WorldWideScience

Sample records for neuromuscular blocking activity

  1. The undesirable effects of neuromuscular blocking drugs

    DEFF Research Database (Denmark)

    Claudius, C; Garvey, L H; Viby-Mogensen, J

    2009-01-01

    Neuromuscular blocking drugs are designed to bind to the nicotinic receptor at the neuromuscular junction. However, they also interact with other acetylcholine receptors in the body. Binding to these receptors causes adverse effects that vary with the specificity for the cholinergic receptor...... in question. Moreover, all neuromuscular blocking drugs may cause hypersensitivity reactions. Often the symptoms are mild and self-limiting but massive histamine release can cause systematic reactions with circulatory and respiratory symptoms and signs. At the end of anaesthesia, no residual effect...... of a neuromuscular blocking drug should be present. However, the huge variability in response to neuromuscular blocking drugs makes it impossible to predict which patient will suffer postoperative residual curarization. This article discusses the undesirable effects of the currently available neuromuscular blocking...

  2. Chemical encapsulation of rocuronium by synthetic cyclodextrin derivatives: reversal of neuromuscular block in anaesthetized Rhesus monkeys.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: At present, reversal of neuromuscular block induced by steroidal neuromuscular blocking agents (NMBAs) is achieved by administration of cholinesterase inhibitors. Chemical encapsulation of steroidal NMBAs, such as rocuronium, by a cyclodextrin is a new concept in neuromuscular block

  3. Pharmacokinetic studies of neuromuscular blocking agents: Good Clinical Research Practice (GCRP)

    DEFF Research Database (Denmark)

    Viby-Mogensen, J.; Østergaard, D.; Donati, F.

    2000-01-01

    Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design......Good Clinical Research Practice (GCRP), neuromuscular blocking agents, pharmacokinetics, pharmacokinetic/pharmacodynamic modeling, population pharmacokinetics, statistics, study design...

  4. Volume of the effect compartment in simulations of neuromuscular block

    NARCIS (Netherlands)

    Nigrovic, Vladimir; Proost, Johannes H.; Amann, Anton; Bhatt, Shashi B.

    2005-01-01

    Background: The study examines the role of the volume of the effect compartment in simulations of neuromuscular block (NMB) produced by nondepolarizing muscle relaxants. Methods: The molar amount of the postsynaptic receptors at the motor end plates in muscle was assumed constant; the apparent

  5. A case series of re-establishment of neuromuscular block with rocuronium after sugammadex reversal.

    Science.gov (United States)

    Iwasaki, Hajime; Sasakawa, Tomoki; Takahoko, Kenichi; Takagi, Shunichi; Nakatsuka, Hideki; Suzuki, Takahiro; Iwasaki, Hiroshi

    2016-06-01

    We report the use of rocuronium to re-establish neuromuscular block after reversal with sugammadex. The aim of this study was to investigate the relationship between the dose of rocuronium needed to re-establish neuromuscular block and the time interval between sugammadex administration and re-administration of rocuronium. Patients who required re-establishment of neuromuscular block within 12 h after the reversal of rocuronium-induced neuromuscular block with sugammadex were included. After inducing general anesthesia and placing the neuromuscular monitor, the protocol to re-establish neuromuscular block was as follows. An initial rocuronium dose of 0.6 mg/kg was followed by additional 0.3 mg/kg doses every 2 min until train-of-four responses were abolished. A total of 11 patients were enrolled in this study. Intervals between sugammadex and second rocuronium were 12-465 min. Total dose of rocuronium needed to re-establish neuromuscular block was 0.6-1.2 mg/kg. 0.6 mg/kg rocuronium re-established neuromuscular block in all patients who received initial sugammadex more than 3 h previously. However, when the interval between sugammadex and second rocuronium was less than 2 h, more than 0.6 mg/kg rocuronium was necessary to re-establish neuromuscular block.

  6. Sugammadex in antagonism of neuromuscular block in anesthesia: a clinical and economic profile

    Directory of Open Access Journals (Sweden)

    Viola Sacchi

    2009-09-01

    Full Text Available Sugammadex is a modified cyclodextrin which acts by encapsulating and inactivating the neuromuscular blocking agents (NMBAs rocuronium and vecuronium, used to induce relaxation of skeletal muscles during surgery and to facilitate endotracheal intubation. The procedure of reversal of the block at the end of surgery can influence the time to discharge from the operating room and post-operative residual curarization (PORC incidence, which is related to an increased rate of adverse respiratory events in the post-anaesthesia care unit. Cholinesterase inhibitors are frequently used to reverse neuromuscular block, but their use is associated with potential cardiovascular and respiratory side-effects. The recommended dose-range for sugammadex is 2-16 mg/kg, depending on the level of block: the dose is approximately 2 mg/kg for reversal of moderate blockade, 4 mg/kg for deep blockade and 16 mg/kg for the immediate reversal of a neuromuscular blockade as early as 3 minutes after 1-1.2 mg/kg of rocuronium. Four pivotal, phase III trials studied sugammadex in routine reversal of moderate, deep neuromuscular block and in the immediate reversal of rocuronium-induced block. In all the cases the drug demonstrated of being significantly more efficient than other reversal strategies, providing a faster reversal than the most used anticholinesterase comparator neostigmine. Sugammadex also appeared to have an acceptable safety profile. Acquisition cost of sugammadex is greater than that of neostigmine, but cost-savings related to the reduced theatre time and to the reduced incidence of PORC episodes can offset it. A Budget Impact analysis in the perspective of the hospital has been conducted for the Italian setting resulting in a total cost-save of 7,420 € for one year of activity. In conclusion, sugammadex appears to be a valuable innovation in anesthesiology. This drug represents a safe and effective alternative to anticholinesterase agents.

  7. Sugammadex, a new reversal agent for neuromuscular block induced by rocuronium in the anaesthetized Rhesus monkey.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: Binding of the steroidal molecule of rocuronium by a cyclodextrin is a new concept for reversal of neuromuscular block. The present study evaluated the ability of Sugammadex Org 25969, a synthetic gamma-cyclodextrin derivative, to reverse constant neuromuscular block of about 90% induced

  8. Reversal of rocuronium-induced profound neuromuscular block by sugammadex in Duchenne muscular dystrophy.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Booij, L.H.D.J.; Driessen, J.J.

    2009-01-01

    A case is reported in which a child with Duchenne muscular dystrophy received a dose of sugammadex to reverse a rocuronium-induced profound neuromuscular block. Sugammadex is the first selective relaxant binding agent and reverses rocuronium- and vecuronium-induced neuromuscular block. A fast and

  9. Anti-GM2 gangliosides IgM paraprotein induces neuromuscular block without neuromuscular damage.

    Science.gov (United States)

    Santafé, Manel M; Sabaté, M Mar; Garcia, Neus; Ortiz, Nico; Lanuza, M Angel; Tomàs, Josep

    2008-11-15

    We analyzed the effect on the mouse neuromuscular synapses of a human monoclonal IgM, which binds specifically to gangliosides with the common epitope [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-]. We focused on the role of the complement. Evoked neurotransmission was partially blocked by IgM both acutely (1 h) and chronically (10 days). Transmission electron microscopy shows important nerve terminal growth and retraction remodelling though axonal injury can be ruled out. Synapses did not show mouse C5b-9 immunofluorescence and were only immunolabelled when human complement was added. Therefore, the IgM-induced synaptic changes occur without complement-mediated membrane attack.

  10. Recent advances in neuromuscular block during anesthesia [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Martijn Boon

    2018-02-01

    Full Text Available Muscle relaxation is a routine part of anesthesia and has important advantages. However, the lingering effects of muscle relaxants in the postoperative period have historically been associated with postoperative adverse events. Neuromuscular reversal, together with neuromuscular monitoring, is a recognized strategy to reduce the rate of postoperative residual relaxation but has only marginally improved outcome in the past few decades. Sugammadex, a novel reversal agent with unique encapsulating properties, has changed the landscape of neuromuscular reversal and opened up new opportunities to improve patient care. By quickly and completely reversing any depth of neuromuscular block, it may reduce the rate of residual relaxation and improve respiratory recovery. In addition, sugammadex has made the use of deep neuromuscular block possible during surgery. Deep neuromuscular block may improve surgical working conditions and allow for a reduction in insufflation pressures during selected laparoscopic procedures. However, whether and how this may impact outcomes is not well established.

  11. Neuromuscular blocking and cardiovascular effects of Org 9487, a new short-acting aminosteroidal blocking agent, in anaesthetized animals and in isolated muscle preparations

    NARCIS (Netherlands)

    Muir, A.W.; Sleigh, T.; Marshall, R.J.; Pow, E.; Anderson, K.; Booij, L.H.D.J.; Hill, D.R.

    1998-01-01

    This study was undertaken to investigate the neuromuscular blocking profile and cardiovascular effects of Org 9487, a new aminosteroidal, non-depolarizing, neuromuscular blocking agent structurally related to vecuronium, in anaesthetized animals and in isolated muscle preparations. In in vitro

  12. Classification of neuromuscular blocking agents in a new neuromuscular preparation of the chick in vitro

    NARCIS (Netherlands)

    Riezen, H. van

    1968-01-01

    A neuromuscular preparation of the chick is described: 1. 1. The sciatic nerve-tibilis anterior muscle preparation of the 2–10 days old chick fulfils all criteria of an assay preparation and differentiates between curare-like and decamethonium-like agents. 2. 2. The preparation responds to

  13. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study

    DEFF Research Database (Denmark)

    Sorgenfrei, Iben F; Norrild, Kathrine; Larsen, Per Bo

    2006-01-01

    Sugammadex (Org 25969) forms a complex with steroidal neuromuscular blocking agents, thereby reversing neuromuscular block. This study investigated the dose-response relation, safety, and pharmacokinetics of sugammadex to reverse rocuronium-induced block.......Sugammadex (Org 25969) forms a complex with steroidal neuromuscular blocking agents, thereby reversing neuromuscular block. This study investigated the dose-response relation, safety, and pharmacokinetics of sugammadex to reverse rocuronium-induced block....

  14. Influence of deep neuromuscular block on the surgeonś assessment of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, M V; Scheppan, S; Mørk, E

    2017-01-01

    Background: During laparotomy, surgeons may experience difficult surgical conditions if the patient's abdominal wall or diaphragm is tense. Deep neuromuscular block (NMB), defined as a post-tetanic-count (PTC) between 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesized th...

  15. Rocuronium-induced neuromuscular block and sugammadex in pediatric patient with duchenne muscular dystrophy

    Science.gov (United States)

    Kim, Ji Eun; Chun, Hea Rim

    2017-01-01

    Abstract Introduction: Anesthetic management of patients with Duchenne muscular dystrophy (DMD) is complicated because these patients are more sensitive to nondepolarizing neuromuscular blocking agents (NMBAs) and are vulnerable to postoperative complications, such as postoperative residual curarization and respiratory failure. Sugammadex is a new reversal agent for aminosteroidal NMBAs, but its safety in children is controversial. Clinical features: An 11-year-old boy with DMD underwent general anesthesia for a percutaneous nephrolithotomy. We used rocuronium bromide and sugammadex to reverse the deep neuromuscular block. Reversal of neuromuscular block was done 15 minutes after administration of 2 mg/kg of sugammadex. The patient's recovery from anesthesia was uneventful, and he was discharged to the postoperative recovery ward. Conclusion: A delayed recovery was achieved, but no adverse events were observed, such as recurarization or hypersensitivity to sugammadex. We report safe use of 2 mg/kg of sugammadex to reverse a deep neuromuscular block in a child with DMD. PMID:28353578

  16. Sugammadex as a reversal agent for neuromuscular block: an evidence-based review

    Science.gov (United States)

    Schaller, Stefan Josef; Fink, Heidrun

    2013-01-01

    Sugammadex is the first clinical representative of a new class of drugs called selective relaxant binding agents. It has revolutionized the way anesthesiologists think about drug reversal. Sugammadex selectively binds rocuronium or vecuronium, thereby reversing their neuromuscular blocking action. Due to its 1:1 binding of rocuronium or vecuronium, it is able to reverse any depth of neuromuscular block. So far, it has been approved for use in adult patients and for pediatric patients over 2 years. Since its approval in Europe, Japan, and Australia, further insight on its use in special patient populations and specific diseases have become available. Due to its pharmacodynamic profile, sugammadex, in combination with rocuronium, may have the potential to displace succinylcholine as the “gold standard” muscle relaxant for rapid sequence induction. The use of rocuronium or vecuronium, with the potential of reverse of their action with sugammadex, seems to be safe in patients with impaired neuromuscular transmission, ie, neuromuscular diseases, including myasthenia gravis. Data from long-term use of sugammadex is not yet available. Evidence suggesting an economic advantage of using sugammadex and justifying its relatively high cost for an anesthesia-related drug, is missing. PMID:24098155

  17. A survey of the current use of neuromuscular blocking drugs among the Middle Eastern anesthesiologists

    Directory of Open Access Journals (Sweden)

    Abdelazeem Eldawlatly

    2013-01-01

    Full Text Available Background: This survey aimed to assess the extent of practice of the Middle Eastern anesthesiologists in the use of neuromuscular blocking agents (NMB in 2012. Methods: We distributed an electronic survey among 577 members of the Triple-M Middle Eastern Yahoo anesthesia group, enquiring about their practice in the use of neuromuscular blocking agents. Questions concerned the routine "first choice" use of NMB, choice for tracheal intubation, the use of neuromuscular monitoring (NMT, type of NMB used in difficult airway, frequency of using suxamethonium, cisatracurium, rocuronium and sugammadex, observed side effects of rocuronium, residual curarization, and the reversal of residual curarization of rocuronium. Results: A total of 71 responses from 22 Middle Eastern institutions were collected. Most of the Middle Eastern anesthesiologists were using cisatracurium and rocuronium frequently for tracheal intubation (39% and 35%, respectively. From the respondents, 2/3 were using suxamethonium for tracheal intubation in difficult airway, 1/3 were using rocuronium routinely and 17% have observed hypersensitivity reactions to rocuronium, 54% reported residual curarization from rocuronium, 78% were routinely using neostigmine to reverse the rocuronium, 21% used sugammadex occasionally, and 35% were using NMT routinely during the use of NMB. Conclusions: We believe that more could be done to increase the awareness of the Middle Eastern anesthesiologists about the high incidence of PROC (>20% and the need for routine monitoring of neuromuscular function. This could be accomplished with by developing formal training programs and providing official guidelines.

  18. A survey of the current use of neuromuscular blocking drugs among the Middle Eastern anesthesiologists.

    Science.gov (United States)

    Eldawlatly, Abdelazeem; El-Tahan, Mohamed R

    2013-04-01

    This survey aimed to assess the extent of practice of the Middle Eastern anesthesiologists in the use of neuromuscular blocking agents (NMB) in 2012. We distributed an electronic survey among 577 members of the Triple-M Middle Eastern Yahoo anesthesia group, enquiring about their practice in the use of neuromuscular blocking agents. Questions concerned the routine first choice use of NMB, choice for tracheal intubation, the use of neuromuscular monitoring (NMT), type of NMB used in difficult airway, frequency of using suxamethonium, cisatracurium, rocuronium and sugammadex, observed side effects of rocuronium, residual curarization, and the reversal of residual curarization of rocuronium. A total of 71 responses from 22 Middle Eastern institutions were collected. Most of the Middle Eastern anesthesiologists were using cisatracurium and rocuronium frequently for tracheal intubation (39% and 35%, respectively). From the respondents, 2/3 were using suxamethonium for tracheal intubation in difficult airway, 1/3 were using rocuronium routinely and 17% have observed hypersensitivity reactions to rocuronium, 54% reported residual curarization from rocuronium, 78% were routinely using neostigmine to reverse the rocuronium, 21% used sugammadex occasionally, and 35% were using NMT routinely during the use of NMB. We believe that more could be done to increase the awareness of the Middle Eastern anesthesiologists about the high incidence of PROC (>20%) and the need for routine monitoring of neuromuscular function. This could be accomplished with by developing formal training programs and providing official guidelines.

  19. Sugammadex and Reversal of Neuromuscular Block in Adult Patient with Duchenne Muscular Dystrophy

    Directory of Open Access Journals (Sweden)

    Ahmed Abdelgawwad Wefki Abdelgawwad Shousha

    2014-01-01

    Full Text Available Duchenne’s muscular dystrophy (DMD is the most common and severe form of myopathy. Patients with DMD are more sensitive to sedative, anesthetic, and neuromuscular blocking agents which may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. In this case report, we describe a 25-year-old male patient admitted for cholecystectomy under general anesthesia. We induced our anesthesia by oxygen, propofol, fentanyl, and rocuronium bromide. Maintenance was done by fentanyl, rocuronium bromide, sevoflurane, and O2. We report in this case the safety use of sugammadex to antagonize the neuromuscular block and rapid recovery in such category of patients.

  20. Bloqueio neuromuscular residual após o uso de rocurônio ou cisatracúrio Bloqueo neuromuscular residual después del uso de rocuronio o cisatracúrio Residual neuromuscular block after rocuronium or cisatracurium

    Directory of Open Access Journals (Sweden)

    Bruno Salomé de Morais

    2005-12-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: O bloqueio neuromuscular residual na sala de recuperação pós-anestésica (SRPA é um fenômeno que pode aumentar a morbidade pós-operatória, com incidência variando entre 0% e 93%. O objetivo deste estudo foi avaliar a incidência do bloqueio neuromuscular residual na SRPA. MÉTODO: Foram estudados 93 pacientes submetidos à cirurgia geral com o uso de cisatracúrio ou rocurônio. Após a admissão na SRPA foi realizada a monitorização objetiva da função neuromuscular (aceleromiografia - TOF GUARD. O bloqueio neuromuscular residual foi definido como SQE JUSTIFICATIVA Y OBJETIVOS: El bloqueo neuromuscular residual en la sala de recuperación posanestésica (SRPA es un fenómeno que puede aumentar la morbidez posoperatoria, con incidencia variando entre 0% y 93%. La finalidad de este estudio fue evaluar la incidencia del bloqueo neuromuscular residual en la SRPA. MÉTODO: Fueron estudiados 93 pacientes sometidos a cirugía general con el uso de cisatracúrio o rocuronio. Después de la admisión en la SRPA fue realizada la monitorización objetiva de la función neuromuscular (aceleromiografia - TOF-GUARD. El bloqueo neuromuscular residual fue definido como TOF BACKGROUND AND OBJECTIVES: Residual neuromuscular block in the post-anesthetic recovery unit (PACU may increase postoperative morbidity from 0% to 93%. This study aimed at evaluating the incidence of residual neuromuscular block in the PACU. METHODS: Participated in this study 93 patients submitted to general anesthesia with cisatracurium or rocuronium. After PACU admission, neuromuscular function was objectively monitored (acceleromyography - TOF GUARD. Residual neuromuscular block was defined as TOF < 0.9. RESULTS: From 93 patients, 53 received cisatracurium and 40 rocuronium. Demographics, procedure length and the use of antagonists were comparable between groups. Residual neuromuscular block was 32% in subgroup C (cisatracurium and 30% in subgroup R

  1. Reversal of rocuronium-induced neuromuscular block by sugammadex is independent of renal perfusion in anesthetized cats

    NARCIS (Netherlands)

    Staals, L.M.; Boer, H.D. de; Egmond, J. van; Hope, F.; Pol, F.M. van de; Bom, A.H.; Driessen, J.J.; Booij, L.H.D.J.

    2011-01-01

    PURPOSE: Sugammadex is a selective relaxant binding agent designed to encapsulate the aminosteroidal neuromuscular blocking agent rocuronium, thereby reversing its effect. Both sugammadex and the sugammadex-rocuronium complex are eliminated by the kidneys. This study investigated the effect of

  2. Sugammadex reversal of rocuronium-induced neuromuscular block in a patient with ataxia-telangiectasia

    International Nuclear Information System (INIS)

    Kang, E.; Jung, J.W.

    2015-01-01

    A 17-year-old adolescent with ataxia-telangiectasia was scheduled to have laparoscopic colectomy for a resection of colon cancer. He had symptoms and signs of dyspnea, generalized dystonia, dysmetria, ataxia, and telangiectasia on the orbit. General anesthesia was performed, and rocuronium 30 mg was administered for muscle relaxation. Deep neuromuscular block (post-tetanic count: 0-8) was maintained for 95 minutes without additional rocuronium. On completion of surgery, sugammadex 80 mg was injected and train-of-four ratio was 0.93 at 210 seconds after administration. The tracheal tube was removed 5 min after the end of surgery. He recovered full spontaneous respiration and voluntary movements within 1 minute after extubation. After the surgery, he transferred to the intensive care unit and discharged 14 days after the surgery without any concrete problem. The reversal of rocuronium induced neuromuscular block by sugammadex was fast, complete, and recovered to the initial preoperative level of neuromuscular function in this patient. (author)

  3. Dexamethasone Does Not Inhibit Sugammadex Reversal After Rocuronium-Induced Neuromuscular Block.

    Science.gov (United States)

    Buonanno, Pasquale; Laiola, Anna; Palumbo, Chiara; Spinelli, Gianmario; Servillo, Giuseppe; Di Minno, Raffaele Maria; Cafiero, Tullio; Di Iorio, Carlo

    2016-06-01

    Sugammadex is a relatively new molecule that reverses neuromuscular block induced by rocuronium. The particular structure of sugammadex traps the cyclopentanoperhydrophenanthrene ring of rocuronium in its hydrophobic cavity. Dexamethasone shares the same steroidal structure with rocuronium. Studies in vitro have demonstrated that dexamethasone interacts with sugammadex, reducing its efficacy. In this study, we investigated the clinical relevance of this interaction and its influence on neuromuscular reversal. In this retrospective case-control study, we analyzed data from 45 patients divided into 3 groups: dexamethasone after induction group (15 patients) treated with 8 mg dexamethasone as an antiemetic drug shortly after induction of anesthesia; dexamethasone before reversal group (15 patients) treated with dexamethasone just before sugammadex injection; and control group (15 patients) treated with 8 mg ondansetron. All groups received 0.6 mg/kg rocuronium at induction, 0.15 mg/kg rocuronium at train-of-four ratio (TOF) 2 for neuromuscular relaxation, and 2 mg/kg sugammadex for reversal at the end of the procedure at TOF2. Neuromuscular relaxation was monitored with a TOF-Watch® system. The control group had a recovery time of 154 ± 54 seconds (mean ± SD), the dexamethasone after induction group 134 ± 55 seconds, and the dexamethasone before reversal group 131 ± 68 seconds. The differences among groups were not statistically significant (P = 0.5141). Our results show that the use of dexamethasone as an antiemetic drug for the prevention of postoperative nausea and vomiting does not interfere with reversal of neuromuscular blockade with sugammadex in patients undergoing elective surgery with general anesthesia in contrast to in vitro studies that support this hypothesis.

  4. The effects of two phospholipase A2 inhibitors on the neuromuscular blocking activities of homologous phospholipases A2 from the venom of Pseudechis australis, the Australian king brown snake.

    Science.gov (United States)

    Fatehi, M; Rowan, E G; Harvey, A L

    1995-12-01

    Previous studies have shown that homologous phospholipases A2 (PLA2) (Pa-3, Pa-9C, Pa-10F and Pa-11) from the venom of the Australian king brown snake, Pseudechis australis, significantly reduce the resting membrane potentials and quantal contents of endplate potentials recorded from endplate regions of mouse triangularis sterni nerve-muscle preparations. It is not clear whether PLA2 activity is essential for their neuromuscular activities. Therefore, pharmacological studies were carried out to determine whether neuromuscular activity of the toxins changed after treatment with the phospholipase A2 inhibitors 7,7-dimethyl-eicosadienoic acid (DEDA) and manoalide. After incubation of the toxins with manoalide (120 nM), or DEDA (50 microM), no PLA2 activity against 1-stearoyl 2-[3H]arachidonoylglycerophosphocholine was detected. After incubation with manoalide and/or DEDA, the toxins did not depolarize muscle fibre membranes up to 60 min after administration. However, manoalide and DEDA had different influences on the inhibitory effect of these toxic enzymes on acetylcholine release from nerve terminals. Manoalide abolished the inhibitory effect of the toxins on evoked release of acetylcholine. In contrast, DEDA was not able to prevent the reduction of quantal content of endplate potentials induced by the toxins. This study provides evidence that the depolarizing action and the inhibitory effect on release of acetylcholine exerted by these toxic PLA2 from king brown snake are independent phenomena. The evidence for this conclusion was that inhibition of enzymatic activity with an arachidonic acid analogue (DEDA) abolished the depolarizing effect of the toxins but not the effects on the quantal release of acetylcholine from mouse motor nerve terminals. The data suggest that the depolarizing effect of these toxins is probably due to the enzymatic activity. Since manoalide interacts with lysine residues of PLA2 polypeptides, and, as shown here, manoalide prevented

  5. Preferences of Mexican anesthesiologists for vecuronium, rocuronium, or other neuromuscular blocking agents: a survey

    Directory of Open Access Journals (Sweden)

    Garduño-Espinosa J

    2002-05-01

    Full Text Available Abstract Background Several neuromuscular blocking (NMB agents are available for clinical use in anesthesia. The present study was performed in order to identify preferences and behaviors of anesthesiologists for using vecuronium, rocuronium or other NMB agents in their clinical practice. Material and methods The cross-sectional survey was applied at the Updated Course of the Colegio Mexicano de Anestesiología performed last year. Of 989, 282 (28.5% surveys were returned. Results Most anesthesiologists were working at both public and private hospitals, performed anesthetic procedures for hospitalized and ambulatory patients, and anesthetized children as well as adults. Respondents did not consider mechanomyography as the gold standard method for neuromuscular monitoring. The T25 was not recognized as a pharmacodynamic parameter that represents the clinical duration of the neuromuscular block. Most answered that vecuronium induces less histamine release than rocuronium, had never used any neuromuscular monitor, did not know the cost of vecuronium and rocuronium, and preferred rocuronium in multiple-sampling vials and vecuronium in either a vial for single or multiple sampling. Rocuronium was preferred for emergency surgery in patients with full stomach only. Almost all of anesthesiologists that conserve the unused drug did it without refrigeration and more than 30% conserve the unused drug in one syringe for further use. Conclusion Vecuronium was preferred for most clinical situations, and the decision for this choice was not based on costs. Storage of unused drugs without refrigeration in a single syringe for purpose of future use in several patients represented a dangerous common practice.

  6. Reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia: sugammadex versus neostigmine.

    Directory of Open Access Journals (Sweden)

    Lemmens Hendrikus JM

    2010-09-01

    Full Text Available Abstract Background Acetylcholinesterase inhibitors cannot rapidly reverse profound neuromuscular block. Sugammadex, a selective relaxant binding agent, reverses the effects of rocuronium and vecuronium by encapsulation. This study assessed the efficacy of sugammadex compared with neostigmine in reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia. Methods Patients aged ≥18 years, American Society of Anesthesiologists class 1-4, scheduled to undergo surgery under general anesthesia were enrolled in this phase III, multicenter, randomized, safety-assessor blinded study. Sevoflurane anesthetized patients received vecuronium 0.1 mg/kg for intubation, with maintenance doses of 0.015 mg/kg as required. Patients were randomized to receive sugammadex 4 mg/kg or neostigmine 70 μg/kg with glycopyrrolate 14 μg/kg at 1-2 post-tetanic counts. The primary efficacy variable was time from start of study drug administration to recovery of the train-of-four ratio to 0.9. Safety assessments included physical examination, laboratory data, vital signs, and adverse events. Results Eighty three patients were included in the intent-to-treat population (sugammadex, n = 47; neostigmine, n = 36. Geometric mean time to recovery of the train-of-four ratio to 0.9 was 15-fold faster with sugammadex (4.5 minutes compared with neostigmine (66.2 minutes; p Conclusions Recovery from profound vecuronium-induced block is significantly faster with sugammadex, compared with neostigmine. Neostigmine did not rapidly reverse profound neuromuscular block (Trial registration number: NCT00473694.

