 GeV. All jets were required to be in the pseudorapidity range -3.5 * jet <0. The differential cross sections are compared to leading-order predictions and next-to-leading- order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. (orig.)

  8. Studies in deep inelastic scattering and vector meson photoproduction

    International Nuclear Information System (INIS)

    Busenitz, J.K.

    1985-01-01

    The first part of this thesis is devoted to a space-time analysis of deep inelastic scattering from protons at rest. Techniques are developed for identifying important space-time regions. These are then applied to obtain a space-time picture of deep inelastic scattering in the leading logarithmic approximation of QCD, Physical mechanisms responsible for the space-time picture are discussed. In the second part of this thesis he reports on the observations of elastic omega photoproduction from hydrogen by Fermilab Experiment-401. The omega was detected via its decay into the π + π - π 0 channel. Measurements of the energy, momentum transfer, and angular dependence of the cross section have been made for photon energies between 60 and 225 GeV

  9. Target mass effects in polarized deep-inelastic scattering

    International Nuclear Information System (INIS)

    Piccione, A.

    1998-01-01

    We present a computation of nucleon mass corrections to nucleon structure functions for polarized deep-inelastic scattering. We perform a fit to existing data including mass corrections at first order in m 2 /Q 2 and we study the effect of these corrections on physically interesting quantities. We conclude that mass corrections are generally small, and compatible with current estimates of higher twist uncertainties, when available. (orig.)

  10. Future Deep Inelastic Scattering with the LHeC

    OpenAIRE

    Klein, Max

    2018-01-01

    For nearly a decade, Guido Altarelli accompanied the Large Hadron electron Collider project, as invited speaker, referee and member of the International Advisory Committee. This text summarises the status and prospects of the development of the LHeC, with admiration for a one-time scientist and singular leader whom I met first nearly 40 years ago under the sun shining for the "Herceg Novi School" in Kupari, where we both lectured about the beautiful science of Deep Inelastic Scattering and en...

  11. Long-range correlations in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Chekanov, S.V.

    1999-01-01

    Multiplicity correlations between the current and target regions of the Breit frame in deep-inelastic scattering processes are studied. It is shown that the correlations are sensitive to the first-order perturbative QCD effects and can be used to extract the behaviour of the boson-gluon fusion rates as a function of the Bjorken variable. The behaviour of the correlations is derived analytically and analyzed using a Monte Carlo simulation. (author)

  12. Forward jet production in deep inelastic scattering at HERA

    Czech Academy of Sciences Publication Activity Database

    Aktas, A.; Andreev, V.; Anthonis, A.; Cvach, Jaroslav; Reimer, Petr; Sedlák, Jaroslav; Zálešák, Jaroslav

    2006-01-01

    Roč. 46, - (2006), s. 27-42 ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259 Institutional research plan: CEZ:AV0Z10100502 Keywords : HI experiment * ep scattering * deep inelastic * cross section * quantum chromodynamics Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.251, year: 2006

  13. Implications of new deep inelastic scattering data for parton distributions

    International Nuclear Information System (INIS)

    Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1988-01-01

    We perform a next-to-leading order structure function F 2 analysis of μN and νN deep inelastic data in an attempt to resolve the disagreement between recent EMC (European muon collaboration effect) and BCDMS measurements of F 2 for μp scattering. Equally acceptable QCD fits are obtained including either set of μN data, but a comparison with Drell-Yan data appears to favour the parton distributions derived from the BCDMS data. (author)

  14. Multiquark states in the deep inelastic muon-nucleus scattering

    International Nuclear Information System (INIS)

    Titov, A.I.

    1983-01-01

    The deep-inelastic muon-nucleus scattering in the region forbidden by the kinematics for the scattering on free nucleons, is analysed theoretically. The calculations have been performed under the assumption that the main contribution to the cross section in the considered region of the Bjorken scaling variable, 1 -4 -10 -5 for the nuclear structure function at x approximately equal to 1.4. As it is shown, one has to take into account the six-= ' quark states in extracting the scaling parameter of QCD from the muon-nucleus data at approximately 1

  15. Probing lumps of wee partons in deep inelastic scattering

    International Nuclear Information System (INIS)

    Buchmueller, W.

    1994-06-01

    Recently, the ZEUS collaboration has reported on several remarkable properties of events with a large rapidity gap in deep inelastic scattering. We suggest that the mechanism underlying these events is the scattering of electrons off lumps of wee partons inside the proton. Based on an effective lagrangian approach the Q 2 -, x- and W-distributions are evaluated. For sufficiently small invariant mass of the detected hadronic system, the mechanism implies leading twist behaviour. The x- and W-distributions are determined by the Lipatov exponent which governs the behaviour of parton densities at small x. (orig.)

  16. Inclusive and exclusive deep-inelastic electron scattering

    International Nuclear Information System (INIS)

    Morgenstern, J.

    1985-11-01

    In this talk, I will present some deep inelastic electron scattering experiments done recently at Saclay with the purpose of studying high momentum components in the nucleus, many body effects as correlations, exchange currents, and the electron-nucleon interaction inside the nuclear medium. For that purpose we have performed (e,e') and (ee'p) experiments. When we detect only the scattered electron, we get some average properties less sensitive to final state interaction; in ee'p measurements we are more specific

  17. Charged particle multiplicities in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aid, S.; Anderson, M.; Andreev, V.

    1996-08-01

    Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic e + p scattering have been measured over a large kinematical region. The evolution with W and Q 2 of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, e + e - annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the negative binomial and lognormal distributions are presented. (orig.)

  18. Departures from the impulse approximation in deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Mayers, J.

    1989-01-01

    A new formulation of the impulse approximation (IA) in deep inelastic neutron scattering is developed. It is shown that observed departures from the IA at intermediate momentum transfers are caused by the quantum nature of the initial state rather than final state effects, as has previously been assumed and that these effects become small at high temperatures. It is also argued that final state broadening is significant for He liquids in all feasible experiments, but that in other systems the IA is approached at high momentum transfers. (author)

  19. New results from deep inelastic muon-nucleon scattering

    International Nuclear Information System (INIS)

    Coignet, G.

    1982-01-01

    Focusing on the new results gained from deep inelastic muon scatterings, the author details three main topics - the Fz structure function measurements gained from hydrogen, carbon and iron targets, open and hidden charm production, from multimuon events, hardonic production with forward jets and forward protons/antiprotons. He discusses the places of experimentation where these results arose, Berkley - FNAL - Princeton, Bologna,-CERN-DubraMunich-Saclay and the European muon collaboration. Finally, he concludes by reviewing the various results and what might be concluded from them

  20. A compilation of structure functions in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Roberts, R.G.; Whalley, M.R.

    1991-01-01

    A compilation of data on the structure functions F 2 , xF 3 , and R = σ L /σ T from lepton deep-inelastic scattering off protons and nuclei is presented. The relevant experiments at CERN, Fermilab and SLAC from 1985 are covered. All the data in this review can be found in and retrieved from the Durham-RAL HEP Databases (HEPDATA on the RAL and CERN VM systems and on DURPDG VAX/VMS) together with data on a wide variety of other reactions. (author)

  1. Initial study of deep inelastic scattering with ZEUS at HERA

    Science.gov (United States)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Repond, S.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Doeker, T.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Hartmann, J.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Monaldi, D.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Barillari, T.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Burkot, W.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Borzemski, P.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zerȩbska, E.; Suszycki, L.; Zajc, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Dierks, K.; Dorth, W.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Fürtjes, A.; Gläser, R.; Göttlicher, P.; Hass, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Ng, J. S. T.; Nicel, S.; Notz, D.; Park, I. H.; Pösnecker, K.-U.; Rohde, M.; Ros, E.; Schneekloth, S.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Woeniger, T.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlensthdt, S.; Casalbuoni, R.; de Curtis, S.; Dominici, D.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Brückmann, H.; Gloth, G.; Holm, U.; Kammerdocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Hofmann, A.; Kröger, W.; Krüger, J.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Salomon, R.; Seidman, A.; Schott, W.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Barreiro, F.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; Roldán, J.; Terrón, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hung, L. W.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Dake, A.; Engelen, J.; de Jong, P.; de Jong, S.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'dell, V.; Straver, J.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vermeulen, J.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Butterworth, J. M.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; dal Corso, F.; de Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Field, G.; Lim, J. N.; Oh, B. Y.; Whitmore, J.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S. M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Arneodo, M.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Gibaut, D. B.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stojda, K.; Stopczyński, A.; Szwed, R.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Zarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Camerini, U.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Lomperski, M.; Loveless, R. J.; Nylander, P.; Ptacek, M.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.

    1993-04-01

    Results are presented on neutral current, deep inelastic scattering measured in collisions of 26.7 GeV electrons and 820 GeV protons. The events typically populate a range in Q2 from 10 to 100 GeV2. The values of x extend down to x ~ 10-4 which is two orders of magnitude lower than previously measured at such Q2 values in fixed target experiments. The measured cross sections are in accord with the extrapolations of current parametrisations of parton distributions.

  2. Neutral strange particle production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-04-01

    This paper presents measurements of K 0 and Λ production in neutral current, deep inelastic scattering of 26.7 GeV electrons and 820 GeV protons in the kinematic range 10 2 2 , 0.0003 0 and Λ production are determined for transverse momenta p T >0.5 GeV and pseudorapidities vertical stroke ηvertical stroke + e - experiments. The production properties of K 0 's in events with and without a large rapidity gap are compared. Within the present statistics no indication for different K 0 production properties between diffractive and non-diffractive events is observed. (orig.)

  3. Meson exchange corrections in deep inelastic scattering on deuteron

    International Nuclear Information System (INIS)

    Kaptari, L.P.; Titov, A.I.

    1989-01-01

    Starting with the general equations of motion of the nucleons interacting with the mesons the one-particle Schroedinger-like equation for the nucleon wave function and the deep inelastic scattering amplitude with the meson-exchange currents are obtained. Effective pion-, sigma-, and omega-meson exchanges are considered. It is found that the mesonic corrections only partially (about 60%) restore the energy sum rule breaking because of the nucleon off-mass-shell effects in nuclei. This results contradicts with the prediction based on the calculation of the energy sum rule limited by the second order of the nucleon-meson vertex and static approximation. 17 refs.; 3 figs

  4. XXth international workshop on deep-inelastic scattering and related topics. DIS 2012. Proceedings

    International Nuclear Information System (INIS)

    Brock, Ian C.

    2013-03-01

    The following topics were dealt with: Structure functions, diffraction and vector mesons, electroweak interactions, hadronic final states, heavy flavours, spin physics, future of deep inelastic scattering. (HSI)

  5. XXth international workshop on deep-inelastic scattering and related topics. DIS 2012. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brock, Ian C. [ed.

    2013-03-15

    The following topics were dealt with: Structure functions, diffraction and vector mesons, electroweak interactions, hadronic final states, heavy flavours, spin physics, future of deep inelastic scattering. (HSI)

  6. Deep inelastic scattering and forward π0 production at NLO

    International Nuclear Information System (INIS)

    Aurenche, P.; Basu, Rahul; Fontannaz, M.; Godbole, R.M.

    2005-01-01

    We present a detailed phenomenological study of forward hadron (π 0 ) production in deep inelastic scattering, with both the direct and the resolved contributions calculated to NLO accuracy. A comparison of the theoretical predictions for the various distributions with the H1 data and a study of the stability of the QCD predictions under changes of scales is the focus of this study. We obtain a very good overall description of the recent H1 data with the choice of scale Q 2 +E 2 bot , in contrast to the (Q 2 +E 2 bot )/2 required earlier when the resolved contribution was included only at LO accuracy. We find a more modest variation of the predictions, as the scale is changed from (Q 2 +E 2 bot )/2 to 2(Q 2 +E 2 bot ), as compared to the case where the resolved contribution was included only at LO accuracy. This variation is of the order of the rather large experimental errors. Unfortunately, this fact prevents us from concluding that perturbation theory gives an unambiguous prediction for forward particle production in deep inelastic scattering. However, the overall success of perturbative QCD in explaining the small x Bj data means that perhaps a full resummation of the BFKL ladder is not called for. We notice the need for rather large resolved contributions to explain the data at low x Bj even at somewhat larger Q 2 values. (orig.)

  7. Dijet production in diffractive deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-08-15

    The production of dijets in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 61 pb{sup -1}. The dijet cross section has been measured for virtualities of the exchanged virtual photon, 54 GeV and the jet with the highest transverse energy was required to have E{sup *}{sub T,jet}>5 GeV. All jets were required to be in the pseudorapidity range -3.5<{eta}{sup *}{sub jet}<0. The differential cross sections are compared to leading-order predictions and next-to-leading- order QCD calculations based on recent diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. (orig.)

  8. Deep inelastic muon scattering from nuclei at Fermilab

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1992-01-01

    Electron scattering experiments by Friedman, Kendall, and Taylor at SLAC first showed in 1968 that the proton was composed of point-like constituents (quarks). More recently the European Muon Collaboration (EMC) found in muon scattering experiments that the structure functions of a free nucleon are different from a heavy nucleus (open-quotes EMC effectclose quotes). Fermilab experiment E665 is now studying deep inelastic scattering of 490 GeV muons from targets ranging from hydrogen to lead, including measurements of the final state hadrons in order to learn more about these effects. The author describes this experiment and presents some initial results on the effects of the nuclear environment on the quark structure of nucleons

  9. QCD effects to Bjorken unpolarized sum rule for νN deep-inelastic scattering

    International Nuclear Information System (INIS)

    Alekhin, S I; Kataev, A L

    2003-01-01

    The possibility of the first measurement of Bjorken unpolarized sum rule for F 1 structure function of νN deep-inelastic scattering at neutrino factories is commented. The brief summary of various theoretical contributions to this sum rule is given. Using the next-to-leading set of parton distributions functions, we simulate the expected Q 2 -behaviour and emphasize that its measurement can allow us to determine the value of the QCD strong coupling constant α s with reasonable theoretical uncertainty, dominated by the ambiguity in the existing estimates of the twist-4 non-perturbative 1/Q 2 -effect

  10. On the analysis of Deep Inelastic Neutron Scattering Experiments

    International Nuclear Information System (INIS)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R.

    2001-01-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  11. On the analysis of Deep Inelastic Neutron Scattering Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Blostein, J.J.; Dawidowski, J.; Granada, J.R. [Comision Nacional de Energia Atomica and CONICET, Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    2001-03-01

    We analyze the different steps that must be followed for data processing in Deep Inelastic Neutron Scattering Experiments. Firstly we discuss to what extent multiple scattering effects can affect the measured peak shape, concluding the an accurate calculation of these effects must be performed to extract the desired effective temperature from the experimental data. We present a Monte Carlo procedure to perform these corrections. Next, we focus our attention on experiments performed on light nuclei. We examine cases in which the desired information is obtained from the observed peak areas, and we analyze the procedure to obtain an effective temperature from the experimental peaks. As a consequence of the results emerging from those cases we trace the limits of validity of the convolution formalism usually employed, and propose a different treatment of the experimental data for this kind of measurements. (author)

  12. On the deep inelastic lepton-nucleus scattering

    International Nuclear Information System (INIS)

    Darbaidze, Ya.Z.; Garsevanishvili, V.R.; Menteshashvili, Z.R.

    1979-01-01

    Deep inelastic scattering of charged leptons on nuclei is considered in the lowest order in electromagnetic interaction. Expressions for the corresponding differential cross sections are obtained provided the scattered lepton and the fragment of the initial nucleus are detected in coincidence. Structure functions are analyzed by means of the automodelity principle. These functions are considered in the framework of the ''light front'' formalism for many-body systems. A hypothesis is put forward on the scale invariance of structure functions with respect to the xi-variable, which is some complicated dimensionless combination of kinematic invariants. A simple relation of this variable to the momenta of the nucleons inside the initial nucleus is pointed out

  13. Rapporteur talks at Singapore (deep inelastic scattering) and at Hadron 90 (conference summary)

    International Nuclear Information System (INIS)

    Close, F.E.

    1990-11-01

    This talk begins by reviewing the early years of deep inelastic scattering with particular reference to some theoretical work. Current highlights include an agreed uniform set of structure functions, polarised structure functions, possible violations of the Gottfried sum rule, deep inelastic scattering off nuclei and anticipated breakdown of naive perturbative quantum chromodynamics QCD as x → 0 at HERA. (author)

  14. Semi-inclusive deep inelastic scattering at small-x

    International Nuclear Information System (INIS)

    Marquet, Cyrille; Xiao, Bo-Wen; Yuan Feng

    2009-01-01

    We study the semi-inclusive hadron production in deep inelastic scattering at small-x. A transverse-momentum-dependent factorization is found consistent with the results calculated in the small-x approaches, such as the color-dipole framework and the color glass condensate, in the appropriate kinematic region at the lowest order. The transverse-momentum-dependent quark distribution can be studied in this process as a probe for the small-x saturation physics. Especially, the ratio of quark distributions as a function of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q 2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.

  15. Spectrometer magnet for experiment NA4 (deep inelastic muon scattering)

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    This is one section of the toroidal-field spectrometer magnet of experiment NA4 (deep inelastic muon scattering), shown here during the installation period and later located in the North Area of the SPS. To see all 4 sections, select 7709201. Igor Savin from Dubna looks at what his lab had provided: the huge iron disks were machined at and provided by Dubna. Multi-Wire Proportional Chambers were installed in the gaps between the packs of 4 disks. When the beam from the SPS struck the target (to the right in this picture), the iron would quickly stop the hadronic shower, whilst the muons would go on, performing oscillations in the toroidal field. NA4 was a CERN-Dubna-Munich-Saclay (later also Bologna) collaboration, spokesman: Carlo Rubbia.

  16. Hadron mass corrections in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Accardi, A.; Hobbs, T.; Melnitchouk, W.

    2009-01-01

    We derive mass corrections for semi-inclusive deep inelastic scattering of leptons from nucleons using a collinear factorization framework which incorporates the initial state mass of the target nucleon and the final state mass of the produced hadron h. The hadron mass correction is made by introducing a generalized, finite-Q 2 scaling variable ζ h for the hadron fragmentation function, which approaches the usual energy fraction z h = E h /ν in the Bjorken limit. We systematically examine the kinematic dependencies of the mass corrections to semi-inclusive cross sections, and find that these are even larger than for inclusive structure functions. The hadron mass corrections compete with the experimental uncertainties at kinematics typical of current facilities, Q 2 2 and intermediate x B > 0.3, and will be important to efforts at extracting parton distributions from semi-inclusive processes at intermediate energies.

  17. Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering

    International Nuclear Information System (INIS)

    Boer, D.; Gamberg, L.; Musch, B.U.; Prokudin, A.

    2011-01-01

    The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. Advantages of employing these Bessel weights are that they suppress (divergent) contributions from high transverse momentum and that soft factors cancel in (Bessel-) weighted asymmetries. Also, the resulting compact expressions immediately connect to previous work on evolution equations for transverse momentum dependent parton distribution and fragmentation functions and to quantities accessible in lattice QCD. Bessel weighted asymmetries are thus model independent observables that augment the description and our understanding of correlations of spin and momentum in nucleon structure.

  18. Scaled momentum spectra in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2009-12-01

    Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb -1 . Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q 2 , is described in the kinematic region 10 2 2 . Next-to-leading-order and modified leading-log-approximation QCD calculations as well as predictions from Monte Carlo models are compared to the data. The results are also compared to e + e - annihilation data. The dependences of the pseudorapidity distribution of the particles on Q 2 and on the energy in the γp system, W, are presented and interpreted in the context of the hypothesis of limiting fragmentation. (orig.)

  19. Precise charm-quark mass from deep-inelastic scattering

    International Nuclear Information System (INIS)

    Alekhin, S.; Bluemlein, J.; Daum, K.; Lipka, K.; Moch, S.; Hamburg Univ.

    2012-12-01

    We present a determination of the charm-quark mass in the MS scheme using the data combination of charm production cross section measurements in deep-inelastic scattering at HERA. The framework of global analyses of the proton structure accounts for all correlations of the charm-quark mass with the other non-perturbative parameters, most importantly the gluon distribution function in the proton and the strong coupling constant α s (M Z ). We obtain at next-to-leading order in QCD the value m c (m c ) = 1.15 ± 0.04 (exp) +0.04 -0.00 (scale) GeV and at approximate next-to-next-to-leading order m c (m c ) = 1.24 ± 0.03 (exp) +0.03 -0.02 (scale) +0.00 -0.07 (theory) GeV with an accuracy competitive with other methods.

  20. Bose-Einstein Correlations in Deep-Inelastic Muon Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, Perry Lee [MIT

    1990-01-01

    Bose-Einstein (B-E) correlations between like-sign pion pairs produced in deep-inelastic muon-nucleon scattering at 490 Ge V are used to measure the pion source distribution. Measuring the enhancement as a function of $M^2 =(p_1 {-p}_2 )^2$ (4-vectors) gave a source size of R=l .42 +/- 0.13 fm. Measuring this enhancement as a function of $\\Delta\\overrightarrow{p} _T\\mid^2$ gave a transverse source size of $R_T$ = 1.50 +/- 0.50 fm, while the enhancement as a function of $\\mid \\Delta\\overrightarrow{p}_{\\ell}\\mid$ gave a longitudinal source size of $R_{\\ell}$ = 2.90 +/- 1.23 fm. To check the validity of such a large longitudinal source size in the data, a thorough investigation of background and other possible sources of small $\\mid \\Delta\\overrightarrow{p} _{\\ell}\\mid$ pairs was made

  1. Comparison of deep inelastic scattering with photoproduction interactions at HERA

    International Nuclear Information System (INIS)

    Aid, S.; Andrieu, B.

    1995-08-01

    Photon-proton (γp) interactions with Q 2 -2 GeV 2 and deep-inelastic scattering (γ * p) interactions with photon virtualities Q 2 > 5 GeV 2 are studied at the high energy electron-proton collider HERA. The transverse energy flow and relative rates of large rapidity gap events are compared in the two event samples. The observed similarity between γp and γ * p interactions can be understood in a picture where the photon develops as a hadronic object. The transverse energy density measured in the central region of the collision, at η * = 0 in the γ * p centre of mass frame, is compared with data from hadron-hadron interactions as function of the CMS energy of the collision. (orig.)

  2. Model-Free Views of Deep Inelastic Scattering

    Science.gov (United States)

    Schwinger, Julian

    2014-11-01

    Perhaps I should point out first that my choice of topic was dictated by the injunction that the nature of this symposium should revolve around subjects that might be conceivably of interest to Viki. Viki has, along with most high energy physicists been very interested in the subject of deep inelastic electron scattering. With his characteristic attention to directly visualizable approaches to physical phenomena, he has dealt with this in terms of rather specific models, attempting then to give very elementary explanations of these fascinating phenomena. I thought he might be interested to see the other side of the coin, namely, the extent to which one can correlate and comprehend these physical effects without the use of specific models. I think this may lend a certain useful balance to the way things are looked at these days. So my remarks are directed to Viki but you're all welcome to eavesdrop...

  3. Subjet distributions in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2008-12-15

    Subjet distributions were measured in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb{sup -1}. Jets were identified using the k{sub T} cluster algorithm in the laboratory frame. Sub-jets were defined as jet-like substructures identified by a reapplication of the cluster algorithm at a smaller value of the resolution parameter y{sub cut}. Measurements of subjet distributions for jets with exactly two subjets for y{sub cut}=0.05 are presented as functions of observables sensitive to the pattern of parton radiation and to the colour coherence between the initial and final states. Perturbative QCD predictions give an adequate description of the data. (orig.)

  4. Event shapes in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-04-01

    Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated luminosity of 82.2 pb -1 collected with the ZEUS detector at HERA. The kinematic range was 80 2 2 and 0.0024 2 is the virtuality of the exchanged boson and x is the Bjorken variable. The data are compared with a model based on a combination of next-to-leading-order QCD calculations with next-to-leading-logarithm corrections and the Dokshitzer-Webber non-perturbative power corrections. The power-correction method provides a reasonable description of the data for all event-shape variables studied. Nevertheless, the lack of consistency of the determination of α s and of the non-perturbative parameter of the model, anti α 0 , suggests the importance of higher-order processes that are not yet included in the model. (orig.)

  5. Measurement of isolated photon production in deep inelastic ep scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., Argonne, IL (US)] (and others)

    2009-09-15

    Isolated photon production in deep inelastic ep scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 320 pb{sup -1}. Measurements were made in the isolated-photon transverse-energy and pseudo- rapidity ranges 45 GeV. Differential cross sections are presented for inclusive isolated photon production as functions of Q{sup 2}, x, E{sub T}{sup {gamma}} and {eta}{sup {gamma}}. Leading-logarithm parton-shower Monte Carlo simulations and perturbative QCD predictions give a reasonable description of the data over most of the kinematic range. (orig.)

  6. Subjet distributions in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    Subjet distributions were measured in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb -1 . Jets were identified using the k T cluster algorithm in the laboratory frame. Sub-jets were defined as jet-like substructures identified by a reapplication of the cluster algorithm at a smaller value of the resolution parameter y cut . Measurements of subjet distributions for jets with exactly two subjets for y cut =0.05 are presented as functions of observables sensitive to the pattern of parton radiation and to the colour coherence between the initial and final states. Perturbative QCD predictions give an adequate description of the data. (orig.)

  7. Measurement of isolated photon production in deep inelastic ep scattering

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-09-01

    Isolated photon production in deep inelastic ep scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 320 pb -1 . Measurements were made in the isolated-photon transverse-energy and pseudo- rapidity ranges 4 T γ γ 2 , in the range 10 2 2 and for invariant masses of the hadronic system W X >5 GeV. Differential cross sections are presented for inclusive isolated photon production as functions of Q 2 , x, E T γ and η γ . Leading-logarithm parton-shower Monte Carlo simulations and perturbative QCD predictions give a reasonable description of the data over most of the kinematic range. (orig.)

  8. QCD analysis of polarized deep inelastic scattering data

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Boettcher, Helmut

    2010-05-01

    A QCD analysis of the world data on polarized deep inelastic scattering is presented in next-to-leading order, including the heavy flavor Wilson coefficient in leading order in the fixed flavor number scheme. New parameterizations are derived for the quark and gluon distributions and the value of α s (M z 2 ) is determined. The impact of the variation of both the renormalization and factorization scales on the distributions and the value of α s is studied. We obtain α s NLO (M Z 2 )=0.1132 -0.0095 +0.0056 . The first moments of the polarized twist-2 parton distribution functions are calculated with correlated errors to allow for comparisons with results from lattice QCD simulations. Potential higher twist contributions to the structure function g 1 (x,Q 2 ) are determined and found to be compatible with zero both for proton and deuteron targets. (orig.)

  9. Scaled momentum spectra in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; University College London (United Kingdom); Max Planck Inst., Munich (Germany); Abt, I. [Max-Planck-Inst. fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2009-12-15

    Charged particle production has been studied in neutral current deep inelastic ep scattering with the ZEUS detector at HERA using an integrated luminosity of 0.44 fb{sup -1}. Distributions of scaled momenta in the Breit frame are presented for particles in the current fragmentation region. The evolution of these spectra with the photon virtuality, Q{sup 2}, is described in the kinematic region 10

  10. Higgs boson production in deep inelastic lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Abdullayev, S.Q.; Qocayev, M.Sh.; Saddi, F.A.

    2016-01-01

    In the framework of Standard Model the process of scalar Higgs boson production in deep inelastic lepton-nucleon scattering has been investigated: lN follows lHX, lN follows v l HX, v μ N follows v μ HX, v μ N follows μHX. The ZZ-fusion and WW-fusion mechanisms are the most important mechanisms for the production if Higgs bosons in lepton-nucleon deep inelastic scattering. It is shown that, the process l q follows lqH is defined by only four helicity amplitudes: F L L, F L R, F R L and F R R (here first and second indices show the helicity of lepton and quark), which describe the following reactions: l L q L follows l L q L H, l L q R follows l L q R H, l R q L follows l R q L H, l R q R follows l R q R H.The process v μ q follows v μ q H is defined by only two helicity amplitudes F L L and F L R, which describe reactions v μ q L follows v μ q L H and v μ q R follows v μ q q R H.The mechanism W W follows H is defined by one helicity amplitude, which describes the process l L q L follows v L q' L X or v μ q L follows μL q' L H.We have calculated the cross sections for the helicity processes and detailed numerical results are presented in the quark-patron model.

  11. Diffractive dijet production in deep inelastic scattering at ZEUS

    International Nuclear Information System (INIS)

    Bonato, A.

    2008-03-01

    This thesis presents a measurement of dijet production of diffractive deep inelastic scattering ep collisions. This type of process is specially relevant for the experimental validity of the perturbative QCD approach to diffractive physics. The measurement was based on an integrated luminosity of 61 pb -1 collected at the HERA collider with the ZEUS experiment. The events were selected for virtualities of the photon, γ*, 5 2 2 , and energies of the γ*p centre-of-mass, 100 T algorithm in the γ*p frame. The jets were required to have a transverse energy in the γ*p frame E T jet *>4 GeV. The jet with the highest transverse energy was required to have E T jet *>5 GeV. All jets were required to be in the pseudorapidity range -3.5 jet * P , was required to be x P TOT D (ep→ep jet 1 jet 2 X')=9.15±1.2 (stat.) 5.4 3.3 (syst.) -5.3 +6.4 (corr.)pb. Single and double differential cross sections were extracted and compared to leading-order predictions and next-to-leading-order QCD calculations. The latter used several diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. The agreement with the leading and next-to-leading order predictions is good and no hints of factorisation breaking are observed. The double differential measurement can be a previous input for the extraction of more accurate diffractive parton densities. (orig.)

  12. O({alpha}{sub s}) heavy flavor corrections to charged current deep-inelastic scattering in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.; Hasselhuhn, A.; Kovacikova, P.; Moch, S.

    2011-04-15

    We provide a fast and precise Mellin-space implementation of the O({alpha}{sub s}) heavy flavor Wilson coefficients for charged current deep inelastic scattering processes. They are of importance for the extraction of the strange quark distribution in neutrino-nucleon scattering and the QCD analyses of the HERA charged current data. Errors in the literature are corrected. We also discuss a series of more general parton parameterizations in Mellin space. (orig.)

  13. Deep inelastic processes and the parton model

    International Nuclear Information System (INIS)

    Altarelli, G.

    The lecture was intended as an elementary introduction to the physics of deep inelastic phenomena from the point of view of theory. General formulae and facts concerning inclusive deep inelastic processes in the form: l+N→l'+hadrons (electroproduction, neutrino scattering) are first recalled. The deep inelastic annihilation e + e - →hadrons is then envisaged. The light cone approach, the parton model and their relation are mainly emphasized

  14. A quark-parton description of the deep inelastic scattering processes

    International Nuclear Information System (INIS)

    Bajpai, R.P.

    1977-01-01

    A consistent description of various deep inelastic processes in a quark-parton model is presented. The valence quark probability distribution and the form of core quark probability distribution is fixed from the deep inelastic electroproduction data. Langacker and Suzuki prescription is used to fix the p and n quark core distribution. The differential excitation of quark currents similar to the Harari model of e + e - annihilation process is invoked in deep inelastic electroproduction and neutrino reactions. An effective phenomenological form of the weak currents associated with new quarks and the associated nucleon structure is determined. (author)

  15. Diffractive dijet production in deep inelastic scattering at ZEUS

    Energy Technology Data Exchange (ETDEWEB)

    Bonato, A.

    2008-03-15

    This thesis presents a measurement of dijet production of diffractive deep inelastic scattering ep collisions. This type of process is specially relevant for the experimental validity of the perturbative QCD approach to diffractive physics. The measurement was based on an integrated luminosity of 61 pb{sup -1} collected at the HERA collider with the ZEUS experiment. The events were selected for virtualities of the photon, {gamma}*, 54 GeV. The jet with the highest transverse energy was required to have E{sub T} {sub jet}*>5 GeV. All jets were required to be in the pseudorapidity range -3.5<{eta}{sub jet}*<0 as measured in the {gamma}*p frame. The selection of diffractive events was carried out by requiring a large rapidity gap in the direction of the scattered proton. The value of the fraction of initial proton momentum entering in the hard process, x{sub P}, was required to be x{sub P}<0.03. The total cross section for the process was measured to be {sigma}{sub TOT}{sup D}(ep{yields}ep jet{sub 1}jet{sub 2} X')=9.15{+-}1.2 (stat.){sub 5.4}{sup 3.3} (syst.){sub -5.3}{sup +6.4} (corr.)pb. Single and double differential cross sections were extracted and compared to leading-order predictions and next-to-leading-order QCD calculations. The latter used several diffractive parton densities extracted from inclusive diffractive deep inelastic scattering data. The agreement with the leading and next-to-leading order predictions is good and no hints of factorisation breaking are observed. The double differential measurement can be a previous input for the extraction of more accurate diffractive parton densities. (orig.)

  16. The hadronic final state in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Lanius, P.

    1994-10-01

    Global properties of the hadronic final state of deep inelastic scattering events recorded in 1992 with the H1 detector at HERA, are investigated. The data are corrected for detector effects and can be compared directly with QCD phenomenology and calculations based on BFKL dynamics. The measurement of the energy flows in the laboratory frame and in the hadronic centre of mass system reveal large discrepancies between the data and the different model predictions, indicating the failure of models based on Altarelli-Parisi evolution at low χ. However, these energy flow results are found to agree fairly well with theoretical predictions derived from Lipatov (BFKL) evolution. In the hadronic centre of mass frame the longitudinal and transverse momentum components of charged particles are measured. The longitudinal component exhibits scaling with W and allows comparison with lower energy lepton-nucleon scattering data as well as with e + e - data from LEP. For the 1993 data, studies of the charged particle energy spectra in the Breit frame are undertaken. This measurement allows a first tentative look at predictions from the Modified Leading Logarithmic Approximation for the target region, a region that to-date unexplored has been unexplored. (orig.)

  17. Study of final states in deep inelastic muon scattering

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to study the different possible final states in deep inelastic muon scattering from hydrogen in connection with the detection of the scattered muon in a forward spectrometer (Experiment NA2).\\\\ \\\\ A vertex detector will be used which extends the hadron detection capabilities into the backward hemisphere of the centre-of-mass system. Particle momenta can be measured down to 200 MeV/c in a vertex magnet, which contains a streamer chamber (SC Particle identification will be done in a series of wide angle Čerenkov counters (C$_{0}$, C$_{1}$) and at low momenta in time-of-flight counter hodoscopes (F1-F4). An 8-plane module of MWPC chambers (PV) will be used in conjunction with the streamer chamber and the drift chambers WV1 and WV2 and WV3. \\\\ \\\\ The vertex magnet is a C magnet with circular pole tips of 2 m diameter and 1 m gap width. The central magnetic field will be 1.5 T. The streamer chamber (2m x 1.2m x 0.72m) will contain a 1 m liquid H$_{2}$ target.\\\\ \\\\ As a natural extens...

  18. Deep inelastic scattering in an asymptotically free gauge theory

    International Nuclear Information System (INIS)

    Fujiwara, Tsutomu

    1977-01-01

    This paper reviews the success of the asymptotically free gauge theory which describes the deep inelastic lepton-hadron scattering. The asymptotically free gauge theory was discussed as well as the reason why the parton has the nature like free particles by the aid of the field theory. The asymptotically free gauge theory (AFGT) gives the prediction that the Bjorken scaling gives rise to logarithmic violation. The theory was applied to the exchange processes of single photon and two photons. First, this paper describes the approaches to the Bjorken scaling. The approaches are the discussion of the scaling law dependent on the model and the discussion of the scaling law independent of the model. The field theoretical treatment in described. This is called the method of the renormalization group introduced by Wilson. The asymptotically free gauge theory was formed on the basis of the Callan-Symanzik equation (CSE) and of the Weinberg's power counting theorem. The exact Bjorken scaling does not hold in the quantum field theory, at least there must be logarithmic violation. The pattern of the scaling violation cannot be clarified by the present data. Discussions concerning two gamma process are presented. The measurement of the photon-photon scattering process will give the judgement whether the prediction of the AFGT is correct or not. (Kato, T.)

  19. Diffractive vector meson production in deep inelastic scattering

    International Nuclear Information System (INIS)

    Kamps, M. de.

    1997-01-01

    This thesis seeks to bring comfort to those who are appalled by the usual high level of violence in high energy physics. Although also here we engage in the customary vandalistic smashing together of two particles, the reaction we will study has a happy end in store for both of them. The subject of this thesis will be the reaction: e + p→e + pV where V is one of the vector mesons ρ, ω, φ, J/ψ. We will investigate the situation where the final state positron enters the ZEUS main detector, which indicates that a violent reaction has taken place between the initial state particles, but nevertheless the proton does not break up. The violence with which the positron is scattered characterises the reaction as a Deep Inelastic Scattering (DIS), the fact that the proton does not break up characterises the reaction as diffractive which explains the title of the thesis. Both DIS and diffractive physics will be defined and discussed in the context of this thesis. (orig./WL)

  20. Systematic analysis of scaling properties in deep inelastic scattering

    International Nuclear Information System (INIS)

    Beuf, Guillaume; Peschanski, Robi; Royon, Christophe; Salek, David

    2008-01-01

    Using the 'quality factor' method, we analyze the scaling properties of deep inelastic processes at the accelerator HERA and fixed target experiments for x≤10 -2 . We look for scaling formulas of the form σ γ * p (τ), where τ(L=logQ 2 ,Y) is a scaling variable suggested by the asymptotic properties of QCD evolution equations with rapidity Y. We consider four cases: 'fixed coupling', corresponding to the original geometric scaling proposal and motivated by the asymptotic properties of the Balitsky-Kovchegov equation with fixed QCD coupling constant; two versions, 'running coupling I, II,' of the scaling suggested by the Balitsky-Kovchegov equation with running coupling; and 'diffusive scaling' suggested by the QCD evolution equation with Pomeron loops. The quality factors, quantifying the phenomenological validity of the candidate scaling variables, are fitted on the total and deeply virtual Compton scattering cross-section data from HERA and predictions are made for the elastic vector meson and for the diffractive cross sections at fixed small x P or β. The first three scaling formulas have comparably good quality factors while the fourth one is disfavored. Adjusting initial conditions gives a significant improvement of the running coupling II scaling.

  1. High energy deep inelastic scattering in perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Wallon, S.

    1996-01-01

    In this PhD thesis, we deal with high energy Deep Inelastic Scattering in Perturbative Quantum Chromodynamics (QCD). In this work, two main topics are emphasized: The first one deals with dynamics based on perturbative renormalization group, and on perturbative Regge approaches. We discuss the applicability of these predictions, the possibility of distinguishing them in the HERA experiments, and their unification. We prove that the perturbative Regge dynamic can be successfully applied to describe the HERA data. Different observables are proposed for distinguishing these two approaches. We show that these two predictions can be unified in a system of equations. In the second one, unitarization and saturation problems in high energy QCD are discussed. In the multi-Regge approach, equivalent to the integrable one-dimensional XXX Heisenberg spin chain, we develop methods in order to solve this system, based on the Functional Bethe Ansatz. In the dipole model context, we propose a new formulation of unitarity and saturation effects, using Wilson loops. (author)

  2. Transverse spin effects in polarized semi inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pappalardo, Luciano Libero

    2008-10-15

    The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)

  3. Event shapes in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-04-15

    Mean values and differential distributions of event-shape variables have been studied in neutral current deep inelastic scattering using an integrated luminosity of 82.2 pb{sup -1} collected with the ZEUS detector at HERA. The kinematic range was 80

  4. Perturbative quantum chromodynamic analysis of deep inelastic scattering

    International Nuclear Information System (INIS)

    Herrod, R.T.

    1982-01-01

    This is an account of the field theoretic description of the deep inelastic scattering of leptons from nucleons. Starting from simple parton model description, using the assumption of an SU(3) colour confining field theory, for the quarks comprising hadronic matter, the well known prediction of Bjorken scaling is obtained. Field theoretic predictions for deviations from Bjorken scaling are formally introduced, with particular reference to quantum chromodynamics (QCD). This treatment is purely perturbative, although the renormalisation group is used to improve convergence. Scaling violations at both leading order, and next-to-leading order are discussed, and it is shown how these lead to predictions regarding the dependence of the moments of observable structure functions, on the square of the 4-momentum transferred (Q 2 ). Evolution equations for the moments of structure functions are then derived. The intuitive approach of Altarelli and Parisi (AP), which leads to predictions for the Q 2 dependence of the structure functions themselves, is introduced. The corresponding equations are derived to next-to-leading order. The results of an extensive analysis of current data are presented.. Both weak and electromagnetic structure functions are compared with the predictions of leading order, and higher order formulae. Methods for incorporating heavy quark flavours into the AP equations are discussed. (author)

  5. A compilation of structure functions in deep inelastic scattering

    International Nuclear Information System (INIS)

    Gehrmann, T.; Roberts, R.G.; Whalley, M.R.

