WorldWideScience

Sample records for neutral gas compression

  1. Gas compression infrared generator

    International Nuclear Information System (INIS)

    Hug, W.F.

    1980-01-01

    A molecular gas is compressed in a quasi-adiabatic manner to produce pulsed radiation during each compressor cycle when the pressure and temperature are sufficiently high, and part of the energy is recovered during the expansion phase, as defined in U.S. Pat. No. 3,751,666; characterized by use of a cylinder with a reciprocating piston as a compressor

  2. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  3. Gas cell neutralizers (Fundamental principles)

    International Nuclear Information System (INIS)

    Fuehrer, B.

    1985-06-01

    Neutralizing an ion-beam of the size and energy levels involved in the neutral-particle-beam program represents a considerable extension of the state-of-the-art of neutralizer technology. Many different mediums (e.g., solid, liquid, gas, plasma, photons) can be used to strip the hydrogen ion of its extra electron. A large, multidisciplinary R and D effort will no doubt be required to sort out all of the ''pros and cons'' of these various techniques. The purpose of this particular presentation is to discuss some basic configurations and fundamental principles of the gas type of neutralizer cell. Particular emphasis is placed on the ''Gasdynamic Free-Jet'' neutralizer since this configuration has the potential of being much shorter than other type of gas cells (in the beam direction) and it could operate in nearly a continuous mode (CW) if necessary. These were important considerations in the ATSU design which is discussed in some detail in the second presentation entitled ''ATSU Point Design''

  4. Effects of particle exhaust on neutral compression ratios in DIII-D

    International Nuclear Information System (INIS)

    Colchin, R.J.; Maingi, R.; Wade, M.R.; Allen, S.L.; Greenfield, C.M.

    1998-08-01

    In this paper, neutral particles in DIII-D are studied via their compression in the plenum and via particle exhaust. The compression of gas in the plena is examined in terms of the magnetic field configuration and wall conditions. DIII-D compression ratios are observed in the range from 1 to ≥ 1,000. Particle control ultimately depends on the exhaust of neutrals via plenum or wall pumping. Wall pumping or outgassing is calculated by means of a detailed particle balance throughout individual discharges, and its effect on particle control is discussed. It is demonstrated that particle control through wall conditioning leads to lower normalized densities. A two-region model shows that the gas compression ratio (C div = divertor plenum neutral pressure/torus neutral pressure) can be interpreted in relation to gas flows in the torus and divertor including the pumping speed of the plenum cryopumps, plasma pumping, and the pumping or outgassing of the walls

  5. A Fast Faraday Cup for the Neutralized Drift Compression Experiment

    CERN Document Server

    Sefkow, Adam; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Greenway, Wayne; Henestroza, Enrique; Kwan, Joe W; Roy, Prabir K; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Heavy ion drivers for high energy density physics applications and inertial fusion energy use space-charge-dominated beams which require longitudinal bunch compression in order to achieve sufficiently high beam intensity at the target. The Neutralized Drift Compression Experiment-1A (NDCX-1A) at Lawrence Berkeley National Laboratory (LBNL) is used to determine the effective limits of neutralized drift compression. NDCX-1A investigates the physics of longitudinal drift compression of an intense ion beam, achieved by imposing an initial velocity tilt on the drifting beam and neutralizing the beam's space-charge with background plasma. Accurately measuring the longitudinal compression of the beam pulse with high resolution is critical for NDCX-1A, and an understanding of the accessible parameter space is modeled using the LSP particle-in-cell (PIC) code. The design and preliminary experimental results for an ion beam probe which measures the total beam current at the focal plane as a function of time are summari...

  6. LSP Simulations of the Neutralized Drift Compression Experiment

    CERN Document Server

    Thoma, Carsten H; Gilson, Erik P; Henestroza, Enrique; Roy, Prabir K; Welch, Dale; Yu, Simon

    2005-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory involves the longitudinal compression of a singly-stripped K ion beam with a mean energy of 250 keV in a meter long plasma. We present simulation results of compression of the NDCX beam using the PIC code LSP. The NDCX beam encounters an acceleration gap with a time-dependent voltage that decelerates the front and accelerates the tail of a 500 ns pulse which is to be compressed 110 cm downstream. The simulations model both ideal and experimental voltage waveforms. Results show good longitudinal compression without significant emittance growth.

  7. On plasma-neutral gas interaction

    International Nuclear Information System (INIS)

    Venkataramani, N.; Mattoo, S.K.

    1980-01-01

    The importance of plasma-neutral gas interaction layer has been emphasized by pointing out its application to a wide variety of physical phenomena. The interaction of a magnetised plasma stream penetrating a neutral gas cloud is discussed in the light of Alfven's critical velocity and Varma's threshold velocity on the ionising interaction. Interaction of a moving magnetised plasma with a stationary neutral gas has been studied and described. The device comprises of a plasma gun and an interaction region where neutral gas cloud is injected. The interaction region is provided with a transverse magnetic field of upto 1000 G. Several diagnostics deployed at the interaction region to make measurements on the macroscopic parameters of plasma and neutral gas are described. The parameters of discharge circuits are measured with high current and voltage probes. An interaction between a magnetised plasma stream and a neutral gas cloud is demonstrated. It is shown that this interaction does not have Varma's threshold on their relative velocity. The Alfven's critical velocity phenomenon is shown to depend on the integrated column neutral gas density that a plasma stream encounters while penetrating through it and not on the neutral gas density in the range of 10 17 -10 21 m -3 . (auth.)

  8. Commissioning Results of the Upgraded Neutralized Drift Compression Experiment

    International Nuclear Information System (INIS)

    Lidia, S.M.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Gilson, E.P.

    2009-01-01

    Recent changes to the NDCX beamline offer the promise of higher charge compressed bunches (>15nC), with correspondingly large intensities (>500kW/cm 2 ), delivered to the target plane for ion-beam driven warm dense matter experiments. We report on commissioning results of the upgraded NDCX beamline that includes a new induction bunching module with approximately twice the volt-seconds and greater tuning flexibility, combined with a longer neutralized drift compression channel.

  9. Measurement of plasma production and neutralization in gas neutralizers

    International Nuclear Information System (INIS)

    Maor, D.; Meron, M.; Johnson, B.; Jones, K.; Agagu, A.; Hu, B.

    1986-01-01

    In order to satisfy the need of experimental data for the designing of gas neutralizers we have started a project aimed at measuring all relevant cross sections for the charge exchange of H - , H 0 and H + projectiles, as well as the cross sections for the production of ions in the target. The expected results of these latter measurements are shown schematically

  10. Greenhouse gas neutral Germany in 2050

    International Nuclear Information System (INIS)

    Benndorf, Rosemarie; Bernicke, Maja; Bertram, Andreas

    2014-01-01

    In order to answer the question how a greenhouse gas neutral Germany would look like an interdisciplinary process was started by the Federal Environmental Agency. It was clear from the beginning of this work that a sustainable regenerative energy supply could not be sufficient. Therefore all relevant emission sources were included into the studies: traffic, industry, waste and waste water, agriculture, land usage, land usage changes and forestry. The necessary transformation paths to reach the aim of a greenhouse gas neutral Germany in 2050, economic considerations and political instruments were not part of this study.

  11. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  12. Computer calculations of compressibility of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H.; Mattar, L.; Dranchuk, P.M

    An alternative method for the calculation of pseudo reduced compressibility of natural gas is presented. The method is incorporated into the routines by adding a single FORTRAN statement before the RETURN statement. The method is suitable for computer and hand-held calculator applications. It produces the same reduced compressibility as other available methods but is computationally superior. Tabular definitions of coefficients and comparisons of predicted pseudo reduced compressibility using different methods are presented, along with appended FORTRAN subroutines. 7 refs., 2 tabs.

  13. Neutral gas transport modeling with DEGAS 2

    International Nuclear Information System (INIS)

    Karney, C.; Stotler, D.

    1993-01-01

    The authors are currently re-writing the neutral gas transport code, DEGAS, with a view to making it both faster and easier to include new physics. They present model calculations including ionization and charge exchange illustrating the way that reactions are included into DEGAS 2 and its operation on a distributed network of workstations

  14. Future perspective for CNG (Compressed Natural Gas)

    International Nuclear Information System (INIS)

    Veen, D.

    1999-01-01

    Driving on natural gas (CNG, Compressed Natural Gas) has been the talk of the industry for many years now. Although the benefits of natural gas as an engine fuel have become well-known, this phenomenon does not seem to gain momentum in the Netherlands. Over the last few months, however, the attitude towards CNG seems to be changing. Energy companies are increasingly engaged in commercial activities, e.g. selling natural gas at petrol stations, an increasing number of car manufacturers are delivering natural gas vehicles ex-works, and recently the NGV (Natural Gas Vehicles) Holland platform was set up for the unequivocal marketing of natural gas as an engine fuel

  15. Tokamak heating by neutral beams and adiabatic compression

    International Nuclear Information System (INIS)

    Furth, H.P.

    1973-08-01

    ''Realistic'' models of tokamak energy confinement strongly favor reactor operation at the maximum MHD-stable β-value, in order to maximize plasma density. Ohmic heating is unsuitable for this purpose. Neutral-beam heating plus compression is well suited; however, very large requirements on device size and injection power seem likely for a DT ignition experiment using a Maxwellian plasma. Results of the ATC experiment are reviewed, including Ohmic heating, neutral-beam heating, and production of two-energy-component plasmas (energetic deuteron population in deuterium ''target plasma''). A modest extrapolation of present ATC parameters could give zero-power conditions in a DT experiment of the two-energy-component type. (U.S.)

  16. Theoretical models for describing longitudinal bunch compression in the neutralized drift compression experiment

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2006-09-01

    Full Text Available Heavy ion drivers for warm dense matter and heavy ion fusion applications use intense charge bunches which must undergo transverse and longitudinal compression in order to meet the requisite high current densities and short pulse durations desired at the target. The neutralized drift compression experiment (NDCX at the Lawrence Berkeley National Laboratory is used to study the longitudinal neutralized drift compression of a space-charge-dominated ion beam, which occurs due to an imposed longitudinal velocity tilt and subsequent neutralization of the beam’s space charge by background plasma. Reduced theoretical models have been used in order to describe the realistic propagation of an intense charge bunch through the NDCX device. A warm-fluid model is presented as a tractable computational tool for investigating the nonideal effects associated with the experimental acceleration gap geometry and voltage waveform of the induction module, which acts as a means to pulse shape both the velocity and line density profiles. Self-similar drift compression solutions can be realized in order to transversely focus the entire charge bunch to the same focal plane in upcoming simultaneous transverse and longitudinal focusing experiments. A kinetic formalism based on the Vlasov equation has been employed in order to show that the peaks in the experimental current profiles are a result of the fact that only the central portion of the beam contributes effectively to the main compressed pulse. Significant portions of the charge bunch reside in the nonlinearly compressing part of the ion beam because of deviations between the experimental and ideal velocity tilts. Those regions form a pedestal of current around the central peak, thereby decreasing the amount of achievable longitudinal compression and increasing the pulse durations achieved at the focal plane. A hybrid fluid-Vlasov model which retains the advantages of both the fluid and kinetic approaches has been

  17. Initial Results on Neutralized Drift Compression Experiments (NDCX-IA) for High Intensity Ion Beam

    CERN Document Server

    Roy, Prabir K; Baca, David; Bieniosek, Frank; Coleman, Joshua E; Davidson, Ronald C; Efthimion, Philip; Eylon, Shmuel; Gilson, Erik P; Grant Logan, B; Greenway, Wayne; Henestroza, Enrique; Kaganovich, Igor D; Leitner, Matthaeus; Rose, David; Sefkow, Adam; Sharp, William M; Shuman, Derek; Thoma, Carsten H; Vanecek, David; Waldron, William; Welch, Dale; Yu, Simon

    2005-01-01

    Ion beam neutralization and compression experiments are designed to determine the feasibility of using compressed high intensity ion beams for high energy density physics (HEDP) experiments and for inertial fusion power. To quantitatively ascertain the various mechanisms and methods for beam compression, the Neutralized Drift Compression Experiment (NDCX) facility is being constructed at Lawrence Berkeley National Laboratory (LBNL). In the first compression experiment, a 260 KeV, 25 mA, K+ ion beam of centimeters size is radially compressed to a mm size spot by neutralization in a meter-long plasma column and beam peak current is longitudinally compressed by an induction velocity tilt core. Instrumentation, preliminary results of the experiments, and practical limits of compression are presented. These include parameters such as emittance, degree of neutralization, velocity tilt time profile, and accuracy of measurements (fast and spatially high resolution diagnostic) are discussed.

  18. Plans for longitudinal and transverse neutralized beam compression experiments, and initial results from solenoid transport experiments

    International Nuclear Information System (INIS)

    Seidl, P.A.; Armijo, J.; Baca, D.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grote, D.; Haber, I.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Molvik, A.W.; Rose, D.V.; Roy, P.K.; Sefkow, A.B.; Sharp, W.M.; Vay, J.L.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2007-01-01

    This paper presents plans for neutralized drift compression experiments, precursors to future target heating experiments. The target-physics objective is to study warm dense matter (WDM) using short-duration (∼1 ns) ion beams that enter the targets at energies just above that at which dE/dx is maximal. High intensity on target is to be achieved by a combination of longitudinal compression and transverse focusing. This work will build upon recent success in longitudinal compression, where the ion beam was compressed lengthwise by a factor of more than 50 by first applying a linear head-to-tail velocity tilt to the beam, and then allowing the beam to drift through a dense, neutralizing background plasma. Studies on a novel pulse line ion accelerator were also carried out. It is planned to demonstrate simultaneous transverse focusing and longitudinal compression in a series of future experiments, thereby achieving conditions suitable for future WDM target experiments. Future experiments may use solenoids for transverse focusing of un-neutralized ion beams during acceleration. Recent results are reported in the transport of a high-perveance heavy ion beam in a solenoid transport channel. The principal objectives of this solenoid transport experiment are to match and transport a space-charge-dominated ion beam, and to study associated electron-cloud and gas effects that may limit the beam quality in a solenoid transport system. Ideally, the beam will establish a Brillouin-flow condition (rotation at one-half the cyclotron frequency). Other mechanisms that potentially degrade beam quality are being studied, such as focusing-field aberrations, beam halo, and separation of lattice focusing elements

  19. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-01-01

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  20. Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment – II

    Directory of Open Access Journals (Sweden)

    Anton D. Stepanov

    2018-03-01

    Full Text Available The Neutralized Drift Compression Experiment-II (NDCX-II is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop angle, and emittance can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section. Keywords: Charged-particle beams, Induction accelerators, Beam dynamics, Beam emittance, Ion beam diagnostics, PACS Codes: 41.75.-i, 41.85.Ja, 52.59.Sa, 52.59.Wd, 29.27.Eg

  1. Neutralized drift compression experiments with a high-intensity ion beam

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Waldron, W.L.; Anders, A.; Baca, D.; Barnard, J.J.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Eylon, S.; Friedman, A.; Gilson, E.P.; Greenway, W.G.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Sefkow, A.B.; Seidl, P.A.; Sharp, W.M.; Thoma, C.; Welch, D.R.

    2007-01-01

    To create high-energy density matter and fusion conditions, high-power drivers, such as lasers, ion beams, and X-ray drivers, may be employed to heat targets with short pulses compared to hydro-motion. Both high-energy density physics and ion-driven inertial fusion require the simultaneous transverse and longitudinal compression of an ion beam to achieve high intensities. We have previously studied the effects of plasma neutralization for transverse beam compression. The scaled experiment, the Neutralized Transport Experiment (NTX), demonstrated that an initially un-neutralized beam can be compressed transversely to ∼1 mm radius when charge neutralization by background plasma electrons is provided. Here, we report longitudinal compression of a velocity-tailored, intense, neutralized 25 mA K + beam at 300 keV. The compression takes place in a 1-2 m drift section filled with plasma to provide space-charge neutralization. An induction cell produces a head-to-tail velocity ramp that longitudinally compresses the neutralized beam, enhances the beam peak current by a factor of 50 and produces a pulse duration of about 3 ns. The physics of longitudinal compression, experimental procedure, and the results of the compression experiments are presented

  2. Neutralized Drift Compression Experiment (NDCX) - II Quarterly Report

    International Nuclear Information System (INIS)

    Kwan, J.W.

    2009-01-01

    LBNL has received American Recovery and Reinvestment Act (ARRA) funding to construct a new accelerator at Lawrence Berkeley National Laboratory (LBNL) to significantly increase the energy on target, which will allow both the Heavy Ion Fusion (HIF) and Warm Dense Matter (WDM) research communities to explore scientific conditions that have not been available in any other device. For NDCX-II, a new induction linear accelerator (linac) will be constructed at Lawrence Berkeley National Laboratory (LBNL). NDCX-II will produce nano-second long ion beam bunches to hit thin foil targets. The final kinetic energy of the ions arriving at the target varies according to the ion mass. For atomic mass unit of 6 or 7 (Lithium ions), useful kinetic energies range from 1.5 to 5 or more MeV. The expected beam charge in the 1 ns (or shorter) pulse is about 20 nanoCoulombs. The pulse repetition rate will be about once or twice per minute (of course, target considerations will often reduce this rate). Our approach to building the NDCX-II ion accelerator is to make use of the available induction modules and 200 kV pulsers from the retired ATA electron linac at LLNL. Reusing this hardware will maximize the ion energy on target at a minimum cost. Some modification of the cells (e.g., reduce the bore diameter and replace with higher field pulsed solenoids) are needed in order to meet the requirements of this project. The NDCX-II project will include the following tasks: (1) Physics design to determine the required ion current density at the ion source, the injector beam optics, the layout of accelerator cells along the beam line, the voltage waveforms for beam acceleration and compression, the solenoid focusing, the neutralized drift compression and the final focus on target; (2) Engineering design and fabrication of the accelerator components, pulsed power system, diagnostic system, and control and data acquisition system; (3) Conventional facilities; and (4) Installation and integration

  3. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  4. Beam dynamics of the Neutralized Drift Compression Experiment-II (NDCX-II),a novel pulse-compressing ion accelerator

    International Nuclear Information System (INIS)

    Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Faltens, A.; Henestroza, E.; Jung, J.-Y.; Kwan, J.W.; Lee, E.P.; Leitner, M.A.; Logan, B.G.; Vay, J.-L.; Waldron, W.L.; Davidson, R.C.; Dorf, M.; Gilson, E.P.; Kaganovich, I.D.

    2009-01-01

    Intense beams of heavy ions are well suited for heating matter to regimes of emerging interest. A new facility, NDCX-II, will enable studies of warm dense matter at ∼1 eV and near-solid density, and of heavy-ion inertial fusion target physics relevant to electric power production. For these applications the beam must deposit its energy rapidly, before the target can expand significantly. To form such pulses, ion beams are temporally compressed in neutralizing plasma; current amplification factors of ∼50-100 are routinely obtained on the Neutralized Drift Compression Experiment (NDCX) at LBNL. In the NDCX-II physics design, an initial non-neutralized compression renders the pulse short enough that existing high-voltage pulsed power can be employed. This compression is first halted and then reversed by the beam's longitudinal space-charge field. Downstream induction cells provide acceleration and impose the head-to-tail velocity gradient that leads to the final neutralized compression onto the target. This paper describes the discrete-particle simulation models (1-D, 2-D, and 3-D) employed and the space-charge-dominated beam dynamics being realized.

  5. 26 CFR 48.4041-21 - Compressed natural gas (CNG).

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Compressed natural gas (CNG). 48.4041-21 Section... natural gas (CNG). (a) Delivery of CNG into the fuel supply tank of a motor vehicle or motorboat—(1) Imposition of tax. Tax is imposed on the delivery of compressed natural gas (CNG) into the fuel supply tank...

  6. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: II. Analysis of experimental data of the Neutralized Drift Compression eXperiment-I (NDCX-I)

    International Nuclear Information System (INIS)

    Massidda, Scott; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; Lidia, Steven M.; Seidl, Peter; Friedman, Alex

    2012-01-01

    Neutralized drift compression offers an effective means for particle beam focusing and current amplification with applications to heavy ion fusion. In the Neutralized Drift Compression eXperiment-I (NDCX-I), a non-relativistic ion beam pulse is passed through an inductive bunching module that produces a longitudinal velocity modulation. Due to the applied velocity tilt, the beam pulse compresses during neutralized drift. The ion beam pulse can be compressed by a factor of more than 100; however, errors in the velocity modulation affect the compression ratio in complex ways. We have performed a study of how the longitudinal compression of a typical NDCX-I ion beam pulse is affected by the initial errors in the acquired velocity modulation. Without any voltage errors, an ideal compression is limited only by the initial energy spread of the ion beam, ΔΕ b . In the presence of large voltage errors, δU⪢ΔE b , the maximum compression ratio is found to be inversely proportional to the geometric mean of the relative error in velocity modulation and the relative intrinsic energy spread of the beam ions. Although small parts of a beam pulse can achieve high local values of compression ratio, the acquired velocity errors cause these parts to compress at different times, limiting the overall compression of the ion beam pulse.

  7. Landfill Gas | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Landfill Gas Landfill Gas For campuses located near an active or recently retired landfill , landfill gas offers an opportunity to derive significant energy from a renewable energy resource. The following links go to sections that describe when and where landfill gas systems may fit into your climate

  8. Particle emissions from compressed natural gas engines

    International Nuclear Information System (INIS)

    Ristovski, Z.D.; Morawska, L.; Hitchins, J.; Thomas, S.; Greenaway, C.; Gilbert, D.

    2000-01-01

    This paper presents the results of measurements conducted to determine particle and gas emissions from two large compressed natural gas (CNG) spark ignition (SI) engines. Particle size distributions in the range from 0.01-30 μm, and gas composition were measured for five power settings of the engines: 35, 50, 65, 80 and 100% of full power. Particle emissions in the size range between 0.5 and 30 μm, measured by the aerodynamic particle sizer (APS), were very low at a level below two particles cm -3 . These concentrations were comparable with average ambient concentration, and were not considered in the succeeding analysis. Both engines produce significant amounts of particles in the size range between 0.015 and 0.7 μm, measured by the scanning mobility particle size (SMPS). Maximum number of concentrations of about 1 x 10 7 particles cm -3 were very similar for both engines. The CMDs were in the range between 0.020 and 0.060 μm. The observed levels of particulate emission are in terms of number of the same order as emissions from heavy duty diesel engines (Morawska et al., Environ. Sci. Tech. 32, 2033-2042). On the other hand, emissions of CO and NO x of 5.53 and 3.33 g k W h -1 , respectively, for one of the tested engines, were considerably lower than set by the standards. According to the specifications for the gas emissions, provided by the US EPA (US EPA, 1997), this engine can be considered as a 'low-emission' engine, although emissions of submicrometer particles are of the same order as heavy-duty vehicles. (Author)

  9. Windowless gas target with gas-dynamical focussing of an ultrasonic neutral gas flow

    International Nuclear Information System (INIS)

    Tietsch, W.; Bethge, K.; Feist, H.; Schopper, E.

    1975-11-01

    The construction of a gas jet target for heavy ion reaction is reported on. The spatial compression strockwaves in a supersonic flow behind a laval nozzle are used as a target. The target thickness can be varied by the choice of the nozzle pressure and the static pressure in the expansion room. All gases can be used. (WL) [de

  10. Modeling of modification experiments involving neutral-gas release

    International Nuclear Information System (INIS)

    Bernhardt, P.A.

    1983-01-01

    Many experiments involve the injection of neutral gases into the upper atmosphere. Examples are critical velocity experiments, MHD wave generation, ionospheric hole production, plasma striation formation, and ion tracing. Many of these experiments are discussed in other sessions of the Active Experiments Conference. This paper limits its discussion to: (1) the modeling of the neutral gas dynamics after injection, (2) subsequent formation of ionosphere holes, and (3) use of such holes as experimental tools

  11. Processing of mixed-waste compressed-gas cylinders on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-03-01

    To comply with restrictions on the storage of old compressed gas cylinders, the environmental management organization of Lockheed Martin Energy Systems must dispose of several thousand kilograms of compressed gases stored on the Oak Ridge Reservation (ORR) because the cylinders cannot be taken off-site for disposal in their current configuration. In the ORR Site Treatment Plan, a milestone is cited that requires repackaging and shipment off-site of 21 cylinders by September 30, 1997. A project was undertaken to first evaluate and then either recontainerize or neutralize these cylinders using a transportable compressed gas recontainerization skid (TCGRS), which was developed by Integrated Environmental Services of Atlanta. The transportable system can: (1) sample, analyze, and identify at the site the chemical and radiological content of each cylinder, even those with inoperable valves; (2) breach cylinders, when necessary, to release their contents into a containment chamber; and (3) either neutralize the gas or liquid contents within the containment chamber or transfer the gas or liquids to a new cylinder. The old cylinders and cylinder fragments were disposed of and the gases neutralized or transferred to new cylinders for transportation off-site for disposal. The entire operation to process the 21 cylinders took place in only 5 days once the system was approved for operation. The system performed as expected and can now be used to process the potentially thousands of more cylinders located across the US Department of Energy (DOE) complex that have not yet been declared surplus

  12. 46 CFR 188.10-21 - Compressed gas.

    Science.gov (United States)

    2010-10-01

    ... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-21 Compressed gas. This term includes any... by the Reid method covered by the American Society for Testing Materials Method of Test for Vapor...

  13. Compression of a mixed antiproton and electron non-neutral plasma to high densities

    Science.gov (United States)

    Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano

    2018-04-01

    We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.

  14. Integral Transport Analysis Results for Ions Flowing Through Neutral Gas

    Science.gov (United States)

    Emmert, Gilbert; Santarius, John

    2017-10-01

    Results of a computational model for the flow of energetic ions and neutrals through a background neutral gas will be presented. The method models reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The present work focuses on multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical, cylindrical, or linear geometry. This has been implemented as a computer code for atomic (3He, 3He +, 3He + +) and molecular (D, D2, D-, D +, D2 +, D3 +) ion and neutral species, and applied to modeling inertial-electrostatic connement (IEC) devices. The code yields detailed energy spectra of the various ions and energetic neutral species. Calculations for several University of Wisconsin IEC and ion implantation devices will be presented. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-ARI095, Dept. of Energy Grant DE-FG02-04ER54745, and the Grainger Foundation.

  15. Starting up a programme of atomic piles using compressed gas

    International Nuclear Information System (INIS)

    Horowitz, J.; Yvon, J.

    1959-01-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [fr

  16. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  17. Advanced numerical studies of the neutralized drift compression of intense ion beam pulses

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2007-10-01

    Full Text Available Longitudinal bunch compression of intense ion beams for warm dense matter and heavy ion fusion applications occurs by imposing an axial velocity tilt onto an ion beam across the acceleration gap of a linear induction accelerator, and subsequently allowing the beam to drift through plasma in order to neutralize its space-charge and current as the pulse compresses. The detailed physics and implications of acceleration gap effects and focusing aberration on optimum longitudinal compression are quantitatively reviewed using particle-in-cell simulations, showing their dependence on many system parameters. Finite-size gap effects are shown to result in compression reduction, due to an increase in the effective longitudinal temperature imparted to the beam, and a decrease in intended fractional tilt. Sensitivity of the focal plane quality to initial longitudinal beam temperature is explored, where slower particles are shown to experience increased levels of focusing aberration compared to faster particles. A plateau effect in axial compression is shown to occur for larger initial pulse lengths, where the increases in focusing aberration over the longer drift lengths involved dominate the increases in relative compression, indicating a trade-off between current compression and pulse duration. The dependence on intended fractional tilt is also discussed and agrees well with theory. A balance between longer initial pulse lengths and larger tilts is suggested, since both increase the current compression, but have opposite effects on the final pulse length, drift length, and amount of longitudinal focusing aberration. Quantitative examples are outlined that explore the sensitive dependence of compression on the initial kinetic energy and thermal distribution of the beam particles. Simultaneous transverse and longitudinal current density compression can be achieved in the laboratory using a strong final-focus solenoid, and simulations addressing the effects

  18. Wellhead gas compression extends life of beam-pumped wells

    International Nuclear Information System (INIS)

    Sherry, M.J.; Fairchild, P.W.

    1992-01-01

    This paper reports that operators of marginal oil and gas wells often can avoid having to shut them in by compressing gas from the back side of the casing at the well head and delivering it into the flowline. This process can reduce the back pressure at the face of the producing formation, which allows additional oil and gas to be produced and extends the economical reserves. Small, low-horsepower stationary compressors or a walking beam compressor (WBC) may be used for this purpose. A portable compressor test unit recently has been employed to evaluate wells that are possible candidates for wellhead compression as another cost cutting measure

  19. Compression of turbulent magnetized gas in giant molecular clouds

    Science.gov (United States)

    Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark

    2018-01-01

    Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.

  20. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  1. Neutral-beam requirements for compression-boosted ignited tokamak plasmas

    International Nuclear Information System (INIS)

    Cohn, D.R.; Jassby, D.L.; Kreischer, K.

    1977-12-01

    Neutral-beam energies of 200 to 500-keV D 0 may be required to insure adequate penetration into the center of ignition-sized tokamak plasmas. However, the beam energy requirement can be reduced by using a start-up scenario in which the final plasma is formed by major-radius compression of a beam-heated plasma whose density-radius product, na, is determined by satisfactory neutral-beam penetration. ''Compression boosting'' is attractive only for plasmas in which ntau/sub E/ increases with na, because a major-radius compression C increases na by C 3 / 2 . The dependence on C of beam energy and beam power for plasmas which obey ''empirical scaling laws'' of the type ntau/sub E/ varies as (na) 2 is analyzed. The dependences on C of stored magnetic energy and TF-coil power dissipation are also determined. It is found that a compression ratio of 1.5 to attain the ignited plasma permits adequate penetration by 150-keV D 0 beams

  2. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  3. Stability aspects of plasmas penetrated by neutral gas with respect to velocity driven modes

    International Nuclear Information System (INIS)

    Ohlsson, D.

    1978-08-01

    A study of the stability properties of dense partially ionized plasmas immersed in strong magnetic fields with respect to velocity driven modes are presented. First we consider modes driven by mass motion perpendicular to the lines of force and the unperturbed density and temperature gradients. The presence of a third fluid, neutral gas, gives under certain conditions rise to unstable modes. This type of instability arises independently or whether the applied electric field transverse to the lines of force, driving the mass motion, being parallel or antiparallel to the unperturbed density and temperature gradient. The presence of neutral gas also corresponds to stabilizing effects which, in certain parameter regions, result in a quenching of this instability. It is shown that modes driven by velocity shear perpendicular to the lines of force are effectively stabilized by viscous and resistive effects. These effects are in certain parameter ranges strongly enhanced on account of plasma-neutral gas interaction effects. In collisionless plasmas, modes driven by velocity shear parallel to the lines of force are stabilized by compressibility effects parallel to the magnetic field and by finite Larmor radius effects. (author)

  4. Compressed natural gas transportation by utilizing FRP composite pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, S.C. [Trans Ocean Gas Inc., St. John' s, NF (Canada)

    2004-07-01

    This paper discussed the Trans Ocean Gas (TOG) method for transporting compressed natural gas (CNG). As demand for natural gas increases and with half of the world's reserves considered stranded, a method to transport natural gas by ship is needed. CNG transportation is widely viewed as a viable method. Transported as CNG, stranded gas reserves can be delivered to existing markets or can create new natural gas markets not applicable to liquefied natural gas (LNG). In contrast to LNG, compressed gas requires no processing to offload. TOG proposes that CNG be transported using fiber reinforced plastic (FRP) pressure vessels which overcome all the deficiencies of proposed steel-based systems. FRP pressure vessels have been proven safe and reliable through critical applications in the national defense, aerospace, and natural gas vehicle industries. They are light-weight, highly reliable, have very safe failure modes, are corrosion resistant, and have excellent low temperature characteristics. Under TOG's scheme, natural gas can be stored at two thirds the density of LNG without costly processing. TOG's proposed design and testing of a CNG system was reviewed in detail. 1 fig.

  5. Analytical modeling of wet compression of gas turbine systems

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Ko, Hyung-Jong; Perez-Blanco, Horacio

    2011-01-01

    Evaporative gas turbine cycles (EvGT) are of importance to the power generation industry because of the potential of enhanced cycle efficiencies with moderate incremental cost. Humidification of the working fluid to result in evaporative cooling during compression is a key operation in these cycles. Previous simulations of this operation were carried out via numerical integration. The present work is aimed at modeling the wet-compression process with approximate analytical solutions instead. A thermodynamic analysis of the simultaneous heat and mass transfer processes that occur during evaporation is presented. The transient behavior of important variables in wet compression such as droplet diameter, droplet mass, gas and droplet temperature, and evaporation rate is investigated. The effects of system parameters on variables such as droplet evaporation time, compressor outlet temperature and input work are also considered. Results from this work exhibit good agreement with those of previous numerical work.

  6. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  7. Chemical reactivity of the compressed noble gas atoms and their ...

    Indian Academy of Sciences (India)

    Attempts are made to gain insights into the effect of confinement of noble gas atoms on their various reactivity indices. Systems become harder, less polarizable and difficult to excite as the compression increases. Ionization also causes similar effects. A quantum fluid density functional technique is adopted in order to study ...

  8. From Free Expansion to Abrupt Compression of an Ideal Gas

    Science.gov (United States)

    Anacleto, Joaquim; Pereira, Mario G.

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…

  9. Compressed natural gas vehicles motoring towards a green Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Kraft-Oliver, T. [International Institute for Energy Conservation (IIEC) - Asia, Bangkok (Thailand); Guo Xiao Yan [China North Vehicle Research Institute (CNVRI), Beijing (China)

    1996-12-31

    This paper first describes the state-of-the-art of compressed natural gas (CNG) technologies and evaluates the market prospects for CNG vehicles in Beijing. An analysis of the natural gas resource supply for fleet vehicles follows. The costs and benefits of establishing natural gas filling stations and promoting the development of vehicle technology are evaluated. The quantity of GHG reduction is calculated. The objective of the paper is to provide information of transfer niche of CNG vehicle and equipment production in Beijing. This paper argues that the development of CNG vehicles is a cost-effective strategy for mitigating both air pollution and GHG.

  10. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  11. Plasma/neutral gas transport in divertors and limiters

    International Nuclear Information System (INIS)

    Gierszewski, P.J.

    1983-09-01

    The engineering design of the divertor and first wall region of fusion reactors requires accurate knowledge of the energies and particle fluxes striking these surfaces. Simple calculations indicate that approx. 10 MW/m 2 heat fluxes and approx. 1 cm/yr erosion rates are possible, but there remain fundamental physics questions that bear directly on the engineering design. The purpose of this study was to treat hydrogen plasma and neutral gas transport in divertors and pumped limiters in sufficient detail to answer some of the questions as to the actual conditions that will be expected in fusion reactors. This was accomplished in four parts: (1) a review of relevant atomic processes to establish the dominant interactions and their data base; (2) a steady-state coupled O-D model of the plasma core, scrape-off layer and divertor exhaust to determine gross modes of operation and edge conditions; (3) a 1-D kinetic transport model to investigate the case of collisionless divertor exhaust, including non-Maxwellian ions and neutral atoms, highly collisional electrons, and a self-consistent electric field; and (4) a 3-D Monte Carlo treatment of neutral transport to correctly account for geometric effects

  12. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  13. Germany 2050 a greenhouse gas-neutral country. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kathrin; Nissler, Diana (eds.)

    2013-10-15

    For several years, the German Federal Environment Agency (UBA) has been looking at the question how the climate target of a GHG-neutral Germany can be achieved. In a multi-disciplinary project launched by the agency, the first point of call was power generation because of its high emissions. It was shown in 2010 that power generation from 100 % renewable energy is possible. Even then it was understood that a renewable energy supply alone would not be enough to completely abolish greenhouse gas emissions. Other sectors of the economy would have to follow suit and undergo major changes, relying on low-GHG technology. Consequently, the study now submitted, ''Greenhouse gas-neutral Germany 2050'', includes in its research all relevant emission sources that are described in the annual National Inventory Report (NIR) on emissions and removal of greenhouse gases. Alongside complete energy supply, including heating and transport, we also look at emissions from industry, waste disposal, agriculture and forestry as well as changes in land use. We develop a target scenario. The transformations that lead to the target and related economic considerations or the selection of appropriate policy instruments, however, are not part of our study. The scenario analysis is based on the assumption that in 2050, Germany will still be an exporting industrial country with an average annual growth of 0.7 % of its gross domestic product.

  14. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, Igor D.; Massidda, Scottt; Startsev, Edward A.; Davidson, Ronald C.; Vay, Jean-Luc; Friedman, Alex

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam pulse compression and current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam in the induction bunching module limit the maximum longitudinal compression. It is found that the compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors may limit the compression to a factor of one hundred. However, a part of the beam pulse where the errors are small may compress to much higher values, which are determined by the initial thermal spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam velocity errors given by a cubic function, the compression ratio can be described analytically. In this limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt, fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at the target and the compressed profile may have many peaks. The maximum compression is a function of both thermal spread and the velocity errors. The effects of the

  15. 49 CFR 571.303 - Standard No. 303; Fuel system integrity of compressed natural gas vehicles.

    Science.gov (United States)

    2010-10-01

    ... compressed natural gas vehicles. 571.303 Section 571.303 Transportation Other Regulations Relating to... system integrity of compressed natural gas vehicles. S1. Scope. This standard specifies requirements for the integrity of motor vehicle fuel systems using compressed natural gas (CNG), including the CNG fuel...

  16. Revised neutral gas shielding model for pellet ablation - combined neutral and plasma shielding

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Schuresko, D.D.; Attenberger, S.E.

    1986-01-01

    The ablation and penetration of pellets in early ORMAK and ISX-A experiments were reliably predicted by the neutral gas shielding model of Milora and Foster. These experiments demonstrated that the principle components of the model - a self-generated shield which reduces the heat flux at the plasma surface - were correct. In more recent experiments with higher temperature plasmas, this model consistently predicts greater penetration than observed in the experiments. Upgarding known limitations of the original model brings the predicted and observed penetration values into agreement. These improvements include: (1) treating the incident electrons as having distribution in energy rather than being monoenergetic; (2) including the shielding effects of cold, dense plasma extending along the magnetic field outside the neutral shield; and (3) modifying the finite plasma, self-limiting incident heat flux so that it represents a collisionless plasma limit rather than a collisional limit. Comparisons are made between the models for a selection of ISX-B Alcator-C, and TFTR shots. The net effect of the changes in the model is an increase in pellet ablation rates and decrease in penetration for current and future experiments

  17. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-10-01

    We report results on lithium alumino-silicate ion source development in preparation for warmdense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCXII). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ~;;1275 oC, a space-charge-limited Li+ beam current density of J ~;;1 mA/cm2 was obtained. The lifetime of the ion source was ~;;50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 mu s.

  18. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX)

    International Nuclear Information System (INIS)

    Roy, Prabir K.; Greenway, Wayne G.; Kwan, Joe W.; Seidl, Peter A.; Waldron, William L.; Wu, James K.

    2010-01-01

    We report results on lithium alumino-silicate ion source development in preparation for warm-dense-matter heating experiments on the new Neutralized Drift Compression Experiment (NDCX-II). The practical limit to the current density for a lithium alumino-silicate source is determined by the maximum operating temperature that the ion source can withstand before running into problems of heat transfer, melting of the alumino-silicate material, and emission lifetime. Using small prototype emitters, at a temperature of ∼1275 C, a space-charge-limited Li + beam current density of J ∼1 mA/cm 2 was obtained. The lifetime of the ion source was ∼50 hours while pulsing at a rate of 0.033 Hz with a pulse duration of 5-6 (micro) s.

  19. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Wong, K.L.; Scott, S.; Hsuan, H.; Grek, B.; Johnson, D.; Tait, G.

    1990-01-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments [Phys. Rev. Lett. 55, 2587 (1985)] with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted Ti XXI Kα line radiation. The experiments were conducted for neutral beam powers in the range 2.1--3.8 MW and line-averaged densities in the range 1.8--3.0x10 19 m -2 . The observed rotation velocity increase during compression is consistent with theoretical estimates

  20. GASDUC-3: a gas pipeline with neutralization of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, Celso A.; Paula, Eliane H. de; Freire, Dilian A.D. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS seeks to develop its projects following the contemporary premises of sustainable development. The Cabiunas-REDUC-3 Gas Pipeline (GASDUC-3), an undertaking from the Transportadora Associada de Gas - TAG (Associated Gas Transporter) in progress by PETROBRAS, is an example showing that interfacing with the environment can overcome legal questions to reach the realm of awareness and community spirit. In addition to the many programs directed specifically towards the fulfillment of environmental regulations, as defined by competent agencies, the GASDUC-3 is also inserted in the Carbon Free Program. In the Carbon Free Program, all the GHG emissions into the atmosphere during the construction of the gas pipeline will be compensated for with the neutralization of carbon through reforestation. Such initiative is considered unheard of in works with pipelines worldwide. An inventory that quantified the emission of GHG during the implementation of GASDUC-3 made it possible to quantify the reforestation to be implemented and to calculate the number of native species to be planted for absorption - during the course of their growth - of this same amount of carbon dioxide from the atmosphere. The trees are being planted especially in Permanent Preservation Areas (PPA), located in the Unidades de Conservacao do Bioma Mata Atlantica (Conservation Units of the Atlantic Forest Biome), inside the influence region of the gas pipeline, in accordance with the competent environmental agencies and owners. In this way, in addition to fixing carbon and contributing to the deceleration of global warming, the project also cooperates with the preservation of hydro and soil resources and the local and regional biodiversity. The recapturing of the already emitted GHG through reforestation faces bureaucratic and economic difficulties in order to be implemented, different from the emission reduction projects which are widely disseminated by means of Clean Development Mechanisms (CDM

  1. Multiplate ionization total absorption spectrometer with a compressed gas

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, B.A.; Kantserov, V.A.

    1978-01-01

    The characteristics of a multiplate total absorption spectrometer working with the compressed xenon (up to 25 atm) containing up to 23 radiation lengths of matter are studied. The dependence of the spectrometer energy resolution on the detecting matter density, on the material and thickness of the absorber plates has been studied. The ability of the spectrometer with a tungsten absorber to select hadrons and electrons with P=6 GeV/c by total energy release and characteristics of the cascade longitudinal development has been also studied. The gas spectrometer as it is shown differs quite slightly from the similar spectrometer with liquid argon as for its time resolution it is much better

  2. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  3. ORNL neutral gas shielding model for pellet-plasma interactions

    International Nuclear Information System (INIS)

    Milora, S.L; Foster, C.A.

    1977-05-01

    A revised neutral molecule ablation model is derived to describe the evaporation of a solid hydrogen pellet in a tokamak plasma. The approach taken is based on the theory of Parks, Turnbull, and Foster who postulate that a cloud of molecular hydrogen surrounding the pellet shields the surface from incoming energetic electrons and, in so doing, regulates the evaporation rate. This treatment differs from an earlier model in that the hydrodynamic behavior of the molecular cloud is treated in a self-consistent manner. Numerical solutions of the fluid dynamic equations, which include the effects of strong electron heating locally in the gas, reveal that the flow of material away from the pellet is initially retarded by the heating and then rapidly accelerated and rarefied. This behavior is more pronounced for higher temperature plasmas and the net effect is that pellet lifetimes are prolonged slightly by including the heating effects. A comparison is made with the results of the recent pellet injection experiments on ORMAK and a simple injection depth scaling law is derived

  4. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  5. The Importance of Policy Neutrality for Lowering Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Trevor Tombe

    2013-03-01

    Full Text Available The drive by Canadian governments, at the provincial and federal level, to lower greenhouse gas emissions has resulted in a hodgepodge of different policy approaches. Some governments have opted for energy taxes, others for regulated limits on total emissions or emission intensity. Unfortunately, not all policy solutions are created equal; some are more effective than others in lowering total emissions and, worse still, may exact a heavy price on the economy. Policy-makers require a better understanding of how various policies affect the health of an economy and of how to mitigate the most pernicious costs. Key to gaining this improved understanding is to recognize one simple fact: some firms are more productive than others. As a consequence, it matters how workers, machines, energy, and other inputs are distributed between these firms. More productive firms should be larger — it is that simple. Some policies, however, increase input costs differently across firms and create costly distortions. Energy intensity targets are a clear example of a policy that disproportionately burdens lower productivity firms, changing firm sizes for the worse and even leading some to shut down altogether. Using a detailed model of production and energy use that matches the Canadian economy, we explore the consequences of the several forms that energy intensity regulations can take. We find the best approach to lowering greenhouse gas emissions is one that is neutral across firms — one that affects the cost of energy for smaller firms no more, or less, than larger ones. The only policy that fulfils this criterion is a flat energy tax. However, a flat tax on energy could well be politically unsellable in Canada, leaving governments to resort to politically palatable but economically risky intensity targets instead. Recognizing this, we explore a number of ways to improve the performance of intensity targets. First, governments should allow firms the option to

  6. Three-dimensional modeling of the neutral gas depletion effect in a helicon discharge plasma

    Science.gov (United States)

    Kollasch, Jeffrey; Schmitz, Oliver; Norval, Ryan; Reiter, Detlev; Sovinec, Carl

    2016-10-01

    Helicon discharges provide an attractive radio-frequency driven regime for plasma, but neutral-particle dynamics present a challenge to extending performance. A neutral gas depletion effect occurs when neutrals in the plasma core are not replenished at a sufficient rate to sustain a higher plasma density. The Monte Carlo neutral particle tracking code EIRENE was setup for the MARIA helicon experiment at UW Madison to study its neutral particle dynamics. Prescribed plasma temperature and density profiles similar to those in the MARIA device are used in EIRENE to investigate the main causes of the neutral gas depletion effect. The most dominant plasma-neutral interactions are included so far, namely electron impact ionization of neutrals, charge exchange interactions of neutrals with plasma ions, and recycling at the wall. Parameter scans show how the neutral depletion effect depends on parameters such as Knudsen number, plasma density and temperature, and gas-surface interaction accommodation coefficients. Results are compared to similar analytic studies in the low Knudsen number limit. Plans to incorporate a similar Monte Carlo neutral model into a larger helicon modeling framework are discussed. This work is funded by the NSF CAREER Award PHY-1455210.