  7. The influence of cold on the recovery of three neuromuscular blocking agents in man.

    Science.gov (United States)

    England, A J; Wu, X; Richards, K M; Redai, I; Feldman, S A

    1996-03-01

    The Arrhenius hypothesis suggests that change in temperature has a less marked effect on the rate of physical processes than on biological reactions. We have investigated the process underlying recovery from neuromuscular block in man by studying the effect of cooling on the rate of recovery from depolarising and non-depolarising block. Vecuronium, rocuronium and decamethonium (C10) neuromuscular block were investigated using the isolated forearm technique on awake human volunteers. In these experiments, one arm was cooled whilst the other was used as control. Moderate hypothermia decreased the rate of recovery from all three agents, but this was significantly less marked with the depolarising drug. The mean Q10 (the anticipated change in rate of a reaction across of 10 degrees C temperature gradient) of the rate of recovery for vecuronium was 3.21, rocuronium 2.86 and decamethonium 1.29. This suggests a different process in the recovery of these two types of drug. According to the Arrhenius hypothesis this would suggest that the recovery from non-depolarising drugs is likely to involve a biochemical mechanism and that recovery from decamethonium is controlled by a physical process.

  8. Effects of cardiac output on the onset of rocuronium-induced neuromuscular block in elderly patients.

    Science.gov (United States)

    Shiraishi, Naoki; Aono, Mayu; Kameyama, Yasuhito; Yamamoto, Mai; Kitajima, Osamu; Suzuki, Takahiro

    2018-05-21

    The aim of this study was to elucidate the relationship between the onset of rocuronium-induced neuromuscular block and arterial pressure-based cardiac output (CO) in elderly patients. Forty elderly patients aged 65-83 years were enrolled in this study. After induction of anesthesia, contractions of the adductor pollicis muscle to ulnar nerve train-of-four stimulation were acceleromyographically evaluated and 1 mg/kg rocuronium was administered following CO measurement. The correlation between onset of rocuronium action and CO was analyzed. The mean [SD] CO reduced after induction of anesthesia from 5.1 [1.8] L/min to 3.8 [1.1] L/min. The onset time of rocuronium-induced neuromuscular block was 110.3 [23.9] s (range 60-165). There was a statistically significant inverse correlation between the onset time of rocuronium and CO [onset time (s) = - 13.2·CO + 159.7, R 2  = 0.376]. In the elderly, CO influences the onset of action of rocuronium.

  9. Influence of deep neuromuscular block on the surgeonś assessment of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, M V; Scheppan, S; Mørk, E

    2017-01-01

    Background: During laparotomy, surgeons may experience difficult surgical conditions if the patient's abdominal wall or diaphragm is tense. Deep neuromuscular block (NMB), defined as a post-tetanic-count (PTC) between 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesized th...... time, occurrence of wound infection, and wound dehiscence were found. Conclusions: Deep NMB compared with standard NMB resulted in better subjective ratings of surgical conditions during laparotomy.......Background: During laparotomy, surgeons may experience difficult surgical conditions if the patient's abdominal wall or diaphragm is tense. Deep neuromuscular block (NMB), defined as a post-tetanic-count (PTC) between 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesized...... that deep NMB (PTC 0-1) would improve subjective ratings of surgical conditions during upper laparotomy as compared with standard NMB. Methods: This was a double blinded, randomized study. A total of 128 patients undergoing elective upper laparotomy were randomized to either continuous deep NMB (infusion...

  10. Residual neuromuscular block as a risk factor for critical respiratory events in the post anesthesia care unit.

    Science.gov (United States)

    Norton, M; Xará, D; Parente, D; Barbosa, M; Abelha, F J

    2013-04-01

    Residual neuromuscular block is an important postoperative complication associated to the use of neuromuscular blocking drugs. The purpose of this study was to access the incidence of residual neuromuscular block in a post-anesthesia care unit and to evaluate its association with critical respiratory events. Prospective cohort study was conducted in a Post Anesthetic Care Unit (PACU) for a period of 3 weeks. Two hundred two adult patients who submitted to scheduled non-cardiac and non-intracranial surgery were eligible to the study. The primary outcome variable was residual neuromuscular block after arrival to PACU that was defined as train-of-four ratio <0.9 and objectively quantified using acceleromyography. Demographic data, perioperative variables, lengths of hospital and recovery room stay and critical respiratory events were recorded. Inadequate emergence was classified in its different forms according to the Richmond agitation and sedation scale 10 min after admission to the recovery room. Residual neuromuscular block incidence in the post-anesthesia care unit was 29.7% (95% confidence interval: 23.4, 36.1). Patients with residual neuromuscular block had more frequently overall critical respiratory events (51% versus 16%, P<0.001), airway obstruction (10% versus 2%, P=0.029), mild-moderate hypoxemia (23% versus 4%, P<0.001), severe hypoxemia (7% versus 1%, P=0.033), respiratory failure (8% versus 1%, P=0.031), inability to breathe deeply (38% versus 12%, P<0.001) and muscular weakness (16% versus 1%, P<0.001). Residual neuromuscular block was more common after high-risk surgery (53% versus 33%, P=0.011) and was more often associated with post-operative hypoactive emergence as defined by the Richmond Agitation and Sedation Scale (21% versus 6%, P=0.001). This study suggests that residual neuromuscular block is common in the PACU and is associated with more frequent critical respiratory events. Copyright © 2012 Sociedad Española de Anestesiología, Reanimaci

  11. Comparative effectiveness of Calabadion and sugammadex to reverse non-depolarizing neuromuscular blocking agents

    Science.gov (United States)

    Haerter, Friederike; Simons, Jeroen Cedric Peter; Foerster, Urs; Duarte, Ingrid Moreno; Diaz-Gil, Daniel; Ganapati, Shweta; Eikermann-Haerter, Katharina; Ayata, Cenk; Zhang, Ben; Blobner, Manfred; Isaacs, Lyle; Eikermann, Matthias

    2015-01-01

    Background We evaluated the comparative effectiveness of calabadion 2 to reverse non-depolarizing neuromuscular blocking agents (NMBAs) by binding and inactivation. Methods The dose-response relationship of drugs to reverse vecuronium, rocuronium, and cisatracurium-induced neuromuscular block (NMB) was evaluated in vitro (competition binding assays and urine analysis), ex vivo (n=34; phrenic nerve hemidiaphragm preparation) and in vivo (n=108; quadriceps femoris muscle of the rat). Cumulative dose-response curves of calabadions, neostigmine, or sugammadex were created ex vivo at steady-state deep NMB. In living rats, we studied the dose-response relationship of the test drugs to reverse deep block under physiological conditions and we measured the amount of calabadion 2 excreted in the urine. Results In vitro experiments showed that calabadion 2 binds rocuronium with 89 times the affinity of sugammadex (Ka = 3.4 × 109 M−1 and Ka = 3.8 × 107 M−1). Urine analysis (proton nuclear magnetic resonance), competition binding assays and ex vivo study results obtained in the absence of metabolic deactivation are in accordance with an 1:1 binding ratio of sugammadex and calabadion 2 toward rocuronium. In living rats, calabadion 2 dose-dependently and rapidly reversed all NMBAs tested. The molar potency of calabadion 2 to reverse vecuronium and rocuronium was higher compared to sugammadex. Calabadion 2 was eliminated renally, and did not affect blood pressure or heart rate. Conclusion Calabadion 2 reverses NMB-induced by benzylisoquinolines and steroidal NMBAs in rats more effectively, i.e. faster, than sugammadex. Calabadion 2 is eliminated in the urine and well tolerated in rats. PMID:26418697

  12. Survey of how different groups of veterinarians manage the use of neuromuscular blocking agents in anesthetized dogs.

    Science.gov (United States)

    Martin-Flores, Manuel; Sakai, Daniel M; Campoy, Luis; Gleed, Robin D

    2018-03-23

    To analyze practice habits associated with the use, reversal and monitoring of nondepolarizing neuromuscular blocking agents (NMBAs) in dogs by different groups of veterinarians. Online anonymous survey to veterinarians. Data from 390 answered surveys. A questionnaire was sent to e-mail list servers of the American College of Veterinary Anesthesia and Analgesia (ACVAA-list), Sociedad Española de Anestesia y Analgesia Veterinaria (SEEAV-list), Colégio Brasileiro de Anestesiologia Veterinária (Brazilian College of Veterinary Anesthesiology; CBAV-list) and American College of Veterinary Ophthalmologists (ACVO-list) to elicit information regarding use of NMBAs and reversal agents, monitoring techniques, criteria for redosing, reversing and assessing adequacy of recovery of neuromuscular function. Binomial logistic regression was used to test for association between responses and group of veterinarians in selected questions. Veterinarians of the ACVO-list use NMBAs on a higher fraction of their caseload than other groups (all p < 0.0001). Subjective assessment (observation) of spontaneous movement, including spontaneous breathing, is the most common method for assessing neuromuscular function (43% of pooled responses); 18% of participants always reverse NMBAs, whereas 16% never reverse them. Restoration of neuromuscular function is assessed subjectively by 35% of respondents. Residual neuromuscular block is the most common concern regarding the use of NMBAs for all groups of veterinarians. Side effects of reversal agents (anticholinesterases) were of least concern for all groups. While most veterinarians are concerned about residual neuromuscular block, relatively few steps are implemented to reduce the risks of this complication, such as routine use of quantitative neuromuscular monitoring or routine reversal of NMBAs. These results suggest a limitation in transferring information among groups of veterinarians, or in implementing techniques suggested by scientific

  13. Reversal of rocuronium-induced (1.2 mg kg-1) profound neuromuscular block by accidental high dose of sugammadex (40 mg kg-1).

    NARCIS (Netherlands)

    Molina, A.L.; Boer, H.D. de; Klimek, M.; Heeringa, M.; Klein, J.

    2007-01-01

    Sugammadex is the first selective relaxant binding agent and reverses rocuronium-induced neuromuscular block. A case is reported in which a patient accidentally received a high dose of sugammadex (40 mg kg-1) to reverse a rocuronium-induced (1.2 mg kg-1) profound neuromuscular block. A fast and

  14. New way of dosing sugammadex for termination of vecuronium induced neuromuscular block

    Directory of Open Access Journals (Sweden)

    Blaž Peček

    2015-06-01

    Full Text Available Background and Goal of Study: Sugammadex is a selective binding agent that bindsaminosteroid muscle relaxants. Each molecule of sugammadex binds one molecule of musclerelaxant. To produce the same depth of the neuromuscular block (NMB much less molecules ofvecuronium are needed than molecules of rocuronium. In theory less sugammadex would beneeded to neutralise the neuromuscular block if vecuronium was used to produce the neuromuscular block. Our aim was to compare reversal of vecuronium induced muscle relaxation between a new way of dosing sugammadex, which takes into account TOF value at the end of the surgery and the amount of vecuronium given during the surgery with neostigmine atropine combination. We also wanted to know how much this dosage regime can save compared to standard per kg dosage.Materials and Methods: 20 adult patients requiring a general anesthesia for surgery were analysed. The first group of 11 patients (SUG received sugammadex at the end of the surgery according to the table one for NMB reversal. The second group of 9 patients (NEO received neostigmine and atropine. Train of four (TOF value was recorded at the end of the surgery and then continuously until the TOF value reached more than 0.9 and the patient was extubated. The time required for the TOF value reaching 0.9 was compared between the groups. For economical evaluation we compared the amount of sugammadex used in the SUG group to standard sugammadex per kg dosage.Results and Discussion: Mean time to recovery to a TOF ratio of 0.9 with sugammadex was 5.12min versus 12.6 min with neostigmine atropine (P < 0.05. No sign of postoperative residual curarisation was observed in the SUG group. For patients in our study 530 mg of sugammadex were used to neutralise the NMB. If standard per kg sugammadex dosing had been used we would have used 2420 mg for the NMB reversal.Conclusion(s: New dosing for sugammadex was successful in neutralising the NMB regardlessof the TOF value

  15. Train-of-four ratio recovery often precedes twitch recovery when neuromuscular block is reversed by sugammadex

    NARCIS (Netherlands)

    Staals, L.M.; Driessen, J.J.; Egmond, J. van; Boer, H.D. de; Klimek, M.; Flockton, E.A.; Snoeck, M.M.J.

    2011-01-01

    BACKGROUND: Sugammadex reverses rocuronium-induced neuromuscular block (NMB). In all published studies investigating sugammadex, the primary outcome parameter was a train-of-four (TOF) ratio of 0.9. The recovery time of T1 was not described. This retrospective investigation describes the recovery of

  16. Neuromuscular Activity of Micrurus laticollaris (Squamata: Elapidae Venom in Vitro

    Directory of Open Access Journals (Sweden)

    Alejandro Carbajal-Saucedo

    2014-01-01

    Full Text Available In this work, we have examined the neuromuscular activity of Micrurus laticollaris (Mexican coral snake venom (MLV in vertebrate isolated nerve-muscle preparations. In chick biventer cervicis preparations, the MLV induced an irreversible concentration- and time-dependent (1–30 µg/mL neuromuscular blockade, with 50% blockade occurring between 8 and 30 min. Muscle contractures evoked by exogenous acetylcholine were completely abolished by MLV, whereas those of KCl were also significantly altered (86% ± 11%, 53% ± 11%, 89% ± 5% and 89% ± 7% for one, three, 10 and 30 µg of venom/mL, respectively; n = 4; p < 0.05. In mouse phrenic nerve-diaphragm preparations, MLV (1–10 µg/mL promoted a slight increase in the amplitude of twitch-tension (3 µg/mL, followed by neuromuscular blockade (n = 4; the highest concentration caused complete inhibition of the twitches (time for 50% blockade = 26 ± 3 min, without exhibiting a previous neuromuscular facilitation. The venom (3 µg/mL induced a biphasic modulation in the frequency of miniature end-plate potentials (MEPPs/min, causing a significant increase after 15 min, followed by a decrease after 60 min (from 17 ± 1.4 (basal to 28 ± 2.5 (t15 and 12 ± 2 (t60. The membrane resting potential of mouse diaphragm preparations pre-exposed or not to d-tubocurarine (5 µg/mL was also significantly less negative with MLV (10 µg/mL. Together, these results indicate that M. laticollaris venom induces neuromuscular blockade by a combination of pre- and post-synaptic activities.

  17. Stunted PFC activity during neuromuscular control under stress with obesity.

    Science.gov (United States)

    Mehta, Ranjana K

    2016-02-01

    Obesity is an established risk factor for impaired cognition, which is primarily regulated by the prefrontal cortex (PFC). However, very little is known about the neural pathways that underlie obesity-related declines in neuromuscular control, particularly under stress. The purpose of this study was to determine the role of the PFC on neuromuscular control during handgrip exertions under stress with obesity. Twenty non-obese and obese young adults performed submaximal handgrip exertions in the absence and presence of a concurrent stressful task. Primary dependent measures included oxygenated hemoglobin (HbO2: a measure of PFC activity) and force fluctuations (an indicator of neuromuscular control). Higher HbO2 levels in the PFC were observed in the non-obese compared to the obese group (P = 0.009). In addition, higher HbO2 levels were observed in the stress compared to the control condition in the non-obese group; however, this trend was reversed in the obese group (P = 0.043). In general, force fluctuations increased by 26% in the stress when compared to the control condition (P = 0.001) and obesity was associated with 39% greater force fluctuation (P = 0.024). Finally, while not significant, obesity-related decrements in force fluctuations were magnified under stress (P = 0.063). The current study provides the first evidence that neuromuscular decrements with obesity were associated with impaired PFC activity and this relationship was augmented in stress conditions. These findings are important because they provide new information on obesity-specific changes in brain function associated with neuromuscular control since the knowledge previously focused largely on obesity-specific changes in peripheral muscle capacity.

  18. Selective activation of neuromuscular compartments within the human trapezius muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Roeleveld, K; Mork, P J

    2009-01-01

    of the human trapezius muscle can be independently activated by voluntary command, indicating neuromuscular compartmentalization of the trapezius muscle. The independent activation of the upper and lower subdivisions of the trapezius is in accordance with the selective innervation by the fine cranial and main...... branch of the accessory nerve to the upper and lower subdivisions. These findings provide new insight into motor control characteristics, learning possibilities, and function of the clinically relevant human trapezius muscle....

  19. Sugammadex for reversal of neuromuscular block after rapid sequence intubation: a systematic review and economic assessment†

    Science.gov (United States)

    Chambers, D.; Paulden, M.; Paton, F.; Heirs, M.; Duffy, S.; Hunter, J. M.; Sculpher, M.; Woolacott, N.

    2010-01-01

    Summary Sugammadex 16 mg kg−1 can be used for the immediate reversal of neuromuscular block 3 min after administration of rocuronium and could be used in place of succinylcholine for emergency intubation. We have systematically reviewed the efficacy and cost-effectiveness and made an economic assessment of sugammadex for immediate reversal. The economic assessment investigated whether sugammadex appears cost-effective under various assumptions about the value of any reduction in recovery time with sugammadex, the likelihood of a ‘can't intubate, can't ventilate’ (CICV) event, the age of the patient, and the length of the procedure. Three trials were included in the efficacy review. Sugammadex administered 3 or 5 min after rocuronium produced markedly faster recovery than placebo or spontaneous recovery from succinylcholine-induced block. No published economic evaluations were found. Our economic analyses showed that sugammadex appears more cost-effective, where the value of any reduction in recovery time is greater, where the reduction in mortality compared with succinylcholine is greater, and where the patient is younger, for lower probabilities of a CICV event and for long procedures which do not require profound block throughout. Because of the lack of evidence, the value of some parameters remains unknown, which makes it difficult to provide a definitive assessment of the cost-effectiveness of sugammadex in practice. The use of sugammadex in combination with high-dose rocuronium is efficacious. Further research is needed to clarify key parameters in the analysis and to allow a fuller economic assessment. PMID:20937718

  20. Blocking p75 (NTR) receptors alters polyinnervationz of neuromuscular synapses during development.

    Science.gov (United States)

    Garcia, Neus; Tomàs, Marta; Santafe, Manel M; Lanuza, Maria A; Besalduch, Nuria; Tomàs, Josep

    2011-09-01

    High-resolution immunohistochemistry shows that the receptor protein p75(NTR) is present in the nerve terminal, muscle cell, and glial Schwann cell at the neuromuscular junction (NMJ) of postnatal rats (P4-P6) during the synapse elimination period. Blocking the receptor with the antibody anti-p75-192-IgG (1-5 μg/ml, 1 hr) results in reduced endplate potentials (EPPs) in mono- and polyinnervated synapses ex vivo, but the mean number of functional inputs per NMJ does not change for as long as 3 hr. Incubation with exogenous brain-derived neurotrophic factor (BDNF) for 1 hr (50 nM) resulted in a significant increase in the size of the EPPs in all nerve terminals, and preincubation with anti-p75-192-IgG prevented this potentiation. Long exposure (24 hr) in vivo of the NMJs to the antibody anti-p75-192-IgG (1-2 μg/ml) results in a delay of postnatal synapse elimination and even some regrowth of previously withdrawn axons, but also in some acceleration of the morphologic maturation of the postsynaptic nicotinic acetylcholine receptor (nAChR) clusters. The results indicate that p75(NTR) is involved in both ACh release and axonal retraction during postnatal axonal competition and synapse elimination. Copyright © 2011 Wiley-Liss, Inc.

  1. Objective neuromuscular monitoring of neuromuscular blockade in Denmark

    DEFF Research Database (Denmark)

    Söderström, C M; Eskildsen, K Z; Gätke, M R

    2017-01-01

    BACKGROUND: Neuromuscular blocking agents are commonly used during general anaesthesia but can lead to postoperative residual neuromuscular blockade and associated morbidity. With appropriate objective neuromuscular monitoring (objNMM) residual blockade can be avoided. In this survey, we investig...

  2. Neuromuscular activity of Bothrops fonsecai snake venom in vertebrate preparations

    Science.gov (United States)

    Fernandes, Carla T; Giaretta, Vânia MA; Prudêncio, Luiz S; Toledo, Edvana O; da Silva, Igor RF; Collaço, Rita CO; Barbosa, Ana M; Hyslop, Stephen; Rodrigues-Simioni, Léa; Cogo, José C

    2014-01-01

    The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78–100% inhibition) and 40mM KCl (45–90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K+ were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom. PMID:25028603

  3. Sensitivity to Rocuronium-Induced Neuromuscular Block and Reversibility with Sugammadex in a Patient with Myotonic Dystrophy

    Directory of Open Access Journals (Sweden)

    Akihiro Kashiwai

    2012-01-01

    Full Text Available We report a patient with myotonic dystrophy who showed prolonged rocuronium-induced neuromuscular blockade, although with a fast recovery with sugammadex. During general anesthesia with propofol and remifentanil, the times to spontaneous recovery of the first twitch (T1 of train of four to 10% of control values after an intubating dose of rocuronium 1 mg/kg and an additional dose of 0.2 mg/kg were 112 min and 62 min, respectively. Despite the high sensitivity to rocuronium, sugammadex 2 mg/kg administered at a T1 of 10% safely and effectively antagonized rocuronium-induced neuromuscular block in 90 s.

  4. Recovery characteristics of patients receiving either sugammadex or neostigmine and glycopyrrolate for reversal of neuromuscular block: a randomised controlled trial.

    Science.gov (United States)

    Paech, M J; Kaye, R; Baber, C; Nathan, E A

    2018-03-01

    Sugammadex more rapidly and reliably reverses rocuronium-induced neuromuscular block compared with neostigmine, but it is not known if subsequent patient outcomes, including nausea, vomiting and other aspects of recovery are modified. In this study, we compared the recovery characteristics of sugammadex and neostigmine/glycopyrrolate following reversal of neuromuscular block. This was a single-centre, randomised, blinded, parallel-group clinical trial in women undergoing elective day-surgical laparoscopic gynaecological surgery, with a standardised general anaesthesia regimen that included rocuronium. Neuromuscular block was reversed with either sugammadex 2 mg.kg -1 or neostigmine 40 μg.kg -1 and glycopyrrolate 400 μg. The primary outcome was the incidence of nausea and vomiting during the first six postoperative hours. Secondary outcomes included other measures of postoperative recovery such as patient symptoms and recovery scores. Three-hundred and four women were analysed by intention-to-treat (sugammadex n = 151, neostigmine n = 153), which included four major protocol violations. There was no significant difference between sugammadex and neostigmine groups in the incidence of early nausea and vomiting (49.0% vs. 51.0%, respectively; OR 0.92, 95%CI 0.59-1.45; p = 0.731). Double vision (11.5% vs. 20.0%; p = 0.044) and dry mouth (71.6% vs. 85.5%; p = 0.003) were less common after sugammadex. Sedation scores at 2 h were also lower after sugammadex (median (IQR [range]) 0 (0-3 [0-10]) vs. 2 (0-4.[0-10]); p = 0.021). Twenty-four-hour recovery scores were not significantly different between groups. Reversal with sugammadex in this patient population did not reduce postoperative nausea or vomiting compared with neostigmine/glycopyrrolate. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  5. Prevalence of IgE against neuromuscular blocking agents in hairdressers and bakers.

    Science.gov (United States)

    Dong, S; Acouetey, D S; Guéant-Rodriguez, R-M; Zmirou-Navier, D; Rémen, T; Blanca, M; Mertes, P M; Guéant, J-L

    2013-11-01

    Allergic IgE-mediated reactions to neuromuscular blocking agents (NMBAs) are the main cause of immediate hypersensitivity reactions in anaesthesia; their predominant occurrence in the absence of previous exposure to NMBAs suggests a risk related to environmental exposure. To investigate the prevalence of specific IgE to quaternary ammonium ions in two populations professionally exposed to quaternary ammonium compounds, in the north-eastern France. The study had a retrospective follow-up design whereby apprentices were assessed after their 2-year training period as apprentices. The professionally exposed hairdresser populations (n = 128) were compared with baker/pastry makers (n = 108) and 'non-exposed' matched control subjects (n = 379). We observed a 4.6-fold higher frequency of positive IgE against quaternary ammonium ions in hairdressers (HD), compared with baker/pastry makers (BP) and control (C) groups. The competitive inhibition of quaternary ammonium Sepharose radioimmunoassay (QAS-IgE RIA) with succinylcholine was significantly higher in HD, compared with BP and C groups, with inhibition percentage of 66.2 ± 7.4, 39.7 ± 6.0 and 43.8 ± 9.9, respectively (P  100 kU/L were the two significant predictors of IgE-sensitization against quaternary ammonium ions in the multivariate analysis of a model that included age, sex, professional exposure, increased concentration of total IgE (IgE > 100 kU/L) and positive IgE against prevalent allergens (Phadiatop(®) ; P = 0.019 and P = 0.001, respectively). The exposure to hairdressing professional occupational factors increases IgE-sensitization to NMBAs and quaternary ammonium ion compounds used in hairdressing. Besides the pholcodine hypothesis, our study suggests that repetitive exposure to quaternary ammonium compounds used in hairdressing is a risk factor for NMBAs sensitization. © 2013 John Wiley & Sons Ltd.

  6. Acceleromyography and mechanomyography for establishing potency of neuromuscular blocking agents: a randomized-controlled trial

    DEFF Research Database (Denmark)

    Claudius, C; Viby-Mogensen, J; Skovgaard, Lene Theil

    2009-01-01

    ) for this purpose. The aim of this study was to compare AMG and MMG for establishing dose-response relationship and potency, using rocuronium as an example. METHODS: We included 40 adult patients in this randomized-controlled single-dose response study. Anaesthesia was induced and maintained with propofol...... and opioid. Neuromuscular blockade was induced with rocuronium 100, 150, 200 or 250 microg/kg. Neuromuscular monitoring was performed with AMG (TOF-Watch SX) with pre-load (Hand Adapter) at one arm and MMG (modified TOF-Watch SX) on the other, using 0.1 Hz single twitch stimulation. Dose...

  7. Active zones of mammalian neuromuscular junctions: formation, density, and aging.

    Science.gov (United States)

    Nishimune, Hiroshi

    2012-12-01

    Presynaptic active zones are synaptic vesicle release sites that play essential roles in the function and pathology of mammalian neuromuscular junctions (NMJs). The molecular mechanisms of active zone organization use presynaptic voltage-dependent calcium channels (VDCCs) in NMJs as scaffolding proteins. VDCCs interact extracellularly with the muscle-derived synapse organizer, laminin β2 and interact intracellularly with active zone-specific proteins, such as Bassoon, CAST/Erc2/ELKS2alpha, ELKS, Piccolo, and RIMs. These molecular mechanisms are supported by studies in P/Q- and N-type VDCCs double-knockout mice, and they are consistent with the pathological conditions of Lambert-Eaton myasthenic syndrome and Pierson syndrome, which are caused by autoantibodies against VDCCs or by a laminin β2 mutation. During normal postnatal maturation, NMJs maintain the density of active zones, while NMJs triple their size. However, active zones become impaired during aging. Propitiously, muscle exercise ameliorates the active zone impairment in aged NMJs, which suggests the potential for therapeutic strategies. © 2012 New York Academy of Sciences.

  8. Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults

    Science.gov (United States)

    Background. Age-related alterations of neuromuscular activation may contribute to deficits in muscle power and mobility function. This study assesses whether impaired activation of the agonist quadriceps and antagonist hamstrings, including amplitude- and velocity-dependent characteristics of activa...

  9. Bloqueio neuromuscular prolongado após administração de mivacúrio: relato de caso Bloqueo neuromuscular prolongado después de administración de mivacúrio: relato de caso Prolonged neuromuscular block after mivacurium: case report

    Directory of Open Access Journals (Sweden)

    Karina Bernardi Pimenta

    2005-10-01

    scheduled for outpatient procedure presenting prolonged neuromuscular block after mivacurium. Diagnosis was confirmed by low plasma cholinesterase activity. CONCLUSIONS: Preoperative laboratory screening, even including plasma cholinesterase activity testing, will not prevent the possibility of prolonged neuromuscular block due to possible qualitative enzymatic activity abnormality, and there is no recommendation for its systematic investigation. In the presence of this complication, patient should be sedated and maintained under mechanical ventilation until total muscle strength recovery. Laboratory tests should be requested for final diagnosis. It is the anesthesiologist’s duty to collect blood samples for quantitative and qualitative plasma cholinesterase tests. Patient and relatives should be counseled about the importance of the investigation to classify the atypical variant of plasma cholinesterase and its anesthetic complications.