    1999-01-01

    A compilation of all the available data on the unpolarized structure functions F 2 and xF 3 , R=(σ L /σ T ), the virtual photon asymmetries A 1 and A 2 and the polarized structure functions g 1 and g 2 , from deep inelastic lepton scattering off protons, deuterium and nuclei is presented. The relevant experiments at CERN, DESY, Fermilab and SLAC from 1991, the date of our earlier review [1], to the present day are covered. A brief general theoretical introduction is given followed by the data presented both in tabular and graphical form and, for the F 2 and xF 3 data, the predictions based on the MRST98 and CTEQ4 parton distribution functions are also displayed. All the data in this review, together with data on a wide variety of other reactions, can be found in and retrieved from the Durham-RAL HEP Databases on the World-Wide-Web (http://durpdg.dur.ac.uk/HEPDATA). (author)

  6. Transverse spin effects in polarized semi inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Pappalardo, Luciano Libero

    2008-03-01

    The theoretical framework for the inclusive and semi-inclusive deep inelastic scattering is provided in Chapters 2 and 3, respectively. While a phenomenological and historical perspective is adopted in Chapter 2 for the description of the inclusive processes, a detailed treatment of the formalism concerning the physics of the transverse degrees of freedom of the nucleon is presented in Chapter 3. In Chapter 4 the main components of the HERMES experimental apparatus are presented. The extraction of the Collins and Sivers moments is discussed in Chapter 5 after a brief overview of the main steps of the data analysis. A selection of systematic studies is also reported at the end of the chapter. Chapter 6 is completely devoted to the estimate of the acceptance and smearing effects on the extracted azimuthal moments. A crucial role in the studies presented is played by a newly developed Monte Carlo generator which simulates azimuthal asymmetries arising from intrinsic quark momenta. A novel approach for the estimate of the acceptance effects is presented at the end of the chapter. The extracted Collins and Sivers moments, corrected for the acceptance effects, are shown in Chapter 7. The discussion and the interpretation of the results, together with a preliminary extraction of the Sivers polarization, are also treated in Chapter 7. Final conclusions and a brief summary are reported in Chapter 8. (orig.)

  7. Diffractive production in deep inelastic scattering and hadronic interactions

    International Nuclear Information System (INIS)

    Kaidalow, A.

    1996-01-01

    Diffractive processes in hadronic interactions are considered and important role of multi-Pomeron exchanges is emphasized. It is argued that in deep inelastic scattering these contributions are much less important and energy behavior of structure functions at Q 2 ≥ 1 GeV 2 is determined mostly by bare Pomeron intercept. It is shown that the model based on these ideas is in a perfect agreement with recent results from HERA. Diffractive production in DIS is discussed and theoretical predictions for the structure function of the Pomeron are compared with experimental observations. It is emphasized that both quarks and gluons in the Pomeron have hard distributions. Shadowing corrections to structure function of a nucleon are calculated and found to small in the region of x > 10 -4 . A good agreement with experimental data on the shadowing of structure functions of nuclei is obtained. Energy dependence for the cross sections of the diffractive production of vector mesons by real and virtual photons is calculated in the same approach and is found to be in an excellent agreement with experiment. (author)

  8. Bessel-weighted asymmetries in semi-inclusive deep inelastic scattering

    NARCIS (Netherlands)

    Boer, D.; Gamberg, L.; Musch, B. U.; Prokudin, A.

    2011-01-01

    The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation

  9. Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    OpenAIRE

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.

    2006-01-01

    The cross section for the diffractive deep-inelastic scattering process $ep \\to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \\xpom

  10. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-05-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q 2 in the range 3.10 -4 BJ -3 and 10 2 2 . (orig.)

  11. Path integral theory and deep inelastic scattering of nuclei

    International Nuclear Information System (INIS)

    Neto, J.L.

    1981-10-01

    A formalism, based on Feynman's path integral, is developed and used in the theory of deep inelastic collisions of nuclei. Having shown how to express the propagator of the Wigner function of an isolated system as a (double) path integral in phase space, random processes are considered and the influence functional in interacting systems is discussed. A semi-classical description for the reduced Wigner and a generalized Langevin equation are given. Finally, the formalism is used in a random matrix model for deep inelastic collisions. (U.K.)

  12. Determination of strange sea distributions from {nu}N deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Inst. for High Energy Physics, Protvino (Russian Federation); Kulagin, S. [Academy of Sciences of Russia, Moscow (Russian Federation). Inst. for Nuclear Research; Petti, R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics and Astronomy

    2008-12-15

    We present an analysis of the nucleon strange sea extracted from a global Parton Distribution Function fit including the neutrino and anti-neutrino dimuon data by the CCFR and NuTeV collaborations, the inclusive charged lepton-nucleon Deep Inelastic Scattering and Drell-Yan data. The (anti-)neutrino induced dimuon analysis is constrained by the semi-leptonic charmed-hadron branching ratio B{sub {mu}}=(8.8{+-}0.5)%, determined from the inclusive charmed hadron measurements performed by the FNAL-E531 and CHORUS neutrino emulsion experiments. Our analysis yields a strange sea suppression factor {kappa}(Q{sup 2}=20 GeV{sup 2})=0.62{+-}0.04, the most precise value available, an x-distribution of total strange sea that is slightly softer than the non-strange sea, and an asymmetry between strange and anti-strange quark distributions consistent with zero (integrated over x it is equal to 0.0013{+-}0.0009 at Q{sup 2}=20 GeV{sup 2}). (orig.)

  13. Quark antisymmetrization and deep-inelastic scattering. Pt. 2

    International Nuclear Information System (INIS)

    Meyer, H.; Mulders, P.J.; Spit, W.F.M.

    1994-01-01

    We consider the effects of quark antisymmetrization for nuclear structure functions. Antisymmetrizing the naive folding of nuclear wave functions in terms of nucleons and the nucleon wave function in terms of quarks, introduces additional contributions. Using the calculated results on quark three-momentum distributions, we calculate the effects on the deep-inelastic structure functions for s- and p-wave nuclei. The effects of quark antisymmetrization turn out to be small. (orig.)

  14. Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments

    International Nuclear Information System (INIS)

    Dawidowski, J; Blostein, J J; Granada, J R

    2006-01-01

    Multiple scattering and attenuation corrections in Deep Inelastic Neutron Scattering experiments are analyzed. The theoretical basis of the method is stated, and a Monte Carlo procedure to perform the calculation is presented. The results are compared with experimental data. The importance of the accuracy in the description of the experimental parameters is tested, and the implications of the present results on the data analysis procedures is examined

  15. Deep-inelastic scattering in 124,136Xe+58,64Ni at energies near the Coulomb barrier

    International Nuclear Information System (INIS)

    Gehring, J.; Back, B.B.; Chan, K.C.; Freer, M.; Henderson, D.; Jiang, C.L.; Rehm, K.E.; Schiffer, J.P.; Wolanski, M.; Wuosmaa, A.H.; Gehring, J.; Wolanski, M.

    1997-01-01

    Cross sections, angular distributions, and mass distributions have been measured for deep-inelastic scattering in 124 Xe+ 58 Ni and 136 Xe+ 64 Ni at laboratory energies in the vicinity of the Coulomb barrier. The mass distributions show distinct components due to deep-inelastic and fissionlike processes. The strength of deep-inelastic scattering is similar in the two systems measured and comparable to previous measurements in 58 Ni+ 112,124 Sn. copyright 1997 The American Physical Society

  16. QCD expectations for deep inelastic scattering at small x and their phenomenological implications for HERA

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1994-05-01

    The basic QCD expectations concerning the deep inelastic scattering at low x where x is the Bjorken scaling variable are reviewed. This includes discussion of the BFKL equation which sums the leading powers of ln (1/x) and the shadowing effects. Phenomenological implications of the theoretical expectations for the deep inelastic lepton-hadron scattering in the small x region which has become accessible at the HERA ep collider are described. We give predictions for structure functions F 2 which are based on the BFKL equation and the high energy k T factorization theorem. These predictions are compared with the results of structure function analysis based on Altarelli-Parisi evolution equations and confronted with the recent data from HERA. We discuss jet production and transverse energy flow in deep inelastic lepton scattering as the measurements which may be particularly suitable for revealing the QCD dynamics at small x. (author). 37 refs, 4 figs

  17. Deep inelastic lepton-nucleus scattering from the light-cone quantum field theory

    International Nuclear Information System (INIS)

    Boqiang Ma; Ji Sun

    1990-01-01

    We show that for deep inelastic lepton-nucleus scattering, the conditions which validate the impulse approximation are hardly satisfied when using ordinary instant form dynamics in the rest frame of the nucleus, whereas they are well satisfied when using instant form dynamics in the infinite-momentum frame, or using light-front form dynamics in an ordinary frame. Therefore a reliable theoretical treatment of deep inelastic lepton-nucleus scattering should be performed in the time-ordered perturbation theory in the infinite-momentum frame, or its equivalent, the light-cone perturbation theory in an ordinary frame. To this end, we extend the light-cone quantum field theory to the baryon-meson field to establish a relativistic composite model of nuclei. We then apply the impulse approximation to deep inelastic lepton-nucleus scattering in this model.(author)

  18. Selected topics of deep inelastic scattering from the sixties to HERA

    International Nuclear Information System (INIS)

    Gayler, J.

    1995-07-01

    This talk reports on important steps in deep inelastic scattering, starting in the sixties before scaling violations were observed, and ending with most recent results from HERA. The selection is rather subjective and no systematic review was attempted. The emphasis is on structure functions, QCD effects in the hadronic final states and electroweak effects in electron scattering. (orig.)

  19. Value of αs from deep-inelastic-scattering data

    International Nuclear Information System (INIS)

    Alekhin, S.I.

    2003-01-01

    We report the value of α s obtained from QCD analysis of existing data on deep-inelastic scattering of charged leptons off proton and deuterium and estimate its theoretical uncertainties with particular attention paid to impact of the high-twist contribution to the deep-inelastic-scattering structure functions. Taking into account the major uncertainties the value αNNLO s (M Z )=0.1143±0.0014(exp.)±0.0013(theor.) is obtained. An extrapolation of the LO-NLO-NNLO results to the higher orders makes it possible to estimate αN 3 LO s (M Z )∼0.113. (author)

  20. Deep inelastic scattering of electrons on 12C in the δ(1236) region

    International Nuclear Information System (INIS)

    Meziani, Zein-Eddine.

    1982-06-01

    An experiment involving inclusive deep inelastic scattering of 700 MeV electrons on 12 C is presented. A broad energy transfer region (20 to 500 MeV) was examined enabling various different reaction mechanisms occurring in the nucleus to be studied. Attention was given to electroproduction processes in the δ(1236) resonance region. Measurements of deep inelastic scattering cross sections and radiative correction problems are discussed. A theoretical treatment of the cross section in the framework of a virtual photon exchange approximation is presented [fr

  1. Partonic transverse motion in unpolarized semi-inclusive deep inelastic scattering processes

    International Nuclear Information System (INIS)

    Boglione, M.; Melis, S.; Prokudin, A.

    2011-01-01

    We analyze the role of partonic transverse motion in unpolarized semi-inclusive deep inelastic scattering processes. Imposing appropriate kinematical conditions, we find some constraints which fix an upper limit to the range of allowed k perpendicular values. We show that, applying these additional requirements on the partonic kinematics, we obtain different results with respect to the usual phenomenological approach based on the Gaussian smearing with analytical integration over an unlimited range of k perpendicular values. These variations are particularly interesting for some observables, like the h > azimuthal modulation of the unpolarized semi-inclusive deep inelastic scattering cross section or the average transverse momentum of the final, detected hadron.

  2. Interpretations of the nuclear dependence of deep-inelastic lepton scattering

    International Nuclear Information System (INIS)

    Berger, E.L.

    1985-06-01

    A review is presented of data and theoretical interpretations of A dependent effects observed in the deep inelastic scattering of neutrinos and charged leptons from nuclei. After a detailed summary of the experimental situation and survey of the broad spectrum of proposed explanations, I concentrate on the implications of a pion exchange model. This conventional nuclear physics approach provides a unified quantitative description of all features of the present data except, possibly, for the normalization at small x. The pion exchange model reproduces the magnitude and shape of the depression below unity of the ratio of structure functions F 2 /sup A/(x,Q 2 )/F 2 /sup D/(x,Q 2 ) for 0.2 < x < 0.6, observed in all experiments, its rise above unity as x → 1, and the weak enhancement of the antiquark distribution anti q/sup A/(x) demonstrated by the neutrino experiments. If the normalization of the European Muon Collaboration data is reduced by 5%, the model would be in fine agreement for all x. Expectations are presented for the A dependence of massive lepton pair production in hadron collisions. The review concludes with a list of desirable future experiments. 36 refs., 11 figs

  3. Forward jet production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, T.

    2005-08-01

    The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x Bj ) and as triple differential cross sections d 3 σ/dx Bj dQ 2 dp t,jet 2 , where Q 2 is the four momentum transfer squared and p t,jet 2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models. (orig.)

  4. Forward Jet Production in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, W.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Finke, L.; Fleischer, M.; Fleischmann, P.; Flucke, G.; Fomenko, A.; Foresti, I.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Goyon, C.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kuckens, J.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxeld, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sedlak, K.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Vujicic, B.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wigmore, C.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \\sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.

  5. Coherence effects and average multiplicity in deep inelastic scattering at small χ

    International Nuclear Information System (INIS)

    Kisselev, A.V.; Petrov, V.A.

    1988-01-01

    The average hadron multiplicity in deep inelastic scattering at small χ is calculated in this paper. Its relationship with the average multiplicity in e + e - annihilation is established. As shown the results do not depend on a choice of the gauge vector. The important role of coherence effects in both space-like and time-like jet evolution is clarified. (orig.)

  6. Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bodlák, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, A.; Chung, S. U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Dreisbach, Ch.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jarý, V.; Joosten, R.; Jörg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, R.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nový, J.; Nowak, W. D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D.; Rybnikov, A.; Rychter, A.; Salač, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, H.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolík, J.; Sozzi, F.; Srnka, Aleš; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Thiel, A.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Ter Wolbeek, J.; Zaremba, K.; Závada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-01-01

    Roč. 767, 10 APRIL (2017), s. 133-141 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : deep inelastic scattering * kaon multiplicities * quark fragmentation functions * strange quark Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 4.807, year: 2016

  7. Time reversal odd effects in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Schlegel, M.

    2006-04-01

    In this thesis the semi-iclusive deep inelastic scattering l+h→l'+h+X is studied in the framework of the parton model. Especially sum rules are checked which contain transverse-momentum dependent parton distributions. Furthermore the influence of T-odd effects on the subleading order of a twist expansion are investigated. (HSI)

  8. QED corrections in deep-inelastic scattering from tensor polarized deuteron target

    CERN Document Server

    Gakh, G I

    2001-01-01

    The QED correction in the deep inelastic scattering from the polarized tensor of the deuteron target is considered. The calculations are based on the covariant parametrization of the deuteron quadrupole polarization tensor. The Drell-Yan representations in the electrodynamics are used for describing the radiation real and virtual particles

  9. Recent results on the 3-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.; Freitas A. de; Raab, C.; Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Ablinger, J.; Hasselhuhn, A.; Round, M.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Mainz Univ. (Germany). Inst. fuer Physik

    2013-07-15

    We report on recent progress in the calculation of the 3-loop massive Wilson coefficients in deep-inelastic scattering at general values of N for neutral and charged current reactions in the asymptotic region Q{sup 2}>>m{sup 2}.

  10. QCD coherence in deep inelastic scattering at small x at HERA

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    1998-01-01

    QCD coherence effects in initial state radiation at small x in deep inelastic scattering in HERA kinematics are studied with the help of the Monte Carlo model SMALLX. Theoretical assumptions based on the CCFM evolution equation are reviewed and the basic properties of the partonic final states are investigated. The results are compared with those obtained in the conventional DGLAP evolution scheme. (orig.)

  11. Deep-inelastic lepton scattering in an SU(3) x U(1) gauge model

    International Nuclear Information System (INIS)

    Maharana, K.; Sastry, C.V.

    1976-01-01

    Linear relations and sum rules for deep-inelastic lepton scattering are derived in the light-cone algebra approach from a set of weak, neutral, and electromagnetic currents based on an SU(3) x U(1) gauge model proposed by Schechter and Ueda

  12. Application of one body dissipation to deep inelastic heavy ion scattering

    International Nuclear Information System (INIS)

    Beck, F.; Blocki, J.; Dworzecka, M.; Wolschin, G.

    1978-01-01

    The one body dissipation mechanism is employed to couple the relative motion of two heavy ions to the internal degrees of freedom. Trajectories, energy and angular momentum losses are calculated, and compared with experimental data on deep inelastic scattering. (orig.) [de

  13. What do we learn from polarization measurements in deep-inelastic electron-nucleon scattering

    International Nuclear Information System (INIS)

    Anselmino, M.

    1979-01-01

    We examine what can be learned from deep-inelastic electron-nucleon scattering with polarized initial electrons and measurement of the polarization of the final electrons. A direct evaluation of the separate structure functions W 1 and W 2 is shown to be possible

  14. Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

    NARCIS (Netherlands)

    Adolph, C.; Akhunzyanov, R.; Alexeev, M. G.; Alexandrov, Yu; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, Jr; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu A.; Kisselev, Yu; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W. D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szableski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2014-01-01

    Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cos φh, cos 2φh and sin

  15. H1 contributions to the workshop on deep inelastic scattering and QCD, Paris'95

    International Nuclear Information System (INIS)

    Roeck, A. de; Jung, H.; Phillips, J.P.; Zomer, F.

    1995-08-01

    The following topics were dealt with: Forward jets in deep inelastic scattering at HERA, diffractive interactions, rapidity gap events at HERA and the structure of the pomeron, new results on the proton structure function from H1, extraction of the gluon density at low-x from F 2 proton data

  16. The A-dependence of deep inelastic lepton-nuclear scattering from 6-quark clustering

    International Nuclear Information System (INIS)

    Chemtob, M.; Peschanszi, R.

    1984-03-01

    The correction to the nucleon valence quark structure functions implied by 6-quark clustering in nuclei are found to be in remarkable agreement with recent data from S.L.A.C. on the A-dependence of electron-nucleus deep inelastic scattering

  17. Proposed measurement of tagged deep inelastic scattering in Hall A of Jefferson lab

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, Rachel [Univ. of Glasgow, Scotland (United Kingdom); Annand, John [Univ. of Glasgow, Scotland (United Kingdom); Dutta, Dipangkar [Mississippi State Univ., Mississippi State, MS (United States); Keppel, Cynthia E. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); King, Paul [The Ohio State Univ., Columbus, OH (United States). Dept of Physics; Wojtsekhowski, Bogdan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Jixie [Univ. of Virginia, Charlottesville, VA (United States)

    2017-03-01

    A tagged deep inelastic scattering (TDIS) experiment is planned for Hall A of Jefferson Lab, which will probe the mesonic content of the nucleon directly. Low momentum recoiling (and spectator) protons will be measured in coincidence with electrons scattered in a deep inelastic regime from hydrogen (and deuterium) targets, covering kinematics of 8 < W2 < 18 GeV2, 1 < Q2 < 3 (GeV/c)2 and 0:05 < x < 0:2. The tagging technique will help identify scattering from partons in the meson cloud and provide access to the pion structure function via the Sullivan process. The experiment will yield the first TDIS results in the valence regime, for both proton and neutron targets. We present here an overview of the experiment.

  18. Observation of events with a large rapidity gap in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1993-07-01

    In deep inelastic, neutral current scattering of electrons and protons at √s=296 GeV, we observe in the ZEUS detector events with a large rapidity gap in the hadronic final state. They occur in the region of small Bjorken x and are observed up to Q 2 of 100 GeV 2 . They account for about 5% of the events with Q 2 ≥10 GeV 2 . Their general properties are inconsistent with the dominant mechanism of deep inelastic scattering, where color is transferred between the scattered quark and the proton remnant, and suggest that the underlying production mechanism is the diffractive dissociation of the virtual photon. (orig.)

  19. The role transverse momentum and spin in unpolarised semi inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Francesca

    2008-10-15

    The azimuthal modulations of hadron production has been measured in Semi Inclusive Deep Inelastic Scattering processes at HERMES, and the results, compatible between different data taking periods, have been presented. Several systematic checks were performed in order to estimate possible biases, and finally the results are corrected for acceptance and QED higher order contributions. The corrected cosine moments are provided in 500 independent kinematical bins providing for the first time a full differential description of the cross-section azimuthal dependent terms. Their projections in the relevant kinematical variables have been presented for comparison with expectations. The results extracted for hydrogen and deuterium data do not show significative discrepancies, and this can be explained taking into account the u-dominance hypothesis in deep inelastic scattering. (orig.)

  20. The role transverse momentum and spin in unpolarised semi inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Giordano, Francesca

    2008-10-01

    The azimuthal modulations of hadron production has been measured in Semi Inclusive Deep Inelastic Scattering processes at HERMES, and the results, compatible between different data taking periods, have been presented. Several systematic checks were performed in order to estimate possible biases, and finally the results are corrected for acceptance and QED higher order contributions. The corrected cosine moments are provided in 500 independent kinematical bins providing for the first time a full differential description of the cross-section azimuthal dependent terms. Their projections in the relevant kinematical variables have been presented for comparison with expectations. The results extracted for hydrogen and deuterium data do not show significative discrepancies, and this can be explained taking into account the u-dominance hypothesis in deep inelastic scattering. (orig.)

  1. Measurement of Dijet Production in Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    CERN Document Server

    Aaron, F.D.

    2012-04-18

    The cross section of diffractive deep-inelastic scattering ep \\rightarrow eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss xIP < 0.1 and covers the range 0.1 < |t| < 0.7 GeV2 in squared four-momentum transfer at the proton vertex and 4 < Q2 < 110 GeV2 in photon virtuality. The differential cross sections extrapolated to |t| < 1 GeV2 are in agreement with next-toleading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models.

  2. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Roosen, R.; Staykova, Z.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; Placakyte, R.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Stella, B.; Sykora, T.; Tsakov, I.; Wegener, D.

    2012-01-01

    The cross section of diffractive deep-inelastic scattering ep→eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The differential cross sections extrapolated to vertical stroke t vertical stroke 2 are in agreement with next-to-leading order QCD predictions based on diffractive parton distribution functions extracted from measurements of inclusive and dijet cross sections in diffractive deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  3. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [CNRS/IN2P3, LPNHE, Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [CNRS/IN2P3, LAL, Univ. Paris-Sud, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [CNRS/IN2P3, LLR, Ecole Polytechnique, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Kosice (Slovakia)] [and others

    2012-04-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  4. Measurement of leading neutron production in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Sunar, D.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Volchinski, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Brinkmann, M.; Habib, S.; List, B.; Toll, T.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Raspiareza, A.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cerny, K.; Pejchal, O.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sykora, T.; Mechelen, P. van; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Grab, C.; Zimmermann, T.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Joensson, L.; Osman, S.; Kapichine, M.; Lytkin, L.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Straumann, U.; Truoel, P.; Radescu, V.; Sauter, M.; Schoening, A.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.

    2010-01-01

    The production of leading neutrons, where the neutron carries a large fraction x L of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb -1 . The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6 2 2 , Bjorken scaling variable 1.5 .10 -4 -2 , longitudinal momentum fraction 0.32 L T 2 LN(3) (Q 2 ,x,x L ), and the fraction of deep-inelastic scattering events containing a leading neutron are studied as a function of Q 2 , x and x L . Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function. (orig.)

  5. Single spin asymmetries in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Mulders, P.J.

    1998-01-01

    In this talk I want to illustrate the many possibilities for studying the structure of hadrons in hard scattering processes by giving a number of examples involving increasing complexity in the demands for particle polarization, particle identification or polarimetry. In particular the single spin asymmetries will be discussed. The measurements discussed in this talk are restricted to lepton-hadron scattering, but can be found in various other hard processes such as Drell-Yan scattering or e + e - annihilation. (author)

  6. Application of the renormalization group to the study of structure function in the deep inelastic scattering

    International Nuclear Information System (INIS)

    Dias, S.A.

    1985-01-01

    The transformation law of truncated pertubation theory observables under changes of renormalization scheme is deduced. Based on this, a criticism of the calculus of the moments of structure functions in deep inelastic scattering, obtaining that the A 2 coefficient not renormalization group invariant is done. The PMS criterion is used to optimize the perturbative productions of the moments, truncated to 2nd order. (author) [pt

  7. Gravitational coupling to two-particle bound states and momentum conservation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Batiz, Zoltan; Gross, Franz

    2000-01-01

    The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society

  8. Measurement of event shape variables in deep-inelastic scattering at HERA

    Czech Academy of Sciences Publication Activity Database

    Aktas, A.; Andreev, V.; Anthonis, A.; Cvach, Jaroslav; Reimer, Petr; Sedlák, Jaroslav; Zálešák, Jaroslav

    2006-01-01

    Roč. 46, - (2006), s. 343-356 ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259 Institutional research plan: CEZ:AV0Z10100502 Keywords : HI experiment * ep scattering * deep inelastic Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.251, year: 2006

  9. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Cvach, Jaroslav; Ferencei, Jozef; Hladký, Jan; Reimer, Petr

    2017-01-01

    Roč. 77, č. 4 (2017), s. 1-41, č. článku 215. ISSN 1434-6044 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : jet cross sections * neutral current deep-inelastic scattering * perturbative QCD Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  10. Measurement of D* production in diffractive deep inelastic scattering at HERA

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Baghdasaryan, A.; Begzsuren, K.; Cvach, Jaroslav; Ferencei, Jozef; Hladký, Jan; Reimer, Petr

    2017-01-01

    Roč. 77, č. 5 (2017), s. 1-14, č. článku 340. ISSN 1434-6044 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : diffractive deep inelastic scattering * charm meson production * boson-gluon fusion * next-to- leading order QCD Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 5.331, year: 2016

  11. Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2011-06-15

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 67.9 as a function of its transverse momentum p{sub T}{sup lead} and longitudinal momentum fraction of the incoming proton x{sub L}{sup lead}. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction x{sub L}{sup sum} of all photons in the pseudorapidity range {eta}>7.9. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays. (orig.)

  12. Measurement of Photon Production in the Very Forward Direction in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2011-01-01

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of $126 \\mathrm{pb}^{-1}$. The analysis covers the range of negative four momentum transfer squared at the positron vertex $67.9$ as a function of its transverse momentum $p_T^{lead}$ and longitudinal momentum fraction of the incoming proton $x_L^{lead}$. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction $x_L^{sum}$ of all photons in the pseudorapidity range $\\eta>7.9$. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays.

  13. Measurement of photon production in the very forward direction in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Podgorica (ME); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, LPNHE, Paris (France); Univ. Denis Diderot Paris 7, CNRS/IN2P3, Paris (France); Bartel, W.; Belov, P.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Kleinwort, C.; Kogler, R.; Kraemer, M.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Univ. of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham (United Kingdom); Bruncko, D.; Cerny, V.; Ferencei, J. [Slovak Academy of Sciences, Inst. of Experimental Physics, Kosice (Slovakia)] [and others

    2011-10-15

    The production of photons at very small angles with respect to the proton beam direction is studied in deep-inelastic positron-proton scattering at HERA. The data are taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 126 pb{sup -1}. The analysis covers the range of negative four momentum transfer squared at the positron vertex 67.9 as a function of its transverse momentum p{sub T}{sup lead} and longitudinal momentum fraction of the incoming proton x{sub L}{sup lead}. In addition, the cross sections are studied as a function of the sum of the longitudinal momentum fraction x{sub L}{sup sum} of all photons in the pseudorapidity range {eta}>7.9. The cross sections are normalised to the inclusive deep-inelastic scattering cross section and compared to the predictions of models of deep-inelastic scattering and models of the hadronic interactions of high energy cosmic rays. (orig.)

  14. Measurement and QCD Interpretation of the Inclusive Deep-Inelastic Scattering Cross Section by H1

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Deep inelastic electron proton collisions are a straightforward tool to study the QCD dynamics between quarks and gluons in the proton. A recent measurement and QCD analysis of the deep inelastic scattering cross section by the H1 experiment at HERA are presented. In a NLO QCD analysis of H1 structure function data, the gluon distribution in the proton is extracted to typically 3% experimental accuracy at low Bjorken x.. In a combined analysis of H1 and high precision µp data by the CERN muon experiment BCDMS, the gluon distribution at low x and the strong coupling constant as were for the first time extracted simultaneously.The strong coupling constant is determined with about 1% experimental accuracy, and QCD at NLO is confirmed over 5 orders of magnitude of Bjorken x at a new level of precision.

  15. A collection of formulas for spin dependent deep inelastic scattering

    International Nuclear Information System (INIS)

    Pussieux, T.

    1995-03-01

    The analysis of the longitudinal spin structure functions of the proton, neutron and deuteron requires the use of a large number of formulas and numerical inputs taken from various unpolarized experiments. The aim of this report is to collect this information which is usually scattered in the literature. (author). 26 refs., 3 figs., 1 tab

  16. Large acceptance magnetic spectrometers for polarized deep inelastic electron scattering

    International Nuclear Information System (INIS)

    Petratos, G.G.; Eisele, R.L.; Gearhart, R.A.; Hughes, E.W.; Young, C.C.

    1991-10-01

    The design of two magnetic spectrometers for the measurement of the spin-dependent structure function g 1 n of the neutron and a test of the Bjorken sum rule is described. The measurement will consist of scattering 23 GeV polarized electrons off a polarized 3 He target and detecting scattered electrons of 7 to 18 GeV at 4.5 degree and 7 degree. Each spectrometer is based on two large aperture dipole magnets bending in opposite directions. This ''reverse'' deflection design doubles the solid angle as compared to the conventional design of same direction bends used in previous experiments. Proper choice of the deflection angles and the distance between the two dipoles in each spectrometer allows background photons from radiative processes to reach the detectors only after at least two bounces off the spectrometer vacuum walls, resulting in an expected tolerable background. Each spectrometer is equipped with a pair of Cerenkov detectors, a pair of scintillation hodoscopes and a lead-glass shower calorimeter providing electron and pion identification with angular and momentum resolutions sufficient for the experimental measurement. 7 refs., 8 figs., 1 tab

  17. Parton distributions extracted from data on deep-inelastic lepton scattering, prompt photon production and the Drell-Yan process

    International Nuclear Information System (INIS)

    Harriman, P.N.; Martin, A.D.; Stirling, W.J.; Roberts, R.G.

    1990-01-01

    We present a next-to-leading-order QCD structure function analysis of deep-inelastic muon and neutrino scattering data. In particular, we incorporate new F 2 μn /F 2 μp data and take account of a recent re-analysis of SLAC data. The fit is performed simultaneously with next-to-leading-order fits to recent prompt photon and Drell-Yan data. As a result we are able to place tighter constraints on the quark and gluon distributions. Two definitive sets of parton distributions are presented according to which set of muon data is included in the global fit. Comparisons with distributions obtained in earlier analyses are made and the consistency of data sets is investigated. (author)

  18. Slow proton production in semi-inclusive deep inelastic scattering and the pion cloud in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, A. [Institute of Nuclear Physics, Cracow (Poland); Bosveld, G.D.; Dieperink, E.L. [Rijksuniversiteit Groningen (Netherlands). Kernfysisch Versneller Inst.

    1994-11-01

    The semi-inclusive cross section for production slow protons in charged current deep inelastic (anti-) neutrino scattering on protons and neutrons is calculated as a function of the Bjorken x and the proton momentum. The standard hadronization models based upon the colour neutralization mechanism appear to underestimate the rate of slow proton production on hydrogen. The presence of virtual mesons (pions) in the nucleon leads to an additional mechanism for proton production, referred to as spectator process. It is found that at low proton momenta both mechanisms complete, whereas the spectator mechanism dominates at very small momenta, while the color neutralization mechanism dominates at momenta larger than 1-2 GeV/c. The results of the calculations are compared with CERN bubble chamber (BEBC) data. The spectator model predicts an sharp increase of the semi-inclusive cross section at small x due to the sea quarks in virtual mesons. (author). 37 refs, 10 figs.

  19. Measurement of the diffractive cross section in deep inelastic scattering

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1996-02-01

    Diffractive scattering of γ*p→X+N, where N is either a proton or a nucleonic system with M N X of the system X up to 15 GeV at average Q 2 values of 14 and 31 GeV 2 . The diffractive cross section dσ diff /dM X is, within errors, found to rise linearly with W. Parameterizing the W dependence by the form dσ diff /dM X ∝(W 2 )sup((2 anti α IP -2)) the DIS data yield for the pomeron trajectory anti α IP =1.23±0.02(stat)±0.04(syst) averaged over t in the measured kinematic range assuming the longitudinal photon contribution to be zero. This value for the pomeron trajectory is substantially larger than anti α IP extracted from soft interactions. The value of anti α IP measured in this analysis suggests that a substantial part of the diffractive DIS cross section originates form processes which can be described by perturbative QCD. From the measured diffractive cross sections the diffractive structure function of the proton F 2 D(3) (β, Q 2 , x IP ) has been determined, where β is the momentum fraction of the struck quark in the pomeron. The form F 2 D(3) =constant. (1/x IP ) a gives a good fit to the data in all β and Q 2 intervals with a=1.46±0.04(stat)±0.08(syst). (orig.)

  20. Hydrogen potential in β-V2H studied by deep inelastic neutron scattering

    International Nuclear Information System (INIS)

    Hempelmann, R.; Price, D.L.; Reiter, G.; Richter, D.

    1989-02-01

    Two complementary techniques of deep inelastic neutron scattering were used to study hydrogen in β-V 2 H: (i) by means of neutron vibrational spectroscopy we measured hydrogen vibrations up to the fourteenth order; from these data we derived the effective single-particle potential, the shape of which is a parabola with a flattened bottom, and the hydrogen wave functions. (ii) By means of neutron Compton scattering we determined the kinetic of energy of the hydrogen; the value agrees with that calculated from the vibrational ground-state wave function. 6 refs., 5 figs

  1. Effective temperatures and scattering cross sections in water mixtures determined by Deep Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Dawidowski, J.; Rodríguez Palomino, L.A.; Márquez Damián, J.I.; Blostein, J.J.; Cuello, G.J.

    2016-01-01

    Highlights: • Effective temperatures of atoms can be determined by the DINS technique. • This is the first time that such application of this experimental technique is made. • This technique is able to measure the known cross sections of the atoms. • No anomalous cross section was found, at variance with Dreissmann’s et al. claims. - Abstract: The present work shows a series of results of Deep Inelastic Neutron Scattering (DINS) experiments on light and heavy water mixtures performed at the spectrometer VESUVIO (Rutherford Appleton Laboratory, UK) employing an analysis method based on the information provided by individual detectors in forward and backward scattering positions. We investigated the effective temperatures of the different atoms composing the samples, a magnitude of considerable interest for Nuclear Engineering. The peak intensities and their relation with the bound-atom cross sections is analyzed, showing a good agreement with tabulated values which supports the use of this technique as non-destructive mass spectrometry. Previous results in the determination of scattering cross sections by this technique (known in the literature) that were at variance with the present findings are commented.

  2. Inclusive gluon production in deep inelastic scattering at high parton density

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.; Tuchin, Kirill

    2002-01-01

    We calculate the cross section of single inclusive gluon production in deep inelastic scattering at very high energies in the saturation regime, where the parton densities inside hadrons and nuclei are large and the evolution of structure functions with energy is nonlinear. The expression we obtain for the inclusive gluon production cross section is generated by this nonlinear evolution. We analyze the rapidity distribution of the produced gluons as well as their transverse momentum spectrum given by the derived expression for the inclusive cross section. We propose an ansatz for the multiplicity distribution of gluons produced in nuclear collisions which includes the effects of nonlinear evolution in both colliding nuclei

  3. Running of the charm-quark mass from HERA deep-inelastic scattering data

    International Nuclear Information System (INIS)

    Gizhko, A.; Geiser, A.; Moch, S.

    2017-04-01

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m_c(m_c) in the MS renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q"2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. The scale dependence of the mass is found to be consistent with QCD expectations.

  4. On the kinematic reconstruction of deep inelastic scattering at HERA: the Σmethod

    International Nuclear Information System (INIS)

    Bassler, U.; Bernardi, G.

    1994-12-01

    We review and compare the reconstruction methods of the inclusive deep inelastic scattering variables used at HERA. We introduce a new prescription, the Sigma (Σ) method, which allows to measure the structure function of the proton F 2 (x, Q 2 ) in a large kinematic domain, and in particular in the low x-low Q 2 region, with small systematic errors and small radiative corrections. A detailed comparison between the Σ method and the other methods is shown. Extensions of the Σ method are presented. The effect of QED radiation on the kinematic reconstruction and on the structure function measurement is discussed. (orig.)

  5. Non-factorizable contributions to deep inelastic scattering at large x

    International Nuclear Information System (INIS)

    Pecjak, Ben D.

    2005-01-01

    We use soft-collinear effective theory (SCET) to study the factorization properties of deep inelastic scattering in the region of phase space where (1-x) ∼ Λ QCD /Q. By applying a regions analysis to loop diagrams in the Breit frame, we show that the appropriate version of SCET includes anti-hard-collinear, collinear, and soft-collinear fields. We find that the effects of the soft-collinear fields spoil perturbative factorization even at leading order in the 1/Q expansion

  6. Polarized semi-inclusive deep-inelastic scattering on transversely and longitudinally polarized nucleons at HERMES

    International Nuclear Information System (INIS)

    Hommes, B.

    2005-01-01

    The HERMES experiment has measured double spin asymmetries in the cross section for deep-inelastic scattering of longitudinal polarized positrons off longitudinal polarized hydrogen and deuterium targets. From these asymmetries, based on inclusive and semi-inclusive measurements, polarized quark distributions were extracted as a function of x. Single-spin azimuthal asymmetries in semi-inclusive pion production were measured by the HERMES experiment for the first time, with a transversely polarized hydrogen target. Two different sine-dependencies were extracted which can be related to the quark transversity distribution h q 1 (x) and the Sivers function (Author)

  7. Polarized photoproduction from nuclear targets with arbitrary spin and relation to deep inelastic scattering

    International Nuclear Information System (INIS)

    Hoodbhoy, P.; Massachusetts Inst. of Tech., Cambridge; Quaid-i-Azam Univ., Islamabad

    1990-01-01

    Inclusive photo-production from polarized targets of arbitrary spin is analyzed by using multipoles. The Drell-Hearn-Gerasimov sum rule, which was originally fromulated for spin-1/2 targets, is generalized to all spins and multipoles, and shown to have some interesting consequences. Measurements to test the new rules, or to derive nuclear structure information from them, could be incorporated into existing plans at electron accelerator facilities. Finally, the possible relevance of these generalized sum rules to sum rules measurable in polarized lepton-polarized target deep inelastic inclusive scattering is discussed. (orig.)

  8. Bose-Einstein correlations of charged and neutral kaons in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-05-01

    Bose-Einstein correlations of charged and neutral kaons have been measured in e ± p deep inelastic scattering with an integrated luminosity of 121 pb -1 using the ZEUS detector at HERA. The two-particle correlation function was studied as a function of the four-momentum difference of the kaon pairs, Q 12 =√(-(p 1 -p 2 ) 2 ), assuming a Gaussian shape for the particle source. The values of the radius of the production volume, r, and of the correlation strength, λ, were obtained for both neutral and charged kaons. The radii for charged and neutral kaons are similar and are consistent with those obtained at LEP. (orig.)

  9. Determination of αs and mc in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2013-07-01

    We describe the determination of the strong coupling constant α s (M Z 2 ) and of the charm-quark mass m c (m c ) in the MS-scheme, based on the QCD analysis of the unpolarized World deep-inelastic scattering data. At NNLO the values of α s (M Z 2 )=0.1134±0.001(exp) and m c (m c )=1.24±0.03(exp) +0.03 -0.02 (scale) +0.00 -0.07 (th) are obtained and are compared with other determinations, also clarifying discrepancies.

  10. On AdS/QCD correspondence and the partonic picture of deep inelastic scattering

    International Nuclear Information System (INIS)

    Pire, B.; Roiesnel, C.; Szymanowski, L.; Wallon, S.