  7. From free expansion to abrupt compression of an ideal gas

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 ≤ r ≤ 1 for expansions and r ≥ 1 for compressions. The particular cases of free expansion and reversible adiabatic processes correspond to r = 0 and r = 1, respectively. To conclude the interpretation of r, the relation between r and the variation of the system entropy was also obtained. Comparison between this study and one restricted to expansions following a microscopic point of view showed not only equivalent interpretations but also that our approach is more general, since it also comprises compressions, provides an objective relation between r and entropy change and considers instantaneous varying values of the adiabatic reversibility coefficient. Finally, simulations of selected adiabatic processes are performed and numerical calculations of r are presented. This paper is intended primarily for the undergraduate student, although a comparison with the aforementioned work also requires a background in thermodynamics and kinetic theory

  8. Practical approach on gas pipeline compression system availability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sidney Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Kurz, Rainer; Lubomirsky, Matvey [Solar Turbines, San Diego, CA (United States)

    2009-12-19

    Gas pipeline projects traditionally have been designed based on load factor and steady state flow. This approach exposes project sponsors to project sustainability risks due to potential losses of revenues and transportation contract penalties related to pipeline capacity shortage as consequence of compressor unit's unavailability. Such unavailability should previously be quantified during the design phase. This paper presents a case study and a methodology that highlights the practical benefits of applying Monte Carlo simulation for the compression system availability analysis in conjunction with quantitative risk analysis and economic feasibility study. Project economics main variables and their impacts on the project NPV (Net Present Value) are evaluated with their respective statistics distribution to quantify risk and support decision makers to adopt mitigating measures to guarantee competitiveness while protecting project sponsors from otherwise unpredictable risks. This practical approach is compared to load factor approach and the results are presented and evaluated. (author)

  9. Measurement and calculation of gas compressibility factor for condensate gas and natural gas under pressure up to 116 MPa

    International Nuclear Information System (INIS)

    Yan, Ke-Le; Liu, Huang; Sun, Chang-Yu; Ma, Qing-Lan; Chen, Guang-Jin; Shen, De-Ji; Xiao, Xiang-Jiao; Wang, Hai-Ying

    2013-01-01

    Highlights: • Volumetric properties of two reservoir fluid samples were measured with pressure up to 116 MPa. • Dew point pressures at four temperatures for condensate gas sample are obtained. • Correlations and thermodynamic model for describing gas compressibility factor under high pressure were compared. • The thermodynamic model recommended is most suitable for fluids produced from reservoirs with a wide pressure range. -- Abstract: The volumetric properties of two reservoir fluid samples collected from one condensate gas well and one natural gas well were measured under four groups of temperatures, respectively, with pressure up to 116 MPa. For the two samples examined, the experimental results show that the gas compressibility factor increases with the increase of pressure. But the influence of the temperature is related to the range of the experimental pressure. It approximately decreases with the increase of temperature when the pressure is larger than (45 to 50) MPa, while there is the opposite trend when the pressure is lower than (45 to 50) MPa. The dew point pressure was also determined for the condensate gas sample, which decreases with the increase of temperature. The capabilities of four empirical correlations and a thermodynamic model based on equation of state for describing gas compressibility factor of reservoir fluids under high pressure were investigated. The comparison results show that the thermodynamic model recommended is the most suitable for fluids whatever produced from high-pressure reservoirs or conventional mild-pressure reservoirs

  10. Investigation of Sterilization Mechanism for Geobacillus stearothermophilus Spores with Plasma-Excited Neutral Gas

    Science.gov (United States)

    Matsui, Kei; Ikenaga, Noriaki; Sakudo, Noriyuki

    2015-09-01

    We investigate the mechanism of the sterilization with plasma-excited neutral gas that uniformly sterilizes both the space and inner wall of the reactor chamber at atmospheric pressure. Only reactive neutral species such as plasma-excited gas molecules and radicals are separated from the plasma and sent to the reactor chamber for chemical sterilization. The plasma source gas uses humidified mixture of nitrogen and oxygen. Geobacillus stearothermophilus spores and tyrosine which is amino acid are treated by the plasma-excited neutral gas. Shape change of the treated spore is observed by SEM, and chemical modification of the treated tyrosine is analyzed by HPLC. As a result, the surface of the treated spore shows depression. Hydroxylation and nitration of tyrosine are shown after the treatment. For these reasons, we believe that the sterilization with plasma-excited neutral gas results from the deformation of spore structure due to the chemical modification of amino acid.

  11. Inverse problem and uncertainty quantification: application to compressible gas dynamics

    International Nuclear Information System (INIS)

    Birolleau, Alexandre

    2014-01-01

    This thesis deals with uncertainty propagation and the resolution of inverse problems together with their respective acceleration via Polynomial Chaos. The object of this work is to present a state of the art and a numerical analysis of this stochastic spectral method, in order to understand its pros and cons when tackling the probabilistic study of hydrodynamical instabilities in Richtmyer-Meshkov shock tube experiments. The first chapter is introductory and allows understanding the stakes of being able to accurately take into account uncertainties in compressible gas dynamics simulations. The second chapter is both an illustrative state of the art on generalized Polynomial Chaos and a full numerical analysis of the method keeping in mind the final application on hydrodynamical problems developing shocks and discontinuous solutions. In this chapter, we introduce a new method, naming iterative generalized Polynomial Chaos, which ensures a gain with respect to generalized Polynomial Chaos, especially with non smooth solutions. Chapter three is closely related to an accepted publication in Communication in Computational Physics. It deals with stochastic inverse problems and introduces bayesian inference. It also emphasizes the possibility of accelerating the bayesian inference thanks to iterative generalized Polynomial Chaos described in the previous chapter. Theoretical convergence is established and illustrated on several test-cases. The last chapter consists in the application of the above materials to a complex and ambitious compressible gas dynamics problem (Richtmyer-Meshkov shock tube configuration) together with a deepened study of the physico-numerical phenomenon at stake. Finally, in the appendix, we also present some interesting research paths we quickly tackled during this thesis. (author) [fr

  12. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    Chin, O.H.; Jayapalan, K.K.; Wong, C.S.

    2014-01-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  13. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  14. Measurements of the toroidal plasma rotation velocity in TFTR major-radius compression experiments with auxiliary neutral beam heating

    International Nuclear Information System (INIS)

    Bitter, M.; Scott, S.; Wong, K.L.

    1986-07-01

    The time history of the central toroidal plasma rotation velocity in Tokamak Fusion Test Reactor (TFTR) experiments with auxiliary heating by neutral deuterium beam injection and major-radius compression has been measured from the Doppler shift of the emitted TiXXI-Kα line radiation. The experiments were conducted for neutral beam powers in the range from 2.1 to 3.8 MW and line-averaged densities in the range from 1.8 to 3.0 x 10 19 m -2 . The observed rotation velocity increase during compression is in agreement with results from modeling calculations which assume classical slowing-down of the injected fast deuterium ions and momentum damping at the rate established in the precompression plasma

  15. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    Subramanian, S.; Kudla, R.J.; Chattha, M.S.

    1992-01-01

    The objective of this paper is to investigate the modes of methane (CH 4 ) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH 4 appear to account for the higher CH 4 conversions observed under net reducing conditions

  16. Li+ alumino-silicate ion source development for the Neutralized Drift Compression Experiment (NDCX-II)

    International Nuclear Information System (INIS)

    Roy, P.K.; Greenway, W.; Kwan, J.W.; Seidl, P.A.; Waldron, W.

    2011-01-01

    To heat targets to electron-volt temperatures for the study of warm dense matter with intense ion beams, low mass ions, such as lithium, have an energy loss peak (dE/dx) at a suitable kinetic energy. The Heavy Ion Fusion Sciences (HIFS) program at Lawrence Berkeley National Laboratory will carry out warm dense matter experiments using Li + ion beam with energy 1.2-4 MeV in order to achieve uniform heating up to 0.1-1 eV. The accelerator physics design of Neutralized Drift Compression Experiment (NDCX-II) has a pulse length at the ion source of about 0.5 (micro)s. Thus for producing 50 nC of beam charge, the required beam current is about 100 mA. Focusability requires a normalized (edge) emittance ∼2 π-mm-mrad. Here, lithium aluminosilicate ion sources, of β-eucryptite, are being studied within the scope of NDCX-II construction. Several small (0.64 cm diameter) lithium aluminosilicate ion sources, on 70%-80% porous tungsten substrate, were operated in a pulsed mode. The distance between the source surface and the mid-plane of the extraction electrode (1 cm diameter aperture) was 1.48 cm. The source surface temperature was at 1220 C to 1300 C. A 5-6 (micro)s long beam pulsed was recorded by a Faraday cup (+300 V on the collector plate and -300 V on the suppressor ring). Figure 1 shows measured beam current density (J) vs. V 3/2 . A space-charge limited beam density of ∼1 mA/cm 2 was measured at 1275 C temperature, after allowing a conditioning time of about ∼ 12 hours. Maximum emission limited beam current density of (ge) 1.8mA/cm 2 was recorded at 1300 C with 10-kV extractions. Figure 2 shows the lifetime of two typical sources with space-charge limited beam current emission at a lower extraction voltage (1.75 kV) and at temperature of 1265 ± 7 C. These data demonstrate a constant, space-charge limited beam current for 20-50 hours. The lifetime of a source is determined by the loss of lithium from the alumino-silicate material either as ions or as neutral

  17. Processing mixed-waste compressed-gas cylinders at the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1998-05-01

    Until recently, several thousand kilograms of compressed gases were stored at the Oak Ridge Reservation (ORR), in Oak Ridge, Tennessee, because these cylinders could not be taken off-site in their state of configuration for disposal. Restrictions on the storage of old compressed-gas cylinders compelled the Waste Management Organization of Lockheed Martin Energy Systems, Inc. (LMES) to dispose of these materials. Furthermore, a milestone in the ORR Site Treatment Plan required repackaging and shipment off-site of 21 cylinders by September 30, 1997. A pilot project, coordinated by the Chemical Technology Division (CTD) at the Oak Ridge National Laboratory (ORNL), was undertaken to evaluate and recontainerize or neutralize these cylinders, which are mixed waste, to meet that milestone. Because the radiological component was considered to be confined to the exterior of the cylinder, the contents (once removed from the cylinder) could be handled as hazardous waste, and the cylinder could be handled as low-level waste (LLW). This pilot project to process 21 cylinders was important because of its potential impact. The successful completion of the project provides a newly demonstrated technology which can now be used to process the thousands of additional cylinders in inventory across the DOE complex. In this paper, many of the various aspects of implementing this project, including hurdles encountered and the lessons learned in overcoming them, are reported

  18. Gas utilization in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1987-08-01

    Measurements of gas utilization in a test TFTR neutral beam injector have been performed to study the feasibility of running tritium neutral beams with existing ion sources. Gas consumption is limited by the restriction of 50,000 curies of T 2 allowed on site. It was found that the gas efficiency of the present long-pulse ion sources is higher than it was with previous short-pulse sources. Gas efficiencies were studied over the range of 35 to 55%. At the high end of this range the neutral fraction of the beam fell below that predicted by room temperature molecular gas flow. This is consistent with observations made on the JET injectors, where it has been attributed to beam heating of the neutralizer gas and a concomitant increase in conductance. It was found that a working gas isotope exchange from H 2 to D 2 could be accomplished on the first beam shot after changing the gas supply, without any intermediate preconditioning. The mechanism believed responsible for this phenomenon is heating of the plasma generator walls by the arc and a resulting thermal desorption of all previously adsorbed and implanted gas. Finally, it was observed that an ion source conditioned to 120 kV operation could produce a beam pulse after a waiting period of fourteen hours by preceding the beam extraction with several hi-pot/filament warm-up pulses, without any gas consumption. 18 refs., 7 figs., 2 tabs

  19. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    Krueger, W.A.

    1990-06-01

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  20. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Kay L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ramsden, Margo M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gonzales, John E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lynch, Lauren [National Renewable Energy Lab. (NREL), Golden, CO (United States); Coale, Bob [Gladstein, Neandross & Associates, Santa Monica, CA (United States); Kohout, Jarrod [Gladstein, Neandross & Associates, Santa Monica, CA (United States)

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. The hazard presented by liquid fuels, such as gasoline and diesel, results from the spillage of these liquids and subsequent ignition of vapors, causing a fire or explosion. Facilities that maintain liquid-fueled vehicles and implement appropriate safety measures are protected with ventilation systems designed to capture liquid fuel vapors at or near floor level. To minimize the potential for ignition in the event of a spill, receptacles, electrical fixtures, and hot-work operations, such as welding, are located outside of these areas. Compressed natural gas (CNG) is composed of methane with slight amounts of heavier simple hydrocarbons. Maintenance facilities that maintain CNG vehicles indoors must be protected against fire and explosion. However, the means of ensuring safety are different from those employed for liquid fuels because of the gaseous nature of methane and the fact that it is lighter than air. Because CNG is lighter than air, a release will rise to the ceiling of the maintenance facility and quickly dissipate rather than remaining at or near floor level like liquid fuel vapors. Although some of the means of protection for CNG vehicle maintenance facilities are similar to those used for liquid-fueled vehicles (ventilation and elimination of ignition sources), the types and placement of the protection equipment are different because of the behavior of the different fuels. The nature of gaseous methane may also require additional safeguards, such as combustible

  1. Understanding of Neutral Gas Transport in the Alcator C-Mod Tokamak Divertor

    International Nuclear Information System (INIS)

    Stotler, D.P.; Pitcher, C.S.; Boswell, C.J.; LaBombard, B.; Terry, J.L.; Elder, J.D.; Lisgo, S.

    2002-01-01

    A series of experiments on the effect of divertor baffling on the Alcator C-Mod tokamak provides stringent tests on models of neutral gas transport in and around the divertor region. One attractive feature of these experiments is that a trial description of the background plasma can be constructed from experimental measurements using a simple model, allowing the neutral gas transport to be studied with a stand-alone code. The neutral-ion and neutral-neutral elastic scattering processes recently added to the DEGAS 2 Monte Carlo neutral transport code permit the neutral gas flow rates between the divertor and main chamber to be simulated more realistically than before. Nonetheless, the simulated neutral pressures are too low and the deuterium Balmer-alpha emission profiles differ qualitatively from those measured, indicating an incomplete understanding of the physical processes involved in the experiment. Some potential explanations are examined and opportunities for future exploration a re highlighted. Improvements to atomic and surface physics data and models will play a role in the latter

  2. Compressed natural gas for vehicles and how we can develop and meet the market

    International Nuclear Information System (INIS)

    Pinkerton, W.E.

    1992-01-01

    This paper reports that state and federal legislation have mandated the use of clean burning fuels. Clean fuels include: compressed natural gas (CNG), ethanol, methanol, liquefied petroleum gas (LPG), electricity, and reformulated gasoline. The Clean Air Amendments 1990 have created support for the rapid utilization of the compressed natural gas (CNG). Responsively, diverse occupations related to this industry are emerging. A coordinated infrastructure is vital to the successful promotion of clean fuels and synchronized endorsement of the law

  3. Advanced neutral gas diagnostics for magnetic confinement devices

    International Nuclear Information System (INIS)

    Wenzel, U.; Schlisio, G.; Marquardt, M.; Pedersen, T.S.; Kremeyer, T.; Schmitz, O.; Mackie, B.; Maisano-Brown, J.

    2017-01-01

    For the study of particle exhaust in nuclear fusion devices the neutral pressure must be measured in strong magnetic fields. We describe as an example the neutral pressure gauges in the Wendelstein 7-X stellarator. Two types are used: hot cathode ionization gauges (or ASDEX pressure gauges) and Penning gauges. We show some results from the first experimental campaign. The main problems were runtime effects and the failure of some ASDEX pressure gauges. To improve the reliability we integrated a new LaB 6 electron emitter into the ASDEX pressure gauges. In addition, a special Penning gauge without permanent magnets was developed in order to operate Penning gauges near the plasma edge. These new pressure gauges will be used in the upcoming campaign of Wendelstein 7-X.

  4. Three-dimensional calculations of charge neutralization by neutral gas release

    International Nuclear Information System (INIS)

    Mandell, M.J.; Jongeward, G.A.; Katz, I.

    1993-01-01

    There have been numerous observations of high rocket or spacecraft potentials, both positive and negative, and both naturally and artificially induced, being neutralized during thruster firings. Two current studies, CHARGE-2B (positive polarity) and SPEAR3 (negative polarity), attempt a more systematic exploration of this phenomenon. The authors present here calculations performed in support of the SPEAR-3 program. (1) Conventional phenomenology of breakdown is applied to the three-dimensional system formed by the electrostatic potential and plume density fields. Using real cross sections, they calculate the paths along which the nozzle plume can support breakdown. This leads to a recommendation that the higher flow rate on SPEAR-3 be 2 g/s of argon, equal to the CHARGE-2B flow rate. (2) In a laboratory chamber, conditions (pressure of ∼ 2 x 10 - 5 torr) favor breakdown of the positive (electron-collecting) sheath for SPEAR-3 geometry. Three-dimensional calculations illustrate the evolution of the space charge and potential structure during the breakdown process. These calculations demonstrate the ability to apply accepted phenomenology to real systems with three dimensional electrostatic potential fields, space charge fields, and neutral density fields, including magnetic field effects and real cross-section data

  5. Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer

    International Nuclear Information System (INIS)

    Zhang, D.; Giannone, L.; Piechotka, M.; Windisch, T.; Klinger, T.; Grulke, O.; Stark, A.

    2008-01-01

    The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, T e e -19 m -3 ) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented

  6. Investigation of the Neutral Gas Pressure Effect on the Metal Resistive Bolometer

    Science.gov (United States)

    Zhang, D.; Giannone, L.; Grulke, O.; Piechotka, M.; Windisch, T.; Stark, A.; Klinger, T.

    2008-03-01

    The bolometer system planned for W7-X consists mainly of metal (Au) resistive detector arrays. All the detectors are exposed to neutral gas environment. The thin bolometer foil used for detecting the radiated power loss may be sensitive to the neutral gas pressure due to the strain gauge effect. Recently, a prototype of this kind of bolometer camera consisting of 12 channels has been installed on the cylindrical plasma device VINETA in order to investigate the influences of the neutral gas pressure on the bolometer signals. Experiments are carried out for Ar-discharges under different gas pressure conditions. It is found that the pressure effect of the neutral gas can make considerable contributions, thus inducing non-negligible errors of the results in most of the investigated cases. Using the VINETA plasmas (Ar, Te<10 eV, ne<10-19 m-3) as examples, the paper demonstrates and discusses how to minimize the neutral gas effects, especially in the data analysis process. The radiated power and the radiation intensity profile obtained in helicon discharges are presented.

  7. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  8. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  9. Technical and economical feasibility of the Rankine compression gas turbine (RCG)

    NARCIS (Netherlands)

    Ouwerkerk, H.; Lange, de H.C.

    2006-01-01

    The Rankine compression gas turbine (RCG) is a new type of combined cycle, i.e. combined steam and gas turbine installation, that returns all shaft power on one free power turbine. The novelty of the RCG is that the steam turbine drives the compressor of the gas turbine cycle. This way, the turbine

  10. Natural Gas Compression Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 5311.1

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…

  11. Safety for Compressed Gas and Air Equipment. Module SH-26. Safety and Health.

    Science.gov (United States)

    Center for Occupational Research and Development, Inc., Waco, TX.

    This student module on safety for compressed gas and air equipment is one of 50 modules concerned with job safety and health. This module presents technical data about commonly used gases and stresses the procedures necessary for safe handling of compressed gases. Following the introduction, 14 objectives (each keyed to a page in the text) the…

  12. Gas injection in EBT-S for assessment of particle loading effects of neutral beam injection

    International Nuclear Information System (INIS)

    Carpenter, K.H.; Glowienka, J.C.

    1979-01-01

    Experiments have begun to examine the physics of neutral beam injection on EBT-S. Preliminary experiments have been limited to a calibrated gas puffing experiment which simulates the effects of a pulsed beam with zero energy. These experiments begin to address some of the compatibility problems that exist for future beam heating experiments on EBT devices. In particular, neutral beams are to be a significant part of the planned EBT-II experiment which is designed to demonstrate steady-state, reactor-like conditions with both electron cyclotron heating and neutral beam heating

  13. 78 FR 16045 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2013-03-13

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No. PHMSA-2013-0019; Notice No. 13-03] Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Safety Advisory...

  14. Operation of a TFTR ion source with a ground potential gas feed into the neutralizer

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Dudek, L.E.; Grisham, L.R.; Newman, R.A.; O'Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Wright, K.E.

    1991-01-01

    TFTR long pulse ion sources have been operated with gas fed only into the neutralizer. Gas for the plasma generator entered through the accelerator rather than directly into the arc chamber. This modification has been proposed for tritium beam operation to locate control electronics at ground potential and to simplify tritium plumbing. Source operation with this configuration and with the nominal gas system that feeds gas into both the ion source and the center of the neutralizer are compared. Comparison is based upon accelerator grid currents, beam composition, and neutral power delivered to the calorimeter. Charge exchange in the accelerator can be a significant loss mechanism in both systems at high throughput. A suitable operating point with the proposed system was found that requires 30% less gas than used presently. The extracted D + , D + 2 , and D + 3 fractions of the beam were found to be a function of the gas throughput; at similar throughputs, the two gas feed systems produced similar extracted ion fractions. Operation at the proposed gas efficient point results in a small reduction (relative to the old high throughput mode) in the extracted D + fraction of the beam from 77% to 71%, with concomitant changes in the D + 2 fraction from 18% to 26%, and 6% to 3% for D + 3 . The injected power is unchanged, ∼2.2 MW at 95 kV

  15. Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics

    International Nuclear Information System (INIS)

    Bernstein-Cooper, Elijah Z.; Pardy, Stephen A.; Cannon, John M.

    2014-01-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V c =15 ± 5 km s –1 . Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s –1 and 10.1 ± 1.2 km s –1 , corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  16. Influence of nonlinear effects on the neutral gas transport in tokamaks

    International Nuclear Information System (INIS)

    Behringer, T.

    1992-06-01

    The linear Monte Carlo computer code EIRENE for calculation of free molecular flow of neutral gases through a background plasma has been extended to the non-linear transition flow regime (Knudsen number 0.1-10). Motivation arose from higher gas densities in the range of 10 13 -10 15 cm -3 appearing in the srape-off layer and in parts of the vacuum system of advanced tokamak experiments. To treat the problem, the Direct Monte Carlo Simulation Method after Bird, a kinetic approach, was chosen, since the conditions for application of continuum theory are not met. First results with the extended code were obtained in calculating the conductance of plasma-free short cylindrical ducts and elbows. A steady increase in conductance with decreasing Knudsen number was found, which is in good agreement with experimental data. Further calculations for transition flows through fixed background plasmas were made. In these, solutions obtained were represented as differences from solutions obtained by linear calculations. Simulation of a 1-D plasma slab configuration (related to the gaseous divertor concept) revealed markedly varying neutral gas profiles due to neutral-neutral collisions. In addition, in these runs neutral-neutral inelastic collision processes turned out to be negligible. Finally, neutral gas behaviour at higher densities in pump limiter geometries was studied, related to experiments on the tokamak TEXTOR. An increase in conductance in the direction to the pumps of up to 25% relative to linear results was found. Recently obtained experimental data on the impact of non-linear neutral effects upon conductance could be confirmed. (orig.) [de

  17. Neutral gas transport and particle recycling in the W VII-AS stellarator

    International Nuclear Information System (INIS)

    Sardei, F.; Ringler, H.; Dodhy, A.; Kuehner, G.

    1990-01-01

    Neutral gas transport simulations with the 3D DEGAS code were applied to model plasmas before the W VII-AS operation was started. For a source of neutrals due to limiter recycling the calculated neutral density distribution is strongly affected by the asymmetries of the magnetic flux surfaces, limiter and wall structures. For a typical ECF heated deuterium discharge from the first months of W VII-AS operation the time histories of H α signals at five toroidal positions provide information about the neutral fluxes due to limiter and wall recycling and to gas puffing. The H α signals are used to scale the calculated 3D distributions of the neutrals and the radial profiles of the ion sources as obtained from the DEGAS code. By comparing the results for the three different neutral sources the limiter is found to provide more than 80% of the plasma refuelling, with a recycling coefficient of about 95%. The calculated total particle fluxes resulting from the integrated ion sources are consistent with neoclassical predictions in the temperature gradient region. Near the plasma edge, however, the fluxes are strongly anomalous. The diffusion coefficient estimated from the fluxes and the measured density gradients (with z eff approx. 3) is about 1/10 - 1/20 of the electron heat conductivity. (author). 6 refs, 10 figs

  18. On the relation between plasma and neutral gas profiles in a cold gas-blanket system

    International Nuclear Information System (INIS)

    Bures, M.

    1981-01-01

    A solution for the neutral density profile using the measured plasma density and temperature gradients is presented. The fluid model is used. It is found that the penetration length for neutrals is underestimated in the situation where the integrated profiles are used. The ionization rate need not be inferred in the present calculation, because the ionization of neutrals diffusing into the plasma is implicitly included in measured profiles. This calculation is advantageous in the low temperature range where the ionization rate is a strongly varying function of temperature. Finally the presented solution indicates that the temperature gradient plays the essential role in the determination of the neutral density profile. (Auth.)

  19. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  20. Self-contained anti-static adapter for compressed gas dust blowing devices

    International Nuclear Information System (INIS)

    Schwartz, L.H.; Miller, S.W.; Severud, C.N. Jr.

    1984-01-01

    An anti-static adapter which enhances the operation of compressed gas dust blowing devices by allowing the safe use of a radioactive source to ionize a gas stream. The adapter may be used and handled safely without special precautions on the part of the operator

  1. Compressed gas system operates semitrailer brakes during winching operation

    Science.gov (United States)

    Tupper, W. E.

    1964-01-01

    To move van-type semi-trailers into and out of confined spaces, an auxiliary braking system is mounted on a standard dolly converter. Compressed nitrogen is used to actuate the brakes which are used in conjunction with a power winch.

  2. Gas utilization in the Tokamak Fusion Test Reactor neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Kugel, H.W.; Grisham, L.R.; Stevenson, T.N.; von Halle, A.; Williams, M.D.; Jones, T.T.C.

    1989-01-01

    Measurements of gas utilization were performed using hydrogen and deuterium beams in the Tokamak Fusion Test Reactor (TFTR) neutral beam test beamline to study the feasibility of operating tritium beams with existing ion sources under conditions of minimal tritium consumption. (i) It was found that the fraction of gas molecules introduced into the TFTR long-pulse ion sources that are converted to extracted ions (i.e., the ion source gas efficiency) was higher than with previous short-pulse sources. Gas efficiencies were studied over the range 33%--55%, and its effect on neutralization of the extracted ions was studied. At the high end of the gas efficiency range, the neutral fraction of the beam fell below that predicted from room-temperature molecular gas flow (similar to observations at the Joint European Torus). (ii) Beam isotope change studies were performed. No extracted hydrogen ions were observed in the first deuterium beam following a working gas change from H 2 to D 2 . There was no arc conditioning or gas injection preceding the first beam extraction attempt. (iii) Experiments were also performed to determine the reliability of ion source operation during the long waiting periods between pulses that are anticipated during tritium operation. It was found that an ion source conditioned to 120 kV could produce a clean beam pulse after a waiting period of 14 h by preceding the beam extraction with several acceleration voltage/filament warm-up pulses. It can be concluded that the operation of up to six ion sources on tritium gas should be compatible with on-site inventory restrictions established for D--T, Q = 1 experiments on TFTR

  3. Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes

    Science.gov (United States)

    Capuano, M.; Bogey, C.; Spelt, P. D. M.

    2018-05-01

    A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.

  4. Spatial profiling of ion and neutral excitation in noble gas electron cyclotron resonance plasmas

    International Nuclear Information System (INIS)

    Rhoades, R.L.; Gorbatkin, S.M.

    1994-01-01

    Optical emission from neutrals and ions of several noble gases has been profiled in an electron cyclotron resonance plasma system. In argon plasmas with a net microwave power of 750 W, the neutral (696.5-nm) and ion (488-nm) emission profiles are slightly center peaked at 0.32 mTorr and gradually shift to a hollow appearance at 2.5 mTorr. Neon profiles show a similar trend from 2.5 to 10.0 mTorr. For the noble gases, transition pressure scales with the ionization potential of the gas, which is consistent with neutral depletion. Studies of noble gas mixtures, however, indicate that neutral depletion is not always dominant in the formation of hollow profiles. For Kr/Ar, Ar/Ne, and Ne/He plasmas, the majority gas tends to set the overall shape of the profile at any given pressure. For the conditions of the current system, plasma density appears to be more dominant than electron temperature in the formation of hollow profiles. The general method described is also a straightforward, inexpensive technique for measuring the spatial distribution of power deposited in plasmas, particularly where absolute scale can be calibrated by some other means

  5. Compressible Convection Experiment using Xenon Gas in a Centrifuge

    Science.gov (United States)

    Menaut, R.; Alboussiere, T.; Corre, Y.; Huguet, L.; Labrosse, S.; Deguen, R.; Moulin, M.

    2017-12-01

    We present here an experiment especially designed to study compressible convection in the lab. For significant compressible convection effects, the parameters of the experiment have to be optimized: we use xenon gaz in a cubic cell. This cell is placed in a centrifuge to artificially increase the apparent gravity and heated from below. With these choices, we are able to reach a dissipation number close to Earth's outer core value. We will present our results for different heating fluxes and rotation rates. We success to observe an adiabatic gradient of 3K/cm in the cell. Studies of pressure and temperature fluctuations lead us to think that the convection takes place under the form of a single roll in the cell for high heating flux. Moreover, these fluctuations show that the flow is geostrophic due to the high rotation speed. This important role of rotation, via Coriolis force effects, in our experimental setup leads us to develop a 2D quasigeostrophic compressible model in the anelastic liquid approximation. We test numerically this model with the finite element solver FreeFem++ and compare its results with our experimental data. In conclusion, we will present our project for the next experiment in which the cubic cell will be replace by a annulus cell. We will discuss the new expected effects due to this geometry as Rossby waves and zonal flows.

  6. A weakly compressible formulation for modelling liquid-gas sloshing

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2012-09-01

    Full Text Available This study presents the development and extension of free-surface modelling techniques with the purpose of improving the modelling accuracy for liquid-gas sloshing. Considering high density ratio fluids under low Mach number conditions...

  7. Wet gas compression. Experimental investigation of the aerodynamics within a centrifugal compressor exposed to wet gas

    Energy Technology Data Exchange (ETDEWEB)

    Gruener, Trond Gammelsaeter

    2012-07-01

    The demand for more efficient oil and gas production requires improved technology to increase production rates and enhance profitable operation. The centrifugal compressor is the key elements in the compression system. Preliminary studies of wet gas compressor concepts have demonstrated the benefits of wet gas boosting. An open-loop test facility was designed for single-stage wet gas compressor testing. Experimental investigators have been performed to reveal the impact of liquid on the aerodynamics of centrifugal compressor. The investigation consisted of two test campaigns with different impeller/diffuser configurations. Atmospheric air and water were used as experimental fluids. The two configurations showed a different pressure ratio characteristics when liquid as present. The results from test campaign A demonstrated a pronounced pressure ratio decrease at high flow and a minor pressure ration increase pressure ratio with reducing gas mass fraction (GMF). The deviation in pressure ratio characteristic for the two test campaigns was attributed to the volute operating characteristic. Both impeller/diffuser configurations demonstrated a reduction in maximum volume flow with decreasing GMF. The impeller pressure ratio was related to the diffuser and/or the volute performance). Air and water are preferable experimental fluids for safety reasons and because a less extensive facility design is required. An evaluation of the air/water tests versus hydrocarbon tests was performed in order to reveal whether the results were representative. Air/water tests at atmospheric conditions reproduced the general performance trend of hydrocarbon wet gas compressor tests with an analogous impeller at high pressures. Aerodynamic instability limits the operating range because of feasible severe damage of the compressor and adverse influence on the performance. It is essential to establish the surge margin at different operating conditions. A delayed instability inception was

  8. Feasibility of Ericsson type isothermal expansion/compression gas turbine cycle for nuclear energy use

    International Nuclear Information System (INIS)

    Shimizu, Akihiko

    2007-01-01

    A gas turbine with potential demand for the next generation nuclear energy use such as HTGR power plants, a gas cooled FBR, a gas cooled nuclear fusion reactor uses helium as working gas and with a closed cycle. Materials constituting a cycle must be set lower than allowable temperature in terms of mechanical strength and radioactivity containment performance and so expansion inlet temperature is remarkably limited. For thermal efficiency improvement, isothermal expansion/isothermal compression Ericsson type gas turbine cycle should be developed using wet surface of an expansion/compressor casing and a duct between stators without depending on an outside heat exchanger performing multistage re-heat/multistage intermediate cooling. Feasibility of an Ericsson cycle in comparison with a Brayton cycle and multi-stage compression/expansion cycle was studied and technologies to be developed were clarified. (author)

  9. Simulation of neutral gas flow in a tokamak divertor using the Direct Simulation Monte Carlo method

    International Nuclear Information System (INIS)

    Gleason-González, Cristian; Varoutis, Stylianos; Hauer, Volker; Day, Christian

    2014-01-01

    Highlights: • Subdivertor gas flows calculations in tokamaks by coupling the B2-EIRENE and DSMC method. • The results include pressure, temperature, bulk velocity and particle fluxes in the subdivertor. • Gas recirculation effect towards the plasma chamber through the vertical targets is found. • Comparison between DSMC and the ITERVAC code reveals a very good agreement. - Abstract: This paper presents a new innovative scientific and engineering approach for describing sub-divertor gas flows of fusion devices by coupling the B2-EIRENE (SOLPS) code and the Direct Simulation Monte Carlo (DSMC) method. The present study exemplifies this with a computational investigation of neutral gas flow in the ITER's sub-divertor region. The numerical results include the flow fields and contours of the overall quantities of practical interest such as the pressure, the temperature and the bulk velocity assuming helium as model gas. Moreover, the study unravels the gas recirculation effect located behind the vertical targets, viz. neutral particles flowing towards the plasma chamber. Comparison between calculations performed by the DSMC method and the ITERVAC code reveals a very good agreement along the main sub-divertor ducts

  10. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  11. Alfalfa discovery of the nearby gas-rich dwarf galaxy LEO P. V. Neutral gas dynamics and kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein-Cooper, Elijah Z.; Pardy, Stephen A. [Department of Astronomy, University of Wisconsin, 475 N Charter Street, Madison, WI 53706 (United States); Cannon, John M., E-mail: ezbc@astro.wisc.edu, E-mail: spardy@astro.wisc.edu, E-mail: jcannon@macalester.edu [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); and others

    2014-08-01

    We present new H I spectral line imaging of the extremely metal-poor, star-forming dwarf irregular galaxy Leo P. Our H I images probe the global neutral gas properties and the local conditions of the interstellar medium (ISM). The H I morphology is slightly elongated along the optical major axis. We do not find obvious signatures of interaction or infalling gas at large spatial scales. The neutral gas disk shows obvious rotation, although the velocity dispersion is comparable to the rotation velocity. The rotation amplitude is estimated to be V {sub c} =15 ± 5 km s{sup –1}. Within the H I radius probed by these observations, the mass ratio of gas to stars is roughly 2:1, while the ratio of the total mass to the baryonic mass is ≳15:1. We use this information to place Leo P on the baryonic Tully-Fisher relation, testing the baryonic content of cosmic structures in a sparsely populated portion of parameter space that has hitherto been occupied primarily by dwarf spheroidal galaxies. We detect the signature of two temperature components in the neutral ISM of Leo P; the cold and warm components have characteristic velocity widths of 4.2 ± 0.9 km s{sup –1} and 10.1 ± 1.2 km s{sup –1}, corresponding to kinetic temperature upper limits of ∼1100 K and ∼6200 K, respectively. The cold H I component is unresolved at a physical resolution of 200 pc. The highest H I surface densities are observed in close physical proximity to the single H II region. A comparison of the neutral gas properties of Leo P with other extremely metal-deficient (XMD) galaxies reveals that Leo P has the lowest neutral gas mass of any known XMD, and that the dynamical mass of Leo P is more than two orders of magnitude smaller than any known XMD with comparable metallicity.

  12. Attenuation of acoustic waves through reflections at the plasma neutral gas interfaces: weakly ionised case

    International Nuclear Information System (INIS)

    Ghosal, S.K.; Sen, S.N.

    1977-01-01

    The problem of transmission of sonic waves through a weakly ionised plasma bounded in each side by a neutral gas medium has been treated by assuming the plasma to be a mixture of two intermingled fluids viz., neutral particle fluid and ion fluid in equilibrium. From a hydrodynamic analysis the wave equation for 'p', the macroscopic pressure perturbation has been obtained and it is shown that two independent wave motions, one due to the neutral particles and the other due to ions are propagated through the plasma with two different phase velocities. Assuming the usual boundary conditions at the interface, the amplitude of the transmitted wave has been calculated in case of weakly ionized plasma; the theory can be utilized for the determination of electron temperature from the measured value of attenuation if the percentage of ionization and collision cross section can be obtained independently. (author)

  13. Modification Design of Petrol Engine for Alternative Fueling using Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Eliezer Uchechukwu Okeke

    2013-04-01

    Full Text Available This paper is on the modification design of petrol engine for alternative fuelling using Compressed Natural Gas (CNG. It provides an analytical background in the modification design process. A petrol engine Honda CR-V 2.0 auto which has a compression ratio of 9.8 was selected as case study. In order for this petrol engine to run on CNG, its compression had to be increased. An optimal compression ratio of 11.97 was computed using the standard temperature-specific volume relationship for an isentropic compression process. This computation of compression ratio is based on an inlet air temperature of 30oC (representative of tropical ambient condition and pre-combustion temperature of 540oC (corresponding to the auto-ignition temperature of CNG. Using this value of compression ratio, a dimensional modification Quantity =1.803mm was obtained using simple geometric relationships. This value of 1.803mm is needed to increase the length of the connecting rod, the compression height of the piston or reducing the sealing plate’s thickness. After the modification process, a CNG engine of air standard efficiency 62.7% (this represents a 4.67% increase over the petrol engine, capable of a maximum power of 83.6kW at 6500rpm, was obtained.

  14. Compressed natural gas (CNG) in fueled systems and the significance of CNG in vehicular transportation

    Energy Technology Data Exchange (ETDEWEB)

    Ayar, G. [Besikduzu, Trabzon (Turkey)

    2006-05-15

    Most NG vehicles operate using compressed natural gas (CNG). CNG's popularity stems, in part, from its clean-burning properties. In addition, more than 85,000 CNG vehicles, including one out of every five transit buses, are operating successfully today. This compressed gas is stored in similar fashion to a car's gasoline tank, attached to the rear, top, or undercarriage of the vehicle in a tube-shaped storage tank. A CNG tank can be filled in a similar manner, and in a similar amount of time, to a gasoline tank. (author)

  15. Simulation of distribution nets for natural gas, in stationary state considering the compressible effects

    International Nuclear Information System (INIS)

    Valbuena C, Javier

    1997-01-01

    The general method is presented to calculate the losses of pressure in a RTD starting from the geometry of the net (diameter and longitude), of the real behavior of the gas, of the ruggedness of the pipe and of the flow, considering the compressibility of the fluid so much as the influence of the compressible effects. The simulation method is derived of the principles of conservation of mass and energy for a gas that follows a reversible poly tropic process of stable state and stable flow - stationary regime

  16. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  17. Three-Dimensional Neutral Transport Simulations of Gas Puff Imaging Experiments

    International Nuclear Information System (INIS)

    Stotler, D.P.; DIppolito, D.A.; LeBlanc, B.; Maqueda, R.J.; Myra, J.R.; Sabbagh, S.A.; Zweben, S.J.

    2003-01-01

    Gas Puff Imaging (GPI) experiments are designed to isolate the structure of plasma turbulence in the plane perpendicular to the magnetic field. Three-dimensional aspects of this diagnostic technique as used on the National Spherical Torus eXperiment (NSTX) are examined via Monte Carlo neutral transport simulations. The radial width of the simulated GPI images are in rough agreement with observations. However, the simulated emission clouds are angled approximately 15 degrees with respect to the experimental images. The simulations indicate that the finite extent of the gas puff along the viewing direction does not significantly degrade the radial resolution of the diagnostic. These simulations also yield effective neutral density data that can be used in an approximate attempt to infer two-dimensional electron density and temperature profiles from the experimental images

  18. The formation of urea in space. I. Ion-molecule, neutral-neutral, and radical gas-phase reactions

    Science.gov (United States)

    Brigiano, Flavio Siro; Jeanvoine, Yannick; Largo, Antonio; Spezia, Riccardo

    2018-02-01

    Context. Many organic molecules have been observed in the interstellar medium thanks to advances in radioastronomy, and very recently the presence of urea was also suggested. While those molecules were observed, it is not clear what the mechanisms responsible to their formation are. In fact, if gas-phase reactions are responsible, they should occur through barrierless mechanisms (or with very low barriers). In the past, mechanisms for the formation of different organic molecules were studied, providing only in a few cases energetic conditions favorable to a synthesis at very low temperature. A particularly intriguing class of such molecules are those containing one N-C-O peptide bond, which could be a building block for the formation of biological molecules. Urea is a particular case because two nitrogen atoms are linked to the C-O moiety. Thus, motivated also by the recent tentative observation of urea, we have considered the synthetic pathways responsible to its formation. Aims: We have studied the possibility of forming urea in the gas phase via different kinds of bi-molecular reactions: ion-molecule, neutral, and radical. In particular we have focused on the activation energy of these reactions in order to find possible reactants that could be responsible for to barrierless (or very low energy) pathways. Methods: We have used very accurate, highly correlated quantum chemistry calculations to locate and characterize the reaction pathways in terms of minima and transition states connecting reactants to products. Results: Most of the reactions considered have an activation energy that is too high; but the ion-molecule reaction between NH2OHNH2OH2+ and formamide is not too high. These reactants could be responsible not only for the formation of urea but also of isocyanic acid, which is an organic molecule also observed in the interstellar medium.

  19. The wet compression technology for gas turbine power plants: Thermodynamic model

    International Nuclear Information System (INIS)

    Bracco, Stefano; Pierfederici, Alessandro; Trucco, Angela

    2007-01-01

    This paper examines from a thermodynamic point of view the effects of wet compression on gas turbine power plants, particularly analysing the influence of ambient conditions on the plant performance. The results of the mathematical model, implemented in 'Matlab' software, have been compared with the simulation results presented in literature and in particular the values of the 'evaporative rate', proposed in Araimo et al. [L. Araimo, A. Torelli, Thermodynamic analysis of the wet compression process in heavy duty gas turbine compressors, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1249-1263; L. Araimo, A. Torelli, Wet compression technology applied to heavy duty gas turbines - GT power augmentation and efficiency upgrade, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1265-1277] by 'Gas Turbines Department' of Ansaldo Energia S.p.A., have been taken into account to validate the model. The simulator permits to investigate the effects of the fogging and wet compression techniques and estimate the power and efficiency gain of heavy duty gas turbines operating in hot and arid conditions

  20. LIAD-fs: A novel method for studies of ultrafast processes in gas phase neutral biomolecules

    International Nuclear Information System (INIS)

    Calvert, C R; Kelly, O; Duffy, M J; Belshaw, L; King, R B; Williams, I D; Greenwood, J B

    2012-01-01

    A new experimental technique for femtosecond (fs) pulse studies of gas phase biomolecules is reported. Using Laser-Induced Acoustic Desorption (LIAD) to produce a plume of neutral molecules, a time-delayed fs pulse is employed for ionisation/fragmentation, with subsequent products extracted and mass analysed electrostatically. By varying critical laser pulse parameters, this technique can be used to implement control over molecular fragmentation for a range of small biomolecules, with specific studies of amino acids demonstrated.

  1. Synthesis of diamond-like carbon via PECD using a streaming neutral gas injection hollow cathode

    International Nuclear Information System (INIS)

    Pacho, A.; Pares, E.; Ramos, H.; Mendenilla, A.; Malapit, G.

    2009-01-01

    A streaming neutral gas injection hollow cathode system was used to deposit diamond-like carbon films via plasma enhanced chemical vapor deposition on silicon and nickel-coated silicon substrates with acetylene and hydrogen as reactant gases. Samples were characterized using SEM and Raman spectroscopy. The work presented here aims to demonstrate the capability of the system to synthesize carbonaceous films and is starting point towards work on formation of carbon nanostructures. (author)

  2. Sizing of Compression Coil Springs Gas Regulators Using Modern Methods CAD and CAE

    Directory of Open Access Journals (Sweden)

    Adelin Ionel Tuţă

    2010-10-01

    Full Text Available This paper presents a method for compression coil springs sizing by gas regulators composition, using CAD techniques (Computer Aided Design and CAE (Computer Aided Engineering. Sizing is to optimize the functioning of the regulators under dynamic industrial and house-hold. Gas regulator is a device that automatically and continuously adjusted to maintain pre-set limits on output gas pressure at varying flow and input pressure. The performances of the pressure regulators like automatic systems depend on their behaviour under dynamic opera-tion. Time constant optimization of pneumatic actuators, which drives gas regulators, leads to a better functioning under their dynamic.