  10. Influence of preoperative oral rehydration on arterial plasma rocuronium concentrations and neuromuscular blocking effects: A randomised controlled trial.

    Science.gov (United States)

    Ishigaki, Sayaka; Ogura, Takahiro; Kanaya, Ayana; Miyake, Yu; Masui, Kenichi; Kazama, Tomiei

    2017-01-01

    The influence of preoperative rehydration on the action of rocuronium has not yet been investigated. The objective is to evaluate the hypothesis that preoperative rehydration lowers arterial rocuronium plasma concentrations and changes its associated neuromuscular blocking effects during induction of anaesthesia. Randomised, single-blinded study. A secondary hospital from October 2013 to July 2014. In total, 46 men undergoing elective surgery were eligible to participate and were randomly allocated into two groups. Exclusion criteria were severe hepatic, renal or cardiovascular disorder; neuromuscular disease; history of allergy to rocuronium; BMI more than 30 kg m; receiving medication known to influence neuromuscular function. Participants received 1500 ml of oral rehydration solution (rehydration group) or none (control group) until 2 hours before anaesthesia. Arterial blood samples were obtained 60, 90 and 120 s and 30 min after rocuronium (0.6 mg kg) administration during total intravenous anaesthesia. Responses to 0.1-Hz twitch stimuli were measured at the adductor pollicis muscle using acceleromyography. Arterial plasma rocuronium concentrations. Arterial plasma rocuronium concentrations at 60, 90 and 120 s in the rehydration and control groups were 9.9 and 13.7, 6.8 and 9.5 and 6.2 and 8.1 μg ml, respectively (P = 0.02, 0.003 and 0.02, respectively); the onset times in the rehydration and control groups were 92.0 and 69.5 s (P = 0.01), and the times to twitch re-appearance were 25.3 and 30.4 min (P = 0.004), respectively. Preoperative rehydration significantly reduces arterial plasma rocuronium concentrations in the first 2 minutes after administration, prolonging the onset time and shortening the duration of effect. A higher dose or earlier administration should be considered for patients who receive preoperative rehydration. Umin identifier: UMIN000011981.

  11. Neuromuscular Activity and Knee Kinematics in Adolescents with Patellofemoral Pain

    DEFF Research Database (Denmark)

    Rathleff, Michael Skovdal; Samani, Afshin; Olesen, Jens L

    2013-01-01

    This study aimed to investigate the neuromuscular control of the knee during stair descent among female adolescents with patellofemoral pain (PFP) and to report its association with self-reported clinical status assessed by the Knee Injury and Osteoarthritis Outcome Score (KOOS).......This study aimed to investigate the neuromuscular control of the knee during stair descent among female adolescents with patellofemoral pain (PFP) and to report its association with self-reported clinical status assessed by the Knee Injury and Osteoarthritis Outcome Score (KOOS)....

  12. Reversal with sugammadex for rocuronium-induced deep neuromuscular block after pretreatment of magnesium sulfate in rabbits.

    Science.gov (United States)

    Kang, Woon Seok; Kim, Kyo Sang; Song, Shin Mi

    2017-04-01

    Magnesium sulfate (MgSO 4 ) has been used in the treatment of pre-eclampsia, hypertension and arrhythmia. Magnesium enhances the neuromuscular block of rocuronium. This study has been conducted to evaluate the reversal efficacy of sugammadex from deep rocuronium-induced neuromuscular block (NMB) during consistent pretreatment of MgSO 4 in rabbits. Twenty-eight rabbits were randomly assigned to four groups, a control group or study groups (50% MgSO 4 150-200 mg/kg and 25 mg/kg/h IV), and received rocuronium 0.6 mg/kg. When post-tetanic count 1-2 appeared, sugammadex 2, 4, and 8 mg/kg was administered in the 2-mg group, control and 4-mg group, and 8-mg group, respectively. The recovery course after reversal of sugammadex administration was evaluated in each group. The mean serum concentration of magnesium was maintained at more than 2 mmol/L in the study groups, and the total dose of MgSO 4 was more than 590 mg. The reversal effect of sugammadex on rocuronium-induced NMB in pretreated MgSO 4 was not different from that in the group without MgSO 4 . The recovery time to train-of-four ratio 0.9 after sugammadex administration in the 2-mg group was longer than in the other groups (P rocuronium-induced NMB during large pretreatment of MgSO 4 was not affected. However, we should consider that the reversal effect of sugammadex varied depending on the dose.

  13. THE PHARMACODYNAMICS AND PHARMACOKINETICS OF ORG-9426, A NEW NONDEPOLARIZING NEUROMUSCULAR BLOCKING-AGENT, IN PATIENTS ANESTHETIZED WITH NITROUS-OXIDE, HALOTHANE AND FENTANYL

    NARCIS (Netherlands)

    WIERDA, JMKH; KLEEF, UW; LAMBALK, LM; KLOPPENBURG, WD; AGOSTON, S

    The pharmacodynamics and pharmacokinetics of a new non-depolarizing neuromuscular blocking agent, Org 9426, were investigated. Ten patients undergoing elective head and neck surgery and anaesthetized with nitrous oxide, halothane and fentanyl, received a bolus dose of Org 9426 (1 mg.kg-1, 3 x ED90).

  14. Effects of methylprednisolone on the duration of rocuronium-induced neuromuscular block

    Science.gov (United States)

    Geng, Weilian; Nie, Yuyan; Huang, Shaoqiang

    2017-01-01

    Abstract Background: We aim to investigate whether intraoperative use of methylprednisolone could affect the duration of rocuronium-induced neuromuscular blockade. Methods: A double blind, randomized, placebo-controlled trial was conducted. A total of 136 patients underwent gynecologic laparoscopic surgery were randomly divided into 3 groups: pregroup, receiving intravenous injection of methylprednisolone (40 mg) 30 minutes before induction of anesthesia; postgroup, receiving intravenous injection of methylprednisolone (40 mg) immediately after induction of anesthesia and intubation; and control group, receiving intravenous injection of normal saline. Patients were intravenously administrated with rocuronium 0.6 mg/kg, and changes in adductor policies evoked twitch responses were measured by ulnar nerve stimulator. Results: We found that all patients achieved maximum blockade effects, and there was no difference in onset time among the 2 groups. For time required to achieve train-of-four ratio (TOFR) 90%, pregroup (64.50 ± 10.52 minutes) and postgroup (65.29 ± 11.64 minutes) were significantly shorter than that of the control group (71.04 ± 10.55 minutes, P = .027), whereas clinical duration and total duration were significantly shorter in the 2 groups received methylprednisolone than the control group. However, there was no significant difference between the 2 treatment groups either in clinical duration and total duration of muscle relaxants, or time required to achieve TOFR 90%. No significant difference was found in recovery index among the 3 groups. Conclusion: Our findings suggest that a single intravenous injection of methylprednisolone, no matter preoperatively or intraoperatively, could shorten the duration of rocuronium-induced neuromuscular blockade. PMID:28953616

  15. Cysteine reversal of the novel neuromuscular blocking drug CW002 in dogs: pharmacodynamics, acute cardiovascular effects, and preliminary toxicology.

    Science.gov (United States)

    Sunaga, Hiroshi; Malhotra, Jaideep K; Yoon, Edward; Savarese, John J; Heerdt, Paul M

    2010-04-01

    CW002 is a neuromuscular blocking drug that is inactivated by endogenous L-cysteine. This study determined the exogenous L-cysteine dose-response relationship for CW002 reversal along with acute cardiovascular effects and organ toxicity in dogs. Six dogs were each studied four times during isoflurane-nitrous oxide anesthesia and recording of muscle twitch, arterial pressure, and heart rate. CW002 (0.08 mg/kg or 9 x ED95) was injected, and the time to spontaneous muscle recovery was determined. CW002 was then administered again followed 1 min later by 10, 20, 50, or 100 mg/kg L-cysteine (1 dose/experiment). After twitch recovery, CW002 was given a third time to determine whether residual L-cysteine influenced duration. Preliminary toxicology was performed in an additional group of dogs that received CW002 followed by vehicle (n = 8) or 200 mg/kg L-cysteine (n = 8). Animals were awakened and observed for 2 or 14 days before sacrificing and anatomic, biochemical, and histopathologic analyses. L-cysteine at all doses accelerated recovery from CW002, with both 50 and 100 mg/kg decreasing median duration from more than 70 min to less than 5 min. After reversal, duration of a subsequent CW002 dose was also decreased in a dose-dependent manner. Over the studied dose range, L-cysteine had less than 10% effect on blood pressure and heart rate. Animals receiving a single 200-mg/kg dose of L-cysteine showed no clinical, anatomic, biochemical, or histologic evidence of organ toxicity. The optimal L-cysteine dose for rapidly reversing the neuromuscular blockade produced by a large dose of CW002 in dogs is approximately 50 mg/kg, which has no concomitant hemodynamic effect. A dose of 200 mg/kg had no evident organ toxicity.

  16. Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20)†,.

    Science.gov (United States)

    Kaufhold, N; Schaller, S J; Stäuble, C G; Baumüller, E; Ulm, K; Blobner, M; Fink, H

    2016-02-01

    The aim of this dose-finding study was to evaluate the dose-response relationship of sugammadex and neostigmine to reverse a commonly observed level of incomplete recovery from rocuronium-induced neuromuscular block, that is, a train-of-four ratio (TOFR) ≥0.2. Ninety-nine anaesthetized patients received rocuronium 0.6 mg kg(-1) i.v. for tracheal intubation and, if necessary, incremental doses of 0.1-0.2 mg kg(-1). Neuromuscular monitoring was performed by calibrated electromyography. Once the TOFR recovered to 0.2, patients were randomized to receive sugammadex (0.25, 0.5, 0.75, 1.0, or 1.25 mg kg(-1) i.v.), neostigmine (10, 25, 40, 55, or 70 µg kg(-1) i.v.), or saline (n=9 per group). Primary and secondary end points were the doses necessary to restore neuromuscular function to a TOFR≥0.9 with an upper limit of 5 and 10 min for 95% of patients, respectively. Neostigmine was not able to fulfil the end points. Based on the best-fitting model, the sugammadex dose estimation for recovery to a TOFR≥0.9 for 95% of patients within 5 and 10 min was 0.49 and 0.26 mg kg(-1), respectively. A residual neuromuscular block of a TOFR of 0.2 cannot be reversed reliably with neostigmine within 10 min. In the conditions studied, substantially lower doses of sugammadex than the approved dose of 2.0 mg kg(-1) may be sufficient to reverse residual rocuronium-induced neuromuscular block at a recovery of TOFR≥0.2. NCT01006720. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Evidence-Based Systematic Review: Effects of Neuromuscular Electrical Stimulation on Swallowing and Neural Activation

    Science.gov (United States)

    Clark, Heather; Lazarus, Cathy; Arvedson, Joan; Schooling, Tracy; Frymark, Tobi

    2009-01-01

    Purpose: To systematically review the literature examining the effects of neuromuscular electrical stimulation (NMES) on swallowing and neural activation. The review was conducted as part of a series examining the effects of oral motor exercises (OMEs) on speech, swallowing, and neural activation. Method: A systematic search was conducted to…

  18. The influence of gender on neuromuscular pre-activity during side-cutting

    DEFF Research Database (Denmark)

    Bencke, Jesper; Zebis, Mette K

    2011-01-01

    investigated. This cross-sectional study aimed to examine gender differences in neuromuscular pre-activity during a maneuver that mimics a movement associated with the incidence of ACL injuries. Twenty-four team handball players (12 male and 12 female) with no history of ACL injury were tested for EMG pre...

  19. Influência da nifedipina no bloqueio neuromuscular produzido pelo atracúrio e pelo cisatracúrio: estudo em preparações nervo frênico-diafragma de rato Influencia de la nifedipina en el bloqueo neuromuscular producido por atracurio y cisatracurio: estudio en preparación nervio frénico diafragma de ratón Influence of nifedipine on the neuromuscular block produced by atracurium and cistracurium: study in rat phrenic-diaphragmatic nerve preparation

    Directory of Open Access Journals (Sweden)

    Silmara Rodrigues de Sousa

    2006-04-01

    significantly increase the neuromuscular blocking activity of atracurium and cistracurium. Nifedipine did not alter the membrane potential and caused an initial increase on MEPP frequencies, followed by a blockage. CONCLUSIONS: Nifedipine, on the employed concentration, increased the neuromuscular blockage produced by atracurium and cistracurium. Electrophysiological studies demonstrate the existence of presynaptic action and absence of depolarizing action over the muscle fiber.

  20. Phenobarbital influence on neuromuscular block produced by rocuronium in rats Influência do fenobarbital no bloqueio neuromuscular produzido pelo rocurônio em ratos

    Directory of Open Access Journals (Sweden)

    Angélica de Fátima de Assunção Braga

    2008-08-01

    Full Text Available PURPOSE: To evaluate in vitro and in vivo neuromuscular blockade produced by rocuronium in rats treated with Phenobarbital and to determine cytochrome P450 and cytochrome b5 concentrations in hepatic microsomes. METHODS: Thirty rats were included in the study and distributed into 6 groups of 5 animals each. Rats were treated for seven days with phenobarbital (20 mg/kg and the following parameters were evaluated: 1 the amplitude of muscle response in the preparation of rats exposed to phenobarbital; 2 rocuronium effect on rat preparation exposed or not to phenobarbital; 3 concentrations of cytochrome P450 and cytochrome b5 in hepatic microsomes isolated from rats exposed or not to phenobarbital. The concentration and dose of rocuronium used in vitro and in vivo experiments were 4 µg/mL and 0,6 mg/kg, respectively. RESULTS: Phenobarbital in vitro and in vivo did not alter the amplitude of muscle response. The neuromuscular blockade in vitro produced by rocuronium was significantly different (p=0.019 between exposed (20% and not exposed (60% rats; the blockade in vivo was significantly greater (p=0.0081 in treated rats (93.4%. The enzymatic concentrations were significantly greater in rats exposed to phenobarbital. CONCLUSIONS: Phenobarbital alone did not compromise neuromuscular transmission. It produced enzymatic induction, and neuromuscular blockade in vivo produced by rocuronium was potentiated by phenobarbital.OBJETIVO: Avaliar in vitro e in vivo o bloqueio neuromuscular produzido pelo rocurônio em ratos tratados com fenobarbital e determinar as concentrações de citocromo P450 e b5 em microssomos hepáticos. MÉTODOS: Trinta ratos foram incluídos no estudo e distribuídos em seis grupos de cinco animais cada. Ratos foram tratados por sete dias com fenobarbital (20 mg/kg e avaliou-se: 1 amplitude das respostas musculares em preparação de ratos expostos ao fenobarbital; 2 o efeito do rocurônio em preparações de ratos expostos ou n

  1. Reversal of neuromuscular block with sugammadex: a comparison of the corrugator supercilii and adductor pollicis muscles in a randomized dose-response study.

    Science.gov (United States)

    Yamamoto, S; Yamamoto, Y; Kitajima, O; Maeda, T; Suzuki, T

    2015-08-01

    Neuromuscular monitoring using the corrugator supercilii muscle is associated with a number of challenges. The aim of this study was to assess reversal of a rocuronium-induced neuromuscular blockade with sugammadex according to monitoring either using the corrugator supercilii muscle or the adductor pollicis muscle. We hypothesized that a larger dose of sugammadex would be required to obtain a train-of-four (TOF) ratio of 1.0 with the corrugator supercilii muscle than with the adductor pollicis muscle. Forty patients aged 20-60 years and 40 patients aged ≥ 70 years were enrolled. After induction of anesthesia, we recorded the corrugator supercilii muscle response to facial nerve stimulation and the adductor pollicis muscle response to ulnar nerve stimulation using acceleromyography. All patients received 1 mg/kg rocuronium. When the first twitch (T1) of TOF recovered to 10% of control values at the corrugator supercilii, rocuronium infusion was commenced to maintain a T1 of 10% of the control at the corrugator supercilii. Immediately after discontinuation of rocuronium infusion, 2 mg/kg or 4 mg/kg of sugammadex was administered. The time for recovery to a TOF ratio of 1.0 and the number of patients not reaching a TOF ratio of 1.0 by 5 min at each dose and muscle was recorded. When neuromuscular block at the corrugator supercilii was maintained at a T1 of 10% of control, that at the adductor pollicis was deep (post-tetanic count ≤ 5). Sugammadex 4 mg/kg completely antagonized neuromuscular block at both muscles within 5 min. The time to a TOF ratio of 1.0 at the adductor pollicis was significantly longer in the group ≥ 70 years than the group 20-60 years (mean (SD): 178 (42.8) s vs. 120 (9.4) s, P sugammadex reversed neuromuscular blockade at the corrugator supercilii but not at the adductor pollicis, with 10 patients in the group 20-60 years and 8 patients in the group ≥ 70 years requiring an additional sugammadex (P

  2. Is there any relationship between orthotic usage and functional activities in children with neuromuscular disorders?

    Science.gov (United States)

    Alemdaroğlu, İpek; Gür, Gozde; Bek, Nilgün; Yilmaz, Öznur T; Yakut, Yavuz; Uygur, Fatma; Karaduman, Ayşe

    2014-02-01

    Contractures of Achilles tendons and gastrocnemius muscle deteriorate the performance in daily living activities of patients with neuromuscular diseases. Ankle-foot orthoses help to prevent the progression of deformities and to obtain optimal position of the joints to support standing and walking. To investigate the relationship between orthotic usage and functional activities in pediatric patients with different neuromuscular diseases. Retrospective study. A total of 127 subjects' physical assessment forms were analyzed. Functional level, type of orthoses, falling frequencies, ankle joint range of motion, and timed performance tests were examined in two consecutive dates with an interval of 3 months. A total of 91 patients were using orthoses while 36 patients were not within assessment dates. A total of 64 of 91 (70.3%) patients were diagnosed with Duchenne muscular dystrophy. A total of 81 (89.0%) subjects were using plastic ankle-foot orthoses for positioning at nights and 10 (11%) were using different types of the orthoses (knee-ankle-foot orthoses, dynamic ankle-foot orthoses, and so on) for gait in the study group. Night ankle-foot orthoses were not found to be effective directly on functional performance in children with neuromuscular diseases, although they protect ankle from contractures and may help to correct gait and balance. This retrospective study shows that the positive effects of using an ankle-foot orthosis at night are not reflected in the functional performance of children with neuromuscular diseases. This may be due to the progressive deteriorating nature of the disease.

  3. Sugammadex compared with neostigmine/glycopyrrolate for routine reversal of neuromuscular block: a systematic review and economic evaluation†

    Science.gov (United States)

    Paton, F.; Paulden, M.; Chambers, D.; Heirs, M.; Duffy, S.; Hunter, J. M.; Sculpher, M.; Woolacott, N.

    2010-01-01

    Summary The cost-effectiveness of sugammadex for the routine reversal of muscle relaxation produced by rocuronium or vecuronium in UK practice is uncertain. We performed a systematic review of randomized controlled trials of sugammadex compared with neostigmine/glycopyrrolate and an economic assessment of sugammadex for the reversal of moderate or profound neuromuscular block (NMB) produced by rocuronium or vecuronium. The economic assessment aimed to establish the reduction in recovery time and the ‘value of time saved’ which would be necessary for sugammadex to be potentially cost-effective compared with existing practice. Three trials indicated that sugammadex 2 mg kg−1 (4 mg kg−1) produces more rapid recovery from moderate (profound) NMB than neostigmine/glycopyrrolate. The economic assessment indicated that if the reductions in recovery time associated with sugammadex in the trials are replicated in routine practice, sugammadex would be cost-effective if those reductions are achieved in the operating theatre (assumed value of staff time, £4.44 per minute), but not if they are achieved in the recovery room (assumed value of staff time, £0.33 per minute). However, there is considerable uncertainty in these results. Sugammadex has the potential to be cost-effective compared with neostigmine/glycopyrrolate for the reversal of rocuronium-induced moderate or profound NMB, provided that the time savings observed in trials can be achieved and put to productive use in clinical practice. Further research is required to evaluate the effects of sugammadex on patient safety, predictability of recovery from NMB, patient outcomes, and efficient use of resources. PMID:20935005

  4. Antibiotic-induced immediate type hypersensitivity is a risk factor for positive allergy skin tests for neuromuscular blocking agents.

    Science.gov (United States)

    Hagau, Natalia; Gherman, Nadia; Cocis, Mihaela; Petrisor, Cristina

    2016-01-01

    Skin tests for neuromuscular blocking agents (NMBAs) are not currently recommended for the general population undergoing general anaesthesia. In a previous study we have reported a high incidence of positive allergy tests for NMBAs in patients with a positive history of non-anaesthetic drug allergy, a larger prospective study being needed to confirm those preliminary results. The objective of this study was to compare the skin tests results for patients with a positive history of antibiotic-induced immediate type hypersensitivity reactions to those of controls without drug allergies. Ninety eight patients with previous antibiotic hypersensitivity and 72 controls were prospectively included. Skin tests were performed for atracurium, pancuronium, rocuronium, and suxamethonium. We found 65 positive skin tests from the 392 tests performed in patients with a positive history of antibiotic hypersensitivity (1 6.58%) and 23 positive skin tests from the 288 performed in controls (7.98%), the two incidences showing significant statistical difference (p = 0.0011). The relative risk for having a positive skin test for NMBAs for patients versus controls was 1.77 (1.15-2.76). For atracurium, skin tests were more often positive in patients with a positive history of antibiotic hypersensitivity versus controls (p = 0.02). For pancuronium, rocuronium and suxamethonium the statistical difference was not attained (p-values 0.08 for pancuronium, 0.23 for rocuronium, and 0.26 for suxamethonium). Patients with a positive history of antibiotic hypersensitivity seem to have a higher incidence of positive skin tests for NMBAs. They might represent a group at higher risk for developing intraoperative anaphylaxis compared to the general population. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  5. Associations between neuromuscular function and levels of physical activity differ for boys and girls during puberty.

    Science.gov (United States)

    Rudroff, Thorsten; Kelsey, Megan M; Melanson, Edward L; McQueen, Matthew B; Enoka, Roger M

    2013-08-01

    To compare the associations between neuromuscular performance and anthropometric characteristics with habitual levels of physical activity in boys and girls during the initial stages of puberty. In a cross-sectional study of 72 healthy children (39 boys and 33 girls) ranging in age from 8 to 14 years, sex differences in anthropometric and motor performance characteristics were compared at 3 Tanner stages (T1-T3). Outcome variables included dual-energy x-ray absorptiometry measurements of body composition, assessments of neuromuscular function, and levels of physical activity (steps/day) measured by accelerometry. Physical activity was lower in girls than boys at T2 and T3, but there was no sex difference at T1. Physical activity increased with Tanner stage for boys but did not differ between Tanner stages in girls. Physical activity at each Tanner stage was strongly associated (R(2) > 0.85) with neuromuscular characteristics for both boys and girls, but percentage of body fat also was associated with physical activity for T3 girls. The attenuated gains in neuromuscular function experienced by girls in early stages of puberty were strongly associated with lower levels of physical activity, whereas the increase in physical activity exhibited by boys was mostly related to increases in the strength and endurance of leg muscles. Because sedentary activity is a known contributor to the development of obesity and type 2 diabetes in youth, this study helps to identify possible contributors to decreases in physical activity in young girls and provides potential targets for early intervention. Copyright © 2013 Mosby, Inc. All rights reserved.

  6. The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue during Extravehicular Activity Glove Use

    Science.gov (United States)

    Madden, Kaci E.; Deshpande, Ashish D.; Peters, Benjamin J.; Rogers, Jonathan M.; Laske, Evan A.; McBryan, Emily R.

    2017-01-01

    The three-layered, pressurized space suit glove worn by Extravehicular Activity (EVA) crew members during missions commonly causes hand and forearm fatigue. The Spacesuit RoboGlove (SSRG), a Phase VI EVA space suit glove modified with robotic grasp-assist capabilities, has been developed to augment grip strength in order to improve endurance and reduce the risk of injury in astronauts. The overall goals of this study were to i) quantify the neuromuscular modulations that occur in response to wearing a conventional Phase VI space suit glove (SSG) during a fatiguing task, and ii) determine the efficacy of Spacesuit RoboGlove (SSRG) in reversing the adverse neuromuscular modulations and restoring altered muscular activity to barehanded levels. Six subjects performed a fatigue sequence consisting of repetitive dynamic-gripping interspersed with isometric grip-holds under three conditions: barehanded, wearing pressurized SSG, and wearing pressurized SSRG. Surface electromyography (sEMG) from six forearm muscles (flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), extensor digitorum (ED), extensor carpi radialis longus (ECRL), and extensor carpi ulnaris (ECU)) and subjective fatigue ratings were collected during each condition. Trends in amplitude and spectral distributions of the sEMG signals were used to derive metrics quantifying neuromuscular effort and fatigue that were compared across the glove conditions. Results showed that by augmenting finger flexion, the SSRG successfully reduced the neuromuscular effort needed to close the fingers of the space suit glove in more than half of subjects during two types of tasks. However, the SSRG required more neuromuscular effort to extend the fingers compared to a conventional SSG in many subjects. Psychologically, the SSRG aided subjects in feeling less fatigued during short periods of intense work compared to the SSG. The results of this study reveal the promise of the SSRG as a

  7. Impact of high- versus low-dose neuromuscular blocking agent administration on unplanned 30-day readmission rates in retroperitoneal laparoscopic surgery.

    Directory of Open Access Journals (Sweden)

    Martijn Boon

    Full Text Available Recent data shows that a neuromuscular block (NMB induced by administration of high doses of rocuronium improves surgical conditions in certain procedures. However, there are limited data on the effect such practices on postoperative outcomes. We performed a retrospective analysis to compare unplanned 30-day readmissions in patients that received high-dose versus low-dose rocuronium administration during general anesthesia for laparoscopic retroperitoneal surgery. This retrospective cohort study was performed in the Netherlands in an academic hospital where routine high-dose rocuronium NMB has been practiced since July 2015. Charts of patients receiving anesthesia between January 2014 and December 2016 were searched for surgical cases receiving high-dose rocuronium and matched with respect to procedure, age, sex and ASA classification to patients receiving low-dose rocuronium. The primary post-operative outcome was unplanned 30-day readmission rate. There were 130 patients in each cohort. Patients in the high- and low-dose rocuronium cohorts received 217 ± 49 versus 37 ± 5 mg rocuronium, respectively. In the high-dose rocuronium group neuromuscular activity was consistently monitored; matched patients were unreliably monitored. All patients receiving high-dose rocuronium were reversed with sugammadex, while just 33% of matched patients were reversed with sugammadex and 20% with neostigmine; the remaining patients were not reversed. Unplanned 30-day readmission rate was significantly lower in the high-dose compared to the low-dose rocuronium cohort (3.8% vs. 12.7%; p = 0.03; odds ratio = 0.33, 95% C.I. 0.12-0.95. This small retrospective study demonstrates a lower incidence of unplanned readmissions within 30-days following laparoscopic retroperitoneal surgery with high-dose relaxant anesthesia and sugammadex reversal in comparison to low-dose relaxant anesthesia. Further prospective studies are needed in larger samples to corroborate our

  8. Impact of high- versus low-dose neuromuscular blocking agent administration on unplanned 30-day readmission rates in retroperitoneal laparoscopic surgery.