    2008-01-01

    We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'

  11. On AdS/QCD correspondence and the partonic picture of deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France)], E-mail: pire@cpht.polytechnique.fr; Roiesnel, C. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Szymanowski, L. [Soltan Institute for Nuclear Studies, Warsaw (Poland); Wallon, S. [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France)

    2008-12-04

    We critically examine the question of scaling of the Deep Inelastic Scattering process in the medium Bjorken x region on a scalar boson in the framework of the AdS/QCD correspondence. To get the right polarization structure of the forward electroproduction amplitude, we show that one needs to add (at least) the scalar to scalar and scalar to vector hadronic amplitudes. This illustrates how the partonic picture may emerge from a simple scenario based on the AdS/QCD correspondence, provided one allows the conformal dimension of the hadronic field to equal 1 and use the concept of 'hadron-parton duality'.

  12. Measurement of $ D^{*\\pm}$ production in deep inelastic scattering at HERA

    CERN Document Server

    Abramowicz, H.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Bachynska, O.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Bartosik, N.; Bartsch, D.; Basile, M.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Bertolin, A.; Bhadra, S.; Bindi, M.; Blohm, C.; Bokhonov, V.; Bold, T.; Boos, E.G.; Borras, K.; Boscherini, D.; Bot, D.; Brock, I.; Brownson, E.; Brugnera, R.; Brummer, N.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bussey, P.J.; Bylsma, B.; Caldwell, A.; Capua, M.; Carlin, R.; Catterall, C.D.; Chekanov, S.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; D'Agostini, G.; Dal Corso, F.; del Peso, J.; Dementiev, R.K.; De Pasquale, S.; Derrick, M.; Devenish, R.C.E.; Dobur, D.; Dolinska, G.; Doyle, A.T.; Drugakov, V.; Durkin, L.S.; Dusini, S.; Eisenberg, Y.; Fang, S.; Fazio, S.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Foster, B.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gialas, I.; Gizhko, A.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Gogota, O.; Golubkov, Yu. A.; Gottlicher, P.; Grabowska-Bold, I.; Grebenyuk, J.; Gregor, I.; Grigorescu, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haas, T.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Hilger, E.; Hochman, D.; Hori, R.; Huttmann, A.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Iudin, A.; Jakob, H.P.; Januschek, F.; Jones, T.W.; Jungst, M.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Karshon, U.; Karstens, F.; Katkov, I.I.; Kaur, M.; Kaur, P.; Keramidas, A.; Khein, L.A.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, U.; Koffeman, E.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kotanski, A.; Kotz, U.; Kovalchuk, N.; Kowalski, H.; Kuprash, O.; Kuze, M.; Lee, A.; Levchenko, B.B.; Levy, A.; Libov, V.; Limentani, S.; Ling, T.Y.; Lisovyi, M.; Lobodzinska, E.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lukina, O.Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J.F.; Mastroberardino, A.; Mattingly, M.C.K.; Melzer-Pellmann, I.A.; Mergelmeyer, S.; Miglioranzi, S.; Idris, F.Mohamad; Monaco, V.; Montanari, A.; Morris, J.D.; Mujkic, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Nigro, A.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Olkiewicz, K.; Onishchuk, Yu.; Papageorgiu, K.; Parenti, A.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pelfer, P.G.; Pellegrino, A.; Perlanski, W.; Perrey, H.; Piotrzkowski, K.; Plucinski, P.; Pokrovskiy, N.S.; Polini, A.; Proskuryakov, A.S.; Przybycien, M.; Raval, A.; Reeder, D.D.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Robertson, A.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Sacchi, R.; Samson, U.; Sartorelli, G.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schneekloth, U.; Schonberg, V.; Schorner-Sadenius, T.; Schwartz, J.; Sciulli, F.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Smith, W.H.; Sola, V.; Solano, A.; Son, D.; Sosnovtsev, V.; Spiridonov, A.; Stadie, H.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stopa, P.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tapper, A.D.; Tassi, E.; Terron, J.; Theedt, T.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Trusov, V.; Tsurugai, T.; Turcato, M.; Tymieniecka, T.; Vazquez, M.; Verbytskyi, A.; Viazlo, O.; Vlasov, N.N.; Walczak, R.; Wan Abdullah, W.A.T.; Whitmore, J.J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zakharchuk, N.; Zarnecki, A.F.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhautykov, B.O.; Zhmak, N.; Zichichi, A.; Zolkapli, Z.; Zotkin, D.S.

    2013-01-01

    The production of $D^{*\\pm}$ mesons in deep inelastic $ep$ scattering has been measured for exchanged photon virtualities $ 5

  13. Measurement of Dijet Production in Diffractive Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Andreev, V.; Begzsuren, K.; Belousov, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; Diaconu, C.; Dobre, M.; Dodonov, V.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Haidt, D.; Henderson, R.C.W.; Herbst, M.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zhang, Z.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2015-03-18

    A measurement is presented of single- and double-differential dijet cross sections in diffractive deep-inelastic $ep$ scattering at HERA using data collected by the H1 experiment corresponding to an integrated luminosity of 290 pb^{-1}. The investigated phase space is spanned by the photon virtuality in the range of 4

  14. X-versus y-scaling in non-relativistic deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Santos Padula, S. dos; Escobar, C.O.

    1983-06-01

    It is shown, in the context of non-relativistic potential scattering, that the appropriate scaling variable for the deep inelastic region is not the usual Bjorken one x sub(Bj) = Q/sup 2//2 M..nu.. but instead, the variable y=(2m..nu..-q/sup 2/ sup(..-->..))/2q. The y-scaling is shown to be obtained in a natural way by using the WKB approximation. Numerical results are presented comparing the approach to scaling in terms of x sub(Bj) and y.

  15. X-versus y-scaling in non-relativistic deep inelastic scattering

    International Nuclear Information System (INIS)

    Santos Padula, S. dos; Escobar, C.O.

    1983-01-01

    It is shown, in the context of non-relativistic potential scattering, that the appropriate scaling variable for the deep inelastic region is not the usual Bjorken one x sub(Bj) = Q 2 /2 Mν but instead, the variable y=(2mν-q 2 sup(→))/2q. The y-scaling is shown to be obtained in a natural way by using the WKB approximation. Numerical results are presented comparing the approach to scaling in terms of x sub(Bj) and y. (Author) [pt

  16. Forward-jet production in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Lab., IL (US)] (and others)

    2007-07-15

    Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb{sup -1}. Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models. (orig.)

  17. Forward-jet production in deep inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-07-01

    Forward jet cross sections have been measured in neutral current deep inelastic scattering at low Bjorken-x with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb -1 . Measurements are presented for inclusive forward jets as well as for forward jets accompanied by a dijet system. The explored phase space, with jet pseudorapidity up to 4.3 is expected to be particularly sensitive to the dynamics of QCD parton evolution at low x. The measurements are compared to fixed-order QCD calculations and to leading-order parton-shower Monte Carlo models. (orig.)

  18. New results on the 3-loop heavy flavor corrections in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron, Zeuthen (Germany); and others

    2013-12-15

    We report on recent progress in the calculation of the 3-loop massiveWilson coefficients in deep inelastic scattering at general values of N for neutral- and charged-current reactions in the asymptotic region Q{sup 2}>>m{sup 2}. Four new out of eight massive operator matrix elements and Wilson coefficients have been obtained recently. We also discuss recent results on Feynman graphs containing two massive fermion lines and present complete results for the bubble topologies for all processes.

  19. Charged Particle Production in High Q2 Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, $\\xp$, of charged final state hadrons are measured in deep-inelastic $\\ep$ scattering at high $Q^2$ in the Breit frame of reference. The analysis covers the range of photon virtuality $100 < Q^2 < 20 000 \\GeV^{2}$. Compared with previous results presented by HERA experiments this analysis has a significantly higher statistical precision and extends the phase space to higher $Q^{2}$ and to the full range of $\\xp$. The results are compared with $e^+e^-$ annihilation data and with various calculations based on perturbative QCD using different models of the hadronisation process.

  20. 3-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C.; Manteuffel, A. von

    2014-09-01

    We present our most recent results on the calculation of the heavy flavor contributions to deep-inelastic scattering at 3-loop order in the large Q 2 limit, where the heavy flavor Wilson coefficients are known to factorize into light flavor Wilson coefficients and massive operator matrix elements. We describe the different techniques employed for the calculation and show the results in the case of the heavy flavor non-singlet and pure singlet contributions to the structure function F 2 (x,Q 2 ).

  1. Experimental results on polarized structure functions in deep inelastic lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Stuart, L.

    1994-08-01

    A summary is given of experimental results on spin structure functions of the proton g 1 p (x,Q 2 ), deuteron g 1 d (x,Q 2 ), and neutron g 1 n (x,Q 2 ) as measured in deep inelastic scattering of polarized leptons from a polarized target. All results are consistent with the Bjorken sum rule predictions at the Q 2 of each experiment. The data do not support the Ellis-Jaffe sum rule prediction for the proton which implies that the hencity carried by the strange quark may be nonzero and that the net quark helicity is smaller than expected from simple quark models

  2. 3-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes-Kepler-Univ. Linz (Austria). RISC; Behring, A.; Bluemlein, J.; Freitas, A. de; Raab, C.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Wissbrock, F. [Johannes-Kepler-Univ. Linz (Austria). RISC; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); IHES Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (France)

    2014-09-15

    We present our most recent results on the calculation of the heavy flavor contributions to deep-inelastic scattering at 3-loop order in the large Q{sup 2} limit, where the heavy flavor Wilson coefficients are known to factorize into light flavor Wilson coefficients and massive operator matrix elements. We describe the different techniques employed for the calculation and show the results in the case of the heavy flavor non-singlet and pure singlet contributions to the structure function F{sub 2}(x,Q{sup 2}).

  3. Strangeness production at low Q2 in deep-inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Smirnov, P.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Aplin, S.; Bacchetta, A.; Bartel, W.; Beckingham, M.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Klimkovich, T.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Lucaci-Timoce, A.I.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Peng, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Salvaire, F.; Schmidt, S.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Wessels, M.; Wissing, C.; Wuensch, E.; Zhu, Y.C.; Asmone, A.; Stella, B.; Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Hovhannisyan, A.; Volchinski, V.; Yeganov, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Behnke, O.; Berger, N.; Del Degan, M.; Eichler, R.; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boenig, M.O.; South, D.; Wegener, D.; Boudry, V.; Gouzevitch, M.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Tzamariudaki, E.; Bystritskaya, L.; Efremenko, V.; Essenov, S.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhelezov, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Tsurin, I.; Goettlich, M.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Hansson, M.; Joensson, L.; Osman, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Jung, A.W.; Krueger, K.; Lendermann, V.; Meier, K.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Nankov, K.; Tsakov, I.; Schoening, A.

    2009-01-01

    The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 2 2 and the inelasticity 0.1 s 0 and Λ(anti Λ) production cross sections and their ratios are determined. K s 0 production is compared to the production of charged particles in the same region of phase space. The Λ- anti Λ asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data. (orig.)

  4. Charged particle production in high Q deep-inelastic scattering at HERA

    Science.gov (United States)

    H1 Collaboration; Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Trevino, A. Vargas; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-10-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, x, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q in the Breit frame of reference. The analysis covers the range of photon virtuality 100

  5. Charged particle production in high Q2 deep-inelastic scattering at HERA

    Science.gov (United States)

    Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Avila, K. B. Cantun; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Trevino, A. Vargas; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; H1 Collaboration

    2007-10-01

    The average charged track multiplicity and the normalised distribution of the scaled momentum, xp, of charged final state hadrons are measured in deep-inelastic ep scattering at high Q2 in the Breit frame of reference. The analysis covers the range of photon virtuality 100

  6. Measurement of D{sup *{+-}} production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: ZEUS Collaboration

    2013-03-15

    The production of D{sup *{+-}} mesons in deep inelastic ep scattering has been measured for exchanged photon virtualities 5

  7. Higher-twist effects in QCD, deep inelastic scattering, and the Drell-Yan process

    International Nuclear Information System (INIS)

    Berger, E.L.; Stanford Univ., CA

    1980-01-01

    Inclusion of specific effects associated with constituent binding in hadronic wave functions is shown to lead to important non-scaling, non-factorizing 1/Q 2 contributions to cross sections for semi-inclusive deep-inelastic scattering, the Drell-Yan process, and other hard scattering reactions. These 1/Q 2 higher-twist terms are predicted to be dominant in well defined kinematic regions such as large x and/or large z. The provide angular distributions typical of longitudinally polarized virtual photons and W's, including sin 2 theta terms in meson induced Drell-Yan processes and in e + e - → πX, as well as unusual (1-γ) terms in deep-inelastic scattering. Calculations are also presented of the quark structure functions of the pion qsub(π)(x,Q 2 ) and for the quark to pion fragmentation function Dsub(π)(z,Q 2 ). Predictions are made for the azimuthal angle dependence of the cross sections for πN → μ anti μX and IN → l'πX. (orig.)

  8. Measurement of dijet production in diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V. [Lebedev Physical Inst., Moscow (RU)] (and others)

    2011-09-15

    The cross section of diffractive deep-inelastic scattering ep{yields}eXp is measured, where the system X contains at least two jets and the leading final state proton is detected in the H1 Forward Proton Spectrometer. The measurement is performed for fractional proton longitudinal momentum loss x{sub P}<0.1 and covers the range 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4deep-inelastic scattering. The data are also compared with leading order Monte Carlo models. (orig.)

  9. Measurement of the diffractive deep-inelastic scattering cross section with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2010-06-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P} < 0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2}, {beta} and x{sub P}. (orig.)

  10. Measurement of Leading Neutron Production in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pahl, P; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2010-01-01

    The production of leading neutrons, where the neutron carries a large fraction x_L of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb^{-1}. The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6 < Q^2 < 100 GeV^2, Bjorken scaling variable 1.5x10^{-4} < x < 3x10^{-2}, longitudinal momentum fraction 0.32 < x_L < 0.95 and neutron transverse momentum p_T < 0.2 GeV. The leading neutron structure function, F_2^{LN(3)}(Q^2,x,x_L), and the fraction of deep-inelastic scattering events containing a leading neutron are studied as a function of Q^2, x and x_L. Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function.

  11. Measurement of leading neutron production in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Antunovic, B.; Bartel, W.; Brandt, G.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grell, B.R.; Haidt, D.; Helebrant, C.; Jung, H.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Sunar, D.; Vargas Trevino, A.; Vinokurova, S.; Driesch, M. von den; Wissing, C.; Wuensch, E. [DESY, Hamburg (Germany); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Volchinski, V.; Zohrabyan, H. [Yerevan Physics Inst. (Armenia); Barrelet, E. [Universites Paris VI et VII, CNRS/IN2P3, LPNHE, Paris (France); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Mongolian Academy of Sciences, Inst. of Physics and Technology, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D. [Univ. of Birmingham, School of Physics and Astronomy (United Kingdom)] [and others

    2010-08-15

    The production of leading neutrons, where the neutron carries a large fraction x{sub L} of the incoming proton's longitudinal momentum, is studied in deep-inelastic positron-proton scattering at HERA. The data were taken with the H1 detector in the years 2006 and 2007 and correspond to an integrated luminosity of 122 pb {sup -1}. The semi-inclusive cross section is measured in the phase space defined by the photon virtuality 6deep-inelastic scattering events containing a leading neutron are studied as a function of Q{sup 2}, x and x{sub L}. Assuming that the pion exchange mechanism dominates leading neutron production, the data provide constraints on the shape of the pion structure function. (orig.)

  12. Measurement of D* production in diffractive deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Bolz, A.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Jung, A.; Jung, H.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Avila, K.B.C.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Jansova, M.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Prague (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Ferencei, J. [Nuclear Physics Institute of the CAS, Rez (Czech Republic); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C. [Institut fuer Teilchenphysik, ETH, Zurich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics, Liverpool (United Kingdom); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [University of London, School of Physics and Astronomy, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (Canada); Radescu, V. [Oxford University, Department of Physics, Oxford (United Kingdom); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (Russian Federation); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Universite de Savoie, CNRS/IN2P3, LAPP, Annecy-le-Vieux (France); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Rome (Italy); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Tseepeldorj, B. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Ulaanbaatar University, Ulaanbaatar (Mongolia); Wegener, D. [Institut fuer Physik, TU Dortmund, Dortmund (Germany)

    2017-05-15

    Measurements of D*(2010) meson production in diffractive deep inelastic scattering (5 < Q{sup 2} < 100 GeV{sup 2}) are presented which are based on HERA data recorded at a centre-of-mass energy √(s) = 319 GeV with an integrated luminosity of 287 pb{sup -1}. The reaction ep → eXY is studied, where the system X, containing at least one D*(2010) meson, is separated from a leading low-mass proton dissociative system Y by a large rapidity gap. The kinematics of D* candidates are reconstructed in the D* → Kππ decay channel. The measured cross sections compare favourably with next-to-leading order QCD predictions, where charm quarks are produced via boson-gluon fusion. The charm quarks are then independently fragmented to the D* mesons. The calculations rely on the collinear factorisation theorem and are based on diffractive parton densities previously obtained by H1 from fits to inclusive diffractive cross sections. The data are further used to determine the diffractive to inclusive D* production ratio in deep inelastic scattering. (orig.)

  13. Geometric Scaling Analysis of Deep Inelastic Scattering Data Including Heavy Quarks

    International Nuclear Information System (INIS)

    Wu Qing-Dong; Zeng Ji; Hu Yuan-Yuan; Li Quan-Bo; Xiang Wen-Chang; Zhou Dai-Cui

    2016-01-01

    An analytic massive total cross section of photon-proton scattering is derived, which has geometric scaling. A geometric scaling is used to perform a global analysis of the deep inelastic scattering data on inclusive structure function F_2 measured in lepton–hadron scattering experiments at small values of Bjorken x. It is shown that the descriptions of the inclusive structure function F_2 and longitudinal structure function F_L are improved with the massive analytic structure function, which may imply the gluon saturation effect dominating the parton evolution process at HERA. The inclusion of the heavy quarks prevent the divergence of the lepton–hadron cross section, which plays a significant role in the description of the photoproduction region. (paper)

  14. Observation of jet production in deep inelastic scattering with a large rapidity gap at HERA

    International Nuclear Information System (INIS)

    Doeker, T.

    1994-01-01

    Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥ 10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W > 140 GeV are consistent with a leading twist diffractive production mechanism. In the laboratory frame, with E jet t ≥ 4 GeV, 159% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy now is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * P centre-of-mass systems, demonstrating the presence of hard scattering in the virtual photon proton interactions that give rise to large rapidity gap events

  15. Observation of jet production in deep inelastic scattering with a large rapidity gap a HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-04-01

    Events with a large rapidity gap in deep inelastic scattering with Q 2 ≥10 GeV 2 have been studied in the ZEUS detector. The properties of these events with W>140 GeV are consistent with a leading twist diffractive mechanism. In the laboratory frame, with E T jet ≥4 GeV, 15% of the events are of the 1-jet type with negligible 2-jet production. The single jet is back-to-back in azimuth with the scattered electron. No energy flow is observed between the jet and the proton direction. With a lower jet transverse energy cut 2-jet production is observed both in the laboratory and the γ * p centre-of-mass systems demonstrating the presence of hard scattering in the virtual photon interactions that give rise to large rapidity gap events. (orig.)

  16. Theory of deep inelastic neutron scattering: Hard-core perturbation theory

    International Nuclear Information System (INIS)

    Silver, R.N.

    1988-01-01

    Details are presented of a new many-body theory for deep inelastic neutron scattering (DINS) experiments to measure momentum distributions in quantum fluids and solids. The high-momentum and energy-transfer scattering law in helium is shown to be a convolution of the impulse approximation with a final-state broadening function which depends on the scattering phase shifts and the radial distribution function. The predicted broadening satisfies approximate Y scaling, is neither Lorentzian nor Gaussian, and obeys the f, ω 2 , and ω 3 sum rules. The derivation uses a combination of Liouville perturbation theory, projection superoperators, and semiclassical methods which I term ''hard-core perturbation theory.'' A review is presented of the predictions of prior theories for DINS experiments in relation to the present work. A subsequent paper will present massive numerical predictions and a discussion of DINS experiments on superfluid 4 He

  17. Deep inelastic scattering near the endpoint in soft-collinear effective theory

    International Nuclear Information System (INIS)

    Chay, Junegone; Kim, Chul

    2007-01-01

    We apply the soft-collinear effective theory to deep inelastic scattering near the endpoint region. The forward scattering amplitude and the structure functions are shown to factorize as a convolution of the Wilson coefficients, the jet functions, and the parton distribution functions. The behavior of the parton distribution functions near the endpoint region is considered. It turns out that it evolves with the Altarelli-Parisi kernel even in the endpoint region, and the parton distribution function can be factorized further into a collinear part and the soft Wilson line. The factorized form for the structure functions is obtained by the two-step matching, and the radiative corrections or the evolution for each factorized part can be computed in perturbation theory. We present the radiative corrections of each factorized part to leading order in α s , including the zero-bin subtraction for the collinear part

  18. Properties of hadronic final states in diffractive deep inelastic ep scattering at DESY HERA

    International Nuclear Information System (INIS)

    2002-01-01

    Characteristics of the hadronic final state of diffractive deep inelastic scattering events ep→eXp were studied in the kinematic range 4 X 2 2 , 70 P <0.03 with the ZEUS detector at the DESY ep collider HERA using an integrated luminosity of 13.8 pb-1. The events were tagged by identifying the diffractively scattered proton using the leading proton spectrometer. The properties of the hadronic final state X were studied in its center-of-mass frame using thrust, thrust angle, sphericity, energy flow, transverse energy flow, and 'seagull' distributions. As the invariant mass of the system increases, the final state becomes more collimated, more aligned, and more asymmetric in the average transverse momentum with respect to the direction of the virtual photon. Comparisons of the properties of the hadronic final state with predictions from various Monte Carlo model generators suggest that the final state is dominated by qq-barg states at the parton level

  19. Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

    CERN Document Server

    Adolph, C.

    2017-04-10

    Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

  20. Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2017-04-01

    Full Text Available Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6LiD target. They cover the kinematic domain 1(GeV/c25 GeV/c2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K− multiplicities at high x point to a value of the non-strange quark fragmentation function larger than obtained by the earlier DSS fit.

  1. Experimental tests of QCD: Deep inelastic scattering, e+e- annihilation and hard hadron-hadron scattering

    International Nuclear Information System (INIS)

    Hansl-Kozanecka, T.

    1992-01-01

    In this set of lectures the author examines phenomenological aspects of quantum chromodynamics (QCD) which are relevant for lepton-hadron, electron-positron, and hadron-hadron collisions. He points how the strength of the strong coupling constant, αs, makes QCD calculations converge much more slowly in powers of αs, and missing higher order terms must be carefully estimated. The most stringent test of QCD can be performed in deep inelastic lepton scattering and in e + e - annihilation. In deep inelastic scattering the virtual γ or W/Z are used as a probe of the nucleon structure. They couple to quarks, not gluons. Only the incoming and outgoing lepton have to be measured. The hadronic fluid state does not have to be analyzed. In e + e - annihilation the virtual γ or Z 0 decays to lepton and quark pairs. The branching ratio into quarks is a counter for the number of colours available, the detailed structure of the final state reflects the radiation of gluons as the initial quark-antiquark separate from each other. Quarks and gluons are observed here, though in the presence of hadron formation. Hard hadron-hadron, or parton-parton collisions provide cross sections dominated by the gluon component, which is only weakly measured in deep inelastic collisions. Recent experimental results in these three areas are reviewed, and compared to QCD calculations. Scaling violations and analysis of structure functions in deep inelastic scattering are reviewed. QCD in e + e - branching to hadrons is reviewed near the Z 0 resonance, and a number of cross sections and jet related properties which can be calculated as a function of the single parameter αs are reviewed. Hadron-hadron collisions are reviewed for three processes; jet production, direct photon production, and high p perpendicular W/Z boson production

  2. Fragmentation and nucleon structure in semi-inclusive deep-inelastic scattering at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jossten, Sylvester Johannes

    2013-10-15

    Multiplicities for the semi-inclusive production of each charge state of {pi}{sup {+-}} and K{sup {+-}} mesons in deep-inelastic scattering are presented as a function of the kinematic quantities x, Q{sup 2}, z and P{sub h} {sub perpendicular} {sub to}. The multiplicities were extracted from data collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams on a hydrogen or deuterium gas target. These results for identified hadrons constitute the most precise measurement to date, and will significantly enhance our understanding of the proton structure, as well as the fragmentation process in deep-inelastic scattering. Furthermore, the 3D binning at an unprecedented level of precision provides a handle to help disentangle the transverse momentum structure of both. The high level of precision coupled with an intermediate energy regime requires a careful study of the complex interaction between the experimental systematics, theoretical uncertainties, and the applicability of the factorization theorem within the standard framework of leading-twist collinear QCD. This is illustrated by the extraction of the valence quark ratio d{sub {nu}}/u{sub {nu}} at leading-order in {alpha}{sub s}. These results show a strong z-dependence below z {approx} 0.30, which could be interpreted as evidence for factorization breaking. This evidence weakens somewhat when isospin invariance of the fragmentation functions is assumed to be broken. Additionally, the multiplicities for the semi-inclusive production of {pi}{sup 0} mesons in deep-inelastic scattering are presented as a function of z. These multiplicities were extracted from the same data sample as used for the charged meson results. The neutral pion multiplicity is the same as the average charged pion multiplicity, up to z {approx} 0.70. This is consistent with isospin invariance below z {approx} 0.70. The results at high values of z show strong signs of isospin symmetry breaking.

  3. Renormalization scheme invariant predictions for deep-inelastic scattering and determination of ΛQCD

    International Nuclear Information System (INIS)

    Vovk, V.I.

    1989-01-01

    Theoretical aspects of the renormalization scheme (RS) ambiguity problem and the approaches to its solution are discussed from the point of view of QCD phenomenology and the scale Λ determination. The method of RS-invariant perturbation theory (RSIPT) as a sound basis for describing experiment in QCD is advocated. To this end the method is developed for the non-singlet structure functions (SF) of deep-inelastic scattering and recent high precision data on SF's are analyzed in a RS-invariant way. It is shown that RSIPT leads to a more accurate and reliable determination of the QCD scale Λ, which is consistent with the theoretical assumption of a better convergence of RS-invariant perturbative series. 24 refs.; 1 tab

  4. Inclusive and semi-inclusive analysis from polarised deep-inelastic muon scattering

    International Nuclear Information System (INIS)

    Kageya, T.

    1999-01-01

    We present new results for the spin-dependent structure function on the proton and for the polarised quark distributions in the nucleon from semi-inclusive spin asymmetries. With the inclusive asymmetry from deep inelastic scattering of polarised muons on polarised protons, it is found that the Ellis-Jaffe sum rule is violated. Using our results for Γ d 1 , the Bjorken sum rule is confirmed with an accuracy of about 15%. From semi-inclusive spin asymmetries and SMC inclusive spin asymmetries, we determine the polarised quark distributions of valence u and d quarks to be positive and negative, respectively, while the non-strange sea distribution to be consistent with zero

  5. Two comments to utilization of structure function approach in deep inelastic scattering experiments

    International Nuclear Information System (INIS)

    Kuraev, E.; Galynskij, M.; Il'ichev, A.

    2002-01-01

    The 'returning to resonance' mechanism can be used to obtain the simple procedure of taking radiative corrections (RC) to deep inelastic scattering (DIS) cross sections into account in the framework of the Drell-Yan picture. Iteration procedure is proposed. Kinematical region y→1 can be described in the framework of the Drell-Yan picture using the structure function approach. The large RC in the lowest order reflect the Sudakov form factor suppression, which can be taken into account in all orders of the perturbation theory. Based on explicit calculation in two lowest orders of the perturbation theory, we construct the cross section in the y→1 region obeying renormalization group equations and including the Sudakov-like form factor suppression

  6. Exclusive ρ0 production in deep inelastic electron-proton scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-07-01

    The exclusive production of ρ 0 mesons in deep inelastic electron-proton scattering has been studied using the ZEUS detector. Cross sections have been measured in the range 7 2 2 for γ*p centre of mass (c.m.) energies from 40 to 130 GeV. The γ*p→ρ 0 p cross section exhibits a Q -(4.2±0.8 -0.5 +1.4 ) dependence and both longitudinally and transversely polarised ρ 0 's are observed. The γ*p→ρ 0 p0 cross section rises strongly with increasing c.m. energy, when compared with NMC data at lower energy, which cannot be explained by production through soft pomeron exchange. The data are compared with perturbative QCD calculations where the rise in the cross section reflects the increase in the gluon density at low x. (orig.)

  7. Measurement of isolated photons accompained by jets in deep inelastic ep scattering

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2012-06-01

    The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb -1 . Measurements were made for exchanged photon virtualities, Q 2 , in the range 10 to 350 GeV 2 . The photons were measured in the transverse-energy and pseudorapidity ranges 4 γ T γ jet T jet <1.8. Differential cross sections are presented as functions of these quantities. Perturbative QCD predictions give a reasonable description of the shape of the measured cross sections over most of the kinematic range, but the absolute normalisation is typically in disagreement by 20-30%.

  8. Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-07-01

    Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 296 GeV for the range Q 2 ≥10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap events compared to the events without a large rapidity gap. (orig.)

  9. Universitality features in (pp), (e+e-), and deep inelastic scattering process

    International Nuclear Information System (INIS)

    Zichichi, A.

    1985-01-01

    This paper discusses the use of the correct variables in (pp), (e + e - ), and deep-inelastic scattering (DIS) processes which allow universality features to be established different ways of producing mulihadronic states. The experimental data where (pp) interactions are compared with (e + e - ) are shown. Extrapolations of collider physics are discussed and it is found that the leading effects must be subtracted and the correct variables have to be used if one wants to compare purely hadronic interactions with (e + e - ) and DIS. The new method of studying (pp) and (pp) collisions allows one to put on equal footing the multiparticle systems that are produced in purely hadronic interactions, in (e + e - ) annihilation, and in DIS processes

  10. Heavy flavour corrections to polarised and unpolarised deep-inelastic scattering at 3-loop order

    International Nuclear Information System (INIS)

    Ablinger, J.; Round, M.; Schneider, C.; Hasselhuhn, A.

    2016-11-01

    We report on progress in the calculation of 3-loop corrections to the deep-inelastic structure functions from massive quarks in the asymptotic region of large momentum transfer Q"2. Recently completed results allow us to obtain the O(a"3_s) contributions to several heavy flavour Wilson coefficients which enter both polarised and unpolarised structure functions for lepton-nucleon scattering. In particular, we obtain the non-singlet contributions to the unpolarised structure functions F_2(x,Q"2) and xF_3(x,Q"2) and the polarised structure function g_1(x,Q"2). From these results we also obtain the heavy flavour contributions to the Gross-Llewellyn-Smith and the Bjorken sum rules.

  11. Structure function measurements in the deep inelastic muon-nucleon scattering

    International Nuclear Information System (INIS)

    Peschel, H.

    1990-03-01

    Measurements of deep inelastic scattering events on a combined copper and deuterium target were performed by the European Muon Collaboration (EMC) using a muon beam at CERN's SPS with energies at 100 GeV and 280 GeV. The data are analysed and compared with a detailed Monte-Carlo simulation and allow the determination of structure functions from both targets. In the light of the present discrepancy between EMC's and BCDMS's structure functions, stringend cuts were applied to the data. The results confirm the EMC structure function measurements on unbound nucleons. The comparison between the copper structure function from this experiment and the NA2 iron structure function shows a trend to lower values at low x Bj . (orig.) [de

  12. Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A. [Yerevan Physics Institute (Armenia)] [and others; Collaboration: H1 Collaboration

    2013-01-15

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5

  13. Charm production in charged current deep inelastic e+p scattering at HERA

    International Nuclear Information System (INIS)

    Wang, M.

    2006-03-01

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb -1 . Charged D * mesons decaying in the channel D *+ →D 0 π + s with D 0 →K - π + and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D * , σ D* vis =12.8±4.0(stat) +4.7 -1.5 (sys) pb, is measured in the kinematic range of Q 2 >200 GeV 2 and y D * T >1.5 GeV and vertical stroke η D * vertical stroke e + p→ anti ν e cX < 109 pb at 90% confidence level. (orig.)

  14. Sivers asymmetries for inclusive pion and kaon production in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Ellis, John; Hwang, Dae Sung; Kotzinian, Aram

    2009-01-01

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of a nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for π + production at HERMES, and qualitative agreement for π 0 and K + production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.

  15. Sivers Asymmetries for Inclusive Pion and Kaon Production in Deep-Inelastic Scattering

    CERN Document Server

    Ellis, Jonathan Richard; Kotzinian, Aram

    2009-01-01

    We calculate the Sivers distribution functions induced by the final-state interaction due to one-gluon exchange in diquark models of nucleon structure, treating the cases of scalar and axial-vector diquarks with both dipole and Gaussian form factors. We use these distribution functions to calculate the Sivers single-spin asymmetries for inclusive pion and kaon production in deep-inelastic scattering. We compare our calculations with the results of HERMES and COMPASS, finding good agreement for pi+ production at HERMES, and qualitative agreement for pi0 and K+ production. Our predictions for pion and kaon production at COMPASS could be probed with increased statistics. The successful comparison of our calculations with the HERMES data constitutes prima facie evidence that the quarks in the nucleon have some orbital angular momentum in the infinite-momentum frame.

  16. Deep inelastic scattering in the formalism with the wave functions of composite systems at rest

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Kvinikhidze, A.N.; Sisakyan, A.N.

    1987-01-01

    A deep inelastic process of lepton-hadron scattering is studied in the bound-state rest frame. A new version of expansion of structure functions over an interaction constant is proposed, each term in it having spectral properties. It is shown that the impulse approximation is insufficient for a correct description of the elastic limit in the composite particle rest frame in contrast with the system of infinite momentum P Z → ∞. The leading asymptotics of the structure functions as x Bj → 1 can be obtained by allowing for the interaction of consituents in a final state. Using as an example a bound state ot two and three particles it is shown that the results of calculations of the relevant diagrams in the QCD model are in agreement with those obtained in th formalism P Z → ∞

  17. The strong interaction in e{sup +}e{sup -} annihilation and deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, J

    1996-01-01

    Various aspects of strong interactions are considered. Correlation effects in the hadronization process in a string model are studied. A discrete approximation scheme to the perturbative QCD cascade in e{sup +}e{sup -} annihilation is formulated. The model, Discrete QCD, predicts a rather low phase space density of `effective gluons`. This is related to the properties of the running coupling constant. It provides us with a simple tool for studies of the strong interaction. It is shown that it reproduces well-known properties of parton cascades. A new formalism for the Deep Inelastic Scattering (DIS) process is developed. The model which is called the Linked Dipole Chain Model provides an interpolation between regions of high Q{sup 2} (DGLAP) and low x-moderate Q{sup 2} (BFKL). It gives a unified treatment of the different interaction channels an a DIS process. 17 figs.

  18. The strong interaction in e+e- annihilation and deep inelastic scattering

    International Nuclear Information System (INIS)

    Samuelsson, J.

    1996-01-01

    Various aspects of strong interactions are considered. Correlation effects in the hadronization process in a string model are studied. A discrete approximation scheme to the perturbative QCD cascade in e + e - annihilation is formulated. The model, Discrete QCD, predicts a rather low phase space density of 'effective gluons'. This is related to the properties of the running coupling constant. It provides us with a simple tool for studies of the strong interaction. It is shown that it reproduces well-known properties of parton cascades. A new formalism for the Deep Inelastic Scattering (DIS) process is developed. The model which is called the Linked Dipole Chain Model provides an interpolation between regions of high Q 2 (DGLAP) and low x-moderate Q 2 (BFKL). It gives a unified treatment of the different interaction channels an a DIS process. 17 figs

  19. Parity Violation in Deep Inelastic Scattering in Hall C at JLab

    Science.gov (United States)

    Dalton, Mark Macrae; Keppel, Cynthia; Paschke, Kent

    2017-09-01

    The measurement of parity-violation in inclusive electron deep inelastic scattering (DIS) from a proton or deuteron target can be used to study the flavor structure of the nucleon. While valence quark parton distribution functions (PDF) can be probed in high- x measurements such as with the proposed SoLID spectrometer, complementary measurements are possible at moderate x 0.1 where the sea quarks may still play a significant role. In particular, such measurements would provide a cleanly interpretable measurement of the strange quark PDF. These measurements are possible with the upgraded CEBAF accelerator at JLab and do not require significant new experimental hardware. The prospects and potential impacts of such a measurement will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177 and DE-FG02-07ER41522.

  20. Search for Baryonic Resonances Decaying to $\\Xi \\pi$ in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Povh, B.; Preda, T.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    A search for narrow baryonic resonances decaying into Xi- pi- or Xi- pi+ and their antiparticles is carried out with the H1 detector using deep inelastic scattering events at HERA in the range of negative photon four-momentum transfer squared 2 < Q^2 < 100 GeV^2. No signal is observed for a new baryonic state in the mass range 1600 - 2300 MeV in either the doubly charged or the neutral decay channels. The known baryon Xi0 is observed through its decay mode into Xi- pi+. Upper limits are given on the ratio of the production rates of new baryonic states, such as the hypothetical pentaquark states Xi^{--}_{5q} or Xi^{0}_{5q}, relative to the Xi0 baryon state.

  1. Production of D* Mesons with Dijets in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

  2. Strangeness Production at low $Q^2$ in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2 < Q^2 < 100 GeV^2 and the inelasticity 0.1 < y < 0.6. The K_s and Lambda production cross sections and their ratios are determined. K_s production is compared to the production of charged particles in the same region of phase space. The Lambda - anti-Lambda asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.

  3. Energy dependence of the charged multiplicity in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2008-03-15

    The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb{sup -1}. The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in e{sup +}e{sup -} collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions. (orig.)

  4. Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-08-15

    Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q{sup 2}>125 GeV{sup 2} with the ZEUS detector at HERA using an integrated luminosity of 82 pb{sup -1}. Jets were identified in the Breit frame using the k{sub T} cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q{sup 2}. Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions. (orig.)

  5. Bose-Einstein correlations of charged and neutral kaons in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-05-15

    Bose-Einstein correlations of charged and neutral kaons have been measured in e{sup {+-}}p deep inelastic scattering with an integrated luminosity of 121 pb{sup -1} using the ZEUS detector at HERA. The two-particle correlation function was studied as a function of the four-momentum difference of the kaon pairs, Q{sub 12}={radical}(-(p{sub 1}-p{sub 2}){sup 2}), assuming a Gaussian shape for the particle source. The values of the radius of the production volume, r, and of the correlation strength, {lambda}, were obtained for both neutral and charged kaons. The radii for charged and neutral kaons are similar and are consistent with those obtained at LEP. (orig.)

  6. Measurement of azimuthal asymmetries in neutral current deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-08-15

    The distribution of the azimuthal angle of charged and neutral hadrons relative to the lepton plane has been studied for neutral current deep inelastic ep scattering using an integrated luminosity of 45 pb{sup -1} taken with the ZEUS detector at HERA. The measurements were made in the hadronic centre-of-mass system. The analysis exploits the energy-flow method, which allows the measurement to be made over a larger range of pseudorapidity compared to previous results. The dependence of the moments of the azimuthal distributions on the pseudorapidity and minimum transverse energy of the final-state hadrons are presented. Although the predictions from next-to-leading-order QCD describe the data better than do the Monte Carlo models incorporating leading-logarithm parton showers, they still fail to describe the magnitude of the asymmetries. This suggests that higher-order calculations may be necessary to describe these data. (Orig.)

  7. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2015-05-01

    Production of exclusive dijets in diffractive deep inelastic e ± p scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb -1 . The measurement was performed for γ * -p centre-of-mass energies in the range 9025 GeV 2 . Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of β and φ, where β=x/x P , x is the Bjorken variable and x P is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ * -dijet plane and the γ * -e ± plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

  8. Inclusive-jet and dijet cross sections in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-08-01

    Inclusive-jet and dijet differential cross sections have been measured in neutral current deep inelastic ep scattering for exchanged boson virtualities Q 2 >125 GeV 2 with the ZEUS detector at HERA using an integrated luminosity of 82 pb -1 . Jets were identified in the Breit frame using the k T cluster algorithm. Jet cross sections are presented as functions of several kinematic and jet variables. The results are also presented in different regions of Q 2 . Next-to-leading-order QCD calculations describe the measurements well. Regions of phase space where the theoretical uncertainties are small have been identified. Measurements in these regions have the potential to constrain the gluon density in the proton when used as inputs to global fits of the proton parton distribution functions. (orig.)