  3. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Li, Cai; Wang, Xiaoyu

    2016-01-01

    CAES (Compressed air energy storage) is credited with its potential ability for large-scale energy storage. Generally, it is more convenient using deep aquifers than employing underground caverns for energy storage, because of extensive presence of aquifers. During the first stage in a typical process of CAESA (compressed air energy storage in aquifers), a large amount of compressed air is injected into the target aquifer to develop an initial space (a gas bubble) for energy storage. In this study, numerical simulations were conducted to investigate the influence of aquifer's permeability, geological structure and operation parameters on the formation of gas bubble and the sustainability for the later cycling operation. The SCT (system cycle times) was designed as a parameter to evaluate the reservoir performance and the effect of operation parameters. Simulation results for pressure and gas saturation results of basic model confirm the feasibility of compressed air energy storage in aquifers. The results of different permeability cases show that, for a certain scale of CAESA system, there is an optimum permeability range for a candidate aquifer. An aquifer within this permeability range will not only satisfy the injectivity requirement but also have the best energy efficiency. Structural impact analysis indicates that the anticline structure has the best performance to hold the bubble under the same daily cycling schedule with the same initial injected air mass. In addition, our results indicate that the SCT shows a logarithmic growth as the injected air mass increase. During the formation of gas bubble, compressed air should be injected into aquifers with moderate rate and the injection can be done in several stages with different injection rate to avoid onset pressure. - Highlights: • Impact of permeability, geological structure, operation parameters was investigated. • With certain air production rate, an optimum permeability exists for performance.

  4. On the steady equations for compressible radiative gas

    Czech Academy of Sciences Publication Activity Database

    Kreml, Ondřej; Nečasová, Šárka; Pokorný, M.

    2013-01-01

    Roč. 64, č. 3 (2013), s. 539-571 ISSN 0044-2275 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA ČR GA201/08/0012 Institutional research plan: CEZ:AV0Z10190503 Keywords : radiative gas * variational entropy solution * weak solution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://link.springer.com/article/10.1007%2Fs00033-012-0246-4

  5. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    OpenAIRE

    Abbanat, Brian A.

    2001-01-01

    Compressed natural gas (CNG) vehicles have been used internationally by fleets and households for decades. The use of CNG vehicles results in less petroleum consumption, and fewer air pollutant and greenhouse gas emissions in most applications. In the United States, the adoption of CNG technology has been slowed by the availability of affordable gasoline and diesel fuel. This study addresses the potential market for CNG vehicles at the consumer level in California. Based on semi-structured pe...

  6. Survey for the development of compressed natural gas systems (CNG) for vehicles

    OpenAIRE

    Abulamosha, A.M.

    2005-01-01

    Compressed Natural Gas (CNG) vehicles have been used internationally by fleets for decades. The use of CNG vehicles results in less petroleum consumption, resulting in fewer air pollutants and greenhouse gas emissions in most applications. In Europe, the adoption of CNG among consumers has been slowed by the availability of affordable gasoline and diesel fuel. This investigation addresses the current situation of the CNG vehicle at the manufacturing level and the consumer level in Europe. Bas...

  7. Hydrofluoric acid burn resulting from ignition of gas from a compressed air duster.

    Science.gov (United States)

    Foster, Kevin N; Jones, LouAnn; Caruso, Daniel M

    2003-01-01

    A young female suffered burns to her hand after the ignition of gas from a compressed air duster. After debridement and dressing, the patient continued to have pain out of proportion to injury that was refractory to intravenous morphine. The material safety data sheet revealed that the chemical used was 1,1-difluoroethane. High temperatures can cause decompensation to form hydrofluoric acid. Calcium gluconate gel was applied topically to the patient's burns, which caused prompt and complete relief of her pain. A review of different compressed air duster products revealed that the main ingredient in each was a halogenated hydrocarbon. Although not considered flammable, all products have warnings regarding the possibility of ignition under various circumstances. Ignition of the gas in compressed air cleaners not only can cause flame burns, it can also cause chemical damage from exposure to hydrogen and fluoride ions. Prompt recognition and treatment is necessary to prevent severe injury.

  8. Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system

    International Nuclear Information System (INIS)

    Su, Guozhen; Chen, Liwei; Chen, Jincan

    2014-01-01

    Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions

  9. Constructing a unique two-phase compressibility factor model for lean gas condensates

    Energy Technology Data Exchange (ETDEWEB)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Azamifard, Arash; Mosaferi, Emadoddin [Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)

    2015-02-15

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models.

  10. Cow Power: A Case Study of Renewable Compressed Natural Gas as a Transportation Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mintz, Marianne [Argonne National Lab. (ANL), Argonne, IL (United States); Tomich, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    This case study explores the production and use of renewable compressed natural gas (R-CNG)—derived from the anaerobic digestion (AD) of dairy manure—to fuel 42 heavy-duty milk tanker trucks operating in Indiana, Michigan, Tennessee, and Kentucky.

  11. 76 FR 55736 - Safety Advisory: Unauthorized Marking of Compressed Gas Cylinders

    Science.gov (United States)

    2011-09-08

    ... certain of high- and low-pressure compressed gas cylinders, primarily fire extinguishers, by Atlas Fire...- pressure cylinders serviced by Atlas Fire Protection were marked and represented as requalified (visually... damage, serious personal injury, or death could result from the rupture of a cylinder. Cylinders not...

  12. Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Md Selim; Markos, Christos; Bang, Ole

    2017-01-01

    The light confinement inside hollow-core (HC) fibers filled with noble gases constitutes an efficient route to study interesting soliton-plasma dynamics [1]. More recently, plasma-induced soliton splitting at the self-compression point was observed in a gas-filled fiber in the near-IR [2]. However...

  13. Constructing a unique two-phase compressibility factor model for lean gas condensates

    International Nuclear Information System (INIS)

    Moayyedi, Mahmood; Gharesheikhlou, Aliashghar; Azamifard, Arash; Mosaferi, Emadoddin

    2015-01-01

    Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models

  14. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    Science.gov (United States)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    Aims: We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods: We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from Hα/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the same line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Results: Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC 6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M 8East-IR. The origins of kinematical expansion and ionization of the NGC 6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The data show that the large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines. Based on observations

  15. Acoustic absorption of natural gas compression facility enclosures

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, P.; Wong, G. [Noise Management Ltd., Calgary, AB (Canada)

    2009-07-01

    Noise sources at gas compressor facilities include the enclosure/building housing a gas engine and compressor, the ventilation openings, doors and windows for the enclosure, the engine air intake and exhaust, and a cooler. Accurate predictions of the noise levels inside the enclosure, the breakout noise from open windows and doors and ventilation, as well as the transmission through the walls, is necessary in order to determine cost effective noise mitigation for the facility. In order to accurately predict the sound breakout from these facilities it is necessary to know the acoustic absorption of the interior of these equipment enclosures. Although the acoustic absorption data of the wall systems may be available, the absorption attributable to the non-enclosure surfaces, the equipment and fittings, is not usually known and is difficult to predict. Since piping, instrumentation and mechanical equipment often take on a typical arrangement, shape, volumetric density and material composition, it is useful to know the typical acoustic absorption attributable to these items. In this study, reverberation time (RT) measurements were taken at 2 decommissioned gas compressor facilities in order to determine the absorption characteristics of the enclosure. The RT was measured according to ASTM C423-02a. The overall absorption coefficient of a compressor enclosure with a solid liner was found to be similar to that of steel decking. Fittings within the enclosure did not increase the high frequency absorption of the enclosure. It was concluded that room modes, structural vibrations, and fittings may serve to increase the effective absorption at frequencies below 630 Hz. Because of the small dimensions of the enclosure, low-frequency response of the room affected the reliability of the data below 160Hz. Structural vibration of the enclosure was investigated, and may considerably influence the noise breakout from the enclosure apart from the interior acoustical considerations. 4

  16. Acoustic absorption of natural gas compression facility enclosures

    International Nuclear Information System (INIS)

    Lassen, P.; Wong, G.

    2009-01-01

    Noise sources at gas compressor facilities include the enclosure/building housing a gas engine and compressor, the ventilation openings, doors and windows for the enclosure, the engine air intake and exhaust, and a cooler. Accurate predictions of the noise levels inside the enclosure, the breakout noise from open windows and doors and ventilation, as well as the transmission through the walls, is necessary in order to determine cost effective noise mitigation for the facility. In order to accurately predict the sound breakout from these facilities it is necessary to know the acoustic absorption of the interior of these equipment enclosures. Although the acoustic absorption data of the wall systems may be available, the absorption attributable to the non-enclosure surfaces, the equipment and fittings, is not usually known and is difficult to predict. Since piping, instrumentation and mechanical equipment often take on a typical arrangement, shape, volumetric density and material composition, it is useful to know the typical acoustic absorption attributable to these items. In this study, reverberation time (RT) measurements were taken at 2 decommissioned gas compressor facilities in order to determine the absorption characteristics of the enclosure. The RT was measured according to ASTM C423-02a. The overall absorption coefficient of a compressor enclosure with a solid liner was found to be similar to that of steel decking. Fittings within the enclosure did not increase the high frequency absorption of the enclosure. It was concluded that room modes, structural vibrations, and fittings may serve to increase the effective absorption at frequencies below 630 Hz. Because of the small dimensions of the enclosure, low-frequency response of the room affected the reliability of the data below 160Hz. Structural vibration of the enclosure was investigated, and may considerably influence the noise breakout from the enclosure apart from the interior acoustical considerations. 4

  17. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas

    International Nuclear Information System (INIS)

    Yvon, J.

    1955-01-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  18. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    Science.gov (United States)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2017-01-01

    An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the "inviscid" and "viscous" parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.

  19. Plasma-neutral gas interaction in a tokamak divertor: effects of hydrogen molecules and plasma recombination

    International Nuclear Information System (INIS)

    Krasheninnikov, S.I.; Pigarov, A.Yu.; Soboleva, T.K.; Sigmar, D.J.

    1997-01-01

    We investigate the influence of hydrogen molecules on plasma recombination using a collisional-radiative model for multispecies hydrogen plasmas and tokamak detached divertor parameters. The rate constant found for molecular activated recombination of a plasma can be as high as 2 x 10 -10 cm 3 /s, confirming our pervious estimates. We investigate the effects of hydrogen molecules and plasma recombination on self-consistent plasma-neutral gas interactions in the recycling region of a tokamak divertor. We treat the plasma flow in a fluid approximation retaining the effects of plasma recombination and employing a Knudsen neutral transport model for a 'gas box' divertor geometry. For the model of plasma-neutral interactions we employ we find: (a) molecular activated recombination is a dominant channel of divertor plasma recombination; and (b) plasma recombination is a key element leading to a decrease in the plasma flux onto the target and substantial plasma pressure drop which are the main features of detached divertor regimes. (orig.)

  20. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    International Nuclear Information System (INIS)

    Gilchrist, B.E.; Banks, P.M.; Neubert, T.; Williamson, P.R.; Myers, N.B.; Raitt, W.J.; Sasaki, Susumu

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). The authors interpret these results in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the ignited mode

  1. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  2. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    International Nuclear Information System (INIS)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2015-01-01

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  3. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2015-06-15

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  4. Compressible gas flow through idealized cracks of large aspect ratio

    International Nuclear Information System (INIS)

    Chivers, T.C.; Skinner, J.; Williams, M.E.

    1975-07-01

    Gas flow through large aspect ratio idealized cracks is considered, where isothermal conditions with choking at exit are assumed in the theoretical analysis. For smooth wall cracks, comparisons are made between experimentally determined flowrates and those predicted, and good agreement is shown. This is followed by consideration of flow through a notional crack to examine the influence of width and surface roughness. By considering flow as simply proportional to Wsup(n), the treatment shows 'n' to reduce with W increasing, but surface roughness increases 'n' over the value appropriate to smooth conditions. From these observations it is concluded that further work is required to determine:- (i) real crack geometry and its influence on any leak-before-break philosophy, and (ii) the influence of real surface roughness on flowrate. (author)

  5. Compressed Natural Gas Vehicle Maintenance Facility Modification Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, K.; Melendez, M.; Gonzales, J.; Lynch, L.; Boale, B.; Kohout, J.

    2017-09-28

    To ensure the safety of personnel and facilities, vehicle maintenance facilities are required by law and by guidelines of the National Fire Protection Association (NFPA) and the International Fire Code (IFC) to exhibit certain design features. They are also required to be fitted with certain fire protection equipment and devices because of the potential for fire or explosion in the event of fuel leakage or spills. All fuels have an explosion or fire potential if specific conditions are present. This handbook covers the primary elements that must be considered when developing a CNG vehicle maintenance facility design that will protect against the ignition of natural gas releases. It also discusses specific protocols and training needed to ensure safety.

  6. Potentiality of the Usage of Compressed Natural Gas for Competitiveness in Service Delivery Industries

    Directory of Open Access Journals (Sweden)

    Gazi Mohammad Hasan Jamil

    2014-08-01

    Full Text Available Abstract. With the rising costs of gasoline, many vehicle owners are looking for alternatives of it. Compressed natural gas (CNG has been tested for this very purpose in some countries and found as a better alternative so far. CNG comes from country’s natural resources and it is clean and less costly to use. This paper is mainly an analysis of the potential benefits of using natural gas as a transportation fuel by the service delivery industries. It will examine CNG’s potential contribution in reducing delivery and vehicle maintenance cost, saving money in the long run projects, improving fuel efficiency, enhancing physical safety and assuring environment friendly emissions of carbon monoxide or reactive gases for the service delivery industries.Keywords: Compressed natural gas (CNG, Service Delivery, Fossil fuel, Global warming, Competitiveness

  7. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Energy Technology Data Exchange (ETDEWEB)

    Nec, Y [Thompson Rivers University, Kamloops, British Columbia (Canada); Huculak, G, E-mail: cranberryana@gmail.com, E-mail: greg@gnhconsulting.ca [GNH Consulting, Delta, British Columbia (Canada)

    2017-12-15

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  8. Solution of weakly compressible isothermal flow in landfill gas collection networks

    Science.gov (United States)

    Nec, Y.; Huculak, G.

    2017-12-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy-Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein.

  9. Solution of weakly compressible isothermal flow in landfill gas collection networks

    International Nuclear Information System (INIS)

    Nec, Y; Huculak, G

    2017-01-01

    Pipe networks collecting gas in sanitary landfills operate under the regime of a weakly compressible isothermal flow of ideal gas. The effect of compressibility has been traditionally neglected in this application in favour of simplicity, thereby creating a conceptual incongruity between the flow equations and thermodynamic equation of state. Here the flow is solved by generalisation of the classic Darcy–Weisbach equation for an incompressible steady flow in a pipe to an ordinary differential equation, permitting continuous variation of density, viscosity and related fluid parameters, as well as head loss or gain due to gravity, in isothermal flow. The differential equation is solved analytically in the case of ideal gas for a single edge in the network. Thereafter the solution is used in an algorithm developed to construct the flow equations automatically for a network characterised by an incidence matrix, and determine pressure distribution, flow rates and all associated parameters therein. (paper)

  10. Equivalent effect of neutral gas pressure and transverse magnetic field in low-pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Toma, M.; Rusu, Ioana; Pohoata, V.; Mihaila, I.

    2001-01-01

    In the paper it is emphasized the equivalent effect of the neutral gas pressure and the action of a transverse magnetic field (TMF), respectively, on a striated positive plasma column. Experimental and theoretical results prove that the distance between striations has the same variation under the influence of both neutral gas pressure and the action of TMF. The pressure modification as well as the action of a TMF can induce ionization instability in the plasma column which explains the standing striation appearance. (authors)

  11. Some estimates of mirror plasma startup by neutral beam heating of pellet and gas cloud targets

    International Nuclear Information System (INIS)

    Shearer, J.W.; Willmann, P.A.

    1978-01-01

    Hot plasma buildup by neutral beam injection into an initially cold solid or gaseous target is found to be conceivable in large mirror machine experiments such as 2XIIB or MFTF. A simple analysis shows that existing neutral beam intensities are sufficient to ablate suitable targets to form a gas or vapor cloud. An approximate rate equation model is used to follow the subsequent processes of ionization, heating, and hot plasma formation. Solutions of these rate equations are obtained by means of the ''GEAR'' techniques for solving ''stiff'' systems of differential equations. These solutions are in rough agreement with the 2XIIB stream plasma buildup experiment. They also predict that buildup on a suitable nitrogen-like target will occur in the MFTF geometry. In 2XIIB the solutions are marginal; buildup may be possible, but is not certain

  12. Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas

    International Nuclear Information System (INIS)

    Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-01-01

    We explore the phase transitions of the ideal relativistic neutral Bose gas confined in a cubic box, without assuming the thermodynamic limit nor continuous approximation. While the corresponding non-relativistic canonical partition function is essentially a one-variable function depending on a particular combination of temperature and volume, the relativistic canonical partition function is genuinely a two-variable function of them. Based on an exact expression for the canonical partition function, we performed numerical computations for up to 10 5 particles. We report that if the number of particles is equal to or greater than a critical value, which amounts to 7616, the ideal relativistic neutral Bose gas features a spinodal curve with a critical point. This enables us to depict the phase diagram of the ideal Bose gas. The consequent phase transition is first order below the critical pressure or second order at the critical pressure. The exponents corresponding to the singularities are 1/2 and 2/3, respectively. We also verify the recently observed 'Widom line' in the supercritical region.

  13. Detection of cold gas releases in space via low energy neutral atom imaging

    International Nuclear Information System (INIS)

    McComas, D.J.; Funsten, H.O.; Moore, K.R.; Scime, E.E.; Thomsen, M.F.

    1993-01-01

    Low energy neutral atoms (LENAs) are produced in space plasmas by charge exchange between the ambient magnetospheric plasma ions and cold neutral atoms. Under normal conditions these cold neutrals come from the terrestrial geocorona, a shroud of few-eV hydrogen atoms surrounding the Earth. As a consequence of this charge exchange, it has become possible to remotely image many regions of the magnetosphere for the first time utilizing recently developed LENA imaging technology. In addition to the natural hydrogen geocorona, conventional explosions and maneuvering thruster firings can also introduce large amounts of cold gas into the space environment. In this paper the authors examine whether such potentially clandestine activities could also be remotely observed for the first time via LENA imaging. First, they examine the fluxes of LENAs produced in the space environment from a conventional explosion. Then they review the present state of the art in the emerging field of LENA detection and imaging. Recent work has shown that LENAs can be imaged by first converting the neutrals to ions with ultra-thin (10s of angstrom) foils and then electrostatically analyzing these newly created ions to reject the large (> 10 10 cm -2 s -1 ) UV background to which the low energy detectors are sensitive. They conclude that the sensitivities for present LENA imager designs may be just adequate for detecting some man-made releases. With additional improvements in LENA detection capabilities, this technique could become an important new method for monitoring for conventional explosions, as well as other man-made neutral releases, in the space environment

  14. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yeh-Hung; Li, Yongqiang [Electrochemical Energy Research Lab, GM R and D, Honeoye Falls, NY 14472 (United States); Rock, Jeffrey A. [GM Powertrain, Honeoye Falls, NY 14472 (United States)

    2010-05-15

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 {mu}m, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm x 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray trademark TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells. (author)

  15. A novel full-field experimental method to measure the local compressibility of gas diffusion media

    Science.gov (United States)

    Lai, Yeh-Hung; Li, Yongqiang; Rock, Jeffrey A.

    The gas diffusion medium (GDM) in a proton exchange membrane (PEM) fuel cell needs to simultaneously satisfy the requirements of transporting reactant gases, removing product water, conducting electrons and heat, and providing mechanical support to the membrane electrode assembly (MEA). Concerning the localized over-compression which may force carbon fibers and other conductive debris into the membrane to cause fuel cell failure by electronically shorting through the membrane, we have developed a novel full-field experimental method to measure the local thickness and compressibility of GDM. Applying a uniform air pressure upon a thin polyimide film bonded on the top surface of the GDM with support from the bottom by a flat metal substrate and measuring the thickness change using the 3-D digital image correlation technique with an out-of-plane displacement resolution less than 0.5 μm, we have determined the local thickness and compressive stress/strain behavior in the GDM. Using the local thickness and compressibility data over an area of 11.2 mm × 11.2 mm, we numerically construct the nominal compressive response of a commercial Toray™ TGP-H-060 based GDM subjected to compression by flat platens. Good agreement in the nominal stress/strain curves from the numerical construction and direct experimental flat-platen measurement confirms the validity of the methodology proposed in this article. The result shows that a nominal pressure of 1.4 MPa compressed between two flat platens can introduce localized compressive stress concentration of more than 3 MPa in up to 1% of the total area at various locations from several hundred micrometers to 1 mm in diameter. We believe that this full-field experimental method can be useful in GDM material and process development to reduce the local hard spots and help to mitigate the membrane shorting failure in PEM fuel cells.

  16. A tetrapositive metal ion in the gas phase: Thorium(IV) coordinated by neutral tridentate ligands

    International Nuclear Information System (INIS)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K.; Hu, Han-Shi; Li, Jun

    2013-01-01

    Sheltering thorium ions: A Th 4+ ion supported by three neutral tetramethyl-3-oxaglutaramide ligands (L=TMOGA) is produced in the gas phase by electrospray ionization. The thorium in chiral Th(L) 3 4+ is coordinated by nine oxygen atoms. Quantum chemical studies revealed a decrease in Th-O binding energies and bond orders and an increase in bond lengths, as the number of coordinating ligands increases. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. A tetrapositive metal ion in the gas phase: Thorium(IV) coordinated by neutral tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Tian, Guoxin; Rao, Linfeng; Gibson, John K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hu, Han-Shi [Department of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China); Li, Jun [Department of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University (China); William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (United States)

    2013-07-01

    Sheltering thorium ions: A Th{sup 4+} ion supported by three neutral tetramethyl-3-oxaglutaramide ligands (L=TMOGA) is produced in the gas phase by electrospray ionization. The thorium in chiral Th(L){sub 3}{sup 4+} is coordinated by nine oxygen atoms. Quantum chemical studies revealed a decrease in Th-O binding energies and bond orders and an increase in bond lengths, as the number of coordinating ligands increases. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. First in situ plasma and neutral gas measurements at comet Halley: initial VEGA results

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Remizov, A.P.; Gombosi, T.I.

    1986-04-01

    The first in situ observations and a description of the large scale behaviour of comet Halley's plasma environment are presented. The scientific objectives of the PLASMAG-1 experiment were as follows: to study the change of plasma parameters and distributions as a function of cometocentric distance; to investigate the existence and structure of the cometary bow shock; to determine the change in chemical composition of the heavily mass loaded plasma as the spacecraft approached the comet; and to measure the neutral gas distribution along the spacecraft trajectory. (author)

  19. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, N A D [Department of Physics, Gomal Unversity, D I Khan (Pakistan); Ahmad, Zahoor; Murtaza, G [National Tokamak Fusion Program, PAEC, Islamabad (Pakistan); Zakaullah, M [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: ktk_nad@yahoo.com

    2008-04-15

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B{sub z} (in magnitudes), if the switching time for the additional current is properly synchronized.

  20. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Khattak, N A D; Ahmad, Zahoor; Murtaza, G; Zakaullah, M

    2008-01-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B z (in magnitudes), if the switching time for the additional current is properly synchronized

  1. TFTR neutral beam D-T gas injection system operational experiences of the first two years

    International Nuclear Information System (INIS)

    Oldaker, M.E.; Lawson, J.E.; Stevenson, T.N.; Kamperschroer, J.H.

    1995-01-01

    The TFTR Neutral Beam Tritium Gas Injection System (TGIS) has successfully performed tritium operations since December 1993. TGIS operation has been reliable, with no leaks to the secondary containment to date. Notable operational problems include throughput leaks on fill, exit and piezoelectric valves. Repair of a TGIS requires replacement of the assembly, involving TFTR downtime and extensive purging, since the TGIS assembly is highly contaminated with residual tritium, and is located within secondary containment. Modifications to improve reliability and operating range include adjustable reverse bias voltage to the piezoelectric valves, timing and error calculation changes to tune the PLC and hardwired timing control, and exercising piezoelectric valves without actually pulsing gas prior to use after extended inactivity. A pressure sensor failure required the development of an open loop piezoelectric valve drive control scheme, using a simple voltage ramp to partially compensate for declining plenum pressure. Replacement of TGIS's have been performed, maintaining twelve system tritium capability as part of scheduled project maintenance activity

  2. Neutral Transport Simulations of Gas Puff Imaging Experiments on Alcator C-Mod

    International Nuclear Information System (INIS)

    Stotler, D.P.; LaBombard, B.; Terry, J.L.; Zweben, S.J.

    2002-01-01

    Visible imaging of gas puffs has been used on the Alcator C-Mod tokamak to characterize edge plasma turbulence, yielding data that can be compared with plasma turbulence codes. Simulations of these experiments with the DEGAS 2 Monte Carlo neutral transport code have been carried out to explore the relationship between the plasma fluctuations and the observed light emission. By imposing two-dimensional modulations on the measured time-average plasma density and temperature profiles, we demonstrate that the spatial structure of the emission cloud reflects that of the underlying turbulence. However, the photon emission rate depends on the plasma density and temperature in a complicated way, and no simple scheme for inferring the plasma parameters directly from the light emission patterns is apparent. The simulations indicate that excited atoms generated by molecular dissociation are a significant source of photons, further complicating interpretation of the gas puff imaging results.Visibl e imaging of gas puffs has been used on the Alcator C-Mod tokamak to characterize edge plasma turbulence, yielding data that can be compared with plasma turbulence codes. Simulations of these experiments with the DEGAS 2 Monte Carlo neutral transport code have been carried out to explore the relationship between the plasma fluctuations and the observed light emission. By imposing two-dimensional modulations on the measured time-average plasma density and temperature profiles, we demonstrate that the spatial structure of the emission cloud reflects that of the underlying turbulence. However, the photon emission rate depends on the plasma density and temperature in a complicated way, and no simple scheme for inferring the plasma parameters directly from the light emission patterns is apparent. The simulations indicate that excited atoms generated by molecular dissociation are a significant source of photons, further complicating interpretation of the gas puff imaging results

  3. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  4. Characteristics of compressed natural gas jet and jet-wall impingement using the Schlieren imaging technique

    International Nuclear Information System (INIS)

    Ismael, M A; Heikal, M R; Baharom, M B

    2013-01-01

    An experimental study was performed to investigate the compressed natural gas jet characteristics and jet-wall impingement using the Schlieren imaging technique and image processing. An injector driver was used to drive the natural gas injector and synchronized with camera triggering. A constant-volume optical chamber was designed to facilitate maximum optical access for the study of the jet macroscopic characteristics and jet-wall impingement at different injection pressures and injectors-wall distances. Measurement of the jet tip penetration and cone angle at different conditions are presented in this paper together with temporal presentation of the jet radial travel along the wall.

  5. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  6. Relevance of postmortem radiology to the diagnosis of fatal cerebral gas embolism from compressed air diving.

    Science.gov (United States)

    Cole, A J; Griffiths, D; Lavender, S; Summers, P; Rich, K

    2006-05-01

    To test the hypothesis that artefact caused by postmortem off-gassing is at least partly responsible for the presence of gas within the vascular system and tissues of the cadaver following death associated with compressed air diving. Controlled experiment sacrificing sheep after a period of simulated diving in a hyperbaric chamber and carrying out sequential postmortem computed tomography (CT) on the cadavers. All the subject sheep developed significant quantities of gas in the vascular system within 24 hours, as demonstrated by CT and necropsy, while the control animals did not. The presence of gas in the vascular system of human cadavers following diving associated fatalities is to be expected, and is not necessarily connected with gas embolism following pulmonary barotrauma, as has previously been claimed.

  7. Modeling of Single and Dual Reservoir Porous Media Compressed Gas (Air and CO2) Storage Systems

    Science.gov (United States)

    Oldenburg, C. M.; Liu, H.; Borgia, A.; Pan, L.

    2017-12-01

    Intermittent renewable energy sources are causing increasing demand for energy storage. The deep subsurface offers promising opportunities for energy storage because it can safely contain high-pressure gases. Porous media compressed air energy storage (PM-CAES) is one approach, although the only facilities in operation are in caverns (C-CAES) rather than porous media. Just like in C-CAES, PM-CAES operates generally by injecting working gas (air) through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Unlike in C-CAES, the storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Because air is the working gas, PM-CAES has fairly low thermal efficiency and low energy storage density. To improve the energy storage density, we have conceived and modeled a closed-loop two-reservoir compressed CO2 energy storage system. One reservoir is the low-pressure reservoir, and the other is the high-pressure reservoir. CO2 is cycled back and forth between reservoirs depending on whether energy needs to be stored or recovered. We have carried out thermodynamic and parametric analyses of the performance of an idealized two-reservoir CO2 energy storage system under supercritical and transcritical conditions for CO2 using a steady-state model. Results show that the transcritical compressed CO2 energy storage system has higher round-trip efficiency and exergy efficiency, and larger energy storage density than the supercritical compressed CO2 energy storage. However, the configuration of supercritical compressed CO2 energy storage is simpler, and the energy storage densities of the two systems are both higher than that of PM-CAES, which is advantageous in terms of storage volume for a given

  8. Thermal analysis of near-isothermal compressed gas energy storage system

    International Nuclear Information System (INIS)

    Odukomaiya, Adewale; Abu-Heiba, Ahmad; Gluesenkamp, Kyle R.; Abdelaziz, Omar; Jackson, Roderick K.; Daniel, Claus; Graham, Samuel; Momen, Ayyoub M.

    2016-01-01

    Highlights: • A novel, high-efficiency, scalable, near-isothermal, energy storage system is introduced. • A comprehensive analytical physics-based model for the system is presented. • Efficiency improvement is achieved via heat transfer enhancement and use of waste heat. • Energy storage roundtrip efficiency (RTE) of 82% and energy density of 3.59 MJ/m"3 is shown. - Abstract: Due to the increasing generation capacity of intermittent renewable electricity sources and an electrical grid ill-equipped to handle the mismatch between electricity generation and use, the need for advanced energy storage technologies will continue to grow. Currently, pumped-storage hydroelectricity and compressed air energy storage are used for grid-scale energy storage, and batteries are used at smaller scales. However, prospects for expansion of these technologies suffer from geographic limitations (pumped-storage hydroelectricity and compressed air energy storage), low roundtrip efficiency (compressed air energy storage), and high cost (batteries). Furthermore, pumped-storage hydroelectricity and compressed air energy storage are challenging to scale-down, while batteries are challenging to scale-up. In 2015, a novel compressed gas energy storage prototype system was developed at Oak Ridge National Laboratory. In this paper, a near-isothermal modification to the system is proposed. In common with compressed air energy storage, the novel storage technology described in this paper is based on air compression/expansion. However, several novel features lead to near-isothermal processes, higher efficiency, greater system scalability, and the ability to site a system anywhere. The enabling features are utilization of hydraulic machines for expansion/compression, above-ground pressure vessels as the storage medium, spray cooling/heating, and waste-heat utilization. The base configuration of the novel storage system was introduced in a previous paper. This paper describes the results

  9. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Energy Technology Data Exchange (ETDEWEB)

    Avital, E J; Salvatore, E [School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd London E1 4NS (United Kingdom); Munjiza, A [Civil Engineering, University of Split, Livanjska 2100 Split (Croatia); Suponitsky, V; Plant, D; Laberge, M, E-mail: e.avital@qmul.ac.uk [General Fusion Inc.,108-3680 Bonneville Place, Burnaby, BC V3N 4T5 (Canada)

    2017-08-15

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots. (paper)

  10. Flow design and simulation of a gas compression system for hydrogen fusion energy production

    Science.gov (United States)

    Avital, E. J.; Salvatore, E.; Munjiza, A.; Suponitsky, V.; Plant, D.; Laberge, M.

    2017-08-01

    An innovative gas compression system is proposed and computationally researched to achieve a short time response as needed in engineering applications such as hydrogen fusion energy reactors and high speed hammers. The system consists of a reservoir containing high pressure gas connected to a straight tube which in turn is connected to a spherical duct, where at the sphere’s centre plasma resides in the case of a fusion reactor. Diaphragm located inside the straight tube separates the reservoir’s high pressure gas from the rest of the plenum. Once the diaphragm is breached the high pressure gas enters the plenum to drive pistons located on the inner wall of the spherical duct that will eventually end compressing the plasma. Quasi-1D and axisymmetric flow formulations are used to design and analyse the flow dynamics. A spike is designed for the interface between the straight tube and the spherical duct to provide a smooth geometry transition for the flow. Flow simulations show high supersonic flow hitting the end of the spherical duct, generating a return shock wave propagating upstream and raising the pressure above the reservoir pressure as in the hammer wave problem, potentially giving temporary pressure boost to the pistons. Good agreement is revealed between the two flow formulations pointing to the usefulness of the quasi-1D formulation as a rapid solver. Nevertheless, a mild time delay in the axisymmetric flow simulation occurred due to moderate two-dimensionality effects. The compression system is settled down in a few milliseconds for a spherical duct of 0.8 m diameter using Helium gas and a uniform duct cross-section area. Various system geometries are analysed using instantaneous and time history flow plots.

  11. GPA/GPSA/OSU-Okmulgee natural gas compression technician training program

    Energy Technology Data Exchange (ETDEWEB)

    Doede, S.

    1999-07-01

    Approximately one year ago, OSU-Okmulgee and the Gas Processors Association began discussions about the possibility of developing a natural Gas Technician Training Program for GPA members. Following a presentation to the Membership and Services Committee, Chairman John Ehlers solicited and obtained the approval of the GPA Executive Committee to sponsor the program. Participation in the program was also made available to GPSA members. The purpose of the program is to upgrade the technical competency and professional level of incoming natural gas compression technicians. It educates students to analytically diagnose, service and maintain gas compression equipment and systems using industry recommended procedures, special tools and service information. It also provides course content, which will enable successful graduates to advance in position after additional experience, and to understand new systems, technologies and components as they are introduced. The two-year Associate-In-Applied Science Degree program includes six successive college semesters. Nearly one-half of the time is designated for technical/academic education at Oklahoma State University-Okmulgee with the balance of time allocated for on-the-job internship experiences at sponsoring GPA/GPSA members. Each block of technical education and general education course work is followed by an immediate work experience time period designated to reinforce the technical and general education. These time periods are approximately seven and one-half weeks in length each. It is essential for the success of the students and the program that the students' education at OSU-Okmulgee and work experiences at GPA/GPSA member facilities be closely aligned for maximum student learning and retention. In addition to technical classes on gas compression equipment and components, the courses offered in math, speech, technical writing, psychology and ethics for example, prepare students to be able to communicate well, get

  12. Clean air program : design guidelines for bus transit systems using compressed natural gas as an alternative fuel

    Science.gov (United States)

    1996-06-01

    This report documents design guidelines for the safe use of Compressed Natural Gas (CNG). The report is designed to provide guidance, information on safe industry practices, applicable national codes and standards, and reference data that transit age...

  13. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  14. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  15. Integrated modeling for optimized regional transportation with compressed natural gas fuel

    Directory of Open Access Journals (Sweden)

    Hossam A. Gabbar

    2016-03-01

    Full Text Available Transportation represents major energy consumption where fuel is considered as a primary energy source. Recent development in the vehicle technology revealed possible economical improvements when using natural gas as a fuel source instead of traditional gasoline. There are several fuel alternatives such as electricity, which showed potential for future long-term transportation. However, the move from current situation where gasoline vehicle is dominating shows high cost compared to compressed natural gas vehicle. This paper presents modeling and simulation methodology to optimize performance of transportation based on quantitative study of the risk-based performance of regional transportation. Emission estimation method is demonstrated and used to optimize transportation strategies based on life cycle costing. Different fuel supply scenarios are synthesized and evaluated, which showed strategic use of natural gas as a fuel supply.

  16. Light-emitting Si films formed by neutral cluster deposition in a thin O2 gas

    International Nuclear Information System (INIS)

    Honda, Y.; Takei, M.; Ohno, H.; Shida, S.; Goda, K.

    2005-01-01

    We have fabricated the light-emitting Si-rich and oxygen-rich amorphous SiO 2 (a-SiO 2 ) films using the neutral cluster deposition (NCD) method without and with oxygen gas admitted, respectively, and demonstrate for the first time that these films show a photoluminescent feature. The Si thin films were observed by atomic force microscopy and high-resolution transmission electron microscopy, and analyzed by means of X-ray photoelectron spectroscopy, photoluminescence (PL) and FTIR-attenuated total reflection measurements. All of the PL spectra show mountainous distribution with a peak around 620 nm. It is found that the increase in the oxygen termination in the a-SiO 2 films evidently makes the PL intensity increase. It is demonstrated that NCD technique is one of the hopeful methods to fabricate light-emitting Si thin films

  17. Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature

    International Nuclear Information System (INIS)

    Kestner, J. P.; Das Sarma, S.

    2010-01-01

    The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T F , exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.

  18. On the neutralization of noble gas ions in low energy ion scattering

    International Nuclear Information System (INIS)

    Draxler, M.

    2003-04-01

    The set-up ACOLISSA has been set to operation. It was thoroughly tested and found to completely fulfill the requirements for the measurement of charge integrated and of ion TOF-LEIS spectra. Charge integrated scattering spectra in LEIS exhibit a surface peak in many experimental conditions. It was shown that the appearance of this peak is due to a reduced energy width of the contribution from the surface layer and partly due to a reduced energy loss in the surface layer as compared to deeper layers. In the regime of strong multiple scattering, both reasons reflect the fact, that scattering from surface atoms occurs practically exclusively by single binary collisions, while plural and multiple scattering set in in the subsurface layers. As a consequence, only the surface layer and to some extent also the second layer will contribute to the surface peak. Experiment as well as simulation show this behavior, so that other possible reasons for the appearance of a surface peak (e.g. channeling) can safely be ruled out. At high energies, when the multiple scattering half width angle is small, surface effects are mainly caused by electronic stopping and become small, as observed in both, experiment and simulation. In this regime, the energy spectrum is well described by the single scattering spectrum. From the present thesis one can draw the following conclusions concerning the neutralization of noble gas ions at metal surfaces: below the threshold for collision induced processes (CIN, CIR) Ε Εth), P+ is governed by local processes (collision induced neutralization and collision induced reionization) and by a non-local process (Auger neutralization), and thus depends on the energy as well as on vperp. From experiments like the one presented here, where the ion energy as well as the scattering geometry are varied, the process parameters of the neutralization can uniquely be determined for any system. These findings are generally valid and reveal the relevance of different

  19. Compressible Flow Phenomena at Inception of Lateral Density Currents Fed by Collapsing Gas-Particle Mixtures

    Science.gov (United States)

    Valentine, Greg A.; Sweeney, Matthew R.

    2018-02-01

    Many geological flows are sourced by falling gas-particle mixtures, such as during collapse of lava domes, and impulsive eruptive jets, and sustained columns, and rock falls. The transition from vertical to lateral flow is complex due to the range of coupling between particles of different sizes and densities and the carrier gas, and due to the potential for compressible flow phenomena. We use multiphase modeling to explore these dynamics. In mixtures with small particles, and with subsonic speeds, particles follow the gas such that outgoing lateral flows have similar particle concentration and speed as the vertical flows. Large particles concentrate immediately upon impact and move laterally away as granular flows overridden by a high-speed jet of expelled gas. When a falling flow is supersonic, a bow shock develops above the impact zone, and this produces a zone of high pressure from which lateral flows emerge as overpressured wall jets. The jets form complex structures as the mixtures expand and accelerate and then recompress through a recompression zone that mimics a Mach disk shock in ideal gas jets. In mixtures with moderate to high ratios of fine to coarse particles, the latter tend to follow fine particles through the expansion-recompression flow fields because of particle-particle drag. Expansion within the flow fields can lead to locally reduced gas pressure that could enhance substrate erosion in natural flows. The recompression zones form at distances, and have peak pressures, that are roughly proportional to the Mach numbers of impacting flows.

  20. Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs :

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, William Payton

    2013-06-01

    The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a

  1. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  2. CNG (compressed natural gas) as fuel for the transport sector in Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    So`Brien, G.C.; Persad, P.; Satcunanathan, S. [University of the West Indies, St. Augustine (Trinidad)

    1996-08-01

    Several studies have established that Trinidad and Tobago is well positioned to consider the substitution of compressed natural gas (CNG) for gasoline or diesel in the transport sector. Consequently a programme of conversion of private motors was initiated. Despite considerable advertisement programs projecting CNG as an environmentally friendly and cheap fuel, there is not yet widespread acceptance of the technology. The reasons for this are analysed. It is recommended that the policy of CNG usage be reviewed and the emphasis be shifted to transport fleets. It is also recommended that tax credits be considered as an incentive to users. (author)

  3. Metal enrichment of the neutral gas of blue compact dwarf galaxies: the compelling case of Pox 36

    Science.gov (United States)

    Lebouteiller, V.; Kunth, D.; Thuan, T. X.; Désert, J. M.

    2009-02-01

    Context: Evidence has grown over the past few years that the neutral phase of blue compact dwarf (BCD) galaxies may be metal-deficient as compared to the ionized gas of their H ii regions. These results have strong implications for our understanding of the chemical evolution of galaxies, and it is essential to strengthen the method, as well as to find possible explanations. Aims: We present the analysis of the interstellar spectrum of Pox 36 with the Far Ultraviolet Spectroscopic Explorer (FUSE). Pox 36 was selected because of the relatively low foreground gas content that makes it possible to detect absorption-lines weak enough that unseen components should not be saturated. Methods: Interstellar lines of H i, N i, O i, Si ii, P ii, Ar i, and Fe ii are detected. Column densities are derived directly from the observed line profiles except for H i, whose lines are contaminated by stellar absorption, thus needing the stellar continuum to be removed. We used the TLUSTY models to remove the stellar continuum and isolate the interstellar component. The best fit indicates that the dominant stellar population is B0. The observed far-UV flux agrees with an equivalent number of ~300 B0 stars. The fit of the interstellar H i line gives a column density of 1020.3±0.4 cm-2. Chemical abundances were then computed from the column densities using the dominant ionization stage in the neutral gas. Our abundances are compared to those measured from emission-line spectra in the optical, probing the ionized gas of the H ii regions. Results: Our results suggest that the neutral gas of Pox 36 is metal-deficient by a factor ~7 as compared to the ionized gas, and they agree with a metallicity of ≈1/35 Z_⊙. Elemental depletion is not problematic because of the low dust content along the selected lines of sight. In contrast, the ionized gas shows a clear depletion pattern, with iron being strongly depleted. Conclusions: The abundance discontinuity between the neutral and ionized phases

  4. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  5. Surgical Outcomes of Pneumatic Compression Using Carbon Dioxide Gas in Thoracoscopic Diaphragmatic Plication.

    Science.gov (United States)

    Ahn, Hyo Yeong; Kim, Yeong Dae; Hoseok, I; Cho, Jeong Su; Lee, Jonggeun; Son, Joohyung

    2016-12-01

    Surgical correction needs to be considered when diaphragm eventration leads to impaired ventilation and respiratory muscle fatigue. Plication to sufficiently tense the diaphragm by VATS is not as easy to achieve as plication by open surgery. We used pneumatic compression with carbon dioxide (CO 2 ) gas in thoracoscopic diaphragmatic plication and evaluated feasibility and efficacy. Eleven patients underwent thoracoscopic diaphragmatic plication between January 2008 and December 2013 in Pusan National University Hospital. Medical records were retrospectively reviewed, and compared between the group using CO 2 gas and group without using CO 2 gas, for operative time, plication technique, duration of hospital stay, postoperative chest tube drainage, pulmonary spirometry, dyspnea score pre- and postoperation, and postoperative recurrence. The improvement of forced expiratory volume at 1 second in the group using CO 2 gas and the group not using CO 2 gas was 22.46±11.27 and 21.08±5.39 (p=0.84). The improvement of forced vital capacity 3 months after surgery was 16.74±10.18 (with CO 2 ) and 15.6±0.89 (without CO 2 ) (p=0.03). During follow-up (17±17 months), there was no dehiscence in plication site and relapse. No complications or hospital mortalities occurred. Thoracoscopic plication under single lung ventilation using CO 2 insufflation could be an effective, safe option to flatten the diaphragm.

  6. Surgical Outcomes of Pneumatic Compression Using Carbon Dioxide Gas in Thoracoscopic Diaphragmatic Plication

    Directory of Open Access Journals (Sweden)

    Hyo Yeong Ahn

    2016-12-01

    Full Text Available Background: Surgical correction needs to be considered when diaphragm eventration leads to impaired ventilation and respiratory muscle fatigue. Plication to sufficiently tense the diaphragm by VATS is not as easy to achieve as plication by open surgery. We used pneumatic compression with carbon dioxide (CO2 gas in thoracoscopic diaphragmatic plication and evaluated feasibility and efficacy. Methods: Eleven patients underwent thoracoscopic diaphragmatic plication between January 2008 and December 2013 in Pusan National University Hospital. Medical records were retrospectively reviewed, and compared between the group using CO2 gas and group without using CO2 gas, for operative time, plication technique, duration of hospital stay, postoperative chest tube drainage, pulmonary spirometry, dyspnea score pre- and postoperation, and postoperative recurrence. Results: The improvement of forced expiratory volume at 1 second in the group using CO2 gas and the group not using CO2 gas was 22.46±11.27 and 21.08±5.39 (p=0.84. The improvement of forced vital capacity 3 months after surgery was 16.74±10.18 (with CO2 and 15.6±0.89 (without CO2 (p=0.03. During follow-up (17±17 months, there was no dehiscence in plication site and relapse. No complications or hospital mortalities occurred. Conclusion: Thoracoscopic plication under single lung ventilation using CO2 insufflation could be an effective, safe option to flatten the diaphragm.