    Science.gov (United States)

    Boon, Martijn; Martini, Chris; Yang, H Keri; Sen, Shuvayu S; Bevers, Rob; Warlé, Michiel; Aarts, Leon; Niesters, Marieke; Dahan, Albert

    2018-01-01

    Recent data shows that a neuromuscular block (NMB) induced by administration of high doses of rocuronium improves surgical conditions in certain procedures. However, there are limited data on the effect such practices on postoperative outcomes. We performed a retrospective analysis to compare unplanned 30-day readmissions in patients that received high-dose versus low-dose rocuronium administration during general anesthesia for laparoscopic retroperitoneal surgery. This retrospective cohort study was performed in the Netherlands in an academic hospital where routine high-dose rocuronium NMB has been practiced since July 2015. Charts of patients receiving anesthesia between January 2014 and December 2016 were searched for surgical cases receiving high-dose rocuronium and matched with respect to procedure, age, sex and ASA classification to patients receiving low-dose rocuronium. The primary post-operative outcome was unplanned 30-day readmission rate. There were 130 patients in each cohort. Patients in the high- and low-dose rocuronium cohorts received 217 ± 49 versus 37 ± 5 mg rocuronium, respectively. In the high-dose rocuronium group neuromuscular activity was consistently monitored; matched patients were unreliably monitored. All patients receiving high-dose rocuronium were reversed with sugammadex, while just 33% of matched patients were reversed with sugammadex and 20% with neostigmine; the remaining patients were not reversed. Unplanned 30-day readmission rate was significantly lower in the high-dose compared to the low-dose rocuronium cohort (3.8% vs. 12.7%; p = 0.03; odds ratio = 0.33, 95% C.I. 0.12-0.95). This small retrospective study demonstrates a lower incidence of unplanned readmissions within 30-days following laparoscopic retroperitoneal surgery with high-dose relaxant anesthesia and sugammadex reversal in comparison to low-dose relaxant anesthesia. Further prospective studies are needed in larger samples to corroborate our findings and

  9. Serial elongation, derotation and flexion (EDF) casting under general anesthesia and neuromuscular blocking drugs improve outcome in patients with juvenile scoliosis: preliminary results.

    Science.gov (United States)

    Canavese, Federico; Botnari, Alexei; Dimeglio, Alain; Samba, Antoine; Pereira, Bruno; Gerst, Adeline; Granier, Marie; Rousset, Marie; Dubousset, Jean

    2016-02-01

    Juvenile scoliosis (JS), among different types of spinal deformity, remains still a challenge for orthopedic surgeons. Elongation, derotation and flexion (EDF) casting technique is a custom-made thoracolumbar cast based on a three-dimensional correction concept. The primary objective of the present study was to measure changes on plain radiographs of patients with JS treated with EDF plaster technique. The second aim was to evaluate the effectiveness of the EDF plaster technique realized under general anesthesia (GA) and neuromuscular blocking drugs, i.e. curare, on the radiological curve correction. A retrospective comparative case series study was performed in which were included forty-four skeletally immature patients. Three patient groups were selected. Group 1: EDF cast applied with patients awaken and no anesthesia; Group 2: EDF cast applied under GA without neuromuscular blocking drugs; Group 3: EDF cast applied under GA with neuromuscular blocking drugs. All the patients were treated with two serial EDF casts by 2 months and a half each. All measurements were taken from the radiographic exams. Cobb's angle; RVAD and Nash and Moe grade of rotation were assessed before and after applying the cast. Thirty-four (77.3 %) patients were followed up at least 24 months after removal of last EDF cast. Eighteen patients (3 males, 15 females) were included in Group 1, 12 (2 males, 10 females) in Group 2 and 14 (5 males, 9 females) in Group 3. Serial EDF casting was more effective at initial curve reduction and in preventing curve progression when applied under GA with neuromuscular blocking drugs, i.e. curare. RVAD and Nash and Moe score improved significantly in all groups of patients treated according to principles of EDF technique. During follow-up period, six patients required surgery in Group 1 (6/18; 33.3 %), 3 patients required surgery in Group 2 (3/12; 25 %) and 2 patients underwent surgery in Group 3 (2/14; 15 %). Preliminary results show EDF casting is

  10. Effects of exercise on activity-and blood flow-related neuromuscular degeneration

    OpenAIRE

    Ishihara, Akihiko; 石原 昭彦

    2006-01-01

    Effects of running exercise with increasing loads on hindlimb unloading-induced neuromuscular degeneration in male rats were investigated. Ten-week-old male rats were hindlimb suspended at horizontal position for two weeks and thereafter were rehabilitated by voluntary running exercise with increasing loads for two weeks. A decreased percentage of type 1 fibers and atrophy and decreased oxidative enzyme activity of all types of fibers in the soleus muscle were observed after hindlimb unloadin...

  11. Reclassifying Anaphylaxis to Neuromuscular Blocking Agents Based on the Presumed Patho-Mechanism: IgE-Mediated, Pharmacological Adverse Reaction or “Innate Hypersensitivity”?

    Directory of Open Access Journals (Sweden)

    David Spoerl

    2017-06-01

    Full Text Available Approximately 60% of perioperative anaphylactic reactions are thought to be immunoglobulin IgE mediated, whereas 40% are thought to be non-IgE mediated hypersensitivity reactions (both considered non-dose-related type B adverse drug reactions. In both cases, symptoms are elicited by mast cell degranulation. Also, pharmacological reactions to drugs (type A, dose-related may sometimes mimic symptoms triggered by mast cell degranulation. In case of hypotension, bronchospasm, or urticarial rash due to mast cell degranulation, identification of the responsible mechanism is complicated. However, determination of the type of the underlying adverse drug reaction is of paramount interest for the decision of whether the culprit drug may be re-administered. Neuromuscular blocking agents (NMBA are among the most frequent cause of perioperative anaphylaxis. Recently, it has been shown that NMBA may activate mast cells independently from IgE antibodies via the human Mas-related G-protein-coupled receptor member X2 (MRGPRX2. In light of this new insight into the patho-mechanism of pseudo-allergic adverse drug reactions, in which as drug-receptor interaction results in anaphylaxis like symptoms, we critically reviewed the literature on NMBA-induced perioperative anaphylaxis. We challenge the dogma that NMBA mainly cause IgE-mediated anaphylaxis via an IgE-mediated mechanism, which is based on studies that consider positive skin test to be specific for IgE-mediated hypersensitivity. Finally, we discuss the question whether MRGPRX2 mediated pseudo-allergic reactions should be re-classified as type A adverse reactions.

  12. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings.

    Directory of Open Access Journals (Sweden)

    Bart Malfait

    Full Text Available The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ.Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM,vastus lateralis(VL}, {vastus medialis(VM,hamstring medialis(HM}, {hamstring medialis(HM,hamstring lateralis(HL} and the {vastus lateralis(VL,hamstring lateralis(HL}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping.The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05. Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001. The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05. Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001. Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001.This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an increased medial and posterior

  13. Influence of patterned electrical neuromuscular stimulation on quadriceps activation in individuals with knee joint injury.

    Science.gov (United States)

    Glaviano, Neal R; Langston, William T; Hart, Joseph M; Saliba, Susan

    2014-12-01

    Neuromuscular Electrical Stimulation is a common intervention to address muscle weakness, however presents with many limitations such as fatigue, muscle damage, and patient discomfort that may influence its effectiveness. One novel form of electrical stimulation purported to improve neuromuscular re-education is Patterned Electrical Neuromuscular Stimulation (PENS), which is proposed to mimic muscle-firing patterns of healthy individuals. PENS provides patterned stimulating to the agonist muscle, antagonist muscle and then agonist muscle again in an effort to replicate firing patterns. The purpose of this study was to determine the effect of a single PENS treatment on knee extension torque and quadriceps activation in individuals with quadriceps inhibition. 18 subjects (10 males and 8 females: 24.2±3.4 years, 175.3±11.8cm, 81.8±12.4kg) with a history of knee injury/pain participated in this double-blinded randomized controlled laboratory trial. Participants demonstrated quadriceps inhibition with a central activation ratio of ≤90%. Maximal voluntary isometric contraction of the quadriceps and central activation ratio were measured before and after treatment. The treatment intervention was a 15-minute patterned electrical stimulation applied to the quadriceps and hamstring muscles with a strong motor contraction or a sham group, who received an identical set up as the PENS group, but received a 1mA subsensory stimulation. A 2×2 (group × time) ANCOVA was used to determine differences in maximal voluntary isometric contraction and central activation ratio between groups. The maximal voluntary isometric contraction was selected as a covariate due to baseline differences. There were no differences in change scores between pre- and post-intervention for maximal voluntary isometric contraction: (PENS: 0.09±0.32Nm/kg and Sham 0.15±0.18Nm/kg, p=0.713), or central activation ratio:(PENS: -1.22±6.06 and Sham: 1.48±3.7, p=0.270). A single Patterned Electrical

  14. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings.

    Science.gov (United States)

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (phamstrings medialis activity) during the preparatory and initial contact phase and an increased lateral neuromuscular activation (dominant vastus lateralis activity) during the peak loading phase.

  15. Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship?

    Science.gov (United States)

    Lanza, Marcel B; Balshaw, Thomas G; Folland, Jonathan P

    2017-08-01

    What is the central question of the study? Do changes in neuromuscular activation contribute to the knee extensor angle-torque relationship? What is the main finding and its importance? Both agonist (quadriceps) and antagonist coactivation (hamstrings) differed with knee joint angle during maximal isometric knee extensions and thus both are likely to contribute to the angle-torque relationship. Specifically, two independent measurement techniques showed quadriceps activation to be lower at more extended positions. These effects might influence the capacity for neural changes in response to training and rehabilitation at different knee joint angles. The influence of joint angle on knee extensor neuromuscular activation is unclear, owing in part to the diversity of surface electromyography (sEMG) and/or interpolated twitch technique (ITT) methods used. The aim of the study was to compare neuromuscular activation, using rigorous contemporary sEMG and ITT procedures, during isometric maximal voluntary contractions (iMVCs) of the quadriceps femoris at different knee joint angles and examine whether activation contributes to the angle-torque relationship. Sixteen healthy active men completed two familiarization sessions and two experimental sessions of isometric knee extension and knee flexion contractions. The experimental sessions included the following at each of four joint angles (25, 50, 80 and 106 deg): iMVCs (with and without superimposed evoked doublets); submaximal contractions with superimposed doublets; and evoked twitch and doublet contractions whilst voluntarily passive, and knee flexion iMVC at the same knee joint positions. The absolute quadriceps femoris EMG was normalized to the peak-to-peak amplitude of an evoked maximal M-wave, and the doublet-voluntary torque relationship was used to calculate activation with the ITT. Agonist activation, assessed with both normalized EMG and the ITT, was reduced at the more extended compared with the more flexed

  16. Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex: a multicenter, dose-finding and safety study.

    NARCIS (Netherlands)

    Boer, H.D. de; Driessen, J.J.; Marcus, M.A.; Kerkkamp, H.E.M.; Heeringa, M.; Klimek, M.

    2007-01-01

    BACKGROUND: Reversal of rocuronium-induced neuromuscular blockade can be accomplished by chemical encapsulation of rocuronium by sugammadex, a modified gamma-cyclodextrin derivative. This study investigated the efficacy and safety of sugammadex in reversing rocuronium-induced profound neuromuscular

  17. Sensorimotor control and neuromuscular activity of the shoulder in adolescent competitive swimmers with generalized joint hypermobility

    DEFF Research Database (Denmark)

    Frydendal, Thomas; Eshøj, Henrik; Liaghat, Behnam

    2018-01-01

    INTRODUCTION: Shoulder pain is highly prevalent in competitive swimmers, and generalized joint hypermobility (GJH) is considered a risk factor. Sensorimotor control deficiencies and altered neuromuscular activation of the shoulder may represent underlying factors. RESEARCH QUESTION: To investigate...... whether competitive swimmers with GJH including shoulder hypermobility (GJHS) differ in shoulder sensorimotor control and muscle activity from those without GJH and no shoulder hypermobility (NGJH). METHODS: Competitive swimmers (aged 13-17) were recruited. GJHS or NGJH status was determined using...... (29%) pectoralis major activity during BL-EO compared to NGJH (5.35 ± 1.77%MVE vs. 7.51 ± 1.96%MVE; p = 0.043). SIGNIFICANCE: Adolescent competitive swimmers with GJHS displayed no shoulder sensorimotor control deficiencies and no generally altered shoulder muscle activity pattern, except...

  18. Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women

    DEFF Research Database (Denmark)

    Suetta, C; Aagaard, P; Magnusson, S P

    2007-01-01

    quadriceps muscle cross-sectional area (LCSA), contractile rate of force development (RFD, Delta force/Delta time), impulse (integral force dt), muscle activation deficit (interpolated twitch technique), maximal neuromuscular activity [electromyogram (EMG)], and antagonist muscle coactivation in elderly men......%), contractile RFD (W: 17-26%; M: 15-24%), impulse (W: 10-19%, M: 19-20%), maximal EMG amplitude (W: 22-25%, M: 22-28%), and an increased muscle activation deficit (-18%) compared with UN. Furthermore, women were less strong (AF: 40%; UN: 39%), had less muscle mass (AF: 33%; UN: 34%), and had a lower RFD (AF: 38......-50%; UN: 41-48%) compared with men. Similarly, maximum EMG amplitude was smaller for both agonists (AF: 51-63%; UN: 35-61%) and antagonist (AF: 49-64%; UN: 36-56%) muscles in women compared with men. However, when MVC and RFD were normalized to LCSA, there were no differences between genders. The present...

  19. Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse.

    Science.gov (United States)

    Besalduch, Núria; Tomàs, Marta; Santafé, Manel M; Garcia, Neus; Tomàs, Josep; Lanuza, Maria Angel

    2010-01-10

    Protein kinase C (PKC) is essential for signal transduction in a variety of cells, including neurons and myocytes, and is involved in both acetylcholine release and muscle fiber contraction. Here, we demonstrate that the increases in synaptic activity by nerve stimulation couple PKC to transmitter release in the rat neuromuscular junction and increase the level of alpha, betaI, and betaII isoforms in the membrane when muscle contraction follows the stimulation. The phosphorylation activity of these classical PKCs also increases. It seems that the muscle has to contract in order to maintain or increase classical PKCs in the membrane. We use immunohistochemistry to show that PKCalpha and PKCbetaI were located in the nerve terminals, whereas PKCalpha and PKCbetaII were located in the postsynaptic and the Schwann cells. Stimulation and contraction do not change these cellular distributions, but our results show that the localization of classical PKC isoforms in the membrane is affected by synaptic activity.

  20. Muscular power, neuromuscular activation, and performance in shot put athletes at preseason and at competition period.

    Science.gov (United States)

    Kyriazis, Thomas A; Terzis, Gerasimos; Boudolos, Konstantinos; Georgiadis, Georgios

    2009-09-01

    The aim of this study was to investigate changes in shot put performance, muscular power, and neuromuscular activation of the lower extremities, between the preseason and the competition period, in skilled shot put athletes using the rotational technique. Shot put performance was assessed at the start of the pre-season period as well as after 12 weeks, at the competition period, in nine shot putters. Electromyographic (EMG) activity of the right vastus lateralis muscle was recorded during all shot put trials. Maximum squat strength (1RM) and mechanical parameters during the countermovement jump (CMJ) on a force platform were also determined at pre-season and at competition period. Shot put performance increased 4.7% (p phase was increased significantly (p training period. Shot put performance was significantly related with muscular power and takeoff velocity during the CMJ, at competition period (r = 0.66, p competition period.

  1. Recovery of muscle function after deep neuromuscular block by means of diaphragm ultrasonography and adductor of pollicis acceleromyography with comparison of neostigmine vs. sugammadex as reversal drugs: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Cappellini, Iacopo; Picciafuochi, Fabio; Ostento, Daniele; Danti, Ginevra; De Gaudio, Angelo Raffaele; Adembri, Chiara

    2018-02-21

    The extensive use of neuromuscular blocking agents (NMBAs) during surgical procedures still leads to potential residual paralyzing effects in the postoperative period. Indeed, neuromuscular monitoring in an intra-operative setting is strongly advocated. Acetylcholinesterase inhibitors can reverse muscle block, but their short half-life may lead to residual curarization in the ward, especially when intermediate or long-acting NMBAs have been administered. Sugammadex is the first selective reversal drug for steroidal NMBAs; it has been shown to give full and rapid recovery of muscle strength, thus minimizing the occurrence of residual curarization. Acceleromyography of the adductor pollicis is the gold standard for detecting residual curarization, but it cannot be carried out on conscious patients. Ultrasonography of diaphragm thickness may reveal residual effects of NMBAs in conscious patients. This prospective, double-blind, single-center randomized controlled study will enroll patients (of American Society of Anesthesiologists physical status I-II, aged 18-80 years) who will be scheduled to undergo deep neuromuscular block with rocuronium for ear, nose, or throat surgery. The study's primary objective will be to compare the effects of neostigmine and sugammadex on postoperative residual curarization using two different tools: diaphragm ultrasonography and acceleromyography of the adductor pollicis. Patients will be extubated when the train-of-four ratio is > 0.9. Diaphragm ultrasonography will be used to evaluate the thickening fraction, which is the difference between the end expiratory thickness and the end inspiratory thickness, normalized to the end expiratory thickness. Ultrasonography will be performed before the initiation of general anesthesia, before extubation, and 10 and 30 min after discharging patients from the operating room. The secondary objective will be to compare the incidence of postoperative complications due to residual neuromuscular

  2. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging.

    Science.gov (United States)

    Badawi, Yomna; Nishimune, Hiroshi

    2018-02-01

    Neurotransmitter release occurs at active zones, which are specialized regions of the presynaptic membrane. A dense collection of proteins at the active zone provides a platform for molecular interactions that promote recruitment, docking, and priming of synaptic vesicles. At mammalian neuromuscular junctions (NMJs), muscle-derived laminin β2 interacts with presynaptic voltage-gated calcium channels to organize active zones. The molecular architecture of presynaptic active zones has been revealed using super-resolution microscopy techniques that combine nanoscale resolution and multiple molecular identification. Interestingly, the active zones of adult NMJs are not stable structures and thus become impaired during aging due to the selective degeneration of specific active zone proteins. This review will discuss recent progress in the understanding of active zone nanoarchitecture and the mechanisms underlying active zone organization in mammalian NMJs. Furthermore, we will summarize the age-related degeneration of active zones at NMJs, and the role of exercise in maintaining active zones. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  3. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Michalsik, L B; Madsen, Klavs

    2008-01-01

    The purpose of the present study was to determine the acute fatigue development in muscle mechanical properties and neuromuscular activity in response to handball match play. Male elite handball players (n = 10) were tested before and after a simulated handball match for maximal isometric strength...... work (6.8%, P handball match play, which...

  4. Effects of Different Footwear Properties and Surface Instability on Neuromuscular Activity and Kinematics During Jumping.

    Science.gov (United States)

    Lesinski, Melanie; Prieske, Olaf; Borde, Ron; Beurskens, Rainer; Granacher, Urs

    2018-04-13

    Lesinski, M, Prieske, O, Borde, R, Beurskens, R, and Granacher, U. Effects of different footwear properties and surface instability on neuromuscular activity and kinematics during jumping. J Strength Cond Res XX(X): 000-000, 2018-The purpose of this study was to examine sex-specific effects of different footwear properties vs. barefoot condition during the performance of drop jumps (DJs) on stable and unstable surfaces on measures of jump performance, electromyographic (EMG) activity, and knee joint kinematics. Drop jump performance, EMG activity of lower-extremity muscles, as well as sagittal and frontal knee joint kinematics were tested in 28 healthy male (n = 14) and female (n = 14) physically active sports science students (23 ± 2 years) during the performance of DJs on stable and unstable surfaces using different footwear properties (elastic vs. minimal shoes) vs. barefoot condition. Analysis revealed a significantly lower jump height and performance index (Δ7-12%; p footwear conditions (Δ29%; p footwear-surface interactions were detected. Our findings revealed that surface instability had an impact on DJ performance, thigh/shank muscle activity, and knee joint kinematics. In addition, the single factors "footwear" and "sex" modulated knee joint kinematics during DJs. However, hardly any significant interaction effects were found. Thus, additional footwear-related effects can be neglected when performing DJs during training on different surfaces.

  5. Knee joint kinaesthesia and neuromuscular coordination during three phases of the menstrual cycle in moderately active women.

    Science.gov (United States)

    Fridén, Cecilia; Hirschberg, Angelica Lindén; Saartok, Tönu; Renström, Per

    2006-04-01

    An increased incidence of sports related injuries in the premenstrual phase as well as in the menstrual phase of the menstrual cycle has been described. This may be explained by alterations in proprioception and neuromuscular coordination due to hormonal variations. Prospective, within women analysis of knee joint kinesthesia and neuromuscular coordination were performed by repeated measures analysis of variance in three hormonally verified phases of three consecutive menstrual cycles. Thirty-two healthy, moderately active female subjects volunteered to participate in the study. Twenty-five of the subjects performed at least one hormonally verified menstrual cycle. A specially designed device was used to investigate knee joint kinaesthesia and neuromuscular coordination was measured with the square hop test. These tests were carried out in the menstrual phase, ovulation phase and premenstrual phase determined by hormone analyses in three consecutive menstrual cycles. An impaired knee joint kinaesthesia was detected in the premenstrual phase and the performance of square hop test was significantly improved in the ovulation phase compared to the other two phases. The results of this study indicate that the variation of sex hormones in the menstrual cycle has an effect on performance of knee joint kinaesthesia and neuromuscular coordination.

  6. Neuromuscular blockade in children Bloqueadores neuromusculares em crianças

    Directory of Open Access Journals (Sweden)

    João Fernando Lourenço de Almeida

    2000-06-01

    Full Text Available Neuromuscular blocking agents (NMBAs have been widely used to control patients who need to be immobilized for some kind of medical intervention, such as an invasive procedure or synchronism with mechanical ventilation. The purpose of this monograph is to review the pharmacology of the NMBAs, to compare the main differences between the neuromuscular junction in neonates, infants, toddlers and adults, and moreover to discuss their indications in critically ill pediatric patients. Continuous improvement of knowledge about NMBAs pharmacology, adverse effects, and the many other remaining unanswered questions about neuromuscular junction and neuromuscular blockade in children is essential for the correct use of these drugs. Therefore, the indication of these agents in pediatrics is determined with extreme judiciousness. Computorized (Medline 1990-2000 and active search of articles were the mechanisms used in this review.Os bloqueadores neuromusculares têm sido amplamente utilizados para controlar pacientes que necessitem imobilidade para algum tipo de intervenção médica, desde a realização de procedimentos invasivos até a obtenção de sincronismo com a ventilação mecânica. O objetivo básico desta monografia é revisar a farmacologia dos principais bloqueadores neuromusculares, analisar as diferenças existentes na junção neuromuscular de neonatos, lactentes, pré-escolares e adultos, além de discutir suas indicações em pacientes criticamente enfermos internados em unidade de terapia intensiva pediátrica. Revisão computadorizada da literatura (Medline 1990-2000 associado a busca ativa de artigos compuseram o mecanismo de busca dos dados desta revisão.

  7. Novel vibration-exercise instrument with dedicated adaptive filtering for electromyographic investigation of neuromuscular activation

    NARCIS (Netherlands)

    Xu, L.; Rabotti, C.; Mischi, M.

    2012-01-01

    Vibration exercise (VE) has been suggested as an effective methodology to improve muscle strength and power performance. Several studies link the effects of vibration training to enhanced neuromuscular demand, typically ascribed to involuntary reflex mechanisms. However, the underlying mechanisms

  8. Prolongation of rapacuronium neuromuscular blockade by clindamycin and magnesium.

    Science.gov (United States)

    Sloan, Paul A; Rasul, Mazhar

    2002-01-01

    We report a prolonged neuromuscular block with the nondepolarizing muscle relaxant rapacuronium in the presence of clindamycin. Even when using "short-acting" muscle relaxants, the anesthesiologist must routinely monitor the neuromuscular function.

  9. Electromyographic activity of the diaphragm during neostigmine or sugammadex-enhanced recovery after neuromuscular blockade with rocuronium: a randomised controlled study in healthy volunteers.

    Science.gov (United States)

    Schepens, Tom; Cammu, Guy; Saldien, Vera; De Neve, Nikolaas; Jorens, Philippe G; Foubert, Luc; Vercauteren, Marcel

    2015-01-01

    The use of neuromuscular blocking agents has been associated with severe postoperative respiratory morbidity. Complications can be attributed to inadequate reversal, and reversal agents may themselves have adverse effects. To compare the electromyographic activity of the diaphragm (EMGdi) during recovery from neuromuscular blockade using neostigmine and sugammadex. The hypothesis was that there would be better neuromuscular coupling of the diaphragm when sugammadex was used. A randomised, controlled, parallel-group, single-centre, double-blinded study. District general hospital in Belgium. Twelve healthy male volunteers. Individuals were anaesthetised with propofol and remifentanil. After rocuronium 0.6 mg kg, a transoesophageal electromyography (EMG) recorder was inserted. For reversal of neuromuscular blockade, volunteers received sugammadex 2 mg kg (n = 6) or neostigmine 70 μg kg (n = 6). EMGdi, airway pressure and flow were continuously measured during weaning from the ventilator until tracheal extubation. Arterial blood gas samples were obtained for PaO2 and PaCO2 analysis at the first spontaneous breathing attempt and after tracheal extubation. During weaning, 560 breaths were retained for analysis. The median (95% CI) peak EMGdi was 1.1 (0.9 to 1.5) μV in the neostigmine group and 1.6 (1.3 to 1.9) μV in the sugammadex group (P sugammadex group (P = 0.008). The median (95% CI) tidal volume was 287 (256 to 335) ml after neostigmine and 359 (313 to 398) ml after sugammadex (P = 0.013). The median (95% CI) PaO2 immediately after extubation was 30.5 (22.8 to 37.1) kPa after sugammadex vs. 20.7 (12.9 to 27.5) kPa after neostigmine (P = 0.03). EMGdi, tidal volume and PaO2 following tracheal extubation were increased after sugammadex compared with neostigmine, reflecting diaphragm-driven inspiration after sugammadex administration. Sugammadex may free more diaphragmatic acetylcholine receptors than neostigmine, which has an

  10. Neuromuscular Disorders

    Science.gov (United States)

    ... lead to twitching, cramps, aches and pains, and joint and movement problems. Sometimes it also affects heart function and your ability to breathe. Examples of neuromuscular disorders include Amyotrophic lateral sclerosis Multiple sclerosis Myasthenia ...

  11. Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.

    Science.gov (United States)

    Qian, S M; Delaney, K R

    1997-10-17

    Action potential-evoked transmitter release is enhanced for many seconds after moderate-frequency stimulation (e.g. 15 Hz for 30 s) at the excitor motorneuron synapse of the crayfish dactyl opener muscle. Beginning about 1.5 s after a train, activity-dependent synaptic enhancement (ADSE) is dominated by a process termed augmentation (G.D. Bittner, D.A. Baxter, Synaptic plasticity at crayfish neuromuscular junctions: facilitation and augmentation, Synapse 7 (1991) 235-243'[4]; K.L. Magleby, Short-term changes in synaptic efficacy, in: G.M. Edelman, L.E. Gall, C.W. Maxwell (Eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56; K.L. Magleby; J.E. Zengel, Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction, J. Physiol. (Lond.) 257 (1976) 449-470) which decays approximately exponentially with a time constant of about 10 s at 16 degrees C, reflecting the removal of Ca2+ which accumulates during the train in presynaptic terminals (K.R. Delaney, D.W. Tank, R.S. Zucker, Serotonin-mediated enhancement of transmission at crayfish neuromuscular junction is independent of changes in calcium, J. Neurosci. 11 (1991) 2631-2643). Serotonin (5-HT, 1 microM) increases evoked and spontaneous transmitter release several-fold (D. Dixon, H.L. Atwood, Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16 (1985) 409-424; J. Dudel, Modulation of quantal synaptic release by serotonin and forskolin in crayfish motor nerve terminals, in: Modulation of Synaptic Transmission and Plasticity in Nervous Systems, G. Hertting, H.-C. Spatz (Eds.), Springer-Verlag, Berlin, 1988; S. Glusman, E.A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. (Lond.) 325 (1982) 223-241). We found that ADSE persists about 2-3 times longer after moderate-frequency presynaptic stimulation in the presence of 5-HT. This slowing of the

  12. Effect of Early Physical Activity Programs on Motor Performance and Neuromuscular Development in Infants Born Preterm: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Leila Valizadeh

    2017-03-01

    Full Text Available Introduction: Although the survival rate of infants born preterm has increased, the prevalence of developmental problems and motor disorders among this population of infants remains the same. This study investigated the effect of physical activity programs in and out of water on motor performance and neuromuscular development of infants born preterm and had induced immobility by mechanical ventilation.Methods: This study was carried out in Al-Zahra hospital, Tabriz. 76 premature infants were randomly assigned into four groups. One group received daily passive range of motion to all extremities based on the Moyer-Mileur protocol. Hydrotherapy group received exercises for shoulders and pelvic area in water every other day. A combination group received physical activity programs in and out of water on alternating days. Infants in a containment group were held in a fetal position. Duration of study was two weeks ‘from 32 through 33 weeks post menstrual age (PMA. Motor outcomes were measured by the Test of Infant Motor Performance. Neuromuscular developmental was assessed by New Ballard scale and leg recoil and Ankle dorsiflexion items from Dubowitz scale. Data were analyzed using SPSS version 13.Results: TIMP and neuromuscular scores improved in all groups. Motor performance did not differ between groups at 34 weeks PMA. Postural tone of leg recoil was significantly higher in physical activity groups post intervention.Conclusion: Physical activities and containment didn’t have different effects on motor performance in infants born preterm. Leg recoil of neuromuscular development items was affected by physical activity programs.