  9. Measurement of azimuthal asymmetries in neutral current deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-08-01

    The distribution of the azimuthal angle of charged and neutral hadrons relative to the lepton plane has been studied for neutral current deep inelastic ep scattering using an integrated luminosity of 45 pb -1 taken with the ZEUS detector at HERA. The measurements were made in the hadronic centre-of-mass system. The analysis exploits the energy-flow method, which allows the measurement to be made over a larger range of pseudorapidity compared to previous results. The dependence of the moments of the azimuthal distributions on the pseudorapidity and minimum transverse energy of the final-state hadrons are presented. Although the predictions from next-to-leading-order QCD describe the data better than do the Monte Carlo models incorporating leading-logarithm parton showers, they still fail to describe the magnitude of the asymmetries. This suggests that higher-order calculations may be necessary to describe these data. (Orig.)

  10. Energy dependence of the charged multiplicity in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-03-01

    The charged multiplicity distributions and the mean charged multiplicity have been investigated in inclusive neutral current deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 38.6 pb -1 . The measurements were performed in the current region of the Breit frame, as well as in the current fragmentation region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were investigated and the energy dependence was studied using different energy scales. The data are compared to results obtained in e + e - collisions and to previous DIS measurements as well as to leading-logarithm parton-shower Monte Carlo predictions. (orig.)

  11. Leading neutron energy and pT distributions in deep inelastic scattering and photoproduction at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-02-01

    The production of energetic neutrons in ep collisions has been studied with the ZEUS detector at HERA. The neutron energy and p T 2 distributions were measured with a forward neutron calorimeter and tracker in a 40 pb -1 sample of inclusive deep inelastic scattering (DIS) data and a 6 pb -1 sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper p T 2 distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data. (orig.)

  12. Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Adamczyk, L.

    2010-10-01

    Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb -1 . The measurement was performed at large values of the photon virtuality, Q 2 , between 125 and 20 000 GeV 2 . The jets were reconstructed with the k T cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E jet T,B , to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M jj , was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD. (orig.)

  13. Measurement of D+ and Λc+ production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.

    2010-06-01

    Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 120 pb -1 . The hadronic decay channels D + → K S 0 π + , Λ c + → pK S 0 and Λ c + →Λπ + , and their charge conjugates, were reconstructed. The presence of a neutral strange hadron in the final state reduces the combinatorial background and extends the measured sensitivity into the low transverse momentum region. The kinematic range is 0 T (D + , Λ c + ) + , Λ c + ) vertical stroke 2 2 and 0.02 + mesons are compared to next-to-leading-order QCD predictions. The fraction of c quarks hadronizing into Λ c + baryons is extracted. (orig.)

  14. Measurement of D mesons production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chakanov, S.; Derrick, M.; Magill, S.

    2007-04-01

    Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb -1 . Charm has been tagged by reconstructing D *+ , D 0 , D + and D + s (+c.c.) charm mesons. The charm hadrons were measured in the kinematic range p T (D *+ ,D 0 ,D + )>3 GeV, p T (D + s )>2 GeV and vertical stroke η(D) vertical stroke 2 2 and 0.02 T (D) and η(D) in order to determine the open-charm contribution, F c anti c 2 (x,Q 2 ), to the proton structure function F 2 . (orig.)

  15. Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Hoppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A.S; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Reicherz, G; Rocco, E; Rodionov, V; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M

    2013-01-01

    Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\\langle p_T^2 \\rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\\langle p_T^2 \\rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\\langle k_{\\perp}^2 \\rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.

  16. Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

    CERN Document Server

    Adolph, C.; Alexakhin, V.Yu.; Alexeev, G.D.; Amoroso, A.; Antonov, A.A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Burtin, E.; Chaberny, D.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Dhara, L.; Donskov, S.V.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; jr., M.Finger; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Heinsius, F.H.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Konigsmann, K.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kramer, M.; Kroumchtein, Z.V.; Kunne, F.; Kurek, K.; Lauser, L.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Morreale, A.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Rondio, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmitt, L.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Sznajder, P.; Takekawa, S.; Wolbeek, J.Ter; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N.V.; Vossen, A.; Wang, L.; Windmolders, R.; Wislicki, W.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2012-06-18

    First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.

  17. Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

    CERN Document Server

    Adolph, C.; Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kral, Z.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Orlov, I.; Olshevsky, A.G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabeleski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2014-01-01

    Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\\cos\\phi_h$, $\\cos2\\phi_h$ and $\\sin\\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\\cos \\phi_h$ and $\\cos 2\\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

  18. Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2014-09-01

    Full Text Available Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160 GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cos⁡ϕh, cos⁡2ϕh and sin⁡ϕh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cos⁡ϕh and cos⁡2ϕh modulations show strong kinematic dependencies both for positive and negative hadrons.

  19. Study of $\\Sigma$(1385) and $\\Xi$(1321) hyperon and antihyperon production in deep inelastic muon scattering

    CERN Document Server

    Adolph, C; Alexakhin, V.Yu; Alexandrov, Yu.; Alexeev, G D; Amoroso, A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O.Yu; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M., Jr; Fischer, H; Franco, C; von Hohenesche, N. du Fresne; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Hoppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu. A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F.; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu. V; Miyachi, Y; Morreale, A; Nagaytsev, A; Nagel, T.; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A.S.; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S.; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Reicherz, G; Rocco, E; Rodionov, V; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S.; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C.; Schluter, T.; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O.Yu; Silva, L.; Sinha, L; Sirtl, S; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Wolbeek, J.Ter; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M

    2013-01-01

    Large samples of $\\Lambda$, $\\Sigma(1385)$ and $\\Xi(1321)$ hyperons produced in deep-inelastic muon scattering off a $^6$LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of $\\Sigma(1385)^+$, $\\Sigma(1385)^-$, $\\bar{\\Sigma}(1385)^-$, $\\bar{\\Sigma}(1385)^+$, $\\Xi(1321)^-$, and $\\bar{\\Xi}(1321)^+$ hyperons decaying into $\\Lambda(\\bar{\\Lambda})\\pi$ were measured. The heavy hyperon to $\\Lambda$ and heavy antihyperon to $\\bar{\\Lambda}$ yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

  20. Study of {Sigma}(1385) and {Xi}(1321) hyperon and antihyperon production in deep inelastic muon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Alexakhin, V.Y.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Y.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Y.; Zemlyanichkina, E.; Zhuravlev, N. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexandrov, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S. [University of Turin, Department of Physics (Italy); Torino Section of INFN, Turin (Italy); Austregesilo, A.; Bicker, K. [CERN, Geneva 23 (Switzerland); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Badelek, B. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Baum, G. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Bedfer, Y.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d' ; Kunne, F.; Magnon, A.; Marchand, C.; Morreale, A.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Berlin, A.; Gautheron, F.; Hess, C.; Kisselev, Y.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L. [Universitaet Bochum, Institut fuer Experimentalphysik, Bochum (Germany); Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Kang, D.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Schmiden, H. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M. [LIP, Lisbon (Portugal); Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Levorato, S.; Martin, A.; Sbrizzai, G.; Schiavon, P. [University of Trieste, Department of Physics (Italy); Trieste Section of INFN, Trieste (Italy); Buechele, M.; Fischer, H.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Koenigsmann, K.; Nerling, F.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Wolbeek, J. ter [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Cicuttin, A.; Crespo, M.L. [Abdus Salam ICTP, Trieste (Italy); Trieste Section of INFN, Trieste (Italy); Dasgupta, S.; Sarkar, S.; Sinha, L. [Matrivani Institute of Experimental Research and Education, Calcutta (India); Denisov, O.Y.; Maggiora, A.; Takekawa, S. [Torino Section of INFN, Turin (Italy); Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Y.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D. [State Research Center of the Russian Federation, Institute for High Energy Physics, Protvino (Russian Federation); Doshita, N.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H. [Yamagata University, Yamagata (Japan); Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I. [Ludwig-Maximilians-Universitaet Muenchen, Department fuer Physik, Munich (Germany); Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Zaremba, K.; Ziembicki, M. [Warsaw University of Technology, Institute of Radioelectronics, Warsaw (Poland); Finger, M.; Finger, M.; Novy, J. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Du Fresne von Hohenesche, N. [CERN, Geneva 23 (Switzerland); Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M. [CERN, Geneva 23 (Switzerland); Gerassimov, S.; Konorov, I. [Lebedev Physical Institute, Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Horikawa, N. [Nagoya University, Nagoya (Japan); Jary, V.; Virius, M. [Czech Technical University in Prague, Prague (Czech Republic); Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Sznajder, P.; Wislicki, W. [National Centre for Nuclear Research, Warsaw (Poland); Kouznetsov, O. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Lichtenstadt, J. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Makke, N. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); University of Trieste, Department of Physics (IT); Trieste Section of INFN, Trieste (IT); Matsuda, T. [University of Miyazaki, Miyazaki (JP); Panzieri, D. [University of Eastern Piedmont, Alessandria (IT); Polak, J. [Technical University in Liberec, Liberec (CZ); University of Trieste, Department of Physics (IT); Trieste Section of INFN, Trieste (IT); Srnka, A. [AS CR, Institute of Scientific Instruments, Brno (CZ); Sulc, M. [Technical University in Liberec, Liberec (CZ); Zavertyaev, M. [Lebedev Physical Institute, Moscow (RU)

    2013-10-15

    Large samples of {Lambda}, {Sigma}(1385) and {Xi}(1321) hyperons produced in the deep-inelastic muon scattering off a {sup 6}LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of {Sigma}(1385){sup +}, {Sigma}(1385){sup -}, anti {Sigma}(1385){sup -}, anti {Sigma}(1385){sup +}, {Xi}(1321){sup -}, and anti {Xi}(1321){sup +} hyperons decaying into {Lambda}(anti {Lambda}){pi} were measured. The ratios of heavy-hyperon to {Lambda} and heavy-antihyperon to anti {Lambda} were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator. (orig.)

  1. Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering

    International Nuclear Information System (INIS)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A.; Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F.; Alexakhin, V.Y.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Y.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Y.; Zemlyanichkina, E.; Zhuravlev, N.; Alexandrov, Y.; Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S.; Austregesilo, A.; Bicker, K.; Badelek, B.; Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R.; Baum, G.; Bedfer, Y.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d'; Kunne, F.; Magnon, A.; Marchand, C.; Morreale, A.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H.; Berlin, A.; Gautheron, F.; Hess, C.; Kisselev, Y.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L.; Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Kang, D.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Schmiden, H.; Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.; Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Levorato, S.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Buechele, M.; Fischer, H.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Koenigsmann, K.; Nerling, F.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Wolbeek, J. ter; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S.; Cicuttin, A.; Crespo, M.L.; Dasgupta, S.; Sarkar, S.; Sinha, L.; Denisov, O.Y.; Maggiora, A.; Takekawa, S.; Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Y.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D.; Doshita, N.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H.; Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I.; Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Zaremba, K.; Ziembicki, M.; Finger, M.; Finger, M.; Novy, J.; Du Fresne von Hohenesche, N.; Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M.; Gerassimov, S.; Konorov, I.; Horikawa, N.; Jary, V.; Virius, M.; Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Sznajder, P.; Wislicki, W.; Kouznetsov, O.; Lichtenstadt, J.; Makke, N.; Matsuda, T.; Panzieri, D.; Polak, J.; Srnka, A.; Sulc, M.; Zavertyaev, M.

    2013-01-01

    Large samples of Λ, Σ(1385) and Ξ(1321) hyperons produced in the deep-inelastic muon scattering off a 6 LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of Σ(1385) + , Σ(1385) - , anti Σ(1385) - , anti Σ(1385) + , Ξ(1321) - , and anti Ξ(1321) + hyperons decaying into Λ(anti Λ)π were measured. The ratios of heavy-hyperon to Λ and heavy-antihyperon to anti Λ were found to be in the range 3.8 % to 5.6 % with a relative uncertainty of about 10 %. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator. (orig.)

  2. Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c

    International Nuclear Information System (INIS)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A.; Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F.; Alexakhin, V.Yu.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Yu.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Yu.; Zemlyanichkina, E.; Zhuravlev, N.; Alexandrov, Yu.; Zavertyaev, M.; Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S.; Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d'; Kunne, F.; Magnon, A.; Marchand, C.; Morreale, A.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H.; Austregesilo, A.; Bicker, K.; Badelek, B.; Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R.; Baum, G.; Berlin, A.; Gautheron, F.; Hess, C.; Kisselev, Yu.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L.; Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Kang, D.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Schmiden, H.; Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M.; Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Levorato, S.; Martin, A.; Sbrizzai, G.; Schiavon, P.; Buechele, M.; Fischer, H.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Koenigsmann, K.; Nerling, F.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Ter Wolbeek, J.; Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S.; Cicuttin, A.; Crespo, M.L.; Dasgupta, S.; Sarkar, S.; Sinha, L.; Denisov, O.Yu.; Maggiora, A.; Takekawa, S.; Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D.; Doshita, N.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Suzuki, H.; Duennweber, W.; Faessler, M.; Geyer, R.; Rajotte, J.F.; Schlueter, T.; Uman, I.; Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Zaremba, K.; Ziembicki, M.; Finger, M.; Finger, M.; Slunecka, M.; Du Fresne von Hohenesche, N.; Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M.; Gerassimov, S.; Konorov, I.; Horikawa, N.; Jary, V.; Novy, J.; Virius, M.; Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Sznajder, P.; Wislicki, W.; Kouznetsov, O.; Lichtenstadt, J.; Makke, N.; Matsuda, T.; Panzieri, D.; Polak, J.; Srnka, A.; Sulc, M.

    2013-01-01

    Multiplicities of charged hadrons produced in deep inelastic muon scattering off a 6 LiD target have been measured as a function of the DIS variables x Bj , Q 2 , W 2 and the final state hadron variables p T and z. The p T 2 distributions are fitted with a single exponential function at low values of p T 2 to determine the dependence of left angle p T 2 right angle on x Bj , Q 2 , W 2 and z. The z-dependence of left angle p T 2 right angle is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, left angle k perpendicular to 2 right angle, as a function of x Bj and Q 2 in a leading order QCD parton model. (orig.)

  3. Measurement of charged particle spectra in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Alexa, C.; Dobre, M.; Rotaru, M.; Stoicea, G. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Baghdasaryan, S.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Bartel, W.; Belov, P.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Habib, S.; Haidt, D.; Kleinwort, C.; Kraemer, M.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Radescu, V.; Schmitt, S.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Boudry, V.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Pandurovic, M. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Brandt, G. [Oxford University, Department of Physics, Oxford (United Kingdom); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Buniatyan, A.; Huber, F.; Pirumov, H.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Lubimov, V.; Rostovtsev, A.; Tseepeldorj, B. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Ceccopieri, F.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Roosen, R.; Staykova, Z.; Mechelen, P.Van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Cvach, J.; Hladky and grave, J.; Reimer, P.; Zalesak, J. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K.; Meyer, H. [Universitaet Wuppertal, Fachbereich C, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C. [Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille (France); Dodonov, V. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Dossanov, A. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany); Egli, S.; Hildebrandt, M.; Horisberger, R. [Paul Scherrer Institut, Villigen (Switzerland); Feltesse, J.; Perez, E.; Schoeffel, L. [CE-Saclay, CEA, DSM/Irfu, Gif-sur-Yvette (France); Ferencei, J. [Slovak Academy of Sciences, Institute of Experimental Physics, Kosice (Slovakia); Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J. [Institute for Nuclear Physics, Cracow (Poland); Grab, C. [ETH, Institut fuer Teilchenphysik, Zuerich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics, Lancaster (United Kingdom); Hennekemper, E.; Herbst, M.; Schultz-Coulon, H.C. [Universitaet Heidelberg, Kirchhoff-Institut fuer Physik, Heidelberg (Germany); Herrera, G.; Lopez-Fernandez, R. [CINVESTAV IPN, Departamento de Fisica, Mexico City (Mexico); Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Joensson, L. [University of Lund, Physics Department, Lund (Sweden); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R.; Nowak, K. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [Queen Mary, University of London, School of Physics and Astronomy, London (United Kingdom); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Morris, J.V.; Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (United Kingdom); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zuerich (Switzerland); Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Soloviev, Y. [DESY, Hamburg (Germany); Lebedev Physical Institute, Moscow (Russian Federation); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Roma (Italy); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerpen (Belgium); Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Wegener, D. [TU Dortmund, Institut fuer Physik, Dortmund (Germany); Collaboration: The H1 Collaboration

    2013-04-15

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 < Q{sup 2} < 100 GeV{sup 2}, and small values of Bjorken-x, 10{sup -4} < x < 10{sup -2}. The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity ({eta}{sup *}) and transverse momentum (p{sub T}{sup *}) in the range 0<{eta}{sup *} < 5 and 0

  4. Three-Jet Production in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Heister, A.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Soloviev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; Zur Nedden, M.

    2001-01-01

    Three-jet production is studied for the first time in deep-inelastic positron-proton scattering. The measurement carried out with the H1 detector at HERA covers a large range of four-momentum transfer squared 5 < Q^2 < 5000 GeV^2 and invariant three-jet masses 25 < M_(3jet) < 140 GeV. Jets are defined by the inclusive k_T algorithm in the Breit frame. The size of the three-jet cross section and the ratio of the three-jet to the dijet cross section R_(3/2) are described over the whole phase space by the predictions of perturbative QCD in next-to-leading order. The shapes of angular jet distributions deviate significantly from a uniform population of the available phase space but are well described by the QCD calculation.

  5. Measurement of D^(*+-) Meson Production and F_2^c in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, C.; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Merkel, P.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Straumann, U.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; Wacker, K.; Wallny, R.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, C.; Werner, M.; Werner, N.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2002-01-01

    The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 11.5 GeV and |\\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.

  6. Quark initial state interaction in deep inelastic scattering and the Drell-Yan process

    International Nuclear Information System (INIS)

    Linnyk, O.; Leupold, S.; Mosel, U.

    2005-01-01

    We pursue a phenomenological study of higher-twist effects in high-energy processes by taking into account the off-shellness (virtuality) of partons bound in the nucleon. The effect of parton off-shellness in deep inelastic ep→eX scattering (DIS) and the Drell-Yan process (pp→llX) is examined. Assuming factorization and a single-parameter Breit-Wigner form for the parton spectral function, we develop a model to calculate the corresponding off-shell cross sections. Allowing for a finite parton width ≅100 MeV, we reproduce the data of both DIS and the triple-differential Drell-Yan cross section without an additional K-factor. The results are compared to those from perturbative QCD and the intrinsic-k T approach

  7. Collinear factorization for deep inelastic scattering structure functions at large Bjorken xB

    International Nuclear Information System (INIS)

    Accardi, Alberto; Qiu, Jian-Wei

    2008-01-01

    http://dx.doi.org/10.1088/1126-6708/2008/07/090 We examine the uncertainty of perturbative QCD factorization for hadron structure functions in deep inelastic scattering at a large value of the Bjorken variable xB. We analyze the target mass correction to the structure functions by using the collinear factorization approach in the momentum space. We express the long distance physics of structure functions and the leading target mass corrections in terms of parton distribution functions with the standard operator definition. We compare our result with existing work on the target mass correction. We also discuss the impact of a final-state jet function on the extraction of parton distributions at large fractional momentum x.

  8. Measurement of Charged Particle Spectra in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Alexa, C.; Baghdasaryan, A.; Baghdasaryan, S.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Bozovic-Jelisavcic, I.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J.G.; Cvach, J.; Dainton, J.B.; Daum, K.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2013-04-20

    Charged particle production in deep-inelastic ep scattering is measured with the H1 detector at HERA. The kinematic range of the analysis covers low photon virtualities, 5 < Q^2 < 100 GeV^2, and small values of Bjorken-x, 10^{-4} < x < 10^{-2}. The analysis is performed in the hadronic centre-of-mass system. The charged particle densities are measured as a function of pseudorapidity (eta^*) and transverse momentum (p_T^*) in the range 0< \\eta^* < 5 and 0< p_T^* < 10$ GeV differentially in x and Q^2. The data are compared to predictions from different Monte Carlo generators implementing various options for hadronisation and parton evolutions.

  9. Measurement of Charm and Beauty Jets in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Lipka, K.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Makankine, A.; Malinovski, E.; Marage, P.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Osman, S.; Ozerov, D.; Pahl, P.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Tabasco, J.E.Ruiz; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Thompson, G.; Thompson, P.D.; Toll, T.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Trevino, A.Vargas; Vazdik, Y.; von den Driesch, M.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2011-01-01

    Measurements of cross sections for events with charm and beauty jets in deep inelastic scattering at HERA are presented. Events with jets of transverse energy E_T^jet > 6 GeV and pseudorapidity -1.0 6 GeV^2 and inelasticity variable 0.07 6 GeV. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb^-1. The numbers of charm and beauty jets are determined using variables reconstructed using the H1 vertex detector with which the impact parameters of the tracks to the primary vertex and the position of secondary vertices are measured. The measurements are compared with QCD predictions and with previous measurements where heavy flavours are identified using muons.

  10. Study of Charm Fragmentation into $D^{*\\pm}$ Mesons in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wunsch, E.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-01-01

    The process of charm quark fragmentation is studied using $D^{*\\pm}$ meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the $D^{*\\pm}$ meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to $D^{*\\pm}$ mesons.

  11. Search for contact interactions and graviton effects in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Scheins, J.J.

    2001-09-01

    Neutral current events in deep inelastic scattering at HERA taken with the H1 detector are examined with respect to standard model expectations. The measured inclusive cross section dσ/dQ 2 for Q 2 >200 GeV 2 in reactions e ± p → e ± X is analysed in terms of contact interactions or graviton effects in combination with large extra dimensions. The total amount of analysed data corresponds to an integrated luminosity of L int =115 pb -1 . The comparison of all data sets to their corresponding standard model expectation shows no evidence for new phenomena. Therefore exclusion limits are derived for the mentioned physical scenarios beyond the standard model. The combination of all data sets leads to maximum sensitivity and significantly improved limits compared to earlier results of H1. (orig.) [de

  12. Resummation for polarized semi-inclusive deep-inelastic scattering at small transverse momentum

    International Nuclear Information System (INIS)

    Koike, Yuji . E-mail koike@nt.sc.niigata-u.ac.jp; Nagashima, Junji; Vogelsang, Werner

    2006-01-01

    We study the transverse-momentum distribution of hadrons produced in semi-inclusive deep-inelastic scattering (SIDIS). We consider cross sections for various combinations of polarizations of the initial lepton and nucleon or the produced hadron, for which we perform the resummation of large double-logarithmic perturbative corrections arising at small transverse momentum. We present phenomenological results for the processes lp->lπX with longitudinally polarized leptons and protons. We discuss the impact of the perturbative resummation and of estimated non-perturbative contributions on the corresponding cross sections and their spin asymmetry. Our results should be relevant for ongoing studies in the COMPASS experiment at CERN, and for future experiments at the proposed eRHIC collider at BNL

  13. QCD and the transverse properties of jets in deep inelastic scattering

    International Nuclear Information System (INIS)

    Peccei, R.D.; Rueckl, R.

    1981-01-01

    We study the transverse properties of hadronic jets in deep inelastic scattering, focusing on features which reflect predominantly the underlying QCD structure rather than the process of hadronization. In particular we discuss the QCD induced asymmetries between the transverse size for forward and backward going jets in the virtual boson-nucleon c.m.s. We also analyze the dependence of this transverse spread on the produced hadron energy and indicate how the QCD pattern differs from that expected from hadronization or primordial transverse momentum. We point out, furthermore, the theoretical, and possibly experimental, advantages of studying the average angular spread of the energy flow rather than the transverse momenta of the particle jets. (orig.)

  14. Tagged spectator deep-inelastic scattering off the deuteron as a tool to study neutron structure

    International Nuclear Information System (INIS)

    Cosyn, W.; Sargsian, M.

    2016-01-01

    We give an overview of a model to describe deep-inelastic scattering (DIS) off the deuteron with a spectator proton (e+d → e'+X+p s ), based on the virtual nucleon approximation (VNA). The model accounts for the final-state interactions (FSI) of the DIS debris with the spectator proton. Values of the rescattering cross section are obtained by fits to high-momentum spectator data. By using the so-called 'pole extrapolation' method, free neutron structure functions can be obtained by extrapolating low-momentum spectator proton data to the on-shell neutron pole. We apply this method to the BONuS data set and find a surprising Bjorken x dependence, indicating a possible rise of the neutron to proton structure function ratio at high x. (authors)

  15. Determination of {alpha}{sub s} and m{sub c} in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, Sergey; Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, Sven-Olaf [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2013-07-15

    We describe the determination of the strong coupling constant {alpha}{sub s}(M{sub Z}{sup 2}) and of the charm-quark mass m{sub c}(m{sub c}) in the MS-scheme, based on the QCD analysis of the unpolarized World deep-inelastic scattering data. At NNLO the values of {alpha}{sub s}(M{sub Z}{sup 2})=0.1134{+-}0.001(exp) and m{sub c}(m{sub c})=1.24{+-}0.03(exp){sup +0.03}{sub -0.02}(scale){sup +0.00}{sub -0.07}(th) are obtained and are compared with other determinations, also clarifying discrepancies.

  16. Measurement of αs from jet rates in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-10-01

    Jet production in deep inelastic scattering for 120 2 2 has been studied using data from an integrated luminosity of 3.2 pb -1 collected with the ZEUS detector at HERA. Jets are identified with the JADE algorithm. A cut on the angular distribution of parton emission in the γ-parton centre-of-mass system minimises the experimental and theoretical uncertainties in the determination of the jet rates. The jet rates, when compared to OMIKRON (α s 2 ) perturbative QCD calculations, allow a precise determination of α s (Q) in three Q 2 -intervals. The values are consistent with a running of α s (Q), as expected from QCD. Extrapolating to Q=M (Z 0 ) yields α s (M Z 0 )=0.117±0.005(stat) -0.005 +0.004 (syst exp )±0. 007(syst theory ). (orig.)

  17. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Abramowicz, H.; Gueta, O.; Kananov, S.; Levy, A.; Stern, A.; Abt, I.; Caldwell, A.; Schmidke, W.B.; Verbytskyi, A.; Adamczyk, L.; Gach, G.; Guzik, M.; Kisielewska, D.; Przybycien, M.; Adamus, M.; Tymieniecka, T.; Antonelli, S.; Aushev, V.; Aushev, Y.; Iudin, A.; Kadenko, I.; Kondrashova, N.; Kononenko, O.; Onishchuk, Yu.; Shevchenko, R.; Shkola, O.; Trofymov, A.; Viazlo, O.; Zakharchuk, N.; Behnke, O.; Behrens, U.; Borras, K.; Ciesielski, R.; Dolinska, G.; Geiser, A.; Gizhko, A.; Grebenyuk, J.; Gregor, I.; Hain, W.; Januschek, F.; Klein, U.; Korol, I.; Koetz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Myronenko, V.; Notz, D.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Stefaniuk, N.; Szuba, J.; Turkot, O.; Wichmann, K.; Wolf, G.; Zenaiev, O.; Bertolin, A.; Dusini, S.; Longhin, A.; Stanco, L.; Bloch, I.; Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O.; Brock, I.; Mergelmeyer, S.; Paul, E.; Brook, N.H.; Wing, M.; Brugnera, R.; Garfagnini, A.; Limentani, S.; Bruni, A.; Corradi, M.; Bussey, P.J.; Saxon, D.H.; Skillicorn, I.O.; Capua, M.; Schioppa, M.; Tassi, E.; Catterall, C.D.; Chwastowski, J.; Figiel, J.; Krupa, B.; Stopa, P.; Zawiejski, L.; Ciborowski, J.; Grzelak, G.; Nowak, R.J.; Perlanski, W.; Tomaszewska, J.; Zarnecki, A.F.; Cooper-Sarkar, A.M.; Devenish, R.C.E.; Walczak, R.; Corriveau, F.; Dementiev, R.K.; Gladilin, L.K.; Golubkov, Yu.A.; Korzhavina, I.A.; Levchenko, B.B.; Lukina, O.Yu.; Shcheglova, L.M.; Zotkin, D.S.; Foster, B.; Gallo, E.; Klanner, R.; Kovalchuk, N.; Lohrmann, E.; Sztuk-Dambietz, J.; Szuba, D.; Turcato, M.; Hochman, D.; Karshon, U.; Hori, R.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Ibrahim, Z.A.; Jomhari, N.Z.; Mohamad Idris, F.; Mohammad Nasir, N.; Wan Abdullah, W.A.T.; Iga, Y.; Ishitsuka, M.; Kuze, M.; Nobe, T.; Kaur, M.; Kaur, P.; Singh, I.; Kotanski, A.; Slominski, W.; Ruspa, M.; Shyrma, Yu.; Zhmak, N.; Solano, A.; Tsurugai, T.

    2016-01-01

    Production of exclusive dijets in diffractive deep inelastic e ± p scattering has been measured with the ZEUS detector atHERAusing an integrated luminosity of 372 pb -1 . The measurement was performed for γ* - p centre-of-mass energies in the range 90 < W < 250 GeV and for photon virtualities Q 2 > 25 GeV 2 . Energy flows around the jet axis are presented. The cross section is presented as a function of β and φ, where β = x/x P , x is the Bjorken variable and x P is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ*-dijet plane and the γ*-e ± plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange. (orig.)

  18. Measurement of internal jet structure in dijet production in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Adloff, C.; Andreev, V.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Baehr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Berndt, T.; Bertrand-Coremans, G.; Biddulph, P.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Brown, D.P.; Brueckner, W.; Bruel, P.; Bruncko, D.; Buerger, J.; Buesser, F.W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A.J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J.G.; Cormack, C.; Coughlan, J.A.; Cousinou, M.-C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; David, M.; Davidsson, M.; De Roeck, A.; De Wolf, E.A.; Delcourt, B.; Demirchyan, R.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K.T.; Dowell, J.D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Farh, A.B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Fleischer, M.; Fluegge, G.; Fomenko, A.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Graessler, H.; Greenshaw, T.; Griffiths, R.K.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Hampel, M.; Haustein, V.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K.H.; Hilton, C.D.; Hladky, J.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Jansen, D.M.; Joensson, L.; Johnson, D.P.; Jung, H.; Kaestli, H.K.; Kander, M.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnik, O.; Katzy, J.; Kaufmann, O.; Kausch, M.; Keller, N.; Kenyon, I.R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Koehne, J.H.; Kolanoski, H.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Kraemerkaemper, T.; Krasny, M.W.; Krehbiel, H.; Kruecker, D.; Krueger, K.; Kuepper, A.; Kuester, H.; Kuhlen, M.; Kurca, T.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; Lobo, G.; Lobodzinska, E.; Lubimov, V.; Lueders, S.; Lueke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krueger, H.; Malden, N.; Malinovsky, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S.J.; McMahon, S.J.; McMahon, T.R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Mohr, R.; Mohrdieck, S.; Mondragon, M.; Moreau, F.; Morozov, A.; Morris, J.V.; Mueller, D.; Mueller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Negri, I.; Newman, P.R.; Nguyen, H.K.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J.E.; Ozerov, D.; Palmen, P.; Panassik, V.; Pascaud, C.; Passaggio, S.; Patel, G.D.; Pawletta, H.; Perez, E.; Phillips, J.P.; Pieuchot, A.; Pitzl, D.; Poeschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schacht, P.; Scheins, J.; Schilling, F.-P.; Schleif, S.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schoeffel, L.; Schroeder, V.; Schultz-Coulon, H.-C.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sirois, Y.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Sonnenschein, L.; Spaskov, V.; Specka, A.; Spitzer, H.; Squinabol, F.; Stamen, R.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Ste llberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Sutton, J.P.; Swart, M.; Tapprogge, S.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P.D.; Tobien, N.; Todenhagen, R.; Traynor, D.; Truoel, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Van Haecke, A.; Van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L.R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wissing, Ch.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wuensch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    1999-01-01

    Internal jet structure in dijet production in deep-inelastic scattering is measured with the H1 detector at HERA. Jets with transverse energies E T,Breit > 5 GeV are selected in the Breit frame employing k perpendicular and cone jet algorithms. In the kinematic region of ssquared momentum transfers 10 2 2 and Bjorken-x values 2 -4 Bj -3 , jet shapes and subjet multiplicities are measured as a function of a resolution parameter. Distributions of both observables are corrected for detector effects and presented as functions of the transverse jet energy and jet pseudo-rapidity. Dependences of the jet shape and the average number of subjets on the transverse energy and the pseudo-rapidity of the jet are observed. With increasing transverse jet energies and decreasing pseudo-rapidities, i.e. towards the photon hemisphere, the jets are more collimated. QCD models give a fair description of the data

  19. Inclusive dijet cross sections in neutral current deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Univ. College London (United Kingdom); Cracow Univ. of Technology (Poland). Faculty of Physics, Mathematics and Applied Computer Science; Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-10-15

    Single- and double-differential inclusive dijet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector using an integrated luminosity of 374 pb{sup -1}. The measurement was performed at large values of the photon virtuality, Q{sup 2}, between 125 and 20 000 GeV{sup 2}. The jets were reconstructed with the k{sub T} cluster algorithm in the Breit reference frame and selected by requiring their transverse energies in the Breit frame, E{sup jet}{sub T,B}, to be larger than 8 GeV. In addition, the invariant mass of the dijet system, M{sub jj}, was required to be greater than 20 GeV. The cross sections are described by the predictions of next-to-leading-order QCD. (orig.)

  20. Measurement of isolated photon production in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.

    2007-10-01

    The production of isolated photons in deep-inelastic scattering ep → eγX is measured with the H1 detector at HERA. The measurement is performed in the kinematic range of negative four-momentum transfer squared 4 2 2 and a mass of the hadronic system W X >50 GeV. The analysis is based on a total integrated luminosity of 227 pb -1 . The production cross section of isolated photons with a transverse energy in the range 3 γ T γ γ T , η γ and Q 2 . Isolated photon cross sections are also measured for events with no jets or at least one hadronic jet. The measurements are compared with predictions from Monte Carlo generators modelling the photon radiation from the quark and the electron lines, as well as with calculations at leading and next to leading order in the strong coupling. The predictions significantly underestimate the measured cross sections. (orig.)

  1. Study of charm fragmentation into D{sup *{+-}} mesons in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Smirnov, P.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Antunovic, B.; Aplin, S.; Bacchetta, A.; Bartel, W.; Beckingham, M.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Klimkovich, T.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Lucaci-Timoce, A.I.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Peng, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Salvaire, F.; Schmidt, S.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Wessels, M.; Wissing, C.; Wuensch, E.; Zhu, Y.C. [DESY, Hamburg (Germany); Asmone, A.; Stella, B. [Dipt. di Fisica Univ. di Roma Tre (Italy); INFN Roma 3, Roma (Italy); Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van [Inter-University Inst. for High Energies ULB-VUB, Brussels (Belgium); Univ. Antwerpen, Antwerpen (Belgium); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Ghazaryan, S.; Hovhannisyan, A.; Volchinski, V.; Yeganov, V.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Universites Paris VI and VII, IN2P3-CNRS, LPNHE, Paris (France)] [and others

    2009-02-15

    The process of charm quark fragmentation is studied using D{sup *{+-}} meson production in deep-inelastic scattering as measured by the H1 detector at HERA. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to D{sup *{+-}} mesons. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the D{sup *{+-}} meson in the event. The fragmentation parameters extracted for the two phase space regions are found to be different. (orig.)

  2. Strangeness production at low Q{sup 2} in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Smirnov, P.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Antunovic, B.; Aplin, S.; Bacchetta, A.; Bartel, W.; Beckingham, M.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Klimkovich, T.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Lucaci-Timoce, A.I.; Marti, Ll.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Peng, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Salvaire, F.; Schmidt, S.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Wessels, M.; Wissing, C.; Wuensch, E.; Zhu, Y.C. [DESY, Hamburg (Germany); Asmone, A.; Stella, B. [Dipt. di Fisica Universita di Roma Tre (Italy); INFN Roma 3, Roma (Italy); Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van [Inter-University Inst. for High Energies ULB-VUB, Brussels (Belgium); Univ. Antwerpen, Antwerpen (Belgium); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Ghazaryan, S.; Hovhannisyan, A.; Volchinski, V.; Yeganov, V.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Universites Paris VI et VII, IN2P3-CNRS, LPNHE, Paris (France)] [and others

    2009-05-15

    The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2

  3. Strangeness production at low Q 2 in deep-inelastic ep scattering at HERA

    Science.gov (United States)

    Aaron, F. D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deák, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kutak, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Mudrinic, M.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J. E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, Ch.; Wünsch, E.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-05-01

    The production of neutral strange hadrons is investigated using deep-inelastic scattering events measured with the H1 detector at HERA. The measurements are made in the phase space defined by the negative four-momentum transfer squared of the photon 2< Q 2<100 GeV2 and the inelasticity 0.1< y<0.6. The K {/s 0} and \\varLambda(bar{\\varLambda}) production cross sections and their ratios are determined. K {/s 0} production is compared to the production of charged particles in the same region of phase space. The Λ- bar{\\varLambda} asymmetry is also measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to the data.

  4. Search for baryonic resonances decaying to Ξπ in deep-inelastic scattering at HERA

    Science.gov (United States)

    Aktas, A.; Alexa, C.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Preda, T.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-11-01

    A search for narrow baryonic resonances decaying into Ξ-π- or Ξ-π+ and their antiparticles is carried out with the H1 detector using deep inelastic scattering events at HERA in the range of negative photon four-momentum transfer squared 2 < Q2 < 100 GeV2. No signal is observed for a new baryonic state in the mass range 1600-2300 MeV in either the doubly charged or the neutral decay channels. The known Ξ(1530)0 is observed through its decay mode into Ξ-π+. Upper limits are given on the ratio of the production rates of new baryonic states, such as the hypothetical pentaquark states Ξ- 5q or Ξ0 5q, relative to the Ξ(1530)0 baryon state.

  5. Study of charm fragmentation into D * ± mesons in deep-inelastic scattering at HERA

    Science.gov (United States)

    Aaron, F. D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Bacchetta, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deák, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Helebrant, C.; Henderson, R. C. W.; Hennekemper, E.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Kogler, R.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Kutak, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Mudrinic, M.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Pejchal, O.; Peng, H.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J. E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Shushkevich, S.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wegener, D.; Wessels, M.; Wissing, C.; Wünsch, E.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2009-02-01

    The process of charm quark fragmentation is studied using D * ± meson production in deep-inelastic scattering as measured by the H1 detector at HERA. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to D * ± mesons. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the D * ± meson in the event. The fragmentation parameters extracted for the two phase space regions are found to be different.

  6. Study of charm fragmentation into D*± mesons in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Preda, T.; Rotaru, M.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Sheviakov, I.; Shtarkov, L.N.; Smirnov, P.; Soloviev, Y.; Vazdik, Y.; Antunovic, B.; Aplin, S.; Bacchetta, A.; Bartel, W.; Beckingham, M.; Brandt, G.; Brinkmann, M.; Campbell, A.J.; Cholewa, A.; Deak, M.; Boer, Y. de; Roeck, A. de; Eckerlin, G.; Elsen, E.; Felst, R.; Fleischer, M.; Gayler, J.; Glazov, A.; Grell, B.R.; Haidt, D.; Helebrant, C.; Janssen, M.E.; Jung, H.; Katzy, J.; Kleinwort, C.; Klimkovich, T.; Knutsson, A.; Korbel, V.; Kraemer, M.; Krastev, K.; Kutak, K.; Levonian, S.; List, J.; Lucaci-Timoce, A.I.; Marti, L.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Niebuhr, C.; Nikiforov, A.; Nozicka, M.; Olsson, J.E.; Panagoulias, I.; Papadopoulou, T.; Peng, H.; Pitzl, D.; Placakyte, R.; Radescu, V.; Rurikova, Z.; Salvaire, F.; Schmidt, S.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Vinokurova, S.; Wessels, M.; Wissing, C.; Wuensch, E.; Zhu, Y.C.; Asmone, A.; Stella, B.; Astvatsatourov, A.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roland, B.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Ghazaryan, S.; Hovhannisyan, A.; Volchinski, V.; Yeganov, V.; Zohrabyan, H.; Barrelet, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Behnke, O.; Berger, N.; Degan, M. del; Grab, C.; Leibenguth, G.; Sauter, M.; Zimmermann, T.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Li, G.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boenig, M.O.; South, D.; Wegener, D.; Boudry, V.; Gouzevitch, M.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Faulkner, P.J.W.; Kenyon, I.R.; Newman, P.R.; Shaw-West, R.N.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Murin, P.; Tomasz, F.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Liptaj, A.; Olivier, B.; Raspiareza, A.; Shushkevich, S.; Tzamariudaki, E.; Bystritskaya, L.; Efremenko, V.; Essenov, S.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Petrukhin, A.; Rostovtsev, A.; Zhelezov, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Cassol-Brunner, F.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Trinh, T.N.; Vallee, C.; Cerny, K.; Pejchal, O.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cozzika, G.; Feltesse, J.; Perez, E.; Schoeffel, L.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Rahmat, A.J.; Daum, K.; Meyer, H.; Dodonov, V.; Lytkin, L.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Falkiewicz, A.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Glushkov, I.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Piec, S.; Tsurin, I.; Goettlich, M.; Habib, S.; Jemanov, V.; Lipka, K.; List, B.; Naroska, B.; Hansson, M.; Joensson, L.; Osman, S.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Jung, A.W.; Krueger, K.; Lendermann, V.; Meier, K.; Schultz-Coulon, H.C.; Urban, K.; Herrera, G.; Lopez-Fernandez, R.; Kapichine, M.; Makankine, A.; Morozov, A.; Palichik, V.; Spaskov, V.; Tchoulakov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Nowak, K.; Robmann, P.; Schmitz, C.; Straumann, U.; Truoel, P.; Nankov, K.; Tsakov, I.; Schoening, A.