  7. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Energy Technology Data Exchange (ETDEWEB)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D., E-mail: alejandro.rey@mcgill.ca [Department of Chemical Engineering, McGill University, Montreal H3A 0C5 (Canada)

    2016-08-15

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  8. Metrological and operational performance of measuring systems used in vehicle compressed natural gas filling stations

    Energy Technology Data Exchange (ETDEWEB)

    Velosa, Jhonn F.; Abril, Henry; Garcia, Luis E. [CDT de GAS (Venezuela). Gas Technological Development Center Corporation

    2008-07-01

    Corporation CDT GAS financially supported by the Colombian government through COLCIENCIAS, carried out a study aimed at designing, developing and implementing in Colombia a calibration and metrological verification 'specialized service' for gas meters installed at dispensers of filling stations using compressed natural gas. The results permitted the identification of improving opportunities (in measuring systems, equipment and devices used to deliver natural gas) which are focused on achieving the highest security and reliability of trading processes of CNG for vehicles. In the development of the first stage of the project, metrological type variables were initially considered, but given the importance of the measuring system and its interaction with the various elements involving gas supply to the filling station, the scope of the work done included aspects related to the operational performance, that is, those influencing the security of the users and the metrological performance of the measuring system. The development of the second stage counted on the collaboration of national companies from the sector of CNG for vehicles, which permitted the carrying out of multiple calibrations to the measuring systems installed in the CNG dispensers, thus achieving, in a concrete way, valid and reliable technological information of the implemented procedures. (author)

  9. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Science.gov (United States)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  10. Two-phase behavior and compression effects in the PEFC gas diffusion medium

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Schulz, Volker P [APL-LANDAU GMBH; Wang, Chao - Yang [PENN STATE UNIV; Becker, Jurgen [NON LANL; Wiegmann, Andreas [NON LANL

    2009-01-01

    A key performance limitation in the polymer electrolyte fuel cell (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. A key contributor to the mass transport loss is the cathode gas diffusion layer (GDL) due to the blockage of available pore space by liquid water thus rendering hindered oxygen transport to the active reaction sites in the electrode. The GDL, therefore, plays an important role in the overall water management in the PEFC. The underlying pore-morphology and the wetting characteristics have significant influence on the flooding dynamics in the GDL. Another important factor is the role of cell compression on the GDL microstructural change and hence the underlying two-phase behavior. In this article, we present the development of a pore-scale modeling formalism coupled With realistic microstructural delineation and reduced order compression model to study the structure-wettability influence and the effect of compression on two-phase behavior in the PEFC GDL.

  11. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  12. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  13. Investigating the Methane Footprint of Compressed Natural Gas Stations in the Los Angeles Basin

    Science.gov (United States)

    Carranza, V.; Hopkins, F. M.; Randerson, J. T.; Bush, S.; Ehleringer, J. R.; Miu, J.

    2013-12-01

    In recent years, natural gas has taken on a larger role in the United States' discourse on energy policy because it is seen as a fuel that can alleviate the country's dependence on foreign energy while simultaneously reducing greenhouse gas emissions. To this end, the State of California promotes the use of vehicles fueled by compressed natural gas (CNG). However, the implications of increased CNG vehicles for greenhouse gas emission reduction are not fully understood. Specifically, methane (CH4) leakages from natural gas infrastructure could make the switch from conventional to CNG vehicles a source of CH4 to the atmosphere, and negate the greenhouse-gas reduction benefit of this policy. The goal of our research is to provide an analysis of potential CH4 leakages from thirteen CNG filling stations in Orange County, California. To improve our understanding of CH4 leakages, we used a mobile laboratory, which is a Ford Transit van equipped with cavity-ring down Picarro spectrometers, to measure CH4 mixing ratios in these CNG stations. MATLAB and ArcGIS were used to conduct statistical analysis and to construct spatial and temporal maps for each transect. We observed mean levels of excess CH4 (relative to background CH4 mixing ratios) ranging from 60 to 1700 ppb at the CNG stations we sampled. Repeated sampling of CNG stations revealed higher levels of excess CH4 during the daytime compared to the nighttime. From our observations, CNG storage tanks and pumps have approximately the same CH4 leakage levels. By improving our understanding of the spatial and temporal patterns of CH4 emissions from CNG stations, our research can provide valuable information to reduce the climate footprint of the natural gas industry.

  14. Introduction of a compressed air breathing apparatus for the offshore oil and gas industry.

    Science.gov (United States)

    Brooks, Chris J; MacDonald, Conor V; Carroll, Joel; Gibbs, Peter N G

    2010-07-01

    When a helicopter ditches the majority of crew and passengers have to make an underwater escape. Some may not be able to hold their breath and will drown. For at least 15 yr, military aircrew have been trained to use a scuba system. In the offshore oil and gas industry, there has been more caution about introducing a compressed air system and a rebreather system has been introduced as an alternative. Recently, Canadian industry and authorities approved the introduction of Helicopter Underwater Emergency Breathing Apparatus (HUEBA) training using compressed air. This communication reports the training of the first 1000 personnel. Training was introduced in both Nova Scotia and Newfoundland concurrently by the same group of instructors. Trainees filled out a questionnaire concerning their perceived ratings of the ease or difficulty of classroom training and the practical use of the HUEBA. Ninety-eight percent of trainees found the classroom and in-water training to be "good/very good". Trainees found it to be "easy/very easy" to clear the HUEBA and breathe underwater in 84% and 64% of cases, respectively. Divers reported a greater ease in learning all the practical uses of the HUEBA except application of the nose clip. There were problems with the nose clip fitting incorrectly, and interference of the survival suit hood with the regulator, which subsequently have been resolved. When carefully applied, the introduction of the HUEBA into training for offshore oil and gas industry helicopter crew and passengers can be safely conducted.

  15. Environmentally friendly drive for gas compression applications: enhanced design of high-speed induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois; Mercier, Jean Charles [Institut National Polytechncique, Lorrain (France). Converteam Motors Div.; Truchot, Patrick [Nancy Universite (France). Equipe de Recherche sur les Processus Innovatifs (ERPI)

    2008-07-01

    Taking into account the key issues faced by gas compressors users, this paper aims to help optimize the choice of the drive equipment as well as the driven equipment, in function of the cost of the whole installation life cycle. The design of the enhanced high-speed induction motor (MGV-Moteuer a Grande Vitesse) represents a technological breakthrough for the industry, it allows the direct coupling to the compressor, without using a gearbox making the system more efficient and reliable. From both micro and macro-economic viewpoints, the high-speed electric driver becomes a more efficient use of natural gas energy resources. This new technology associated with the electric option offers challenging and rewarding work to those responsible for the operation and maintenance of the compressor station. The electric option is not only conceptually viable but has a proven track record that justifies serious consideration as an alternative for reliably powering. Once an operator becomes comfortable with the prospects of motor-driven compression, the analysis of machine options requires only a few new approaches to fairly evaluate the alternatives. The application of this reasoning in projects using compression units is especially opportune, in view of the great variations of operational conditions and environmental issues. (author)

  16. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    Chuepeng, S.; Komintarachati, C.

    2009-01-01

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  17. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    Science.gov (United States)

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  18. PERHITUNGAN HARGA POKOK PRODUK COMPRESSED NATURAL GAS DARI LANDFILL GAS SEBAGAI ENERGI ALTERNATIF PADA TPST BANTAR GEBANG, BEKASI

    Directory of Open Access Journals (Sweden)

    Srilarakasuri P Ardiagarini

    2013-06-01

    sanitary landfill waste; CNG is compressed natural gas of CH4. CNG can be used as an altenative fuel for transport vehicles. LFG can be converted to CNG using Acrion CO2 WASH l machine which detaches CH4 from other gas. The LFG used to calculate cost of goods sold of this product is only five percent of the total LFG capacity that can presently be produced at TPST Bantar Gebang. The input is LFG of 7,500 Nm3/day and the output is CNG of 3,570 Nm3/day. Two time-point scenarios are used in the cost of goods sold calculation: five years and 10 years. Total expenditure at those time-points is divided by CNG capacity produced each year. The product’s costs of goods sold in five years time is Rp 160/litre and in ten years time is Rp 150/liter. Key words: renewable energy, biogas, TPST bantar gebang, LFG, CNG  ,cost of goods sold

  19. Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine

    International Nuclear Information System (INIS)

    Javaheri, A.; Esfahanian, V.; Salavati-Zadeh, A.; Darzi, M.

    2014-01-01

    Highlights: • Effects of CR and λ on CNG SI ICE 1st and 2nd law analyses are experimentally studied. • The performance of pure methane and a real CNG are observed and compared. • The ratio of actual to Otto cycle thermal efficiencies is 0.78 for all cases. • At least 25.5% of destructed availability is due to combustion irreversibility. • With decrease in methane content, CNG shows more combustion irreversibility. - Abstract: Considering the significance of obtaining higher efficiencies from internal combustion engines (ICE) along with the growing role of natural gas as a fuel, the present work is set to explore the effects of compression ratio (CR hereafter) and air/fuel equivalence ratio (AFER hereafter) on the energy and exergy potentials in a gas-fueled spark ignition internal combustion engine. Experiments are carried out using a single cylinder, port injection, water cooled, variable compression ratio (VCR hereafter), spark ignition engine at a constant engine speed of 2000 rpm. The study involves CRs of 12, 14 and 16 and 10 AFERs between 0.8 and 1.25. Pure methane is utilized for the analysis. In addition, a natural gas blend with the minimum methane content among Iranian gas sources is also tested in order to investigate the effect of real natural gas on findings. The energy analysis involves input fuel power, indicated power and losses due to high temperature of exhaust gases and their unburned content, blow-by and heat loss. The exergy analysis is carried out for availability input and piston, exhaust, and losses availabilities along with destructed entropy. The analysis indicates an increase in the ratio of thermo-mechanical exhaust availability to fuel availability by CR with a maximum near stoichiometry, whereas it is shown that chemical exhaust exergy is not dependent on CR and reduces with AFER. In addition, it is indicated that the ratio of actual cycle to Otto cycle thermal efficiencies is about constant (about 0.784) with changing CR

  20. Compressed gas combined single- and two-stage light-gas gun

    Science.gov (United States)

    Lamberson, L. E.; Boettcher, P. A.

    2018-02-01

    With more than 1 trillion artificial objects smaller than 1 μm in low and geostationary Earth orbit, space assets are subject to the constant threat of space debris impact. These collisions occur at hypervelocity or speeds greater than 3 km/s. In order to characterize material behavior under this extreme event as well as study next-generation materials for space exploration, this paper presents a unique two-stage light-gas gun capable of replicating hypervelocity impacts. While a limited number of these types of facilities exist, they typically are extremely large and can be costly and dangerous to operate. The design presented in this paper is novel in two distinct ways. First, it does not use a form of combustion in the first stage. The projectile is accelerated from a pressure differential using air and inert gases (or purely inert gases), firing a projectile in a nominal range of 1-4 km/s. Second, the design is modular in that the first stage sits on a track sled and can be pulled back and used in itself to study lower speed impacts without any further modifications, with the first stage piston as the impactor. The modularity of the instrument allows the ability to investigate three orders of magnitude of impact velocities or between 101 and 103 m/s in a single, relatively small, cost effective instrument.

  1. The use of compressed natural gas as a strategy of development of natural gas industry; Utilizacao do GNC (Gas Natural Comprimido) como estrategia de desenvolvimento da industria do gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Bock, Jucemara [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Coordenacao de Segmento Veicular; Rickmann, Cristiano [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Novos Negocios; Maestri, Juares [Companhia de Gas do Estado do Rio Grande do Sul (Sulgas), Porto Alegre, RS (Brazil). Gerencia de Mercado de Grandes Consumidores

    2008-07-01

    This work emphasizes the Compressed Natural Gas (CNG) as modal of transport, used by the Company of Gas of the State of Rio Grande do Sul - Sulgas, through experience in pioneering project in Brazil: the introduction of the technology of Compressed Natural Gas (CNG) to assist areas where there is not the infrastructure of pipeline for the transport. The article offers a display of the project of expansion of the Natural gas in Rio Grande do Sul, through the supply of CNG to the company Tramontina in Carlos Barbosa's city in the year of 2002. The last aspect focused by this article demonstrates as the use of this transport technology impelled the development of the transport market in the State and it has been used as an important strategy for the development of the market of Natural Gas Vehicle (NGV) in the state. (author)

  2. Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets

    International Nuclear Information System (INIS)

    Ogunlowo, Olufemi O.; Bristow, Abigail L.; Sohail, M.

    2015-01-01

    The Nigerian government proposed the use of compressed natural gas (CNG) as an automotive fuel in 1997 as part of the initiatives to harness natural gas (NG) resources but progress has been slow. This paper examines the natural gas vehicle (NGV) implementation approaches and outcomes in seven countries with diverse experiences in order to gain an understanding of the barriers to the NGV market development in Nigeria. The analysis employs hermeneutic principles to secondary data derived from academic literature, published reports from a variety of international agencies, grey literature, and text from online sources and identifies eight success factors for NGV market development namely: strategic intent, legal backing, learning and adaptation, assignment of responsibilities, financial incentives, NG pricing, consumer confidence, and NG infrastructure. The paper concludes that the principal impediment to NGV market development in Nigeria is the uncoordinated implementation approach and that greater government involvement is required in setting strategic goals, developing the legal and regulatory frameworks, setting of clear standards for vehicles and refuelling stations as well as assigning responsibilities to specific agencies. Short-term low cost policy interventions identified include widening the existing NG and gasoline price gap and offering limited support for refuelling and retrofitting facilities. - Highlights: • We examined the NGV policies and implementation strategies in selected countries. • The use of legislative mandates help deepen NGV penetration. • Aligning stakeholder interest is critical to NGV adoption. • Making national interest a priority ahead of regional infrastructure is a critical success factor. • Government support drives participation

  3. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    Science.gov (United States)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  4. Maintenance strategy and availabity increasing of a gas compression station in the oil industry

    Directory of Open Access Journals (Sweden)

    Nilis Adriano dos Santos

    2016-03-01

    Full Text Available The purpose of this article was to propose a maintenance strategy and a set of improvement actions for increasing the availability in a compression station of waste gases from the petroleum distillation process, composed of two alternative compressors A and B in a plant of the oil industry. The research method was the quantitative modeling. The methodology includes the calculation of the current availability and suggesting actions to raise it. Time to repair (TTR and time between failures (TBF were modeled for the individual compressors and for the gas compression station as a whole. With the average values of the models (MTBF and MTTR were calculated individual availabilities of A and B (32.4% and 83.3%, respectively and global, 96.7%. The data were collected from the company's information system. By the form factors associated with TBF, it was possible to affirm that, despite operating for over twenty years, both machines are in the premature failures phase. This fact is due to the exchange of raw materials, which occurred about five years ago: the plant proceeded to process heavier oil, originated from the pre-salt layer, for which the installation was not designed. Such divergence may be characterized as a design fault, associated with the corrective maintenance strategy. Finally, a list of improvements projects was presented to increase the availability of the post and terminate the phase of premature failures.

  5. Neutral interstellar gas toward epsilon persei: H I, H2, D I, N I, O I

    International Nuclear Information System (INIS)

    Vidal, A.; Ferlet, R.; Laurent, C.; York, D.G.

    1982-01-01

    The study of the interstellar medium toward epsilon Per, a moderately reddened (E/sub B/-V = 0.1) B0.5 star, through the analysis of H I, D I, H 2 , N I, O I, and Ar I absorption features, revealed the following structure of the line of sight: (1) a main interstellar, cold (Tapprox.100 K; b = 2.9 km s -1 ) component, (2) a weak (approx.1% of the main one) probably cold component, and (3) a weak (also approx.1% of the main one) and hot component (Tapprox.8000 K). All three components have normal abundances. Comparison with ground-based observations or other UV studies reveals the presence on the line of sight of an H II region not detected in the neutral species observed in this study. High-velocity H I gas is also detected, located either in the interstellar medium or very likely in the stellar wind for the blue-shifted components. One of these features is blended with the deuterium lines and therefore obscures our D/H evaluation. All we can say is that the data are compatible with a D/H ratio equal to 1.5 x 10 -5 . This blended feature proved to vary by at least a factor of 3 in column density within few hours, a result which sustains our interpretation of the stellar wind origin of the blueshifted high-velocity H I component. However, the alternative interpretation of a high D/H (approx.10 -4 ) value is also compatible with our data

  6. Pulse radiolysis of alkanes in the gas-phase, ion-molecule reactions and neutralization mechanisms of hydrocarbon ions

    International Nuclear Information System (INIS)

    Ausloos, P.

    1975-01-01

    A discussion is presented of the fate of unreactive hydrocarbon ions in various selected gaseous systems. It is shown that experiments performed with the high radiation dose rates obtained in pulse radiolysis experiments have several advantages over conventional low dose rate experiments for the elucidation of the mechanism of homogeneous neutralization of unreactive hydrocarbon ions. This is so because the charged species has a much shorter lifetime with respect to neutralization under high dose rate (pulse radiolysis) conditions, so that the reaction of the ions with minor impurities or accumulated products is much less probable than in low dose rate experiments. It is further shown through a few examples, that quantitative information about the rate contants of neutralization events and ion-molecule reactions can be obtained when the dose rate is high enough for neutralization and chemical reaction to be in competition. Once reliable rate constants for neutralization and ion-molecule reactions are derived, one can obtain a quantitative evaluation of the products which will by formed in the pulse radiolysis of a hydrocarbon gas mixture from a computer calculation. (author)

  7. Gas-Phase Energetics of Actinide Oxides: An Assessment of Neutral and Cationic Monoxides and Dioxides from Thorium to Curium

    Science.gov (United States)

    Marçalo, Joaquim; Gibson, John K.

    2009-09-01

    An assessment of the gas-phase energetics of neutral and singly and doubly charged cationic actinide monoxides and dioxides of thorium, protactinium, uranium, neptunium, plutonium, americium, and curium is presented. A consistent set of metal-oxygen bond dissociation enthalpies, ionization energies, and enthalpies of formation, including new or revised values, is proposed, mainly based on recent experimental data and on correlations with the electronic energetics of the atoms or cations and with condensed-phase thermochemistry.

  8. Hydro-pneumatic accumulators for vehicles kinetic energy storage: Influence of gas compressibility and thermal losses on storage capability

    International Nuclear Information System (INIS)

    Puddu, Pierpaolo; Paderi, Maurizio

    2013-01-01

    In this work the differences between the thermodynamic behaviour of real and ideal gases are analysed to determine their influence on the processes of compression and expansion of a gas-charged accumulator. The behaviour of real gas has a significant influence on the size of accumulators used for Kinetic Energy Recovery of vehicles. In particular, it is underscored that the accumulator's design, based on ideal gas behaviour, provides undersized accumulators and therefore makes impossible the complete energy recovery for Hydraulic Energy Storage Systems (HES). The analysis of the thermodynamic properties of gases has shown that the main differences between ideal and real behaviour are due to gas compressibility. A mathematical model of a gas-charged accumulator is developed in order to analyse its real behaviour in presence of irreversible heat transfer and viscous losses. The simulation process of charging and discharging of a hydro-pneumatic accumulator, makes it clear that hydrodynamic and thermal losses are responsible for the characteristic hysteresis cycle on the p–V diagram. Different gases are tested as charged fluid of a hydro-pneumatic accumulator to simulate cyclic processes of charge and discharge. Results show different characteristics in terms of volumetric gas properties, thermal time-constant and thermal efficiency of the accumulator. - Highlights: • A dynamic model of a gas charged accumulator was developed. • Gas compressibility significantly influences the size of high-pressure accumulators. • A hysteresis loop is indicative of the thermal energy losses. • Loss increases with increasing the period of the cyclic process. • Thermal time constant is different from compression to expansion

  9. Diesel vs. compressed natural gas for school buses: a cost-effectiveness evaluation of alternative fuels

    International Nuclear Information System (INIS)

    Cohen, J.T.

    2005-01-01

    Reducing emissions from school buses is a priority for both state and federal regulators. Two popular alternative technologies to conventional diesel (CD) are emission controlled diesel (ECD), defined here to be diesel buses equipped with continuously regenerating particle filters, and engines fueled by compressed natural gas (CNG). This paper uses a previously published model to quantify the impact of particulate matter (PM), oxides of nitrogen (NO x ), and sulfur dioxide (SO 2 ) emissions on population exposure to ozone and to primary and secondary PM, and to quantify the resulting health damages, expressed in terms of lost quality adjusted life years (QALYs). Resource costs include damages from greenhouse gas-induced climate change, vehicle procurement, infrastructure development, and operations. I find that ECD and CNG produce very similar reductions in health damages compared to CD, although CNG has a modest edge because it may have lower NO x emissions. However, ECD is far more cost effective ($400,000-900,000 cost per QALY saved) than CNG (around $4 million per QALY saved). The results are uncertain because the model used makes a series of simplifying assumptions and because emissions data and cost data for school buses are very limited

  10. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  11. Well-to-Wheels Analysis of Compressed Natural Gas and Ethanol from Municipal Solid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Uisung [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division; Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States). Energy Systems Division

    2016-10-01

    The amount of municipal solid waste (MSW) generated in the United States was estimated at 254 million wet tons in 2013, and around half of that generated waste was landfilled. There is a huge potential in recovering energy from that waste, since around 60% of landfilled material is biomass-derived waste that has high energy content. In addition, diverting waste for fuel production avoids huge fugitive emissions from landfills, especially uncontrolled CH4 emissions, which are the third largest anthropogenic CH4 source in the United States. Lifecycle analysis (LCA) is typically used to evaluate the environmental impact of alternative fuel production pathways. LCA of transportation fuels is called well-to-wheels (WTW) and covers all stages of the fuel production pathways, from feedstock recovery (well) to vehicle operation (wheels). In this study, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET®) model developed by Argonne National Laboratory is used to evaluate WTW greenhouse gas (GHG) emissions and fossil fuel consumption of waste-derived fuels. Two waste-to-energy (WTE) pathways have been evaluated – one for compressed natural gas (CNG) production using food waste via anaerobic digestion, and the other for ethanol production from yard trimmings via fermentation processes. Because the fuel production pathways displace current waste management practices (i.e., landfilling waste), we use a marginal approach that considers only the differences in emissions between the counterfactual case and the alternative fuel production case.

  12. University Students Explaining Adiabatic Compression of an Ideal Gas--A New Phenomenon in Introductory Thermal Physics

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2012-01-01

    This study focuses on second-year university students' explanations and reasoning related to adiabatic compression of an ideal gas. The phenomenon was new to the students, but it was one which they should have been capable of explaining using their previous upper secondary school knowledge. The students' explanations and reasoning were…

  13. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO_x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  14. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  15. New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Adam, Frédérick; Bertoncini, Fabrice; Brodusch, Nicolas; Durand, Emmanuelle; Thiébaut, Didier; Espinat, Didier; Hennion, Marie-Claire

    2007-04-27

    This paper reports an analytical method for the comprehensive two-dimensional gas chromatography (GC x GC) separation and identification of nitrogen compounds (N-compounds) in middle distillates according to their types (basicity). For the evaluation of the best chromatographic conditions, a non-polar x polar approach was chosen. The impact of the second dimension (stationary phase and column length) on the separation of basic and neutral N-compounds was evaluated by mean of two-dimensional resolution. This study revealed that the implementation of polar secondary column having free electron pairs improves drastically the separation of N-compounds. Indeed, the presence of permanent dipole-permanent dipole interactions between neutral N-compounds and the stationary phase was enlightened. The comparison of two different nitrogen chemiluminescence detectors (NCD) was also evaluated for GC x GC selective monitoring of N-compounds. Owing to higher resolution power and enhanced sensitivity achieved using developed chromatographic and detection conditions, it was possible to identify univocally and to quantitate N-compounds (i) by class of compounds and (ii), within a class, by carbon number. Finally, quantitative comparison of GC x GC-NCD with conventional gas chromatography illustrates the benefits of GC x GC leading to an excellent correlation with results obtained by American Society for Testing Materials (ASTM) methods for the determination of basic/neutral nitrogen ratio in diesel samples.

  16. Important role of vertical migration of compressed gas, oil and water in formation of AVPD (abnormally high pressure gradient) zones

    Energy Technology Data Exchange (ETDEWEB)

    Anikiyev, K.A.

    1980-01-01

    The principal role of vertical migration of compressed gases, gas-saturated petroleum and water during formation of abnormally high pressure gradients (AVPD) is confirmed by extensive factual data on gas production, grifons, blowouts and gushers that accompany drilling formations with AVPD from early history to the present time; the sources of vertical migration of compressed fluids, in accordance with geodynamic AVPD theory, are the deep degasified centers of the earth mantle. Among the various types of AVPD zones especially notable are the large (often massive or massive-layer) deposits and the intrusion aureoles that top them in the overlapping covering layers. Prediction of AVPD zones and determining their field and energy potential must be based on field-baric simulation of the formations being drilled in light of laws regarding the important role of the vertical migration of compressed fluids. When developing field-baric models, it is necessary to utilize the extensive and valuable data on grifons, gas production and blowouts that has been collected and categorized by drilling engineers and production geologists. To further develop data on field-baric conditions of the earth, it is necessary to collect and study signals of AVPD. First of all, there is a need to evaluate potential elastic resources of compressed fluids which can move from the bed into the well. Thus it is necessary to study and standardize intrusion aureoles and other AVPD zones within the aspect of fieldbaric modeling.

  17. Gas turbine engine adapted for use in combination with an apparatus for separating a portion of oxygen from compressed air

    Science.gov (United States)

    Bland, Robert J [Oviedo, FL; Horazak, Dennis A [Orlando, FL

    2012-03-06

    A gas turbine engine is provided comprising an outer shell, a compressor assembly, at least one combustor assembly, a turbine assembly and duct structure. The outer shell includes a compressor section, a combustor section, an intermediate section and a turbine section. The intermediate section includes at least one first opening and at least one second opening. The compressor assembly is located in the compressor section to define with the compressor section a compressor apparatus to compress air. The at least one combustor assembly is coupled to the combustor section to define with the combustor section a combustor apparatus. The turbine assembly is located in the turbine section to define with the turbine section a turbine apparatus. The duct structure is coupled to the intermediate section to receive at least a portion of the compressed air from the compressor apparatus through the at least one first opening in the intermediate section, pass the compressed air to an apparatus for separating a portion of oxygen from the compressed air to produced vitiated compressed air and return the vitiated compressed air to the intermediate section via the at least one second opening in the intermediate section.

  18. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral p

  19. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  20. Natural gas and renewable methane for powertrains future strategies for a climate-neutral mobility

    CERN Document Server

    2016-01-01

    This book focuses on natural gas and synthetic methane as contemporary and future energy sources. Following a historical overview, physical and chemical properties, occurrence, extraction, transportation and storage of natural gas are discussed. Sustainable production of natural gas and methane as well as production and storage of synthetic methane are scrutinized next. A substantial part of the book addresses construction of vehicles for natural and synthetic methane as well as large engines for industrial and maritime use. The last chapters present some perspectives on further uses of renewable liquid fuels as well as natural gas for industrial engines and gas power plants.

  1. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    Energy Technology Data Exchange (ETDEWEB)

    Roy S. Baty, F. Farassat, John A. Hargreaves

    2007-05-25

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  2. Analisis Kekuatan Tangki CNG Ditinjau dengan Material Logam Lapis Komposit pada Kapal Pengangkut Compressed Natural Gas

    Directory of Open Access Journals (Sweden)

    Aulia Firmansah

    2013-03-01

    Full Text Available Pada penelitian ini, dilakukan analisa perbandingan pada kekuatan pressure vessel compressed natural gas. Pressure vessel yang digunakan yaitu tipe satu dan tipe tiga, tipe satu adalah tabung menggunakan material logam yaitu Carbon Steel SA 516 Grade 70 dan Aluminium Alloy T6-6061. Pada tabung tipe tiga material menggunakan Aluminium Alloy T6-6061 dengan lapisan Komposit (Carbon Fibre – Epoxy pada seluruh tabung (full wrapped. Sudut orientasi serat yang digunakan 54.73560 dan terdiri dari 4 lapis komposit yang membungkus aluminium. Variasi yang dilakukan pada tebal komposit yaitu 25% komposit, 50% komposit, dan 75% komposit. Pressure vessel mendapat perlakuan internal pressure sebesar 125 bar dan temperatur -300C. Analisa dilakukan dengan dua metode yaitu dengan perhitungan manual dan software finite element method (NASTRAN 2010. Dari hasil perhitungan tersebut tabung tipe satu dengan material logam terbukti aman karena memenuhi dari faktor keamanan yang ditentukan tetapi pressure vessel sangat berat. Pada tabung tipe tiga lamina dengan komposisi 75% komposit dan 50% komposit dinyatakan aman karena memenuhi dari kriteria tegangan maksimum. Sedangkan pada komposisi 25% komposit lamina mengalami kegagalan yang disebabkan terlalu rendahnya lapisan komposit. Dari keseluruhan hasil perhitungan dan analisa didapatkan komposisi ideal pressure vessel yaitu 75% komposit dan 25% aluminium dari tebal keseluruhan sehingga menghasilkan tegangan yang sangat kecil dan memiliki berat yang paling ringan.

  3. A sensitivity study of the oxidation of compressed natural gas on platinum

    KAUST Repository

    Badra, Jihad

    2013-11-01

    This paper presents a sensitivity study for the oxidation of methane (CH4) over platinum (Pt). Some dominant reactions in the CH 4-Pt surface chemistry were identified and the rates of these reactions were subsequently modified to enhance the calculations. Initially, a range of CH4-Pt surface mechanisms available in the literature are used, along with the relevant detailed gaseous chemistry to compute the structure of premixed compressed natural gas (CNG)/air flames co-flowing around a flat, vertical, unconfined, rectangular, and platinum plate. Comparison with existing measurements of surface temperature and species concentrations revealed significant discrepancies for all mechanisms. Sensitivity analysis has identified nine key reactions which dominate the heterogeneous chemistry of methane over platinum. The rates of these reactions were modified over a reasonable range and in different combinations leading to an "optimal" mechanism for methane/air surface chemistry on platinum. The new mechanism is then used with the same flow geometry for different cases varying the temperature of the incoming mixture (Tjet), its equivalence ratio (Φ) and the Reynolds number (Re). Results from the modified surface mechanism demonstrate reasonably good agreement with the experimental data for a wide range of operating conditions. © 2013 Elsevier Ltd. All rights reserved.

  4. Isentropic Gas Flow for the Compressible Euler Equation in a Nozzle

    Science.gov (United States)

    Tsuge, Naoki

    2013-08-01

    We study the motion of isentropic gas in a nozzle. Nozzles are used to increase the thrust of engines or to accelerate a flow from subsonic to supersonic. Nozzles are essential parts for jet engines, rocket engines and supersonicwind tunnels. In the present paper, we consider unsteady flow, which is governed by the compressible Euler equation, and prove the existence of global solutions for the Cauchy problem. For this problem, the existence theorem has already been obtained for initial data away from the sonic state, (Liu in Commun Math Phys 68:141-172, 1979). Here, we are interested in the transonic flow, which is essential for engineering and physics. Although the transonic flow has recently been studied (Tsuge in J Math Kyoto Univ 46:457-524, 2006; Lu in Nonlinear Anal Real World Appl 12:2802-2810, 2011), these papers assume monotonicity of the cross section area. Here, we consider the transonic flow in a nozzle with a general cross section area. When we prove global existence, the most difficult point is obtaining a bounded estimate for approximate solutions. To overcome this, we employ a new invariant region that depends on the space variable. Moreover, we introduce a modified Godunov scheme. The corresponding approximate solutions consist of piecewise steady-state solutions of an auxiliary equation, which yield a desired bounded estimate. In order to prove their convergence, we use the compensated compactness framework.

  5. Realization of a broad band neutron spin filter with compressed, polarized 3He gas

    International Nuclear Information System (INIS)

    Surkau, R.; Otten, E.W.; Steiner, M.; Tasset, F.; Trautmann, N.

    1997-01-01

    The strongly spin dependent absorption of neutrons in nuclear spin polarized 3 -2pt vector He opens the possibility to polarize beams of thermal and epithermal neutrons. An effective 3 He neutron spin filter (NSF) requires high 3 He nuclear polarization as well as a filter thickness corresponding to a gas amount of the order of 1 bar l. We realized such a filter using direct optical pumping of metastable 3 He * atoms in a 3 He plasma at 1 mbar. Metastable exchange scattering transfers the angular momentum to the whole ensemble of 3 He atoms. At present 3 x 10 18 3 He-atoms/s are polarized up to 64%. Subsequent polarization preserving compression by a two stage compressor system enables to prepare NSF cells of about 300 cm 3 volume with 3 bar of polarized 3 He within 2 h. 3 He polarizations up to 53% were measured in a cell with a filter length of about 15 cm. By this cell a thermal neutron beam from the Mainz TRIGA reactor was polarized. A wavelength selective polarization analysis by means of Bragg scattering revealed a neutron polarization of 84% at a total transmission of 12% for a neutron wavelength of 1 A. (orig.)

  6. Application of ORC power station to increase electric power of gas compression ignition engine

    Directory of Open Access Journals (Sweden)

    Mocarski Szymon

    2017-01-01

    Full Text Available The paper presents the calculation results of efficiency of the subcritical low temperature ORC power station powered by waste heat resulting from the process of cooling a stationary compression ignition engine. The source of heat to supply the ORC power station is the heat in a form of water jet cooling the engine at a temperature of 92°C, and the exhaust gas stream at a temperature of 420°C. The study considers three variants of systems with the ORC power stations with different ways of using heat source. The first variant assumes using just engine cooling water to power the ORC station. In the second variant the ORC system is powered solely by a heat flux from the combustion gases by means of an intermediary medium - thermal oil, while the third variant provides the simultaneous management of both heat fluxes to heat the water stream as a source of power supply to the ORC station. The calculations were made for the eight working media belonging both to groups of so-called dry media (R218, R1234yf, R227ea and wet media (R32, R161, R152a, R134a, R22.

  7. Behaviour of the ASDEX pressure gauge at high neutral gas pressure and applications for ITER

    International Nuclear Information System (INIS)

    Scarabosio, A.; Haas, G.

    2008-01-01

    The ASDEX Pressure Gauge is, at present, the main candidate for in-vessel neutral pressure measurement in ITER. Although the APG output is found to saturate at around 15 Pa, below the ITER requirement of 20 Pa. We show, here, that with small modifications of the gauge geometry and potentials settings we can achieve satisfactory behaviour up to 30 Pa at 6 T

  8. Compressive Strength Properties of Natural Gas Hydrate Pellet by Continuous Extrusion from a Twin-Roll System

    Directory of Open Access Journals (Sweden)

    Yun-Hoo Lee

    2013-01-01

    Full Text Available This study investigates the compressive strength of natural gas hydrate (NGH pellet strip extruded from die holes of a twin-roll press for continuous pelletizing (TPCP. The lab-scale TPCP was newly developed, where NGH powder was continuously fed and extruded into strip-type pellet between twin rolls. The system was specifically designed for future expansion towards mass production of solid form NGH. It is shown that the compressive strength of NGH pellet strip heavily depends on parameters in the extrusion process, such as feeding pressure, pressure ratio, and rotational speed. The mechanism of TPCP, along with the compressive strength and density of pellets, is discussed in terms of its feasibility for producing NGH pellets in the future.

  9. Economical and environmental assessments of compressed natural gas for diesel vehicle in Thailand

    Directory of Open Access Journals (Sweden)

    Prateep Chouykerd

    2008-08-01

    Full Text Available The economic assessments for the use of compressed natural gas as fuel for several types of diesel vehicles, rarely pick up, non-fixed route truck and private truck, were studied. It is noted that two main technologies of diesel natural gas vehicle (NGV, i.e. dedicated retrofit and diesel dual fuel (DDF, were considered in this work. It was found that the dedicated retrofit needs higher investment costs than dual fuel, but can achieve higher diesel saving than dual fuel. In detail, the payback period of dual fuel non-fixed route truck was found to be identical to dual fuel private truck both in the cases of6 wheel and 10 wheel, while dedicated retrofit non-fixed route truck and private truck are also identical and have longerpay back period than dual fuel due to its higher conversion costs.This work also presents the emissions released from all types of engines especially green house gas CO2. It was found that, in the case of light duty diesel i.e. pickup truck, dedicated retrofit emitted high level of CO2 than both dual fuel and conventional diesel engines. For heavy duty i.e. non-fixed route truck and private truck vehicles, dedicated retrofit emitted a lower level of CO2 than normal diesel engine. Other pollutants from engine emission, i.e. hydrocarbon (HC,nitric oxide (NOx, carbon monoxide (CO and particulate matter, (PM were also observed. The results indicated that, inthe case of light duty diesel, dedicated retrofit engine emits higher levels of HC and CO than diesel engine; in contrast, it emits lower level of NOx and PM than diesel and dual fuel. Dual fuel emits HC and CO higher than diesel and dedicated retrofit but emits lower level of NOx and PM than diesel. Lastly, for heavy duty diesel, it was demonstrated that non-fixed route truck and private truck heavy duty dedicated retrofit have potential to reduce emissions of HC, NOx, CO and PM when compared to normal heavy duty diesel. Engine efficiencies under dual fuel and dedicated

  10. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    International Nuclear Information System (INIS)

    Fritz, Jan; Thawait, Gaurav K.; Fritz, Benjamin; Raithel, Esther; Nittka, Mathias; Gilson, Wesley D.; Mont, Michael A.

    2016-01-01

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  11. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Jan; Thawait, Gaurav K. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University of Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Raithel, Esther; Nittka, Mathias [Siemens Healthcare GmbH, Erlangen (Germany); Gilson, Wesley D. [Siemens Healthcare USA, Inc., Baltimore, MD (United States); Mont, Michael A. [Cleveland Clinic Foundation, Department of Orthopedic Surgery, Cleveland, OH (United States)

    2016-10-15

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  12. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the

  13. Study of mechanical compression of spin-polarized 3He gas

    International Nuclear Information System (INIS)

    Becker, J.; Heil, W.; Krug, B.; Leduc, M.; Meyerhoff, M.; Nacher, P.J.; Otten, E.W.; Prokscha, T.; Schearer, L.D.; Surkau, R.

    1994-01-01

    We have piloted mechanical compression of spinpolarized 3He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3He may be compressed this way up to many bars without serious polarization losses. ((orig.))

  14. Effects of polytetrafluoroethylene treatment and compression on gas diffusion layer microstructure using high-resolution X-ray computed tomography

    Science.gov (United States)

    Khajeh-Hosseini-Dalasm, Navvab; Sasabe, Takashi; Tokumasu, Takashi; Pasaogullari, Ugur

    2014-11-01

    The microstructure of a TGP-H-120 Toray paper gas diffusion layer (GDL) was investigated using high resolution X-ray computed tomography (CT) technique, with a resolution of 1.8 μm and a field of view (FOV) of ∼1.8 × 1.8 mm. The images obtained from the tomography scans were further post processed, and image thresholding and binarization methodologies are presented. The validity of Otsu's thresholding method was examined. Detailed information on bulk porosity and porosity distribution of the GDL at various Polytetrafluoroethylene (PTFE) treatments and uniform/non-uniform compression pressures was provided. A sample holder was designed to investigate the effects of non-uniform compression pressure, which enabled regulating compression pressure between 0, and 3 MPa at a gas channel/current collector rib configuration. The results show the heterogeneous and anisotropic microstructure of the GDL, non-uniform distribution of PTFE, and significant microstructural change under uniform/non-uniform compression. These findings provide useful inputs for numerical models to include the effects of microstructural changes in the study of transport phenomena within the GDL and to increase the accuracy and predictability of cell performance.

  15. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  16. Glovebox with purification and pressure control of the neutral gas atmosphere in closed circuit

    International Nuclear Information System (INIS)

    Cadrot, J.

    1990-01-01

    In the gas main are placed 2 series of specific gas purifiers in parallel. Pressure is controlled with a buffer tank two three way solenoid value upstream and down stream a compressor and a supercharger. A checking board allows continuous monitoring of circuit tightness [fr

  17. Direct measurement of the concentration of metastable ions produced from neutral gas particles using laser-induced fluorescence

    Science.gov (United States)

    Chu, Feng; Skiff, Fred; Berumen, Jorge; Mattingly, Sean; Hood, Ryan

    2017-10-01

    Extensive information can be obtained on wave-particle interactions and wave fields by direct measurement of perturbed ion distribution functions using laser-induced fluorescence (LIF). For practical purposes, LIF is frequently performed on metastables that are produced from neutral gas particles and existing ions in other electronic states. We numerically simulate the ion velocity distribution measurement and wave-detection process using a Lagrangian model for the LIF signal. The results show that under circumstances where the metastable ion population is coming directly from the ionization of neutrals (as opposed to the excitation of ground-state ions), the velocity distribution will only faithfully represent processes which act on the ion dynamics in a time shorter than the metastable lifetime. Therefore, it is important to know the ratio of metastable population coming from neutrals to that from existing ions to correct the LIF measurements of plasma ion temperature and electrostatic waves. In this paper, we experimentally investigate the ratio of these two populations by externally launching an ion acoustic wave and comparing the wave amplitudes that are measured with LIF and a Langmuir probe using a lock-in amplifier. DE-FG02-99ER54543.

  18. Influence of extensive compressed natural gas (CNG) usage on air quality

    Science.gov (United States)

    Suthawaree, Jeeranut; Sikder, Helena Akhter; Jones, Charlotte Emily; Kato, Shungo; Kunimi, Hitoshi; Mohammed Hamidul Kabir, Abu Naser; Kajii, Yoshizumi

    2012-07-01

    Compressed Natural Gas (CNG) is an inexpensive, indigenous energy resource which currently accounts for the majority of automobile and domestic energy consumption in Bangladesh. This extensive CNG usage, particularly within the capital city, Dhaka, heavily influences the atmospheric composition (and hence air quality), yet to date measurements of trace gases in regions dominated by CNG emissions are relatively limited. Here we report continuous observations of the atmospherically important trace gases O3, CO, SO2, NOx and volatile organic compounds (VOC), in ambient air in Dhaka City, Bangladesh, during May 2011. The average mixing ratios of O3, CO, SO2, and NOx for the measurement period were 18.9, 520.9, 7.6 and 21.5 ppbv, respectively. The ratios of CO to NO reveal that emissions from gasoline and CNG-fuelled vehicles were dominant during the daytime (slope of ˜26), while in contrast, owing to restrictions imposed on diesel fuelled vehicles entering Dhaka City, emissions from these vehicles only became significant during the night (slope of ˜10). The total VOC mixing ratio in Dhaka was ˜5-10 times higher than the levels reported in more developed Asian cities such as Tokyo and Bangkok, which consequently gives rise to a higher ozone formation potential (OFP). However, the most abundant VOC in Dhaka were the relatively long-lived ethane and propane (with mean mixing ratios of ˜115 and ˜30 ppbv, respectively), and as a consequence, the ozone formation potential per ppb carbon (ppbC) was lower in Dhaka than in Tokyo and Bangkok. Thus the atmospheric composition of air influenced by extensive CNG combustion may be characterized by high VOC mixing ratios, yet mixing ratios of the photochemical pollutant ozone do not drastically exceed the levels typical of Asian cities with considerably lower VOC levels.

  19. Comparative evaluation of a two stroke compressed natural gas mixer design using simulation and experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, D.; Bakar, R.A.; Rahim, M.F.; Noor, M.M. [Malaysia Pahang Univ., Pahang (Malaysia). Automotive Focus Group

    2008-07-01

    A study was conducted in which a two-stroke engine was converted for use with bi-fuel, notably compressed natural gas and gasoline. The excessive by-products generated by two-stroke engine combustion can be attributed to the inefficient combustion process. This prototype uniflow-type single-cylinder engine was equipped with a bi-fuel conversion system. A dedicated mixer was also developed to meter the gaseous fuel through the engine intake system. It was designed to meet air and fuel requirement similar to its gasoline counterpart. The mixer was modeled to obtain optimum orifice diameter using three different sizes of 14, 16 and 18 mm respectively. A standard computational fluid dynamics (CFD) software package was used to simulate the flow. A pressure reading was obtained during the prototype test. The drop in pressure across the venturi was shown to be an important parameter as it determined the actual fuel-air ratio in the actual engine. A good agreement of CFD outputs with that of the experimental outputs was recorded. The experimental technique validated the pressure distribution predicted by CFD means on the effects of the three insert rings in the CNG mixer. The simulation exercise can be used to predict the amount of CNG consumed by the engine. It was concluded that the 14 mm throat ring was best suited for the CNG mixer because it provided the best suction. Once the mixer is tested on a real engine, it will clear any doubts as to whether the throat can function at high engine speeds. 5 refs., 3 tabs., 8 figs.

  20. Unregulated emissions from compressed natural gas (CNG) transit buses configured with and without oxidation catalyst.

    Science.gov (United States)

    Okamoto, Robert A; Kado, Norman Y; Kuzmicky, Paul A; Ayala, Alberto; Kobayashi, Reiko

    2006-01-01

    The unregulated emissions from two in-use heavy-duty transit buses fueled by compressed natural gas (CNG) and equipped with oxidation catalyst (OxiCat) control were evaluated. We tested emissions from a transit bus powered by a 2001 Cummins Westport C Gas Plus 8.3-L engine (CWest), which meets the California Air Resources Board's (CARB) 2002 optional NOx standard (2.0 g/bhp-hr). In California, this engine is certified only with an OxiCat, so our study did not include emissions testing without it. We also tested a 2000 New Flyer 40-passenger low-floor bus powered by a Detroit Diesel series 50G engine (DDCs50G) that is currently certified in California without an OxiCat. The original equipment manufacturer (OEM) offers a "low-emission" package for this bus that includes an OxiCat for transit bus applications, thus, this configuration was also tested in this study. Previously, we reported that formaldehyde and other volatile organic emissions detected in the exhaust of the DDCs50G bus equipped with an OxiCat were significantly reduced relative to the same DDCs50G bus without OxiCat. In this paper, we examine othertoxic unregulated emissions of significance. The specific mutagenic activity of emission sample extracts was examined using the microsuspension assay. The total mutagenic activity of emissions (activity per mile) from the OxiCat-equipped DDC bus was generally lower than that from the DDC bus without the OxiCat. The CWest bus emission samples had mutagenic activity that was comparable to that of the OxiCat-equipped DDC bus. In general, polycyclic aromatic hydrocarbon (PAH) emissions were lower forthe OxiCat-equipped buses, with greater reductions observed for the volatile and semivolatile PAH emissions. Elemental carbon (EC) was detected in the exhaust from the all three bus configurations, and we found that the total carbon (TC) composition of particulate matter (PM) emissions was primarily organic carbon (OC). The amount of carbon emissions far exceeded the

  1. Reduction of gas flow into a hollow cathode ion source for a neutral beam injector

    International Nuclear Information System (INIS)

    Tanaka, S.; Akiba, M.; Arakawa, Y.; Horiike, H.; Sakuraba, J.