  13. Characterization of cervical neuromuscular response to head-neck perturbation in active young adults.

    Science.gov (United States)

    Alsalaheen, Bara; Bean, Ryan; Almeida, Andrea; Eckner, James; Lorincz, Matthew

    2018-04-01

    The majority of studies examining the role of cervical muscles on head-neck kinematics focused on musculoskeletal attributes (e.g. strength). Cervical neuromuscular response to perturbation may represent a divergent construct that has not been examined under various perturbation conditions. This study examined the association between cervical musculoskeletal attributes and cervical neuromuscular response of the sternocleidomastoid (SCM) to perturbation. Furthermore, this study examined the effect of anticipation and preload on the SCM neuromuscular response. Nineteen participants completed measurement of SCM muscle size, cervical flexion maximal voluntary isometric contraction, and the neuromuscular response of the SCM to cervical perturbation. Cervical perturbation was delivered by dropping a 1.59 kg mass from a loading apparatus. The impulsive load was delivered under four conditions: (1) Anticipated perturbation with no preload (A-NP), (2) Unanticipated perturbation with no preload (U-NP), (3) Anticipated perturbation with preload (A-P), and (4) Unanticipated perturbation with preload (U-P). None of the cervical musculoskeletal attributes were correlated with the SCM cervical neuromuscular response. This study demonstrated significant effect of preloading and anticipation on baseline EMG amplitude and EMG onset latency for the SCM. Furthermore, there was a significant effect of preloading on average EMG response amplitude for the SCM. The findings of this study indicate that cervical neuromuscular response of the SCM is different from musculoskeletal attributes and is influenced by perturbation conditions. These findings provide conceptual support to examine the neuromuscular response of the SCM in mitigating head-neck kinematics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Occlus-o-Guide® versus Andresen activator appliance: neuromuscular evaluation.

    Science.gov (United States)

    Farronato, Giampietro; Giannini, Lucia; Galbiati, Guido; Grillo, Elena; Maspero, Cinzia

    2013-05-20

    The aim of the present study was to assess the muscular variations at the electromyography (EMG) level for the anterior temporalis muscles and masseter muscles during treatment with Occlus-o-Guide® and Andresen activator appliances. Eighty-two patients (35 males and 47 females) aged between 8 and 12 years (mean age, 10.5±0.8 years) participated in the study. Fifty patients underwent treatment with an Occlus-o-Guide® and 32 patients with an Andresen activator. All patients underwent EMG examination using a Freely EMG (De Gotzen, Legnano, Italy) and surface bipolar electrodes when the appliances were worn for the first time (T0), and after 6 months (T1) and after 12 months (T2) of appliance use. Statistical analysis showed that both at T0 and T2, the percent overlapping coefficient (POC) of the anterior temporalis muscles was not statistically different between the appliance groups. At T0, the POC of the masseter muscles was significantly lower for the Andresen appliance as compared to the Occlus-o-Guide® (p=0.02), while at T2 this significance was lost. At insertion of an appliance, all patients show neuromuscular balance that does not correspond to orthognathic occlusion. Both appliances work by creating muscular imbalance. With the appliances in situ, EMG responses were generally analogous for the Occlus-o-Guide® and the Andresen activator; however, the imbalance was greater and the recovery of the orthological muscular balance was slower in patients under treatment with the Andresen activator as compared to those with the Occlus-o-Guide®.

  15. Neuromuscular activity during bench press exercise performed with and without the preexhaustion method.

    Science.gov (United States)

    Brennecke, Allan; Guimarães, Thiago M; Leone, Ricardo; Cadarci, Mauro; Mochizuki, Luiz; Simão, Roberto; Amadio, Alberto Carlos; Serrão, Júlio C

    2009-10-01

    The purpose of the present study was to investigate the effects of exercise order on the tonic and phasic characteristics of upper-body muscle activity during bench press exercise in trained subjects. The preexhaustion method involves working a muscle or a muscle group combining a single-joint exercise immediately followed by a multi-joint exercise (e.g., flying exercise followed by bench press exercise). Twelve subjects performed 1 set of bench press exercises with and without the preexhaustion method following 2 protocols (P1-flying before bench press; P2-bench press). Both exercises were performed at a load of 10 repetition maximum (10RM). Electromyography (EMG) sampled at 1 kHz was recorded from the pectoralis major (PM), anterior deltoid (DA), and triceps brachii (TB). Kinematic data (60 Hz) were synchronized to define upward and downward phases of exercise. No significant (p > 0.05) changes were seen in tonic control of PM and DA muscles between P1 and P2. However, TB tonic aspect of neurophysiologic behavior of motor units was significantly higher (p 0.05). The kinematic pattern of movement changed as a result of muscular weakness in P1. Angular velocity of the right shoulder performed during the upward phase of the bench press exercise was significantly slower (p < 0.05) during P1. Our results suggest that the strategies set by the central nervous system to provide the performance required by the exercise are held constant throughout the exercise, but the tonic aspects of the central drive are increased so as to adapt to the progressive occurrence of the neuromuscular fatigue. Changes in tonic control as a result of the muscular weakness and fatigue can cause changes in movement techniques. These changes may be related to limited ability to control mechanical loads and mechanical energy transmission to joints and passive structures.

  16. [Impact of sugammadex on neuromuscular blocking agents use: a multicentric, pharmaco-epidemiologic study in French university hospitals and military hospitals].

    Science.gov (United States)

    Beny, K; Piriou, V; Dussart, C; Hénaine, R; Aulagner, G; Armoiry, X

    2013-12-01

    Seven Neuromuscular Blocking Agents (NMBA) are commercialized in France. Four of them have an intermediate duration of action. Sugammadex required the use of NMBA slightly employed in clinical practice in France. Its introduction in routine practice could have an impact on NMBA use in clinical practice. This study was then conducted to assess and compare NMBA use before and after the commercialization of sugammadex. A longitudinal, retrospective, observational study was conducted between 2008 and 2011 in French university hospitals and military hospitals. The consumption data for sugammadex and NMBA were collected using a collection grid which was filled by pharmacists or anesthesiologists. Drug use was measured by the number of vials used divided by the annual number of hospitalizations in surgery and obstetrics (HSO). An overall analysis of the annual frequency of NMBA use was firstly performed, then individual data of each hospital were analyzed. Descriptive statistical analysis including mean, standard deviation, median, minimum and maximum was achieved. Thirty-four out of 39 hospitals participated in the study (87%) and analysis was performed on 26 of them (7%). The data of eight institutions were excluded due to missing values or because of the non-admission of sugammadex in their formulary. The NMBA mostly used were non-steroidal NMBA (75% of market share) with an increased use between 2008 and 2011 concerning atracurium (from 41 to 51 vials of 50mg atracurium used per 100 HSO). The overall analysis revealed an increase of the occurrence of rocuronium (between 2008 and 2011: from 1 to 4.8 vials of 50mg rocuronium used per 100 HSO). Individual analyses on each hospital showed a possible effect of sugammadex introduction on NMBA use in nine hospitals. The commercialization of sugammadex seems to have induced a discrete increase of steroidal NMBA but non-steroidal NMBA remain the leading agent in France. A long-term follow-up is deserved. Copyright © 2013 Soci

  17. Training the Antifragile Athlete: A Preliminary Analysis of Neuromuscular Training Effects on Muscle Activation Dynamics.

    Science.gov (United States)

    Kiefer, Adam W; Myer, Gregory D

    2015-10-01

    Athletic injuries typically occur when the stable, emergent coordination between behavioral processes breaks down due to external noise, or variability. A physiological system that operates at an optimal point on a spectrum of rigidity and flexibility may be better prepared to handle extreme external variability, and the purpose of the current experiment was to examine whether targeted neuromuscular training resulted in changes to the rigidity and flexibility of the gluteal muscle tonus signal as measured with electromyography prior to the landing phase of a drop vertical jump task. 10 adolescent female athletes who participated in a targeted 10-week neuromuscular training program and 6 controls participated, and their tonus dynamics were examined with recurrence quantification analysis prior to training and after the 10-week program. The dependent measures, percent laminarity (%LAM) and percent determinism (%DET) were hypothesized to decrease following training, and were submitted to a one tailed mixed-model ANOVA. The training group exhibited a decrease in %LAM and %DET after training compared to pre-training and controls. The present findings indicate increased metaflexibility (i.e., greater intermittency and an increase in internal randomness) in tonus dynamics following neuromuscular training, and have important implications for the prevention of musculoskeletal injury in sport, specifically within the context of external noise and antifragility.

  18. PRELIMINARY INVESTIGATIONS OF THE CLINICAL-PHARMACOLOGY OF 3 SHORT-ACTING NONDEPOLARIZING NEUROMUSCULAR BLOCKING-AGENTS, ORG 9453, ORG 9489 AND ORG 9487

    NARCIS (Netherlands)

    WIERDA, JMKH; BEAUFORT, AM; KLEEF, UW; SMEULERS, NJ; AGOSTON, S

    Three muscle relaxants, Org 9453, Org 9489 and Org 9487, short-acting in animals, were investigated to establish their profiles in humans. Potency, time course of action, and pharmacokinetic behaviour were studied in 90 healthy patients during fentanyl/halothane/N2O anaesthesia. Neuromuscular

  19. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players.

    Science.gov (United States)

    Zebis, M K; Bencke, J; Andersen, L L; Alkjaer, T; Suetta, C; Mortensen, P; Kjaer, M; Aagaard, P

    2011-12-01

    In sports, like team handball, fatigue has been associated with an increased risk of anterior cruciate ligament (ACL) injury. While effects of fatigue on muscle function are commonly assessed during maximal isometric voluntary contraction (MVC), such measurements may not relate to the muscle function during match play. The purpose of this study was to investigate the effect of muscle fatigue induced by a simulated handball match on neuromuscular strategy during a functional sidecutting movement, associated with the incidence of ACL injury. Fourteen female team handball players were tested for neuromuscular activity [electromyography (EMG)] during a sidecutting maneuver on a force plate, pre and post a simulated handball match. MVC was obtained during maximal isometric quadriceps and hamstring contraction. The simulated handball match consisted of exercises mimicking handball match activity. Whereas the simulated handball match induced a decrease in MVC strength for both the quadriceps and hamstring muscles (Phandball match play. Thus, screening procedures should involve functional movements to reveal specific fatigue-induced deficits in ACL-agonist muscle activation during high-risk phases of match play. © 2010 John Wiley & Sons A/S.

  20. Comparison in lower leg neuromuscular activity between runners with unilateral mid-portion Achilles tendinopathy and healthy individuals.

    Science.gov (United States)

    Baur, Heiner; Müller, Steffen; Hirschmüller, Anja; Cassel, Michael; Weber, Josefine; Mayer, Frank

    2011-06-01

    Neuromuscular control in functional situations and possible impairments due to Achilles tendinopathy are not well understood. Thirty controls (CO) and 30 runners with Achilles tendinopathy (AT) were tested on a treadmill at 3.33 ms(-1) (12 km h(-1)). Neuromuscular activity of the lower leg (tibialis anterior, peroneal, and gastrocnemius muscle) was measured by surface electromyography. Mean amplitude values (MAV) for the gait cycle phases preactivation, weight acceptance and push-off were calculated and normalised to the mean activity of the entire gait cycle. MAVs of the tibialis anterior did not differ between CO and AT in any gait cycle phase. The activation of the peroneal muscle was lower in AT in weight acceptance (p=0.006), whereas no difference between CO and AT was found in preactivation (p=0.71) and push-off (p=0.83). Also, MAVs of the gastrocnemius muscle did not differ between AT and CO in preactivity (p=0.71) but were reduced in AT during weight acceptance (p=0.001) and push-off (p=0.04). Achilles tendinopathy does not seem to alter pre-programmed neural control but might induce mechanical deficits of the lower extremity during weight bearing (joint stability). This should be addressed in the therapy process of AT. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation.

    Science.gov (United States)

    Zult, Tjerk; Gokeler, Alli; van Raay, Jos J A M; Brouwer, Reinoud W; Zijdewind, Inge; Hortobágyi, Tibor

    2017-01-01

    The function of the anterior cruciate ligament (ACL) patients' non-injured leg is relevant in light of the high incidence of secondary ACL injuries on the contralateral side. However, the non-injured leg's function has only been examined for a selected number of neuromuscular outcomes and often without appropriate control groups. We measured a broad array of neuromuscular functions between legs of ACL patients and compared outcomes to age, sex, and physical activity matched controls. Thirty-two ACL-deficient patients (208 ± 145 days post-injury) and active and less-active controls (N = 20 each) participated in the study. We measured single- and multi-joint neuromuscular function in both legs in each group and expressed the overall neuromuscular function in each leg by calculating a mean z-score across all neuromuscular measures. A group by leg MANOVA and ANOVA were performed to examine group and leg differences for the selected outcomes. After an ACL injury, duration (-4.3 h/week) and level (Tegner activity score of -3.9) of sports activity decreased and was comparable to less-active controls. ACL patients showed bilateral impairments in the star excursion balance test compared to both control groups (P ≤ 0.004) and for central activation ratio compared to active controls (P ≤ 0.002). There were between-leg differences within each group for maximal quadriceps and hamstring strength, voluntary quadriceps activation, star excursion balance test performance, and single-leg hop distance (all P joint proprioception, and static balance. Overall neuromuscular function (mean z-score) did not differ between groups, but ACL patients' non-injured leg displayed better neuromuscular function than the injured leg (P neuromuscular deficits despite reductions in physical activity after injury. Therapists can use the non-injured leg as a reference to assess the injured leg's function for tasks measured in the present study, excluding dynamic balance and quadriceps

  2. 17β-Estradiol Induced Effects on Anterior Cruciate Ligament Laxness and Neuromuscular Activation Patterns in Female Runners.

    Science.gov (United States)

    Khowailed, Iman Akef; Petrofsky, Jerrold; Lohman, Everett; Daher, Noha; Mohamed, Olfat

    2015-08-01

    We investigate the effects of 17β-Estradiol across phases of menstrual cycle on the laxness of the anterior cruciate ligament (ACL) and the neuromuscular control patterns around the knee joint in female runners. Twelve healthy female runners who reported normal menstrual cycles for the previous 6 months were tested twice across one complete menstrual cycle for serum levels of 17β-estradiol, and knee joint laxity (KJL). Electromyographic (EMG) activity of the quadriceps and hamstrings muscles was also recorded during running on a treadmill. The changes in the EMG activity, KJL, and hormonal concentrations were recorded for each subject during the follicular and the ovulatory phases across the menstrual cycle. An observed increase in KJL in response to peak estradiol during the ovulatory phase was associated with increased preactivity of the hamstring muscle before foot impact (pneuromuscular control around the knee during running. Female runners utilize different neuromuscular control strategies during different phases of the menstrual cycle, which may contribute to increased ACL injury risk.

  3. Effect of exercise therapy on neuromuscular activity and knee strength in female adolescents with patellofemoral pain

    DEFF Research Database (Denmark)

    Rathleff, Michael S.; Samani, Afshin; Olesen, Jens L.

    2016-01-01

    . A random subsample of 57 female adolescents was included and tested at baseline and after 3months. Neuromuscular control of the knee was quantified as the complexity of surface electromyography of the vastus lateralis and vastus medialis during stair descent. Secondary outcomes were complexity of knee...... during stair descent than those receiving patient education alone. This suggest that exercise therapy has an effect not only on self-reported outcome measures but also on objective measures of thigh muscle function in female adolescents with patellofemoral pain....

  4. Neutralization of the neuromuscular inhibition of venom and taipoxin from the taipan (Oxyuranus scutellatus) by F(ab0)2 and whole IgG antivenoms

    OpenAIRE

    Herrera Vega, María; de Cássia de O. Collaço, Rita; Villalta, Mauren; Segura Ruiz, Álvaro; Vargas Arroyo, Mariángela; Wright, Christine E.; Paiva, Owen K.; Matainaho, Teatulohi; Jensen, Simon D.; León Montero, Guillermo; Williams, David J.; Rodrigues Simioni, Lea; Gutiérrez, José María

    2016-01-01

    The neuromuscular junction activity of Oxyuranus scutellatus venom and its presynaptic neurotoxin, taipoxin, and their neutralization by two antivenoms were examined in mouse phrenic nerve-diaphragm preparations. The action of taipoxin was also studied at 21 °C. The efficacy of the antivenoms was also assessed in an in vivo mouse model. Both antivenoms were effective in neutralizing the neuromuscular blocking activity in preincubation-type experiments. In experiments involving independent add...

  5. Neutralization Of The Neuromuscular Inhibition Of Venom And Taipoxin From The Taipan (oxyuranus Scutellatus) By F(ab ') 2 And Whole Igg Antivenoms

    OpenAIRE

    Herrera; Maria; de O Collaco; Rita de Cassia; Villalta; Mauren; Segura; Alvaro; Vargas; Mariangela; Wright; Christine E.; Paiva; Owen K.; Matainaho; Teatulohi; Jensen; Simon D.; Leon; Guillermo; Williams; David J.; Rodrigues-Simioni; Lea; Maria Gutierrez; Jose

    2016-01-01

    The neuromuscular junction activity of Oxyuranus scutellatus venom and its presynaptic neurotoxin, taipoxin, and their neutralization by two antivenoms were examined in mouse phrenic nerve-diaphragm preparations. The action of taipoxin was also studied at 21 degrees C. The efficacy of the antivenoms was also assessed in an in vivo mouse model. Both antivenoms were effective in neutralizing the neuromuscular blocking activity in preincubation-type experiments. In experiments involving independ...

  6. Captivate: Building Blocks for Implementing Active Learning

    Science.gov (United States)

    Kitchens, Brent; Means, Tawnya; Tan, Yinliang

    2018-01-01

    In this study, the authors propose a set of key elements that impact the success of an active learning implementation: content delivery, active learning methods, physical environment, technology enhancement, incentive alignment, and educator investment. Through a range of metrics the authors present preliminary evidence that students in courses…

  7. Immediate effect of selective neuromuscular electrical stimulation on the electromyographic activity of the vastus medialis oblique muscle

    Directory of Open Access Journals (Sweden)

    Denise DalAva Augusto

    2008-07-01

    Full Text Available http://dx.doi.org/10.5007/1980-0037.2008v10n2p155 The Patellofemoral pain syndrome (PFPS is described as an anterior or retropatellar knee pain in the absence of other associated diseases, and has often been associated with dysfunction of the vastus medialis oblique muscle (VMO. However, several studies have demonstrated the impossibility of selectively activating this muscle with exercises. The aim of the present study was to analyze the immediate effect of neuromuscular electrical stimulation of VMO muscle by means of monitoring the electromyographic activity of the vastus medialis oblique (VMO and vastus lateralis (VL muscles. Eighteen healthy women with a mean age of 23.2 years and mean BMI of 20 Kg/m2 were evaluated. The study protocol included electromyographic analysis of VMO and VL muscles, before and immediately after neuromuscular electrical stimulation of the VMO muscle. During the electromyographic analysis, the volunteers performed maximal voluntary isometric contraction in a 60° knee extension on an isokinetic dynamometer. “Russian current” apparatus was used for electrical stimulation. Results: The data analysis demonstrated a signifi cant increase in VMO activation intensity immediately after it had been electrically stimulated (p=0.0125, whereas VL activation intensity exhibited no signifi cant increase (p=0.924. Moreover, a significant increase in the VMO/VL ratio was also detected (p=0.048. In this study it was observed that electrical stimulation modifiedthe VMO/VL ratio, which suggests electrical stimulation has a benefi cial effect on VMO muscle strength.

  8. Dynamic Neuromuscular Control of the Lower Limbs in Response to Unexpected Single-Planar versus Multi-Planar Support Perturbations in Young, Active Adults.

    Science.gov (United States)

    Malfait, Bart; Staes, Filip; de Vries, Aijse; Smeets, Annemie; Hawken, Malcolm; Robinson, Mark A; Vanrenterghem, Jos; Verschueren, Sabine

    2015-01-01

    An anterior cruciate ligament (ACL) injury involves a multi-planar injury mechanism. Nevertheless, unexpected multi-planar perturbations have not been used to screen athletes in the context of ACL injury prevention yet could reveal those more at risk. The objective of this study was to compare neuromuscular responses to multi-planar (MPP) and single-planar perturbations (SPP) during a stepping-down task. These results might serve as a basis for future implementation of external perturbations in ACL injury screening programs. Thirteen young adults performed a single leg stepping-down task in eight conditions (four MPP and four SPP with a specified amplitude and velocity). The amplitudes of vastus lateralis (VL), vastus medialis (VM), hamstrings lateralis (HL), hamstrings medialis (HM) EMG activity, medio-lateral and anterior-posterior centre of mass (COM) displacements, the peak knee flexion and abduction angles were compared between conditions using an one-way ANOVA. Number of stepping responses were monitored during all conditions. Significantly greater muscle activity levels were found in response to the more challenging MPP and SPP compared to the less challenging conditions (p neuromuscular activity were found between the MPP conditions and their equivalents in the SPP. Eighteen stepping responses were monitored in the SPP versus nine in the MPP indicating that the overall neuromuscular control was even more challenged during the SPP which was supported by greater COM displacements in the SPP. The more intense MPP and SPP evoked different neuromuscular responses resulting in greater muscle activity levels compared to small perturbations. Based on the results of COM displacements and based on the amount of stepping responses, dynamic neuromuscular control of the knee joint appeared less challenged during the MPP. Therefore, future work should investigate extensively if other neuromuscular differences (i.e. co-activation patterns and kinetics) exist between MPP

  9. VARIATIONS IN NEUROMUSCULAR ACTIVITY OF THIGH MUSCLES DURING WHOLE-BODY VIBRATION IN CONSIDERATION OF DIFFERENT BIOMECHANICAL VARIABLES

    Directory of Open Access Journals (Sweden)

    Dennis Perchthaler

    2013-09-01

    Full Text Available The intention of this study was to systematically analyze the impact of biomechanical variables in terms of different vibration frequencies, amplitudes and knee angles on quadriceps femoris and hamstring activity during exposure to whole-body vibration (WBV. 51 healthy men and women (age 55 ± 8 years voluntary participated in the study and were randomly allocated to five different vibration-frequency groups. Each subject performed 9 static squat positions (3 amplitudes x 3 knee angles on a side alternating vibration platform. Surface electromyography (EMG was used to record the neuromuscular activity of the quadriceps femoris and hamstring muscles. Maximal voluntary contractions (MVCs were performed prior to the measurements to normalize the EMG signals. A three-way mixed ANOVA was performed to analyze the different effects of the biomechanical variables on muscle activity. Depending on the biomechanical variables, EMG muscle activity ranged between 18.2 and 74.1 % MVC in the quadriceps femoris and between 5.2 and 27. 3 % MVC in the hamstrings during WBV. The highest levels of muscle activation were found at high frequencies and large amplitudes. Especially in the quadriceps femoris muscle, a WBV frequency of 30 Hz led to a significant increase in muscle activity compared to the other tested frequencies. However, it seems that knee angle is only relevant for the quadriceps femoris muscle. The results of this study should give more information for developing individual training protocols for WBV treatment in different practical applications

  10. Neuromuscular activity of Bothrops neuwiedi pauloensis snake venom in mouse nerve-muscle preparations

    Directory of Open Access Journals (Sweden)

    A. M. Durigon

    2005-03-01

    Full Text Available The pharmacological effects of Bothrops neuwiedi pauloensis venom on mouse phrenic nerve-diaphragm (PND preparations were studied. Venom (20 mug/ml irreversibly inhibited indirectly evoked twitches in PND preparations (60 ± 10% inhibition, mean ± SEM; p<0.05; n=6. At 50 mug/ml, the venom blocked indirectly and directly (curarized preparations evoked twitches in mouse hemidiaphragms. In the absence of Ca2+, venom (50 mug/ml, produced partial blockade only after an 80 min incubation, which reached 40.3 ± 7.8% (p<0.05; n=3 after 120 min. Venom (20 mug/ml increased (25 ± 2%, p< 0.05 the frequency of giant miniature end-plate potentials in 9 of 10 end-plates after 30 min and the number of miniature end-plate potentials which was maximum (562 ± 3%, p<0.05 after 120 min. During the same period, the resting membrane potential decreased from - 81 ± 1.4 mV to - 41.3 ± 3.6 mV 24 fibers; p<0.01; n=4 in the end-plate region and from - 77.4 ± 1.4 to -44.6 ± 3.9 mV (24 fibers; p<0.01; n=4 in regions distant from the end-plate. These results indicate that B. n. pauloensis venom acts primarily at presynaptic sites. They also suggest that enzymatic activity may be involved in this pharmacological action.

  11. Kinesiotaping enhances the rate of force development but not the neuromuscular efficiency of physically active young men.