    2009-01-01

    The process of charm quark fragmentation is studied using D *± meson production in deep-inelastic scattering as measured by the H1 detector at HERA. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to D *± mesons. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the D *± meson in the event. The fragmentation parameters extracted for the two phase space regions are found to be different. (orig.)

  7. Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    Czech Academy of Sciences Publication Activity Database

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, G. D.; Alexeev, M.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.; Badelek, B.; Balestra, F.; Barth, J.; Beck, D.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlák, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger jr., M.; Fischer, H.; Franco, C.; Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse-Perdekapm, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, E.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Yu.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jarý, V.; Joosten, R.; Jörg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Y.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuhn, R.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W. D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D.; Rybnikov, A.; Rychter, A.; Salač, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolík, J.; Sozzi, F.; Srnka, Aleš; Steffen, D.; Stolarski, M.; Šulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Ter Wolbeek, J.; Zaremba, K.; Závada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.

    2017-01-01

    Roč. 764, JAN (2017), s. 1-10 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : deep inelastic scattering * pion multiplicities * fragmentation functions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Nuclear physics Impact factor: 4.807, year: 2016

  8. Nucleon-nucleon correlations and multiquark cluster effects in semi-inclusive deep inelastic lepton scattering off

    Energy Technology Data Exchange (ETDEWEB)

    Simula, S. [Instituto Nazionale di Fisica Nucleare, Roma (Italy)

    1994-04-01

    Semi-inclusive deep inelastic lepton scattering off nuclei is investigated assuming that virtual boson absorption occurs on a hadronic cluster which can be either a two-nucleon correlated pair or a six-quark bag. The differences in the energy distribution of nucleons produced in backward and forward directions are analyzed both at x<1 and x>1.

  9. Measurement of high-Q2 deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA

    NARCIS (Netherlands)

    Chekanov, S.; Kooijman, P.

    2006-01-01

    The cross sections for charged and neutral current deep inelastic scattering in e+p collisions with a longitudinally polarised positron beam have been measured using the ZEUS detector at HERA. The results, based on data corresponding to an integrated luminosity of 23.8 pb−1 at , are given for both

  10. Possible interpretation of the scale invariance violation during a deep inelastic muons scattering experiment on an hadron target

    International Nuclear Information System (INIS)

    Salati, Pierre.

    1980-01-01

    The purpose of this work is to analyse the structure functions produced by a deep inelastic scattering experiment of muons upon a hadronic target. A non perturbative model is tested. In order to chek the quantum chromodynamics, the moments and the Altarelli-Parisi equations are used. The main result is the scaling parameter lambda [fr

  11. Possibility of detecting triple gluon coupling and Adler-Bell-Jackiw anomaly in polarized deep inelastic scattering

    International Nuclear Information System (INIS)

    Lam, C.S.; Li, B.A.

    1980-05-01

    A way to detect experimentally the existence of triple gluon coupling and the Adler-Bell-Jackiw anomaly is to measure the Q 2 -dependence of polarized deep inelastic scattering. These effects lead to a ln ln Q 2 term which we calculate by introducing a new gluon operator in the Wilson expansion

  12. Enhancing the performances of a resonance detector spectrometer for deep inelastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Filabozzi, A.; Pace, E.; Pietropaolo, A.

    2012-01-01

    The possibility is explored to sum up neutron Compton profiles at different scattering angles in deep inelastic neutron scattering measurements within the Resonance Detector (RD) configuration to enhance the statistics for a more reliable extraction of the momentum distribution of the constituents in the target. The RD configuration allows to select the energy of the scattered neutrons up to several tens of electron Volt, thus accessing energy and wave vector transfers well above 1 eV and 30 Å −1 , respectively. In the high-q/ω regime, the final state effects could be considered as negligible, as shown in a series of simulations using a Monte Carlo method with different inverse geometry instrument setups. The simulations show that it could be possible to conceive an instrument set up where the RD configuration allows the proper summation of several spectra at different scattering angles, providing a good separation of the proton recoil signal from that of the heavier atoms, thus avoiding the cell subtraction by fitting procedure.

  13. Measurement of hadron multiplicities in deep inelastic scattering and extraction of quark fragmentation functions

    International Nuclear Information System (INIS)

    Curiel-Garcia, Quiela-Marina

    2014-01-01

    One of the goals of the COMPASS experience is the study of the nucleon spin structure. Data were taken from a polarized muon beam (160 GeV/c) scattering off a polarized target ( 6 LiD or NH 3 ). In this context, the need of a precise knowledge of quark Fragmentation Functions (final-state hadronization of quarks q into hadrons h, FFs) was raised. The FFs can be extracted from hadron multiplicities produced in Semi-Inclusive Deep Inelastic Scattering (SIDIS). This thesis presents the measurement of charged hadrons (pions and kaons) multiplicities from SIDIS data collected in 2006. The data cover a large kinematical range: Q 2 ≥1 (GeV/c)2, y belongs to [0.1,0.9], x belongs to [0.004,0.7] and W belongs to [5,17] GeV. These multiplicities provide an important input for global QCD analyses of world data at NLO, aiming at the FFs determination. (author) [fr

  14. Measurement of Hadron Multiplicities in Deep Inelastic Muon-Nucleon Scattering

    CERN Document Server

    du Fresne von Hohenesche, Nicolas

    2016-06-02

    In deep-inelastic muon-nucleon scattering, a single quark can be ejected out of the nucleon by the absorption of a high-energy photon. Such a free isolated quark has never been observed in nature. In quantum chromodynamics (QCD), coloured objects, such as a single quark, create additional quark anti-quark pairs out of the colour field and the final state comprises a jet of hadrons. The hadronisation process can be described by fragmentation functions D_q^h, the probability that a quark with the flavour q turns into a hadron of the type h. Similar to the parton distribution function, the fragmentation functions are fundamental, universal and process-independent quantities. The fragmentation functions are measured with the COM- PASS spectrometer in muon-nucleon scattering. The observables are the hadron multiplicities M_h. The COMPASS experiment consists of a two-stage magnetic spectrometer located at the M2 beam line of the Super Proton Synchrotron at CERN and uses a polarised muon beam on a nuclear fixed targ...

  15. Measurement and QCD analysis of diffractive jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Mozer, M.U.

    2006-07-24

    Differential cross sections for the production of two jets in diffractive deep inelastic scattering (DIS) at HERA are presented. The process studied is of the type ep{yields}eXY, where the central hadronic system X contains at least two jets and is separated from the system Y by a gap in rapidity. The forward system Y consists of an elastically scattered proton or a low mass dissociation system. The data were taken with the H1 detector during the years of 1999 and 2000 and correspond to an integrated luminosity of 51.5 pb{sup -1}. The measured cross sections are compared to fixed order NLO QCD predictions, that use diffractive parton densities which have previously been determined by a NLO QCD analysis of inclusive diffractive DIS at H1. The prediction and the data show significant differences. However, the dijet cross section is dominated by the diffractive gluon density, which can be extracted by the above mentioned analysis only with considerable uncertainty. Hence a combined QCD analysis of the previously published inclusive diffractive data and the dijet data is performed. This combined fit analysis allows the determination of diffractive quark and gluon densities with comparable precision. The common description of inclusive diffractive data and the dijet data confirms QCD factorization. (orig.)

  16. Measurement of beauty-production in deep inelastic scattering at HERA II

    International Nuclear Information System (INIS)

    Kahle, B.

    2006-04-01

    This thesis presents a measurement of beauty quark production in deep inelastic scattering at the ep-collider HERA at √(s)=318 GeV. The measurement is based on data collected at the ZEUS detector in the years 2003/2004, using an integrated luminosity of 39 pb -1 . In the analysis presented in this thesis, events were selected that contain a scattered electron, a jet and a muon inside the jet. The fraction of events from beauty quark production was extracted using the characteristic distribution of the transverse momenta of muons relative to the associated jets. The total visible cross section was measured to be: σ b anti b (ep→eb anti b X→e jetμX')=57.9±5.8(stat.) +3.5 -8.1 (syst.) pb in the kinematic region defined by: Q 2 >4 GeV 2 , y>0.05 und y jet t,lab >5 GeV und -2 jet μ t >1.5 GeV and η μ >-1.6. Differential cross sections were measured in p μ t and η μ , in p jet t and η jet and in Q 2 .Furthermore double differential cross sections d 2 σ/dQ 2 dx were measured. (Orig.)

  17. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  18. On deep inelastic lepton-nuclear interactions

    International Nuclear Information System (INIS)

    Garsevanishvili, V.R.; Darbaidze, Ya.Z.; Menteshashvili, Z.R.; Ehsakiya, Sh.M.

    1981-01-01

    The problem of building relativistic theory of nuclear reactions by way of involving relativistic methods, developed in the elementary particle theory, becomes rather actual at the time being. The paper presents some results of investigations into deep inelastic lepton-nuclear processes lA → l'(A-1)x, with the spectator nucleus-fragment in the finite state. To describe the reactions lA → l'(A-1)x (where l=an electron, muan, neutrino, antineutrino), the use is made of the self-similarity principle and multiparticle quasipotential formalism in the ''light front'' variables. The expressions are obtained for the differential cross-sections of lepton-nuclear processes and for the structure functions of deep inelastic scattering of neutrinos (antineutrinos) and charged leptons by nuclei

  19. Spin structure of the proton from polarized inclusive deep-inelastic muon-proton scattering

    CERN Document Server

    Adams, D.; Arik, E.; Arvidson, A.; Badelek, B.; Ballintijn, M.K.; Bardin, G.; Baum, Guenter; Berglund, P.; Betev, L.; Bird, I.G.; Birsa, R.; Bjorkholm, P.; Bonner, B.E.; de Botton, N.; Boutemeur, M.; Bradamante, F.; Bravar, A.; Bressan, A.; Bueltmann, Stephen L.; Burtin, E.; Cavata, C.; Crabb, D.; Cranshaw, J.; Cuhadar, T.; Dalla Torre, S.; van Dantzig, R.; Derro, B.; Deshpande, A.; Dhawan, S.; Dulya, C.; Dyring, A.; Eichblatt, S.; Faivre, J.C.; Fasching, D.; Feinstein, F.; Fernandez, C.; Frois, B.; Gallas, A.; Garzon, J.A.; Gaussiran, T.; Giorgi, M.; von Goeler, E.; Gracia, G.; de Groot, N.; Grosse Perdekamp, M.; Gulmez, Erhan; von Harrach, D.; Hasegawa, T.; Hautle, P.; Hayashi, N.; Heusch, C.A.; Horikawa, N.; Hughes, V.W.; Igo, G.; Ishimoto, S.; Iwata, T.; Kabuss, E.M.; Karev, A.; Kessler, H.J.; Ketel, T.J.; Kishi, A.; Kiselev, Yu.; Klostermann, L.; Kramer, D.; Krivokhijine, V.; Kroger, W.; Kurek, K.; Kyynarainen, J.; Lamanna, M.; Landgraf, U.; Layda, T.; Le Goff, J.M.; Lehar, F.; de Lesquen, A.; Lichtenstadt, J.; Lindqvist, T.; Litmaath, M.; Lowe, M.; Magnon, A.; Mallot, G.K.; Marie, F.; Martin, A.; Martino, J.; Matsuda, T.; Mayes, B.; McCarthy, J.S.; Medved, K.; van Middelkoop, G.; Miller, D.; Mori, K.; Moromisato, J.; Nagaitsev, A.; Nassalski, J.; Naumann, L.; Niinikoski, T.O.; Oberski, J.E.J.; Ogawa, A.; Ozben, C.; Parks, D.P.; Penzo, A.; Kunne, F.; Peshekhonov, D.; Piegaia, R.; Pinsky, Lawrence S.; Platchkov, S.; Plo, M.; Pose, D.; Postma, H.; Pretz, J.; Pussieux, T.; Pyrlik, J.; Reyhancan, I.; Rijllart, A.; Roberts, J.B.; Rock, S.; Rodriguez, M.; Rondio, E.; Rosado, A.; Sabo, I.; Saborido, J.; Sandacz, A.; Savin, Igor A.; Schiavon, P.; Schuler, K.P.; Segel, R.; Seitz, R.; Semertzidis, Y.; Sever, F.; Shanahan, P.; Sichtermann, E.P.; Simeoni, F.; Smirnov, G.I.; Staude, A.; Steinmetz, A.; Stiegler, U.; Stuhrmann, H.; Szleper, M.; Teichert, K.M.; Tessarotto, F.; Tlaczala, W.; Trentalange, S.; Unel, G.; Velasco, M.; Vogt, J.; Voss, R.; Weinstein, R.; Whitten, C.; Windmolders, R.; Willumeit, R.; Wislicki, W.; Witzmann, A.; Zanetti, A.M.; Zaremba, K.; Zhao, J.

    1997-01-01

    We have measured the spin-dependent structure function $g_1^{\\rm p}$ in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range $0.003 < x < 0.7$ and $1\\gevtwo < Q^2 < 60\\gevtwo$. A next-to-leading order QCD analysis is used to evolve the measured $\\gpone(x,Q^2)$ to a fixed $Q^2_0$. The first moment of $\\gpone$ at $Q^2_0 = 10\\gevtwo$ is $\\gammap = 0.136\\pm 0.013 \\,(\\mbox{stat.}) \\pm 0.009\\,(\\mbox{syst.})\\pm 0.005\\ (\\mbox{evol.})$. This result is below the prediction of the Ellis--Jaffe sum rule by more than two standard deviations. The singlet axial charge $\\dsigt$ is found to be $0.28 \\pm 0.16$. In the Adler--Bardeen factorization scheme, $\\Delta g \\simeq 2$ is required to bring $\\Delta \\Sigma$ in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.

  20. Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Anthonis, T. [Inter-Univ. Institute for High Energies ULB-VUB, Brussels (Belgium)]|[Antwerp Univ. (BE)] (and others)

    2006-10-15

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep{yields}eXY where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D{sup *{+-}}(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction ({gamma}p). In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in diffractive DIS and {gamma}p. (orig.)

  1. Multiple parton interactions in deep inelastic ep-scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Sakar

    2008-12-15

    The production of jets with low transverse momenta (mini-jets) in deep inelastic electron-proton scattering is studied. The analyses uses data taken with the H1 detector at HERA during the years 1999 to 2000. The events are required to contain either at least one leading jet of P{sub T}>5 GeV (the inclusive 1-jet sample) or at least two hard jets where one of them has to be at an angle larger than 140 degrees with respect to the leading jet (inclusive 2-jet sample). Mini-jet multiplicities and their average transverse momenta are presented as a function of Q{sup 2}, in two regions of psuedo-rapidity and for two bins in the hadronic mass, W for the inclusive 1-jet sample. For the inclusive 2-jet sample the results are shown for direct and resolved photon interactions in two bins of W. The results are compared to various QCD based models. A new method for calibrating jet energy measurements up to 10 GeV has been developed and its performance has been studied. (orig.)

  2. QCD and power corrections to sum rules in deep-inelastic lepton-nucleon scattering

    International Nuclear Information System (INIS)

    Ravindran, V.; Neerven, W.L. van

    2001-01-01

    In this paper we study QCD and power corrections to sum rules which show up in deep-inelastic lepton-hadron scattering. Furthermore we will make a distinction between fundamental sum rules which can be derived from quantum field theory and those which are of a phenomenological origin. Using current algebra techniques the fundamental sum rules can be expressed into expectation values of (partially) conserved (axial-)vector currents sandwiched between hadronic states. These expectation values yield the quantum numbers of the corresponding hadron which are determined by the underlying flavour group SU(n) F . In this case one can show that there exist an intimate relation between the appearance of power and QCD corrections. The above features do not hold for phenomenological sum rules, hereafter called non-fundamental. They have no foundation in quantum field theory and they mostly depend on certain assumptions made for the structure functions like super-convergence relations or the parton model. Therefore only the fundamental sum rules provide us with a stringent test of QCD

  3. Multijet production at low x{sub Bj} in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-05-15

    Inclusive dijet and trijet production in deep inelastic ep scattering has been measured for 10

  4. Production of D{sup *{+-}} mesons with dijets in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, A. [DESY, Hamburg (Germany); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); Anthonis, T. [Inter-Univ. Institute for High Energies ULB-VUB, Brussels (Belgium)]|[Antwerp Univ. (BE)] (and others)

    2006-12-15

    Inclusive D{sup *{+-}} production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D{sup *{+-}} meson is investigated. The analysis covers values of photon virtuality 2{<=}Q{sup 2}{<=}100 GeV{sup 2} and of inelasticity 0.05{<=}y{<=}0.7. Differential cross sections are measured as a function of Q{sup 2} and x and of various D{sup *{+-}} meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k{sub T}-unintegrated gluon distribution of the proton. (orig.)

  5. Measurement of beauty-production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Michels, Volker

    2008-09-15

    A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data was collected with the H1 detector at the HERA collider in the years 2005-2007 and corresponds to an integrated luminosity of 285 pb{sup -1}. Events are selected by requiring the presence of at least one jet together with a muon in the final state. The large mass of b-flavoured hadrons is exploited to identify events containing beauty quarks on a statistical basis. Single and double differential cross sections are measured in deep inelastic scattering, with photon virtualities 3.5

  6. Measurement of D*± meson production in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Bachynska, Olena

    2012-12-01

    Measurements of charm production in deep-inelastic scattering at HERA at a centre-of-mass energy of 318 GeV are reported in this thesis. The analysis was performed using the data collected with the ZEUS detector during the years 2004 to 2007, corresponding to an integrated luminosity of 363 pb -1 . The production of charm quarks was studied through the full kinematic reconstruction of D* ± mesons in the decay channel D* ± → D 0 / anti D 0 π ± . The studies have been performed for virtualities of the exchanged photon of 5 2 2 and inelasticities of 0.02 ± kinematic phase space is defined by the transverse momentum range, 1.5 T D* ± D* ± vertical stroke ± mesons. The total visible cross section for D* ± production as well as single-and double-differential cross sections were measured and compared to the corresponding D* ± measurements performed by the H1 collaboration in the same phase-space region. The measurements are well described by NLO QCD predictions. The double-differential cross sections were exploited to extract the charm contribution to the proton structure function, F 2 c anti c , expressed in terms of the reduced charm-production cross sections, σ red c anti c , and compared to the predictions from HERAPDF1.5 and to the recent measurements from the H1 and ZEUS collaborations.

  7. Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA

    CERN Document Server

    Aaron, F.D.; Andreev, V.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Belov, P.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Bruncko, D.; Bunyatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cvach, J.; Dainton, J.B.; Daum, K.; Delcourt, B.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Eliseev, A.; Elsen, E.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jonsson, L.; Jung, H.; Kapichine, M.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lopez-Fernandez, R.; Lubimov, V.; Malinovski, E.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nowak, K.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Pascaud, C.; Patel, G.D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sykora, T.; Thompson, P.D.; Tran, T.H.; Traynor, D.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.

    2012-01-01

    Inclusive e\\pmp single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of \\surds = 319GeV with a total integrated luminosity of 333.7 pb-1 shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative fourmomentum transfer squared, Q2, between 60 and 50 000GeV2, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF_3^gammaZ. A measurement of the neutral current parity violating structure function F_2^gammaZ is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusi...

  8. Charm production in charged current deep inelastic e{sup +}p scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.

    2006-03-15

    The measurement of charm production in charged current deep inelastic positron-proton scattering is investigated with the ZEUS detector at the HERA collider. The data used has been collected from 1995 to 2000, corresponding to an integrated luminosity of 110 pb{sup -1}. Charged D{sup *} mesons decaying in the channel D{sup *+}{yields}D{sup 0}{pi}{sup +}{sub s} with D{sup 0}{yields}K{sup -}{pi}{sup +} and the charge conjugated channel are reconstructed to tag charm quarks. The visible cross section for D{sup *}, {sigma}{sup D*}{sub vis}=12.8{+-}4.0(stat){sup +4.7}{sub -1.5}(sys) pb, is measured in the kinematic range of Q{sup 2}>200 GeV{sup 2} and y<0.9, and of p{sup D{sup *}}{sub T}>1.5 GeV and vertical stroke {eta}{sup D{sup *}} vertical stroke <1.5. The upper-limit for the charm production in the same DIS kinematic range is determined to be {sigma}{sup e{sup +}}{sup p{yields}} {sup anti} {sup {nu}{sub e}}{sup cX} < 109 pb at 90% confidence level. (orig.)

  9. Measurement of Jet Production Cross Sections in Deep-inelastic ep Scattering at HERA

    CERN Document Server

    Andreev, Vladimir; Begzsuren, Khurelbaatar; Belousov, Anatoli; Bolz, Arthur; Boudry, Vincent; Brandt, Gerhard; Brisson, Violette; Britzger, Daniel; Buniatyan, Armen; Bylinkin, Alexander; Bystritskaya, Lena; Campbell, Alan; Cantun Avila, Karla Beatriz; Cerny, Karel; Chekelian, Vladimir; Contreras, Guillermo; Cvach, Jaroslav; Dainton, John; Daum, Karin; Diaconu, Cristinel; Dobre, Monica; Dodonov, Vitaliy; Eckerlin, Guenter; Egli, Stephan; Elsen, Eckhard; Favart, Laurent; Fedotov, Alexandre; Feltesse, Joel; Ferencei, Jozef; Fleischer, Manfred; Fomenko, Alexander; Gabathuler, Erwin; Gayler, Joerg; Ghazaryan, Samvel; Goerlich, Lidia; Gogitidze, Nelly; Gouzevitch, Maxime; Grab, Christoph; Grebenyuk, Anastasia; Greenshaw, Timothy; Grindhammer, Guenter; Haidt, Dieter; Henderson, Rob~CW; Hladky, Jan; Hoffmann, Dirk; Horisberger, Roland; Hreus, Tomas; Huber, Florian; Jacquet, Marie; Janssen, Xavier; Jung, Hannes; Kapichine, Mikhail; Katzy, Judith; Kiesling, Christian; Klein, Max; Kleinwort, Claus; Kogler, Roman; Kostka, Peter; Kretzschmar, Jan; Kruecker, Dirk; Krueger, Katja; Landon, Murrough; Lange, Wolfgang; Laycock, Paul; Lebedev, Andrei; Levonian, Sergey; Lipka, Katerina; List, Benno; List, Jenny; Lobodzinski, Bogdan; Malinovski, Evgenij; Martyn, Hans-Ulrich; Maxfield, Steve~J; Mehta, Andrew; Meyer, Andreas; Meyer, Hinrich; Meyer, Joachim; Mikocki, Stanislav; Morozov, Anatoly; Mueller, Katharina; Naumann, Thomas; Newman, Paul~R; Niebuhr, Carsten; Nowak, Grazyna; Olsson, Jan~Erik; Ozerov, Dmitri; Pascaud, Christian; Patel, Girish; Perez, Emmanuelle; Petrukhin, Alexey; Picuric, Ivana; Pirumov, Hayk; Pitzl, Daniel; Placakyte, Ringaile; Polifka, Richard; Radescu, Voica; Raicevic, Natasa; Ravdandorj, Togoo; Reimer, Petr; Rizvi, Eram; Robmann, Peter; Roosen, Robert; Rostovtsev, Andrei; Rotaru, Marina; Salek, David; Sankey, Dave~PC; Sauter, Michel; Sauvan, Emmanuel; Schmitt, Stefan; Schoeffel, Laurent; Schoening, Andre; Sefkow, Felix; Shushkevich, Stanislav; Soloviev, Yuri; Sopicki, Pawel; South, David; Spaskov, Vladimir; Specka, Arnd; Steder, Michael; Stella, Bruno; Straumann, Ulrich; Sykora, Tomas; Thompson, Paul; Traynor, Daniel; Truoel, Peter; Tsakov, Ivan; Tseepeldorj, Baatar; Valkarova, Alice; Vallee, Claude; VanMechelen, Pierre; Vazdik, Iakov; Wegener, Dietrich; Wuensch, Eberhard; Zacek, Jozef; Zhang, Zhiqing; Zlebcik, Radek; Zohrabyan, Hamlet

    2017-04-04

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities $5.5

  10. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Gueta, O.; Kananov, S.; Levy, A.; Stern, A. [Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv (Israel); Abt, I.; Caldwell, A.; Schmidke, W.B.; Verbytskyi, A. [Max-Planck-Institut fuer Physik, Munich (Germany); Adamczyk, L.; Gach, G.; Guzik, M.; Kisielewska, D.; Przybycien, M. [AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Adamus, M.; Tymieniecka, T. [National Centre for Nuclear Research, Warsaw (Poland); Antonelli, S. [University, Bologna (Italy); INFN Bologna, Bologna (Italy); Aushev, V. [National Academy of Sciences, Institute for Nuclear Research, Kiev (Ukraine); National Taras Shevchenko University of Kyiv, Department of Nuclear Physics, Kiev (Ukraine); Aushev, Y.; Iudin, A.; Kadenko, I.; Kondrashova, N.; Kononenko, O.; Onishchuk, Yu.; Shevchenko, R.; Shkola, O.; Trofymov, A.; Viazlo, O.; Zakharchuk, N. [National Taras Shevchenko University of Kyiv, Department of Nuclear Physics, Kiev (Ukraine); Behnke, O.; Behrens, U.; Borras, K.; Ciesielski, R.; Dolinska, G.; Geiser, A.; Gizhko, A.; Grebenyuk, J.; Gregor, I.; Hain, W.; Januschek, F.; Klein, U.; Korol, I.; Koetz, U.; Kowalski, H.; Kuprash, O.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Myronenko, V.; Notz, D.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Schoerner-Sadenius, T.; Stefaniuk, N.; Szuba, J.; Turkot, O.; Wichmann, K.; Wolf, G.; Zenaiev, O. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Bertolin, A.; Dusini, S.; Longhin, A.; Stanco, L. [INFN Padova, Padua (Italy); Bloch, I. [Deutsches Elektronen-Synchrotron DESY, Zeuthen (Germany); Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O. [Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty (Kazakhstan); Brock, I.; Mergelmeyer, S.; Paul, E. [Physikalisches Institut der Universitaet Bonn, Bonn (Germany); Brook, N.H.; Wing, M. [University College London, Physics and Astronomy Department, London (United Kingdom); Brugnera, R.; Garfagnini, A.; Limentani, S. [Dipartimento di Fisica e Astronomia, Univ., Padua (Italy); INFN, Padua (Italy); Bruni, A.; Corradi, M. [INFN Bologna, Bologna (Italy); Bussey, P.J.; Saxon, D.H.; Skillicorn, I.O. [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Capua, M.; Schioppa, M.; Tassi, E. [Calabria University, Physics Department, Cosenza (Italy); INFN, Cosenza (Italy); Catterall, C.D. [York University, Department of Physics, Ontario (Canada); Chwastowski, J.; Figiel, J.; Krupa, B.; Stopa, P.; Zawiejski, L. [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Ciborowski, J.; Grzelak, G.; Nowak, R.J.; Perlanski, W.; Tomaszewska, J.; Zarnecki, A.F. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Cooper-Sarkar, A.M.; Devenish, R.C.E.; Walczak, R. [University of Oxford, Department of Physics, Oxford (United Kingdom); Corriveau, F. [McGill University, Department of Physics, Montreal, Quebec (Canada); Dementiev, R.K.; Gladilin, L.K.; Golubkov, Yu.A.; Korzhavina, I.A.; Levchenko, B.B.; Lukina, O.Yu.; Shcheglova, L.M.; Zotkin, D.S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Foster, B.; Gallo, E.; Klanner, R.; Kovalchuk, N.; Lohrmann, E.; Sztuk-Dambietz, J.; Szuba, D.; Turcato, M. [Hamburg University, Institute of Experimental Physics, Hamburg (Germany); Hochman, D.; Karshon, U. [Weizmann Institute, Department of Particle Physics and Astrophysics, Rehovot (Israel); Hori, R.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y. [Institute of Particle and Nuclear Studies, KEK, Tsukuba (Japan); Ibrahim, Z.A.; Jomhari, N.Z.; Mohamad Idris, F.; Mohammad Nasir, N.; Wan Abdullah, W.A.T. [Universiti Malaya, National Centre for Particle Physics, Kuala Lumpur (Malaysia); Iga, Y. [Polytechnic University, Tokyo (Japan); Ishitsuka, M.; Kuze, M.; Nobe, T. [Tokyo Institute of Technology, Department of Physics, Tokyo (JP); Kaur, M.; Kaur, P.; Singh, I. [Panjab University, Department of Physics, Chandigarh (IN); Kotanski, A.; Slominski, W. [Jagellonian University, Department of Physics, Krakow (PL); Ruspa, M. [Universita del Piemonte Orientale, Novara (IT); INFN, Turin (IT); Shyrma, Yu.; Zhmak, N. [National Academy of Sciences, Institute for Nuclear Research, Kiev (UA); Solano, A. [Universita di Torino (IT); INFN, Turin (IT); Tsurugai, T. [Meiji Gakuin University, Faculty of General Education, Yokohama (JP); Collaboration: ZEUS Collaboration

    2016-01-15

    Production of exclusive dijets in diffractive deep inelastic e{sup ±}p scattering has been measured with the ZEUS detector atHERAusing an integrated luminosity of 372 pb{sup -1}. The measurement was performed for γ* - p centre-of-mass energies in the range 90 < W < 250 GeV and for photon virtualities Q{sup 2} > 25 GeV{sup 2}. Energy flows around the jet axis are presented. The cross section is presented as a function of β and φ, where β = x/x{sub P}, x is the Bjorken variable and x{sub P} is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ*-dijet plane and the γ*-e{sup ±} plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange. (orig.)

  11. Multiple parton interactions in deep inelastic ep-scattering at HERA

    International Nuclear Information System (INIS)

    Osman, Sakar

    2008-12-01

    The production of jets with low transverse momenta (mini-jets) in deep inelastic electron-proton scattering is studied. The analyses uses data taken with the H1 detector at HERA during the years 1999 to 2000. The events are required to contain either at least one leading jet of P T >5 GeV (the inclusive 1-jet sample) or at least two hard jets where one of them has to be at an angle larger than 140 degrees with respect to the leading jet (inclusive 2-jet sample). Mini-jet multiplicities and their average transverse momenta are presented as a function of Q 2 , in two regions of psuedo-rapidity and for two bins in the hadronic mass, W for the inclusive 1-jet sample. For the inclusive 2-jet sample the results are shown for direct and resolved photon interactions in two bins of W. The results are compared to various QCD based models. A new method for calibrating jet energy measurements up to 10 GeV has been developed and its performance has been studied. (orig.)

  12. Search for QCD-instanton-induced processes in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Sievers, M.

    2000-07-01

    A limit on the QCD instanton induced cross section has been determined using the data recorded by the ZEUS detector during the year 1997, with a total integrated luminosity of 26 pb -1 . Deep inelastic scattering events were selected, requiring Q 2 > 75 GeV 2 and x > 10 -3 . Cuts to enrich the instanton fraction (final cuts) have been devised: They are the jet transverse momentum, the reconstructed Q '2 , the transverse energy, the mass and the multiplicity of the instanton candidate. The best strategy to determine a limit on fraction of the instanton candidates among the events after the final cuts has turned out to be a fit to the sphericity distributions. The upper limit at 95% confidence level of the fraction of instanton events in the DIS sample, including systematic errors, is f lim,Hrw = 12% for the Herwig Monte Carlo program. Using the Ariadne Monte Carlo program yields a limit of f lim,Ari = 8.2%. These limits have to be compared to the value predicted by theory (QCDINS 1.6) of: f = 6.2% A second, independent, method relying on the best strategy of cuts was not as sensitive and gave weaker limits. (orig.)

  13. Measurement of D mesons production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chakanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-04-15

    Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb{sup -1}. Charm has been tagged by reconstructing D{sup *+}, D{sup 0}, D{sup +} and D{sup +}{sub s} (+c.c.) charm mesons. The charm hadrons were measured in the kinematic range p{sub T}(D{sup *+},D{sup 0},D{sup +})>3 GeV, p{sub T}(D{sup +}{sub s})>2 GeV and vertical stroke {eta}(D) vertical stroke <1.6 for 1.5

  14. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y.; Baghdasaryan, A.; Zohrabyan, H.; Begzsuren, K.; Ravdandorj, T.; Bolz, A.; Huber, F.; Sauter, M.; Schoening, A.; Boudry, V.; Specka, A.; Brandt, G.; Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F.; Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E.; Buniatyan, A.; Newman, P.R.; Thompson, P.D.; Bylinkin, A.; Bystritskaya, L.; Fedotov, A.; Avila, K.B.C.; Contreras, J.G.; Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R.; Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B.; Cvach, J.; Hladky, J.; Reimer, P.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Vallee, C.; Dobre, M.; Rotaru, M.; Egli, S.; Horisberger, R.; Ozerov, D.; Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van; Feltesse, J.; Schoeffel, L.; Ferencei, J.; Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P.; Gouzevitch, M.; Petrukhin, A.; Grab, C.; Henderson, R.C.W.; Jung, H.; Kapichine, M.; Morozov, A.; Spaskov, V.; Kogler, R.; Landon, M.P.J.; Rizvi, E.; Traynor, D.; Lange, W.; Naumann, T.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; Perez, E.; Picuric, I.; Raicevic, N.; Polifka, R.; Radescu, V.; Rostovtsev, A.; Sankey, D.P.C.; Sauvan, E.; Shushkevich, S.; Soloviev, Y.; Stella, B.; Sykora, T.; Tsakov, I.; Tseepeldorj, B.; Wegener, D.

    2017-01-01

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q"2 < 80 GeV"2 and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb"-"1. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q"2. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q"2-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q"2 < 15,000 GeV"2 are extended to low transverse jet momenta 5 < P_T"j"e"t < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q"2, the strong coupling constant α_s(M_Z) is determined in next-to-leading order. (orig.)

  15. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-01-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6 Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the (n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6 Li-glass neutron detector and γ detector configurations

  16. Resolution function in deep inelastic neutron scattering using the Foil Cycling Technique

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Andreani, C.; Filabozzi, A.; Pace, E.; Senesi, R.

    2007-01-01

    New perspectives for epithermal neutron spectroscopy are being opened up by the development of the Resonance Detector (RD) and its use on inverse geometry time of flight (TOF) spectrometers at spallation sources. The most recent result is the Foil Cycling Technique (FCT), which has been developed and applied on the VESUVIO spectrometer operating in the RD configuration. This technique has demonstrated its capability to improve the resolution function of the spectrometer and to provide an effective neutron and gamma background subtraction method. This paper reports a detailed analysis of the line shape of the resolution function in Deep Inelastic Neutron Scattering (DINS) measurements on VESUVIO spectrometer, operating in the RD configuration and employing the FCT. The aim is to provide an analytical approximation for the analyzer energy transfer function, an useful tool for data analysis on VESUVIO. Simulated and experimental results of DINS measurements on a lead sample are compared. The line shape analysis shows that the most reliable analytical approximation of the energy transfer function is a sum of a Gaussian and a power of a Lorentzian. A comparison with the Double Difference Method (DDM) is also discussed. It is shown that the energy resolution improvement for the FCT and the DDM is almost the same, while the counting efficiency is a factor of about 1.4 higher for the FCT

  17. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    Science.gov (United States)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.

  18. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A. E-mail: antonino.pietropaolo@roma2.infn.it; Senesi, R

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH{sub 2} samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing {sup 6}Li-glass neutron detectors and NaI {gamma} detectors revealing the {gamma}-ray cascade from the (n,{gamma}) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both {sup 6}Li-glass neutron detector and {gamma} detector configurations.

  19. Inclusive D*± meson and associated dijet production in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, V.

    2007-01-01

    Inclusive D *± production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D *± meson is investigated. The analysis covers values of photon virtuality 2≤Q 2 ≤100 GeV 2 and of inelasticity 0.05≤y≤0.7. Differential cross sections are measured as a function of Q 2 and x and of various D *± meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k T -unintegrated gluon distribution of the proton. (orig.)

  20. KS0 production at high Q2 in deep inelastic ep scattering at H1

    International Nuclear Information System (INIS)

    Ruiz Tabasco, Julia Elizabeth

    2010-12-01

    The production of K S 0 mesons is studied using deep-inelastic scattering events (DIS) recorded with the H1 detector at the HERA ep collider. The measurements are performed in the phase space defined by the four-momentum transfer squared of the photon, 145 GeV 2 2 . The differential production cross sections of the K S 0 meson are presented as function of the kinematic variables Q 2 and x, the transverse momentum p T and the pseudorapidity η of the particle in laboratory frame, and as function of the momentum fraction x p BF and transverse momentum p T BF in the Breit Frame. Moreover, the K S 0 production rate is compared to the production of charged particles and to the production of DIS events in the same region of phase space. The data are compared to theoretical predictions, based on leading order Monte Carlo programs with matched parton showers. The Monte Carlo models are also used for studies of the flavour contribution to the K S 0 production and parton density function dependence. (orig.)

  1. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2006-12-01

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q 2 >125 GeV 2 with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb -1 . Jets were identified in the Breit frame using the k T cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q 2 and the jet transverse energy, E T,B jet . The dependence on R of the inclusive-jet cross section has been measured for Q 2 > 125 and 500 GeV 2 and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5 s (M Z ) has been extracted from the measurements of the inclusive-jet cross-section dσ/dQ 2 with R=1 for Q 2 > 500 GeV 2 : α s (M Z )=0.1207±0.0014(stat.) -0.0028 +0.0030 (exp.) -0.0 023 +0.0022 (th.). The variation of α s with E T,B jet is in good agreement with the running of α s as predicted by QCD. (orig.)

  2. Measurement of isolated photons accompained by jets in deep inelastic ep scattering

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2012-06-15

    The production of isolated high-energy photons accompanied by jets has been measured in deep inelastic ep scattering with the ZEUS detector at HERA, using an integrated luminosity of 326 pb{sup -1}. Measurements were made for exchanged photon virtualities, Q{sup 2}, in the range 10 to 350 GeV{sup 2}. The photons were measured in the transverse-energy and pseudorapidity ranges 4

  3. Multijet production at low xBj in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-05-01

    Inclusive dijet and trijet production in deep inelastic ep scattering has been measured for 10 2 2 and low Bjorken x, 10 -4 Bj -2 . The data were taken at the HERA ep collider with centre-of-mass energy √(s)=318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82 pb -1 . Jets were identified in the hadronic centre-of-mass (HCM) frame using the k T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of dijet and trijet differential cross sections are presented as functions of Q 2 , x Bj , jet transverse energy, and jet pseudorapidity. As a further examination of low-x Bj dynamics, multi-differential cross sections as functions of the jet correlations in transverse momenta, azimuthal angles, and pseudorapidity are also presented. Calculations at O(α 3 s ) generally describe the trijet data well and improve the description of the dijet data compared to the calculation at O(α 2 s ). (orig.)

  4. The Hadronic Final State in Deep Inelastic ep Scattering at Low Bjorken-x at HERA

    International Nuclear Information System (INIS)

    Goerlich, L.M.