    1982-01-01

    Experimental studies have been made on the reduction of the gas flow rate into ion sources which utilize a hollow cathode. The electron emitter of the hollow cathode was a barium oxide impregnated porous tungsten tube. The hollow cathode was mounted to a circular or a rectangular bucket source and the following results were obtained. There was a tendency for the minimum gas flow rate for the stable source operation to decrease with increasing orifice diameter of the hollow cathode up to 10 mm. A molybdenum button with an appropriate diameter set in front of the orifice reduced the minimum gas flow rate to one half of that without button. An external magnetic field applied antiparallel to the field generated by the heater current stabilized the discharges and reduced the minimum gas flow rate to one half of that without field. Combination of the button and the antiparallel field reduced the minimum gas flow rate from the initial value (9.5 Torr 1/s) to 2.4 Torr 1/s. The reason for these effects was discussed on the basis of the theory for arc starvation

  2. Effects of neutral gas collisions on the power transmission factor at the divertor sheath

    International Nuclear Information System (INIS)

    Futch, A.H.; Matthews, G.F.; Buchenauer, D.; Hill, D.N.; Jong, R.A.; Porter, G.D.

    1992-01-01

    We show that charge-exchange and other ion-neutral collision can reduce the power transmission factor of the plasma sheath, thereby lowering the ion impact energy and target plate sputtering. The power transmission factor relates the heat flux reaching the divertor target to the plasma density and temperature just in front of the surface: δ=Q surf /J ew k T e . Experimental data from the DIII-D tokamak suggests that δ could be as low as 2-3 near the region of peak divertor particle flux, instead of the 7-8 expected from usual sheath theory. Several effects combine to allow ion-neutral interactions to be important in the divertor plasma sheath. The shallow angle of incidence of the magnetic field (1-3deg in DIII-D) leads to the spatial extension of the sheath from approximately ρ i ∝1 mm normal to the plate to several centimeters along the field lines. Ionization reduces the sheath potential, and collisions reduce the ion impact energy. (orig.)

  3. Numerical analysis of gas leakage in the piston-cylinder clearance of reciprocating compressors considering compressibility effects

    Science.gov (United States)

    Braga, V. M.; Deschamps, C. J.

    2017-08-01

    Leakage is a major source of inefficiency in low-capacity reciprocating compressors. Not only does it lower the mass flow rate provided by the compressor, reducing its volumetric efficiency, but also gives rise to outflux of energy that decreases the isentropic efficiency. Leakage in the piston-cylinder clearance of reciprocating compressors is driven by the piston motion and pressure difference between the compression chamber and the shell internal environment. In compressors adopted for domestic refrigeration, such a clearance is usually filled by a mixture of refrigerant and lubricating oil. Besides its lubricating function, the oil also acts as sealing element for the piston-cylinder clearance, and hence leakage is expected to be more detrimental to oil-free compressors. This paper presents a model based on the Reynolds equation for compressible fluid flow to predict leakage in oil-free reciprocating compressors. The model is solved throughout the compression cycle so as to assess the effect of the clearance geometry and piston velocity on leakage and compressor efficiency. The results show that compressible fluid flow formulation must be considered for predictions of gas leakage in the cylinder-piston clearance.

  4. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-01-01

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 μJ was compressed to a 27-fs pulse with an energy of 75 μJ. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  5. Cooling performance and energy saving of a compression-absorption refrigeration system driven by a gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.G.; Guo, K.H. [Sun Yat-Sen University, Guangzhou (China). Engineering School

    2006-07-01

    The prototype of combined vapour compression-absorption refrigeration system was set up, where a gas engine drove directly an open screw compressor in a vapour compression refrigeration chiller and waste heat from the gas engine was used to operate absorption refrigeration cycle. The experimental procedure and results showed that the combined refrigeration system was feasible. The cooling capacity of the prototype reached about 589 kW at the Chinese rated conditions of air conditioning (the inlet and outlet temperatures of chilled water are 12 and 7{sup o}C, the inlet and outlet temperatures of cooling water are 30 and 35{sup o}C, respectively). Primary energy rate (PER) and comparative primary energy saving were used to evaluate energy utilization efficiency of the combined refrigeration system. The calculated results showed that the PER of the prototype was about 1.81 and the prototype saved more than 25% of primary energy compared to a conventional electrically driven vapour compression refrigeration unit. Error analysis showed that the total error of the combined cooling system measurement was about 4.2% in this work. (author)

  6. Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Korakianitis, T.; Namasivayam, A.M.; Crookes, R.J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom)

    2011-02-15

    Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NO{sub x}) emissions, while producing lower emissions of carbon dioxide (CO{sub 2}), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NO{sub x} emissions. High NO{sub x} emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NO{sub x} and CO{sub 2} emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is

  7. Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network

    International Nuclear Information System (INIS)

    Yang, Jae Mo; Ko, Byung Seok; Park, Chulhwan; Ko, Jae Wook; Yoo, Byungtae; Shin, Dongil

    2014-01-01

    To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG) service stations in Korea use only local-mode monitoring, with only on-site operators to monitor the facility. To complement this local-mode monitoring, an online safety management system called Ubiquitous-gas safety management system (U-GSMS) was developed. The U-GSMS consists largely of software and hardware. The software consists of systems that can manage safety and operations, while the hardware consists of sensors installed in the gas facility and wireless communication systems using a ubiquitous sensor network (USN) technology that facilitates communication between sensors as well as between sensors and other devices. As these systems are web-based, on-site operators as well as managers and executive officers at the headquarters can more effectively and efficiently perform monitoring and safety management

  8. Design and implementation of an integrated safety management system for compressed natural gas stations using ubiquitous sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jae Mo; Ko, Byung Seok; Park, Chulhwan; Ko, Jae Wook [Kwangwoon University, Seoul (Korea, Republic of); Yoo, Byungtae [National Disaster Management Institute, Seoul (Korea, Republic of); Shin, Dongil [Myongji University, Yongin (Korea, Republic of)

    2014-03-15

    To increase awareness of safety in facilities where hazards may exist, operators, managers, and executive officers on the site should be able to monitor such facilities. However, most compressed natural gas (CNG) service stations in Korea use only local-mode monitoring, with only on-site operators to monitor the facility. To complement this local-mode monitoring, an online safety management system called Ubiquitous-gas safety management system (U-GSMS) was developed. The U-GSMS consists largely of software and hardware. The software consists of systems that can manage safety and operations, while the hardware consists of sensors installed in the gas facility and wireless communication systems using a ubiquitous sensor network (USN) technology that facilitates communication between sensors as well as between sensors and other devices. As these systems are web-based, on-site operators as well as managers and executive officers at the headquarters can more effectively and efficiently perform monitoring and safety management.

  9. 3D Studies of Neutral and Ionised Gas and Stars in Seyfert and Inactive Galaxies

    NARCIS (Netherlands)

    Mundell, C. G.; Dumas, G.; Schinnerer, E.; Nagar, N.; Wilcots, E.; Wilson, A. S.; Emsellem, E.; Ferruit, P.; Peletier, R. F.; De Zeeuw, P. T.; Haan, S.

    Abstract: We are conducting the first systematic 3D spectroscopic imaging survey to quantify the properties of the atomic gas (HI) in a distance-limited sample of 28 Seyfert galaxies and a sample of 28 inactive control galaxies with well-matched optical properties (the VHIKINGS survey). This study

  10. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    International Nuclear Information System (INIS)

    Schamel, Hans

    2004-01-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum--as seen in laboratory experiments--is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one

  11. Lagrangian fluid description with simple applications in compressible plasma and gas dynamics

    Science.gov (United States)

    Schamel, Hans

    2004-03-01

    The Lagrangian fluid description, in which the dynamics of fluids is formulated in terms of trajectories of fluid elements, not only presents an alternative to the more common Eulerian description but has its own merits and advantages. This aspect, which seems to be not fully explored yet, is getting increasing attention in fluid dynamics and related areas as Lagrangian codes and experimental techniques are developed utilizing the Lagrangian point of view with the ultimate goal of a deeper understanding of flow dynamics. In this tutorial review we report on recent progress made in the analysis of compressible, more or less perfect flows such as plasmas and dilute gases. The equations of motion are exploited to get further insight into the formation and evolution of coherent structures, which often exhibit a singular or collapse type behavior occurring in finite time. It is argued that this technique of solution has a broad applicability due to the simplicity and generality of equations used. The focus is on four different topics, the physics of which being governed by simple fluid equations subject to initial and/or boundary conditions. Whenever possible also experimental results are mentioned. In the expansion of a semi-infinite plasma into a vacuum the energetic ion peak propagating supersonically towards the vacuum-as seen in laboratory experiments-is interpreted by means of the Lagrangian fluid description as a relic of a wave breaking scenario of the corresponding inviscid ion dynamics. The inclusion of viscosity is shown numerically to stabilize the associated density collapse giving rise to a well defined fast ion peak reminiscent of adhesive matter. In purely convection driven flows the Lagrangian flow velocity is given by its initial value and hence the Lagrangian velocity gradient tensor can be evaluated accurately to find out the appearance of singularities in density and vorticity and the emergence of new structures such as wavelets in one-dimension (1D

  12. Electron emission in the Auger neutralization of a spin-polarized He+ ion embedded in a free electron gas

    International Nuclear Information System (INIS)

    Juaristi, J.I.; Alducin, M.; Diez Muino, R.; Roesler, M.

    2005-01-01

    Results are presented for the energy distribution and spin polarization of the electrons excited during the Auger neutralization of a spin polarized He + ion embedded in a paramagnetic free electron gas. The screening of the He + ion is calculated using density functional theory within the local spin density approximation. The Auger rates, the energy distribution and the spin polarization of the excited electrons are obtained using the Fermi golden rule. The transport of the electrons is calculated within the Boltzmann transport equation formalism. The spin-polarization of the initially excited electrons is very high (>70%) and parallel to that of the electron bound to the He + ion. Nevertheless, the emitted electrons show a much lower degree of polarization, mainly in the low energy range, due to the creation of the unpolarized cascade of secondaries in the transport process

  13. Potential development of compressed bio-methane gas production from pig farms and elephant grass silage for transportation in Thailand.

    Science.gov (United States)

    Dussadee, Natthawud; Reansuwan, Kamoldara; Ramaraj, Rameshprabu

    2014-03-01

    This research project evaluated biogas production using anaerobic co-digestion of pig manure and elephant grass silage in large scale to delivered transportation directly for cars. Anaerobic co-digestion was estimated in three full-scale continuously stirred tank reactors (CSTRs) at 40°C. In the form of compressed bio-methane gas (CBG) production was 14,400m(3)/day (CH4 60-70%) amount of CBG was 9600m(3)/day. The procedure was enhanced by using molecular sieve, activated carbon for removal of moisture and CO2 membrane H2S and CO2 respectively. The results were demonstrated the amount of CO2, H2S gas was reduced along with CH4 was improved up to 90% by volume and compressed to 250bar tank pressure gauge to the fuel for cars. The CBG production, methane gas improvement and performance were evaluated before entering the delivered systems according to the energy standards. The production of CBG is advantageous to strengthen the Thailand biogas market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  15. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Metel, A. S., E-mail: ametel@stankin.ru [Moscow State University of Technology ' Stankin,' (Russian Federation)

    2012-03-15

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  16. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  17. Energy equivalence factor in gasoline to compressed vehicle natural gas substitution

    International Nuclear Information System (INIS)

    Agudelo Santamaria, John R; Amell Arrieta, Andres A

    1992-01-01

    In this paper, the authors show a model based in a vehicle energy balance used to obtain the ratio of energy equivalence of natural gas and petrol used as fuels in the vehicle. The model includes the engine, transmission and natural gas cylinders effects. The model has been applied to different colombian natural gases, it shows that Guajira natural gas has 14,5% lower ratio than Cusiana natural gas and 5,6% lower ratio than Apiay natural gas, these results shows a need in the study of colombian natural gases interchangeability

  18. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  19. Spin effects in the screening and Auger neutralization of He+ ions in a spin-polarized electron gas

    International Nuclear Information System (INIS)

    Alducin, M.; Diez Muino, R.; Juaristi, J.I.

    2005-01-01

    The screening of a He + ion embedded in a free electron gas is studied for different spin-polarizations of the medium. Density functional theory and the local spin density approximation are used to calculate the induced electronic density for each spin orientation, i.e. parallel or antiparallel to the spin of the electron bound to the ion. Since both the He + ion and the electron gas are spin-polarized, we analyze in detail the spin state of the screening cloud for the two different possibilities: the spin of the bound electron can be parallel to either the majority spin or the minority spin in the medium. Finally, the spin-dependent Kohn-Sham orbitals are used to calculate the Auger neutralization rate of the He + ion. The polarization of the Auger excited electron is influenced by the spin-polarization of the medium. The results are discussed in terms of the spin-dependent screening and the indistinguishability of electrons with the same spin state

  20. On the modeling of gas flow through porous compression packings used in valve stuffing-boxes

    International Nuclear Information System (INIS)

    Kazeminia, Mehdi; Bouzid, Abdel-Hakim

    2015-01-01

    Predicting leak rate through porous compression packing rings is a significant challenge for the design of packed stuffing boxes. Although few studies have been conducted to predict the leak rate through these seals, there is no comprehensive standard procedure to be used to design compression packings for a maximum tolerated leak for a given application. With the ubiquitous use of the yarned packing rings and the strict regulations on fugitive emissions and the new environment protection laws quantification of leak rate through yarned stuffing boxes becomes more than necessary and a tightness criteria based design procedure must be developed. In this study a new approach to predict leak rate through compression packing rings has been developed. It is based on Darcy's model to which Klinkenberg slip effect is incorporated. The predicted leak rates are compared to those measured experimentally using two different graphite-based packing rings subjected to different compression levels and pressures. A good agreement is found between the predicted and the measured leak rates which illustrates the validity of the developed model. (author)

  1. Compressibility effects in packed and open tubular gas and supercritical fluid chromatography

    NARCIS (Netherlands)

    Janssen, J.G.M.; Snijders, H.M.J.; Cramers, C.A.; Schoenmakers, P.J.

    1992-01-01

    The influence of the pressure drop on the efficiency and speed of anal. in packed and open tubular supercrit. fluid chromatog. (SFC) is described: methods previously developed to describe the effects of mobile phase compressibility on the performance of open tubular columns in SFC have been extended

  2. Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation

    International Nuclear Information System (INIS)

    Greenblatt, Jeffery B.; Succar, Samir; Denkenberger, David C.; Williams, Robert H.; Socolow, Robert H.

    2007-01-01

    The economic viability of producing baseload wind energy was explored using a cost-optimization model to simulate two competing systems: wind energy supplemented by simple- and combined cycle natural gas turbines ('wind+gas'), and wind energy supplemented by compressed air energy storage ('wind+CAES'). Pure combined cycle natural gas turbines ('gas') were used as a proxy for conventional baseload generation. Long-distance electric transmission was integral to the analysis. Given the future uncertainty in both natural gas price and greenhouse gas (GHG) emissions price, we introduced an effective fuel price, p NGeff , being the sum of the real natural gas price and the GHG price. Under the assumption of p NGeff =$5/GJ (lower heating value), 650 W/m 2 wind resource, 750 km transmission line, and a fixed 90% capacity factor, wind+CAES was the most expensive system at cents 6.0/kWh, and did not break even with the next most expensive wind+gas system until p NGeff =$9.0/GJ. However, under real market conditions, the system with the least dispatch cost (short-run marginal cost) is dispatched first, attaining the highest capacity factor and diminishing the capacity factors of competitors, raising their total cost. We estimate that the wind+CAES system, with a greenhouse gas (GHG) emission rate that is one-fourth of that for natural gas combined cycle plants and about one-tenth of that for pulverized coal plants, has the lowest dispatch cost of the alternatives considered (lower even than for coal power plants) above a GHG emissions price of $35/tC equiv. , with good prospects for realizing a higher capacity factor and a lower total cost of energy than all the competing technologies over a wide range of effective fuel costs. This ability to compete in economic dispatch greatly boosts the market penetration potential of wind energy and suggests a substantial growth opportunity for natural gas in providing baseload power via wind+CAES, even at high natural gas prices

  3. Effects of self-similar correlations on the spectral line shape in the neutral gas

    International Nuclear Information System (INIS)

    Kharintsev, S.S.; Salakhov, M.Kh.

    2001-01-01

    The paper is devoted to the study of the influence of self-similar correlations on the Doppler and pressure broadening within the non-equilibrium Boltzmann gas. The diffuse model for the thermal motion of the radiator and the self-similar mechanism of interference of scalar perturbations for phase shifts of an atomic oscillator are developed. It is shown that taking into account self-similar correlation in a description of the spectral line shape allows one to explain, on the one hand, the additional spectral line Dicke-narrowing in the Doppler regime, and, on the other hand, the asymmetry in wings of the spectral line in a high pressure region

  4. High Precision Motion Control System for the Two-Stage Light Gas Gun at the Dynamic Compression Sector

    Science.gov (United States)

    Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.

    2017-06-01

    The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.

  5. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  6. On compressible flow in a gas centrifuge and its effect on the maximum separative power

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1978-01-01

    The gas circulation in a gas centrifuge due to temperature differences, differential rotation and injection, and removal of fluid at the ends, as well as due to temperature gradients at the cylinder wall, is treated analytically. The motion consists of a small perturbation on a state of isothermal

  7. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  8. COMPLETE IONIZATION OF THE NEUTRAL GAS: WHY THERE ARE SO FEW DETECTIONS OF 21 cm HYDROGEN IN HIGH-REDSHIFT RADIO GALAXIES AND QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Curran, S. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Whiting, M. T., E-mail: sjc@physics.usyd.edu.au [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia)

    2012-11-10

    From the first published z {approx}> 3 survey of 21 cm absorption within the hosts of radio galaxies and quasars, Curran et al. found an apparent dearth of cool neutral gas at high redshift. From a detailed analysis of the photometry, each object is found to have a {lambda} = 1216 A continuum luminosity in excess of L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}, a critical value above which 21 cm has never been detected at any redshift. At these wavelengths, and below, hydrogen is excited above the ground state so that it cannot absorb in 21 cm. In order to apply the equation of photoionization equilibrium, we demonstrate that this critical value also applies to the ionizing ({lambda} {<=} 912 A) radiation. We use this to show, for a variety of gas density distributions, that upon placing a quasar within a galaxy of gas, there is always an ultraviolet luminosity above which all of the large-scale atomic gas is ionized. While in this state, the hydrogen cannot be detected or engage in star formation. Applying the mean ionizing photon rate of all of the sources searched, we find, using canonical values for the gas density and recombination rate coefficient, that the observed critical luminosity gives a scale length (3 kpc) similar that of the neutral hydrogen (H I) in the Milky Way, a large spiral galaxy. Thus, this simple yet physically motivated model can explain the critical luminosity (L {sub 912} {approx} L {sub 1216} {approx} 10{sup 23} W Hz{sup -1}), above which neutral gas is not detected. This indicates that the non-detection of 21 cm absorption is not due to the sensitivity limits of current radio telescopes, but rather that the lines of sight to the quasars, and probably the bulk of the host galaxies, are devoid of neutral gas.

  9. 78 FR 33891 - Safety Advisory: Compressed Gas Cylinders That Have Not Been Tested Properly

    Science.gov (United States)

    2013-06-05

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Properly AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Safety... otherwise safely discharged. Cylinders that are filled with a material other than an atmospheric gas should...

  10. Nitric oxide contamination of hospital compressed air improves gas exchange in patients with acute lung injury.

    Science.gov (United States)

    Tan, P Seow Koon; Genc, F; Delgado, E; Kellum, J A; Pinsky, M R

    2002-08-01

    We tested the hypothesis that NO contamination of hospital compressed air also improves PaO(2) in patients with acute lung injury (ALI) and following lung transplant (LTx). Prospective clinical study. Cardiothoracic intensive care unit. Subjects following cardiac surgery (CABG, n=7); with ALI (n=7), and following LTx (n=5). Four sequential 15-min steps at a constant FiO(2) were used: hospital compressed air-O(2) (H1), N(2)-O(2) (A1), repeat compressed air-O(2) (H2), and repeat N(2)-O(2) (A2). NO levels were measured from the endotracheal tube. Cardiorespiratory values included PaO(2) were measured at the end of each step. FiO(2) was 0.46+/-0.05, 0.53+/-0.15, and 0.47+/-0.06 (mean+/-SD) for three groups, respectively. Inhaled NO levels during H1 varied among subjects (30-550 ppb, 27-300 ppb, and 5-220 ppb, respectively). Exhaled NO levels were not detected in 4/7 of CABG (0-300 ppb), 3/6 of ALI (0-140 ppb), and 3/5 of LTx (0-59 ppb) patients during H1, whereas during A1 all but one patient in ALI and three CABG patients had measurable exhaled NO levels (P<0.05). Small but significant decreases in PaO(2) occurred for all groups from H1 to A1 and H2 to A2 (132-99 Torr and 128-120 Torr, P <0.01, respectively). There was no correlation between inhaled NO during H1 and exhaled NO during A1 or the change in PaO(2) from H1 to A1. Low-level NO contamination improves PaO(2) in patients with ALI and following LTx.

  11. A study on the fire response of compressed hydrogen gas vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Yohsuke; Tomioka, Junichi; Suzuki, Jinji [Japan Automobile Research Institute (Japan)

    2010-07-01

    To investigate the events that could arise when fighting fires in vehicles with compressed hydrogen CFRP (carbon fiber reinforced plastic) composite cylinders, we conducted experiments to examine whether a hydrogen jet flame caused by the activation of the pressure relief device (PRD) can extinguished and how spraying water influences the cylinder and PRD. The experiments clarified that the hydrogen jet flame cannot be extinguished easily with water or dry powder extinguishers and that spraying water during activation of the PRD may result in closure of the PRD, but is useful for maintaining the strength of CFRP composite cylinders for vehicles. (orig.)

  12. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  13. Development of a discrete gas-kinetic scheme for simulation of two-dimensional viscous incompressible and compressible flows.

    Science.gov (United States)

    Yang, L M; Shu, C; Wang, Y

    2016-03-01

    In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.

  14. A compressed hydrogen gas storage system with an integrated phase change material

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus Damgaard; Jørgensen, Jens Erik

    2015-01-01

    below the critical temperature of 85 °C, while filling the hydrogen at ambient temperature. Results show that a 10-mm-thick layer of paraffin wax can absorb enough heat to reduce the adiabatic temperature by 20 K when compared to a standard Type IV tank. The heat transfer from the gas to the phase...... change material, mainly occurs after the fueling is completed, resulting in a higher hydrogen peak temperature inside the tank and a lower fuelled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fuelled at -40 °C....

  15. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  16. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    Science.gov (United States)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  17. Cosmic-rays, gas, and dust in nearby anticentre clouds. II. Interstellar phase transitions and the dark neutral medium

    Science.gov (United States)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2018-03-01

    Aim. H I 21-cm and 12CO 2.6-mm line emissions trace the atomic and molecular gas phases, respectively, but they miss most of the opaque H I and diffuse H2 present in the dark neutral medium (DNM) at the transition between the H I-bright and CO-bright regions. Jointly probing H I, CO, and DNM gas, we aim to constrain the threshold of the H I-H2 transition in visual extinction, AV, and in total hydrogen column densities, NHtot. We also aim to measure gas mass fractions in the different phases and to test their relation to cloud properties. Methods: We have used dust optical depth measurements at 353 GHz, γ-ray maps at GeV energies, and H I and CO line data to trace the gas column densities and map the DNM in nearby clouds toward the Galactic anticentre and Chamaeleon regions. We have selected a subset of 15 individual clouds, from diffuse to star-forming structures, in order to study the different phases across each cloud and to probe changes from cloud to cloud. Results: The atomic fraction of the total hydrogen column density is observed to decrease in the (0.6-1) × 1021 cm-2 range in NHtot (AV ≈ 0.4 mag) because of the formation of H2 molecules. The onset of detectable CO intensities varies by only a factor of 4 from cloud to cloud, between 0.6 × 1021 cm-2 and 2.5 × 1021 cm-2 in total gas column density. We observe larger H2 column densities than linearly inferred from the CO intensities at AV > 3 mag because of the large CO optical thickness; the additional H2 mass in this regime represents on average 20% of the CO-inferred molecular mass. In the DNM envelopes, we find that the fraction of diffuse CO-dark H2 in the molecular column densities decreases with increasing AV in a cloud. For a half molecular DNM, the fraction decreases from more than 80% at 0.4 mag to less than 20% beyond 2 mag. In mass, the DNM fraction varies with the cloud properties. Clouds with low peak CO intensities exhibit large CO-dark H2 fractions in molecular mass, in particular the

  18. Efficiency and exhaust gas analysis of variable compression ratio spark ignition engine fuelled with alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Seshaiah, N. [Mechanical Engineering Department, M.I.T.S, Madanapalle, Angallu-517325, A.P. (India)

    2010-07-01

    Considering energy crises and pollution problems today, investigations have been concentrated on decreasing fuel consumption by using alternative fuels and on lowering the concentration of toxic components in combustion products. In the present work, the variable compression ratio spark ignition engine designed to run on gasoline has been tested with pure gasoline, LPG (Isobutene), and gasoline blended with ethanol 10%, 15%, 25% and 35% by volume. Also, the gasoline mixed with kerosene at 15%, 25% and 35% by volume without any engine modifications has been tested and presented the result. Brake thermal and volumetric efficiency variation with brake load is compared and presented. CO and CO2 emissions have been also compared for all tested fuels.

  19. Integration of phase change materials in compressed hydrogen gas systems: Modelling and parametric analysis

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rothuizen, Erasmus; Jørgensen, Jens-Erik

    2016-01-01

    to the phase change material, mainly occurs after the fueling is completed, resulting in a hydrogen peak temperature higher than 85 C and a lower fueled mass than a gas-cooled system. Such a mass reduction accounts for 12% with respect to the case of a standard tank system fueled at 40 C. A parametric analysis...

  20. Framework for Combined Diagnostics, Prognostics and Optimal Operation of a Subsea Gas Compression System

    OpenAIRE

    Verheyleweghen, Adriaen; Jaeschke, Johannes

    2017-01-01

    The efficient and safe operation of subsea gas and oil production systems sets strict requirements to equipment reliability to avoid unplanned breakdowns and costly maintenance interventions. Because of this, condition monitoring is employed to assess the status of the system in real-time. However, the condition of the system is usually not considered explicitly when finding the optimal operation strategy. Instead, operational constraints on flow rates, pressures etc., based on worst-case sce...

  1. Maximum compression of Z-pinch in a gas with high atomic number

    International Nuclear Information System (INIS)

    Gerusov, A.V.

    1989-01-01

    An ideal system of equations with shock heating is used for describing of a Z pinch in a gas with high atomic number. In this case equations do not depend from the installation parameters. The approximate simple solution of such a system is presented. Numerical calculations of equations with radiative cooling and various dissipative effects have determined the employment conditions of ideal magnetohydrodynamic equation system. 10 refs

  2. Numerical and Experimental Investigation of Combustion and Knock in a Dual Fuel Gas/Diesel Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    A. Gharehghani

    2012-01-01

    Full Text Available Conventional compression ignition engines can easily be converted to a dual fuel mode of operation using natural gas as main fuel and diesel oil injection as pilot to initiate the combustion. At the same time, it is possible to increase the output power by increasing the diesel oil percentage. A detailed performance and combustion characteristic analysis of a heavy duty diesel engine has been studied in dual fuel mode of operation where natural gas is used as the main fuel and diesel oil as pilot. The influence of intake pressure and temperature on knock occurrence and the effects of initial swirl ratio on heat release rate, temperature-pressure and emission levels have been investigated in this study. It is shown that an increase in the initial swirl ratio lengthens the delay period for auto-ignition and extends the combustion period while it reduces NOx. There is an optimum value of the initial swirl ratio for a certain mixture intake temperature and pressure conditions that can achieve high thermal efficiency and low NOx emissions while decreases the tendency to knock. Simultaneous increase of intake pressure and initial swirl ratio could be the solution to power loss and knock in dual fuel engine.

  3. Hardware-in-the-loop-simulation using the example of a compressed-natural-gas hybrid; Hardware-in-the-Loop-Simulation am Beispiel eines Erdgas-Hybridfahrzeugs

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, M.; Mauk, T.; Reuss, H.C. [Univ. Stuttgart (Germany)

    2008-07-01

    This paper deals with the development of hybrid specific software for a compressed natural gas hybrid. After the presentation of the project the software development process is being illustrated. A two phase hardware-in-the-loop simulation is an important part of it. The vehicle model and the modelling process will be described. (orig.)

  4. Design of a compressed air modulator to be used in comprehensive multidimensional gas chromatography and its application in the determination of pesticide residues in grapes

    NARCIS (Netherlands)

    Pizzutti, I.R.; Vreuls, J.J.; Kok, A; Roehrs, R.; Martel, S.; Friggi, C.A.; Zanella, R.

    2009-01-01

    In this study, a new modulator that is simple, robust and presents low operation costs, was developed. This modulator uses compressed air to cool two small portions in the first centimeters of the second chromatographic column of a comprehensive multidimensional gas chromatography (GC × GC) system.

  5. On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas

    Czech Academy of Sciences Publication Activity Database

    Ducomet, B.; Nečasová, Šárka; Vasseur, A.

    2011-01-01

    Roč. 13, č. 2 (2011), s. 191-211 ISSN 1422-6928 R&D Projects: GA ČR GA201/08/0012; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : spherically symmetric motion * selfgravitating gas * non monotone pressure law * density-dependent viscosities Subject RIV: BA - General Mathematics Impact factor: 0.768, year: 2011 http://link.springer.com/article/10.1007%2Fs00021-009-0010-5

  6. The analysis of the neutral gas measurements near comet P/Halley based on observations by VEGA-1

    International Nuclear Information System (INIS)

    Gringauz, K.I.; Verigin, M.I.; Remizov, A.P.; Oraevskij, A.A.; Szegoe, K.; Varga, A.

    1989-04-01

    The in-situ measurements of secondary electrons and sputtered ions caused by impacts of neutral particles on metallic surfaces of the Ram Faraday Cup and Plasma Impact Detector sensors in PLAZMAG-1 instrument aboard VEGA 1,2 spacecraft are used to estimate neutral particle density distribution (n n ) around comet P/Halley up to distances of approximately 3x10 σ km. Asymmetries in n n distributions along inbound and outbound legs of spacecraft trajectory are attributed to solar radiation pressure. A model calculation, taking into account solar radiation pressure, leads to 'tear drop' shaped distribution of neutral particles around the cometary nucleus. (author) 46 refs.; 11 figs

  7. Neutral beam monitoring

    International Nuclear Information System (INIS)

    Fink, J.H.

    1979-01-01

    A neutral beam generated by passing accelerated ions through a walled cell containing a low energy neutral gas, such that charge exchange partially neutralizes the high energy beam, is monitored by detecting the current flowing through the cell wall produced by low energy ions which drift to the wall after the charge exchange. By segmenting the wall into radial and longitudinal segments various beam conditions are identified. (U.K.)

  8. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    Science.gov (United States)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  9. Hydrogen enriched compressed natural gas (HCNG: A futuristic fuel for internal combustion engines

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2011-01-01

    Full Text Available Air pollution is fast becoming a serious global problem with increasing population and its subsequent demands. This has resulted in increased usage of hydrogen as fuel for internal combustion engines. Hydrogen resources are vast and it is considered as one of the most promising fuel for automotive sector. As the required hydrogen infrastructure and refueling stations are not meeting the demand, widespread introduction of hydrogen vehicles is not possible in the near future. One of the solutions for this hurdle is to blend hydrogen with methane. Such types of blends take benefit of the unique combustion properties of hydrogen and at the same time reduce the demand for pure hydrogen. Enriching natural gas with hydrogen could be a potential alternative to common hydrocarbon fuels for internal combustion engine applications. Many researchers are working on this for the last few years and work is now focused on how to use this kind of fuel to its maximum extent. This technical note is an assessment of HCNG usage in case of internal combustion engines. Several examples and their salient features have been discussed. Finally, overall effects of hydrogen addition on an engine fueled with HCNG under various conditions are illustrated. In addition, the scope and challenges being faced in this area of research are clearly described.

  10. A comparative life cycle assessment of diesel and compressed natural gas powered refuse collection vehicles in a Canadian city

    International Nuclear Information System (INIS)

    Rose, Lars; Hussain, Mohammed; Ahmed, Syed; Malek, Kourosh; Costanzo, Robert; Kjeang, Erik

    2013-01-01

    Consumers and organizations worldwide are searching for low-carbon alternatives to conventional gasoline and diesel vehicles to reduce greenhouse gas (GHG) emissions and their impact on the environment. A comprehensive technique used to estimate overall cost and environmental impact of vehicles is known as life cycle assessment (LCA). In this article, a comparative LCA of diesel and compressed natural gas (CNG) powered heavy duty refuse collection vehicles (RCVs) is conducted. The analysis utilizes real-time operational data obtained from the City of Surrey in British Columbia, Canada. The impact of the two alternative vehicles is assessed from various points in their life. No net gain in energy use is found when a diesel powered RCV is replaced by a CNG powered RCV. However, significant reductions (approximately 24% CO 2 -equivalent) in GHG and criteria air contaminant (CAC) emissions are obtained. Moreover, fuel cost estimations based on 2011 price levels and a 5-year lifetime for both RCVs reveal that considerable cost savings may be achieved by switching to CNG vehicles. Thus, CNG RCVs are not only favorable in terms of reduced climate change impact but also cost effective compared to conventional diesel RCVs, and provide a viable and realistic near-term strategy for cities and municipalities to reduce GHG emissions. - Highlights: ► Life cycle analysis is performed on two alternative refuse collection vehicle technologies. ► Real-time operational data obtained by the City of Surrey in British Columbia are utilized. ► The life cycle energy use is similar for diesel and CNG RCVs. ► A 24% reduction of GHG emissions (CO 2 -equivalent) may be realized by switching from diesel to CNG. ► CNG RCVs are estimated to be cost effective and may lead to reduced fuel costs.

  11. A new integrated planning model for gas compression and transmission through a complex pipeline network; Um novo modelo de planejamento integrado de compressao e escoamento de gas para uma rede complexa

    Energy Technology Data Exchange (ETDEWEB)

    Iamashita, Edson K. [PETROBRAS, Rio de Janeiro, RJ (Brazil); Galaxe, Frederico; Arica, Jose [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacases, RJ (Brazil)

    2005-07-01

    The aim of this paper is to show a new approach to solve integrated gas balance planning problems that defines the best compression and transmission strategy for a system with a large number of platforms or compression units that are interlinked with the delivery points through a complex gas pipeline network. For solving the proposed optimization problem is used a genetic meta-heuristic technique, where the fitness function of the algorithm is the Profit function of the gas balance, being considered the incomes and costs besides the pipeline network constraints, representing the compression system and transmission network near to the real operational condition. Newton Raphson's method is used to solve the nonlinear system that represents the calculation of the pressure drop in the gas pipeline network that can contain various cycles. This model could be used for design and optimization of gas pipeline networks, as well as for the gas balance planning of an existent network looking for the profit maximization. (author)

  12. Assessment of air quality after the implementation of compressed natural gas (CNG) as fuel in public transport in Delhi, India.

    Science.gov (United States)

    Ravindra, Khaiwal; Wauters, Eric; Tyagi, Sushil K; Mor, Suman; Van Grieken, René

    2006-04-01

    Public transport in Delhi was amended by the Supreme Court of India to use Compressed Natural Gas (CNG) instead of diesel or petrol. After the implementation of CNG since April 2001, Delhi has the highest fraction of CNG-run public vehicles in the world and most of them were introduced within 20 months. In the present study, the concentrations of various criteria air pollutants (SPM, PM(10), CO, SO(2) and NO(x)) and organic pollutants such as benzene, toluene, xylene (BTX) and polycyclic aromatic hydrocarbons (PAHs) were assessed before and after the implementation of CNG. A decreasing trend was found for PAHs, SO(2) and CO concentrations, while the NO(x) level was increased in comparison to those before the implementation of CNG. Further, SPM, PM(10), and BTX concentrations showed no significant change after the implementation of CNG. However, the BTX concentration demonstrated a clear relation with the benzene content of gasoline. In addition to the impact of the introduction of CNG the daily variation in PAHs levels was also studied and the PAHs concentrations were observed to be relatively high between 10 pm to 6 am, which gives a proof of a relation with the limited day entry and movement of heavy vehicles in Delhi.

  13. Application of multicriteria decision making methods to compression ignition engine efficiency and gaseous, particulate, and greenhouse gas emissions.

    Science.gov (United States)

    Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A

    2013-02-19

    Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

  14. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  15. Compressed natural gas as a vehicle to promote development of consumer market in Campina Grande - PB (Brazil); O gas natural comprimido como fomentador do desenvolvimento do mercado consumidor de gas natural na regiao de Campina Grande - PB

    Energy Technology Data Exchange (ETDEWEB)

    Bonfim, Marcelo dos Santos; Santos, Edmilson Moutinho dos [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Eletrotecnica e Energia. Programa Interunidades de Pos-Graduacao em Energia (PIPGE)

    2004-07-01

    Investments required for natural gas distribution networks are high. The use of compressed natural gas (CNG) is seen as a way to prepare and develop consuming markets to receive those networks. This paper outlines the socio-economic context and the reasons that motivated the creation of a CNG project in Campina Grande, in the state of Paraiba. Technical aspects of project implementation are described, including difficulties encountered and courses of action undertaken as a result. Other aspects considered include the social and economic impact and local consumer's expectations with the arrival of new fuel. The study also considers factors relevant to the project such as the distance from the pressure measurement and regulation station, transported volumes, technology used, infrastructure and road conditions. (author)

  16. Coupled two-dimensional edge-plasma and neutral gas modelling of the DIII-D scrape-off-layer

    International Nuclear Information System (INIS)

    Maingi, R.; Gilligan, J.; Hankins, O.; Rensink, M.; Owen, L.; Klepper, C.; Mioduszewski, P.

    1992-01-01

    This paper reports that in order to do consistent scrape-off-layer plasma and neutral transport calculations, the 2-D fluid code, B2 has been externally coupled to the neutral transport code, DEGAS, for Dlll-D. The coupling procedure is similar to recent simulations done for TFTR, Tore Supra, and ClT. An averaged source approach is utilized to allow convergence between the two codes. Initial comparison of plasma quantities between the coupled code set and the B2 code alone shows that a colder, denser plasma may exist at the divertor targets than predicted by the B2 code with its internal recycling model

  17. The co-evolution of alternative fuel infrastructure and vehicles. A study of the experience of Argentina with compressed natural gas

    International Nuclear Information System (INIS)

    Collantes, Gustavo; Melaina, Marc W.

    2011-01-01

    In a quest for strategic and environmental benefits, the developed countries have been trying for many years to increase the share of alternative fuels in their transportation fuel mixes. They have met very little success though. In this paper, we examine the experience of Argentina with compressed natural gas. We conducted interviews with a wide range of stakeholders and analyzed econometrically data collected in Argentina to investigate the factors, economic, political, and others that determined the high rate of adoption of this fuel. A central objective of this research was to identify lessons that could be useful to developed countries in their efforts to deploy alternative fuel vehicles. We find that fuel price regulation was a significant determinant of the adoption of compressed natural gas, while, contrary to expectations, government financing of refueling infrastructure was minimal. (author)

  18. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  19. The start-up of a gas turbine engine using compressed air tangentially fed onto the blades of the basic turbine

    Science.gov (United States)

    Slobodyanyuk, L. K.; Dayneko, V. I.

    1983-01-01

    The use of compressed air was suggested to increase the reliability and motor lifetime of a gas turbine engine. Experiments were carried out and the results are shown in the form of the variation in circumferential force as a function of the entry angle of the working jet onto the turbine blade. The described start-up method is recommended for use with massive rotors.

  20. N-decane-air end-gas auto-ignition induced by flame propagation in a constant volume chamber: Influence of compression history

    OpenAIRE

    Quintens , Hugo; Strozzi , Camille; Zitoun , Ratiba; Bellenoue , Marc

    2017-01-01

    International audience; The present study aims at characterizing the end-gas auto-ignition of n-decane – air mixtures induced by a flame propagation in a constant volume chamber. A numerical tool is developed, and the study is first focused on academic compressions, e.g. at constant rate of pressure rise. Thermodynamic conditions of transition from deflagration to auto-ignition are first determined, and the involved physical processes are highlighted. A square section combustion chamber is th...

  1. The Star Formation Rate Efficiency of Neutral Atomic-Dominated Hydrogen Gas in the Ooutskirts of Star-Forming Galaxies From z approx. 1 to z approx. 3

    Science.gov (United States)

    Rafelski, Marc; Gardner, Jonathan P.; Fumagalli, Michele; Neeleman, Marcel; Teplitz, Harry I.; Grogin, Norman; Koekemoer, Anton M.; Scarlata, Claudia

    2016-01-01

    Current observational evidence suggests that the star formation rate (SFR)efficiency of neutral atomic hydrogen gas measured in damped Ly(alpha) systems (DLAs) at z approx. 3 is more than 10 times lower than predicted by the Kennicutt-Schmidt (KS)relation. To understand the origin of this deficit, and to investigate possible evolution with redshift and galaxy properties, we measure the SFR efficiency of atomic gas at z approx. 1, z approx. 2, and z approx. 3 around star-forming galaxies. We use new robust photometric redshifts in the Hubble Ultra Deep Field to create galaxy stacks in these three redshift bins, and measure the SFR efficiency by combining DLA absorber statistics with the observed rest-frame UV emission in the galaxies' outskirts. We find that the SFR efficiency of H I gas at z > 1 is approx. 1%-3% of that predicted by the KS relation. Contrary to simulations and models that predict a reduced SFR efficiency with decreasing metallicity and thus with increasing redshift, we find no significant evolution in the SFR efficiency with redshift. Our analysis instead suggests that the reduced SFR efficiency is driven by the low molecular content of this atomic-dominated phase, with metallicity playing a secondary effect in regulating the conversion between atomic and molecular gas. This interpretation is supported by the similarity between the observed SFR efficiency and that observed in local atomic-dominated gas, such as in the outskirts of local spiral galaxies and local dwarf galaxies.

  2. Kalman-filtered compressive sensing for high resolution estimation of anthropogenic greenhouse gas emissions from sparse measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-09-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. The limited nature of the measured data leads to a severely-underdetermined estimation problem. If the estimation is performed at fine spatial resolutions, it can also be computationally expensive. In order to enable such estimations, advances are needed in the spatial representation of ffCO2 emissions, scalable inversion algorithms and the identification of observables to measure. To that end, we investigate parsimonious spatial parameterizations of ffCO2 emissions which can be used in atmospheric inversions. We devise and test three random field models, based on wavelets, Gaussian kernels and covariance structures derived from easily-observed proxies of human activity. In doing so, we constructed a novel inversion algorithm, based on compressive sensing and sparse reconstruction, to perform the estimation. We also address scalable ensemble Kalman filters as an inversion mechanism and quantify the impact of Gaussian assumptions inherent in them. We find that the assumption does not impact the estimates of mean ffCO2 source strengths appreciably, but a comparison with Markov chain Monte Carlo estimates show significant differences in the variance of the source strengths. Finally, we study if the very different spatial natures of biogenic and ffCO2 emissions can be used to estimate them, in a disaggregated fashion, solely from CO2 concentration measurements, without extra information from products of incomplete combustion e.g., CO. We find that this is possible during the winter months, though the errors can be as large as 50%.