    Science.gov (United States)

    Magalhães, Igor; Bottaro, Martim; Mezzarane, Rinaldo André; Neto, Frederico Ribeiro; Rodrigues, Bruno A; Ferreira-Júnior, João B; Carregaro, Rodrigo Luiz

    2016-06-01

    Investigations on the effects of KT on human performance have been increasing in the last few years. However, there is a paucity of studies investigating its effects on neuromuscular efficiency (NME) and rate of force development (RFD). To evaluate the NME and RFD of the soleus and gastrocnemius muscles in physically active individuals under KT application. Twenty young males (79.7±8.2kg; 1.78±0.05m; 24.7±4.4years) performed three conditions in a randomized order: (1) Baseline (BL, no tape); (2) Activation (ACTIKT, tape for muscle activation); and (3) Inhibition (INHIKT, tape for muscle inhibition). The tape was applied along the lateral and medial border of gastrocnemius with 30% tension for 48h. Peak torque (PT), RFD and NME were measured at BL and 48h after ACTIKT and INHIKT by performing a maximum isometric contraction. The RFD was significantly higher in ACTIKT compared to BL at 0-30 (P=0.010), 0-50 (P=0.008) and 0-100ms (P=0.007). The PT and NME did not differ among conditions (P>0.05). KT applied for muscle activation yielded a higher RFD during the initial phase of the muscle contraction. However, KT has no enhancement effect on NME and peak torque. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Influência da freqüência de estímulos na instalação do bloqueio neuromuscular produzido pelo rocurônio e pancurônio: avaliação pelo método acelerográfico Influencia de la frecuencia de estímulos en la instalación del bloqueo neuromuscular producido por el rocuronio y pancuronio: evaluación por el método acelerográfico Influence of stimulation frequency on rocuronium and pancuronium-induced neuromuscular block onset: acceleromyography evaluation

    Directory of Open Access Journals (Sweden)

    Derli da Conceição Munhóz

    2004-02-01

    condiciones de intubación traqueal. RESULTADOS: Los tiempos medios (segundos para el inicio de acción e instalación de bloqueo neuromuscular total producido por el pancuronio fueron: Grupo I (159,33 ± 35,22 y 222 ± 46,56 y Grupo II (77,83 ± 9,52 y 105,96 ± 15,58; para el rocuronio: Grupo I (83 ± 17,25 y 125,33 ± 20,12 y Grupo II (48,96 ± 10,16 y 59,83 ± 10,36 con diferencia significativa entre los grupos. Las condiciones de intubación traqueal fueron satisfactorias en 117 pacientes (97,5% e insatisfactorias en 3 (2,5%. CONCLUSIONES: El inicio de acción y el tiempo para la obtención del bloqueo neuromuscular total en el músculo aductor del pulgar, producidos por el rocuronio y por el pancuronio, son más cortos cuando hay empleo de mayores frecuencias de estímulos.BACKGROUND AND OBJECTIVES: Factors associated to patients and neuromuscular blockers (NMB, as well as others inherent to neuromuscular function monitoring, may affect neuromuscular block onset. This study aimed at the influence of two different stimulation frequencies on rocuronium and pancuronium-induced neuromuscular block. METHODS: Participated in this study 120 patients, physical status ASA I and II, submitted to elective procedures under general anesthesia, who were randomly allocated in two groups, according to the stimulation frequency employed to monitor neuromuscular block: Group I - 0.1 Hz (n = 60 and Group II - 1 Hz (n = 60. Two subgroups were formed within each group (n = 30, according to the neuromuscular blocker: Subgroup P (pancuronium and Subgroup R (rocuronium. Patients were premedicated with muscular midazolam (0.1 mg.kg-1, 30 minutes before surgery. Anesthesia was induced with propofol (2.5 mg.kg-1 preceded by alfentanil (50 µg.kg-1 and followed by pancuronium or rocuronium. Patients were ventilated under mask with 100% oxygen until 75% or more decrease in adductor pollicis muscle response, when laryngoscopy and tracheal intubation were performed. Neuromuscular function was

  13. Immediate effect of selective neuromuscular electrical stimulation on the electromyographic activity of the vastus medialis oblique muscle

    Directory of Open Access Journals (Sweden)

    Jamilson Simões Brasileiro

    2008-04-01

    Full Text Available The Patellofemoral pain syndrome (PFPS is described as an anterior or retropatellar knee pain in the absence of other associated diseases, and has often been associated with dysfunction of the vastus medialis oblique muscle (VMO. However, several studies have demonstrated the impossibility of selectively activating this muscle with exercises. The aim of the present study was to analyze the immediate effect of neuromuscular electrical stimulation of VMO muscle by means of monitoring the electromyographic activity of the vastus medialis oblique (VMO and vastus lateralis (VL muscles. Eighteen healthy women with a mean age of 23.2 years and mean BMI of 20 Kg/m2 were evaluated. The study protocol included electromyographic analysis of VMO and VL muscles, before and immediately after neuromuscular electrical stimulation of the VMO muscle. During the electromyographic analysis, the volunteers performed maximal voluntary isometric contraction in a 60° knee extension on an isokinetic dynamometer. “Russian current” apparatus was used for electrical stimulation. Results: The data analysis demonstrated a signifi cant increase in VMO activation intensity immediately after it had been electrically stimulated (p=0.0125, whereas VL activation intensity exhibited no signifi cant increase (p=0.924. Moreover, a significant increase in the VMO/VL ratio was also detected (p=0.048. In this study it was observed that electrical stimulation modifiedthe VMO/VL ratio, which suggests electrical stimulation has a benefi cial effect on VMO muscle strength. Resumo A Síndrome da dor patelofemoral (SDPF é descrita como dor anterior ou retro-patelar do joelho na ausência de outras patologias associadas, sendo freqüentemente associada à disfunção do Vasto Medial Oblíquo (VMO. Entretanto, diversos estudos têm demonstrado a impossibilidade de ativar seletivamente este músculo através de exercícios. O objetivo do presente estudo foi analisar o efeito imediato da

  14. Accuracy of a Custom Physical Activity and Knee Angle Measurement Sensor System for Patients with Neuromuscular Disorders and Gait Abnormalities

    Directory of Open Access Journals (Sweden)

    Frank Feldhege

    2015-05-01

    Full Text Available Long-term assessment of ambulatory behavior and joint motion are valuable tools for the evaluation of therapy effectiveness in patients with neuromuscular disorders and gait abnormalities. Even though there are several tools available to quantify ambulatory behavior in a home environment, reliable measurement of joint motion is still limited to laboratory tests. The aim of this study was to develop and evaluate a novel inertial sensor system for ambulatory behavior and joint motion measurement in the everyday environment. An algorithm for behavior classification, step detection, and knee angle calculation was developed. The validation protocol consisted of simulated daily activities in a laboratory environment. The tests were performed with ten healthy subjects and eleven patients with multiple sclerosis. Activity classification showed comparable performance to commercially available activPAL sensors. Step detection with our sensor system was more accurate. The calculated flexion-extension angle of the knee joint showed a root mean square error of less than 5° compared with results obtained using an electro-mechanical goniometer. This new system combines ambulatory behavior assessment and knee angle measurement for long-term measurement periods in a home environment. The wearable sensor system demonstrated high validity for behavior classification and knee joint angle measurement in a laboratory setting.

  15. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Directory of Open Access Journals (Sweden)

    Makii Muthalib

    Full Text Available Neuroimaging studies have shown neuromuscular electrical stimulation (NMES-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC, premotor cortex (PMC, supplementary motor area (SMA, and secondary somatosensory area (S2, as well as regions of the prefrontal cortex (PFC known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI, and with reference to voluntary (VOL wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb and deoxygenated (HHb hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2. However, the level and area of contralateral sensorimotor network (including PFC activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  16. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Science.gov (United States)

    Muthalib, Makii; Re, Rebecca; Zucchelli, Lucia; Perrey, Stephane; Contini, Davide; Caffini, Matteo; Spinelli, Lorenzo; Kerr, Graham; Quaresima, Valentina; Ferrari, Marco; Torricelli, Alessandro

    2015-01-01

    Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  17. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima

    2014-11-12

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  18. Silver-enhanced block copolymer membranes with biocidal activity

    KAUST Repository

    Madhavan, Poornima; Hong, Pei-Ying; Sougrat, Rachid; Nunes, Suzana Pereira

    2014-01-01

    Silver nanoparticles were deposited on the surface and pore walls of block copolymer membranes with highly ordered pore structure. Pyridine blocks constitute the pore surfaces, complexing silver ions and promoting a homogeneous distribution. Nanoparticles were then formed by reduction with sodium borohydride. The morphology varied with the preparation conditions (pH and silver ion concentration), as confirmed by field emission scanning and transmission electron microscopy. Silver has a strong biocide activity, which for membranes can bring the advantage of minimizing the growth of bacteria and formation of biofilm. The membranes with nanoparticles prepared under different pH values and ion concentrations were incubated with Pseudomonas aeruginosa and compared with the control. The strongest biocidal activity was achieved with membranes containing membranes prepared under pH 9. Under these conditions, the best distribution with small particle size was observed by microscopy.

  19. The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release.

    Science.gov (United States)

    Obis, Teresa; Besalduch, Núria; Hurtado, Erica; Nadal, Laura; Santafe, Manel M; Garcia, Neus; Tomàs, Marta; Priego, Mercedes; Lanuza, Maria A; Tomàs, Josep

    2015-02-10

    Protein kinase C (PKC) regulates a variety of neural functions, including neurotransmitter release. Although various PKC isoforms can be expressed at the synaptic sites and specific cell distribution may contribute to their functional diversity, little is known about the isoform-specific functions of PKCs in neuromuscular synapse. The present study is designed to examine the location of the novel isoform nPKCε at the neuromuscular junction (NMJ), their synaptic activity-related expression changes, its regulation by muscle contraction, and their possible involvement in acetylcholine release. We use immunohistochemistry and confocal microscopy to demonstrate that the novel isoform nPKCε is exclusively located in the motor nerve terminals of the adult rat NMJ. We also report that electrical stimulation of synaptic inputs to the skeletal muscle significantly increased the amount of nPKCε isoform as well as its phosphorylated form in the synaptic membrane, and muscle contraction is necessary for these nPKCε expression changes. The results also demonstrate that synaptic activity-induced muscle contraction promotes changes in presynaptic nPKCε through the brain-derived neurotrophic factor (BDNF)-mediated tyrosine kinase receptor B (TrkB) signaling. Moreover, nPKCε activity results in phosphorylation of the substrate MARCKS involved in actin cytoskeleton remodeling and related with neurotransmission. Finally, blocking nPKCε with a nPKCε-specific translocation inhibitor peptide (εV1-2) strongly reduces phorbol ester-induced ACh release potentiation, which further indicates that nPKCε is involved in neurotransmission. Together, these results provide a mechanistic insight into how synaptic activity-induced muscle contraction could regulate the presynaptic action of the nPKCε isoform and suggest that muscle contraction is an important regulatory step in TrkB signaling at the NMJ.

  20. Neuromuscular control and ankle instability.

    Science.gov (United States)

    Gutierrez, Gregory M; Kaminski, Thomas W; Douex, Al T

    2009-04-01

    Lateral ankle sprains (LAS) are common injuries in athletics and daily activity. Although most are resolved with conservative treatment, others develop chronic ankle instability (AI)-a condition associated with persistent pain, weakness, and instability-both mechanical (such as ligamentous laxity) and functional (neuromuscular impairment with or without mechanical laxity). The predominant theory in AI is one of articular deafferentation from the injury, affecting closed-loop (feedback/reflexive) neuromuscular control, but recent research has called that theory into question. A considerable amount of attention has been directed toward understanding the underlying causes of this pathology; however, little is known concerning the neuromuscular mechanisms behind the development of AI. The purpose of this review is to summarize the available literature on neuromuscular control in uninjured individuals and individuals with AI. Based on available research and reasonable speculation, it seems that open-loop (feedforward/anticipatory) neuromuscular control may be more important for the maintenance of dynamic joint stability than closed-loop control systems that rely primarily on proprioception. Therefore, incorporating perturbation activities into patient rehabilitation schemes may be of some benefit in enhancing these open-loop control mechanisms. Despite the amount of research conducted in this area, analysis of individuals with AI during dynamic conditions is limited. Future work should aim to evaluate dynamic perturbations in individuals with AI, as well as subjects who have a history of at least one LAS and never experienced recurrent symptoms. These potential findings may help elucidate some compensatory mechanisms, or more appropriate neuromuscular control strategies after an LAS event, thus laying the groundwork for future intervention studies that can attempt to reduce the incidence and severity of acute and chronic lateral ankle injury.

  1. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study - Efficacy, safety, and pharmacokinetics

    NARCIS (Netherlands)

    Sparr, Harald J.; Vermeyen, Karel M.; Beaufort, Anton M.; Rietbergen, Henk; Proost, Johannes H.; Saldien, Vera; Velik-Salchner, Corinna; Wierda, J. Mark K. H.

    Background: Sugammadex reverses the neuromuscular blocking effects of rocuronium by chemical encapsulation. The efficacy, safety, and pharmacokinetics of sugammadex for reversal of profound rocuronium-induced neuromuscular blockade were evaluated. Methods: Ninety-eight male adult patients were

  2. Neuromuscular Activation of the Vastus Intermedius Muscle during Isometric Hip Flexion.

    Directory of Open Access Journals (Sweden)

    Akira Saito

    Full Text Available Although activity of the rectus femoris (RF differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05. The onset of VI activation was 230-240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05. These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.

  3. Neuromuscular Activation During Short-Track Speed Skating in Young Athletes.

    Science.gov (United States)

    Felser, Sabine; Behrens, Martin; Fischer, Susanne; Baeumler, Mario; Salomon, Ralf; Bruhn, Sven

    2016-10-01

    To investigate differences in muscle activation of both legs between the straight and the curve and changes in muscle activity during a 1000-m time trial (TT) and their relationship to the change in skating velocity in 9 young short-track speed skaters. The authors recorded skating times and EMG data from different leg muscles during maximum-effort skating trials on the straight and in the curve, as well as during a 1000-m TT. Muscle activation differs between the straight and the curves and between legs; ie, average activities of selected muscles of the right leg were significantly higher during skating through the curves than in the straights. This could not be observed for the left leg. The reduction in speed during the 1000-m TT highly correlates with the decrease in the muscle activity of both the tibialis anterior and the rectus femoris of the right leg. Muscle recruitment is different in relation to lap section (straight vs curve) and leg (right vs left leg). The decreased muscle activity of the tibialis anterior and rectus femoris of the right leg showed the highest relationships with the reduction in skating speed during the 1000-m TT.

  4. Sugammadex: A Review of Neuromuscular Blockade Reversal.

    Science.gov (United States)

    Keating, Gillian M

    2016-07-01

    Sugammadex (Bridion(®)) is a modified γ-cyclodextrin that reverses the effect of the steroidal nondepolarizing neuromuscular blocking agents rocuronium and vecuronium. Intravenous sugammadex resulted in rapid, predictable recovery from moderate and deep neuromuscular blockade in patients undergoing surgery who received rocuronium or vecuronium. Recovery from moderate neuromuscular blockade was significantly faster with sugammadex 2 mg/kg than with neostigmine, and recovery from deep neuromuscular blockade was significantly faster with sugammadex 4 mg/kg than with neostigmine or spontaneous recovery. In addition, recovery from neuromuscular blockade was significantly faster when sugammadex 16 mg/kg was administered 3 min after rocuronium than when patients spontaneously recovered from succinylcholine. Sugammadex also demonstrated efficacy in various special patient populations, including patients with pulmonary disease, cardiac disease, hepatic dysfunction or myasthenia gravis and morbidly obese patients. Intravenous sugammadex was generally well tolerated. In conclusion, sugammadex is an important option for the rapid reversal of rocuronium- or vecuronium-induced neuromuscular blockade.

  5. Neuromuscular blockade in the elderly patient

    Directory of Open Access Journals (Sweden)

    Lee LA

    2016-06-01

    Full Text Available Luis A Lee, Vassilis Athanassoglou, Jaideep J Pandit Nuffield Department of Anaesthetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK Abstract: Neuromuscular blockade is a desirable or even essential component of general anesthesia for major surgical operations. As the population continues to age, and more operations are conducted in the elderly, due consideration must be given to neuromuscular blockade in these patients to avoid possible complications. This review considers the pharmacokinetics and pharmacodynamics of neuromuscular blockade that may be altered in the elderly. Compartment distribution, metabolism, and excretion of drugs may vary due to age-related changes in physiology, altering the duration of action with a need for reduced dosage (eg, aminosteroids. Other drugs (atracurium, cisatracurium have more reliable duration of action and should perhaps be considered for use in the elderly. The range of interpatient variability that neuromuscular blocking drugs may exhibit is then considered and drugs with a narrower range, such as cisatracurium, may produce more predictable, and inherently safer, outcomes. Ultimately, appropriate neuromuscular monitoring should be used to guide the administration of muscle relaxants so that the risk of residual neuromuscular blockade postoperatively can be minimized. The reliability of various monitoring is considered. This paper concludes with a review of the various reversal agents, namely, anticholinesterase drugs and sugammadex, and the alterations in dosing of these that should be considered for the elderly patient. Keywords: anesthesia, elderly, drugs, pharmacokinetics, pharmacodynamics 

  6. Kinesiotaping enhances the rate of force development but not the neuromuscular efficiency of physically active young men

    NARCIS (Netherlands)

    Magalhães, Igor; Bottaro, Martim; Mezzarane, Rinaldo André; Neto, Frederico Ribeiro; Rodrigues, Bruno A.; Ferreira-Júnior, João B.; Carregaro, Rodrigo Luiz

    2016-01-01

    Introduction: Investigations on the effects of KT on human performance have been increasing in the last few years. However, there is a paucity of studies investigating its effects on neuromuscular efficiency (NME) and rate of force development (RFD). Objective: To evaluate the NME and RFD of the

  7. Sugammadex Improves Neuromuscular Function in Patients ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... aminoglycosides), history of allergy to neuromuscular blocking agents, opioids or other drugs, and alcohol and drug dependence. Patients were divided into two ... titration microcalorimetry investigated the likelihood of the formation of complexes between sugammadex and other steroidal and nonsteroidal ...

  8. Neuromuscular transmission: new concepts and agents.

    NARCIS (Netherlands)

    Boer, H.D. de

    2009-01-01

    Sugammadex is the first selective relaxant binding agent which was originally designed to reverse the steroidal NMB drug rocuronium. The results of recent studies demonstrate that sugammadex is effective for reversal of rocuronium and vecuronium-induced neuromuscular block without apparent

  9. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity

    International Nuclear Information System (INIS)

    Rotzler, S.; Brenner, H.R.

    1990-01-01

    The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125 I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed

  10. Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography

    Directory of Open Access Journals (Sweden)

    Cian Cummins

    2017-09-01

    Full Text Available The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP feature patterning. An elegant route is demonstrated using directed self-assembly (DSA of BCPs for the fabrication of aligned tungsten trioxide (WO3 nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL silsesquioxane (SSQ-based trenches were utilized in order to align a cylinder forming poly(styrene-block-poly(4-vinylpyridine (PS-b-P4VP BCP soft template. We outline WO3 nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm contacted WO3 nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.

  11. Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography.

    Science.gov (United States)

    Cummins, Cian; Bell, Alan P; Morris, Michael A

    2017-09-30

    The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP) feature patterning. An elegant route is demonstrated using directed self-assembly (DSA) of BCPs for the fabrication of aligned tungsten trioxide (WO₃) nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL) silsesquioxane (SSQ)-based trenches were utilized in order to align a cylinder forming poly(styrene)- block -poly(4-vinylpyridine) (PS- b -P4VP) BCP soft template. We outline WO₃ nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm) contacted WO₃ nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.

  12. Neuromuscular Stress.

    Science.gov (United States)

    White, Timothy P.; Kern, Marialice

    1994-01-01

    Discusses exercise-induced stress that results from motor unit recruitment, the impact of recruitment on selected systemic support systems, and some of the environmental overlays that affect the degree of physiological stress. Adaptations to sustained changes in physical activity and muscle and myotendinous injury induced by stress are examined.…

  13. Tracking C. elegans and its neuromuscular activity using NemaFlex

    Science.gov (United States)

    van Bussel, Frank; Rahman, Mizanur; Hewitt, Jennifer; Blawzdziewicz, Jerzy; Driscoll, Monica; Szewczyk, Nathaniel; Vanapalli, Siva

    Recently, a novel platform has been developed for studying the behavior and physical characteristics of the nematode C. elegans. This is NemaFlex, developed by the Vanapalli group at Texas Tech University to analyze movement and muscular strength of crawling C. elegans. NemaFlex is a microfluidic device consisting of an array of deformable PDMS pillars, with which the C. elegans interacts in the course of moving through the system. Deflection measurements then allow us to calculate the force exerted by the worm via Euler-Bernoulli beam theory. For the procedure to be fully automated a fairly sophisticated software analysis has to be developed in tandem with the physical device. In particular, the usefulness of the force calculations is highly dependent on the accuracy and volume of the deflection measurements, which would be prohibitively time-consuming if carried out by hand/eye. In order to correlate the force results with muscle activations the C. elegans itself has to be tracked simultaneously, and pillar deflections precisely associated with mechanical-contact on the worm's body. Here we will outline the data processing and analysis routines that have been implemented in order to automate the calculation of these forces and muscular activations.

  14. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction.

    Science.gov (United States)

    Simó, Anna; Just-Borràs, Laia; Cilleros-Mañé, Víctor; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep

    2018-01-01

    Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 in vitro which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε. Therefore, the present study was designed to understand how Munc18-1 phosphorylation is affected by (1) synaptic activity at the neuromuscular junction, (2) nPKCε and cPKCβI isoforms activity, (3) muscle contraction per se , and (4) the BDNF/TrkB signaling in a neuromuscular activity-dependent manner. We performed immunohistochemistry and confocal techniques to evidence the presynaptic location of Munc18-1 in the rat diaphragm muscle. To study synaptic activity, we stimulated the phrenic nerve (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Specific inhibitory reagents were used to block nPKCε and cPKCβI activity and to modulate the tropomyosin receptor kinase B (TrkB). Main results obtained from Western blot experiments showed that phosphorylation of Munc18-1 at Ser-313 increases in response to a signaling mechanism initiated by synaptic activity and directly mediated by nPKCε. Otherwise, cPKCβI and TrkB activities work together to prevent this synaptic activity-induced Munc18-1 phosphorylation by a negative regulation of cPKCβI over nPKCε. Therefore, a balance between the activities of these PKC isoforms could be a relevant cue in the regulation of the exocytotic apparatus. The results also demonstrate that muscle contraction prevents the synaptic activity-induced Munc18-1 phosphorylation through a mechanism that opposes the TrkB/cPKCβI/nPKCε signaling.

  15. Effect of knee joint angle on neuromuscular activation of the vastus intermedius muscle during isometric contraction.

    Science.gov (United States)

    Watanabe, K; Akima, H

    2011-12-01

    The purpose of this study was to compare the relationship between surface electromyography (EMG) and knee joint angle of the vastus intermedius muscle (VI) with the synergistic muscles in the quadriceps femoris (QF) muscle group. Fourteen healthy men performed maximal voluntary contractions during isometric knee extension at four knee joint angles from 90°, 115°, 140°, and 165° (180° being full extension). During the contractions, surface EMG was recorded at four muscle components of the QF muscle group: the VI, vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) muscles. The root mean square of the surface EMG at each knee joint angle was calculated and normalized by that at a knee joint angle of 90° for individual muscles. The normalized RMS of the VI muscle was significantly lower than those of the VL and RF muscles at the knee joint angles of 115° and 165° and those of the VL, VM, and RF muscles at the knee joint angle of 140° (Pneuromuscular activation of the VI muscle is regulated in a manner different from the alteration of the knee joint angle compared with other muscle components of the QF muscle group. © 2011 John Wiley & Sons A/S.

  16. The vastus lateralis neuromuscular activity during all-out cycling exercise.

    Science.gov (United States)

    Bercier, Stephane; Halin, Renaud; Ravier, Philippe; Kahn, Jean-Francois; Jouanin, Jean-Claude; Lecoq, Anne-Marie; Buttelli, Olivier

    2009-10-01

    The objective of this work was to study modifications in motor control through surface electromyographic (sEMG) activity during a very short all-out cycling exercise. Twelve male cyclists (age 23+/-4 years) participated in this study. After a warm-up period, each subject performed three all-out cycling exercises of 6s separated by 2 min of complete rest. This protocol was repeated three times with a minimum of 2 days between each session. The braking torque imposed on cycling motion was 19 Nm. The sEMG of the vastus lateralis was recorded during the first seven contractions of the sprint. Time-frequency analysis of sEMG was performed using continuous wavelet transform. The mean power frequency (MPF, qualitative modifications in the recruitment of motor units) and signal energy (a quantitative indicator of modifications in the motor units recruitment) were computed for the frequency range 10-500 Hz. sEMG energy increased (P0.05) between contraction number 1 and 2, decreased (P recruitment of motor units (MUs) at the beginning of the sprint followed by a preferential recruitment of faster MUs at the end of the sprint, respectively.

  17. Minocycline blocks glial cell activation and ventilatory acclimatization to hypoxia.

    Science.gov (United States)

    Stokes, Jennifer A; Arbogast, Tara E; Moya, Esteban A; Fu, Zhenxing; Powell, Frank L

    2017-04-01

    Ventilatory acclimatization to hypoxia (VAH) is the time-dependent increase in ventilation, which persists upon return to normoxia and involves plasticity in both central nervous system respiratory centers and peripheral chemoreceptors. We investigated the role of glial cells in VAH in male Sprague-Dawley rats using minocycline, an antibiotic that inhibits microglia activation and has anti-inflammatory properties, and barometric pressure plethysmography to measure ventilation. Rats received either minocycline (45mg/kg ip daily) or saline beginning 1 day before and during 7 days of chronic hypoxia (CH, Pi O 2  = 70 Torr). Minocycline had no effect on normoxic control rats or the hypercapnic ventilatory response in CH rats, but minocycline significantly ( P minocycline administration during only the last 3 days of CH did not reverse VAH. Microglia and astrocyte activation in the nucleus tractus solitarius was quantified from 30 min to 7 days of CH. Microglia showed an active morphology (shorter and fewer branches) after 1 h of hypoxia and returned to the control state (longer filaments and extensive branching) after 4 h of CH. Astrocytes increased glial fibrillary acidic protein antibody immunofluorescent intensity, indicating activation, at both 4 and 24 h of CH. Minocycline had no effect on glia in normoxia but significantly decreased microglia activation at 1 h of CH and astrocyte activation at 24 h of CH. These results support a role for glial cells, providing an early signal for the induction but not maintenance of neural plasticity underlying ventilatory acclimatization to hypoxia. NEW & NOTEWORTHY The signals for neural plasticity in medullary respiratory centers underlying ventilatory acclimatization to chronic hypoxia are unknown. We show that chronic hypoxia activates microglia and subsequently astrocytes. Minocycline, an antibiotic that blocks microglial activation and has anti-inflammatory properties, also blocks astrocyte activation in respiratory

  18. BDNF-TrkB Signaling Coupled to nPKCε and cPKCβI Modulate the Phosphorylation of the Exocytotic Protein Munc18-1 During Synaptic Activity at the Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Anna Simó

    2018-06-01

    Full Text Available Munc18-1, a neuron-specific member of the Sec1/Munc18 family, is involved in neurotransmitter release by binding tightly to syntaxin. Munc18-1 is phosphorylated by PKC on Ser-306 and Ser-313 in vitro which reduces the amount of Munc18-1 able to bind syntaxin. We have previously identified that PKC is involved in neurotransmitter release when continuous electrical stimulation imposes a moderate activity on the NMJ and that muscle contraction through TrkB has an important impact on presynaptic PKC isoforms levels, specifically cPKCβI and nPKCε. Therefore, the present study was designed to understand how Munc18-1 phosphorylation is affected by (1 synaptic activity at the neuromuscular junction, (2 nPKCε and cPKCβI isoforms activity, (3 muscle contraction per se, and (4 the BDNF/TrkB signaling in a neuromuscular activity-dependent manner. We performed immunohistochemistry and confocal techniques to evidence the presynaptic location of Munc18-1 in the rat diaphragm muscle. To study synaptic activity, we stimulated the phrenic nerve (1 Hz, 30 min with or without contraction (abolished by μ-conotoxin GIIIB. Specific inhibitory reagents were used to block nPKCε and cPKCβI activity and to modulate the tropomyosin receptor kinase B (TrkB. Main results obtained from Western blot experiments showed that phosphorylation of Munc18-1 at Ser-313 increases in response to a signaling mechanism initiated by synaptic activity and directly mediated by nPKCε. Otherwise, cPKCβI and TrkB activities work together to prevent this synaptic activity–induced Munc18-1 phosphorylation by a negative regulation of cPKCβI over nPKCε. Therefore, a balance between the activities of these PKC isoforms could be a relevant cue in the regulation of the exocytotic apparatus. The results also demonstrate that muscle contraction prevents the synaptic activity–induced Munc18-1 phosphorylation through a mechanism that opposes the TrkB/cPKCβI/nPKCε signaling.

  19. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  20. Quantitative determination of biological activity of botulinum toxins utilizing compound muscle action potentials (CMAP), and comparison of neuromuscular transmission blockage and muscle flaccidity among toxins.

    Science.gov (United States)

    Torii, Yasushi; Goto, Yoshitaka; Takahashi, Motohide; Ishida, Setsuji; Harakawa, Tetsuhiro; Sakamoto, Takashi; Kaji, Ryuji; Kozaki, Shunji; Ginnaga, Akihiro

    2010-01-01

    The biological activity of various types of botulinum toxin has been evaluated using the mouse intraperitoneal LD(50) test (ip LD(50)). This method requires a large number of mice to precisely determine toxin activity, and so has posed a problem with regard to animal welfare. We have used a direct measure of neuromuscular transmission, the compound muscle action potential (CMAP), to evaluate the effect of different types of botulinum neurotoxin (NTX), and we compared the effects of these toxins to evaluate muscle relaxation by employing the digit abduction scoring (DAS) assay. This method can be used to measure a broad range of toxin activities the day after administration. Types A, C, C/D, and E NTX reduced the CMAP amplitude one day after administration at below 1 ip LD(50), an effect that cannot be detected using the mouse ip LD(50) assay. The method is useful not only for measuring toxin activity, but also for evaluating the characteristics of different types of NTX. The rat CMAP test is straightforward, highly reproducible, and can directly determine the efficacy of toxin preparations through their inhibition of neuromuscular transmission. Thus, this method may be suitable for pharmacology studies and the quality control of toxin preparations. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Science.gov (United States)

    Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.