    2006-01-01

    The electron-proton collider HERA with centre of mass system energy of about 300 GeV has extended the available kinematic regime in deep inelastic scattering to low values of Bjorken-x (10 -5 -10 -3 ) and made possible studies of the QCD dynamics in this region. The processes in which partons carry a very small fraction of the proton momentum may show deviations from the standard DGLAP dynamics and it is believed that their correct description is provided by the BFKL evolution formalism. Low x phenomena have been initially studied with the HERA data on F 2 structure function and later with more exclusive measurements of the hadronic final state. In this report recent results of these studies and especially dedicated measurements of jets and π 0 mesons, produced close to the proton remnant, are reviewed. The data are used to discriminate between QCD models with different parton evolution approximations. For completeness, measurements at e + e - and p-p colliders sensitive to the BFKL dynamics are also described. (author)

  5. Production of D*± mesons with dijets in deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, T.

    2006-12-01

    Inclusive D *± production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D *± meson is investigated. The analysis covers values of photon virtuality 2≤Q 2 ≤100 GeV 2 and of inelasticity 0.05≤y≤0.7. Differential cross sections are measured as a function of Q 2 and x and of various D *± meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k T -unintegrated gluon distribution of the proton. (orig.)

  6. Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Alexakhin, V.Yu.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Yu.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Yu.; Zemlyanichkina, E.; Zhuravlev, N. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexandrov, Yu.; Zavertyaev, M. [Lebedev Physical Institute, Moscow (Russian Federation); Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S. [University of Turin, Department of Physics (Italy); Torino Section of INFN, Turin (Italy); Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d' ; Kunne, F.; Magnon, A.; Marchand, C.; Morreale, A.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Austregesilo, A.; Bicker, K. [CERN, Geneva 23 (Switzerland); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Badelek, B. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Barth, J.; Bieling, J.; Goertz, S.; Klein, F.; Panknin, R.; Pretz, J.; Windmolders, R. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany); Baum, G. [Universitaet Bielefeld, Fakultaet fuer Physik, Bielefeld (Germany); Berlin, A.; Gautheron, F.; Hess, C.; Kisselev, Yu.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L. [Universitaet Bochum, Institut fuer Experimentalphysik, Bochum (Germany); Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Kang, D.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R.; Schmiden, H. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M. [LIP, Lisbon (Portugal); Bradamante, F.; Bressan, A.; Duic, V.; Elia, C.; Giorgi, M.; Levorato, S.; Martin, A.; Sbrizzai, G.; Schiavon, P. [University of Trieste, Department of Physics (Italy); Trieste Section of INFN, Trieste (Italy); Buechele, M.; Fischer, H.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Koenigsmann, K.; Nerling, F.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Ter Wolbeek, J. [Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Mann, A.; Nagel, T.; Neubert, S.; Paul, S.; Schmitt, L.; Uhl, S. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Cicuttin, A.; Crespo, M.L. [Abdus Salam ICTP, Trieste (Italy); Trieste Section of INFN, Trieste (Italy); Dasgupta, S.; Sarkar, S.; Sinha, L. [Matrivani Institute of Experimental Research and Education, Calcutta (India); Denisov, O.Yu.; Maggiora, A.; Takekawa, S. [Torino Section of INFN, Turin (Italy); Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D. [State Research Center of the Russian Federation, Institute for High Energy Physics, Protvino (Russian Federation); Doshita, N.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Suzuki, H. [Yamagata University, Yamagata (Japan); Duennweber, W.; Faessler, M.; Geyer, R.; Rajotte, J.F.; Schlueter, T.; Uman, I. [Ludwig-Maximilians-Universitaet Muenchen, Department fuer Physik, Munich (Germany); Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Zaremba, K.; Ziembicki, M. [Warsaw University of Technology, Institute of Radioelectronics, Warsaw (Poland); Finger, M.; Finger, M.; Slunecka, M. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Du Fresne von Hohenesche, N. [CERN, Geneva 23 (Switzerland); Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany); Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M. [CERN, Geneva 23 (Switzerland); Gerassimov, S.; Konorov, I. [Lebedev Physical Institute, Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Horikawa, N. [Nagoya University, Nagoya (Japan); Jary, V.; Novy, J.; Virius, M. [Czech Technical University in Prague, Prague (Czech Republic); Klimaszewski, K.; Kurek, K.; Rondio, E.; Sandacz, A.; Sulej, R.; Sznajder, P.; Wislicki, W. [National Centre for Nuclear Research, Warsaw (Poland); Kouznetsov, O. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Lichtenstadt, J. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Makke, N. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); University of Trieste, Department of Physics (Italy); Trieste Section of INFN, Trieste (Italy); Matsuda, T. [University of Miyazaki, Miyazaki (Japan); Panzieri, D. [Torino Section of INFN, Turin (Italy); University of Eastern Piedmont, Alessandria (Italy); Polak, J. [Technical University in Liberec, Liberec (Czech Republic); University of Trieste, Department of Physics (Italy); Trieste Section of INFN, Trieste (Italy); Srnka, A. [AS CR, Institute of Scientific Instruments, Brno (Czech Republic); Sulc, M. [Technical University in Liberec, Liberec (Czech Republic)

    2013-08-15

    Multiplicities of charged hadrons produced in deep inelastic muon scattering off a {sup 6}LiD target have been measured as a function of the DIS variables x{sub Bj}, Q{sup 2}, W{sup 2} and the final state hadron variables p{sub T} and z. The p{sub T}{sup 2} distributions are fitted with a single exponential function at low values of p{sub T}{sup 2} to determine the dependence of left angle p{sub T}{sup 2} right angle on x{sub Bj}, Q{sup 2}, W{sup 2} and z. The z-dependence of left angle p{sub T}{sup 2} right angle is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, left angle k {sub perpendicular} {sub to} {sup 2} right angle, as a function of x{sub Bj} and Q{sup 2} in a leading order QCD parton model. (orig.)

  7. Measurement of jet production cross sections in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (Mongolia); Bolz, A.; Huber, F.; Sauter, M.; Schoening, A. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Britzger, D.; Campbell, A.J.; Dodonov, V.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Haidt, D.; Katzy, J.; Kleinwort, C.; Kruecker, D.; Krueger, K.; Levonian, S.; Lipka, K.; List, B.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Olsson, J.E.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; South, D.; Steder, M.; Wuensch, E. [DESY, Hamburg (Germany); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bylinkin, A. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Avila, K.B.C.; Contreras, J.G. [CINVESTAV, Departamento de Fisica Aplicada, Merida, Yucatan (Mexico); Cerny, K.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B. [Max-Planck-Institut fuer Physik, Munich (Germany); Cvach, J.; Hladky, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics (United Kingdom); Daum, K.; Meyer, H. [Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (France); Dobre, M.; Rotaru, M. [Horia Hulubei National Institute for R and D in Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Egli, S.; Horisberger, R.; Ozerov, D. [Paul Scherrer Institute, Villigen (Switzerland); Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); Feltesse, J.; Schoeffel, L. [Irfu/SPP, CE Saclay, Gif-sur-Yvette (France); Ferencei, J. [Nuclear Physics Institute of the CAS, Rez (Czech Republic); Goerlich, L.; Mikocki, S.; Nowak, G.; Sopicki, P. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Gouzevitch, M.; Petrukhin, A. [IPNL, Universite Claude Bernard Lyon 1, CNRS/IN2P3, Villeurbanne (France); Grab, C. [Institut fuer Teilchenphysik, ETH, Zurich (Switzerland); Henderson, R.C.W. [University of Lancaster, Department of Physics (United Kingdom); Jung, H. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (Belgium); DESY, Hamburg (Germany); Kapichine, M.; Morozov, A.; Spaskov, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kogler, R. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany); Landon, M.P.J.; Rizvi, E.; Traynor, D. [University of London, School of Physics and Astronomy, Queen Mary, London (United Kingdom); Lange, W.; Naumann, T. [DESY, Zeuthen (Germany); Martyn, H.U. [I. Physikalisches Institut der RWTH, Aachen (Germany); Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P. [Physik-Institut der Universitaet Zuerich, Zurich (Switzerland); Perez, E. [CERN, Geneva (Switzerland); Picuric, I.; Raicevic, N. [University of Montenegro, Faculty of Science, Podgorica (Montenegro); Polifka, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); University of Toronto, Department of Physics, Toronto, ON (CA); Radescu, V. [Oxford University, Department of Physics, Oxford (GB); Rostovtsev, A. [Institute for Information Transmission Problems RAS, Moscow (RU); Sankey, D.P.C. [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire (GB); Sauvan, E. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (FR); Universite de Savoie, LAPP, Annecy-le-Vieux (FR); Shushkevich, S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (RU); Soloviev, Y. [DESY, Hamburg (DE); Lebedev Physical Institute, Moscow (RU); Stella, B. [Dipartimento di Fisica Universita di Roma Tre (IT); INFN Roma 3, Rome (IT); Sykora, T. [Brussels and Universiteit Antwerpen, Inter-University Institute for High Energies ULB-VUB, Antwerp (BE); Charles University, Faculty of Mathematics and Physics, Praha (CZ); Tsakov, I. [Institute for Nuclear Research and Nuclear Energy, Sofia (BG); Tseepeldorj, B. [Academy of Sciences, Institute of Physics and Technology of the Mongolian, Ulaanbaatar (MN); Ulaanbaatar University, Ulaanbaatar (MN); Wegener, D. [Institut fuer Physik, TU Dortmund, Dortmund (DE); Collaboration: H1 Collaboration

    2017-04-15

    A precision measurement of jet cross sections in neutral current deep-inelastic scattering for photon virtualities 5.5 < Q{sup 2} < 80 GeV{sup 2} and inelasticities 0.2 < y < 0.6 is presented, using data taken with the H1 detector at HERA, corresponding to an integrated luminosity of 290 pb{sup -1}. Double-differential inclusive jet, dijet and trijet cross sections are measured simultaneously and are presented as a function of jet transverse momentum observables and as a function of Q{sup 2}. Jet cross sections normalised to the inclusive neutral current DIS cross section in the respective Q{sup 2}-interval are also determined. Previous results of inclusive jet cross sections in the range 150 < Q{sup 2} < 15,000 GeV{sup 2} are extended to low transverse jet momenta 5 < P{sub T}{sup jet} < 7 GeV. The data are compared to predictions from perturbative QCD in next-to-leading order in the strong coupling, in approximate next-to-next-to-leading order and in full next-to-next-to-leading order. Using also the recently published H1 jet data at high values of Q{sup 2}, the strong coupling constant α{sub s}(M{sub Z}) is determined in next-to-leading order. (orig.)

  8. Measurement of the diffractive structure function in deep inelastic scattering hat HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-05-01

    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in ep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck quark with respect to x IP , and of Q 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30-±0.80(stat) -0.14 +0.08 (sys) in all bins of βand Q 2 . In the measured Q 2 range, the diffractive structure function approximately scales with Q 2 at fixed β. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule. (orig.)

  9. Longitudinal-Transverse Separation of Deep-Inelastic Scattering at Low Q² on Nucleons and Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tvaskis, Vladas [Vrije Univ., Amsterdam (Netherlands)

    2004-12-06

    Since the early experiments at SLAC, which discovered the nucleon substructure and led to the development of the quark parton model, deep inelastic scattering (DIS) has been the most powerful tool to investigate the partonic substructure of the nucleon. After about 30 years of experiments with electron and muon beams the nucleon structure function F2(x,Q2) is known with high precision over about four orders of magnitude in x and Q2. In the region of Q2 > 1 (GeV/c)2 the results of the DIS measurements are interpreted in terms of partons (quarks and gluons). The theoretical framework is provided in this case by perturbative Quantum Chromo Dynamics (pQCD), which includes scaling violations, as described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations. The description starts to fail when Q2 becomes of the order of 1 (GeV/c)2, where non-perturbative effects (higher-twist effects), which are still not fully understood, become important (non-pQCD). The sensitivity for order-n twist effects increases with decreasing Q2, since they include a factor 1/(Q2n) (n ≥ 1).

  10. Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of $\\alpha_{s}$

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazarian, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Chernyshov, V.; Chetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vichnevski, A.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2001-01-01

    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows ...

  11. Search for QCD Instanton-Induced Processes in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Carli, T.; Caron, S.; Cassol-Brunner, F.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, J.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kuhr, T.; Kurca, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Malinovski, I.; Mangano, S.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Swart, M.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vest, A.; Vichnevski, A.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2002-01-01

    Signals of QCD instanton-induced processes are searched for in deep-inelastic scattering (DIS) at the electron-proton collider HERA in a kinematic region defined by the Bjorken-scaling variables x > 10^(-3), 0.1 < y < 0.6 and photon virtualities 10 <= Q^2 < 100GeV^2. Several observables characterising hadronic final state properties of QCD instanton-induced events are exploited to identify a potentially instanton-enriched domain. While an excess of events with instanton-like topology over the expectation of the standard DIS background is observed it can not be claimed to be significant given the uncertainty of the simulation. Upper limits on the cross-section for instanton-induced processes of between 60pb and 1000pb are set dependent on the kinematic domain considered. The data do not exclude the cross-section predicted by instanton perturbation theory for small instanton sizes. At large instanton sizes a naive extrapolation of instanton perturbation theory yields a cross-section in the range of ...

  12. Measurement of azimuthal asymmetries in neutral current deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2007-01-01

    The distribution of the azimuthal angle of charged and neutral hadrons relative to the lepton plane has been studied for neutral current deep inelastic ep scattering using an integrated luminosity of 45 pb -1 taken with the ZEUS detector. The kinematic range is 100 2 2 , 0.2 2 is the virtuality of the exchanged boson, y is the inelasticity and x is the Bjorken variable. The measurements were made in the hadronic centre-of-mass system. The analysis exploits the energy-flow method, which allows the measurement to be made over a larger range of pseudorapidity compared to previous results. The dependence of the moments of the azimuthal distributions on the pseudorapidity and minimum transverse energy of the final-state hadrons are presented. Although the predictions from next-to-leading-order QCD describe the data better than do the Monte Carlo models incorporating leading-logarithm parton showers, they still fail to describe the magnitude of the asymmetries. This suggests that higher-order calculations may be necessary to describe these data. (orig.)

  13. Measurement of charm and beauty jets in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Univ. Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, Birmingham (United Kingdom)] [and others

    2011-01-15

    Measurements of cross sections for events with charm and beauty jets in deep inelastic scattering at HERA are presented. Events with jets of transverse energy E{sub T}{sup jet}>6 GeV and pseudorapidity -1.0<{eta}{sup jet}<1.5 in the laboratory frame are selected in the kinematic region of photon virtuality Q {sup 2}>6 GeV{sup 2} and inelasticity variable 0.076 GeV. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb{sup -1}. The numbers of charm and beauty jets are determined using variables reconstructed using the H1 vertex detector with which the impact parameters of the tracks to the primary vertex and the position of secondary vertices are measured. The measurements are compared with QCD predictions and with previous measurements where heavy flavours are identified using muons. (orig.)

  14. Measurement of beauty-production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Michels, Volker

    2008-09-01

    A measurement of the beauty production cross section in ep collisions at a centre-of-mass energy of 319 GeV is presented. The data was collected with the H1 detector at the HERA collider in the years 2005-2007 and corresponds to an integrated luminosity of 285 pb -1 . Events are selected by requiring the presence of at least one jet together with a muon in the final state. The large mass of b-flavoured hadrons is exploited to identify events containing beauty quarks on a statistical basis. Single and double differential cross sections are measured in deep inelastic scattering, with photon virtualities 3.5 2 2 . The results are compared to perturbative QCD calculations. The next-to-leading order prediction is 1.8σ below the measurement. The deficiencies of the prediction are found in the forward direction of the muon, which is defined by the direction of the proton beam, and at low transverse momenta of the muon and jet. The leading-order predictions, which are augmented by parton showers, describe the shape of the measurements very well, but not the normalization. The predictions are about a factor two too low, which is compatible with the next-to-leading order prediction. (orig.)

  15. Bound-state wave functions at rest in describing deep inelastic scattering

    International Nuclear Information System (INIS)

    Khvedelidze, A.M.; Kvinikhidze, A.N.

    1991-01-01

    The deep inelastic process of the lepton-hadron scattering is studied in the bound-state rest frame. A new version of expanding structure functions in interaction constant powers is proposed, each term in it having spectral properties. This expansion makes it possible to consider contributions of composites in the final state to the cross section. It is shown that, as compared with the system P z →∞, the impulse approximation is insufficient for describing correctly the elastic limit in the composite particle rest frame. The leading asymptotics of structure functions as χ Bj →1 can be obtained by taking into account the interaction of contituents in the final state. It is shown that in contrast to the 'light-cone' formalism the ratio F 2 en (χ)/F 2 ep (χ) as χ Bj →1 depends on the explicit form of the spatial part of the nucleon wave function and, in particular, assuming the relativistic character of internal motion, it may be lower than the well-known prediction (i.e. 3/7). This is due to the correct consideration of spin degrees of freedom of the wave function of the nucleon at rest. (orig.)

  16. Deep inelastic scattering in formalism with wave functions of rest compound system

    International Nuclear Information System (INIS)

    Sisakyan, A.N.; Kvinikhidze, A.N.; Khvedelidze, A.M.

    1987-01-01

    One of the most simple examples of interaction of compound systems: deep inelastic scattering of the point particle on hadron is considered. By choosing the compound particle (hadron) rest system the corresponding cross section is expressed in terms of more usual from the view point of nonrelativistic quantum mechanics wave functions of the rest bound state. A new variant of structure functions expansion into a series in terms of the coupling constant is suggested. Each therm of a series due to correct account of the energy conservation law in any order of the perturbation theory possess spectral property. Analysis in QCD shows that in the bound state rest system (P-vector=0) the pulse approximation though satisfies the requirements of scale invariance is insufficient for correct description of elastic limit x Bj →1 by contrast to P Z →∞ system. It means that parton model is equivalent to pulse approximation only in P Z →∞ system. To obtain the leading in asymptotic region x Bj →1 terms account of component interaction in the finite state is necessary. The simplicity and physical evidence of the wave functions are attained due to the seeming complication of calculations according to the perturbation theory

  17. Flavour Separation of Helicity Distributions from Deep Inelastic Muon-Deuteron Scattering

    CERN Document Server

    Alekseev, M.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Ball, J.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Bravar, A.; Bressan, A.; Brona, G.; Burtin, E.; Bussa, M.P.; Chapiro, A.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Colantoni, M.; Crespo, M.L.; Dalla Torre, S.; Dafni, T.; Das, S.; Dasgupta, S.S.; Denisov, O.Yu.; Dhara, L.; Diaz, V.; Dinkelbach, A.M.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; El Alaoui, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; Friedrich, J.M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Haas, F.; Hagemann, R.; von Harrach, D.; Hasegawa, T.; Heckmann, J.; Heinsius, F.H.; Hermann, R.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ilgner, C.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kafer, W.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kiefer, J.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konopka, R.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kowalik, K.; Kramer, M.; Kral, A.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Le Goff, J.M.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Mann, A.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Massmann, F.; Matsuda, T.; Maximov, A.N.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J.; Negrini, S.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pawlukiewicz-Kaminska, B.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pontecorvo, G.; Pretz, J.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Reggiani, D.; Richter, A.; Robinet, F.; Rocco, E.; Rondio, E.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Santos, H.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schmitt, L.; Schroder, W.; Shevchenko, O.Yu.; Siebert, H.W.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Takekawa, S.; Tessaro, S.; Tessarotto, F.; Teufel, A.; Tkatchev, L.G.; Venugopal, G.; Virius, M.; Vlassov, N.V.; Vossen, A.; Weitzel, Q.; Wenzl, K.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhao, J.; Zhuravlev, N.; Zvyagin, A.

    2009-01-01

    We present a LO evaluation of helicity densities of valence, \\Delta u_v+\\Delta d_v, non-strange sea, \\Delta\\bar{u}+\\Delta\\bar{d}, and strange quarks, \\Delta s (assumed to be equal to \\Delta\\bar{s}). They have been obtained from the inclusive asymmetry A_{3,d} and the semi-inclusive asymmetries A^{\\pi+}_{1,d}, A^{\\pi-}_{1,d}, A^{K+}_{1,d}, A^{K-}_{1,d} measured in polarised deep inelastic muon-deuteron scattering. The full deuteron statistics of COMPASS (years 2002-2004 and 2006) has been used. The data cover the range Q^2 > 1 (GeV/c)^2 and 0.004

  18. Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering

    CERN Document Server

    Braun, Christopher

    Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f q 1 ( x ) , the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g q 1 ( x ) and the transversity distribution h q 1 ( x ) . The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro- magnetic probes off (un)pola...

  19. Inclusive charged particle distributions in deep inelastic scattering events at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-11-01

    A measurement of inclusive charged particle distributions in deep inelastic ep scattering for γ * p centre-of-mass energies 75 2 2 from the ZEUS detector at HERA is presented. The differential charged particle rates in the γ*p centre-of-mass system as a function of the scaled longitudinal momentum, x F , and of the transverse momentum, p* t and t 2 >, as a function of x F , W and Q 2 are given. Separate distributions are shown for events with (LRG) and without (NRG) a rapidity gap with respect to the proton direction. The data are compared with results from experiments at lower beam energies, with the naive quark parton model and with parton models including perturbative QCD corrections. The comparison shows the importance of the higher order QCD processes. Significant differences of the inclusive charged particle rates between NRG and LRG events at the same W are observed. The value of t 2 > for LRG events with a hadronic mass M X , which excludes the forward produced baryonic system, is similar to the t 2 > value observed in fixed target experiments at W∼M X . (orig.)

  20. Diffractive open charm production in deep-inelastic scattering and photoproduction at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-03-01

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep→eXY where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D*±(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction (γp). In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in diffractive DIS and γp.

  1. Measurement of isolated photon production in deep-inelastic scattering at HERA

    Science.gov (United States)

    Aaron, F. D.; Aktas, A.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2008-04-01

    The production of isolated photons in deep-inelastic scattering ep→eγX is measured with the H1 detector at HERA. The measurement is performed in the kinematic range of negative four-momentum transfer squared 450 GeV. The analysis is based on a total integrated luminosity of 227 pb-1. The production cross section of isolated photons with a transverse energy in the range 3

  2. Measurement of Isolated Photon Production in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Andreev, V.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salek, D.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2008-01-01

    The production of isolated photons in deep-inelastic scattering $ep\\to e \\gamma X$ is measured with the H1 detector at HERA. The measurement is performed in the kinematic range of negative four-momentum transfer squared $450$ GeV. The analysis is based on a total integrated luminosity of 227~pb$^{-1}$. The production cross section of isolatedphotons with a transverse energy in the range $3 < E_T^\\gamma < 10$ GeV and pseudorapidity range $-1.2 < \\eta^\\gamma < 1.8$ is measured as a function of $E_T^\\gamma$, $\\eta^\\gamma$ and $Q^2$. Isolated photon cross sections are also measured for events with no jets or at least one hadronic jet. The measurements are compared with predictions from Monte Carlo generators modelling the photon radiation from the quark and the electron lines, as well as with calculations at leading and next to leading order in the strong coupling. The predictions significantly underestimate the measured cross sections.

  3. Diffractive Open Charm Production in Deep-Inelastic Scattering and Photoproduction at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truoel, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Measurements are presented of diffractive open charm production at HERA. The event topology is given by ep -> eX Y where the system X contains at least one charmed hadron and is well separated by a large rapidity gap from a leading low-mass proton remnant system Y. Two analysis techniques are used for the cross section measurements. In the first, the charm quark is tagged by the reconstruction of a D*(2010) meson. This technique is used in deep-inelastic scattering (DIS) and photoproduction. In the second, a method based on the displacement of tracks from the primary vertex is used to measure the open charm contribution to the inclusive diffractive cross section in DIS. The measurements are compared with next-to-leading order QCD predictions based on diffractive parton density functions previously obtained from a QCD analysis of the inclusive diffractive cross section at H1. A good agreement is observed in the full kinematic regime, which supports the validity of QCD factorization for open charm production in...

  4. Inclusive D*± meson and associated dijet production in deep-inelastic scattering at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-07-01

    Inclusive D*± production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D*± meson is investigated. The analysis covers values of photon virtuality 2 ≤ Q2 ≤ 100 GeV2 and of inelasticity 0.05≤y≤0.7. Differential cross sections are measured as a function of Q2 and x and of various D*± meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the kT-unintegrated gluon distribution of the proton.

  5. Diffractive Deep-Inelastic Scattering with a Leading Proton at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, Marcel; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    The cross section for the diffractive deep-inelastic scattering process $ep \\to e X p$ is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range \\xpom <0.1 in fractional proton longitudinal momentum loss, 0.08 < |t| < 0.5 GeV^{-2} in squared four-momentum transfer at the proton vertex, 2 < Q^2 < 50 GeV^2 in photon virtuality and 0.004 < \\beta = x / \\xpom < 1, where x is the Bjorken scaling variable. For $\\xpom \\lapprox 10^{-2}$, the differential cross section has a dependence of approximately ${\\rm d} \\sigma / {\\rm d} t \\propto e^{6 t}$, independently of \\xpom, \\beta and Q^2 within uncertainties. The cross section is also measured triple differentially in \\xpom, \\beta and Q^2. The \\xpom dependence is interpreted in terms of an effective pomeron trajectory with intercept $\\alpha_{\\pom}(0)=1.114 \\pm 0.018 ({\\rm stat.}) \\pm 0.012 ({\\rm syst.}) ^{+0.040}_{-0.020} ({\\rm model})$ and a sub-leading exchange. The data are in...

  6. Measurement and QCD Analysis of the Diffractive Deep-Inelastic Scattering Cross Section at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Coppens, Y.R.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.L.; Johnson, D.P.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-01-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \\xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \\leq Q^2 \\leq 1600 \\rm GeV^2$, triple differentially in $\\xpom$, $Q^2$ and $\\beta = x / \\xpom$, where $x$ is the Bjorken scaling variable. At low $\\xpom$, the data are consistent with a factorisable $\\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\\alphapom(0)= 1.118 \\pm 0.008 {\\rm (exp.)} ^{+0.029}_{-0.010} {\\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\\beta$ dependences of the cross section. The res...

  7. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G.; Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y.; Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N.; Baghdasaryan, A.; Zohrabyan, H.; Barrelet, E.; Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E.; Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B.; Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F.; Boudry, V.; Moreau, F.; Specka, A.; Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I.; Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D.; Bruncko, D.; Cerny, V.; Ferencei, J.; Bunyatyan, A.; Buschhorn, G.; Chekelian, V.; Dossanov, A.; Grindhammer, G.; Kiesling, C.; Kogler, R.; Shushkevich, S.; Bystritskaya, L.; Efremenko, V.; Fedotov, A.; Kropivnitskaya, A.; Lubimov, V.; Ozerov, D.; Rostovtsev, A.; Zhokin, A.; Cantun Avila, K.B.; Contreras, J.G.; Ruiz Tabasco, J.E.; Ceccopieri, F.; Delvax, J.; Wolf, E.A. de; Favart, L.; Hreus, T.; Janssen, X.; Marage, P.; Mozer, M.U.; Roosen, R.; Sunar, D.; Sykora, T.; Mechelen, P. van; Cerny, K.; Pokorny, B.; Polifka, R.; Salek, D.; Valkarova, A.; Zacek, J.; Coughlan, J.A.; Morris, J.V.; Sankey, D.P.C.; Cvach, J.; Reimer, P.; Zalesak, J.; Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D.; Daum, K.; Meyer, H.; Diaconu, C.; Hoffmann, D.; Sauvan, E.; Vallee, C.; Dobre, M.; List, B.; Dodonov, V.; Povh, B.; Egli, S.; Hildebrandt, M.; Horisberger, R.; Feltesse, J.; Perez, E.; Schoeffel, L.; Goerlich, L.; Mikocki, S.; Milcewicz-Mika, I.; Nowak, G.; Sopicki, P.; Turnau, J.; Grab, C.; Henderson, R.C.W.; Sloan, T.; Hennekemper, E.; Herbst, M.; Jung, A.W.; Krueger, K.; Lendermann, V.; Schultz-Coulon, H.C.; Urban, K.; Henschel, H.; Hiller, K.H.; Kostka, P.; Lange, W.; Naumann, T.; Herrera, G.; Lopez-Fernandez, R.; Huber, F.; Pirumov, H.; Radescu, V.; Sauter, M.; Schoening, A.; Joensson, L.; Osman, S.; Jung, H.; Kapichine, M.; Makankine, A.; Morozov, A.; Nikitin, D.; Palichik, V.; Spaskov, V.; Landon, M.P.J.; Rizvi, E.; Thompson, G.; Traynor, D.; Martyn, H.U.; Mueller, K.; Robmann, P.; Straumann, U.; Truoel, P.; South, D.; Wegener, D.; Stella, B.; Tsakov, I.

    2011-01-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x P 2 in squared four-momentum transfer at the proton vertex and 4 2 2 in photon virtuality. The cross section is measured four-fold differentially in t,x P ,Q 2 and β=x/x P , where x is the Bjorken scaling variable. The t and x P dependences are interpreted in terms of an effective pomeron trajectory and a sub-leading exchange. The data are compared with perturbative QCD predictions at next-to-leading order based on diffractive parton distribution functions previously extracted from complementary measurements of inclusive diffractive deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q 2 ,β and x P . (orig.)

  8. Measurement of high-Q2 charged current cross sections in e+p deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Rautenberg, J.

    2004-06-01

    Cross sections for charged current deep inelastic scattering have been measured in e + p collisions at a center-of-mass energy of 318 GeV. The data collected with the ZEUS detector at HERA in the running periods 1999 and 2000 correspond to an integrated luminosity of 61 pb -1 . Single differential cross sections dσ/dQ 2 , dσ/dx and dσ/dy have been measured for Q 2 >200 GeV 2 , as well as the double differential reduced cross section d 2 σ/dxdQ 2 in the kinematic range 280 GeV 2 2 2 and 0.008 - p charged current deep inelastic scattering cross sections. The helicity structure is investigated in particular. The mass of the space-like W boson propagator has been determined from a fit to dσ/dQ 2 . (orig.)

  9. Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (Germany)] [and others; Collaboration: HERMES Collaboration

    2012-12-15

    Multiplicities in semi-inclusive deep-inelastic scattering are presented for each charge state of {pi}{sup {+-}} and K{sup {+-}} mesons. The data were collected by the HERMES experiment at the HERA storage ring using 27.6 GeV electron and positron beams incident on a hydrogen or deuterium gas target. The results are presented as a function of the kinematic quantities x{sub B}, Q{sup 2}, z, and P{sub h} {sub perpendicular} {sub to}. They represent a unique data set for identified hadrons that will significantly enhance our understanding of the fragmentation of quarks into final-state hadrons in deep-inelastic scattering.

  10. On the necessity of taking into account the contribution of multiphoton exchanges into electron-proton deep inelastic scattering

    International Nuclear Information System (INIS)

    Savrin, V.I.

    1979-01-01

    The hypothesis that the multiphoton exchanges give a substantial contribution to the electron-proton inclusive scattering is formulated. The hypothesis explains the observed violation of the Bjorken scaling law. As it is shown, the mechanism of such intensification of multiple exchanges may by connected with the properties of the processes of hadron multiproduction in the deep inelastic field. This results in the necessity to calculate the inclusive cross section in all electromagnetic coupling constant orders. This has been done in the framework of the density matrix method. As a result the deep inelastic scattering cross section calculated without application of the perturbation theory reveals a new property of the scaling invariance and leads to the natural relationship of structural functions with electromagnetic proton form-factors on the exclusive threshold

  11. Dijet production in diffractive deep-inelastic scattering in next-to-next-to-leading order QCD arXiv

    CERN Document Server

    Britzger, D.; Gehrmann, T.; Huss, A.; Niehues, J.; Žlebčík, R.

    Hard processes in diffractive deep-inelastic scattering can be described by a factorisation into parton-level subprocesses and diffractive parton distributions. In this framework, cross sections for inclusive dijet production in diffractive deep-inelastic electron-proton scattering (DIS) are computed to next-to-next-to-leading order (NNLO) QCD accuracy and compared to a comprehensive selection of data. Predictions for the total cross sections, 39 single-differential and four double-differential distributions for six measurements at HERA by the H1 and ZEUS collaborations are calculated. In the studied kinematical range, the NNLO corrections are found to be sizeable and positive. The NNLO predictions typically exceed the data, while the kinematical shape of the data is described better at NNLO than at next-to-leading order (NLO). A significant reduction of the scale uncertainty is achieved in comparison to NLO predictions. Our results use the currently available NLO diffractive parton distributions, and the dis...

  12. Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C.; Behring, A.; Bluemlein, J.; Freitas, A. de; Raab, C.; Round, M.; Manteuffel, A. von

    2014-07-01

    We report on our latest results in the calculation of the three-loop heavy flavor contributions to the Wilson coefficients in deep-inelastic scattering in the asymptotic region Q 2 >>m 2 . We discuss the different methods used to compute the required operator matrix elements and the corresponding Feynman integrals. These methods very recently allowed us to obtain a series of new operator matrix elements and Wilson coefficients like the flavor non-singlet and pure singlet Wilson coefficients.

  13. Study of problems met in muon pattern recognition for a deep inelastic scattering experiment at the S.P.S

    International Nuclear Information System (INIS)

    Besson, C.

    1976-01-01

    The problems of the muon pattern recognition are studied for a muon-proton deep inelastic scattering experiment at the S.P.S. The pattern recognition program is described together with the problems caused by some characteristics of the apparatus of the European muon collaboration. Several reconstruction technics are compared, and a way of handling big drift chamber problems is found. Some results on Monte-Carlo tracks are given [fr

  14. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    Energy Technology Data Exchange (ETDEWEB)

    Pisano, Cristian [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Bacchetta, Alessandro [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Delcarro, Filippo [Dipartimento di Fisica, Universita di Pavia; INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Radici, Marco [INFN, Sezione di Pavia Via Bassi 6, I-27100 Pavia, Italy; Signori, Andrea [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  15. A measurement of the nucleon structure function from muon-carbon deep inelastic scattering at high Q/sup 2/

    CERN Document Server

    Bollini, D; Benvenuti, Alberto C; Bozzo, M; Brun, R; Cvach, J; Dobrowolski, T; Fadeev, N G; Feltesse, J; Frabetti, P L; Gennow, H; Golutvin, I A; Goossens, M; Heiman, G; Jamnik, D; Kiryushin, Yu T; Kisselev, V S; Klein, M; Kopp, R; Krivokhizhin, V G; Kukhtin, V V; Maillard, J; Malasoma, J M; Meyer-Berkhout, U; Milsztajn, A; Monari, L; Navach, F; Navarria, Francesco Luigi; Nowak, Wolf-Dieter; Piemontese, L; Pilcher, J E; Renardy, J F; Sacquin, Yu; Savin, I A; Schinzel, D; Smadja, G; Smirnov, G I; Staude, A; Teichert, K M; Tirler, R; Verrecchia, P; Vesztergombi, G; Virchaux, M; Volodko, A G; Voss, R; Zácek, J; Zupancic, Crtomir

    1981-01-01

    Deep inelastic scattering cross sections have been measured with the CERN SPS muon beam at incident energies of 120 and 200 GeV. Approximately 10000 events at each energy used to obtain the structure function F/sub 2/(x, Q/sup 2/) in the kinematic region 0.3

  16. First Measurement of the Transverse Spin Asymmetries of the Deuteron in Semi-Inclusive Deep Inelastic Scattering

    CERN Document Server

    Alexakhin, V.Yu.; Alexeev, G.D.; Amoroso, A.; Badelek, B.; Balestra, F.; Ball, J.; Baum, G.; Bedfer, Y.; Berglund, P.; Bernet, C.; Bertini, R.; Birsa, R.; Bisplinghoff, J.; Bradamante, F.; Bravar, A.; Bressan, A.; Burtin, E.; Bussa, M.P.; Cerini, L.; Chapiro, A.; Cicuttin, A.; Colantoni, M.; Colavita, A.A.; Costa, S.; Crespo, M.L.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; De Masi, R.; Dedek, N.; Denisov, O.Yu.; Dhara, L.; Diaz Kavka, V.; Dolgopolov, A.V.; Donskov, S.V.; Dorofeev, V.A.; Doshita, N.; Duic, V.; Dunnweber, W.; Efremov, A.; Ehlers, J.; Eversheim, P.D.; Eyrich, W.; Fabro, M.; Faessler, M.; Fauland, P.; Ferrero, A.; Ferrero, L.; Finger, M.; Fischer, H.; Franz, J.; Friedrich, J.M.; Frolov, V.; Fuchs, U.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gobbo, B.; Goertz, S.; Grajek, O.A.; Grasso, A.; Grube, B.; Grunemaier, A.; Gustafsson, K.; Hannappel, J.; von Harrach, D.; Hasegawa, T.; Hedicke, S.; Heinsius, F.H.; Hinterberger, F.; von Hodenberg, M.; Horikawa, N.; Horikawa, S.; Ijaduola, R.B.; Ilgner, C.; Ishimoto, S.; Iwata, T.; Jahn, R.; Janata, A.; Joosten, R.; Jouravlev, N.I.; Kabuss, E.; Kalinnikov, V.; Kang, D.; Karstens, F.; Kastaun, W.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Komissarov, E.V.; Kondo, K.; Konigsmann, K.; Konoplyannikov, A.K.; Konorov, I.; Konstantinov, V.F.; Korentchenko, A.S.; Korzenev, A.; Kotzinian, A.M.; Koutchinski, N.A.; Kowalik, K.; Kravchuk, N.P.; Krivokhizhin, G.V.; Kroumchtein, Z.V.; Kuhn, R.; Kunne, F.; Kurek, K.; Lamanna, M.; Le Goff, J.M.; Leberig, M.; Lichtenstadt, J.; Maggiora, A.; Maggiora, M.; Magnon, A.; Mallot, G.K.; Manuilov, I.V.; Marchand, C.; Marroncle, J.; Martin, A.; Marzec, J.; Matsuda, T.; Maximov, A.N.; Medved, K.S.; Meyer, W.; Mielech, A.; Mikhailov, Yu.V.; Moinester, M.A.; Nahle, O.; Nassalski, J.; Neyret, D.P.; Nikolaenko, V.I.; Nozdrin, A.A.; Obraztsov, V.F.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Pagano, P.; Panebianco, S.; Panzieri, D.; Paul, S.; Pereira, H.D.; Peshekhonov, D.V.; Peshekhonov, V.D.; Piragino, G.; Platchkov, S.; Platzer, K.; Pochodzalla, J.; Polyakov, V.A.; Popov, A.A.; Pretz, J.; Rebourgeard, P.C.; Reicherz, G.; Reymann, J.; Rozhdestvensky, A.M.; Rondio, E.; Sadovski, A.B.; Saller, E.; Samoylenko, V.D.; Sandacz, A.; Sans, M.; Sapozhnikov, M.G.; Savin, I.A.; Schiavon, P.; Schmidt, T.; Schmitt, H.; Schmitt, L.; Shishkin, A.A.; Siebert, H.; Sinha, L.; Sissakian, A.N.; Skachkova, A.; Slunecka, M.; Smirnov, G.I.; Sugonyaev, V.P.; Stinzing, F.; Sulej, R.; Takabayashi, N.; Tchalishev, V.V.; Tessarotto, F.; Teufel, A.; Thers, D.; Tkatchev, L.G.; Toeda, T.; Tretyak, V.I.; Trousov, S.; Vlassov, N.V.; Webb, R.; Weise, E.; Wiesmann, M.; Windmolders, R.; Wirth, S.; Wislicki, W.; Zanetti, A.M.; Zaremba, K.; Zhao, J.; Ziegler, R.; Zvyagin, A.

    2005-01-01

    First measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarized 6-LiD target are presented. The data were taken in 2002 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. The Collins asymmetry turns out to be compatible with zero, as does the measured Sivers asymmetry within the present statistical errors.

  17. Measurement of beauty-production in deep inelastic scattering at HERA II

    Energy Technology Data Exchange (ETDEWEB)

    Kahle, B.

    2006-04-15

    This thesis presents a measurement of beauty quark production in deep inelastic scattering at the ep-collider HERA at {radical}(s)=318 GeV. The measurement is based on data collected at the ZEUS detector in the years 2003/2004, using an integrated luminosity of 39 pb{sup -1}. In the analysis presented in this thesis, events were selected that contain a scattered electron, a jet and a muon inside the jet. The fraction of events from beauty quark production was extracted using the characteristic distribution of the transverse momenta of muons relative to the associated jets. The total visible cross section was measured to be: {sigma}{sup b} {sup anti} {sup b}(ep{yields}eb anti b X{yields}e jet{mu}X')=57.9{+-}5.8(stat.){sup +3.5}{sub -8.1}(syst.) pb in the kinematic region defined by: Q{sup 2}>4 GeV{sup 2}, y>0.05 und y<0.7, one jet originating from a beauty quark with: E{sup jet}{sub t,lab}>5 GeV und -2<{eta}{sup jet}<2.5 and a muon originating from a beauty quark decay (direct or indirect) included in this jet with: p{sup {mu}}{sub t}>1.5 GeV and {eta}{sup {mu}}>-1.6. Differential cross sections were measured in p{sup {mu}}{sub t} and {eta}{sup {mu}}, in p{sup jet}{sub t} and {eta}{sup jet} and in Q{sup 2}.Furthermore double differential cross sections d{sup 2}{sigma}/dQ{sup 2}dx were measured. (Orig.)