  3. Effect of diesel pre-injection timing on combustion and emission characteristics of compression ignited natural gas engine

    International Nuclear Information System (INIS)

    Xu, Min; Cheng, Wei; Zhang, Hongfei; An, Tao; Zhang, Shaohua

    2016-01-01

    Highlights: • Pre-injection timing on combustion and emission of CING engine are studied. • Closely pre-injection operations leads to increase of combustion intensity. • Early pre-injection operations leads to lower combustion intensity. • Early pre-injection modes provide better NO x emission. - Abstract: Pre-injection strategy is considered to be one of the most important ways to improve diesel engine performance, emission and combustion. It is the same important factor in pilot diesel compression ignition natural gas (CING) engine. In this study, effects of pre-injection timing on combustion and emission performances were experimentally studied in a CING engine which was modified from a turbocharged six-cylinder diesel engine. The experiments were conducted at constant speed of 1400 rpm and different engine loads with a constant fuel injection pressure of 1100 bar. Main injection timing was fixed at 10 °CA BTDC in the advance process of pre-injection timing. The cylinder pressure, heart release rate (HRR), pressure rise rate (PRR), start of combustion (SOC) and coefficient of variation (COV IMEP ), as well as NO x , HC and CO emissions were analyzed. The results indicated that closely pre-injection operations lead to the advance of SOC which intensified combustion of in-cylinder mixture, thereby resulting in higher cylinder pressure, HRR and PRR, as well higher NO x emissions and lower HC and CO emissions. However, early pre-injection operations lead to lower cylinder pressure, HRR and PRR due to decreasing in combustion intensity. Pre-injection timing of 70 °CA BTDC is a conversion point in which influence of pre-injection fuel on ignition and combustion of natural gas nearly disappeared and lowest NO x emission could be obtained. Compared with single injection ignition mode, NO x emissions at the conversion point were reduced by 33%, 38% and 7% at engine load of 38%, 60% and 80% respectively. This is important for the conditions that ignition fuel

  4. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    Science.gov (United States)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  5. Comparison of the generalized Riemann solver and the gas-kinetic scheme for inviscid compressible flow simulations

    International Nuclear Information System (INIS)

    Li Jiequan; Li Qibing; Xu Kun

    2011-01-01

    The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an

  6. A micro-gas phase chromatography with a re-compression system used to measure impurities in low pressure tritiated gases

    Energy Technology Data Exchange (ETDEWEB)

    Godot, A.; Colas, S.; Hubinois, J.C. [CEA Valduc, 21 - Is-sur-Tille (France)

    2008-07-15

    The measurement of the amount of impurities in tritiated gases can be achieved by means of mass spectrometry or gas phase chromatography. A growing number of disadvantages associated to the 'life expectancy' of the mass spectrometer and its tricky maintenance (when enclosed in a gloves box) have led us to acquire a micro gas phase chromatograph. This device is based on a modular concept with the injector, the column and the detector packed in a compact unit which is easy to replace. Thanks to constant improvement in the field of capillary column, new micro chromatographs are now able to perform measurement in absence of pre-column and presence of argon instead of nitrogen as a carrier gas. Of importance, this new apparatus allow better performances (running time: 1 m 30 sec, limit of detection: {<=}10 ppm). However, in normal use, this apparatus requires 800 milli-bar in the inlet, a pressure that doesn't match with the feature of our process gas. To overcome this inconvenience, we have developed an automatic functioning system with a bellows that samples and compresses the gas to pressures compatible with the micro gas chromatograph. The apparatus and the experimental procedures will be presented as well as experimental performances (reproducibility, detection limits..) for some impurities such as nitrogen, oxygen and helium. (authors)

  7. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2013-11-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral pH solutions used in microbial fuel cells (MFCs). The ammonia treated ACs exhibited better catalytic performance in rotating ring-disk electrode tests than their untreated precursors, with the bituminous based AC most improved, with an onset potential of Eonset = 0.12 V (untreated, Eonset = 0.08 V) and n = 3.9 electrons transferred in oxygen reduction (untreated, n = 3.6), and the hardwood based AC (treated, E onset = 0.03 V, n = 3.3; untreated, Eonset = -0.04 V, n = 3.0). Ammonia treatment decreased oxygen content by 29-58%, increased nitrogen content to 1.8 atomic %, and increased the basicity of the bituminous, peat, and hardwood ACs. The treated coal based AC cathodes had higher maximum power densities in MFCs (2450 ± 40 mW m-2) than the other AC cathodes or a Pt/C cathode (2100 ± 1 mW m-2). These results show that reduced oxygen abundance and increased nitrogen functionalities on the AC surface can increase catalytic performance for oxygen reduction in neutral media. © 2013 Elsevier B.V. All rights reserved.

  8. Volatile organic compounds in a residential and commercial urban area with a diesel, compressed natural gas and oxygenated gasoline vehicular fleet.

    Science.gov (United States)

    Martins, Eduardo Monteiro; Arbilla, Graciela; Gatti, Luciana Vanni

    2010-02-01

    Air samples were collected in a typical residential and commercial area in Rio de Janeiro, Brazil, where buses and trucks use diesel and light duty vehicles use compressed natural gas, ethanol, and gasohol (gasoline blended with ethanol) as fuel. A total of 66 C3-C12 volatile organic compounds (VOCs) were identified. The most abundant compounds, on a mass concentration basis, included propane, isobutane, i-pentane, m,p-xylene, 1,3,5-trimethylbenzene, toluene, styrene, ethylbenzene, isopropylbenzene, o-xylene and 1,2,4-trimethylbenzene. Two VOCs photochemical reactivity rankings are presented: one involves reaction with OH and the other involves production of ozone.

  9. Numerical Study of Natural Gas/Diesel Reactivity Controlled Compression Ignition Combustion with Large Eddy Simulation and Reynolds-Averaged Navier–Stokes Model

    Directory of Open Access Journals (Sweden)

    Amir-Hasan Kakaee

    2018-03-01

    Full Text Available In the current study, a comparative study is performed using Large Eddy Simulation (LES and Reynolds-averaged Navier–Stokes (RANS turbulence models on a natural gas/diesel Reactivity Controlled Compression Ignition (RCCI engine. The numerical results are validated against the available research work in the literature. The RNG (Re-Normalization Group k − ε and dynamic structure models are employed to model turbulent flow for RANS and LES simulations, respectively. Parameters like the premixed natural gas mass fraction, the second start of injection timing (SOI2 of diesel and the engine speed are studied to compare performance of RANS and LES models on combustion and pollutant emissions prediction. The results obtained showed that the LES and RANS model give almost similar predictions of cylinder pressure and heat release rate at lower natural gas mass fractions and late SOI2 timings. However, the LES showed improved capability to predict the natural gas auto-ignition and pollutant emissions prediction compared to RANS model especially at higher natural gas mass fractions.

  10. Spatial Variations of Turbulent Properties of Neutral Hydrogen Gas in the Small Magellanic Cloud Using Structure-function Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nestingen-Palm, David; Stanimirović, Snežana; González-Casanova, Diego F.; Babler, Brian [Astronomy Department, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706-1582 (United States); Jameson, Katherine; Bolatto, Alberto, E-mail: sstanimi@astro.wisc.edu [Astronomy Department and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-08-10

    We investigate spatial variations of turbulent properties in the Small Magellanic Cloud (SMC) by using neutral hydrogen (H i) observations. With the goal of testing the importance of stellar feedback on H i turbulence, we define central and outer SMC regions based on the star formation rate (SFR) surface density, as well as the H i integrated intensity. We use the structure function and the velocity channel analysis to calculate the power-law index ( γ ) for both underlying density and velocity fields in these regions. In all cases, our results show essentially no difference in γ between the central and outer regions. This suggests that H i turbulent properties are surprisingly homogeneous across the SMC when probed at a resolution of 30 pc. Contrary to recent suggestions from numerical simulations, we do not find a significant change in γ due to stellar feedback as traced by the SFR surface density. This could be due to the stellar feedback being widespread over the whole of the SMC, but more likely due to a large-scale gravitational driving of turbulence. We show that the lack of difference between central and outer SMC regions cannot be explained by the high optical depth H I.

  11. Plasma neutralizer for H- beams

    International Nuclear Information System (INIS)

    Grossman, M.W.

    1977-01-01

    Neutralization of H - beams by a hydrogen plasma is discussed. Optimum target thickness and maximum neutralization efficiency as a function of the fraction of the hydrogen target gas ionized is calculated for different H - beam energies. Also, the variation of neutralization efficiency with respect to target thickness for different H - beam energies is computed. The dispersion of the neutralized beam by a magnetic field for different energies and different values of B . z is found. Finally, a type of plasma jet is proposed, which may be suitable for a compact H - neutralizer

  12. Starting up a programme of atomic piles using compressed gas; Le demarrage d'un programme de piles atomiques a gaz comprime

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, J; Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-07-01

    1) An examination of the intellectual and material resources which have directed the French programme towards: a) the natural uranium and plutonium system, b) the use of compressed gas as heat transfer fluid (primary fluid). 2) The parts played in exploring the field by the pile EL2 and G1, EL2 a natural uranium, heavy water and compressed gas pile, G1 a natural uranium, graphite and atmospheric air pile. 3) Development of the neutronics of graphite piles: physical study of G1. 4) The examination of certain problem posed by centres equipped with natural uranium, graphite and compressed carbon dioxide piles: structure, special materials, fluid circuits, maximum efficiency. Economic aspects. 5) Aids to progress: a) piles for testing materials and for tests on canned fuel elements, b) laboratory and calculation facilities. 6) Possible new orientations of compressed gas piles: a) raising of the pressure, b) enriched fuel, c) higher temperatures, d) use of heavy water. (author) [French] 1) Examen des ressources - intellectuelles et materielles - qui ont oriente le programme fran is vers: a) la voie de l'uranium naturel et du plutonium; b) l'emploi comme fluide pour le transfert de la chaleur (fluide primaire) d'un gaz comprime. 2) Le role d'exploration des piles EL2 et G1, EL2 pile a uranium naturel, eau lourde et gaz comprime, G1 pile a uranium naturel, graphite et air atmospherique. 3) Developpement de la neutronique des piles a graphite: l'etude physique de G1. 4) Examen de certains problemes poses par les centrales equipees de piles a uranium naturel, graphite et gaz carbonique comprime: structure, materiaux speciaux, circuits de fluides, optimisation. Aspects economiques. 5) Les auxiliaires du progres: a) piles pour essai de materiaux et pour essais de cartouches, b) moyens de laboratoire et moyens de calcul. 6) Orientations nouvelles possibles des piles a gaz comprime: a) elevation de la pression, b) combustible enrichi, c) temperatures elevees, d) emploi de l

  13. Definition of neutral gas density according to the ''Interkosmos-4'' satellite measurements of solar radiation absorption in the 1-8A range

    International Nuclear Information System (INIS)

    Zonnemann, G.; Lippert, V.; Fel'ske, D.

    1980-01-01

    Measurements of the flux of solar irradiation in the range of 1-8 A have been carried out using the ''Interkosmos-4'' satellite. The data obtained during sunsets are used to determine neutral gas density at the altitudes of 80-135 km. Dependence of the effective cross section of solar irradiation absorption in ionosphere on the temperature of the Sun irradiation is given. Estimation of accuracy of the technique applied is presented. It turned out that during determination of absolute value of inert gas density and with its accordance to the altitude considerable errors appear, which do not affect the general density run in the limits of one profile. The profiles have characteristic decay of density at the altitudes of 105-115 km. The data obtained are compared with the measurements carried out simultaneously in the Lsub(α) line, the results of which show excessive absorption of irradiation at the altitudes higher than 100 km, which is explained by the effect of the second absorber, H 2 O most probably

  14. A weakly compressible free-surface flow solver for liquid–gas systems using the volume-of-fluid approach

    CSIR Research Space (South Africa)

    Heyns, Johan A

    2013-05-01

    Full Text Available of the gas has a noteworthy effect on predicted pressure loads in liquid–gas flow in certain instances. With the aim of providing a more accurate numerical representation of dynamic two-fluid flow, the solver is subsequently extended to account for variations...

  15. Use of a single-zone thermodynamic model with detailed chemistry to study a natural gas fueled homogeneous charge compression ignition engine

    International Nuclear Information System (INIS)

    Zheng Junnian; Caton, Jerald A.

    2012-01-01

    Highlights: ► Auto-ignition characteristics of a natural gas fueled HCCI engine. ► Engine speed had the greatest effect on the auto-ignition process. ► Increases of C 2 H 6 or C 3 H 8 improved the auto-ignition process. ► Engine performance was not sensitive to small changes in C 2 H 6 or C 3 H 8 . ► Nitric oxides concentrations decreased as engine speed or EGR level was increased. - Abstract: A single zone thermodynamic model with detailed chemical kinetics was used to simulate a natural gas fueled homogeneous charge compression ignition (HCCI) engine. The model employed Chemkin and used chemical kinetics for natural gas with 53 species and 325 reactions. This simulation was used to complete analyses for a modified 0.4 L single cylinder engine. The engine possessed a compression ratio of 21.5:1, and had a bore and stroke of 86 and 75 mm, respectively. Several sets of parametric studies were completed to investigate the minimal initial temperature, engine performance, and nitric oxide emissions of HCCI engine operation. The results show significant changes in combustion characteristics with varying engine operating conditions. Effects of varying equivalence ratios (0.3–1.0), engine speeds (1000–4000 RPM), EGR (0–40%), and fuel compositions were determined and analyzed in detail. In particular, every 0.1 increase in equivalence ratio or 500 rpm increase in engine speed requires about a 5 K higher initial temperature for complete combustion, and leads to around 0.7 bar increase in IMEP.

  16. Using high temperature gas-cooled reactors for energy neutral mineral development processes – A proposed IAEA Coordinated Research Project

    International Nuclear Information System (INIS)

    Haneklaus, N.; Reitsma, F.; Tulsidas, H.; Dyck, G.; Koshy, T.; Tyobeka, B.; Schnug, E.; Allelein, H-J.; Birky, B.

    2014-01-01

    Today, uranium mined from various regions is the predominant reactor fuel of the present generation of nuclear power plants. The anticipated growth in nuclear energy may require introducing uranium/thorium from unconventional resources (e.g. phosphates, coal ash or sea water) as a future nuclear reactor fuel. The demand for mineral commodities is growing exponentially and high-grade, easily-extractable resources are being depleted rapidly. This shifts the global production to low-grade, or in certain cases unconventional mineral resources, the production of which is constrained by the availability of large amounts of energy. Numerous mining processes can benefit from the use of so-called “thermal processing”. This is in particular beneficial for (1) low grade deposits that cannot be treated using the presently dominant chemical processing techniques; (2) the extraction of high purity end products; and (3) the separation of high value or unwanted impurities (e.g. uranium, thorium, rare earths, etc.) that could be used/sold, when extracted, which will result in cleaner final products. The considerably lower waste products also make it attractive compared to chemical processing. In the future, we may need to extract nuclear fuel and minerals from the same unconventional resources to make nuclear fuel- and low grade ore processing feasible and cost-effective. These processes could be sustainable only if low-cost, carbon free, reliable energy is available for comprehensive extraction of all valuable commodities, for the entire life of the project. Nuclear power plants and specifically High Temperature Gas-cooled Reactors (HTGRs) can produce this energy and heat in a sustainable way, especially if enough uranium/thorium can be extracted to fuel these reactors.

  17. Analysis of neutral volatile aroma components in Tilsit cheese using a combination of dynamic headspace technique, capillary gas chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    Dillinger, K.H.

    2000-03-01

    Tilsit cheese is made by the influence of lab ferment and starter cultures on milk. The ripening is done by repeated inoculation of the surface of the Tilsit cheese with yeasts and read smear cultures. This surface flora forms the typical aroma of the Tilsit cheese during the ripening process. The aim of the work was to receive general knowledge about the kind and amount of the neutral volatile aroma components of Tilsit cheese. Beyond this the ability of forming aroma components by read smear cultures and the dispersion of these components in cheese was to be examined. The results were intended to evaluate the formation of aroma components in Tilsit cheese. The semi-quantitative analyses of the aroma components of all samples were done by combining dynamic headspace extraction, gas chromatography and mass spectrometry. In this process the neutral volatile aroma components were extracted by dynamic headspace technique, adsorbed on a trap, thermally desorbed, separated by gas chromatography, detected and identified by mass spectrometry. 63 components belonging to the chemical classes of esters, ketones, aldehydes, alcohols and sulfur containing substances as well as aromatic hydrocarbons, chlorinated hydrocarbons and hydrocarbons were found in the analysed cheese samples of different Austrian Tilsit manufacturing plants. All cheese samples showed a qualitative equal but quantitative varied spectrum of aroma components. The cultivation of pure cultures on a cheese agar medium showed all analysed aroma components to be involved in the biochemical metabolism of these cultures. The ability to produce aroma components greatly differed between the strains and it was not possible to correlate this ability with the taxonomic classification of the strains. The majority of the components had a non-homogeneous concentration profile in the cheese body. This was explained by effects of diffusion and temporal and spatial different forming of components by the metabolism of the

  18. THE HERSCHEL COMPREHENSIVE (U)LIRG EMISSION SURVEY (HERCULES): CO LADDERS, FINE STRUCTURE LINES, AND NEUTRAL GAS COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J. F.; Van der Werf, P. P.; Israel, F. P.; Meijerink, R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Aalto, S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Observatory, SE-43994 Onsala (Sweden); Armus, L.; Díaz-Santos, T. [Spitzer Science Center, California Institute of Technology, MS 220-6, Pasadena, CA 91125 (United States); Charmandaris, V. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, P. Penteli, 15236 Athens (Greece); Evans, A. S. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Fischer, J. [Naval Research Laboratory, Remote Sensing Division, 4555 Overlook Ave SW, Washington, DC 20375 (United States); Gao, Y. [Purple Mountain Observatory, Chinese Academy of Sciences (CAS), 2 West Beijing Road, Nanjing 210008 (China); González-Alfonso, E. [Departamento de Fsica y Matemáticas, Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares, Madrid (Spain); Greve, T. R. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Harris, A. I. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Henkel, C. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 16, Bonn, D-53121 (Germany); Isaak, K. G. [Scientific Support Office, ESTEC/SRE-S, Keplerlaan 1, NL-2201 AZ Noordwijk (Netherlands); Kramer, C., E-mail: rosenberg@strw.leidenuniv.nl [Instituto Radioastronomía Milimétrica (IRAM), Av. Divina Pastora 7, Nucleo Central, E-18012 Granada (Spain); and others

    2015-03-10

    (Ultra) luminous infrared galaxies ((U)LIRGs) are objects characterized by their extreme infrared (8-1000 μm) luminosities (L {sub LIRG} > 10{sup 11} L {sub ☉} and L {sub ULIRG} > 10{sup 12} L {sub ☉}). The Herschel Comprehensive ULIRG Emission Survey (PI: van der Werf) presents a representative flux-limited sample of 29 (U)LIRGs that spans the full luminosity range of these objects (10{sup 11} L {sub ☉} ≤ L {sub IR} ≤ 10{sup 13} L {sub ☉}). With the Herschel Space Observatory, we observe [C II] 157 μm, [O I] 63 μm, and [O I] 145 μm line emission with Photodetector Array Camera and Spectrometer, CO J = 4-3 through J = 13-12, [C I] 370 μm, and [C I] 609 μm with SPIRE, and low-J CO transitions with ground-based telescopes. The CO ladders of the sample are separated into three classes based on their excitation level. In 13 of the galaxies, the [O I] 63 μm emission line is self absorbed. Comparing the CO excitation to the InfraRed Astronomical Satellite 60/100 μm ratio and to far infrared luminosity, we find that the CO excitation is more correlated to the far infrared colors. We present cooling budgets for the galaxies and find fine-structure line flux deficits in the [C II], [Si II], [O I], and [C I] lines in the objects with the highest far IR fluxes, but do not observe this for CO 4 ≤ J {sub upp} ≤ 13. In order to study the heating of the molecular gas, we present a combination of three diagnostic quantities to help determine the dominant heating source. Using the CO excitation, the CO J = 1-0 linewidth, and the active galactic nucleus (AGN) contribution, we conclude that galaxies with large CO linewidths always have high-excitation CO ladders, and often low AGN contributions, suggesting that mechanical heating is important.

  19. ALMACAL - III. A combined ALMA and MUSE survey for neutral, molecular, and ionized gas in an H I-absorption-selected system

    Science.gov (United States)

    Klitsch, A.; Péroux, C.; Zwaan, M. A.; Smail, I.; Oteo, I.; Biggs, A. D.; Popping, G.; Swinbank, A. M.

    2018-03-01

    Studying the flow of baryons into and out of galaxies is an important part of understanding the evolution of galaxies over time. We present a detailed case study of the environment around an intervening Ly α absorption line system at zabs = 0.633, seen towards the quasar J0423-0130 (zQSO = 0.915). We detect with ALMA the 12CO(2-1), 12CO(3-2), and 1.2 mm continuum emission from a galaxy at the redshift of the Ly α absorber at a projected distance of 135 kpc. From the ALMA detections, we infer interstellar medium conditions similar to those in low-redshift luminous infrared galaxies. Director's Discretionary Time (DDT) Multi-Unit Spectroscopic Explorer (MUSE) integral field unit observations reveal the optical counterpart of the 12CO emission line source and three additional emission line galaxies at the absorber redshift, which together form a galaxy group. The 12CO emission line detections originate from the most massive galaxy in this group. While we cannot exclude that we miss a fainter host, we reach a dust-uncorrected star formation rate (SFR) limit of >0.3 M⊙yr-1 within 100 kpc from the sightline to the background quasar. We measure the dust-corrected SFR (ranging from 3 to 50 M⊙ yr-1), the morpho-kinematics and the metallicities of the four group galaxies to understand the relation between the group and the neutral gas probed in absorption. We find that the Ly α absorber traces either an outflow from the most massive galaxy or intragroup gas. This case study illustrates the power of combining ALMA and MUSE to obtain a census of the cool baryons in a bounded structure at intermediate redshift.

  20. FastChem: A computer program for efficient complex chemical equilibrium calculations in the neutral/ionized gas phase with applications to stellar and planetary atmospheres

    Science.gov (United States)

    Stock, Joachim W.; Kitzmann, Daniel; Patzer, A. Beate C.; Sedlmayr, Erwin

    2018-06-01

    For the calculation of complex neutral/ionized gas phase chemical equilibria, we present a semi-analytical versatile and efficient computer program, called FastChem. The applied method is based on the solution of a system of coupled nonlinear (and linear) algebraic equations, namely the law of mass action and the element conservation equations including charge balance, in many variables. Specifically, the system of equations is decomposed into a set of coupled nonlinear equations in one variable each, which are solved analytically whenever feasible to reduce computation time. Notably, the electron density is determined by using the method of Nelder and Mead at low temperatures. The program is written in object-oriented C++ which makes it easy to couple the code with other programs, although a stand-alone version is provided. FastChem can be used in parallel or sequentially and is available under the GNU General Public License version 3 at https://github.com/exoclime/FastChem together with several sample applications. The code has been successfully validated against previous studies and its convergence behavior has been tested even for extreme physical parameter ranges down to 100 K and up to 1000 bar. FastChem converges stable and robust in even most demanding chemical situations, which posed sometimes extreme challenges for previous algorithms.

  1. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    Science.gov (United States)

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  2. Use of a generalized Stokes number to determine the aerodynamic capture efficiency of non-Stokesian particles from a compressible gas flow

    Science.gov (United States)

    Israel, R.; Rosner, D. E.

    1983-01-01

    The aerodynamic capture efficiency of small but nondiffusing particles suspended in a high-speed stream flowing past a target is known to be influenced by parameters governing small particle inertia, departures from the Stokes drag law, and carrier fluid compressibility. By defining an effective Stokes number in terms of the actual (prevailing) particle stopping distance, local fluid viscosity, and inviscid fluid velocity gradient at the target nose, it is shown that these effects are well correlated in terms of a 'standard' (cylindrical collector, Stokes drag, incompressible flow, sq rt Re much greater than 1) capture efficiency curve. Thus, a correlation follows that simplifies aerosol capture calculations in the parameter range already included in previous numerical solutions, allows rational engineering predictions of deposition in situations not previously specifically calculated, and should facilitate the presentation of performance data for gas cleaning equipment and aerosol instruments.

  3. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    Science.gov (United States)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  4. Mechanical stability of a salt cavern submitted to rapid pressure variations: Application to the underground storage of natural gas, compressed air and hydrogen

    International Nuclear Information System (INIS)

    Djizanne-Djakeun, Hippolyte

    2014-01-01

    Salt caverns used for the underground storage of large volumes of natural gas are in high demand given the ever-increasing energy needs. The storage of renewable energy is also envisaged in these salt caverns for example, storage of compressed air and hydrogen mass storage. In both cases, salt caverns are more solicited than before because they are subject to rapid injection and withdrawal rates. These new operating modes raise new mechanical problems, illustrated in particular by sloughing, and falling of overhanging blocks at cavern wall. Indeed, to the purely mechanical stress related to changes in gas pressure variations, repeated dozens of degrees Celsius of temperature variation are superimposed; causes in particular during withdrawal, additional tensile stresses whom may lead to fractures at cavern wall; whose evolution could be dangerous. The mechanical behavior of rock salt is known: it is elasto-viscoplastic, nonlinear and highly thermo sensitive. The existing rock salt constitutive laws and failures and damages criteria have been used to analyze the behavior of caverns under the effects of these new loading. The study deals with the thermo mechanics of rocks and helps to analyze the effects of these new operations modes on the structural stability of salt caverns. The approach was to firstly design and validate a thermodynamic model of the behavior of gas in the cavern. This model was used to analyze blowout in gas salt cavern. Then, with the thermo mechanical coupling, to analyze the effects of rapid withdrawal, rapid injection and daily cycles on the structural stability of caverns. At the experimental level, we sought the optimal conditions to the occurrence and the development of cracks on a pastille and a block of rock salt. The creep behavior of rock salt specimens in triaxial extension also was analyzed. (author)

  5. EXPERIMENTAL INVESTIGATION OF EMISSION AND PERFORMANCE PARAMETERS OF PONGAMIA BIODIESEL AND HHO GAS ADDITION IN A COMPRESSION IGNITION ENGINE

    OpenAIRE

    Allen Jeffrey.J1, Divya Meena.S2, Balaji.P3, Bharathi.K4, Arvind Raj.R5

    2018-01-01

    Nowadays the environmental pollution has been increased incredibly by using conventional fuels. To control this increase in pollution alternate fuels has to be used as supplement for conventional fuels. While using conventional fuels such as petrol and diesel in IC engine there is a chance of increase in emissions. Alternate fuels can control emissions. This work is based on the investigation of emission parameters of pongamia biodiesel and HHO gas addition in a CI engine. Pongamia biodiesel ...

  6. Neutral currents

    International Nuclear Information System (INIS)

    Paschos, E.A.

    1977-01-01

    It is stated that over the past few years considerable progress has been made in the field of weak interactions. The existence of neutral currents involving leptons and hadrons has been established and some of the questions concerning their detailed structure have been answered. This imposes constraints on the gauge theories and has eliminated large classes of models. New questions have also been raised, one of which concerns the conservation laws obeyed by neutral currents. The wide range of investigations is impressive and is expected to continue with new results from particle, nuclear, and atomic physics. Headings include - various aspects of a gauge theory (choice of group, the symmetry breaking scheme, representation assignments for fermion fields); space-time structure; isospin structure; leptonic neutral currents; and atomic experiments. (U.K.)

  7. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  8. Analyzing the Performance of a Dual Loop Organic Rankine Cycle System for Waste Heat Recovery of a Heavy-Duty Compressed Natural Gas Engine

    Directory of Open Access Journals (Sweden)

    Baofeng Yao

    2014-11-01

    Full Text Available A dual loop organic Rankine cycle (DORC system is designed to recover waste heat from a heavy-duty compressed natural gas engine (CNGE, and the performance of the DORC–CNGE combined system is simulated and discussed. The DORC system includes high-temperature (HT and low-temperature (LT cycles. The HT cycle recovers energy from the exhaust gas emitted by the engine, whereas the LT cycle recovers energy from intake air, engine coolant, and the HT cycle working fluid in the preheater. The mathematical model of the system is established based on the first and second laws of thermodynamics. The characteristics of waste heat energy from the CNGE are calculated according to engine test data under various operating conditions. Moreover, the performance of the DORC–CNGE combined system is simulated and analyzed using R245fa as the working fluid. Results show that the maximum net power output and the maximum thermal efficiency of the DORC system are 29.37 kW and 10.81%, respectively, under the rated power output condition of the engine. Compared with the original CNG engine, the maximum power output increase ratio and the maximum brake specific fuel consumption improvement ratio are 33.73% and 25%, respectively, in the DORC–CNGE combined system.

  9. Design of a compressed air modulator to be used in comprehensive multidimensional gas chromatography and its application in the determination of pesticide residues in grapes.

    Science.gov (United States)

    Pizzutti, Ionara R; Vreuls, René J J; de Kok, André; Roehrs, Rafael; Martel, Samile; Friggi, Caroline A; Zanella, Renato

    2009-04-10

    In this study, a new modulator that is simple, robust and presents low operation costs, was developed. This modulator uses compressed air to cool two small portions in the first centimeters of the second chromatographic column of a comprehensive multidimensional gas chromatography (GCxGC) system. The results show a variation in the peak area less than 3 and 5% to alkanes and pesticides, respectively. The standard deviations for the retention times in the first and second dimension are around 0.05 min and 0.05s for all the compounds. The system was optimized with n-alkanes. The GCxGC system proposed was applied in the determination of pyrethroid pesticides (bifenthrin, cypermethrin, deltamethrin, fenvalerate, esfenvalerate, cis- and trans-permethrin) in grape samples. Samples were extracted by the mini-Luke modified method and pesticides were quantified by comprehensive multidimensional gas chromatography with micro electron-capture detection (microECD). The values of method limit of quantification (LOQ) were 0.01-0.02 mg kg(-1) for all studied pyrethroid and the values of recovery were between 94.3 and 115.2%, with good precision (RSDcompressed air has the potential for application in the analysis of a wider range of pesticide residues in other commodities since it provides low values of LOQ with acceptable accuracy and precision.

  10. Performance and emission characteristics of a turbocharged spark-ignition hydrogen-enriched compressed natural gas engine under wide open throttle operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Deng, Jiao; Chen, Renzhe; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-11-15

    This paper investigates the effect of various hydrogen ratios in HCNG (hydrogen-enriched compressed natural gas) fuels on performance and emission characteristics at wide open throttle operating conditions using a turbocharged spark-ignition natural gas engine. The experimental data was taken at hydrogen fractions of 0%, 30% and 55% by volume and was conducted under different excess air ratio ({lambda}) at MBT operating conditions. It is found that under various {lambda}, the addition of hydrogen can significantly reduce CO, CH{sub 4} emissions and the NO{sub x} emission remain at an acceptable level when ignition timing is optimized. Using the same excess air ratio, as more hydrogen is added the power, exhaust temperatures and max cylinder pressure decrease slowly until the mixture's lower heating value remains unchanged with the hydrogen enrichment, then they rise gradually. In addition, the early flame development period and the flame propagation duration are both shorter, and the indicated thermal efficiency and maximum heat release rate both increase with more hydrogen addition. (author)

  11. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.

    Science.gov (United States)

    Huo, Hong; Zhang, Qiang; Liu, Fei; He, Kebin

    2013-02-05

    Electric vehicles (EVs) and compressed natural gas vehicles (CNGVs), which are mainly coal-based and natural gas-based, are the two most widely proposed replacements of gasoline internal combustion engine vehicles (ICEVs) in P.R. China. We examine fuel-cycle emissions of greenhouse gases (GHGs), PM(2.5), PM(10), NO(x), and SO(2) of CNGVs and EVs relative to gasoline ICEVs and hybrids, by Chinese province. CNGVs can currently reduce emissions of GHGs, PM(10), PM(2,5), NO(x), and SO(2) by approximately 6%, 7%, 20%, 18% and 22%, respectively. EVs can reduce GHG emissions by 20%, but increase PM(10), PM(2.5), NO(x), and SO(2) emissions by approximately 360%, 250%, 120%, and 370%, respectively. Nevertheless, results vary significantly by province. Regarding their contribution to national emissions, PM increases from EVs are unimportant, because light-duty passenger vehicles contribute very little to overall PM emissions nationwide (≤0.05%); however, their NO(x) and SO(2) increases are important. Since China is striving to reduce power plant emissions, EVs are expected to have equivalent or even lower SO(2) and NO(x) emissions relative to ICEVs in the future (2030). Before then, however, EVs should be developed according to the cleanness of regional power mixes. This would lower their SO(2) and NO(x) emissions and earn more GHG reduction credits.

  12. Neutral currents

    International Nuclear Information System (INIS)

    Aubert, B.

    1994-11-01

    The evidence for the existence of weak neutral current has been a very controverted topics in the early 1970's, as well as the muon did in the 1930's. The history is very rich considering the evolution of the experimental techniques in high energy particle physics. The history of the discovery and the study of weak neutral current is reviewed. Later the quest of the intermediate vector boson continues with the decision of the community to build a large proton antiproton collider. (K.A.). 14 refs., 1 fig

  13. Microstructure-property relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: effect of compression and anisotropy of dry GDL

    International Nuclear Information System (INIS)

    Holzer, L.; Pecho, O.; Schumacher, J.; Marmet, Ph.; Stenzel, O.; Büchi, F.N.; Lamibrac, A.; Münch, B.

    2017-01-01

    Highlights: • Methods are developed to predict transport properties of dry GDL in PE Fuel Cells. • Diffusivity and Permeability are reliably predicted based on 3D characteristics. • Predictions based on 3D microstructure match well with numerical simulations. • Anisotropy is due to in- and through-plane variation of tortuosity and hydraulic rad. • The methods can be used to predict relative permeability and diffusivity in wet GDL. - Abstract: New quantitative relationships are established between effective properties (gas diffusivity, permeability and electrical conductivity) for a dry GDL (25 BA) from SGL Carbon with the corresponding microstructure characteristics from 3D analysis. These microstructure characteristics include phase volume fractions, geodesic tortuosity, constrictivity and hydraulic radius. The latter two parameters include information from two different size distribution curves for bulges (continuous PSD) and for bottlenecks (MIP-PSD). X-ray tomographic microscopy is performed for GDL at different compression levels and the micro-macro-relationships are then established for the in-plane and through-plane directions. The predicted properties based on these relationships are compared with numerical transport simulations, which give very similar results and which can be summarized as follows: Gas diffusivity is higher in the in-plane than in the through-plane direction. Its variation with compression is mainly related to changes of porosity and geodesic tortuosity. Permeability is dominated by variations in hydraulic radius. Through-plane permeability is slightly higher than in-plane. Anisotropy of electrical conductivity is controlled by tortuosity, which is higher for the through-plane direction. A table with new quantitative relationships is provided, which are considered to be more accurate and precise than older descriptions (e.g. Carman-Kozeny, Bruggeman), because they are based on detailed topological information from 3D analysis

  14. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  15. Field-tested technology for gas compression: using high-speed induction motors to replace conventional solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois [Institut National Polytechnique de Lorraine (INPL), Nancy (France). Converteam Rotating Machines Division

    2009-07-01

    Industry leaders are all concerned about rationalization of electric power use, increase of efficiency and flexibility, environmental impact, installations size and maintenance efforts diminution. The high-speed induction motors are a good solution when addressing these parameters. How this technology works and how using it can help pipelines operators meet growing operational and environmental challenges is the main subject of this paper, that also explain how it can be used to replace conventional solutions. As a conclusion the future opportunities of electric high-speed drive systems application in production, transport and storage for natural gas industry are going to be discussed. (author)

  16. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas; La pile de Saclay experience acquise en deux ans sur le transfert de chaleur par gaz comprime

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  17. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  18. Developing a strategy to speed up large-scale adoption of compressed-natural-gas-driven (CNG) cars. Volume 1

    International Nuclear Information System (INIS)

    Egmond, Cees; Houtman, Simone; Jonkers, R.; Gelissen, R.

    2007-01-01

    Large-scale adoption of environmentally friendly, clean, silent and CO 2 -neutral technological innovations into the market is necessary to reduce the human causes of the greenhouse effect and global warming. In theory, an innovation diffuses smoothly into the market following an S-shaped curve when the number of adopters is plotted against time. In practice, diffusion of innovation does not move smoothly from left to right on the S-shaped curve. Fundamental differences in the adoption characteristics between the visionary early adopters and the pragmatic mainstream cause diffusion to stop before reaching the mainstream market segment. This 'chasm' in the diffusion process is not the result of bad technology or bad products, but rather the result of 'incomplete' products that do not meet the needs of the pragmatic mainstream. In this paper, we report on a case study, conducted in the Netherlands, aimed at speeding up the adoption of the CNG car. This study contains an analysis of the market segments within a target group of local fleet owners. We used survey data covering about 200 local fleet owners. Through structured interviews and a questionnaire, we identified a niche group of the mainstream that would be most likely to adopt the CNG car. This niche is the group to target in a marketing strategy aimed at crossing the chasm. A focus-group discussion held with members of the niche identified the conditions under which the niche actors would consider buying CNG cars. Based on the results of this focus group and the niche market analysis, we concluded that the marketing of the CNG car is still in its beginning phase and has to focus on the early market. Following our recommendations, car dealers and the municipality of Leeuwarden are now developing a plan for marketing the CNG car. The marketing will focus on the early market as the first step into the mainstream

  19. Developing a strategy to speed up large-scale adoption of compressed-natural-gas-driven (CNG) cars

    Energy Technology Data Exchange (ETDEWEB)

    Egmond, Cees; Houtman, Simone; Jonkers, R.; Gelissen, R. [SenterNovem (Netherlands)

    2007-07-01

    Large-scale adoption of environmentally friendly, clean, silent and CO{sub 2}-neutral technological innovations into the market is necessary to reduce the human causes of the greenhouse effect and global warming. In theory, an innovation diffuses smoothly into the market following an S-shaped curve when the number of adopters is plotted against time. In practice, diffusion of innovation does not move smoothly from left to right on the S-shaped curve. Fundamental differences in the adoption characteristics between the visionary early adopters and the pragmatic mainstream cause diffusion to stop before reaching the mainstream market segment. This 'chasm' in the diffusion process is not the result of bad technology or bad products, but rather the result of 'incomplete' products that do not meet the needs of the pragmatic mainstream. In this paper, we report on a case study, conducted in the Netherlands, aimed at speeding up the adoption of the CNG car. This study contains an analysis of the market segments within a target group of local fleet owners. We used survey data covering about 200 local fleet owners. Through structured interviews and a questionnaire, we identified a niche group of the mainstream that would be most likely to adopt the CNG car. This niche is the group to target in a marketing strategy aimed at crossing the chasm. A focus-group discussion held with members of the niche identified the conditions under which the niche actors would consider buying CNG cars. Based on the results of this focus group and the niche market analysis, we concluded that the marketing of the CNG car is still in its beginning phase and has to focus on the early market. Following our recommendations, car dealers and the municipality of Leeuwarden are now developing a plan for marketing the CNG car. The marketing will focus on the early market as the first step into the mainstream.

  20. Developing a strategy to speed up large-scale adoption of compressed-natural-gas-driven (CNG) cars. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Egmond, Cees; Houtman, Simone; Jonkers, R.; Gelissen, R. [SenterNovem (Netherlands)

    2007-07-01

    Large-scale adoption of environmentally friendly, clean, silent and CO{sub 2}-neutral technological innovations into the market is necessary to reduce the human causes of the greenhouse effect and global warming. In theory, an innovation diffuses smoothly into the market following an S-shaped curve when the number of adopters is plotted against time. In practice, diffusion of innovation does not move smoothly from left to right on the S-shaped curve. Fundamental differences in the adoption characteristics between the visionary early adopters and the pragmatic mainstream cause diffusion to stop before reaching the mainstream market segment. This 'chasm' in the diffusion process is not the result of bad technology or bad products, but rather the result of 'incomplete' products that do not meet the needs of the pragmatic mainstream. In this paper, we report on a case study, conducted in the Netherlands, aimed at speeding up the adoption of the CNG car. This study contains an analysis of the market segments within a target group of local fleet owners. We used survey data covering about 200 local fleet owners. Through structured interviews and a questionnaire, we identified a niche group of the mainstream that would be most likely to adopt the CNG car. This niche is the group to target in a marketing strategy aimed at crossing the chasm. A focus-group discussion held with members of the niche identified the conditions under which the niche actors would consider buying CNG cars. Based on the results of this focus group and the niche market analysis, we concluded that the marketing of the CNG car is still in its beginning phase and has to focus on the early market. Following our recommendations, car dealers and the municipality of Leeuwarden are now developing a plan for marketing the CNG car. The marketing will focus on the early market as the first step into the mainstream.

  1. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  2. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  3. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  4. Method and aparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide

    International Nuclear Information System (INIS)

    Abdelmalek, F.T.

    1992-01-01

    This patent describes a method for recovering sulfur dioxide, carbon dioxide, and cleaning flue gases emitted from power plants. It comprises: electronically treating the flue gases to neutralize its electrostatic charges and to enhance the coagulation of its molecules and particles; exchanging sensible and latent heat of the neutralized flue gases to lower its temperature down to a temperature approaching the ambient temperature while recovering its separating the flue gas in a first stage; cooling the separated enriched carbon dioxide gas fraction, after each separation stage, while removing its vapor condensate, then compressing the enriched carbon dioxide gas fraction and simultaneously cooling the compressed gas to liquefy the sulfur dioxide gas then; allowing the sulfur dioxide gas to condense, and continuously removing the liquefied sulfur dioxide; compressing he desulfurized enriched carbon dioxide fraction to further increase its pressure, and simultaneously cooling he compressed gas to liquefy the carbon dioxide gas, then; allowing the carbon dioxide gas to condense and continuously removing the liquefied carbon dioxide; allowing the light components of the flue gas to be released in a cooling tower discharge plume

  5. The thermal pressure distribution of a simulated cold neutral medium

    Energy Technology Data Exchange (ETDEWEB)

    Gazol, Adriana, E-mail: a.gazol@crya.unam.mx [Centro de Radioastronomía y Astrofísica, UNAM, A. P. 3-72, c.p. 58089 Morelia, Michoacán (Mexico)

    2014-07-01

    We numerically study the thermal pressure distribution in a gas with thermal properties similar to those of the cold neutral interstellar gas by analyzing three-dimensional hydrodynamic models in boxes with sides of 100 pc with turbulent compressible forcing at 50 pc and different Mach numbers. We find that at high pressures and for large Mach numbers, both the volume-weighted and the density-weighted distributions can be appropriately described by a log-normal distribution, whereas for small Mach numbers they are better described by a power law. Thermal pressure distributions resulting from similar simulations but with self-gravity differ only for low Mach numbers; in this case, they develop a high pressure tail.

  6. Investigating the reactivity controlled compression ignition (RCCI) combustion strategy in a natural gas/diesel fueled engine with a pre-chamber

    International Nuclear Information System (INIS)

    Salahi, Mohammad Mahdi; Esfahanian, Vahid; Gharehghani, Ayatallah; Mirsalim, Mostafa

    2017-01-01

    Highlights: • A novel combustion strategy, RCCI with a pre-chamber, is proposed and investigated. • The proposed strategy extends the RCCI operating range to use less intake air temperatures. • The new concept extends the RCCI operating range to use lower portions of the active fuel. • The proposed strategy is sensitive to engine load and is more efficient for high loads. - Abstract: Reactivity controlled compression ignition (RCCI) concept has been proven to be a promising combustion mode for the next generations of internal combustion engines. This strategy is still subject of extensive studies to overcome its operational limitations. In the present work, the effect of using a pre-chamber to extend some operating ranges in a RCCI engine is investigated using coupled multidimensional computational fluid dynamics (CFD) with detailed chemical kinetic mechanisms. To accomplish this, the combustion and flow field in a single cylinder engine with a pre-chamber, working in RCCI mode and fueled with natural gas/diesel are numerically modeled. Experimental data is used to validate the simulation results and then, combustion characteristics and engine emissions in some various operating regions, in terms of initial temperature, fuel equivalence ratio and portions of the two fuels are discussed. The results reveal that the proposed strategy provides the ability to extend the engine operating ranges to use lower intake temperatures, even to 50 K lower for some cases, and also using a larger portion of natural gas instead of diesel fuel. On the other hand, the new strategy could result in incomplete combustion and formation of related emissions in low loads, but for higher engine loads it shows better combustion characteristics.

  7. Effect of Hydrogen and Hydrogen Enriched Compressed Natural Gas Induction on the Performance of Rubber Seed Oil Methy Ester Fuelled Common Rail Direct Injection (CRDi Dual Fuel Engines

    Directory of Open Access Journals (Sweden)

    Mallikarjun Bhovi

    2017-06-01

    Full Text Available Renewable fuels are in biodegradable nature and they tender good energy security and foreign exchange savings. In addition they address environmental concerns and socio-economic issues. The present work presents the experimental investigations carried out on the utilization of such renewable fuel combinations for diesel engine applications. For this a single-cylinder four-stroke water cooled direct injection (DI compression ignition (CI engine provided with CMFIS (Conventional Mechanical Fuel Injection System was rightfully converted to operate with CRDi injection systems enabling high pressure injection of Rubber seed oil methyl ester (RuOME in the dual fuel mode with induction of varied gas flow rates of hydrogen and hydrogen enriched CNG (HCNG gas combinations. Experimental investigations showed a considerable improvement in dual fuel engine performance with acceptable brake thermal efficiency and reduced emissions of smoke, hydrocarbon (HC, carbon monoxide (CO and slightly increased nitric oxide (NOx emission levels for increased hydrogen and HCNG flow rates. Further CRDi facilitated dual fuel engine showed improved engine performance compared to CMFIS as the former enabled high pressure (900 bar injection of the RuOME and closer to TDC (Top Dead Centre as well. Combustion parameters such as ignition delay, combustion duration, pressure-crank angle and heat release rates were analyzed and compared with baseline data generated. Combustion analysis showed that the rapid rate of burning of hydrogen and HCNG along with air mixtures increased due to presence of hydrogen in total and in partial combination with CNG which further resulted into higher cylinder pressures and energy release rates. However, sustained research that can provide feasible engine technology operating on such fuels in dual fuel operation can pave the way for continued fossil fuel usage.

  8. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  9. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  10. Radiological assessment of natural radionuclides in soil within and around crude oil flow and gas compression stations in the Niger Delta, Nigeria

    International Nuclear Information System (INIS)

    Ademola, J.A.; Atare, E.E.

    2010-01-01

    Natural radionuclide concentrations in soil samples collected within and around crude oil flow and gas compression stations in the Niger Delta, Nigeria, were determined using gamma-ray spectroscopy. The mean activity concentrations of 40 K, 238 U and 232 Th varied from 30.1 ± 3.0 to 59.0 ± 17.1, B.D.L. to 8.8 ± 2.3 and 7.9 ± 3.7 to 10.9 ± 1.9 Bq.kg-1, respectively. The 40 K, 238 U and 232 Th contents of the soil samples are very low compared with the world average for natural background area. The absorbed dose rate and effective dose ranged from 6.9 to 11.1 n Gy.h-1 and 8.5 to 13.6 μSv.y-1, respectively. The annual gonadal dose equivalent rate ranged from 48.9 to 77.5 μSv.y-1, which is lower than the world average of 0.30 mSv.y-1. The radium equivalent activity and the external hazard index of the soil samples were below the recommended limits of 370 Bq.kg-1 and unity, respectively. The results obtained reveal that there is no significant radiation hazard due to natural radionuclides of the soil samples in the studied areas. (authors)

  11. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    Science.gov (United States)

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-04-20

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  13. High resolution studies of the origins of polyatomic ions in inductively coupled plasma-mass spectrometry, Part I. Identification methods and effects of neutral gas density assumptions, extraction voltage, and cone material

    International Nuclear Information System (INIS)

    Ferguson, Jill Wisnewski; Houk, R.S.