    2011-12-01

    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.

  2. Associations of leisure-time physical activity with balance and lower extremity strength: a validation of the neuromuscular part of the Physical Activity Pie.

    Science.gov (United States)

    Lindström, Paula J; Suni, Jaana H; Nygård, Clas-Håkan

    2009-07-01

    The importance of neuromuscular-type exercise (NME) has been recognized in recent recommendations for public health. However, the knowledge on associations and dose response of different types of leisure-time physical activity (LTPA) with musculoskeletal fitness and health is incomplete. This study evaluated the validity of the NME recommendation for public health introduced by the Physical Activity Pie. Engagement in LTPA and health-related fitness were assessed in 2 consecutive studies with the same adult population age 30 to 69 years (n = 575). Cross-sectional associations between different LTPA types and motor and musculoskeletal fitness were examined by logistic-regression models. Engagement in NME was associated with good static and dynamic balance and lower extremity strength. The highest odds ratios (OR) were found between brisk NME and static balance (most vs least fit OR = 2.39, moderate vs least fit OR = 1.94) and brisk NME and leg strength (more vs least fit OR = 2.10). Some associations were also found between brisk aerobic exercise and good balance. This cross-sectional study suggests that the recommendation for NME in the Physical Activity Pie is valid in terms of balance and leg strength, the 2 major fitness factors related to mobility functioning, especially among aging adults.

  3. A Versatile Active Block: DXCCCII and Tunable Applications

    Directory of Open Access Journals (Sweden)

    S. A. Tekin

    2014-12-01

    Full Text Available The study describes dual-X controlled current conveyor (DXCCCII as a versatile active block and its application to inductance simulators for testing. Moreover, the high pass filter application using with DXCCCII based inductance simulator and oscillator with flexible tunable oscillation frequency have been presented and simulated to confirm the theoretical validity. The proposed circuit which has a simple circuit design requires the low-voltage and the DXCCCII can also be tuned in the wide range by the biasing current. The proposed DXCCCII provides a good linearity, high output impedance at Z terminals, and a reasonable current and voltage transfer gain accuracy. The proposed DXCCCII and its applications have been simulated using the CMOS 0.18 µm technology.

  4. Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop

    Science.gov (United States)

    Wong, Li Chin; Schedl, Paul

    2011-01-01

    Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation. PMID:22164257

  5. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players

    DEFF Research Database (Denmark)

    Zebis, M K; Bencke, J; Andersen, L L

    2011-01-01

    In sports, like team handball, fatigue has been associated with an increased risk of anterior cruciate ligament (ACL) injury. While effects of fatigue on muscle function are commonly assessed during maximal isometric voluntary contraction (MVC), such measurements may not relate to the muscle...... function during match play. The purpose of this study was to investigate the effect of muscle fatigue induced by a simulated handball match on neuromuscular strategy during a functional sidecutting movement, associated with the incidence of ACL injury. Fourteen female team handball players were tested...

  6. [Respiratory treatments in neuromuscular disease].

    Science.gov (United States)

    Martínez Carrasco, C; Cols Roig, M; Salcedo Posadas, A; Sardon Prado, O; Asensio de la Cruz, O; Torrent Vernetta, A

    2014-10-01

    In a previous article, a review was presented of the respiratory pathophysiology of the patient with neuromuscular disease, as well as their clinical evaluation and the major complications causing pulmonary deterioration. This article presents the respiratory treatments required to preserve lung function in neuromuscular disease as long as possible, as well as in special situations (respiratory infections, spinal curvature surgery, etc.). Special emphasis is made on the use of non-invasive ventilation, which is changing the natural history of many of these diseases. The increase in survival and life expectancy of these children means that they can continue their clinical care in adult units. The transition from pediatric care must be an active, timely and progressive process. It may be slightly stressful for the patient before the adaptation to this new environment, with multidisciplinary care always being maintained. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  7. Doenças neuromusculares Neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Umbertina C. Reed

    2002-08-01

    Full Text Available Objetivo: apresentar os dados essenciais para o diagnóstico diferencial entre as principais doenças neuromusculares, denominação genérica sob a qual agrupam-se diferentes afecções, decorrentes do acometimento primário da unidade motora (motoneurônio medular, raiz nervosa, nervo periférico, junção mioneural e músculo. Fontes dos dados: os aspectos clínicos fundamentais para estabelecer o diagnóstico diferencial entre as diferentes doenças neuromusculares, bem como entre estas e as causas de hipotonia muscular secundária ao comprometimento do sistema nervoso central ou a doenças sistêmicas não-neurológicas, são enfatizados, com base na experiência clínica vinda do atendimento a crianças com doenças neuromusculares durante os últimos 12 anos, no ambulatório de doenças neuromusculares do Hospital das Clínicas da Faculdade de Medicina, da Universidade de São Paulo. A revisão bibliográfica foi efetuada através do Medline e do periódico Neuromuscular Disorders, publicação oficial da World Muscle Society. Síntese dos dados: nas crianças, a maior parte destas afecções é geneticamente determinada, sendo as mais comuns a distrofia muscular progressiva ligada ao sexo, de Duchenne, a amiotrofia espinal infantil, a distrofia muscular congênita, a distrofia miotônica de Steinert, e as miopatias congênitas, estruturais e não estruturais. Polineuropatias hereditárias, síndrome miastênica congênita e miopatias metabólicas são menos comuns, porém mostram correlação geno-fenotípica cada vez mais precisa. Conclusões: na década passada, inúmeros avanços da genética molecular facilitaram imensamente o diagnóstico e o aconselhamento genético das doenças neuromusculares mais comuns das crianças, inclusive possibilitando diagnóstico fetal e, adicionalmente, vieram permitir melhor caracterização fenotípica e classificação mais objetiva.Objective: to discuss the most important aspects for performing a

  8. Neuromuscular blockade in cardiac surgery: An update for clinicians

    Directory of Open Access Journals (Sweden)

    Hemmerling Thomas

    2008-01-01

    Full Text Available There have been great advancements in cardiac surgery over the last two decades; the widespread use of off-pump aortocoronary bypass surgery, minimally invasive cardiac surgery, and robotic surgery have also changed the face of cardiac anaesthesia. The concept of "Fast-track anaesthesia" demands the use of nondepolarising neuromuscular blocking drugs with short duration of action, combining the ability to provide (if necessary sufficiently profound neuromuscular blockade during surgery and immediate re-establishment of normal neuromuscular transmission at the end of surgery. Postoperative residual muscle paralysis is one of the major hurdles for immediate or early extubation after cardiac surgery. Nondepolarising neuromuscular blocking drugs for cardiac surgery should therefore be easy to titrate, of rapid onset and short duration of action with a pathway of elimination independent from hepatic or renal dysfunction, and should equally not affect haemodynamic stability. The difference between repetitive bolus application and continuous infusion is outlined in this review, with the pharmacodynamic and pharmacokinetic characteristics of vecuronium, pancuronium, rocuronium, and cisatracurium. Kinemyography and acceleromyography are the most important currently used neuromuscular monitoring methods. Whereas monitoring at the adductor pollicis muscle is appropriate at the end of surgery, monitoring of the corrugator supercilii muscle better reflects neuromuscular blockade at more central, profound muscles, such as the diaphragm, larynx, or thoraco-abdominal muscles. In conclusion, cisatracurium or rocuronium is recommended for neuromuscular blockade in modern cardiac surgery.

  9. Neuromuscular complications of thyrotoxicosis.

    Science.gov (United States)

    Kung, Annie W C

    2007-11-01

    Thyroid hormones exert multiple effects on the neuromuscular system and the brain, with the most important being their role in stimulating the development and differentiation of the neuromuscular system and brain in foetal and neonatal life. In the presence of hyperthyroidism, muscular and neurological symptoms may be the presenting clinical features of the disease. The frequency and severity of neuromuscular complications vary considerably and are probably related to the degree of hyperthyroidism, although in some patients the neuromuscular dysfunction is caused by associated disorders rather than by hyperthyroidism per se. This update focuses on the most common neurological and muscular disorders that occur in patients with thyrotoxicosis. It is beyond the scope of this paper to discuss thyroid eye disease and cardiac complications, in themselves separate complications of specific myocytes.

  10. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G J L; Leermakers, Frans A M; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with the

  11. Design of block-copolymer-based micelles for active and passive targeting

    NARCIS (Netherlands)

    Lebouille, Jérôme G.J.L.; Leermakers, Frans A.M.; Cohen Stuart, Martien A.; Tuinier, Remco

    2016-01-01

    A self-consistent field study is presented on the design of active and passive targeting block-copolymeric micelles. These micelles form in water by self-assembly of triblock copolymers with a hydrophilic middle block and two hydrophobic outer blocks. A minority amount of diblock copolymers with

  12. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction.

    Science.gov (United States)

    Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep

    2017-01-01

    Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

  13. Neuromuscular function during a forward lunge in meniscectomized patients

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Damgaard, Jacob; Roos, Ewa M.

    2012-01-01

    This study aimed to investigate differences in knee joint kinematics, ground reaction force kinetics and neuromuscular activity including muscle coactivation, and medial versus lateral muscle activity during a forward lunge between the operated and contralateral legs of meniscectomized patients....... Such differences may represent early changes in neuromuscular function potentially contributing to the development of knee osteoarthritis....

  14. Exploring Anopheles gut bacteria for Plasmodium blocking activity

    Science.gov (United States)

    Bahia, Ana C; Dong, Yuemei; Blumberg, Benjamin J; Mlambo, Godfree; Tripathi, Abhai; BenMarzouk-Hidalgo, Omar J; Chandra, Ramesh; Dimopoulos, George

    2014-01-01

    SUMMARY Malaria parasite transmission requires the successful development of Plasmodium gametocytes into flagellated microgametes upon mosquito blood ingestion, and the subsequent fertilization of microgametes and macrogametes for the development of motile zygotes, called ookinetes, which invade and transverse the Anopheles vector mosquito midgut at around 18-36 h after blood ingestion. Within the mosquito midgut, the malaria parasite has to withstand the mosquito's innate immune response and the detrimental effect of its commensal bacterial flora. We have assessed the midgut colonization capacity of 5 gut bacterial isolates from field-derived, and 2 from laboratory colony, mosquitoes and their effect on Plasmodium development in vivo and in vitro, along with their impact on mosquito survival. Some bacterial isolates activated the mosquito's immune system, affected the mosquito's life span, and were capable of blocking Plasmodium development. We have also shown that the ability of these bacteria to inhibit the parasites is likely to involve different mechanisms and factors. A Serratia marcescens isolate was particularly efficient in colonizing the mosquitoes’ gut, compromising mosquito survival, and inhibiting both sexual- and asexual-stage Plasmodium through secreted factors, thereby rendering it a potential candidate for the development of a malaria transmission intervention strategy. PMID:24428613

  15. Sugammadex, a Neuromuscular Blockade Reversal Agent, Causes Neuronal Apoptosis in Primary Cultures

    Science.gov (United States)

    Palanca, José M.; Aguirre-Rueda, Diana; Granell, Manuel V.; Aldasoro, Martin; Garcia, Alma; Iradi, Antonio; Obrador, Elena; Mauricio, Maria Dolores; Vila, Jose; Gil-Bisquert, Anna; Valles, Soraya L.

    2013-01-01

    Sugammadex, a γ-cyclodextrin that encapsulates selectively steroidal neuromuscular blocking agents, such as rocuronium or vecuronium, has changed the face of clinical neuromuscular pharmacology. Sugammadex allows a rapid reversal of muscle paralysis. Sugammadex appears to be safe and well tolerated. Its blood-brain barrier penetration is poor (Sugammadex in neurons in primary culture. Here we show that clinically relevant sugammadex concentrations cause apoptotic/necrosis neuron death in primary cultures. Studies on the underlying mechanism revealed that sugammadex-induced activation of mitochondria-dependent apoptosis associates with depletion of neuronal cholesterol levels. Furthermore SUG increase CytC, AIF, Smac/Diablo and CASP-3 protein expression in cells in culture. Potential association of SUG-induced alteration in cholesterol homeostasis with oxidative stress and apoptosis activation occurs. Furthermore, resistance/sensitivity to oxidative stress differs between neuronal cell types. PMID:23983586

  16. Science Support: The Building Blocks of Active Data Curation

    Science.gov (United States)

    Guillory, A.

    2013-12-01

    While the scientific method is built on reproducibility and transparency, and results are published in peer reviewed literature, we have come to the digital age of very large datasets (now of the order of petabytes and soon exabytes) which cannot be published in the traditional way. To preserve reproducibility and transparency, active curation is necessary to keep and protect the information in the long term, and 'science support' activities provide the building blocks for active data curation. With the explosive growth of data in all fields in recent years, there is a pressing urge for data centres to now provide adequate services to ensure long-term preservation and digital curation of project data outputs, however complex those may be. Science support provides advice and support to science projects on data and information management, from file formats through to general data management awareness. Another purpose of science support is to raise awareness in the science community of data and metadata standards and best practice, engendering a culture where data outputs are seen as valued assets. At the heart of Science support is the Data Management Plan (DMP) which sets out a coherent approach to data issues pertaining to the data generating project. It provides an agreed record of the data management needs and issues within the project. The DMP is agreed upon with project investigators to ensure that a high quality documented data archive is created. It includes conditions of use and deposit to clearly express the ownership, responsibilities and rights associated with the data. Project specific needs are also identified for data processing, visualization tools and data sharing services. As part of the National Centre for Atmospheric Science (NCAS) and National Centre for Earth Observation (NCEO), the Centre for Environmental Data Archival (CEDA) fulfills this science support role of facilitating atmospheric and Earth observation data generating projects to ensure

  17. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning

    DEFF Research Database (Denmark)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel

    2017-01-01

    neuromuscular blockade in surgical patients at 6 Danish teaching hospitals. METHODS: In this interrupted time series study, we are collecting data repeatedly, in consecutive 3-week periods, before and after the intervention, and we will analyze the effect using segmented regression analysis. Anesthesia...... and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel...... practice, and patient outcomes. The primary outcome is use of neuromuscular monitoring in patients according to the type of muscle relaxant received. Secondary outcomes include last recorded train-of-four value, administration of reversal agents, and time to discharge from the postanesthesia care unit...

  18. Hereditary neuromuscular diseases

    Energy Technology Data Exchange (ETDEWEB)

    Oezsarlak, O. E-mail: ozkan.ozsarlak@uza.be; Schepens, E.; Parizel, P.M.; Goethem, J.W. van; Vanhoenacker, F.; Schepper, A.M. de; Martin, J.J

    2001-12-01

    This article presents the actual classification of neuromuscular diseases based on present expansion of our knowledge and understanding due to genetic developments. It summarizes the genetic and clinical presentations of each disorder together with CT findings, which we studied in a large group of patients with neuromuscular diseases. The muscular dystrophies as the largest and most common group of hereditary muscle diseases will be highlighted by giving detailed information about the role of CT and MRI in the differential diagnosis. The radiological features of neuromuscular diseases are atrophy, hypertrophy, pseudohypertrophy and fatty infiltration of muscles on a selective basis. Although the patterns and distribution of involvement are characteristic in some of the diseases, the definition of the type of disease based on CT scan only is not always possible.

  19. INTERACTION OF VERAPAMIL AND LITHIUM AT THE NEUROMUSCULAR JUNCTION ON RAT ISOLATED MUSCLE-HEMIDIAPHRAGM

    Directory of Open Access Journals (Sweden)

    H. R. Sadeghipour

    1998-08-01

    Full Text Available It has been reported that cither lithium or verapamil can potentiate the neuromuscular blocking activity of certain neuromuscular blockers. In the present investigation, possible interaction of verapamil with lithium has been described. The dose ■ response effects of verapamil and lithium on diaphragmatic contractility were assessed in vitro. Mechanical responses of the muscle to indirect (nerve and direct (muscle electrical stimulation were recorded. Verapamil depressed rat diaphragm twitch tensions induced by nerve stimulation in a dose - dependent manner with the 50 percent depression of the original twitch tensions (ICSQ by 5.6 xlO^mmol/l."nThe IC50 of verapamil for direct stimulation of the muscle was LI x W'5 mmol II. Partial replacement of sodium chloride by lithium chloride (0.5, 1.5 and 5 mmol /1 in the medium did not change the depressant effect of verapamil on muscle twitches induced by direct (muscle or indirect (nerve electrical stimulation.

  20. A new approach to anesthesia management in myasthenia gravis: reversal of neuromuscular blockade by sugammadex.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Driessen, J.J.; Booij, L.H.D.J.

    2010-01-01

    A neuromuscular blocking drug (NMBD) induced neuromuscular blockade (NMB) in patients with myasthenia gravis usually dissipates either spontaneously or by administration of neostigmine. We administered sugammadex to a patient with myasthenia gravis to reverse a rocuronium-induced profound NMB. NMBDs

  1. Ammonia modifies enteric neuromuscular transmission through glial γ-aminobutyric acid signaling.

    Science.gov (United States)

    Fried, David E; Watson, Ralph E; Robson, Simon C; Gulbransen, Brian D

    2017-12-01

    Impaired gut motility may contribute, at least in part, to the development of systemic hyperammonemia and systemic neurological disorders in inherited metabolic disorders, or in severe liver and renal disease. It is not known whether enteric neurotransmission regulates intestinal luminal and hence systemic ammonia levels by induced changes in motility. Here, we propose and test the hypothesis that ammonia acts through specific enteric circuits to influence gut motility. We tested our hypothesis by recording the effects of ammonia on neuromuscular transmission in tissue samples from mice, pigs, and humans and investigated specific mechanisms using novel mutant mice, selective drugs, cellular imaging, and enzyme-linked immunosorbent assays. Exogenous ammonia increased neurogenic contractions and decreased neurogenic relaxations in segments of mouse, pig, and human intestine. Enteric glial cells responded to ammonia with intracellular Ca 2+ responses. Inhibition of glutamine synthetase and the deletion of glial connexin-43 channels in hGFAP :: Cre ER T2+/- /connexin43 f/f mice potentiated the effects of ammonia on neuromuscular transmission. The effects of ammonia on neuromuscular transmission were blocked by GABA A receptor antagonists, and ammonia drove substantive GABA release as did the selective pharmacological activation of enteric glia in GFAP::hM3Dq transgenic mice. We propose a novel mechanism whereby local ammonia is operational through GABAergic glial signaling to influence enteric neuromuscular circuits that regulate intestinal motility. Therapeutic manipulation of these mechanisms may benefit a number of neurological, hepatic, and renal disorders manifesting hyperammonemia. NEW & NOTEWORTHY We propose that local circuits in the enteric nervous system sense and regulate intestinal ammonia. We show that ammonia modifies enteric neuromuscular transmission to increase motility in human, pig, and mouse intestine model systems. The mechanisms underlying the

  2. Synaptic Activity and Muscle Contraction Increases PDK1 and PKCβI Phosphorylation in the Presynaptic Membrane of the Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Erica Hurtado

    2017-08-01

    Full Text Available Conventional protein kinase C βI (cPKCβI is a conventional protein kinase C (PKC isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ. It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1. Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min. Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1 protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.

  3. BIOLOGY OF SOME NEUROMUSCULAR DISORDERS

    Directory of Open Access Journals (Sweden)

    Gerta Vrbova

    2004-12-01

    unit is slower. The rate of maturation is critical for the survival of both motoneurone and muscle and that events that interfere with the time course of maturation cause both motoneurone and muscle fibre death. The proposal that the SMN gene/protein is involved in the process to developmental changes in cells and therefore crucial for their survival is put forward. The understanding of the developmental changes and their influence on motoneurone and muscle survival may help to devise therapeutic interventions. These may include a protection of the motoneurone cell body during a critical period of its development by reducing its excitability or enhancing its defences by upregulating heat shock proteins, b stabilizing neuromuscular junctions to enhance and prolong the retrograde influences from the muscle that affect motoneurone survival, c protecting muscle fibres from apoptosis, as well as stimulating their maturation by activity appropriate to their younger age that results from their delayed development.These approaches should be considered in addition to or in conjunction with possible interference with the gene and its product.In order to understand and possibly interfere/treat neuromuscular disorders it is important to analyze the biological events that may be causing the disability. In this presentation I would illustrate such attempts on two examples of genetically determined neuromuscular diseases: 1 Duchenne muscular dystrophy, and 2 Spinal muscular atrophy.

  4. Effects of transcranial direct current stimulation of the motor cortex on prefrontal cortex activation during a neuromuscular fatigue task: an fNIRS study.

    Science.gov (United States)

    Muthalib, Makii; Kan, Benjamin; Nosaka, Kazunori; Perrey, Stephane

    2013-01-01

    This study investigated whether manipulation of motor cortex excitability by transcranial direct current stimulation (tDCS) modulates neuromuscular fatigue and functional near-infrared spectroscopy (fNIRS)-derived prefrontal cortex (PFC) activation. Fifteen healthy men (27.7 ± 8.4 years) underwent anodal (2 mA, 10 min) and sham (2 mA, first 30 s only) tDCS delivered to the scalp over the right motor cortex. Subjects initially performed a baseline sustained submaximal (30 % maximal voluntary isometric contraction, MVC) isometric contraction task (SSIT) of the left elbow flexors until task failure, which was followed 50 min later by either an anodal or sham treatment condition, then a subsequent posttreatment SSIT. Endurance time (ET), torque integral (TI), and fNIRS-derived contralateral PFC oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentration changes were determined at task failure. Results indicated that during the baseline and posttreatment SSIT, there were no significant differences in TI and ET, and increases in fNIRS-derived PFC activation at task failure were observed similarly regardless of the tDCS conditions. This suggests that the PFC neuronal activation to maintain muscle force production was not modulated by anodal tDCS.

  5. Influence of psychoemotional stress on the functional state of the neuromuscular system and the efficiency of sensorimotor activity of highly skilled athletes

    Directory of Open Access Journals (Sweden)

    Svitlana Fedorchuk

    2017-08-01

    Full Text Available Purpose: assessment of the influence of the level of psychoemotional stress and the effectiveness of mental self-regulation on the functional state of the neuromuscular system and the effectiveness of the sensorimotor activity of highly skilled athletes specializing in complex co-ordination sports (on the example of diving. Material & Methods: study involved 14 high-class athletes (master of sport, international master of sport, honored master of sports at the age of 15–30 years. To determine the psychophysiological properties of the nervous system of athletes, the diagnostic complex "Diagnost-1" are used. Electroneuromyography was performed on the neurodiagnostic complex "Nicolet Viking Select". For a differentiated assessment of the level of stress, the emotional state of the respondents and also for assessing the effectiveness of mental self-regulation, a technique to select colors was used. Result: interrelation between the effectiveness of mental self-regulation and adaptability, the intensity of existing stress, emotional stability and vegetative balance with electroneuromyographic characteristics, strength and functional mobility of nervous processes, the accuracy of reaction to a moving object and the ratio of the reactions of lead and lag, the efficiency of sensorimotor activity are identified. Conclusion: revealed interrelation of the effectiveness of mental self-regulation and adaptability, intensity of existing stress, emotional stability and vegetative balance with typological properties of the higher parts of the central nervous system and electroneuromyographic characteristics of athletes can have prognostic value and be used to optimize the sports development of promising young people.

  6. Identification of Changing Lower Limb Neuromuscular Activation in Parkinson’s Disease during Treadmill Gait with and without Levodopa Using a Nonlinear Analysis Index

    Directory of Open Access Journals (Sweden)

    Amir Pourmoghaddam

    2015-01-01

    Full Text Available Analysis of electromyographic (EMG data is a cornerstone of research related to motor control in Parkinson’s disease. Nonlinear EMG analysis tools have shown to be valuable, but analysis is often complex and interpretation of the data may be difficult. A previously introduced algorithm (SYNERGOS that provides a single index value based on simultaneous multiple muscle activations (MMA has been shown to be effective in detecting changes in EMG activation due to modifications of walking speeds in healthy adults. In this study, we investigated if SYNERGOS detects MMA changes associated with both different walking speeds and levodopa intake. Nine male Parkinsonian patients walked on a treadmill with increasing speed while on or off medication. We collected EMG data and computed SYNERGOS indices and employed a restricted maximum likelihood linear mixed model to the values. SYNERGOS was sensitive to neuromuscular modifications due to both alterations of gait speed and intake of levodopa. We believe that the current experiment provides evidence for the potential value of SYNERGOS as a nonlinear tool in clinical settings, by providing a single value index of MMA. This could help clinicians to evaluate the efficacy of interventions and treatments in Parkinson’s disease in a simple manner.

  7. Influence of intense neuromuscular blockade on surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Donatsky, Anders Meller; Jensen, Bente Rona

    2015-01-01

    endotracheally intubated, mechanically ventilated, anesthetized with propofol and fentanyl, and randomized into two groups in a cross-over assessor-blinded design. Neuromuscular block was established with rocuronium. Artificial laparotomy for ileus was performed. We investigated the influence of intense...

  8. [Characteristics of neuromuscular scoliosis].

    Science.gov (United States)

    Putzier, M; Groß, C; Zahn, R K; Pumberger, M; Strube, P

    2016-06-01

    Usually, neuromuscular scolioses become clinically symptomatic relatively early and are rapidly progressive even after the end of growth. Without sufficient treatment they lead to a severe reduction of quality of life, to a loss of the ability of walking, standing or sitting as well as to an impairment of the cardiopulmonary system resulting in an increased mortality. Therefore, an intensive interdisciplinary treatment by physio- and ergotherapists, internists, pediatricians, orthotists, and orthopedists is indispensable. In contrast to idiopathic scoliosis the treatment of patients with neuromuscular scoliosis with orthosis is controversially discussed, whereas physiotherapy is established and essential to prevent contractures and to maintain the residual sensorimotor function.Frequently, the surgical treatment of the scoliosis is indicated. It should be noted that only long-segment posterior correction and fusion of the whole deformity leads to a significant improvement of the quality of life as well as to a prevention of a progression of the scoliosis and the development of junctional problems. The surgical intervention is usually performed before the end of growth. A prolonged delay of surgical intervention does not result in an increased height but only in a deformity progression and is therefore not justifiable. In early onset neuromuscular scolioses guided-growth implants are used to guarantee the adequat development. Because of the high complication rates, further optimization of these implant systems with regard to efficiency and safety have to be addressed in future research.

  9. Sugammadex given for rocuronium-induced neuromuscular blockade in infants: a retrospectıve study.

    Science.gov (United States)

    Ozmete, Ozlem; Bali, Cagla; Cok, Oya Yalcin; Turk, Hatice Evren Eker; Ozyilkan, Nesrın Bozdogan; Civi, Soner; Aribogan, Anıs

    2016-12-01

    To evaluate the efficacy and safety of sugammadex in reversing profound neuromuscular block induced by rocuronium in infant patients. Retrospective observational study. University teaching hospital. Twenty-six infants (2-12 months of age; 3-11 kg) with an American Society of Anesthesiologists classification I, II, or III who were scheduled to undergo neurosurgical procedures were included in the study. Anesthesia was induced with 5 mg/kg thiopental, 1 μg/kg fentanyl and 0.6 mg/kg rocuronium. Sevoflurane was administered to all patients after intubation. The neuromuscular block was monitored with acceleromyography using train-of-four (TOF) stimuli. Patients received additional doses of rocuronium to maintain a deep block during surgery. If profound neuromuscular block (TOF, 0) persisted at the end of the surgery, 3mg/kg sugammadex was administered. The demographic data, surgeries, and anesthetic agents were recorded. The time from sugammadex administration to recovery of neuromuscular function (TOF ratio, >0.9) and complications during and after extubation were also recorded. Twenty-six infants who had a deep neuromuscular block (TOF, 0) at the end of surgery received 3 mg/kg sugammadex. The mean recovery time of the T4/T1 ratio of 0.9 was 112 seconds. No clinical evidence of recurarization or residual curarization was observed. The efficacy and safety of sugammadex were confirmed in infant surgical patients for reversal of deep neuromuscular block induced by rocuronium. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Efficacy of high-flow oxygen by nasal cannula with active humidification in a patient with acute respiratory failure of neuromuscular origin.