  18. Transverse target moments of dihadron production in semi-inclusive deep inelastic scattering at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Gliske, Stephen V.

    2011-09-15

    Pseudo-scalar meson production in semi-inclusive deep inelastic scattering (SIDIS) at HERMES has provided essential information towards the understanding of the transverse momentum dependent structure of the proton. SIDIS dihadron (hadron pair) production also provides access to the structure of the proton and is complimentary to that provided by pseudo-scalars production, as the same parton distribution functions are involved. For example, while pion and kaon final states allow access to flavor combinations of the Sivers distribution function, SIDIS {phi} meson production (included in the K{sup +}K{sup -} dihadron sample) allows direct access to the Sivers function for the strange quarks. The Sivers function for strange quarks is also related to the orbital angular momentum of the gluons. In the SIDIS cross section, the distribution functions are integrated with fragmentation functions for the respective final states. These fragmentation functions yield information regarding the quark hadronization process. Of particular interest, the Lund/Artru model of fragmentation makes specific predictions regarding the relation between results for dihadron and pseudo-scalar meson production for certain transverse momentum dependent moments. This dissertation presents the first transverse momentum dependent (non-collinear) analysis of the transverse target moments in SIDIS dihadron production, extracting results from the 2002-2005 HERMES data set for {pi}{sup +}{pi}{sup 0}, {pi}{sup +}{pi}{sup -}, {pi}{sup -}{pi}{sup 0} and K{sup +}K{sup -} dihadrons. A new transverse momentum dependent Monte Carlo generator, TMDGen, is also introduced. Additionally, several theoretical developments have been completed, including a new partial wave analysis of the fragmentation functions, computation of the next-to-leading twist dihadron cross section, and the first model calculation for transverse momentum dependent dihadron fragmentation functions. (orig.)

  19. Measurement of dijet cross sections in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Theedt, Thorben

    2009-11-15

    Dijet cross sections have been measured in deep inelastic neutral current electron-proton scattering at HERA. Cross sections have been measured differentially as functions of the photon virtuality, Q{sup 2}, the scaling variable, Bjorken x, the mean transverse jet energy, E{sub T}, the invariant dijet mass, M{sub jj}, the difference in jet pseudorapidity, {eta}'= vertical stroke {eta}{sup jet{sub 1}}-{eta}{sup jet{sub 2}} vertical stroke and the momentum fraction, {xi}. Cross sections as function of {xi} have also been measured in different regions of the photon virtuality. The analysed data were recorded at a centre-of-mass energy of 318 GeV with the ZEUS detector in the years 1998, 1999, and 2000 and correspond to an integrated luminosity of 81.74 pb{sup -1}. The phase space of the analysis is defined by 125

  20. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Sola, Valentina

    2012-04-01

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep → eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09 2 ) and in the extended t-range vertical stroke t vertical stroke 2 . The resulting cross sections cover the region 2.5≤ Q 2 ≤200 GeV 2 in photon virtualities, 0.0003≤x P ≤0.09 in the proton fractional momentum losses and 0.0018≤ β ≤0.816 in β=x/x P , where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5≤ Q 2 ≤1600 GeV 2 , 0.0003≤x P ≤0.03 and 0.0017≤ β ≤0.8, for masses of the hadronic final state M X >4 GeV. The inclusive diffractive reduced cross section σ r D(3) was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20 2 2 , 0.05 P or similar 0.55), the inelasticity of the interaction.

  1. Transverse target moments of dihadron production in semi-inclusive deep inelastic scattering at HERMES

    International Nuclear Information System (INIS)

    Gliske, Stephen V.

    2011-09-01

    Pseudo-scalar meson production in semi-inclusive deep inelastic scattering (SIDIS) at HERMES has provided essential information towards the understanding of the transverse momentum dependent structure of the proton. SIDIS dihadron (hadron pair) production also provides access to the structure of the proton and is complimentary to that provided by pseudo-scalars production, as the same parton distribution functions are involved. For example, while pion and kaon final states allow access to flavor combinations of the Sivers distribution function, SIDIS φ meson production (included in the K + K - dihadron sample) allows direct access to the Sivers function for the strange quarks. The Sivers function for strange quarks is also related to the orbital angular momentum of the gluons. In the SIDIS cross section, the distribution functions are integrated with fragmentation functions for the respective final states. These fragmentation functions yield information regarding the quark hadronization process. Of particular interest, the Lund/Artru model of fragmentation makes specific predictions regarding the relation between results for dihadron and pseudo-scalar meson production for certain transverse momentum dependent moments. This dissertation presents the first transverse momentum dependent (non-collinear) analysis of the transverse target moments in SIDIS dihadron production, extracting results from the 2002-2005 HERMES data set for π + π 0 , π + π - , π - π 0 and K + K - dihadrons. A new transverse momentum dependent Monte Carlo generator, TMDGen, is also introduced. Additionally, several theoretical developments have been completed, including a new partial wave analysis of the fragmentation functions, computation of the next-to-leading twist dihadron cross section, and the first model calculation for transverse momentum dependent dihadron fragmentation functions. (orig.)

  2. Jet-radius dependence of inclusive-jet cross sections in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2006-12-15

    Differential inclusive-jet cross sections have been measured for different jet radii in neutral current deep inelastic ep scattering for boson virtualities Q{sup 2}>125 GeV{sup 2} with the ZEUS detector at HERA using an integrated luminosity of 81.7 pb{sup -1}. Jets were identified in the Breit frame using the k{sub T} cluster algorithm in the longitudinally inclusive mode for different values of the jet radius R. Differential cross sections are presented as functions of Q{sup 2} and the jet transverse energy, E{sub T,B}{sup jet}. The dependence on R of the inclusive-jet cross section has been measured for Q{sup 2} > 125 and 500 GeV{sup 2} and found to be linear with R in the range studied. Next-to-leading-order QCD calculations give a good description of the measurements for 0.5<=R<=1. A value of {alpha}{sub s}(M{sub Z}) has been extracted from the measurements of the inclusive-jet cross-section d{sigma}/dQ{sup 2} with R=1 for Q{sup 2} > 500 GeV{sup 2}: {alpha}{sub s}(M{sub Z})=0.1207{+-}0.0014(stat.){sub -0.0028}{sup +0.0030}(exp.){sub -0.0023}{sup +0.0022}(th.). The variation of {alpha}{sub s} with E{sub T,B}{sup jet} is in good agreement with the running of {alpha}{sub s} as predicted by QCD. (orig.)

  3. Measurement of D*{sup {+-}} meson production in deep-inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Bachynska, Olena

    2012-12-15

    Measurements of charm production in deep-inelastic scattering at HERA at a centre-of-mass energy of 318 GeV are reported in this thesis. The analysis was performed using the data collected with the ZEUS detector during the years 2004 to 2007, corresponding to an integrated luminosity of 363 pb{sup -1}. The production of charm quarks was studied through the full kinematic reconstruction of D*{sup {+-}} mesons in the decay channel D*{sup {+-}} {yields} D{sup 0}/ anti D{sup 0}{pi}{sup {+-}}. The studies have been performed for virtualities of the exchanged photon of 5 < Q{sup 2} < 1000 GeV{sup 2} and inelasticities of 0.02 < y < 0.7. The visible D*{sup {+-}} kinematic phase space is defined by the transverse momentum range, 1.5 < p{sub T}{sup D*{sup {+-}}} < 20 GeV, and by the pseudorapidity region, vertical stroke {eta}{sup D*{sup {+-}}} vertical stroke < 1.5, of the produced D*{sup {+-}} mesons. The total visible cross section for D*{sup {+-}} production as well as single-and double-differential cross sections were measured and compared to the corresponding D*{sup {+-}} measurements performed by the H1 collaboration in the same phase-space region. The measurements are well described by NLO QCD predictions. The double-differential cross sections were exploited to extract the charm contribution to the proton structure function, F{sub 2}{sup c} {sup anti} {sup c}, expressed in terms of the reduced charm-production cross sections, {sigma}{sub red}{sup c} {sup anti} {sup c}, and compared to the predictions from HERAPDF1.5 and to the recent measurements from the H1 and ZEUS collaborations.

  4. Measurement of the longitudinal deuteron spin-structure function in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Bauer, J.M.

    1996-09-01

    Experiment E143 at SLAC performed deep-inelastic scattering measurements with polarized electrons incident on polarized protons and deuterons. The data for the beam energy of 29 GeV cover the kinematical range of x Bj > 0.03 and 1 2 2 . From these data, the spin-dependent structure functions g 1 were determined. This dissertation describes the experiment and its analysis and discusses the results. The measured integral of g 1 d over x from x = 0 to x = 1 is Γ 1 d = 0.046 ± 0.003 (stat)±0.004 (syst) at Q 2 = 3 GeV 2 and disagrees by more than three standard deviations with the prediction of the Ellis-Jaffe, sum rule. The data suggest that the quark contribution to the nucleon helicity is 0.35 ± 0.05. From the proton data of the same experiment, the integral over the proton spin-structure functional g 1 d was determined to be Γ 1 p = 0.127 ± 0.003(stat)±0.008(syst). By Combining the deuteron data with the proton data, the integral Γ 1 n was extracted as -0.027 ± 0.008 (stat)±0.010 (syst). The integral Γ 1 p - Γ 1 n is 0.154±0.010(stat) ±0.016 (syst) according to the E143 analysis. This result agrees with the important Bjorken sum rule of 0.171 ± 0.009 at Q 2 = 3 GeV 2 within less than one standard deviation. Furthermore, results of a separate analysis involving GLAP evolution equations are shown. Data were also collected for beam energies of 16.2 and 9.7 GeV, Results for g 1 at these energies are presented

  5. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    International Nuclear Information System (INIS)

    Aktas, A.; Andreev, V.; Anthonis, T.

    2006-05-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-x P >0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies t 2 . Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 ≤Q 2 ≤1600 GeV 2 , triple differentially in x P , Q 2 and β=x/x P , where x is the Bjorken scaling variable. At low x P , the data are consistent with a factorisable x P dependence, which can be described by the exchange of an effective pomeron trajectory with intercept α P (0)=1.118 ±0.008(exp.) +0.029 -0.010 (model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q 2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q 2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e + p → anti ν e XY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q 2 at fixed x P and x or on x at fixed Q 2 and β. (Orig.)

  6. Diffractive deep-inelastic scattering with a leading proton at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    The cross section for the diffractive deep-inelastic scattering process ep→eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data analysed cover the range xIP<0.1 in fractional proton longitudinal momentum loss, 0.08<|t|<0.5 GeV-2 in squared four-momentum transfer at the proton vertex, 2

  7. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2006-12-01

    A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-xIP>0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t|<1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5≤Q2≤1600 GeV2, triple differentially in xIP, Q2 and β=x/xIP, where x is the Bjorken scaling variable. At low xIP, the data are consistent with a factorisable xIP dependence, which can be described by the exchange of an effective pomeron trajectory with intercept αIP(0)=1.118±0.008(exp.)+0.029 -0.010(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e+p→ν¯eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q2 at fixed xIP and x or on x at fixed Q2 and β.

  8. Deep inelastic scattering as a probe of new hadronic mass scales

    International Nuclear Information System (INIS)

    Burges, C.J.C.; Schnitzer, H.J.

    1984-01-01

    We present the general form for deep-inelastic cross sections obtained from all SU(3) x SU(2) x U(1) invariant operators of dimension six or less. The operators of dimension six generate corrections to the predictions of the standard model, which serve as a probe of a possible new mass-scale Λ and other new physics. (orig.)

  9. Regge behaviour and Bjorken scaling for deep-inelastic lepton-hadron scattering process

    International Nuclear Information System (INIS)

    Tran Huu Phat

    1976-01-01

    Within the framework of the Jost-Lehmann-Dyson (JLD) representation and the renormalization-group (RG) equation, it is shown that either the RG technique is not applicable to deep-inelastic phenomena or Regge behaviour and Bjorken scaling for structure functions do not coexist. (author)

  10. On the meson exchange currents contribution in deep inelastic scattering on deuteron

    International Nuclear Information System (INIS)

    Kaptar', L.P.; Titov, A.I.; Umnikov, A.Yu.

    1988-01-01

    The contribution of the one- and two-pion exchange currents to the deep inelastic deuteron structure function F 2 D (x) is considered. It is shown that the mesonic corrections do not restore the energy sum rule violated by the off-mass-shell properties of the bound nucleons

  11. Observation of two-jet production in deep inelastic scattering at HERA

    Science.gov (United States)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Repond, S.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Doeker, T.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Monaldi, D.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Arneodo, M.; Barillari, T.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Chwastowski, J.; Dwuraźny, A.; Eskreys, A.; Jakubowski, Z.; Niziom̵, B.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Bednarek, B.; Borzemski, P.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Gläser, R.; Göttlicher, P.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Ng, J. S. T.; Nickel, S.; Notz, D.; Park, I. H.; Pösnecker, K.-U.; Rohde, M.; Roldán, J.; Ros, E.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Brückmann, H.; Gloth, G.; Holm, U.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Fürtjes, A.; Kröger, W.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Seidman, A.; Schott, W.; Terron, J.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Barreiro, F.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Meijer Drees, R.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'Dell, V.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Butterworth, J. M.; Bulmahn, J.; Field, G.; Oh, B. Y.; Whitmore, J.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S. M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; Lockman, W.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Gibaut, D. B.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchum̵a, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stopczyński, A.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Foudas, C.; Fordham, C.; Loveless, R. J.; Goussiou, A.; Ali, I.; Behrens, B.; Dasu, S.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.; ZEUS Collaboration

    1993-05-01

    A sample of events with two distinct jets, in addition to the proton remnant, has been identified in deep inelastic, neutral current ep interactions recorded at HERA by the ZEUS experiment. For these events, the mass of the hadronic system ranges from 40 to 260 GeV. The salient features of the observed jet production agree with the predictions of higher order QCD.

  12. Inclusive diffractive cross sections in deep inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Sola, Valentina

    2012-04-15

    Diffractive deep-inelastic scattering events in ep collisions at HERA are the subject of this thesis. The cross sections for inclusive diffraction, ep {yields} eXp, measured by the H1 and ZEUS Collaborations were combined, providing a model-independent check of the data consistency and a cross calibration between the two experiments, and resulting in single data sets with improved accuracy and precision. Two sets of combined results were obtained. The cross sections measured using the proton-spectrometer data were combined, both in the range of t, the squared four-momentum transfer at the proton vertex, common to the two experiments (0.09< vertical stroke t vertical stroke <0.55 GeV{sup 2}) and in the extended t-range vertical stroke t vertical stroke <1 GeV{sup 2}. The resulting cross sections cover the region 2.5{<=} Q{sup 2} {<=}200 GeV{sup 2} in photon virtualities, 0.0003{<=}x{sub P}{<=}0.09 in the proton fractional momentum losses and 0.0018{<=} {beta} {<=}0.816 in {beta}=x/x{sub P}, where x is the Bjorken scaling variable. The cross sections obtained from data with the large rapidity gap signature were also combined in the kinematic range 2.5{<=} Q{sup 2} {<=}1600 GeV{sup 2}, 0.0003{<=}x{sub P}{<=}0.03 and 0.0017{<=} {beta} {<=}0.8, for masses of the hadronic final state M{sub X}>4 GeV. The inclusive diffractive reduced cross section {sigma}{sub r}{sup D(3)} was measured with data collected by the ZEUS detector, at two different centre-of-mass energies, 318 and 225 GeV. The diffractive data were selected with the large rapidity gap method in the kinematic region 20< Q{sup 2} <130 GeV{sup 2}, 0.05< {beta} <0.85 and 0.00063or similar 0.55), the inelasticity of the interaction.

  13. Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering

    International Nuclear Information System (INIS)

    Wislicki, W.

    1998-01-01

    We present the study of the internal spin structure of the nucleon in spin-dependent deep inelastic scattering of muons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high energy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure function g 1 p (x) and g 1 d (x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 2 >=10 GeV 2 . Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of g 1 (x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon. Its value is significantly smaller than nucleon spin. Semi-inclusive asymmetries of yields of positive and negative hadrons produced on both targets were also measured and analysed in term of quark-parton model, together with inclusive asymmetries. From this analysis the quark spin distributions were determined, separately for valence u and d quarks and for non-strange sea quarks. Valence u quarks are positively polarized and their polarization increases with x. Valence d quarks are negatively polarized and their polarization does not exhibit any x-dependence. The non-strange sea is unpolarized in the whole measured range of x. The first moments of the valance quark spin distributions were found consistent with the values obtained from weak decay constants F and D and their second moments are consistent with lattice QCD calculations. In the QCD analysis of the world data the first moment of the gluon spin distribution was found with a large error. Also, a search for a non-perturbative anomaly at high x was done on the world

  14. Hadronization in semi-inclusive deep-inelastic scattering on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A [Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N; Akopov, Z [Yerevan Physics Institute (AR)

    2007-04-15

    A series of semi-inclusive deep-inelastic scattering measurements on deuterium, helium, neon, krypton, and xenon targets has been performed in order to study hadronization. The data were collected with the HERMES detector at the DESY laboratory using a 27.6 GeV positron or electron beam. Hadron multiplicities on nucleus A relative to those on the deuteron, R{sup h}{sub A}, are presented for various hadrons ({pi}{sup +}, {pi}{sup -}, {pi}{sup 0}, K{sup +}, K{sup -}, p, and anti p) as a function of the virtual-photon energy {nu}, the fraction z of this energy transferred to the hadron, the photon virtuality Q{sup 2}, and the hadron transverse momentum squared p{sup 2}{sub t}. The data reveal a systematic decrease of R{sup h}{sub A} with the mass number A for each hadron type h. Furthermore, R{sup h}{sub A} increases (decreases) with increasing values of {nu}(z), increases slightly with increasing Q{sup 2}, and is almost independent of p{sup 2}{sub t}, except at large values of p{sup 2}{sub t}. For pions two-dimensional distributions also are presented. These indicate that the dependences of R{sup {pi}}{sub A} on {nu} and z can largely be described as a dependence on a single variable L{sub c}, which is a combination of {nu} and z. The dependence on L{sub c} suggests in which kinematic conditions partonic and hadronic mechanisms may be dominant. The behaviour of R{sup {pi}}{sub A} at large p{sup 2}{sub t} constitutes tentative evidence for a partonic energy-loss mechanism. The A-dependence of R{sup h}{sub A} is investigated as a function of {nu}, z, and of L{sub c}. It approximately follows an A{sup {alpha}} form with {alpha}{approx}0.5-0.6. (orig.)

  15. Measurement of charm and beauty production in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Roloff, Philipp

    2011-12-01

    In this thesis two measurements of heavy quark production in deep inelastic scattering at HERA are presented. Cross sections for the production of heavy quarks can be calculated in quantum chromodynamics (QCD). The heavy quark masses represent hard scales, which allow to apply perturbative methods. Charm production has been measured with the ZEUS detector using an integrated luminosity of 120 pb -1 . The hadronic decay channels D + → K 0 S π + , Λ + c → pK 0 S and Λ + c → Λπ + were reconstructed. The presence of a neutral strange hadron in the final state reduces the combinatorial background and extends the measured sensitivity into the region p T (D + , Λ + c ) T 2 (D + ), η(D + ), Q 2 and x for the production of D + mesons are in reasonable agreement with predictions from perturbative QCD. The fraction of c quarks hadronising into Λ + c baryons was extracted from a combination of both investigated Λ + c decay channels. The result is consistent with a previous measurement in the photoproduction regime and with the average e + e - value. The production of charm and beauty quarks has been measured with the ZEUS detector using the data collected between 2004 and 2007. This data sample corresponds to an integrated luminosity of 354 pb -1 . The charm and beauty contents in events with a jet were determined using the decay-length significance and invariant mass of the reconstructed secondary decay vertices. Differential cross sections in E jet T , η jet , Q 2 and x are in reasonable agreement with predictions for perturbative QCD. The open charm and beauty contributions to the inclusive proton structure function F 2 were extracted from double differential cross sections in x and Q 2 . The obtained F c anti c 2 and F b anti b 2 values are in good agreement with previous measurements and theoretical predictions. This measurement represents the most precise determination of F b anti b 2 at the HERA collider in a large part of the accessible phase space

  16. Measurement of jet production in deep-inelastic ep scattering at HERA

    International Nuclear Information System (INIS)

    Kogler, Roman

    2011-02-01

    In this thesis, precision measurements of inclusive jet, dijet and trijet cross sections in neutral current (NC) deep-inelastic ep scattering at a centre-of-mass energy of √(s)≅319 GeV are presented. The analysis is based on data collected by the H1 detector during the HERA-2 running phase in the years 2003-07, corresponding to an integrated luminosity of 351.5 pb -1 . The kinematic phase space of the measurement is defined by 150 2 2 and 0.2 2 and y are the negative four-momentum transfer squared and the inelasticity respectively. Jets are measured in the pseudorapidity range -1.0 lab T >7 GeV for the inclusive jet measurement and P T >7 GeV for the dijet and trijet measurements. In the case of the dijet and trijet measurements, the invariant mass of the two jets with the highest transverse momenta is required to be greater than 16 GeV. A large part of this work is devoted to the improvement of the reconstruction of the hadronic final state. This is achieved by a separation of showers originating from electromagnetically and hadronically interacting particles in the liquid argon calorimeter of the H1 detector on a statistical basis. A novel method to calibrate the hadronic final state, which is reconstructed with an energy-flow-algorithm, is developed. This calibration is based on the probability of a shower resulting from electromagnetically interacting particles and it is shown to improve the absolute energy scale uncertainty at high jet transverse momenta to 1%. Improvements of the resolution of the jet energy measurement with respect to the standard reconstruction of about 10% are reported. The new calibration in combination with improvements of the reconstruction algorithms by the H1 collaboration leads to a precision measurement of inclusive jet, dijet and trijet cross sections with average uncertainties of 4%, 5,2% and 7.2%, respectively. Measurements of jet cross sections normalised to the inclusive NC cross sections are then performed, which reduce

  17. Threshold-improved predictions for charm production in deep-inelastic scattering

    International Nuclear Information System (INIS)

    Lo Presti, N.A.; Kawamura, H.; Vogt, A.

    2010-08-01

    We have extended previous results on the threshold expansion of the gluon coefficient function for the charm contribution to the deep-inelastic structure function F 2 by deriving all thresholdenhanced contributions at the next-to-next-to-leading order. The size of these corrections is briefly illustrated, and a first step towards extending this improvement to more differential charmproduction cross sections is presented. (orig.)

  18. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    International Nuclear Information System (INIS)

    Wang, Diancheng

    2013-01-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A PV of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q 2 values of 1.1 and 1.9 (GeV/c) 2 . The asymmetry at Q 2 =1.9 (GeV/c) 2 can be used to extract the weak coupling combination 2C 2u - C 2d , assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q 2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A PV data in the resonance region beyond the Δ(1232). They provide evidence that the quark hadron duality works for A PV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements

  19. Observation of the Hadronic Final State Charge Asymmetry in High Q^2 Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aaron, F.D.; Alexa, C.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Asmone, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.

    2009-01-01

    A first measurement is presented of the charge asymmetry in the hadronic final state from the hard interaction in deep-inelastic ep neutral current scattering at HERA. The measurement is performed in the range of negative squared four momentum transfer 100

  20. Observation of the hadronic final state charge asymmetry in high Q2 deep-inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Aaron, F.D.; Alexa, C.

    2009-06-01

    A first measurement is presented of the charge asymmetry in the hadronic final state from the hard interaction in deep-inelastic ep neutral current scattering at HERA. The measurement is performed in the range of negative squared four momentum transfer 100 2 2 . The difference between the event normalised distributions of the scaled momentum, x p , for positively and negatively charged particles, measured in the current region of the Breit frame, is studied together with its evolution as a function of Q. The results are compared to Monte Carlo models at the hadron and parton level. (orig.)

  1. Measurement of neutral current deep inelastic e+p scattering cross sections with longitudinally polarized positrons with ZEUS at HERA

    International Nuclear Information System (INIS)

    Wlasenko, Michal

    2009-05-01

    Measurements of neutral current deep inelastic scattering of protons colliding with longitudinally polarized positrons, performed with data recorded in years 2006 and 2007 with the ZEUS detector, corresponding to an integrated luminosity of L=113.3 pb -1 , are presented. The single-differential cross sections dσ/dQ 2 , dσ/dx, dσ/dy and the double-differential reduced cross section σ were measured in the kinematic region of 185 2 2 and y + and the generalized structure function x F 3 were extracted. All measurements agree well with the predictions of the Standard Model. (orig.)

  2. Azimuthal distributions of charged hadrons, pions, and kaons produced in deep-inelastic scattering off unpolarized protons and deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)

    2012-04-15

    The azimuthal cos {phi} and cos 2{phi} modulations of the distribution of hadrons produced in unpolarized semi-inclusive deep-inelastic scattering of electrons and positrons off hydrogen and deuterium targets have been measured in the Hermes experiment. For the first time these modulations were determined in a four-dimensional kinematic space for positively and negatively charged pions and kaons separately, as well as for unidentified hadrons. These azimuthal dependences are sensitive to the transverse motion and polarization of the quarks within the nucleon via, e.g., the Cahn, Boer-Mulders and Collins effects.

  3. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R.L.; Zhang, H.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.; Katz, U.F.; Mari, S.M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, C.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G.P.; Heath, H.F.; Llewellyn, T.J.; Morgado, C.J.S.; Norman, D.J.P.; O'Mara, J.A.; Tapper, R.J.; Wilson, S.S.; Yoshida, R.; Rau, R.R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Cartiglia, N.; Parsons, J.A.; Ritz, S.; Sciulli, F.; Straub, P.B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jelen, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarebska, E.; Suszycki, L.; Zajac, J.; Kotanski, A.; Przybycien, M.; Bauerdick, L.A.T.; Behrens, U.; Beier, H.; Bienlein, J.K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasinski, M.; Gilkinson, D.J.; Glasman, C.; Goettlicher, P.; Grosse-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Hessling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Koepke, L.; Koetz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Loehr, B.; Loewe, M.; Lueke, D.; Manczak, O.; Ng, J.S.T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.

    1995-01-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared Q 2 above 400GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections dσ/dQ 2 are presented. From the Q 2 dependence of the CC cross section, the mass term in the CC propagator is determined to be M W =76±16±13 GeV

  4. Combination of Differential D^{*\\pm} Cross-Section Measurements in Deep-Inelastic ep Scattering at HERA

    CERN Document Server

    Abramowicz, H.; Adamczyk, L.; Adamus, M.; Andreev, V.; Antonelli, S.; Aushev, V.; Aushev, Y.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Boos, E.G.; Borras, K.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N.H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P.J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J.G.; Cooper-Sarkar, A.M.; Corradi, M.; Corriveau, F.; Cvach, J.; Dainton, J.B.; Daum, K.; Dementiev, R.K.; Devenish, R.C.E.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dolinska, G.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Figiel, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gizhko, A.; Gladilin, L.K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Haidt, D.; Hain, W.; Henderson, R.C.W.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Jacquet, M.; Janssen, X.; Januschek, F.; Jomhari, N.Z.; Jung, A.W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Kaur, M.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Kruger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O.Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F.Mohamad; Morozov, A.; Nasir, N.Muhammad; Muller, K.; Myronenko, V.; Nagano, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, R.J.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Paul, E.; Perez, E.; Perlanski, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Przybycien, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Rusakov, S.; Ruspa, M.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Saxon, D.H.; Schioppa, M.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schoning, A.; Schorner-Sadenius, T.; Sefkow, F.; Shcheglova, L.M.; Shevchenko, R.; Shkola, O.; Shushkevich, S.; Shyrma, Yu.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stern, A.; Stopa, P.; Straumann, U.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Thompson, P.D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Trofymov, A.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Wichmann, K.; Wing, M.; Wolf, G.; Wunsch, E.; Yamada, S.; Yamazaki, Y.; Zacek, J.; Zakharchuk, N.; Zarnecki, A.F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.; Zotkin, D.S.

    2015-01-01

    H1 and ZEUS have published single-differential cross sections for inclusive D^{*\\pm}-meson production in deep-inelastic ep scattering at HERA from their respective final data sets. These cross sections are combined in the common visible phase-space region of photon virtuality Q2 > 5 GeV2, electron inelasticity 0.02 1.5 GeV and pseudorapidity |eta(D^*)| 1.5 GeV2. Perturbative next-to-leadingorder QCD predictions are compared to the results.

  5. On the relation between E.M. mass differences and scaling in deep inelastic scattering, ch. 1

    International Nuclear Information System (INIS)

    Holwerda, M.J.

    1977-01-01

    The author concentrates on the problem of electromagnetic mass differences. The possible connection with the experimental phenomenon of Bjorken-scaling in deep inelastic electron-nucleon scattering is investigated. He starts from the formalism, implied by the ansatz by H. Fritsch and M. Gell-Mann for a light cone algebra of (bilocal) current operators, that is abstracted from free field theory. Later on the problem is reconsidered with the help of field theoretic techniques in the framework of a color gauge theory model for the strong interactions; this theory exhibits the property of 'asymptotic freedom' and thus offers the famous explanation for (approximate) Bjorken scaling

  6. Effects of a non-standard W± magnetic moment in W± production via deep inelastic e-P scattering

    International Nuclear Information System (INIS)

    Boehm, M.; Rosado, A.

    1989-01-01

    We calculate the production of charged bosons in deep inelastic e - P scattering in the context of an electroweak model in which the vector boson self interactions may be different from those prescribed by the electroweak standard model. We present results which show the dependence of the cross section on the anomalous magnetic dipole moment κ of the W ± . We find for energies available at HERA that even small deviations from the standard model value of κ imply observable deviations in the W ± production rates. We also show that the contributions from heavy boson exchange diagrams are very important. (orig.)

  7. Proposals for measuring transversity distributions in deep inelastic electron scattering and a model for E-704 asymmetries

    International Nuclear Information System (INIS)

    Artru, X.

    1993-10-01

    The principles of the measurement of the quark transversity distributions in semi-inclusive deep inelastic electron scattering are presented, which form the basis of Hydrogen jet target in the LEP tunnel (HELP) and one of the European Laboratory For Electron (ELFE) proposals. A string model for Collins-type asymmetry in polarized quark fragmentation function is proposed. A possible role of the Collins effect in the single spin asymmetries observed by experiment E 704 at Fermilab is suggested. (author) 13 refs., 3 figs

  8. Recent progress on the calculation of three-loop heavy flavor Wilson coefficients in deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Behring, A.; Bluemlein, J.; Freitas, A. de; Raab, C.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Wissbrock, F. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); IHES Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette (France)

    2014-07-15

    We report on our latest results in the calculation of the three-loop heavy flavor contributions to the Wilson coefficients in deep-inelastic scattering in the asymptotic region Q{sup 2}>>m{sup 2}. We discuss the different methods used to compute the required operator matrix elements and the corresponding Feynman integrals. These methods very recently allowed us to obtain a series of new operator matrix elements and Wilson coefficients like the flavor non-singlet and pure singlet Wilson coefficients.

  9. Measurement of the diffractive structure function of the proton in deep inelastic ep scattering with the ZEUS detector

    International Nuclear Information System (INIS)

    Doeker, T.

    1995-10-01

    The analysis of deep inelastic scattering events at the ep collider HERA at DESY has shown that in about 7% of the recorded events a large rapidity gap of at least 3 units is observed between the proton direction and the observed hadronic system. The observation can be understood in terms of soft photon-hadron reactions, where the hadronic final state is interpreted as arising from the dissociation of a virtual photon in the field of a diffractively scattered proton. The cross section of this process can be expressed in terms of the diffractive structure function of the proton. Here a measurement with the ZEUS detector is presented of the diffractive structure function of the proton as a function of x IP , the momentum fraction lost by the proton, of β, the momentum fraction of the struck constituent with respect to x IP , and of Q 2 , the virtuality of the exchanged photon. The kinematic range of this measurement is 6.3.10 -4 IP -2 , 0.1 2 2 2 . The x IP dependence is consistent with the form (1/x IP ) a where a=1.30±0.08(stat) -0.14 +0.08 (sys) in all bins of β and Q 2 . The diffractive structure function scales with Q 2 at fixed β. The results are compared with theoretical predictions of diffractive dissociation in deep inelastic scattering. (orig.)

  10. Measurement of the cross section for diffractive deep-inelastic scattering with a leading proton at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D.; Alexa, C.; Rotaru, M.; Stoicea, G. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V.; Belousov, A.; Eliseev, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Loktionova, N.; Malinovski, E.; Rusakov, S.; Shtarkov, L.N.; Soloviev, Y.; Vazdik, Y. [Lebedev Physical Inst., Moscow (Russian Federation); Backovic, S.; Dubak, A.; Lastovicka-Medin, G.; Picuric, I.; Raicevic, N. [Univ. of Montenegro, Faculty of Science, Podgorica (ME); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Inst., Yerevan (Armenia); Barrelet, E. [Univ. Pierre et Marie Curie Paris 6, Univ. Denis Diderot Paris 7, CNRS/IN2P3, LPNHE, Paris (France); Bartel, W.; Brandt, G.; Brinkmann, M.; Britzger, D.; Campbell, A.J.; Cholewa, A.; Deak, M.; Eckerlin, G.; Elsen, E.; Felst, R.; Fischer, D.J.; Fleischer, M.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Gouzevitch, M.; Grebenyuk, A.; Grell, B.R.; Habib, S.; Haidt, D.; Helebrant, C.; Katzy, J.; Kleinwort, C.; Knutsson, A.; Kraemer, M.; Kutak, K.; Levonian, S.; Lipka, K.; List, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Nikiforov, A.; Nowak, K.; Olsson, J.E.; Pahl, P.; Panagoulias, I.; Papadopoulou, T.; Petrukhin, A.; Piec, S.; Pitzl, D.; Placakyte, R.; Schmitt, S.; Sefkow, F.; Staykova, Z.; Steder, M.; Toll, T.; Vargas Trevino, A.; Driesch, M. von den; Wuensch, E. [DESY, Hamburg (Germany); Begzsuren, K.; Ravdandorj, T.; Tseepeldorj, B. [Inst. of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Bizot, J.C.; Brisson, V.; Delcourt, B.; Jacquet, M.; Pascaud, C.; Tran, T.H.; Zhang, Z.; Zomer, F. [Universite Paris-Sud, CNRS/IN2P3, LAL, Orsay (France); Boudry, V.; Moreau, F.; Specka, A. [Ecole Polytechnique, CNRS/IN2P3, LLR, Palaiseau (France); Bozovic-Jelisavcic, I.; Mudrinic, M.; Pandurovic, M.; Smiljanic, I. [Vinca Inst. of Nuclear Sciences, Belgrade (RS); Bracinik, J.; Kenyon, I.R.; Newman, P.R.; Thompson, P.D. [Univ. of Birmingham, Birmingham (United Kingdom)

    2011-03-15

    The cross section for the diffractive deep-inelastic scattering process ep{yields}eXp is measured, with the leading final state proton detected in the H1 Forward Proton Spectrometer. The data sample covers the range x{sub P}<0.1 in fractional proton longitudinal momentum loss, 0.1< vertical stroke t vertical stroke <0.7 GeV{sup 2} in squared four-momentum transfer at the proton vertex and 4deep-inelastic scattering. The ratio of the diffractive to the inclusive ep cross section is studied as a function of Q{sup 2},{beta} and x{sub P}. (orig.)

  11. Manifestation of short-range correlations in deep inelastic scattering in deuterons and nuclei

    International Nuclear Information System (INIS)

    Strikman, M.I.; Frankfurt, L.L.

    1981-01-01

    It is shown that deep inelastic processes of the type l+A→l'+X and l+A→l'+p+X are an effective tool to study phenomena associated with the nucleon-nucleon interaction core, in particular the problem of cumulative particles. We have calculated the effects of scaling violation in the e+D→e+X process in accordance with the data of Schutz et al. It is shown that recent data on the reaction ν (nu-bar)+A→μ+p+X agree with the predictions of the few-nucleon correlation model

  12. Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Christopher

    2014-07-29

    Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f{sub 1}{sup q}(x), the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g{sub 1}{sup q}(x) and the transversity distribution h{sub 1}{sup q}(x). The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro-magnetic probes off (un)polarized nucleons at fixed-target experiments. This only gives access to f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x), while the chiral-odd nature of the transversity distribution prevents a measurement without detecting the final hadronic states. However, h{sub 1}{sup q}(x) can be observed in semi-inclusive DIS (SIDIS) in combination with another chiral-odd function like the dihadron fragmentation function H{sub 1} {sup angle} {sup q} in the production of a hadron-pair. The resulting experimental challenge is the reason why f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x) have been investigated for almost four decades, while h{sub 1}{sup q}(x) is still subject to recent measurements and analyses. The 160 GeV/c polarized muon beam of CERN's M2 beamline allows the COMPASS experiment to investigate spin effects using polarized solid-state targets. Since the year 2002 COMPASS has collected unique data sets on transversely polarized targets of lithium

  13. Measurement of charm and beauty production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Roloff, Philipp

    2011-12-15

    In this thesis two measurements of heavy quark production in deep inelastic scattering at HERA are presented. Cross sections for the production of heavy quarks can be calculated in quantum chromodynamics (QCD). The heavy quark masses represent hard scales, which allow to apply perturbative methods. Charm production has been measured with the ZEUS detector using an integrated luminosity of 120 pb{sup -1}. The hadronic decay channels D{sup +} {yields} K{sup 0}{sub S}{pi}{sup +}, {lambda}{sup +}{sub c} {yields} pK{sup 0}{sub S} and {lambda}{sup +}{sub c} {yields} {lambda}{pi}{sup +} were reconstructed. The presence of a neutral strange hadron in the final state reduces the combinatorial background and extends the measured sensitivity into the region p{sub T}(D{sup +}, {lambda}{sup +}{sub c}) < 1.5 GeV. The inclusive cross section and differential cross sections in p{sub T}{sup 2} (D{sup +}), {eta}(D{sup +}), Q{sup 2} and x for the production of D{sup +} mesons are in reasonable agreement with predictions from perturbative QCD. The fraction of c quarks hadronising into {lambda}{sup +}{sub c} baryons was extracted from a combination of both investigated {lambda}{sup +}{sub c} decay channels. The result is consistent with a previous measurement in the photoproduction regime and with the average e{sup +}e{sup -} value. The production of charm and beauty quarks has been measured with the ZEUS detector using the data collected between 2004 and 2007. This data sample corresponds to an integrated luminosity of 354 pb{sup -1}. The charm and beauty contents in events with a jet were determined using the decay-length significance and invariant mass of the reconstructed secondary decay vertices. Differential cross sections in E{sup jet}{sub T}, {eta}{sup jet}, Q{sup 2} and x are in reasonable agreement with predictions for perturbative QCD. The open charm and beauty contributions to the inclusive proton structure function F{sub 2} were extracted from double differential cross

  14. Measurement of jet production in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Kogler, Roman

    2011-02-15

    In this thesis, precision measurements of inclusive jet, dijet and trijet cross sections in neutral current (NC) deep-inelastic ep scattering at a centre-of-mass energy of {radical}(s){approx_equal}319 GeV are presented. The analysis is based on data collected by the H1 detector during the HERA-2 running phase in the years 2003-07, corresponding to an integrated luminosity of 351.5 pb{sup -1}. The kinematic phase space of the measurement is defined by 1507 GeV for the inclusive jet measurement and P{sub T}>7 GeV for the dijet and trijet measurements. In the case of the dijet and trijet measurements, the invariant mass of the two jets with the highest transverse momenta is required to be greater than 16 GeV. A large part of this work is devoted to the improvement of the reconstruction of the hadronic final state. This is achieved by a separation of showers originating from electromagnetically and hadronically interacting particles in the liquid argon calorimeter of the H1 detector on a statistical basis. A novel method to calibrate the hadronic final state, which is reconstructed with an energy-flow-algorithm, is developed. This calibration is based on the probability of a shower resulting from electromagnetically interacting particles and it is shown to improve the absolute energy scale uncertainty at high jet transverse momenta to 1%. Improvements of the resolution of the jet energy measurement with respect to the standard reconstruction of about 10% are reported. The new calibration in combination with improvements of the reconstruction algorithms by the H1 collaboration leads to a precision measurement of inclusive jet, dijet and

  15. Deep inelastic neutron scattering on {sup 207}Pb and NaHF{sub 2} as a test of a detectors array on the VESUVIO spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Pietropaolo, A. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica and Centro NAST - Nanoscienze and Nanotecnologie and Strumentazione, via della Ricerca Scientifica 1, 00133 Rome (Italy)], E-mail: antonino.pietropaolo@roma2.infn.it; Senesi, R. [Universita degli Studi di Roma Tor Vergata, Dipartimento di Fisica and Centro NAST - Nanoscienze and Nanotecnologie and Strumentazione, via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2008-01-11

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF{sub 2} molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument.