    2006-01-01

    Common polyatomic ions (ArO + , NO + , H 2 O + , H 3 O + , Ar 2 + , ArN + , OH + , ArH + , O 2 + ) in inductively coupled plasma-mass spectrometry (ICP-MS) are identified using high mass resolution and studied using kinetic gas temperatures (T gas ) determined from a dissociation reaction approach. Methods for making accurate mass measurements, confirming ion identifications, and correcting for mass bias are discussed. The effects of sampler and skimmer cone composition and extraction voltage on polyatomic ion formation are also explored. Neutral species densities at several locations in the extraction interface are estimated and the corresponding effects of the T gas value are calculated. The results provide information about the origins of background ions and indicate possible locations for their formation or removal

  14. Neutral particle beam alternative concept for ITER

    International Nuclear Information System (INIS)

    Sedgley, D.; Brook, J.; Luzzi, T.; Deutsch, L.

    1989-01-01

    An analysis of an ITER neutral particle beam system is presented. The analysis covers the neutralizer, ion dumps, pumping, and geometric aspects. The US beam concept for ITER consists of three or four clusters of beamlines delivering approximately 80 MW total of 1.6-MeV deuterium to three or four reactor ports. Each cluster has three self-contained beamlines featuring plasma neutralizers and electrostatic ion dumps. In this study, each of the beamlines has two source assemblies with separate gas neutralizers and magnetic ion dumps. Deuterium is injected into the gas neutralizers by a separate system. Saddle-shaped copper coils augment the tokamak poloidal field to turn the charged particles into the ion dumps. The gas flow from the source, neutralizer, and ion dump is pumped by regenerable cryopanels. The effect of the port between the TF coils and the beam injection angle on the plasma footprint was studied

  15. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators

    Science.gov (United States)

    Thille, Arnaud W.; Lyazidi, Aissam; Richard, Jean-Christophe M.; Galia, Fabrice; Brochard, Laurent

    2009-01-01

    Objective To compare 13 commercially available, new-generation, intensive-care-unit (ICU) ventilators regarding trigger function, pressurization capacity during pressure-support ventilation (PSV), accuracy of pressure measurements and expiratory resistance. Design and Setting Bench study at a research laboratory in a university hospital. Material Four turbine-based ventilators and nine conventional servo-valve compressed-gas ventilators were tested using a two-compartment lung model. Results Three levels of effort were simulated. Each ventilator was evaluated at four PSV levels (5, 10, 15, and 20 cm H2O), with and without positive end-expiratory pressure (5 cm H2O, Trigger function was assessed as the time from effort onset to detectable pressurization. Pressurization capacity was evaluated using the airway pressure-time product computed as the net area under the pressure-time curve over the first 0.3 s after inspiratory effort onset. Expiratory resistance was evaluated by measuring trapped volume in controlled ventilation. Significant differences were found across the ventilators, with a range of triggering-delay from 42 ms to 88 ms for all conditions averaged (Pventilators at PSV5 and three at PSV10, suggesting an inability to unload patient’s effort. On average, turbine-based ventilators performed better than conventional ventilators, which showed no improvement compared to a 2000 bench comparison. Conclusion Technical performances of trigger function, pressurization capacity and expiratory resistance vary considerably across new-generation ICU ventilators. ICU ventilators seem to have reached a technical ceiling in recent years, and some ventilators still perform inadequately. PMID:19352622

  16. Plasma neutralizers for H- or D- beams

    International Nuclear Information System (INIS)

    Berkner, K.H.; Pyle, R.V.; Savas, S.E.; Stalder, K.R.

    1980-10-01

    Plasma neutralizers can produce higher conversion efficiencies than are obtainable with gas neutralizers for the production of high-energy neutral beams from negative hydrogen ions. Little attention has been paid to experimental neutralizer studies because of the more critical problems connected with the development of negative-ion sources. With the prospect of accelerating ampere dc beams from extrapolatable ion sources some time next year, we are re-examining plasma neutralizers. Some basic considerations, two introductory experiments, and a next-step experiment are described

  17. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  18. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less

  19. International Thermonuclear Experimental Reactor (ITER) neutral beam design

    International Nuclear Information System (INIS)

    Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W.

    1990-10-01

    This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost

  20. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  1. Emissions of toxic pollutants from compressed natural gas and low sulfur diesel-fueled heavy-duty transit buses tested over multiple driving cycles.

    Science.gov (United States)

    Kado, Norman Y; Okamoto, Robert A; Kuzmicky, Paul A; Kobayashi, Reiko; Ayala, Alberto; Gebel, Michael E; Rieger, Paul L; Maddox, Christine; Zafonte, Leo

    2005-10-01

    The number of heavy-duty vehicles using alternative fuels such as compressed natural gas (CNG) and new low-sulfur diesel fuel formulations and equipped with after-treatment devices are projected to increase. However, few peer-reviewed studies have characterized the emissions of particulate matter (PM) and other toxic compounds from these vehicles. In this study, chemical and biological analyses were used to characterize the identifiable toxic air pollutants emitted from both CNG and low-sulfur-diesel-fueled heavy-duty transit buses tested on a chassis dynamometer over three transient driving cycles and a steady-state cruise condition. The CNG bus had no after-treatment, and the diesel bus was tested first equipped with an oxidation catalyst (OC) and then with a catalyzed diesel particulate filter (DPF). Emissions were analyzed for PM, volatile organic compounds (VOCs; determined on-site), polycyclic aromatic hydrocarbons (PAHs), and mutagenic activity. The 2000 model year CNG-fueled vehicle had the highest emissions of 1,3-butadiene, benzene, and carbonyls (e.g., formaldehyde) of the three vehicle configurations tested in this study. The 1998 model year diesel bus equipped with an OC and fueled with low-sulfur diesel had the highest emission rates of PM and PAHs. The highest specific mutagenic activities (revertants/microg PM, or potency) and the highest mutagen emission rates (revertants/mi) were from the CNG bus in strain TA98 tested over the New York Bus (NYB) driving cycle. The 1998 model year diesel bus with DPF had the lowest VOCs, PAH, and mutagenic activity emission. In general, the NYB driving cycle had the highest emission rates (g/mi), and the Urban Dynamometer Driving Schedule (UDDS) had the lowest emission rates for all toxics tested over the three transient test cycles investigated. Also, transient emissions were, in general, higher than steady-state emissions. The emissions of toxic compounds from an in-use CNG transit bus (without an oxidation

  2. Uncertainty in particle number modal analysis during transient operation of compressed natural gas, diesel, and trap-equipped diesel transit buses.

    Science.gov (United States)

    Holmén, Britt A; Qu, Yingge

    2004-04-15

    The relationships between transient vehicle operation and ultrafine particle emissions are not well-known, especially for low-emission alternative bus technologies such as compressed natural gas (CNG) and diesel buses equipped with particulate filters/traps (TRAP). In this study, real-time particle number concentrations measured on a nominal 5 s average basis using an electrical low pressure impactor (ELPI) for these two bus technologies are compared to that of a baseline catalyst-equipped diesel bus operated on ultralow sulfur fuel (BASE) using dynamometer testing. Particle emissions were consistently 2 orders of magnitude lower for the CNG and TRAP compared to BASE on all driving cycles. Time-resolved total particle numbers were examined in terms of sampling factors identified as affecting the ability of ELPI to quantify the particulate matter number emissions for low-emitting vehicles such as CNG and TRAP as a function of vehicle driving mode. Key factors were instrument sensitivity and dilution ratio, alignment of particle and vehicle operating data, sampling train background particles, and cycle-to-cycle variability due to vehicle, engine, after-treatment, or driver behavior. In-cycle variability on the central business district (CBD) cycle was highest for the TRAP configuration, but this could not be attributed to the ELPI sensitivity issues observed for TRAP-IDLE measurements. Elevated TRAP emissions coincided with low exhaust temperature, suggesting on-road real-world particulate filter performance can be evaluated by monitoring exhaust temperature. Nonunique particle emission maps indicate that measures other than vehicle speed and acceleration are necessary to model disaggregated real-time particle emissions. Further testing on a wide variety of test cycles is needed to evaluate the relative importance of the time history of vehicle operation and the hysteresis of the sampling train/dilution tunnel on ultrafine particle emissions. Future studies should

  3. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  4. Shock waves in gas and plasma

    International Nuclear Information System (INIS)

    Niu, K.

    1996-01-01

    A shock wave is a discontinuous surface that connects supersonic flow with subsonic flow. After a shock wave, flow velocity is reduced, and pressure and temperature increase; entropy especially increases across a shock wave. Therefore, flow is in nonequilibrium, and irreversible processes occur inside the shock layer. The thickness of a shock wave in neutral gas is of the order of the mean free path of the fluid particle. A shock wave also appears in magnetized plasma. Provided that when the plasma flow is parallel to the magnetic field, a shock wave appears if the governing equation for velocity potential is in hyperbolic type in relation with the Mach number and the Alfven number. When the flow is perpendicular to the magnetic field, the Maxwell stress, in addition to the pressure, plays a role in the shock wave in plasma. When the plasma temperature is so high, as the plasma becomes collision-free, another type of shock wave appears. In a collision-free shock wave, gyromotions of electrons around the magnetic field lines cause the shock formation instead of collisions in a collision-dominant plasma or neutral gas. Regardless of a collision-dominant or collision-free shock wave, the fluid that passes through the shock wave is heated in addition to being compressed. In inertial confinement fusion, the fuel must be compressed. Really, implosion motion performs fuel compression. A shock wave, appearing in the process of implosion, compresses the fuel. The shock wave, however, heats the fuel more intensively, and it makes it difficult to compress the fuel further because high temperatures invite high pressure. Adiabatic compression of the fuel is the desired result during the implosion, without the formation of a shock wave. (Author)

  5. Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: Effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load

    Science.gov (United States)

    Sadeghifar, Hamidreza; Djilali, Ned; Bahrami, Majid

    2015-01-01

    This paper reports on measurements of thermal conductivity of a graphite bipolar plate (BPP) as a function of temperature and its thermal contact resistance (TCR) with treated and untreated gas diffusion layers (GDLs). The thermal conductivity of the BPP decreases with temperature and its thermal contact resistance with GDLs, which has been overlooked in the literature, is found to be dominant over a relatively wide range of compression. The effects of PTFE loading, micro porous layer (MPL), compression, and BPP out-of-flatness are also investigated experimentally. It is found that high PTFE loadings, MPL and even small BPP out-of-flatness increase the BPP-GDL thermal contact resistance dramatically. The paper also presents the effect of cyclic load on the total resistance of a GDL-BPP assembly, which sheds light on the behavior of these materials under operating conditions in polymer electrolyte membrane fuel cells.

  6. Ion-neutral gas reactions in a collision/reaction cell in inductively coupled plasma mass spectrometry: Correlation of ion signal decrease to kinetic rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Patrick J. [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States); Department of Chemistry, The Ohio State University, 120 18th Avenue, Columbus, OH 43210 (United States); Olesik, John W., E-mail: olesik.2@osu.edu [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States)

    2015-03-01

    Reaction gas flow rate dependent Ar{sub 2}{sup +} and Ar{sup +} signals are correlated to fundamental kinetic rate coefficients. A simple calculation, assuming that gas exits the reaction cell due only to effusion, is described to estimate the gas pressure in the reaction cell. The value of the product of the kinetic rate constant and the ion residence time in the reaction cell can be determined from experimental measurement of the decrease in an ion signal as a function of reaction gas flow rate. New kinetic rate constants are determined for the reaction of CH{sub 3}F with Ar{sup +} and Ar{sub 2}{sup +}. - Highlights: • How to determine pressure and the product of the kinetic rate constant times the ion residence time in reaction cell • Relate measured ICP-DRC-MS signals versus gas flow rate to kinetic rate constants measured previously using SIFT-MS • Describe how to determine previously unmeasured kinetic rate constants using ICP-DRC-MS.

  7. Reactive formulations for a neutralization of toxic industrial chemicals

    Science.gov (United States)

    Tucker, Mark D [Albuqueruqe, NM; Betty, Rita G [Rio Rancho, NM

    2006-10-24

    Decontamination formulations for neutralization of toxic industrial chemicals, and methods of making and using same. The formulations are effective for neutralizing malathion, hydrogen cyanide, sodium cyanide, butyl isocyanate, carbon disulfide, phosgene gas, capsaicin in commercial pepper spray, chlorine gas, anhydrous ammonia gas; and may be effective at neutralizing hydrogen sulfide, sulfur dioxide, formaldehyde, ethylene oxide, methyl bromide, boron trichloride, fluorine, tetraethyl pyrophosphate, phosphorous trichloride, arsine, and tungsten hexafluoride.

  8. Using the Pairs of Lines Broadened by Collisions with Neutral and Charged Particles for Gas Temperature Determination of Argon Non-Thermal Plasmas at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Cristina Yubero

    2017-10-01

    Full Text Available The spectroscopic method for gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure proposed recently by Spectrochimica Acta Part B 129 14 (2017—based on collisional broadening measurements of selected pairs of argon atomic lines, has been applied to other pairs of argon atomic lines, and the discrepancies found in some of these results have been analyzed. For validation purposes, the values of the gas temperature obtained using the different pairs of lines have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using the Boltzmann-plot technique.

  9. Kinetic simulation of neutral/ionized gas and electrically charged dust in the coma of comet 67P/Churyumov-Gerasimenko

    International Nuclear Information System (INIS)

    Tenishev, Valeriy; Rubin, Martin; Combi, Michael R.

    2011-01-01

    The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near-nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus.The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet's dusty gas environment.In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov-Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

  10. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas.

    Science.gov (United States)

    Jalava, Pasi I; Aakko-Saksa, Päivi; Murtonen, Timo; Happo, Mikko S; Markkanen, Ari; Yli-Pirilä, Pasi; Hakulinen, Pasi; Hillamo, Risto; Mäki-Paakkanen, Jorma; Salonen, Raimo O; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2012-09-29

    One of the major areas for increasing the use of renewable energy is in traffic fuels e.g. bio-based fuels in diesel engines especially in commuter traffic. Exhaust emissions from fossil diesel fuelled engines are known to cause adverse effects on human health, but there is very limited information available on how the new renewable fuels may change the harmfulness of the emissions, especially particles (PM). We evaluated the PM emissions from a heavy-duty EURO IV diesel engine powered by three different fuels; the toxicological properties of the emitted PM were investigated. Conventional diesel fuel (EN590) and two biodiesels were used - rapeseed methyl ester (RME, EN14214) and hydrotreated vegetable oil (HVO) either as such or as 30% blends with EN590. EN590 and 100% HVO were also operated with or without an oxidative catalyst (DOC + POC). A bus powered by compressed natural gas (CNG) was included for comparison with the liquid fuels. However, the results from CNG powered bus cannot be directly compared to the other situations in this study. High volume PM samples were collected on PTFE filters from a constant volume dilution tunnel. The PM mass emission with HVO was smaller and with RME larger than that with EN590, but both biofuels produced lower PAH contents in emission PM. The DOC + POC catalyst greatly reduced the PM emission and PAH content in PM with both HVO and EN590. Dose-dependent TNFα and MIP-2 responses to all PM samples were mostly at the low or moderate level after 24-hour exposure in a mouse macrophage cell line RAW 264.7. Emission PM from situations with the smallest mass emissions (HVO + cat and CNG) displayed the strongest potency in MIP-2 production. The catalyst slightly decreased the PM-induced TNFα responses and somewhat increased the MIP-2 responses with HVO fuel. Emission PM with EN590 and with 30% HVO blended in EN590 induced the strongest genotoxic responses, which were significantly greater than those with EN590

  11. Considerations and calculations for the neutral-injection system in ZEPHYR

    International Nuclear Information System (INIS)

    Feist, J.H.; Herrmann, W.; Speth, E.

    1981-01-01

    The heating of the ZEPHYR plasma to ignition temperatures shall be accomplished by neutral injection and subsequent compression of the plasma. 25 MW of neutral power are required. A parametrical study of beam transmission was performed to find limitations on the type and arrangement of sources imposed by the small width of the porthole to the torus and the small height of the plasma target. A reference beam line has been designed and the power transmission calculated as a function of gas flow through the sources. The limitations mentioned make it necessary to design the beam lines as compact as possible to avoid intolerable losses in the duct or power outside the plasma target. Depending on the reliability of a single source, the number of sources that are available in at least 75 % of the discharges has been calculated for different numbers of installed sources. (author)

  12. Numerical investigation of the impact of gas composition on the combustion process in a dual-fuel compression-ignition engine

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2016-01-01

    This study discusses the model of operation of a dual-fuel compression-ignition engine, powered by gaseous fuel with an initial dose of diesel fuel as the ignition inhibitor. The study used a zero-dimensional multiphase mathematical model of a dual-fuel engine to simulate the impact of enhancing

  13. Neutral interstellar helium parameters based on Ulysses/GAS and IBEX-LO observations: What are the reasons for the differences?

    International Nuclear Information System (INIS)

    Katushkina, O. A.; Izmodenov, V. V.; Wood, B. E.; McMullin, D. R.

    2014-01-01

    Recent analysis of the interstellar helium fluxes measured in 2009-2010 at Earth's orbit by the Interstellar Boundary Explorer (IBEX) has suggested that the interstellar velocity (both direction and magnitude) is inconsistent with that derived previously from Ulysses/GAS observations made in the period from 1990 to 2002 at 1.5-5.5 AU from the Sun. Both results are model dependent, and models that were used in the analyses are different. In this paper, we perform an analysis of the Ulysses/GAS and IBEX-Lo data using our state-of-the-art three-dimensional time-dependent kinetic model of interstellar atoms in the heliosphere. For the first time, we analyze Ulysses/GAS data from year 2007, the closest available Ulysses/GAS observations in time to the IBEX observations. We show that the interstellar velocity derived from the Ulysses 2007 data is consistent with previous Ulysses results and does not agree with the velocity derived from IBEX. This conclusion is very robust since, as is shown in the paper, it does not depend on the ionization rates adopted in theoretical models. We conclude that Ulysses data are not consistent with the new local interstellar medium (LISM) velocity vector from IBEX. In contrast, IBEX data, in principle, could be explained with the LISM velocity vector derived from the Ulysses data. This is possible for the models where the interstellar temperature increased from 6300 K to 9000 K. There is a need to perform further studies of possible reasons for the broadening of the helium signal core measured by IBEX, which could be an instrumental effect or could be due to unconsidered physical processes.

  14. Neutral interstellar helium parameters based on Ulysses/GAS and IBEX-LO observations: What are the reasons for the differences?

    Energy Technology Data Exchange (ETDEWEB)

    Katushkina, O. A.; Izmodenov, V. V. [Space Research Institute, Russian Academy of Sciences, Moscow (Russian Federation); Wood, B. E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); McMullin, D. R., E-mail: okat@iki.rssi.ru [Space Systems Research Corporation, Alexandria, VA 22314 (United States)

    2014-07-01

    Recent analysis of the interstellar helium fluxes measured in 2009-2010 at Earth's orbit by the Interstellar Boundary Explorer (IBEX) has suggested that the interstellar velocity (both direction and magnitude) is inconsistent with that derived previously from Ulysses/GAS observations made in the period from 1990 to 2002 at 1.5-5.5 AU from the Sun. Both results are model dependent, and models that were used in the analyses are different. In this paper, we perform an analysis of the Ulysses/GAS and IBEX-Lo data using our state-of-the-art three-dimensional time-dependent kinetic model of interstellar atoms in the heliosphere. For the first time, we analyze Ulysses/GAS data from year 2007, the closest available Ulysses/GAS observations in time to the IBEX observations. We show that the interstellar velocity derived from the Ulysses 2007 data is consistent with previous Ulysses results and does not agree with the velocity derived from IBEX. This conclusion is very robust since, as is shown in the paper, it does not depend on the ionization rates adopted in theoretical models. We conclude that Ulysses data are not consistent with the new local interstellar medium (LISM) velocity vector from IBEX. In contrast, IBEX data, in principle, could be explained with the LISM velocity vector derived from the Ulysses data. This is possible for the models where the interstellar temperature increased from 6300 K to 9000 K. There is a need to perform further studies of possible reasons for the broadening of the helium signal core measured by IBEX, which could be an instrumental effect or could be due to unconsidered physical processes.

  15. THE NEUTRAL INTERSTELLAR GAS TOWARD SNR W44: CANDIDATES FOR TARGET PROTONS IN HADRONIC {gamma}-RAY PRODUCTION IN A MIDDLE-AGED SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiike, S.; Fukuda, T.; Sano, H.; Ohama, A.; Moribe, N.; Torii, K.; Hayakawa, T.; Okuda, T.; Yamamoto, H.; Mizuno, N.; Onishi, T.; Fukui, Y. [Department of Physics and Astrophysics, Nagoya University, Nagoya, Aichi 464-8602 (Japan); Tajima, H.; Maezawa, H.; Mizuno, A. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Nishimura, A.; Kimura, K.; Ogawa, H. [Department of Astrophysics, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Giuliani, A. [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Koo, B.-C., E-mail: yoshiike@a.phys.nagoya-u.ac.jp [Seoul National University, Seoul 151-742 (Korea, Republic of)

    2013-05-10

    We present an analysis of the interstellar medium (ISM) toward the {gamma}-ray supernova remnant (SNR) W44. We used NANTEN2 {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) data and Arecibo H I data in order to identify the molecular and atomic gas in the SNR. We confirmed that the molecular gas is located in the SNR shell with a primary peak toward the eastern edge of the shell. We newly identified high-excitation molecular gas along the eastern shell of the SNR in addition to the high-excitation broad gas previously observed inside the shell; the line intensity ratio between the {sup 12}CO(J = 2-1) and {sup 12}CO(J = 1-0) transitions in these regions is greater than {approx}1.0, suggesting a kinetic temperature of 30 K or higher, which is most likely due to heating by shock interaction. By comparing the ISM with {gamma}-rays, we find that target protons of hadronic origin are dominated by molecular protons of average density around 200 cm{sup -3}, where the possible contribution of atomic protons is 10% or less. This average density is consistent with the recent discovery of the low-energy {gamma}-rays suppressed in 50 MeV-10 GeV as observed with AGILE and Fermi. The {gamma}-ray spectrum differs from place to place in the SNR, suggesting that the cosmic-ray (CR) proton spectrum significantly changes within the middle-aged SNR perhaps due to the energy-dependent escape of CR protons from the acceleration site. We finally derive a total CR proton energy of {approx}10{sup 49} erg, consistent with the SN origin of the majority of the CRs in the Galaxy.

  16. Speech Compression

    Directory of Open Access Journals (Sweden)

    Jerry D. Gibson

    2016-06-01

    Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.

  17. An analysis of price competitiveness of CNG (compressed natural gas) versus gasoline: estimation of the elasticities of demand by CNG in a recent period in Brazil; Uma analise da competitividade de preco do GNV (Gas Natural Veicular) frente a gasolina: estimacao das elasticidades da demanda por GNV no Brasil no periodo recente

    Energy Technology Data Exchange (ETDEWEB)

    Iootty, Mariana; Pinto Junior, Helder; Roppa, Bruna; Biasi, Guilherme de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Economia

    2004-07-01

    One of the main determinants to the expansion of natural gas on the Brazilian domestic market is its price. Hence, it is important to analyze the price competitiveness of natural gas vis-a-vis its competitors. The current paper focuses on the market of natural gas in vehicles (the compressed natural gas - CNG), and uses co-integration techniques to estimate the price-elasticity of CNG, the cross-elasticity of CNG and gasoline, and the income-elasticity. The results suggest that price is a relevant factor in the long-run, while in the short-run income is the most significant determinant of the demand variation. In addition, the paper also shows an imperfect substitutability between CNG and gasoline. (author)

  18. On the validity of neutral gas temperature by N{sub 2} rovibrational spectroscopy in low-pressure inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, J-S; Berube, P-M; Munoz, J; Margot, J; Stafford, L [Departement de Physique, Universite de Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec, H3C 3J7 (Canada); Chaker, M [INRS-EMT, 1650 Boulevard Lionel Boulet, Varennes, Quebec, J3X 1S2 (Canada)

    2011-06-15

    Measurement of the rotational temperature of the second positive system of N{sub 2} was used as a diagnostic of the gas temperature in low-pressure inductively coupled Ar, Kr and N{sub 2} plasmas. The rotational temperatures determined from the rovibrational bands ({nu}', {nu}'') = (0, 0), (1, 0), (0, 2) and (4, 2) of the N{sub 2} C {sup 3{Pi}}{sub u} {yields} B {sup 3{Pi}}{sub g} system differ by about 300 K depending on the operating gas pressure in the 0.4-20 mTorr range. Important discrepancies exist between the temperatures found from each of the rovibrational bands of N{sub 2}. This shows that the method has important intrinsic uncertainty that may be due either to errors in the transition probabilities of N{sub 2} C {sup 3{Pi}}{sub u} {yields} B {sup 3{Pi}}{sub g} or to inefficient thermal coupling between translational and rotational temperatures. In the case of argon, the population of the emitting C {sup 3{Pi}}{sub u} states by energy transfer from Ar {sup 3}P{sub 0,2} metastable atoms is also considered as a possible factor influencing the rotational structure of some rovibrational bands. Based on these measurements, it is shown that, in the range of experimental conditions studied herein, the uncertainty of the method should be carefully accounted before considering one of the rotational temperatures of the N{sub 2} second positive system equal to the gas temperature.

  19. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  20. Solar polar rotation and its effect on heliospheric neutral fluxes

    Science.gov (United States)

    Sokol, J. M.; Grzedzielski, S.; Bzowski, M.

    2016-12-01

    The magnetic field in the solar polar corona exhibit a regular "ray-like" structure associated with large polar coronal holes during solar minimum. The solar rotation twists the magnetic field lines of the expanding fast solar wind over the poles. The twist induces a toroidal component of the polar magnetic field which results in magnetic forces directed towards the rotation axis. That is tantamount to a (weak) zeta pinch, known also in other astrophysical contexts (e.g. AGN plasmas). The pinch compresses the polar solar corona plasma and a cone-like enhancement in the solar wind density forms along the rotation axis. Though the effect is likely very dynamic, a time independent description is used here to get an order-of-magnitude estimate. The weak pinch is treated as a 1st order perturbation to the zero-order radial flow. The obtained density enhancement may affect the near and far heliosphere, modifying the charge-exchange and electron impact ionization rates of neutral atoms in interplanetary space. The charge exchange is the most effective ionization process for hydrogen and oxygen atoms, and electron impact ionization is a significant loss reaction for the helium atoms at close distances to the Sun. The change in the polar density due to the solar polar corona rotation could be of importance in the inner heliosphere for low energy atoms. We will present the influence of this effect on interstellar neutral gas distribution and H ENA fluxes observed by IBEX.

  1. A Theoretical and Experimental Analysis of Post-Compression Water Injection in a Rolls-Royce M250 Gas Turbine Engine

    Science.gov (United States)

    2015-05-18

    ROLLS-ROYCE M250 GAS TURBINE ENGINE by Midshipman 1/C Brian R. He United States Naval Academy Annapolis, Maryland...Injection in a Rolls- Royce M250 Gas Turbine Engine 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) He...output, efficiency, operating conditions, and emissions of injecting water at the compressor discharge of a Rolls-Royce M250 . The results

  2. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part II: modeling HCCI combustion in small scales with detailed homogeneous gas phase chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Operational maps for crankshaft-equipped miniature homogeneous charge compression ignition engines are established using performance estimation, detailed chemical kinetics, and diffusion models for heat transfer and radical loss. In this study, radical loss was found to be insignificant. In contrast, heat transfer was found to be increasingly significant for 10, 1, and 0.1 W engines, respectively. Also, temperature-pressure trajectories and ignition delay time maps are used to explore relationships between engine operational parameters and HCCI. Lastly, effects of engine operating conditions and design on the indicated fuel conversion efficiency are investigated. (author)

  3. Energizing and depletion of neutrals by a collisional plasma

    International Nuclear Information System (INIS)

    Fruchtman, A

    2008-01-01

    Neutral depletion can significantly affect the steady state of low temperature plasmas. Recent theoretical analyses predicted previously unexpected effects of neutral depletion in both collisional and collisionless regimes. In this paper we address the effect of the energy deposited in the neutral gas by a collisional plasma. The fraction of power deposited in the neutrals is shown to be independent of the amount of power. The first case we address is of a thermalized neutral gas. It is shown that a low heat conductivity of the neutral gas is followed by a high neutral temperature that results in a high neutral depletion even if the plasma pressure is small. In the second case neutrals are accelerated through charge exchange with ions leading to what we call neutral pumping, which is equivalent to ion pumping in a collisionless plasma. Neutral depletion is found in the second case for both a closed system (no net mass flow) and an open system (a finite mass flow). A thruster that employs a collisional plasma and pumped neutrals is compared with the thruster analyzed before that employs collisionless plasma.

  4. Neutral Buoyancy Laboratory (NBL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Neutral Buoyancy Laboratory (NBL) is an astronaut training facility and neutral buoyancy pool operated by NASA and located at the Sonny Carter Training Facility,...

  5. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  6. Photon compression in cylinders

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1977-01-01

    It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10 14 watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10 5 joules cm -2 and powers of >10 13 watts cm -2 are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling

  7. ITER neutral beam system US conceptual design

    International Nuclear Information System (INIS)

    Purgalis, P.

    1990-09-01

    In this document we present the US conceptual design of a neutral beam system for International Thermonuclear Experimental Reactor (ITER). The design incorporates a barium surface conversion D - source feeding a linear array of accelerator channels. The system uses a dc accelerator with electrostatic quadrupoles for strong focusing. A high voltage power supply that is integrated with the accelerator is presented as an attractive option. A gas neutralizer is used and residual ions exiting the neutralizer are deflected to water-cooled dumps. Cryopanels are located at the accelerator exit to pump excess gas from the source and the neutralizer, and in the ion dump cavity to pump re-neutralized ions and neutralizer gas. All the above components are packaged in compact identical, independent modules which can be removed for remote maintenance. The neutral beam system delivers 75 MW of DO at 1.3 MeV, into three ports with a total of 9 modules arranged in stacks of three modules per port . To increase reliability each module is designed to deliver up to 10 MW; this allows eight modules operating at partial capacity to deliver the required power in the event one module is out of service, and provides 20% excess capacity to improve availability. Radiation protection is provided by shielding and by locating critical components in the source and accelerator 46.5 m from the torus centerline. Neutron shielding in the drift duct and neutralizer provides the added feature of limiting conductance and thus reducing gas flow to and from the torus

  8. Study of neutral particles

    International Nuclear Information System (INIS)

    Bartel, W.; Bulos, F.; Eisner, A.

    1975-01-01

    The range of physics problems for which a detector emphasizing neutrals is most suitable is discussed. The primary goals are the all neutrals cross section, sigma/sub o/ (e + e - → neutrals), the characterization of the neutral energy in multi-hadronic events, the search for monoenergetic photons, and good sensitivity in the difficult region of low energy photons. Those features of multi-hadronic events which are most relevant to a neutral detector were calculated using a jet model with parameters extrapolated from SPEAR energies. These distributions are presented and discussed

  9. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  10. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  11. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  12. Modeling of the lithium based neutralizer for ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Dure, F., E-mail: franck.dure@u-psud.fr [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Lifschitz, A.; Bretagne, J.; Maynard, G. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France); Simonin, A. [IRFM, Institut de Recherche sur la Fusion Magnetique, CEA Cadarache, 13108 Saint-Paul lez Durance (France); Minea, T. [LPGP, Laboratoire de Physique des Gaz et Plasmas, CNRS-Universite Paris Sud, Orsay (France)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer We compare different lithium based neutraliser configurations to the deuterium one. Black-Right-Pointing-Pointer We study characteristics of the secondary plasma and the propagation of the 1 MeV beam. Black-Right-Pointing-Pointer Using lithium increases the neutralisation effiency keeping correct beam focusing. Black-Right-Pointing-Pointer Using lithium also reduces the backstreaming effect in direction of the ion source. - Abstract: To achieve thermonuclear temperatures necessary to produce fusion reactions in the ITER Tokamak, additional heating systems are required. One of the main method to heat the plasma ions in ITER will be the injection of energetic neutrals (NBI). In the neutral beam injector, negative ions (D{sup -}) are electrostatically accelerated to 1 MeV, and then stripped of their extra electron via collisions with a target gas, in a structure known as neutralizer. In the current ITER specification, the target gas is deuterium. It has been recently proposed to use lithium vapor instead of deuterium as target gas in the neutralizer. This would allow to reduce the gas load in the NBI vessel and to improve the neutralization efficiency. A Particle-in-Cell Monte Carlo code has been developed to study the transport of the beams and the plasma formation in the neutralizer. A comparison between Li and D{sub 2} based neutralizers made with this code is presented here, as well as a parametric study on the geometry of the Li based neutralizer. Results demonstrate the feasibility of a Li based neutralizer, and its advantages with respect to the deuterium based one.

  13. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  14. Temporal behavior of neutral particle fluxes in TFTR [Tokamak Fusion Test Reactor] neutral beam injectors

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.

    1989-09-01

    Data from an E parallel B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs

  15. On neutral plasma oscillations

    International Nuclear Information System (INIS)

    Shadwick, B.A.; Morrison, P.J.

    1993-06-01

    We examine the conditions for the existence of spectrally stable neutral modes in a Vlasov-Poisson plasma and show that for stable equilibria of systems that have unbounded spatial domain, the only possible neutral modes are those with phase velocities that correspond to stationary inflection points of the equilibrium distribution function. It is seen that these neutral modes can possess positive or negative free energy

  16. On neutral plasma oscillations

    International Nuclear Information System (INIS)

    Shadwick, B.A.; Texas Univ., Austin; Morrison, P.J.; Texas Univ., Austin

    1994-01-01

    We examine the conditions for the existence of spectrally stable neutral modes in a Vlasov-Poisson plasma and show that for stable equilibria of systems that have unbounded spatial domain, the only possible neutral modes are those with phase velocities that correspond to stationary inflection points of the equilibrium distribution function. It is seen that these neutral modes can posses positive or negative free energy. (orig.)

  17. Search for neutral leptons

    International Nuclear Information System (INIS)

    Perl, M.L.

    1984-12-01

    At present we know of three kinds of neutral leptons: the electron neutrino, the muon neutrino, and the tau neutrino. This paper reviews the search for additional neutral leptons. The method and significance of a search depends upon the model used for the neutral lepton being sought. Some models for the properties and decay modes of proposed neutral leptons are described. Past and present searches are reviewed. The limits obtained by some completed searches are given, and the methods of searches in progress are described. Future searches are discussed. 41 references

  18. Long plasma source for heavy ion beam charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Grant Logan, Larry B.; Seidl, Peter A.; Waldron, William

    2009-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage (∼8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO 3 source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5x10 10 cm -3 density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios ∼120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high-energy-density physics applications.

  19. Comportamento de um motor de ignição por compressão trabalhando com óleo Diesel e gás natural A dual fuel compression ignition engine performance, running with Diesel fuel and natural gas

    Directory of Open Access Journals (Sweden)

    José F. Schlosser

    2004-12-01

    Full Text Available A previsível escassez de petróleo aliada a uma consciência ecológica está levando pesquisadores a procurar novas fontes de energia e processos de combustão mais eficientes e menos poluentes. Entre os combustíveis menos poluentes está o gás natural, cujo consumo aumenta ano a ano. Os motores de combustão interna são transformadores de energia que têm baixa eficiência de conversão. Este trabalho avaliou um motor Diesel, bicombustível, movido a Diesel e gás natural. Nesse motor, a energia provém, basicamente, da combustão do gás natural. O Diesel tem a função de produzir o início da combustão do gás, que é o combustível principal. Assim, haverá uma substituição parcial de óleo Diesel por gás natural, aumentando o rendimento da combustão. Inicialmente, foi feito um ensaio-testemunha, somente com óleo Diesel e após foram feitos ensaios, com três repetições, para variadas proporções de óleo Diesel, gás natural e ângulos de avanço da injeção. O melhor desempenho foi obtido para 22% de óleo Diesel em relação ao máximo débito da bomba injetora e 13 L min-1 de gás natural com ângulo de avanço de injeção original (21º. Nesse caso, a potência média aumentou 14%, e o consumo específico (medido em valores monetários diminuiu 46% em relação ao ensaio-testemunha.The foresight of a petroleum shortage and an ecological conscience is moving scientists to look for new sources of energy and to develop more efficient combustion processes and reduced emissions. Natural gas is a reduced emission fuel, whose consumption increases every year. The present work evaluates a dual fuel compression ignition engine. The major portion of the fuel burned is natural gas. The Diesel fuel acts as combustion starter, which ignites under the compression heat. Diesel fuel is used only as an ignition source. The partial substitution of Diesel fuel by natural gas increases the combustion efficiency and achieves significant

  20. Neutral particle dynamics in the Alcator C-Mod tokamak

    International Nuclear Information System (INIS)

    Niemczewski, A.P.

    1995-08-01

    This thesis presents an experimental study of neutral particle dynamics in the Alcator C-Mod tokamak. The primary diagnostic used is a set of six neutral pressure gauges, including special-purpose gauges built for in situ tokamak operation. While a low main chamber neutral pressure coincides with high plasma confinement regimes, high divertor pressure is required for heat and particle flux dispersion in future devices such as ITER. Thus we examine conditions that optimize divertor compression, defined here as a divertor-to-midplane pressure ratio. We find both pressures depend primarily on the edge plasma regimes defined by the scrape-off-layer heat transport. While the maximum divertor pressure is achieved at high core plasma densities corresponding to the detached divertor state, the maximum compression is achieved in the high-recycling regime. Variations in the divertor geometry have a weaker effect on the neutral pressures. For otherwise similar plasmas the divertor pressure and compression are maximum when the strike point is at the bottom of the vertical target plate. We introduce a simple flux balance model, which allows us to explain the divertor neutral pressure across a wide range of plasma densities. In particular, high pressure sustained in the detached divertor (despite a considerable drop in the recycling source) can be explained by scattering of neutrals off the cold plasma plugging the divertor throat. Because neutrals are confined in the divertor through scattering and ionization processes (provided the mean-free-paths are much shorter than a typical escape distance) tight mechanical baffling is unnecessary. The analysis suggests that two simple structural modifications may increase the divertor compression in Alcator C-Mod by a factor of about 5. Widening the divertor throat would increase the divertor recycling source, while closing leaks in the divertor structure would eliminate a significant neutral loss mechanism. 146 refs., 82 figs., 14 tabs

  1. Neutral particle dynamics in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Niemczewski, Artur P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1995-08-01

    This thesis presents an experimental study of neutral particle dynamics in the Alcator C-Mod tokamak. The primary diagnostic used is a set of six neutral pressure gauges, including special-purpose gauges built for in situ tokamak operation. While a low main chamber neutral pressure coincides with high plasma confinement regimes, high divertor pressure is required for heat and particle flux dispersion in future devices such as ITER. Thus we examine conditions that optimize divertor compression, defined here as a divertor-to-midplane pressure ratio. We find both pressures depend primarily on the edge plasma regimes defined by the scrape-off-layer heat transport. While the maximum divertor pressure is achieved at high core plasma densities corresponding to the detached divertor state, the maximum compression is achieved in the high-recycling regime. Variations in the divertor geometry have a weaker effect on the neutral pressures. For otherwise similar plasmas the divertor pressure and compression are maximum when the strike point is at the bottom of the vertical target plate. We introduce a simple flux balance model, which allows us to explain the divertor neutral pressure across a wide range of plasma densities. In particular, high pressure sustained in the detached divertor (despite a considerable drop in the recycling source) can be explained by scattering of neutrals off the cold plasma plugging the divertor throat. Because neutrals are confined in the divertor through scattering and ionization processes (provided the mean-free-paths are much shorter than a typical escape distance) tight mechanical baffling is unnecessary. The analysis suggests that two simple structural modifications may increase the divertor compression in Alcator C-Mod by a factor of about 5. Widening the divertor throat would increase the divertor recycling source, while closing leaks in the divertor structure would eliminate a significant neutral loss mechanism.

  2. Drift Compression and Final Focus Options for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-01

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. We show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1-D Vlasov equation is solved explicitly, and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot

  3. Preliminary technical and economic viability for the implantation of fluvial transport of CNG (Compressed Natural Gas) for barges in Amazon Region; Avaliacao preliminar de viabilidade tecnico-economica para implantacao de transporte fluvial de GNC (Gas Natual Comprimido) por barcacas na Regiao Amazonica

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Marcos C.C. de; Porto, Paulo L. Lemgruber [Interocean Engenharia e Ship Management, Rio de janeiro, RJ (Brazil); Cunha, Rafael H. da [Metro Rio, RJ (Brazil); Garcia, Rafael M. [Pic Brasil (Brazil); Almeida, Marco A.R. de [Universidade Gama Filho (UGF), Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The isolated regions of the Amazon present difficulties for integration with the electrical system which is creating some economic problems due to the consequent costs of electric generation of subsidies as a function of the fossil fuel use as oils diesel and fuel. A viable option is the use of Natural Gas - NG that is Also available in the region. Its modal of transport possible in the Region North they are for gas-lines or barges. The Compressed Natural Gas transport is distinguished that - CNG for barges was still not tested operationally in Brazil. Soon, to develop a Preliminary Study of Viability Technician - Economic - SVTE for the implantation of fluvial transport of CNG between the cities of Coari and Manaus is basic, therefore it is created strategical alternative for the electric generation in this region. The electric sector, the characteristics of the NG and the transport in this region had been analyzed to support to the work. The gas line and the fluvial transport of CNG for barges in this region are not conflicting, and they in a complementary form can act. The SVTE presented a Liquid Present Value and Internal Tax of very attractive Return justifying its implantation. (author)

  4. Performance and emission characteristics of a turbocharged CNG engine fueled by hydrogen-enriched compressed natural gas with high hydrogen ratio

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fanhua; Wang, Mingyue; Jiang, Long; Chen, Renzhe; Deng, Jiao; Naeve, Nashay; Zhao, Shuli [State Key Laboratory of Automotive Safety and Energy Tsinghua University, Beijing 100084 (China)

    2010-06-15

    This paper investigates the effect of high hydrogen volumetric ratio of 55% on performance and emission characteristics in a turbocharged lean burn natural gas engine. The experimental data was conducted under various operating conditions including different spark timing, excess air ratio (lambda), and manifold pressure. It is found that the addition of hydrogen at a high volumetric ratio could significantly extend the lean burn limit, improve the engine lean burn ability, decrease burn duration, and yield higher thermal efficiency. The CO, CH{sub 4} emissions were reduced and NO{sub x} emission could be kept an acceptable low level with high hydrogen content under lean burn conditions when ignition timing were optimized. (author)

  5. Mechanical design criteria for continuously operating neutral beams

    International Nuclear Information System (INIS)

    Vosen, S.R.; Bender, D.J.; Fink, J.H.; Lee, J.D.

    1977-01-01

    A schematic of a neutral beam injector is shown. Neutral gas is injected into the ion source, where a discharge ionizes the gas. The ions are drawn from the source by an extractor grid and then accelerated to full energy by the accel grids. After acceleration the ions pass through the neutralizer cell. Once through the neutralizer cell, the beam consists of neutrals and ions. The ions traveling with the beam are space charge neutralized by background electrons. The grid which precedes the direct converter is negatively charged and acts to separate the electrons from the rest of the beam. As a result of the beam's uncompensated space charge the remaining ions spread out from the beam to be collected at the direct converter. This paper presents a generalized analysis which will be useful in determining effects of energy and particle fluxes on the long-term performance of the grids

  6. Noble gas enrichment studies at JET

    International Nuclear Information System (INIS)

    Groth, M.; Andrew, P.; Fundamenski, W.; Guo, H.Y.; Hillis, D.L.; Hogan, J.T.; Horton, L.D.; Matthews, G.F.; Meigs, A.G.; Morgan, P.M.; Stamp, M.F.; Hellermann, M. von

    2001-01-01

    Adequate helium exhaust has been achieved in reactor-relevant ELMy H-mode plasmas in JET performed in the MKII AP and MKII GB divertor geometry. The divertor-characteristic quantities of noble gas compression and enrichment have been experimentally inferred from Charge Exchange Recombination Spectroscopy measurements in the core plasma, and from spectroscopic analysis of a Penning gauge discharge in the exhaust gas. The retention of helium was found to be satisfactory for a next-step device, with enrichment factors exceeding 0.1. The helium enrichment decreases with increasing core plasma density, while the neon enrichment has the opposite behaviour. Analytic and numerical analyses of these plasmas using the divertor impurity code package DIVIMP/NIMBUS support the explanation that the enrichment of noble gases depends significantly on the penetration depth of the impurity neutrals with respect to the fuel atoms. Changes of the divertor plasma configuration and divertor geometry have no effect on the enrichment

  7. Current neutralization of nanosecond risetime, high-current electron beam

    International Nuclear Information System (INIS)

    Lidestri, J.P.; Spence, P.W.; Bailey, V.L.; Putnam, S.D.; Fockler, J.; Eichenberger, C.; Champney, P.D.

    1991-01-01

    This paper reports that the authors have recently investigated methods to achieve current neutralization in fast risetime (<3 ns) electron beams propagating in low-pressure gas. For this investigation, they injected a 3-MV, 30-kA intense beam into a drift cell containing gas pressures from 0.10 to 20 torr. By using a fast net current monitor (100-ps risetime), it was possible to observe beam front gas breakdown phenomena and to optimize the drift cell gas pressure to achieve maximum current neutralization. Experimental observations have shown that by increasing the drift gas pressure (P ∼ 12.5 torr) to decrease the mean time between secondary electron/gas collisions, the beam can propagate with 90% current neutralization for the full beam pulsewidth (16 ns)

  8. Neutralized transport experiment

    International Nuclear Information System (INIS)

    Roy, P.K.; Yu, S.S.; Eylon, S.; Henestroza, E.; Anders, A.; Gilson, E.P.; Bieniosek, F.M.; Greenway, W.G.; Logan, B.G.; Waldron, W.L.; Shuman, D.B.; Vanecek, D.L.; Welch, D.R.; Rose, D.V.; Thoma, C.; Davidson, R.C.; Efthimion, P.C.; Kaganovich, I.; Sefkow, A.B.; Sharp, W.M.

    2005-01-01

    Experimental details on providing active neutralization of high brightness ion beam have been demonstrated for Heavy Ion Fusion program. A K + beam was extracted from a variable-perveance injector and transported through 2.4 m long quadrupole lattice for final focusing. Neutralization was provided by a localized cathode arc plasma plug and a RF volume plasma system. Effects of beam perveance, emittance, convergence focusing angle, and axial focusing position on neutralization have been investigated. Good agreement has been observed with theory and experiment throughout the study

  9. Method of active charge and current neutralization of intense ion beams for ICF

    International Nuclear Information System (INIS)

    Guiragossian, Z.G.T.; Orthel, J.L.; Lemons, D.S.; Thode, L.E.

    1981-01-01

    Methods of generating the beam neutralization electrons with required properties are given in the context of a Light Ion Fusion Experiment (LIFE) designed accelerator. Recently derived envelope equations for neutralized and ballistically focused intense ion beams are applied to the LIFE geometry in which 10 MeV He + multiple beamlets coalesce and undergo 45:1 radial compression while beam pulses experience a 20:1 axial compression in the propagation range of 10 m. Both active and auto-neutralization methods are examined and found to produce initial electron temperatures consistent with the requirement of the envelope equation for both radial and axial adiabatic beam pulse compressions. The stability of neutralized beam propagation is also examined concerning the Pierce type electrostatic instability and for the case of LIFE beams it is found to have insignificant effect. A scaled experimental setup is presented which can serve to perform near term tests on the ballistically focused propagation of neutralized light ion beams

  10. Are "Market Neutral" Hedge Funds Really Market Neutral?

    OpenAIRE

    Andrew J. Patton

    2009-01-01

    Using a variety of different definitions of "neutrality," this study presents significant evidence against the neutrality to market risk of hedge funds in a range of style categories. I generalize standard definitions of "market neutrality," and propose five different neutrality concepts. I suggest statistical tests for each neutrality concept, and apply these tests to a database of monthly returns on 1423 hedge funds from five style categories. For the "market neutral" style, approximately o...

  11. Wet Gas Airfoil Analyses

    OpenAIRE

    Larsen, Tarjei Thorrud

    2011-01-01

    Subsea wet gas compression renders new possibilities for cost savings and enhanced gas recovery on existing gas wells. Technology like this opens to make traditional offshore processing plants redundant. With new technology, follows new challenges. Multiphase flows is regarded as a complex field of study, and increased knowledge on the fundamental mechanisms regarding wet gas flow is of paramount importance to the efficiency and stability of the wet gas compressor. The scope of this work was ...

  12. Carbon neutral and flexible underground storage of renewable excess energy; Klimaneutrale Flexibilisierung regenerativer Ueberschussenergie mit Untergrundspeichern

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Michael; Nakatem, Natalie; Streibel, Martin; Kempka, Thomas [GeoForschungsZentrum Potsdam (Germany)

    2013-10-15

    We present an innovative, extended and carbon neutral 'Power-to-Gas-to-Power' concept. Excess electricity from wind and sun can be transformed into hydrogen and with carbon dioxide subsequently into methane. When needed, electricity is regained in a combined cycle plant burning the methane. To close the carbon cycle carbon dioxide is captured on site. Two subsurface storage formations for both gases are required for the technology. Our regional showcase of two German cities, Potsdam and Brandenburg/Havel, demonstrates that about 30% of their electricity demand can be provided in that way, using 17.2% of renewable electricity generated in the State of Brandenburg. We calculate the overall efficiency of the system with 27.7% and the associated costs of electricity are 20,43 Euro-cent/ kWh. Compared to pump storage hydro power and compressed air storage the determined efficiency is worse, however the costs of electricity are competitive. (orig.)

  13. Development of fundamental technigue of compressed air energy storage (CAES) gas turbine power generation and resistivity tomography. Asshuku kuki chozo (CAES) gas turbine hatsuden no kiban gijutsu no kaihatsu to hiteiko tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hibino, S; Suzuki, K [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1991-12-01

    Compressed air energy storage (CAES) has been studied as a promising storage system which has a good possibility of being put to practical use. Construction of the storage facility is required for CAES. For an economical construction of a storage facility, it is necessary to construct a storage facility by excavating, from the ground surface, a cavity in the ground. There is no case in Japan where rock storage is adopted with several tens of atmospheric pressure which is necessary for CAES. If highly pressurized air can be stored by the water sealing method, it is a very economical method in the case with hard rocks. As the first stem to verify the effectivity of the water sealing system, a water sealing experiment is performed in a boring hole. It is confirmed that water sealing can be possible up to about 40 atmospheres, and it is found that the resistivity, open joint distribution and coefficient of permeability of rocks have correlation as an investigating method for potential cracks in rocks and that resistivity tomography is effective for the investigation of cracks in rocks. 9 ref., 23 figs., 6 tabs.

  14. Bunched beam neutralization

    International Nuclear Information System (INIS)

    Gammel, G.M.; Maschke, A.W.; Mobley, R.M.

    1979-01-01

    One of the steps involved in producing an intense ion beam from conventional accelerators for Heavy Ion Fusion (HIF) is beam bunching. To maintain space charge neutralized transport, neutralization must occur more quickly as the beam bunches. It has been demonstrated at BNL that a 60 mA proton beam from a 750 kV Cockcroft--Walton can be neutralized within a microsecond. The special problem in HIF is that the neutralization must occur in a time scale of nanoseconds. To study neutralization on a faster time scale, a 40 mA, 450 kV proton beam was bunched at 16 MHz. A biased Faraday cup sampled the bunched beam at the position where maximum bunching was nominally expected, about 2.5 meters from the buncher. Part of the drift region, about 1.8 meters, was occupied by a series of Gabor lenses. In addition to enhancing beam transport by transverse focussing, the background cloud of electrons in the lenses provided an extra degree of neutralization. With no lens, the best bunch factor was at least 20. Bunch factor is defined here as the ratio of the distance between bunches to the FWHM bunch length. With the lens, it was hoped that the increased plasma frequency would decrease the neutralization time and cause an increase in the bunch factor. In fact, with the lens, the instantaneous current increased about three times, but the bunch factor dropped to about 10. Even with the lens, the FWHM of the bunches at the position of maximum bunching was still comparable to or less than the oscillation period of the surrounding electron plasma. Thus, the electron density in the lens must increase before neutralization could be effective in this case, or bunching should be done at a lower frequency

  15. Intense ion beam neutralization using underdense background plasma

    Energy Technology Data Exchange (ETDEWEB)

    Berdanier, William [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States); Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Roy, Prabir K. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Kaganovich, Igor [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  16. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  17. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.

    Science.gov (United States)

    Goicoechea, Javier R; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo

    2016-09-08

    The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H 2 vibrational emission (delineating the H/H 2 transition) and the edge of the observed CO and HCO + emission. This implies that the H/H 2 and C + /C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

  18. PDX neutral-beam reionization losses

    International Nuclear Information System (INIS)

    Kugel, H.W.; Dylla, H.F.; Eubank, H.P.; Kozub, T.A.; Moore, R.; Schilling, G.; Stewart, L.D.; von Halle, A.; Williams, M.D.

    1982-02-01

    Reionization losses for 1.5 MW H 0 and 2 MW D 0 neutral beams injected into the PDX tokamak were studied using pressure gauges, photo-transistors, thermocouples, surface shielding, and surface sample analysis. Considerable outgassing of conventionally prepared 304SS ducts occurred during initial injections and gradually decreased with the cumulative absorption of beam power. Reionization power losses are presently about 5% in the ducts and about 12% total for a beamline including the duct. Present duct pressures are attributed primarily to gas from the ion source and neutralizer with much smaller contributions from residual wall desorption. Physical mechanisms for the observed duct outgassing are discussed

  19. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang

    2014-01-01

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  20. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  1. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  2. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  3. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  4. Recent DIII-D neutral beam calibration results

    International Nuclear Information System (INIS)

    Wight, J.; Hong, R.M.; Phillips, J.

    1991-10-01

    Injected DIII-D neutral beam power is estimated based on three principle quantities: the fraction of ion beam that is neutralized in the neutralizer gas cell, the beamline transmission efficiency, and the fraction of beam reionized in the drift duct. System changes in the past few years have included a new gradient grid voltage operating point, ion source arc regulation, routine deuterium operations and new neutralizer gas flow controllers. Additionally, beam diagnostics have been improved and better calibrated. To properly characterize the beams the principle quantities have been re-measured. Two diagnostics are primarily used to measure the quantities. The beamline waterflow calorimetry system measures the neutralization efficiency and the beamline transmission efficiency, and the target tile thermocouples measure the reionization loss. An additional diagnostic, the target tile pyrometer, confirmed the reionization loss measurement. Descriptions and results of these measurements will be presented. 4 refs., 5 figs., 2 tabs

  5. Current neutralization of converging ion beams

    International Nuclear Information System (INIS)

    Mosher, D.

    1978-01-01

    It is desired to consider the problem of current neutralization of heavy ion beams traversing gas backgrounds in which the conductivity changes due to beam heating and beam convergence. The procedure is to determine Green's-function solutions to the magnetic-diffusion equation derived from Maxwell's equations and an assumed scaler-plasma conductivity sigma for the background-electron current density j/sub e/. The present calculation is more general than some previously carried out in that arbitrary time variations for the beam current j/sub b/ and conductivity are allowed and the calculation is valid for both weak and strong neutralization. Results presented here must be combined with an appropriate energy-balance equation for the heated background in order to obtain the neutralization self-consistently

  6. Thermo-fluid dynamic analysis of wet compression process

    International Nuclear Information System (INIS)

    Mohan, Abhay; Kim, Heuy Dong; Chidambaram, Palani Kumar; Suryan, Abhilash

    2016-01-01

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV γ = constant) are analyzed

  7. Thermo-fluid dynamic analysis of wet compression process

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Abhay; Kim, Heuy Dong [School of Mechanical Engineering, Andong National University, Andong (Korea, Republic of); Chidambaram, Palani Kumar [FMTRC, Daejoo Machinery Co. Ltd., Daegu (Korea, Republic of); Suryan, Abhilash [Dept. of Mechanical Engineering, College of Engineering Trivandrum, Kerala (India)

    2016-12-15

    Wet compression systems increase the useful power output of a gas turbine by reducing the compressor work through the reduction of air temperature inside the compressor. The actual wet compression process differs from the conventional single phase compression process due to the presence of latent heat component being absorbed by the evaporating water droplets. Thus the wet compression process cannot be assumed isentropic. In the current investigation, the gas-liquid two phase has been modeled as air containing dispersed water droplets inside a simple cylinder-piston system. The piston moves in the axial direction inside the cylinder to achieve wet compression. Effects on the thermodynamic properties such as temperature, pressure and relative humidity are investigated in detail for different parameters such as compression speeds and overspray. An analytical model is derived and the requisite thermodynamic curves are generated. The deviations of generated thermodynamic curves from the dry isentropic curves (PV{sup γ} = constant) are analyzed.

  8. Compression for radiological images

    Science.gov (United States)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  9. Concept selection and design considerations for compression facilities for FPSO Glas Dowr

    NARCIS (Netherlands)

    Roos, J. de; Eijk, A.; Gillis, J.

    2005-01-01

    As part of the modification of the Floating Production Storage and Offloading Unit (FPSO) Glas Dowr for operation on the Sable Field (offshore South Africa), a new gas compression system was installed. Associated gas is compressed for use as lift gas and re-injection back into the reservoir for

  10. Mathematical modeling of compression processes in air-driven boosters

    International Nuclear Information System (INIS)

    Li Zeyu; Zhao Yuanyang; Li Liansheng; Shu Pengcheng

    2007-01-01

    The compressed air in normal pressure is used as the source of power of the air-driven booster. The continuous working of air-driven boosters relies on the difference of surface area between driven piston and driving piston, i.e., the different forces acting on the pistons. When the working surface area of the driving piston for providing power is greater than that of the driven piston for compressing gas, the gas in compression chamber will be compressed. On the basis of the first law of thermodynamics, the motion regulation of piston is analyzed and the mathematical model of compression processes is set up. Giving a calculating example, the vary trends of gas pressure and pistons' move in working process of booster have been gotten. The change of parameters at different working conditions is also calculated and compared. And the corresponding results can be referred in the design of air-driven boosters

  11. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  12. Neutral beam development plan

    International Nuclear Information System (INIS)

    Staten, H.S.

    1980-08-01

    The national plan is presented for developing advanced injection systems for use on upgrades of existing experiments, and use on future facilities such as ETF, to be built in the late 1980's or early 90's where power production from magnetic fusion will move closer to a reality. Not only must higher power and longer pulse length systems be developed , but they must operate reliably; they must be a tool for the experimenter, not the experiment itself. Neutral beam systems handle large amounts of energy and as such, they often are as complicated as the plasma physics experiment itself. This presents a significant challenge to the neutral beam developer

  13. Neutral beam program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The structure of the beam injection program for the Doublet-3 device is discussed. The design considerations for the beam line and design parameters for the Doublet-3 ion souce are given. Major components of the neutral beam injector system are discussed in detail. These include the neutralizer, magnetic shielding, reflecting magnets, vacuum system, calorimeter and beam dumps, and drift duct. The planned location of the two-injector system for Doublet-3 is illustrated and site preparation is considered. The status of beamline units 1 and 2 and the future program schedule are discussed

  14. Vancouver Island gas supply

    International Nuclear Information System (INIS)

    Des Brisay, C.

    2005-01-01

    Terasen Gas is pursuing alternatives for the supply of additional natural gas capacity to Vancouver Island. Its subsidiary, Terasen Gas (Vancouver Island) Inc. (TGVI), is responding to the need for delivery of increased gas supply and, is supporting plans for new gas-fired power generation on Vancouver Island. TGVI's proposal for new natural gas capacity involves a combination of compression and pipeline loops as well as the addition of a storage facility for liquefied natural gas (LNG) at Mt. Hayes to help manage price volatility. This presentation outlined the objectives and components of the resource planning process, including demand forecast scenarios and the preferred infrastructure options. tabs., figs

  15. Adiabatic Liquid Piston Compressed Air Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Tage; Elmegaard, Brian; Pedersen, Allan Schrøder

    the system. The compression leads to a significant increase in temperature, and the heat generated is dumped into the ambient. This energy loss results in a low efficiency of the system, and when expanding the air, the expansion leads to a temperature drop reducing the mechanical output of the expansion......), but no such units are in operation at present. The CAES system investigated in this project uses a different approach to avoid compression heat loss. The system uses a pre-compressed pressure vessel full of air. A liquid is pumped into the bottom of the vessel when charging and the same liquid is withdrawn through......-CAES system is significantly higher than existing CAES systems due to a low or nearly absent compression heat loss. Furthermore, pumps/turbines, which use a liquid as a medium, are more efficient than air/gas compressors/turbines. In addition, the demand for fuel during expansion does not occur. •The energy...

  16. Influence of Compression Ratio on High Load Performance and Knock Behavior for Gasoline Port-Fuel Injection, Natural Gas Direct Injection and Blended Operation in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael; Sevik, James; Scarcelli, Riccardo; Wallner, Thomas; Hall, Carrie

    2017-03-28

    Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed on a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking

  17. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  18. SIMULACIÓN HORARIA DE UN SISTEMA DE REFRIGERACIÓN COMBINADO EYECTOR-COMPRESIÓN DE VAPOR ASISTIDO POR ENERGÍA SOLAR Y GAS NATURAL HOURLY SIMULATION OF A COMBINED EJECTOR-VAPOR COMPRESSION REFRIGERATION SYSTEM ASSISTED BY SOLAR ENERGY AND NATURAL GAS

    Directory of Open Access Journals (Sweden)

    Humberto Vidal

    2009-04-01

    double stage ejector cooling cycle assisted by solar energy system appears as an attractive solution to this problem. The first stage is performed by a mechanical compression cycle with R-134a as the working fluid, while the second stage is performed by a thermally driven ejector cycle with R-141b. Flat plate collectors and an auxiliary energy burner provide heat to the ejector cycle. This paper describes the hourly simulation of a combined ejector-vapor compression refrigeration system assisted by solar energy and natural gas. The combined solar refrigeration system is modeled using the TRNSYS-EES simulation tool and the typical meteorological year data containing the weather data of Florianópolis Brazil. The results obtained from the computational simulation performed in this system show that the combined ejector-vapor compression cooling cycle is more advantageous than the simple ejector cooling cycle. Finally, the computational model developed in this paper might be used to perform a thermo-economical optimization of the system in future works.

  19. Mod en neutral seksualitet!

    DEFF Research Database (Denmark)

    Leer, Jonatan

    2013-01-01

    Towards a Neutral Sexuality! or Roland Barthes as a Queer Thinker? This article argues that the work of Roland Barthes has interesting perspectives in common with the queer theory. This argument will be put forward by using his concept of ‘the neutral’ that Barthes defines as “that which outplays...

  20. Issues in neutral currents

    International Nuclear Information System (INIS)

    Sehgal, L.M.

    1980-01-01

    The experimental results on low energy confirming the structure of the effective Lagrangian of the weak neutral current processes as predicted by the Salam-Weinberg model are reviewed. Some possible modifications of the effective Lagrangian and the feasibility of their experimental verification are also considered. (P.L.)

  1. ITER neutral beam system

    International Nuclear Information System (INIS)

    Mondino, P.L.; Di Pietro, E.; Bayetti, P.

    1999-01-01

    The Neutral Beam (NB) system for the International Thermonuclear Experimental Reactor (ITER) has reached a high degree of integration with the tokamak and with the rest of the plant. Operational requirements and maintainability have been considered in the design. The paper considers the integration with the tokamak, discusses design improvements which appear necessary and finally notes R and D progress in key areas. (author)

  2. Analysis of particle species evolution in neutral beam injection lines

    International Nuclear Information System (INIS)

    Kim, J.; Haselton, H.H.

    1978-07-01

    Analytic solutions to the rate equations describing the species evolution of a multispecies positive ion beam of hydrogen due to charge exchange and molecular dissociation are derived as a function of the background gas (H 2 ) line density in the neutralizing gas cell and in the drift tube. Using the solutions, calculations are presented for the relative abundance of each species as a function of the gas cell thickness, the reionization loss rates in the drift tube, and the neutral beam power as a function of the beam energy and the species composition of the original ion beam

  3. STATISTICAL ANALYSIS OF THE HEAVY NEUTRAL ATOMS MEASURED BY IBEX

    International Nuclear Information System (INIS)

    Park, Jeewoo; Kucharek, Harald; Möbius, Eberhard; Galli, André; Livadiotis, George; Fuselier, Steve A.; McComas, David J.

    2015-01-01

    We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O and Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O and Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath

  4. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  5. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  6. Ferroelectric plasma source for heavy ion beam space charge neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Davidson, Ronald C.; Grisham, Larry; Grant Logan, B.; Seidl, Peter A.; Waldron, William; Yu, Simon S.

    2007-01-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to allow them to focus to a small spot size and compress their axial pulse length. The plasma source should be able to operate at low neutral pressures and without strong externally applied electric or magnetic fields. To produce 1 m-long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients are being developed. The sources utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic material, and high voltage (∼7 kV) will be applied between the drift tube and the front surface of the ceramics. A prototype ferroelectric source, 20 cm in length, has produced plasma densities of 5x10 11 cm -3 . It was integrated into the Neutralized Transport Experiment (NTX), and successfully charge neutralized the K + ion beam. A 1 m-long source comprised of five 20-cm-long sources has been tested. Simply connecting the five sources in parallel to a single pulse forming network power supply yielded non-uniform performance due to the time-dependent nature of the load that each of the five plasma sources experiences. Other circuit combinations have been considered, including powering each source by its own supply. The 1-m-long source has now been successfully characterized, producing relatively uniform plasma over the 1 m length of the source in the mid-10 10 cm -3 density range. This source will be integrated into the NDCX device for charge neutralization and beam compression experiments

  7. Hybrid Simulations of Plasma-Neutral-Dust Interactions at Enceladus

    International Nuclear Information System (INIS)

    Omidi, N.; Russell, C. T.; Jia, Y. D.; Tokar, R. L.; Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Leisner, J. S.

    2010-01-01

    Through ejection from its southern hemisphere, Enceladus is a dominant source of neutral gas and dust in Saturn's inner magnetosphere. The interaction of the corotating plasma with the gas and dust modifies the plasma environment around Enceladus. We use 3-D hybrid (kinetic ions, fluid electrons) simulations to examine the effects of gas and dust on the nature of the interaction region and use Cassini observations to constrain their properties.

  8. Antihypertensive neutral lipid

    Science.gov (United States)

    Snyder, F.L.; Blank, M.L.

    1984-10-26

    The invention relates to the discovery of a class of neutral acetylated either-linked glycerolipids having the capacity to lower blood presure in warm-blooded animals. This physiological effect is structure sensitive requiring a long chain alkyl group at the sn-1 position and a short carbon chain acyl group (acetyl or propionyl) at the sn-2 position, and a hydroxyl group at the sn-3 position.

  9. Exercise Equipment: Neutral Buoyancy

    Science.gov (United States)

    Shackelford, Linda; Valle, Paul

    2016-01-01

    Load Bearing Equipment for Neutral Buoyancy (LBE-NB) is an exercise frame that holds two exercising subjects in position as they apply counter forces to each other for lower extremity and spine loading resistance exercises. Resistance exercise prevents bone loss on ISS, but the ISS equipment is too massive for use in exploration craft. Integrating the human into the load directing, load generating, and motion control functions of the exercise equipment generates safe exercise loads with less equipment mass and volume.

  10. Neutral beams for mirrors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1983-01-01

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  11. Gargamelle: neutral current event

    CERN Multimedia

    1973-01-01

    This event shows real tracks of particles from the 1200 litre Gargamelle bubble chamber that ran on the PS from 1970 to 1976 and on the SPS from 1976 to 1979. In this image a neutrino passes close to a nucleon and reemerges as a neutrino. Such events are called neutral curent, as they are mediated by the Z0 boson which has no electric charge.

  12. Climate Neutral Campus Key Terms and Definitions | Climate Neutral Research

    Science.gov (United States)

    Campuses | NREL Neutral Campus Key Terms and Definitions Climate Neutral Campus Key Terms and Definitions The term climate neutral evolved along with net zero and a number of other "green" and accuracy in these areas lets research campuses know exactly how close they are to climate

  13. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  14. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G

    2001-01-01

    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  15. Thermodynamic and aerodynamic meanline analysis of wet compression in a centrifugal compressor

    International Nuclear Information System (INIS)

    Kang, Jeong Seek; Cha, Bong Jun; Yang, Soo Seok

    2006-01-01

    Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases

  16. Component design description of the neutral beam injectors for PLT

    International Nuclear Information System (INIS)

    Johnson, R.L.; Baer, M.B.; Dagenhart, W.K.; Haselton, H.H.; Mann, T.L.; Queen, C.C.; Stirling, W.L.; Whitfield, P.W.

    1977-01-01

    Plasma heating by injection of high energy neutrals is one of the experiments to be carried out on Princeton Large Torus (PLT). A four unit neutral beam injection system has been designed, built and tested which should inject a total of 3 MW of neutrals into PLT with a 200 millisecond pulse length. A typical system unit is described where the major components are identified. The following discussion describes each of these items along with some details of the design and fabrication problems encountered. Some early design considerations addressed the problems of separation and dumping of residual ions from the neutral beam, calorimetry of the neutrals with incident fuxes of 25 KW/cm 2 , and pumping speeds of several hundred thousand liters per second for hydrogen gas. Solutions were found for these problems while also resolving the complex dilemma of interfacing four large systems to a tokamak

  17. Negative ions as a source of low energy neutral beams

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  18. Negative ions as a source of low energy neutral beams

    International Nuclear Information System (INIS)

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems

  19. Neutral hydrogen in the stellar accociation Scorpius OB-2

    Energy Technology Data Exchange (ETDEWEB)

    Bystrova, N.V.

    1979-01-01

    The distribution of neutral hydrogen connected with the stellar association Scorpius OB-2 is more complex than the expanding semienvelope suggested earlier. The neutral gas is in connection with the nebulae S1, S7, S9 and with H/sub ..cap alpha../-filaments found in the association and giving it the appearence of a spiral galaxy. The HI-distribution is in disagreement with the model of a supernova remnant.

  20. Neutral-beam systems for magnetic-fusion reactors

    International Nuclear Information System (INIS)

    Fink, J.H.

    1981-01-01

    Neutral beams for magnetic fusion reactors are at an early stage of development, and require considerable effort to make them into the large, reliable, and efficient systems needed for future power plants. To optimize their performance to establish specific goals for component development, systematic analysis of the beamlines is essential. Three ion source characteristics are discussed: arc-cathode life, gas efficiency, and beam divergence, and their significance in a high-energy neutral-beam system is evaluated

  1. Neutralization of positive particle beams by electron trapping

    International Nuclear Information System (INIS)

    Mobley, R.M.; Irani, A.A.; LeMaire, J.L.; Maschke, A.W.

    1977-01-01

    Initial results are presented of a planned series of experimental tests of positive ion beam neutralization, involving transverse space charge studies of a 720 keV 60mA H + beam in a drift region of 4.6 meters. Two conclusions drawn from the data are: (1) the change in transmission observed is consistent with complete neutralization in the drift pipe for grounded or negative electrodes, and with complete de-neutralization in the case of greater than +240 V electrodes; and (2) background gas ionization cannot be the main source of electrons

  2. Bremsstrahlung and neutral currents

    International Nuclear Information System (INIS)

    Ellis, R.G.; McKellar, B.H.J.

    1979-01-01

    The utility of the bremsstrahlung process in detecting parity violations from V-A weak neutral current interference is analysed in two ways. Firstly, bremsstrahlung from polarized lepton-nucleus scattering has an asymmetry with respect to the polarization of the incident leptons, and secondly, bremsstrahlung from unpolarized lepton nucleus scattering has a small circular polarization. The magnitude of each effect is calculated. The ratio of the parity violating contribution and the parity conserving contribution to the cross section is shown to be a misleading measure of the utility of these experiments. A parameter, the figure of merit, is introduced and used to discuss the feasibility of possible experiments

  3. VLA observations of circumnebular neutral hydrogen in IC 418

    International Nuclear Information System (INIS)

    Taylor, A.R.; Gussie, G.T.; Goss, W.M.

    1989-01-01

    Neutral hydrogen images of the planetary nebula IC 418 have been made with the Very Large Array. These images show H I emission and absorption in close association with the nebula. Assuming a distance of 1 kpc, the total mass of circumnebular neutral hydrogen is 0.35 + or - 0.05 solar mass. Model fits to the data indicate that the neutral gas falls as a 1/r-squared density distribution, with outflow velocity about 5 km/s less than the expansion rate of the ionized gas. The observations also indicate that there is a region devoid of H I emission between the outer edge of the H II nebula and the inner edge of the H I shell. It is suggested that this gap is comprised of molecular hydrogen and that the surrounding H I shell is produced by photodissociation of H2 by the interstellar radiation field. Physical parameters of the H I gas are derived. 25 refs

  4. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-04-15

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar{sup +} beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ∼5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  5. Neutral helium beam probe

    Science.gov (United States)

    Karim, Rezwanul

    1999-10-01

    This article discusses the development of a code where diagnostic neutral helium beam can be used as a probe. The code solves numerically the evolution of the population densities of helium atoms at their several different energy levels as the beam propagates through the plasma. The collisional radiative model has been utilized in this numerical calculation. The spatial dependence of the metastable states of neutral helium atom, as obtained in this numerical analysis, offers a possible diagnostic tool for tokamak plasma. The spatial evolution for several hypothetical plasma conditions was tested. Simulation routines were also run with the plasma parameters (density and temperature profiles) similar to a shot in the Princeton beta experiment modified (PBX-M) tokamak and a shot in Tokamak Fusion Test Reactor tokamak. A comparison between the simulation result and the experimentally obtained data (for each of these two shots) is presented. A good correlation in such comparisons for a number of such shots can establish the accurateness and usefulness of this probe. The result can possibly be extended for other plasma machines and for various plasma conditions in those machines.

  6. Depressurization of a spread of Brazil-Bolivia gas pipeline and the emergency repair of a weld crack in a instrument derivation at Campo Grande compression station; Despressurizacao de trecho do gasoduto Bolivia-Brazil para reparo emergencial de trinca em uma derivacao de instrumento de temperatura na Estacao de Compressao de Campo Grande - MS

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Carlos Ribeiro; Leite Junior, Ismael Casano [TBG - Transportadora Brasileira Gasoduto Bolivia Brasil S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The purpose of this paper is to report the actions taken to repair a gas leak, at an original pressure of 100 kgf/cm{sup 2}, occurred due to a 1 1/2'' branch pipe weld crack, located on the 24'' Campo Grande - Mato Grosso do Sul Compression Station discharge pipe. This branch pipe was used to a thermo well installation and was submitted to an additional strength caused by thermo well vibration. The weld repair actions required an urgent depressurization of a 33 km spread of Bolivia-Brazil Pipeline in a timely manner, to avoid any negative impact in the operational schedule. (author)

  7. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  8. Fundamentals of gas counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1994-01-01

    The operation of gas counters used for detecting radiation is explained in terms of the four fundamental physical processes which govern their operation. These are 1) conversion of neutral radiation into charged particles, 2) ionization of the host gas by a fast charge particle 3) transport of the gas ions to the electrodes and 4) amplification of the electrons in a region of enhanced electric field. Practical implications of these are illustrated. (UK)

  9. Tomorrow, gas

    International Nuclear Information System (INIS)

    Icart, Laura; Jean, Pascale; Georget, Cyrille; Schmill, Rafael

    2017-01-01

    This document contains 12 articles notably addressing the importance of natural gas production and supplies in Europe. The themes of the articles are: the advantages of natural gas in the context of energy and environmental policies, energy diversification, energy supply in the local territories, etc.; the position of GrDF, one of the main French natural gas supplier; LPG (butane, propane), a solution which popularity grows in remote areas; the Gaya project (production of renewable gas from dry biomass); a panorama of gas supply routes in Europe; the situation of gas in Europe's energy supply and consumption; the promotion of LNG fuel for maritime and fluvial ships; why the small scale LNG could be the next revolution; presentation of the new 'Honfleur' ferry (using LNG fuel) that will cross the English Channel by 2019; carbon market and the role of ETS for the energy policy in Europe facing the climatic change challenge; presentation of the French 'Climate Plan' that aims to engage France into a carbon neutrality by 2050; presentation of the French policy against air pollution; economic growth, energy, climate: how to square this circle?

  10. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  11. Spectroscopy of neutral radium

    Energy Technology Data Exchange (ETDEWEB)

    Mol, Aran; De, Subhadeep; Jungmann, Klaus; Wilschut, Hans; Willmann, Lorenz [KVI, University of Groningen, Groningen (Netherlands)

    2008-07-01

    The heavy alkaline earth atoms radium is uniquely sensitive towards parity and time reversal symmetry violations due to a large enhancement of an intrinsic permanent electric dipole moment of the nucleous or the electron. Furthermore, radium is sensitive to atomic parity violation and the nuclear anapole moment. To prepare such experiments spectroscopy of relevant atomic states need to be done. At a later stage we will build a neutral atom trap for radium. We have built an atomic beam of the short lived isotope {sup 225}Ra with a flux of several 10{sup 4} atoms/sec. We are preparing the laser spectroscopy using this beam setup. In the preparation for efficient laser cooling and trapping we have successfully trapped barium, which is similar in it's requirements for laser cooling. The techniques which we have developed with barium can be used to trap rare radium isotopes. We report on the progress of the experiments.

  12. Data Compression of Hydrocarbon Reservoir Simulation Grids

    KAUST Repository

    Chavez, Gustavo Ivan

    2015-05-28

    A dense volumetric grid coming from an oil/gas reservoir simulation output is translated into a compact representation that supports desired features such as interactive visualization, geometric continuity, color mapping and quad representation. A set of four control curves per layer results from processing the grid data, and a complete set of these 3-dimensional surfaces represents the complete volume data and can map reservoir properties of interest to analysts. The processing results yield a representation of reservoir simulation results which has reduced data storage requirements and permits quick performance interaction between reservoir analysts and the simulation data. The degree of reservoir grid compression can be selected according to the quality required, by adjusting for different thresholds, such as approximation error and level of detail. The processions results are of potential benefit in applications such as interactive rendering, data compression, and in-situ visualization of large-scale oil/gas reservoir simulations.

  13. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  14. Rapid depressurization of a compressible fluid

    International Nuclear Information System (INIS)

    Dang, M.; Dupont, J.F.; Weber, H.

    1978-08-01

    The rapid depressurization of a plenum is a situation frequently encountered in the dynamical analysis of nuclear gas cycles of the HHT type. Various methods of numerical analyses for a 1-dimensional flow model are examined: finite difference method; control volume method; method of characteristics. Based on the shallow water analogy to compressible flow, the numerical results are compared with those from a water table set up to simulate a standard problem. (Auth.)

  15. Net neutrality and audiovisual services

    OpenAIRE

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication networks: the control over the distribution of audiovisual services constitutes a vital part of the problem. In this contribution, the phenomenon of net neutrality is described first. Next, the European a...

  16. Adiabatic liquid piston compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Tage [Danish Technological Institute, Aarhus (Denmark); Elmegaard, B. [Technical Univ. of Denmark. DTU Mechanical Engineering, Kgs. Lyngby (Denmark); Schroeder Pedersen, A. [Technical Univ. of Denmark. DTU Energy Conversion, Risoe Campus, Roskilde (Denmark)

    2013-01-15

    This project investigates the potential of a Compressed Air Energy Storage system (CAES system). CAES systems are used to store mechanical energy in the form of compressed air. The systems use electricity to drive the compressor at times of low electricity demand with the purpose of converting the mechanical energy into electricity at times of high electricity demand. Two such systems are currently in operation; one in Germany (Huntorf) and one in the USA (Macintosh, Alabama). In both cases, an underground cavern is used as a pressure vessel for the storage of the compressed air. Both systems are in the range of 100 MW electrical power output with several hours of production stored as compressed air. In this range, enormous volumes are required, which make underground caverns the only economical way to design the pressure vessel. Both systems use axial turbine compressors to compress air when charging the system. The compression leads to a significant increase in temperature, and the heat generated is dumped into the ambient. This energy loss results in a low efficiency of the system, and when expanding the air, the expansion leads to a temperature drop reducing the mechanical output of the expansion turbines. To overcome this, fuel is burned to heat up the air prior to expansion. The fuel consumption causes a significant cost for the storage. Several suggestions have been made to store compression heat for later use during expansion and thereby avoid the use of fuel (so called Adiabatic CAES units), but no such units are in operation at present. The CAES system investigated in this project uses a different approach to avoid compression heat loss. The system uses a pre-compressed pressure vessel full of air. A liquid is pumped into the bottom of the vessel when charging and the same liquid is withdrawn through a turbine when discharging. In this case, the liquid works effectively as a piston compressing the gas in the vessel, hence the name &apos

  17. LADEE Neutral Mass Spectrometer Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This bundle contains the data collected by the Neutral Mass Spectrometer (NMS) instrument aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE)...

  18. Phenomenology of neutral current interactions

    International Nuclear Information System (INIS)

    Sakurai, J.J.

    1978-01-01

    Neutral-current interactions are discussed within a rather general phenomenological framework without commitment to any particular theoretical model. Three points are kept in mind: what various experiments really measure; the performing of complete experiments to determine the neutral-current couplings; and the testing of models in an objective, emotionally uninvolved manner. The following topics are considered: neutrino-electron scattering, hadronic currents and models, neutrino-induced inclusive hadronic reactions, neutrino-induced exclusive hadronic reactions, and neutral-current phenomena without neutrinos. In conclusion, what has actually been learned about neutral-current interactions is summarized. 9 figures, 2 tables

  19. On becoming neutral: effects of experimental neutralizing reconsidered.

    Science.gov (United States)

    van den Hout, M; van Pol, M; Peters, M

    2001-12-01

    Behaviour Research and Therapy 34 (1996) 889-898 found that writing out a negative thought produced anxiety and an urge to neutralize the thought, that instructing participants to neutralize the thought reduced anxiety/neutralization urge in the short run (i.e. within 2 min), but that in the control group 20 min without instruction was attended by the same reduction in anxiety/urge to neutralize ("natural decay"). The observations were made with pariticipants who scored high on "thought action fusion" and the experiment was set up as exerimental model of obsessions. We repeated the study with participants that were not selected on thought action fusion. All the findings reported by Behaviour Research and Therapy 34 (1996) 889-898 were replicated. Correlational analysis indicated that the strength of the effect was not related to scores on scales measuring "thought action fusion". Behaviour Research and Therapy 34 (1996) 889-898 did not assess whether non-neutralizing was followed by immediate reductions in distress. We did assess this and found that the larger part of the immediate reduction of distress after neutralization also occurs when no neutralization instruction is given. The effects of neutralization instructions in the present type of experiment are considerably less powerful than suggested earlier.

  20. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  1. Development and test of a new catalytic converter for natural gas ...

    Indian Academy of Sciences (India)

    catalytic converter and a new natural gas engine such as compressed natural gas. (CNG) direct ..... bility to store oxygen from random gas flow within the substrate in comparison to flow through ..... and behaviour in the water–gas shift reaction.

  2. Economic and environmental evaluation of compressed-air cars

    International Nuclear Information System (INIS)

    Creutzig, Felix; Kammen, Daniel M; Papson, Andrew; Schipper, Lee

    2009-01-01

    Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.

  3. Elements of gas dynamics

    CERN Document Server

    Liepmann, H W

    2001-01-01

    The increasing importance of concepts from compressible fluid flow theory for aeronautical applications makes the republication of this first-rate text particularly timely. Intended mainly for aeronautics students, the text will also be helpful to practicing engineers and scientists who work on problems involving the aerodynamics of compressible fluids. Covering the general principles of gas dynamics to provide a working understanding of the essentials of gas flow, the contents of this book form the foundation for a study of the specialized literature and should give the necessary background

  4. Intense diagnostic neutral beam development for ITER

    International Nuclear Information System (INIS)

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-μs accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance

  5. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  6. Is science metaphysically neutral?

    Science.gov (United States)

    Fry, Iris

    2012-09-01

    This paper challenges the claim that science is metaphysically neutral upheld by contenders of the separation of peacefully co-existent science and religion and by evolutionary theists. True, naturalistic metaphysical claims can neither be refuted nor proved and are thus distinct from empirical hypotheses. However, metaphysical assumptions not only regulate the theoretical and empirical study of nature, but are increasingly supported by the growing empirical body of science. This historically evolving interaction has contributed to the development of a naturalistic worldview that renounces the necessity of a transcendent god and of purposeful design. The thesis presented here differs not only from the claims of the "separatists" and of evolutionary theists. In pointing to the metaphysical aspects of science, I also criticize the failure of some evolutionary naturalists to distinguish between empirical and metaphysical contentions. Most important, based on the examination of science suggested here, creationists' false accusation that science is only a naturalistic dogma is refuted. Finally, the difficulties involved in the position endorsed here for the public support of evolution are acknowledged, taking into account the high religious profile of the American society and the social and political context in the US and in other countries. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  8. Negative compressibility observed in graphene containing resonant impurities

    International Nuclear Information System (INIS)

    Chen, X. L.; Wang, L.; Li, W.; Wang, Y.; He, Y. H.; Wu, Z. F.; Han, Y.; Zhang, M. W.; Xiong, W.; Wang, N.

    2013-01-01

    We observed negative compressibility in monolayer graphene containing resonant impurities under different magnetic fields. Hydrogenous impurities were introduced into graphene by electron beam (e-beam) irradiation. Resonant states located in the energy region of ±0.04 eV around the charge neutrality point were probed in e-beam-irradiated graphene capacitors. Theoretical results based on tight-binding and Lifshitz models agreed well with experimental observations of graphene containing a low concentration of resonant impurities. The interaction between resonant states and Landau levels was detected by varying the applied magnetic field. The interaction mechanisms and enhancement of the negative compressibility in disordered graphene are discussed.

  9. Realisation and tests of a compressed gas Cherenkov counter. Study of the pollution of a beam (1961); Realisation et essais d'un compteur cherenkov a gaz comprime etude de la pollution d'un faisceau (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Duboc, J; Banaigs, J; Detoeuf, J F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The realisation of a compressed as Cherenkov counter permits the study of the pollution of a beam of {pi} mesons with momentum varying from 220 to 11000 MeV/c. (authors) [French] La realisation d'un compteur Cherenkov a gaz sous pression permet l'etude de la pollution d'un faisceau de mesons {pi} d'impulsions comprise entre 220 et 1100 MeV/c. (auteurs)

  10. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  11. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  12. The merits of neutral theory

    NARCIS (Netherlands)

    Alonso, D.; Etienne, R.S.; McKane, A.J.

    2006-01-01

    Hubbell's neutral theory of biodiversity has challenged the classic niche-based view of ecological community structure. Although there have been many attempts to falsify Hubbell's theory, we argue that falsification should not lead to rejection, because there is more to the theory than neutrality

  13. Neutral evolution of mutational robustness

    NARCIS (Netherlands)

    Nimwegen, Erik van; Crutchfield, James P.; Huynen, Martijn

    1999-01-01

    We introduce and analyze a general model of a population evolving over a network of selectively neutral genotypes. We show that the population s limit distribution on the neutral network is solely determined by the network topology and given by the principal eigenvector of the network

  14. Net neutrality and audiovisual services

    NARCIS (Netherlands)

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication

  15. Fluffy dust forms icy planetesimals by static compression

    Science.gov (United States)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  16. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  17. 46 CFR 121.240 - Gas systems.

    Science.gov (United States)

    2010-10-01

    ... gas (LPG) and compressed natural gas (CNG) must meet the following requirements: (a) The design, installation and testing of each LPG system must meet ABYC A-1, “Marine Liquefied Petroleum Gas (LPG) Systems... 46 Shipping 4 2010-10-01 2010-10-01 false Gas systems. 121.240 Section 121.240 Shipping COAST...

  18. 1999 Annual report: compression + power + service

    International Nuclear Information System (INIS)

    2000-01-01

    Enerflex manufactures, services and leases compression systems for the production and processing of natural gas and gas-fueled power generation systems. Design, engineering, project management, financing, installation commissioning and after-sales service are also part of Enerflex's arsenal of tools to ensure innovation, and high standards of quality and service. In 1999, Enerflex suffered an 18 per cent decline in revenues from $315 million in 1998 to $257 million in 1999, entirely due to lower sales of big ticket compression equipment in Canada. At the same time, revenues from international sales and service increased to $ 61.8 million in 1999, from $ 53 million in 1998. The company successfully completed the move to a new 328,000 sq. ft state-of-the-art manufacturing facility, and made its first significant sale to the United States in 1999 in the form of delivering a coal bed methane project in the Powder River area of Wyoming, and power generation equipment to Massachusetts. Although in the short term unusually warm average temperatures, industry cash flows, and access to capital may determine demand for the company's products and services, the long-term fundamentals are positive and demand for compression equipment and power generation systems is likely to grow. Indeed, in the fourth quarter of 1999, market conditions improved significantly and the company recorded its highest quarterly revenues and earnings during the last quarter. The annual review provides further details about the operations of the company's various divisions, (Compression and Power Systems, Parts and Compression Services, Leasing and Financing), management's review of the company's overall operations and finances, audited financial statements, and shareholders' information

  19. Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring.

    Science.gov (United States)

    Rahimpour, Mohammad Reaza; Jokar, Seyyed Mohammad

    2012-03-30

    A suggested method for controlling the level of hazardous materials in the atmosphere is prevention of combustion in flare. In this work, three methods are proposed to recover flare gas instead of conventional gas-burning in flare at the Farashband gas refinery. These methods aim to minimize environmental and economical disadvantages of burning flare gas. The proposed methods are: (1) gas to liquid (GTL) production, (2) electricity generation with a gas turbine and, (3) compression and injection into the refinery pipelines. To find the most suitable method, the refinery units that send gas to the flare as well as the required equipment for the three aforementioned methods are simulated. These simulations determine the amount of flare gas, the number of GTL barrels, the power generated by the gas turbine and the required compression horsepower. The results of simulation show that 563 barrels/day of valuable GTL products is produced by the first method. The second method provides 25 MW electricity and the third method provides a compressed natural gas with 129 bar pressure for injection to the refinery pipelines. In addition, the economics of flare gas recovery methods are studied and compared. The results show that for the 4.176MMSCFD of gas flared from the Farashband gas refinery, the electricity production gives the highest rate of return (ROR), the lowest payback period, the highest annual profit and mild capital investment. Therefore, the electricity production is the superior method economically. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A compressibility based model for predicting the tensile strength of directly compressed pharmaceutical powder mixtures.

    Science.gov (United States)

    Reynolds, Gavin K; Campbell, Jacqueline I; Roberts, Ron J

    2017-10-05

    A new model to predict the compressibility and compactability of mixtures of pharmaceutical powders has been developed. The key aspect of the model is consideration of the volumetric occupancy of each powder under an applied compaction pressure and the respective contribution it then makes to the mixture properties. The compressibility and compactability of three pharmaceutical powders: microcrystalline cellulose, mannitol and anhydrous dicalcium phosphate have been characterised. Binary and ternary mixtures of these excipients have been tested and used to demonstrate the predictive capability of the model. Furthermore, the model is shown to be uniquely able to capture a broad range of mixture behaviours, including neutral, negative and positive deviations, illustrating its utility for formulation design. Copyright © 2017 Elsevier B.V. All rights reserved.