  16. Deep inelastic neutron scattering on 207Pb and NaHF 2 as a test of a detectors array on the VESUVIO spectrometer

    Science.gov (United States)

    Pietropaolo, A.; Senesi, R.

    2008-01-01

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument.

  17. Deep inelastic neutron scattering on 207Pb and NaHF2 as a test of a detectors array on the VESUVIO spectrometer

    International Nuclear Information System (INIS)

    Pietropaolo, A.; Senesi, R.

    2008-01-01

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy k > are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument

  18. Inclusive Production of D^+, D^0, D_s^+ and D^*+ Mesons in Deep Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Broker, H.-B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grassler, H.; Graves, J.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K.H.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kuckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Ossoskov, G.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Poschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Ratiani, Z.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneebeli, M.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Utkin, D.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zohrabyan, H.; Zomer, F.

    2004-01-01

    Inclusive production cross sections are measured in deep inelastic scattering at HERA for meson states composed of a charm quark and a light antiquark or the charge conjugate. The measurements cover the kinematic region of photon virtuality 2 2.5 GeV and pseudorapidity |eta(D)| < 1.5. The identification of the D-meson decays and the reduction of the combinatorial background profit from the reconstruction of displaced secondary vertices by means of the H1 silicon vertex detector. The production of charmed mesons containing the light quarks u, d and s is found to be compatible with a description in which the hard scattering is followed by a factorisable and universal hadronisation process.

  19. A study of the internal spin structure of the proton through polarized deep inelastic muon-proton scattering

    International Nuclear Information System (INIS)

    Piegaia, R.N.

    1988-01-01

    This thesis presents a study of the internal spin structure of the proton through the measurement performed by the European Muon Collaboration, EMC, at the European Center for Nuclear Research, CERN, of the spin asymmetry in the deep-inelastic scattering of longitudinally polarized muons by longitudinally polarized protons. The data obtained considerably extend the kinematic range covered by a previous lower-energy polarized electron-proton scattering experiment. Although the results were found to be in agreement in the region of overlap, the study of the low x range (0.01 1 p was computed and found to be in disagreement with the Ellis-Jaffe sum rule. The result seems to indicate that only a small fraction of the proton spin originates from the spins of the quarks

  20. Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Diancheng [Univ. of Virginia, Charlottesville, VA (United States)

    2013-12-01

    The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q2 values of 1.1 and 1.9 (GeV/c)2. The asymmetry at Q2=1.9 (GeV/c)2 can be used to extract the weak coupling combination 2C2u - C2d, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first APV data in the resonance region beyond the Δ (1232). They provide evidence that the quark hadron duality works for APV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.

  1. Forward $\\pi^{0}$ Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kropivnitskaya, A.; Kroseberg, J.; Kueckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leiner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, Ch.; Woehrling, E.E.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2004-01-01

    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \\approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.

  2. Distorted spin dependent spectral function of {sup 3}He and semi-inclusive deep inelastic scattering processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaptari, Leonya P. [University of Perugia (Italy); INFN-Perugia (Italy); Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Joint Inst. for Nuclear Research, Dubna (Russia); Del Dotto, Alessio [University of Rome, Rome (Italy); INFN-Roma (Italy); Pace, Emanuele [University of Rome (Italy); INFN-Tor Vergata (Italy); Salme, Giovanni [INFN-Roma (Italy); Scopetta, Sergio [University of Perugia (Italy); INFN-Perugia (Italy)

    2014-03-01

    The spin dependent spectral function, relevant to describe polarized electron scattering off polarized {sup 3}He, is studied, within the Plane Wave Impulse Approximation and taking into account final state interaction effects (FSI). In particular, the case of semi-inclusive deep inelastic scattering (SiDIS) is considered, evaluating the FSI of the hadronizing quark with the nuclear remnants. It is shown that particular kinematical regions can be selected to minimize the latter effects, so that parton distributions in the neutron can be accessed. On the other side, in the regions where FSI dominates, the considered reactions can elucidate the mechanism of hadronization of quarks during the propagation in the nuclear medium. It is shown that the obtained spin dependent spectral function can be directly applied to investigate the SiDIS reaction e-vector + {sup 3}He-vector to h+X, where the hadron h originates from the current fragmentation. Experiments of this type are being performed at JLab to extract neutron transverse momentum dependent parton distributions. As a case study, a different SiDIS process, with detection of slow (A-1) systems in the final state, is considered in more details, in order to establish when nuclear structure effects and FSI can be distinguished from elementary reactions on quasi-free nucleons. It is argued that, by a proper choice of kinematics, the origin of nuclear effects in polarized DIS phenomena and the details of the interaction between the hadronizing quark and the nuclear medium can be investigated at a level which is not reachable in inclusive deep inelastic scattering.

  3. Deep inelastic phenomena

    International Nuclear Information System (INIS)

    Aubert, J.J.

    1982-01-01

    The experimental situation of the deep inelastic scattering for electrons (muons) is reviewed. A brief history of experimentation highlights Mohr and Nicoll's 1932 experiment on electron-atom scattering and Hofstadter's 1950 experiment on electron-nucleus scattering. The phenomenology of electron-nucleon scattering carried out between 1960 and 1970 is described, with emphasis on the parton model, and scaling. Experiments at SLAC and FNAL since 1974 exhibit scaling violations. Three muon-nucleon scattering experiments at BFP, BCDMA, and EMA, currently producing new results in the high Q 2 domain suggest a rather flat behaviour of the structure function at fixed x as a function of Q 2 . It is seen that the structure measured in DIS can then be projected into a pure hadronic process to predict a cross section. Protonneutron difference, moment analysis, and Drell-Yan pairs are also considered

  4. The lowest order total electromagnetic correction to the deep inelastic scattering of polarized leptons on polarized nucleons

    International Nuclear Information System (INIS)

    Shumeiko, N.M.; Timoshin, S.I.

    1991-01-01

    Compact formulae for a total 1-loop electromagnetic corrections, including the contribution of electromagnetic hadron effects to the deep inelastic scattering of polarized leptons on polarized nucleons in the quark-parton model have been obtained. The cases of longitudinal and transverse nucleon polarization are considered in detail. A thorough numerical calculation of corrections to cross sections and polarization asymmetries at muon (electron) energies over the range of 200-2000 GeV (10-16 GeV) has been made. It has been established that the contribution of corrections to the hadron current considerably affects the behaviour of longitudinal asymmetry. A satisfactory agreement is found between the model calculations of corrections to the lepton current and the phenomenological calculation results, which makes it possible to find the total 1-loop correction within the framework of a common approach. (Author)

  5. Measurement of K*±(892) production in deep inelastic ep scattering with the H1 detector at HERA

    International Nuclear Information System (INIS)

    Sunar, Deniz

    2009-07-01

    A first measurement is presented of K * (892) ± vector mesons, observed through the decay chain K * (892) ± → K 0 S π ± → π + π - π ± ; in neutral current deep-inelastic ep scattering. The data were taken at the HERA collider in the years 2005.2007 with centre of mass energy √(s)=319 GeV using the H1 detector and correspond to an integrated luminosity of approximately 302 pb -1 . The measurement of differential cross section was performed in the kinematic range which covers the photon virtuality 5 2 2 and the inelasticity 0:1 *± vector meson is restricted in transverse momentum p T (K *± )>1 GeV and pseudorapidity -1.5 *± )<1.5. The results are compared to predictions of leading order Monte Carlo models matched with the parton showers. Persbericht (orig.)

  6. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2008-12-01

    Measurements of the cross sections for charged current deep inelastic scattering in e - p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb -1 collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections dσ/dQ 2 , dσ/dx and dσ/dy are presented for Q 2 >200 GeV 2 . The double-differential cross-section d 2 σ/dxdQ 2 is presented in the kinematic range 280 2 and 0.015< x<0.65. The measured cross sections are compared with the predictions of the Standard Model. (orig.)

  7. The triple-pomeron regime and structure function of the pomeron in diffractive deep inelastic scattering at very small x

    International Nuclear Information System (INIS)

    Nikolaev, N.N.; Zakharov, B.G.

    1994-01-01

    We develop the novel description of diffractive deep inelastic scattering based on the technique of lightcone wave functions of multiparton Fock states of the photon. The technique takes advantage of the exact diagonalization of the diffractive S-matrix in the dipole-cross section representation. In this paper we derive properties of the diffractive dissociation of virtual photons in the triple-pomeron regime. We demonstrate that the photon-pomeron interactions can be described by the partonic structure function, which satisfies the conventional GLDAP evolution equations. We identify the valence and sea (anti) quark and the valence gluon structure functions of the pomeron. We show how the gluon structure of the pomeron can be described by the constituent gluon wave function. We derive the leading unitarization correction to the rising structure functions at small x and conclude that the unitarized structure function satisfies the linear GLDAP evolution equations. This result holds even when the multipomeron exchanges are included. (orig.)

  8. Non-singlet coefficient functions for charged-current deep-inelastic scattering to the third order in QCD

    International Nuclear Information System (INIS)

    Davies, J.; Vogt, A.

    2016-06-01

    We have calculated the coefficient functions for the structure functions F_2, F_L and F_3 in ν- anti ν charged-current deep-inelastic scattering (DIS) at the third order in the strong coupling α_s, thus completing the description of unpolarized inclusive W"±-exchange DIS to this order of massless perturbative QCD. In this brief note, our new results are presented in terms of compact approximate expressions that are sufficiently accurate for phenomenological analyses. For the benefit of such analyses we also collect, in a unified notation, the corresponding lower-order contributions and the flavour non-singlet coefficient functions for ν+ anti ν charged-current DIS. The behaviour of all six third-order coefficient functions at small Bjorken-x is briefly discussed.

  9. Combined inclusive diffractive cross sections measured with forward proton spectrometers in deep inelastic ep scattering at HERA

    CERN Document Server

    Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Arneodo, M.; Arslan, O.; Aushev, V.; Aushev, Y.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Baghdasaryan, S.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartosik, N.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Belov, P.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bokhonov, V.; Bondarenko, K.; Boos, E.G.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Bozovic-Jelisavcic, I.; Bold, T.; Brummer, N.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Brock, I.; Brownson, E.; Brugnera, R.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Bussey, P.J.; Bylinkin, A.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Delcourt, B.; Delvax, J.; Dementiev, R.K.; Derrick, M.; Devenish, R.C.E.; De Pasquale, S.; De Wolf, E.A.; del Peso, J.; Diaconu, C.; Dobre, M.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dolinska, G.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Gabathuler, E.; Gach, G.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gizhko, A.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gogota, O.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Huttmann, A.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, X.; Januschek, F.; Jones, T.W.; Jonsson, L.; Jungst, M.; Jung, H.; Kadenko, I.; Kahle, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Kaur, P.; Kaur, M.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Koffeman, E.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kramer, M.; Kretzschmar, J.; Kruger, K.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukina, O.Yu.; Maeda, J.; Magill, S.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Margotti, A.; Marini, G.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Idris, F.Mohamad; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Morris, J.D.; Mujkic, K.; Muller, K.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nigro, A.; Nikitin, D.; Ning, Y.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Olkiewicz, K.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Palichik, V.; Pandurovic, M.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piotrzkowski, K.; Pirumov, H.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Raicevic, N.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Sloan, T.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, J.; Szuba, D.; Tapper, A.D.; Tassi, E.; Terron, J.; Theedt, T.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Truol, P.; Trusov, V.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Vazquez, M.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Vlasov, N.N.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Wichmann, K.; Wiggers, L.; Wing, M.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zabiegalov, O.; Zacek, J.; Zalesak, J.; Zawiejski, L.; Zenaiev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zhokin, A.; Zichichi, A.; Zlebcik, R.; Zohrabyan, H.; Zolkapli, Z.; Zomer, F.; Zotkin, D.S.; Zarnecki, A.F.

    2012-10-10

    A combination of the inclusive diffractive cross section measurements made by the H1 and ZEUS Collaborations at HERA is presented. The analysis uses samples of diffractive deep inelastic ep scattering data at a centre-of-mass energy sqrt(s) = 318 GeV where leading protons are detected by dedicated spectrometers. Correlations of systematic uncertainties are taken into account, resulting in an improved precision of the cross section measurement which reaches 6% for the most precise points. The combined data cover the range 2.5 < Q2 < 200 GeV2 in photon virtuality, 0.00035 < xIP < 0.09 in proton fractional momentum loss, 0.09 < |t| < 0.55 GeV2 in squared four-momentum transfer at the proton vertex and 0.0018 < beta < 0.816 in beta = x/xIP, where x is the Bjorken scaling variable.

  10. Leptoquarks and compositeness scales from a contact interaction analysis of deep inelastic e±p scattering at HERA

    International Nuclear Information System (INIS)

    Aid, S.; Andrieu, B.

    1995-04-01

    A contact interaction analysis is presented to search for new phenomena beyond the Standard Model in deep inelastic e ± p →e ± hadrons scattering. The data are collected with the H1 detector at HERA and correspond to integrated luminosities of 0.909 pb -1 and 2.947 pb -1 for electron and positron beams, respectively. The differential cross sections dσ/dQ 2 are measured in the Q 2 range between 160 GeV 2 and 20,000 GeV 2 . The absence of any significant deviation from the Standard Model prediction is used to constrain the couplings and masses of new leptoquarks and to set limits on electron-quark compositeness scales and on the radius of light quarks. (orig.)

  11. Leading neutron energy and p{sub T} distributions in deep inelastic scattering and photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2007-02-15

    The production of energetic neutrons in ep collisions has been studied with the ZEUS detector at HERA. The neutron energy and p{sub T}{sup 2} distributions were measured with a forward neutron calorimeter and tracker in a 40 pb{sup -1} sample of inclusive deep inelastic scattering (DIS) data and a 6 pb{sup -1} sample of photoproduction data. The neutron yield in photoproduction is suppressed relative to DIS for the lower neutron energies and the neutrons have a steeper p{sub T}{sup 2} distribution, consistent with the expectation from absorption models. The distributions are compared to HERA measurements of leading protons. The neutron energy and transverse-momentum distributions in DIS are compared to Monte Carlo simulations and to the predictions of particle exchange models. Models of pion exchange incorporating absorption and additional secondary meson exchanges give a good description of the data. (orig.)

  12. Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    CERN Document Server

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buechele, M.; Capozza, L.; Chang, W. -C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S. -U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Duennweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmueller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; dHose, N.; Hsieh, C. -Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Joerg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Koenigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kuhn, R.; Kraemer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J. -C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schoenning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Steffen, D.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2017-01-10

    Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.

  13. Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2017-01-01

    Full Text Available Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y and the relative hadron energy z. Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target (6LiD. They cover the kinematic domain in the photon virtuality Q2>1(GeV/c2, 0.004

  14. Beam-spin asymmetry of pion, kaon, proton and antiproton production in semi-inclusive deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zagrebelnyy, Vitaly [DESY Hamburg Notkestrasse 85 (Germany)

    2014-07-01

    Beam-spin asymmetries in the azimuthal distribution of pions, kaons, protons and antiprotons in semi-inclusive deep inelastic scattering (SIDIS) extracted from 2000-2007 HERMES data are presented. The asymmetries were measured in the kinematic region Q{sup 2}>1 GeV{sup 2}, W{sup 2} > 10 GeV{sup 2}, 0.1

  15. Measurement of Inclusive Jet Production in Deep-Inelastic Scattering at High Q$^{2}$ and Determination of the Strong Coupling

    CERN Document Server

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, Paul R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smiljanic, Ivan; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-01-01

    Inclusive jet production is studied in neutral current deep-inelastic positron-proton scattering at large four momentum transfer squared Q^2>150 GeV^2 with the H1 detector at HERA. Single and double differential inclusive jet cross sections are measured as a function of Q^2 and of the transverse energy E_T of the jets in the Breit frame. The measurements are found to be well described by calculations at next-to-leading order in perturbative QCD. The running of the strong coupling is demonstrated and the value of alpha_s(M_Z) is determined. The ratio of the inclusive jet cross section to the inclusive neutral current cross section is also measured and used to extract a precise value for alpha_s(M_Z)=0.1193+/-0.0014(exp.)^{+0.0047}_{-0.0030}(th.)+/-0.0016(pdf).

  16. Left-right asymmetry for pion and kaon production in the semi-inclusive deep-inelastic scattering process

    International Nuclear Information System (INIS)

    Sun, Bo; She, Jun; Zhang, Bing; Mao, Ya-Jun; Ma, Bo-Qiang

    2010-01-01

    We analyze the left-right asymmetry in the semi-inclusive deep-inelastic scattering (SIDIS) process without introducing any weighting functions. With the current theoretical understanding, we find that the Sivers effect plays a key role in our analysis. We use the latest parametrization of the Sivers and fragmentation functions to reanalyze the π ± production process and find that the results are sensitive to the parametrization. We also extend our calculation on the K ± production, which can help us know more about the Sivers distribution of the sea quarks and the unfavored fragmentation processes. HERMES kinematics with a proton target, COMPASS kinematics with a proton, deuteron, and neutron target (the information on the neutron target can be effectively extracted from the 3 He target), and JLab kinematics (both 6 GeV and 12 GeV) with a proton and neutron target are considered in our paper. (orig.)

  17. Measurement of charged and neutral current e-p deep inelastic scattering cross sections at high Q2

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Deep inelastic e - p scattering has been studied in both the charged current (CC) and neutral current (NC) reactions at momentum transfers squared, Q 2 , between 400 GeV 2 and the kinematic limit of 87500 GeV 2 using the ZEUS detector at the HERA ep collider. The CC and NC total cross sections, the NC to CC cross section ratio, and the differential cross sections, dσ/dQ 2 , are presented. For Q 2 ∝M W 2 , where M W is the mass of the W boson, the CC and NC cross sections have comparable magnitudes, demonstrating the equal strengths of the weak and electromagnetic interactions at high Q 2 . The Q 2 dependence of the CC cross section determines the mass term in the CC propagator to be M W =76±16±13 GeV. (orig.)

  18. Measurement of inclusive jet production in deep-inelastic scattering at high Q and determination of the strong coupling

    Science.gov (United States)

    H1 Collaboration; Aktas, A.; Alexa, C.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkiewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Jacquet, M.; Janssen, M. E.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Polifka, R.; Povh, B.; Preda, T.; Prideaux, P.; Radescu, V.; Rahmat, A. J.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Staykova, Z.; Steder, M.; Stella, B.; Stiewe, J.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Tran, T. H.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, Ch.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-09-01

    Inclusive jet production is studied in neutral current deep-inelastic positron proton scattering at large four momentum transfer squared Q>150GeV with the H1 detector at HERA. Single and double differential inclusive jet cross sections are measured as a function of Q and of the transverse energy E of the jets in the Breit frame. The measurements are found to be well described by calculations at next-to-leading order in perturbative QCD. The running of the strong coupling is demonstrated and the value of α(M) is determined. The ratio of the inclusive jet cross section to the inclusive neutral current cross section is also measured and used to extract a precise value for α(M)=0.1193±0.0014(exp.)-0.0030+0.0047(th.)±0.0016(pdf).

  19. A high-statistics measurement of transverse spin effects in dihadron production from muon-proton semi-inclusive deep-inelastic scattering

    NARCIS (Netherlands)

    Adolph, C.; Akhunzyanov, R.; Alekseev, M. G.; Alexandrov, Yu; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Hinterberger, F.; Höppner, Ch; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu A.; Kisselev, Yu; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W. D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.

    2014-01-01

    A measurement of the azimuthal asymmetry in dihadron production in deep-inelastic scattering of muons on transversely polarised proton (NH3) targets is presented. They provide independent access to the transversity distribution functions through the measurement of the Collins asymmetry in single

  20. Deep inelastic inclusive weak and electromagnetic interactions

    International Nuclear Information System (INIS)

    Adler, S.L.

    1976-01-01

    The theory of deep inelastic inclusive interactions is reviewed, emphasizing applications to electromagnetic and weak charged current processes. The following reactions are considered: e + N → e + X, ν + N → μ - + X, anti ν + N → μ + + X where X denotes a summation over all final state hadrons and the ν's are muon neutrinos. After a discussion of scaling, the quark-parton model is invoked to explain the principle experimental features of deep inelastic inclusive reactions

  1. Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: H1 and ZEUS Collaboration

    2012-10-15

    Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections {sigma}{sup c} {sup anti} {sup c}{sub red} for charm production are obtained in the kinematic range of photon virtuality 2.5 {<=} Q{sup 2} {<=} 2000 GeV{sup 2} and Bjorken scaling variable 3.10{sup -5}{<=}x{<=}5.10{sup -2}. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deepinelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W{sup {+-}} and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.

  2. Examination of higher-order twist contributions in parity-violating deep-inelastic electron-deuteron scattering

    International Nuclear Information System (INIS)

    Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco

    2010-01-01

    We show that parity-violating deep-inelastic scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist four from the matrix element of a single four-quark operator. We reformulate the Bjorken-Wolfenstein argument in a matter suitable for the interpretation of experiments planned at the Thomas Jefferson National Accelerator Facility (JLab). In particular, we observe that because the contribution of the relevant twist-four operator satisfies the Callan-Gross relation, the ratio of parity-violating longitudinal and transverse cross sections, R γZ , is identical to that for purely electromagnetic scattering, R γ , up to perturbative and power-suppressed contributions. This result simplifies the interpretation of the asymmetry in terms of other possible novel hadronic and electroweak contributions. We use the results of MIT Bag Model calculations to estimate contributions of the relevant twist-four operator to the leading term in the asymmetry as a function of Bjorken x and Q 2 . We compare these estimates with possible leading twist corrections from violation of charge symmetry in the parton distribution functions.

  3. Tests of QCD factorisation in the diffractive production of dijets in deep-inelastic scattering and photoproduction at HERA

    Science.gov (United States)

    Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Beckingham, M.; Begzsuren, K.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J. G.; Coughlan, J. A.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Habib, S.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Helebrant, C.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Plačakytė, R.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schätzel, S.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smiljanic, I.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.

    2007-08-01

    Measurements are presented of differential dijet cross sections in diffractive photoproduction (Q2<0.01 GeV2) and deep-inelastic scattering processes (DIS, 4scattering factorisation breaking at HERA. The measurements are also compared to the two soft colour neutralisation models SCI and GAL. The SCI model describes diffractive dijet production in DIS but not in photoproduction. The GAL model fails in both kinematic regions.

  4. Investigation into the limits of perturbation theory at low Q{sup 2} using HERA deep inelastic scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (Germany). Werner-Heisenberg-Institut; Cooper-Sarkar, A.M. [Oxford Univ. (United Kingdom). Dept. of Physics; Foster, B. [Oxford Univ. (United Kingdom). Dept. of Physics; Hamburg Univ. (Germany). I. Inst. of Experimental Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Myronenko, V.; Wichmann, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Wing, M. [University College London (United Kingdom). Dept. of Physics and Astronomy

    2017-07-18

    A phenomenological study of the final combined HERA data on inclusive deep inelastic scattering (DIS) has been performed. The data are presented and investigated for a kinematic range extending from values of the four-momentum transfer, Q{sup 2}, above 10{sup 4} GeV{sup 2} down to the lowest values observable at HERA of Q{sup 2}=0.045 GeV{sup 2} and Bjorken x, x{sub Bj}=6.10{sup -7}. The data are well described by fits based on perturbative quantum chromodynamics (QCD) using collinear factorisation and evolution of the parton densities encompassed in the DGLAP formalism from the highest Q{sup 2} down to Q{sup 2} of a few GeV{sup 2}. The Regge formalism with the soft Pomeron pole can describe the data up to Q{sup 2}∼0.65 GeV{sup 2}. The complete data set can be described by a new fit using the Abramowicz-Levin-Levy-Maor (ALLM) parameterisation. The region between the Regge and the perturbative QCD regimes is of particular interest.

  5. Measurement of Charm and Beauty Production in Deep Inelastic Scattering at HERA and Test Beam Studies of ATLAS Pixel Sensors

    CERN Document Server

    Libov, Vladyslav; Klanner, Robert; Haller, Johannes; Geiser, Achim

    A measurement of charm and beauty production in Deep Inelastic Scattering at HERA is presented. The analysis is based on the data sample collected by the ZEUS detector in the period from 2003 to 2007 corresponding to an integrated luminosity of 354 pb 1 . The kinematic region of the measurement is given by 5 4 : 2(5) GeV for charm (beauty) and 1 : 6 < jet < 2 : 2 for both charm and beauty, where E jet T and jet are the transverse energy and pseudorapidity of the jet, respectively. The signicance of the decay length and the invariant mass of charged tracks associated with the secondary vertex are used as discriminating variables to distinguish between signal and background. Dierential cross sections of jet production in charm and beauty events as a function of Q 2 , y , E jet T and jet are measured. Results are compared to Next-to-Leading Order (NLO) predictions from Quantum Chromodynamics (QCD) in the xed avour number scheme. Good agreement between data and theory is observed. Contributions of the char...

  6. The spin-dependent structure function $g_{1}(x)$ of the deuteron from polarized deep-inelastic muon scattering

    CERN Document Server

    Adams, D; Adeva, B; Akdogan, T; Arik, E; Arvidson, A; Badelek, B; Ballintijn, M K; Bardin, Dimitri Yuri; Bardin, G; Baum, G; Berglund, P; Betev, L; Bird, I G; Birsa, R; Björkholm, P; Bonner, B E; De Botton, N R; Boutemeur, M; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Cavata, C; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Dyring, A; Eichblatt, S; Faivre, Jean-Claude; Fasching, D; Feinstein, F; Fernández, C; Frois, Bernard; Gallas, A; Garzón, J A; Gaussiran, T; Giorgi, M A; von Goeler, E; Gómez, F; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Kalinovskaya, L V; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kishi, A; Kiselev, Yu F; Klostermann, L; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Lindqvist, T; Litmaath, M; Loewe, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Van Middelkoop, G; Miller, D; Mori, K; Moromisato, J H; Nagaitsev, A P; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Parks, D P; Perrot-Kunne, F; Peshekhonov, V D; Piegaia, R; Pinsky, L; Platchkov, S K; Pló, M; Polec, J; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Pussieux, T; Pyrlik, J; Rädel, G; Rijllart, A; Roberts, J B; Rock, S E; Rodríguez, M; Rondio, Ewa; Rosado, A; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schüler, K P; Seitz, R; Semertzidis, Y K; Sever, F; Shanahan, P; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Steigler, U; Stuhrmann, H B; Szleper, M; Teichert, K M; Tessarotto, F; Tlaczala, W; Trentalange, S; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Weinstein, R; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Yañez, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J

    1997-01-01

    We present a new measurement of the spin-dependent structure function $g_{1}^{\\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\\Gamma_{1}^{\\rm d} = \\int_{0}^{1} g_{1}^{\\rm d}{\\rm d}x = 0.041 \\pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \\pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \\pm 0.03$. Using our earlier determination of $\\Gamma_{1}^{\\rm p}$, we obtain $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.183 \\pm 0.035$ at $Q^2 = 10\\,\\mbox{GeV}^2$. This result is in agreement with the Bjorken sum rule which predicts $\\Gamma_1^{\\rm p} - \\Gamma_1^{\\rm n} = 0.186 \\pm 0.002$ at the same $Q^2$.

  7. The spin-dependent structure function $g_1(x)$ of the proton from polarized deep-inelastic muon scattering

    CERN Document Server

    AUTHOR|(CDS)2067425; Arvidson, A; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; Görtz, S; Gracia, G; De Groot, N; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Grosse-Perdekamp, M; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Rodríguez, M; Rondio, Ewa; Roscherr, B; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K

    1997-01-01

    We present a new measurement of the virtual photon proton asymmetry $A_1^{\\rm p}$ from deep inelastic scattering of polarized muons on polarized protons in the kinematic range $0.0008 1$ GeV$^{2}$. A perturbative QCD evolution in next-to-leading order is used to determine $g_1^{\\rm p}(x)$ at a constant $Q^2$. At $Q^{2} = 10$ GeV$^{2}$ we find, in the measured range, $\\int_{0.003}^{0.7} g_{1}^{\\rm p}(x){\\rm d}x = 0.139 \\pm 0.006~({\\rm stat})\\pm 0.008~({\\rm syst)} \\pm 0.006~({\\rm evol})$. The value of the first moment $\\Gamma_{1}^{\\rm p} = \\int_{0}^{1} g_{1}^{\\rm p}(x){\\rm d}x$ of $g_{1}^{\\rm p}$ depends on the approach used to describe the behaviour of $g_{1}^{\\rm p}$ at low $x$. We find that the Ellis-Jaffe sum rule is violated. With our published result for $\\Gamma_{1}^{\\rm d}$ we confirm the Bjorken sum rule with an accuracy of $\\approx 15\\%$ at the one standard deviation level.

  8. Inclusive deep inelastic scattering at high Q{sup 2} with longitudinally polarised lepton beams at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)] (and others)

    2012-06-15

    Inclusive e{sup {+-}}p single and double differential cross sections for neutral and charged current deep inelastic scattering processes are measured with the H1 detector at HERA. The data were taken at a centre-of-mass energy of {radical}(s)=319 GeV with a total integrated luminosity of 333.7 pb{sup -1} shared between two lepton beam charges and two longitudinal lepton polarisation modes. The differential cross sections are measured in the range of negative four-momentum transfer squared, Q{sup 2}, between 60 and 50000 GeV{sup 2}, and Bjorken x between 0.0008 and 0.65. The measurements are combined with earlier published unpolarised H1 data to improve statistical precision and used to determine the structure function xF{sup {gamma}}{sup Z}{sub 3}. A measurement of the neutral current parity violating structure function F{sup {gamma}}{sup Z}{sub 2} is presented for the first time. The polarisation dependence of the charged current total cross section is also measured. The new measurements are well described by a next-to-leading order QCD fit based on all published H1 inclusive cross section data which are used to extract the parton distribution functions of the proton.

  9. Variation of multiplicity and transverse energy flow with W2 and Q2 in deep inelastic scattering at HERA

    International Nuclear Information System (INIS)

    Lohmander, H.

    1995-04-01

    Charged particle and transverse energy flow for deep inelastic ep scattering at HERA have been investigated in the hadronic center of mass systems as a function of pseudorapidity η* in different W 2 and Q 2 intervals. In addition, the mean charged particle multiplicity ch > and the mean transverse energy * Τ > as a function of W 2 and Q 2 have been studied. The measurements were made in the kinematic region 85 2 2 . The ch > was found to increase with increasing W 2 at fixed Q 2 but did not show any significant dependence on Q 2 at fixed W 2 . The best description of the mean charged multiplicity is given by ch >=a+b·ln(W 2 /GeV 2 ) with a=-1.38±0.07 and b=0.93±0.05. The * Τ > increased both with increasing W 2 at fixed Q 2 and with increasing Q 2 at fixed W 2 . The mean transverse energy is described by * Τ >=a+b·ln(W 2 /GeV 2 )+c·ln (Q 2 /GeV 2 )GeV with a=-5.93±0.07, b=1.28±0.06 and c=0.69±0.02. Different QCD models have been compared with data. Only the Color Dipole Model, as implemented in the Monte Carlo program Ariadne, describes the data satisfactorily. 29 refs

  10. Investigation of deep inelastic scattering processes involving large p$_{t}$ direct photons in the final state

    CERN Multimedia

    2002-01-01

    This experiment will investigate various aspects of photon-parton scattering and will be performed in the H2 beam of the SPS North Area with high intensity hadron beams up to 350 GeV/c. \\\\\\\\ a) The directly produced photon yield in deep inelastic hadron-hadron collisions. Large p$_{t}$ direct photons from hadronic interactions are presumably a result of a simple annihilation process of quarks and antiquarks or of a QCD-Compton process. The relative contribution of the two processes can be studied by using various incident beam projectiles $\\pi^{+}, \\pi^{-}, p$ and in the future $\\bar{p}$. \\\\\\\\b) The correlations between directly produced photons and their accompanying hadronic jets. We will examine events with a large p$_{t}$ direct photon for away-side jets. If jets are recognised their properties will be investigated. Differences between a gluon and a quark jet may become observable by comparing reactions where valence quark annihilations (away-side jet originates from a gluon) dominate over the QDC-Compton...

  11. Deep inelastic scattering of polarized electrons by polarized 3 He and the study of the neutron spin structure

    International Nuclear Information System (INIS)

    Arnold, R.G.; Bosted, P.E.; Dunne, J.; Fellbaum, J.; Keppel, C.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; White, J.L.; Breton, V.; Fonvieille, H.; Roblin, Y.; Shapiro, G.; Hughes, E.W.; Borel, H.; Lombard-Nelsen, R.M.; Marroncle, J.; Morgenstern, J.; Staley, F.; Terrien, Y.; Anthony, P.L.; Dietrich, F.S.; Chupp, T.E.; Smith, T.; Thompson, A.K.; Kuhn, S.E.; Cates, G.D.; Middleton, H.; Newbury, N.R.; Anthony, P.L.; Gearhart, R.; Hughes, E.W.; Maruyama, T.; Meyer, W.; Petratos, G.G.; Pitthan, R.; Rokni, S.H.; Stuart, L.M.; White, J.L.; Woods, M.; Young, C.C.; Erbacher, R.; Kawall, D.; Kuhn, S.E.; Meziani, Z.E.; Holmes, R.; Souder, P.A.; Xu, J.; Meziani, Z.E.; Band, H.R.; Johnson, J.R.; Maruyama, T.; Prepost, R.; Zapala, G.

    1996-01-01

    The neutron longitudinal and transverse asymmetries A 1 n and A 2 n have been extracted from deep inelastic scattering of polarized electrons by a polarized 3 He target at incident energies of 19.42, 22.66 and 25.51 GeV. The measurement allows for the determination of the neutron spin structure functions g 1 n (x, Q 2 ) and g 2 n (x, Q 2 ) over the range 0.03 2 of 2 (GeV/c) 2 . The data are used for the evaluation of the Ellis-Jaffe and Bjorken sum rules. The neutron spin structure function g 1 n (x, Q 2 ) is small and negative within the range of our measurement, yielding an integral ∫ 0.03 0.6 g 1 n (x)dx - 0.028 ± 0.006 (stat) ± 0.006 (syst). Assuming Regge behavior at low x, we extract Γ 1 n ∫ 0 1 g 1 n (x)dx = - 0.031 ± 0.006 (stat) ± 0.009 (syst). Combined with previous proton integral results from SLAC experiment E143, we find Γ 1 p - Γ 1 n = 0.160 ± 0.015 in agreement with the Bjorken sum rule prediction Γ 1 p - Γ 1 p 0.176 ± 0.008 at a Q 2 value of 3 (GeV/c) 2 evaluated using α s 0.32 ± 0.05. (authors)

  12. Investigation into the limits of perturbation theory at low Q"2 using HERA deep inelastic scattering data

    International Nuclear Information System (INIS)

    Abt, I.; Myronenko, V.; Wichmann, K.; Wing, M.

    2017-01-01

    A phenomenological study of the final combined HERA data on inclusive deep inelastic scattering (DIS) has been performed. The data are presented and investigated for a kinematic range extending from values of the four-momentum transfer, Q"2, above 10"4 GeV"2 down to the lowest values observable at HERA of Q"2=0.045 GeV"2 and Bjorken x, x_B_j=6.10"-"7. The data are well described by fits based on perturbative quantum chromodynamics (QCD) using collinear factorisation and evolution of the parton densities encompassed in the DGLAP formalism from the highest Q"2 down to Q"2 of a few GeV"2. The Regge formalism with the soft Pomeron pole can describe the data up to Q"2∼0.65 GeV"2. The complete data set can be described by a new fit using the Abramowicz-Levin-Levy-Maor (ALLM) parameterisation. The region between the Regge and the perturbative QCD regimes is of particular interest.

  13. Measurement of K{sup *{+-}}(892) production in deep inelastic ep scattering with the H1 detector at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Sunar, Deniz

    2009-07-15

    A first measurement is presented of K{sup *}(892){sup {+-}} vector mesons, observed through the decay chain K{sup *}(892){sup {+-}} {yields} K{sup 0}{sub S}{pi}{sup {+-}} {yields} {pi}{sup +}{pi}{sup -}{pi}{sup {+-}}; in neutral current deep-inelastic ep scattering. The data were taken at the HERA collider in the years 2005.2007 with centre of mass energy {radical}(s)=319 GeV using the H1 detector and correspond to an integrated luminosity of approximately 302 pb{sup -1}. The measurement of differential cross section was performed in the kinematic range which covers the photon virtuality 51 GeV and pseudorapidity -1.5<{eta}(K{sup *{+-}})<1.5. The results are compared to predictions of leading order Monte Carlo models matched with the parton showers. Persbericht (orig.)

  14. N3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method

    Science.gov (United States)

    Currie, J.; Gehrmann, T.; Glover, E. W. N.; Huss, A.; Niehues, J.; Vogt, A.

    2018-05-01

    Computations of higher-order QCD corrections for processes with exclusive final states require a subtraction method for real-radiation contributions. We present the first-ever generalisation of a subtraction method for third-order (N3LO) QCD corrections. The Projection-to-Born method is used to combine inclusive N3LO coefficient functions with an exclusive second-order (NNLO) calculation for a final state with an extra jet. The input requirements, advantages, and potential applications of the method are discussed, and validations at lower orders are performed. As a test case, we compute the N3LO corrections to kinematical distributions and production rates for single-jet production in deep inelastic scattering in the laboratory frame, and compare them with data from the ZEUS experiment at HERA. The corrections are small in the central rapidity region, where they stabilize the predictions to sub per-cent level. The corrections increase substantially towards forward rapidity where large logarithmic effects are expected, thereby yielding an improved description of the data in this region.

  15. Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, IL (US)] (and others)

    2008-12-15

    Measurements of the cross sections for charged current deep inelastic scattering in e{sup -}p collisions with longitudinally polarised electron beams are presented. The measurements are based on a data sample with an integrated luminosity of 175 pb{sup -1} collected with the ZEUS detector at HERA at a centre-of-mass energy of 318 GeV. The total cross section is given for positively and negatively polarised electron beams. The differential cross-sections d{sigma}/dQ{sup 2}, d{sigma}/dx and d{sigma}/dy are presented for Q{sup 2}>200 GeV{sup 2}. The double-differential cross-section d{sup 2}{sigma}/dxdQ{sup 2} is presented in the kinematic range 280

  16. Measurement of D{sup +} and {lambda}{sub c}{sup +} production in deep inelastic scattering at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences; Max Planck Institute, Munich (Germany); Abt, I. [Max Planck Institut, Muenchen (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Cracow (PL). Faculty of Physics and Applied Computer Science] (and others)

    2010-06-15

    Charm production in deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 120 pb{sup -1}. The hadronic decay channels D{sup +} {yields} K{sub S}{sup 0}{pi}{sup +}, {lambda}{sub c}{sup +} {yields} pK{sub S}{sup 0} and {lambda}{sub c}{sup +}{yields}{lambda}{pi}{sup +}, and their charge conjugates, were reconstructed. The presence of a neutral strange hadron in the final state reduces the combinatorial background and extends the measured sensitivity into the low transverse momentum region. The kinematic range is 0< p{sub T}(D{sup +}, {lambda}{sub c}{sup +})<10 GeV, vertical stroke {eta}(D{sup +}, {lambda}{sub c}{sup +}) vertical stroke <1.6, 1.5 < Q{sup 2}<1000 GeV{sup 2} and 0.02

  17. A measurement of multijet production in low-x{sub Bj} neutral current deep inelastic scattering with ZEUS at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Danielson, T.E.

    2007-12-15

    Inclusive dijet and trijet production in deep inelastic ep scattering has been measured for 10