    Science.gov (United States)

    Díaz-Lobato, Salvador; Folgado, Miguel Angel; Chapa, Angel; Mayoralas Alises, Sagrario

    2013-12-01

    The treatment of choice for patients with respiratory failure of neuromuscular origin, especially in patients with hypercapnic respiratory acidosis, is noninvasive ventilation (NIV). Endotracheal intubation and invasive ventilation are indicated for patients with severe respiratory compromise or failure of NIV. In recent years, high-flow oxygen therapy and active humidification devices have been introduced, and emerging evidence suggests that high-flow oxygen may be effective in various clinical settings, such as acute respiratory failure, after cardiac surgery, during sedation and analgesia, in acute heart failure, in hypoxemic respiratory distress, in do-not-intubate patients, in patients with chronic cough and copious secretions, pulmonary fibrosis, or cancer, in critical areas and the emergency department. We report on a patient with amyotrophic lateral sclerosis who arrived at the emergency department with acute hypercapnic respiratory failure. She did not tolerate NIV and refused intubation, but was treated successfully with heated, humidified oxygen via high-flow nasal cannula. Arterial blood analysis after an hour on high-flow nasal cannula showed improved pH, P(aCO2), and awareness. The respiratory acidosis was corrected, and she was discharged after 5 days of hospitalization. Her response to high-flow nasal cannula was similar to that expected with NIV. We discuss the mechanisms of action of heated, humidified high-flow oxygen therapy.

  11. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  12. Activation experiment for concrete blocks using thermal neutrons

    Science.gov (United States)

    Okuno, Koichi; Tanaka, Seiichiro

    2017-09-01

    Activation experiments for ordinary concrete, colemanite-peridotite concrete, B4C-loaded concrete, and limestone concrete are carried out using thermal neutrons. The results reveal that the effective dose for gamma rays from activated nuclides of colemanite-peridotite concrete is lower than that for the other types of concrete. Therefore, colemanite-peridotite concrete is useful for reducing radiation exposure for workers.

  13. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    Science.gov (United States)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  14. Antimicrobial activity of poly(acrylic acid) block copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Gratzl, Günther, E-mail: guenther.gratzl@jku.at [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Paulik, Christian [Johannes Kepler University Linz, Institute for Chemical Technology of Organic Materials, Altenberger Str. 69, 4040 Linz (Austria); Hild, Sabine [Johannes Kepler University Linz, Institute of Polymer Science, Altenberger Str. 69, 4040 Linz (Austria); Guggenbichler, Josef P.; Lackner, Maximilian [AMiSTec GmbH and Co. KG, Leitweg 13, 6345 Kössen, Tirol (Austria)

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed.

  15. Antimicrobial activity of poly(acrylic acid) block copolymers

    International Nuclear Information System (INIS)

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P.; Lackner, Maximilian

    2014-01-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid–base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure. - Highlights: • Acrylic acid diblock copolymers are antimicrobially active. • The antimicrobial activity depends on the acrylic acid content in the copolymer. • No salts, metals or other antimicrobial agents are needed

  16. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults

    DEFF Research Database (Denmark)

    Hristovska, Ana-Marija; Duch, Patricia; Allingstrup, Mikkel

    2017-01-01

    , and undesirable autonomic responses. Sugammadex is a selective relaxant-binding agent specifically developed for rapid reversal of non-depolarizing neuromuscular blockade induced by rocuronium. Its potential clinical benefits include fast and predictable reversal of any degree of block, increased patient safety......, reduced incidence of residual block on recovery, and more efficient use of healthcare resources. OBJECTIVES: The main objective of this review was to compare the efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade caused by non-depolarizing neuromuscular agents......-depolarizing neuromuscular blocking agents for an elective in-patient or day-case surgical procedure. We included all trials comparing sugammadex versus neostigmine that reported recovery times or adverse events. We included any dose of sugammadex and neostigmine and any time point of study drug administration. DATA...

  17. MRI in neuromuscular disorders

    International Nuclear Information System (INIS)

    Fischmann, Arne

    2014-01-01

    Neuromuscular disorders are caused by damage of the skeletal muscles or supplying nerves, in many cases due to a genetic defect, resulting in progressive disability, loss of ambulation and often a reduced life expectancy. Previously only supportive care and steroids were available as treatments, but several novel therapies are under development or in clinical trial phase. Muscle imaging can detect specific patterns of involvement and facilitate diagnosis and guide genetic testing. Quantitative MRT can be used to monitor disease progression either to monitor treatment or as a surrogate parameter for clinical trails. Novel imaging sequences can provide insights into disease pathology and muscle metabolism. (orig.)

  18. Hippocampal activation during face-name associative memory encoding: blocked versus permuted design

    International Nuclear Information System (INIS)

    De Vogelaere, Frederick; Vingerhoets, Guy; Santens, Patrick; Boon, Paul; Achten, Erik

    2010-01-01

    The contribution of the hippocampal subregions to episodic memory through the formation of new associations between previously unrelated items such as faces and names is established but remains under discussion. Block design studies in this area of research generally tend to show posterior hippocampal activation during encoding of novel associational material while event-related studies emphasize anterior hippocampal involvement. We used functional magnetic resonance imaging to assess the involvement of anterior and posterior hippocampus in the encoding of novel associational material compared to the viewing of previously seen associational material. We used two different experimental designs, a block design and a permuted block design, and applied it to the same associative memory task to perform valid statistical comparisons. Our results indicate that the permuted design was able to capture more anterior hippocampal activation compared to the block design, which emphasized more posterior hippocampal involvement. These differences were further investigated and attributed to a combination of the polymodal stimuli we used and the experimental design. Activation patterns during encoding in both designs occurred along the entire longitudinal axis of the hippocampus, but with different centers of gravity. The maximal activated voxel in the block design was situated in the posterior half of the hippocampus while in the permuted design this was located in the anterior half. (orig.)

  19. Hippocampal activation during face-name associative memory encoding: blocked versus permuted design

    Energy Technology Data Exchange (ETDEWEB)

    De Vogelaere, Frederick; Vingerhoets, Guy [Ghent University, Laboratory for Neuropsychology, Department of Neurology, Ghent (Belgium); Santens, Patrick; Boon, Paul [Ghent University Hospital, Department of Neurology, Ghent (Belgium); Achten, Erik [Ghent University Hospital, Department of Radiology, Ghent (Belgium)

    2010-01-15

    The contribution of the hippocampal subregions to episodic memory through the formation of new associations between previously unrelated items such as faces and names is established but remains under discussion. Block design studies in this area of research generally tend to show posterior hippocampal activation during encoding of novel associational material while event-related studies emphasize anterior hippocampal involvement. We used functional magnetic resonance imaging to assess the involvement of anterior and posterior hippocampus in the encoding of novel associational material compared to the viewing of previously seen associational material. We used two different experimental designs, a block design and a permuted block design, and applied it to the same associative memory task to perform valid statistical comparisons. Our results indicate that the permuted design was able to capture more anterior hippocampal activation compared to the block design, which emphasized more posterior hippocampal involvement. These differences were further investigated and attributed to a combination of the polymodal stimuli we used and the experimental design. Activation patterns during encoding in both designs occurred along the entire longitudinal axis of the hippocampus, but with different centers of gravity. The maximal activated voxel in the block design was situated in the posterior half of the hippocampus while in the permuted design this was located in the anterior half. (orig.)

  20. An anterior cruciate ligament injury does not affect the neuromuscular function of the non-injured leg except for dynamic balance and voluntary quadriceps activation

    NARCIS (Netherlands)

    Zult, Tjerk; Gokeler, Alli; van Raay, Jos J. A. M.; Brouwer, Reinoud W.; Zijdewind, Inge; Hortobagyi, Tibor

    The function of the anterior cruciate ligament (ACL) patients' non-injured leg is relevant in light of the high incidence of secondary ACL injuries on the contralateral side. However, the non-injured leg's function has only been examined for a selected number of neuromuscular outcomes and often

  1. FUNCTIONS OF A NEUROMUSCULAR CENTRE

    Directory of Open Access Journals (Sweden)

    Janez Zidar

    2004-12-01

    Full Text Available Main functions of a neuromuscular (NM centre are making diagnosis, treatment and counselling. Some other functions, e. g. forming a register and epidemiological endeavours, could be added. All these activities are expected to be achieved by multidisciplinary approach with the idea that members use the same guidelines and share the same knowledge.NM diseases affect lower levels of the nervous system that is motor units (motor cells in the brainstem and spinal cord, nerve roots, cranial and peripheral nerves, neuromuscular junction, and muscles. There are many such diseases; a few are more common others are rare.Rational approach in making a diagnosis can be divided into several steps. The process begins with a person with clinical symptoms and signs which raise the suspicion of NM disease. The first step is the description of the predominant pattern of muscular wasting and weakness (e. g. limb-girdle, distal, ocular, facio-scapulo-humeral. Each of these syndromes require a differential diagnosis within the motor unit territory what is achieved by means of EMG and muscle biopsy. The latter is even more important to define the nature of the abnormality. Disease nature can also be determined biochemically and, as NM disorders are commonly genetically determined, at the molecular genetic level. Treatment modalities include drugs (causative and symptomatic and other measures such as promoting and maintaining good general health, preventing skeletal deformities, physiotherapy, orthoses, surgery, and prevention of respiratory and cardiac functions. Counselling is mainly by social workers that focus on the practical aspects of coping with illness and disability and by genetic counsellors who gave advise on family planning.

  2. Anthropogenic Changes in Mid-latitude Storm and Blocking Activities from Observations and Climate Models

    Science.gov (United States)

    Li, D.

    2017-12-01

    Fingerprints of anthropogenic climate change can be most readily detected in the high latitudes of Northern Hemisphere, where temperature has been rising faster than the rest of the globe and sea ice cover has shrunk dramatically over recent decades. Reducing the meridional temperature gradient, this amplified warming over the high latitudes influences weather in the middle latitudes by modulating the jet stream, storms, and atmospheric blocking activities. Whether observational records have revealed significant changes in mid-latitude storms and blocking activities, however, has remained a subject of much debate. Buried deep in strong year-to-year variations, the long-term dynamic responses of the atmosphere are more difficult to identify, compared with its thermodynamic responses. Variabilities of decadal and longer timescales further obscure any trends diagnosed from satellite observations, which are often shorter than 40 years. Here, new metrics reflecting storm and blocking activities are developed using surface air temperature and pressure records, and their variations and long-term trends are examined. This approach gives an inkling of the changes in storm and blocking activities since the Industrial Revolution in regions with abundant long-term observational records, e.g. Europe and North America. The relationship between Atlantic Multi-decadal Oscillation and variations in storm and blocking activities across the Atlantic is also scrutinized. The connection between observed centennial trends and anthropogenic forcings is investigated using a hierarchy of numerical tools, from highly idealized to fully coupled atmosphere-ocean models. Pre-industrial control simulations and a set of large ensemble simulations forced by increased CO2 are analyzed to evaluate the range of natural variabilities, which paves the way to singling out significant anthropogenic changes from observational records, as well as predicting future changes in mid-latitude storm and

  3. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction.

    Science.gov (United States)

    Tomàs, Josep M; Garcia, Neus; Lanuza, Maria A; Nadal, Laura; Tomàs, Marta; Hurtado, Erica; Simó, Anna; Cilleros, Víctor

    2017-01-01

    Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M 1 , M 2 and M 4 ), adenosine receptors (AR; A 1 and A 2A ) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A 1 , M 1 and TrkB operate mainly by stimulating PKC whereas A 2A , M 2 and M 4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5-P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and

  4. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction

    Directory of Open Access Journals (Sweden)

    Josep M. Tomàs

    2017-08-01

    Full Text Available Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh receptors (subtypes mAChR; M1, M2 and M4, adenosine receptors (AR; A1 and A2A and the tropomyosin-related kinase B receptor (TrkB, among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC, to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ. This hypothesis is supported by: (i the tonic effect (shown by using selective inhibitors of several membrane receptors that accelerates axon loss between postnatal days P5–P9; (ii the synergistic, antagonic and modulatory effects (shown by paired inhibition of the receptors on axonal loss; (iii the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various

  5. Visualization of the distribution of surface-active block copolymers in PDMS-based coatings

    DEFF Research Database (Denmark)

    Noguer, A. Camós; Latipov, R.; Madsen, F. B.

    2018-01-01

    the distribution and release of these block copolymers from PDMS-based coatings has been previously reported. However, the distribution and behaviour of these compounds in the bulk of the PDMS coating are not fully understood. A novel fluorescent-labelled triblock PEG-b-PDMS-b-PEG copolymer was synthesized...... results in non-specific protein adsorption and wettability issues. Poly(ethylene glycol)-based surface-active block copolymers and surfactants have been added to PDMS coatings and films to impart biofouling resistance and hydrophilicity to the PDMS surface with successful results. Information regarding...

  6. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Directory of Open Access Journals (Sweden)

    Takehiro Minamoto

    Full Text Available Different people make different responses when they face a frustrating situation: some punish others (extrapunitive, while others punish themselves (intropunitive. Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9 showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9 showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  7. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    Science.gov (United States)

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation.

  8. Neuromuscular disease classification system

    Science.gov (United States)

    Sáez, Aurora; Acha, Begoña; Montero-Sánchez, Adoración; Rivas, Eloy; Escudero, Luis M.; Serrano, Carmen

    2013-06-01

    Diagnosis of neuromuscular diseases is based on subjective visual assessment of biopsies from patients by the pathologist specialist. A system for objective analysis and classification of muscular dystrophies and neurogenic atrophies through muscle biopsy images of fluorescence microscopy is presented. The procedure starts with an accurate segmentation of the muscle fibers using mathematical morphology and a watershed transform. A feature extraction step is carried out in two parts: 24 features that pathologists take into account to diagnose the diseases and 58 structural features that the human eye cannot see, based on the assumption that the biopsy is considered as a graph, where the nodes are represented by each fiber, and two nodes are connected if two fibers are adjacent. A feature selection using sequential forward selection and sequential backward selection methods, a classification using a Fuzzy ARTMAP neural network, and a study of grading the severity are performed on these two sets of features. A database consisting of 91 images was used: 71 images for the training step and 20 as the test. A classification error of 0% was obtained. It is concluded that the addition of features undetectable by the human visual inspection improves the categorization of atrophic patterns.

  9. One feature of the activated southern Ordos block: the Ziwuling small earthquake cluster

    Directory of Open Access Journals (Sweden)

    Li Yuhang

    2014-08-01

    Full Text Available Small earthquakes (Ms > 2.0 have been recorded from 1970 to the present day and reveal a significant difference in seismicity between the stable Ordos block and its active surrounding area. The southern Ordos block is a conspicuous small earthquake belt clustered and isolated along the NNW direction and extends to the inner stable Ordos block; no active fault can match this small earthquake cluster. In this paper, we analyze the dynamic mechanism of this small earthquake cluster based on the GPS velocity field (from 1999 to 2007, which are mainly from Crustal Movement Observation Network of China (CMONOC with respect to the north and south China blocks. The principal direction of strain rate field, the expansion ratefield, the maximum shear strain rate, and the rotation rate were constrained using the GPS velocity field. The results show that the velocity field, which is bounded by the small earthquake cluster from Tongchuan to Weinan, differs from the strain rate field, and the crustal deformation is left-lateral shear. This left-lateral shear belt not only spatially coincides with the Neo-tectonic belt in the Weihe Basin but also with the NNW small earthquake cluster (the Ziwuling small earthquake cluster. Based on these studies, we speculate that the NNW small earthquake cluster is caused by left-lateral shear slip, which is prone to strain accumulation. When the strain releases along the weak zone of structure, small earthquakes diffuse within its upper crust. The maximum principal compression strees direction changed from NE-SW to NEE-SWW, and the former reverse faults in the southwestern margin of the Ordos block became a left-lateral strike slip due to readjustment of the tectonic strees field after the middle Pleistocene. The NNW Neo-tectonic belt in the Weihe Basin, the different movement character of the inner Weihe Basin (which was demonstrated through GPS measurements and the small earthquake cluster belt reflect the activated

  10. Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways.

    Science.gov (United States)

    Laarman, Alexander J; Bardoel, Bart W; Ruyken, Maartje; Fernie, Job; Milder, Fin J; van Strijp, Jos A G; Rooijakkers, Suzan H M

    2012-01-01

    The complement system rapidly detects and kills Gram-negative bacteria and supports bacterial killing by phagocytes. However, bacterial pathogens exploit several strategies to evade detection by the complement system. The alkaline protease (AprA) of Pseudomonas aeruginosa has been associated with bacterial virulence and is known to interfere with complement-mediated lysis of erythrocytes, but its exact role in bacterial complement escape is unknown. In this study, we analyzed how AprA interferes with complement activation and whether it could block complement-dependent neutrophil functions. We found that AprA potently blocked phagocytosis and killing of Pseudomonas by human neutrophils. Furthermore, AprA inhibited opsonization of bacteria with C3b and the formation of the chemotactic agent C5a. AprA specifically blocked C3b deposition via the classical and lectin pathways, whereas the alternative pathway was not affected. Serum degradation assays revealed that AprA degrades both human C1s and C2. However, repletion assays demonstrated that the mechanism of action for complement inhibition is cleavage of C2. In summary, we showed that P. aeruginosa AprA interferes with classical and lectin pathway-mediated complement activation via cleavage of C2.

  11. Neuromuscular ultrasound of cranial nerves.

    Science.gov (United States)

    Tawfik, Eman A; Walker, Francis O; Cartwright, Michael S

    2015-04-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed.

  12. Porous concrete block as an environmental enrichment device increases activity of laying hens in cages.

    Science.gov (United States)

    Holcman, A; Gorjanc, G; Stuhec, I

    2008-09-01

    The purpose of this study was to consider the influence of simple and cheap environmental enrichment such as porous concrete on the behavior of laying hens in conventional cages. Forty brown laying hens were housed in individual wire mesh cages: 20 in experimental cages with porous concrete block provided for pecking and 20 in a control group without concrete block provided. Porous concrete block (5 cm length x 5 cm width x 5 cm height) was mounted on the side wall at the height of the hen's head. Behavior was studied from 42 to 48 wk of age. A group of 8 hens was filmed for 24 h, and the camera was moved each day so that all 40 hens were recorded over 5 d each wk. Videotaping was performed in wk 1, 3, 5, and 7 of the experiment. States (long-term behavior) were observed with 5-min interval recording (feeding, preening, resting, and remaining inactive), whereas events (short-term activities) were observed with instantaneous recording (drinking, pecking concrete, pecking neighbors, pecking cage, and attempting to escape). Data were analyzed with generalized linear mixed model with binomial distribution for states, and Poisson distribution for events. Monte Carlo Markov Chain methods were used to estimate model parameters. Because posterior distributions of quantities of interest were skewed, medians and standard errors are reported. Hens in experimental cages were more active in long-term behavior than controls (64.9 +/- 1.9 and 59.3 +/- 1.9% of the light period, respectively). Correspondingly, hens in the control group showed more long-term inactivity. In addition to pecking the porous concrete block, hens in experimental cages also showed other short-term activities with greater frequency (4.10 +/- 0.31 and 3.51 +/- 0.25 events per h, respectively). Our hypothesis that hens in enriched cages would have a greater level of activity was confirmed. Provision of a piece of porous concrete block as a pecking substrate enriched the environment of the birds at negligible

  13. Lumbopelvic flexibility modulates neuromuscular responses during trunk flexion-extension.

    Science.gov (United States)

    Sánchez-Zuriaga, Daniel; Artacho-Pérez, Carla; Biviá-Roig, Gemma

    2016-06-01

    Various stimuli such as the flexibility of lumbopelvic structures influence the neuromuscular responses of the trunk musculature, leading to different load sharing strategies and reflex muscle responses from the afferents of lumbopelvic mechanoreceptors. This link between flexibility and neuromuscular response has been poorly studied. The aim of this study was to investigate the relationship between lumbopelvic flexibility and neuromuscular responses of the erector spinae, hamstring and abdominal muscles during trunk flexion-extension. Lumbopelvic movement patterns were measured in 29 healthy women, who were separated into two groups according to their flexibility during trunk flexion-extension. The electromyographic responses of erector spinae, rectus abdominis and biceps femoris were also recorded. Subjects with greater lumbar flexibility had significantly less pelvic flexibility and vice versa. Subjects with greater pelvic flexibility had a higher rate of relaxation and lower levels of hamstring activation during maximal trunk flexion. The neuromuscular response patterns of the hamstrings seem partially modulated by pelvic flexibility. Not so with the lumbar erector spinae and lumbar flexibility, despite the assertions of some previous studies. The results of this study improve our knowledge of the relationships between trunk joint flexibility and neuromuscular responses, a relationship which may play a role in low back pain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Neuromuscular adaptations induced by adjacent joint training.

    Science.gov (United States)

    Ema, R; Saito, I; Akagi, R

    2018-03-01

    Effects of resistance training are well known to be specific to tasks that are involved during training. However, it remains unclear whether neuromuscular adaptations are induced after adjacent joint training. This study examined the effects of hip flexion training on maximal and explosive knee extension strength and neuromuscular performance of the rectus femoris (RF, hip flexor, and knee extensor) compared with the effects of knee extension training. Thirty-seven untrained young men were randomly assigned to hip flexion training, knee extension training, or a control group. Participants in the training groups completed 4 weeks of isometric hip flexion or knee extension training. Standardized differences in the mean change between the training groups and control group were interpreted as an effect size, and the substantial effect was assumed to be ≥0.20 of the between-participant standard deviation at baseline. Both types of training resulted in substantial increases in maximal (hip flexion training group: 6.2% ± 10.1%, effect size = 0.25; knee extension training group: 20.8% ± 9.9%, effect size = 1.11) and explosive isometric knee extension torques and muscle thickness of the RF in the proximal and distal regions. Improvements in strength were accompanied by substantial enhancements in voluntary activation, which was determined using the twitch interpolation technique and RF activation. Differences in training effects on explosive torques and neural variables between the two training groups were trivial. Our findings indicate that hip flexion training results in substantial neuromuscular adaptations during knee extensions similar to those induced by knee extension training. © 2017 The Authors. Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  15. Neuromuscular dose-response studies: determining sample size.

    Science.gov (United States)

    Kopman, A F; Lien, C A; Naguib, M

    2011-02-01

    Investigators planning dose-response studies of neuromuscular blockers have rarely used a priori power analysis to determine the minimal sample size their protocols require. Institutional Review Boards and peer-reviewed journals now generally ask for this information. This study outlines a proposed method for meeting these requirements. The slopes of the dose-response relationships of eight neuromuscular blocking agents were determined using regression analysis. These values were substituted for γ in the Hill equation. When this is done, the coefficient of variation (COV) around the mean value of the ED₅₀ for each drug is easily calculated. Using these values, we performed an a priori one-sample two-tailed t-test of the means to determine the required sample size when the allowable error in the ED₅₀ was varied from ±10-20%. The COV averaged 22% (range 15-27%). We used a COV value of 25% in determining the sample size. If the allowable error in finding the mean ED₅₀ is ±15%, a sample size of 24 is needed to achieve a power of 80%. Increasing 'accuracy' beyond this point requires increasing greater sample sizes (e.g. an 'n' of 37 for a ±12% error). On the basis of the results of this retrospective analysis, a total sample size of not less than 24 subjects should be adequate for determining a neuromuscular blocking drug's clinical potency with a reasonable degree of assurance.

  16. Interaction of antibiotics on pipecuronium-induced neuromuscular blockade.

    Science.gov (United States)

    de Gouw, N E; Crul, J F; Vandermeersch, E; Mulier, J P; van Egmond, J; Van Aken, H

    1993-01-01

    To measure the interaction of two antibiotics (clindamycin and colistin) on neuromuscular blockade induced by pipecuronium bromide (a new long-acting, steroidal, nondepolarizing neuromuscular blocking drug). Prospective, randomized, placebo-controlled study. Inpatient gynecologic and gastroenterologic service at a university medical center. Three groups of 20 ASA physical status I and II patients with normal kidney and liver function, taking no medication, and undergoing elective surgery under general anesthesia. Anesthesia was induced with propofol and alfentanil intravenously (IV) and maintained with a propofol infusion and 60% nitrous oxide in oxygen. Pipecuronium bromide 50 micrograms/kg was administered after reaching a stable baseline of single-twitch response. At 25% recovery of pipecuronium-induced neuromuscular blockade, patients received one of two antibiotics, clindamycin 300 mg or colistin 1 million IU, or a placebo. The recovery index (RI, defined as time from 25% to 75% recovery of neuromuscular blockade) was measured using the single-twitch response of the adductor pollicis muscle with supramaximal stimulation of the ulnar nerve at the wrist. RI after administration of an antibiotic (given at 25% recovery) was measured and compared with RI of the control group using Student's unpaired t-test. Statistical analyses of the results showed a significant prolongation of the recovery time (from 25% to 75% recovery) of 40 minutes for colistin. When this type of antibiotic is used during anesthesia with pipercuronium as a muscle relaxant, one must be aware of a significant prolongation of an already long-acting neuromuscular blockade and (although not observed in this study) possible problems in antagonism.

  17. Vocational perspectives and neuromuscular disorders

    NARCIS (Netherlands)

    Andries, F.; Wevers, C. W.; Wintzen, A. R.; Busch, H. F.; Höweler, C. J.; de Jager, A. E.; Padberg, G. W.; de Visser, M.; Wokke, J. H.

    1997-01-01

    The present study analyses the actual occupational situation, vocational handicaps and past labour career of a group of about 1000 Dutch patients suffering from a neuromuscular disorder (NMD). On the basis of the likelihood of a substantial employment history and sufficient numbers of patients, four

  18. Vocational perspectives and neuromuscular disorders

    NARCIS (Netherlands)

    Andries, F; Wevers, CWJ; Wintzen, AR; Busch, HFM; Howeler, CJ; deJager, AEJ; Padberg, GW; deVisser, M; Wokke, JHJ

    The present study analyses the actual occupational situation, vocational handicaps and past labour career of a group of about 1000 Dutch patients suffering from a neuromuscular disorder (NMD). On the basis of the likelihood of a substantial employment history and sufficient numbers of patients, four

  19. Palliative care in neuromuscular diseases

    NARCIS (Netherlands)

    de Visser, Marianne; Oliver, David J.

    2017-01-01

    Purpose of review Palliative care is an approach that improves the quality of life of patients and their families facing the problem associated with life-threatening illness. Neuromuscular disorders (NMDs) are characterized by progressive muscle weakness, leading to pronounced and incapacitating

  20. New techniques in the tissue diagnosis of gastrointestinal neuromuscular diseases

    Institute of Scientific and Technical Information of China (English)

    Charles H Knowles; Joanne E Martin

    2009-01-01

    Gastrointestinal neuromuscular diseases are a clinically heterogeneous group of disorders of children and adults in which symptoms are presumed or proven to arise as a result of neuromuscular (including interstitial cell of Cajal) dysfunction. Common to most of these diseases are symptoms of impaired motor activity which manifest as slowed or obstructed transit with or without evidence of transient or persistent radiological visceral dilatation. A variety of histopathological techniques and allied investigations are being increasingly applied to tissue biopsies from such patients. This review outlines some of the more recent advances in this field, particularly in the most contentious area of small bowel disease manifesting as intestinal pseudo-obstruction.

  1. Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environment

    International Nuclear Information System (INIS)

    Capretto, Lorenzo; Cheng Wei; Carugo, Dario; Katsamenis, Orestis L; Zhang Xunli; Hill, Martyn

    2012-01-01

    Microreactors have been shown to be a powerful tool for the production of nanoparticles (NPs); however, there is still a lack of understanding of the role that the microfluidic environment plays in directing the nanoprecipitation process. Here we investigate the mechanism of nanoprecipitation of block copolymer stabilized organic NPs using a microfluidic-based reactor in combination with computational fluid dynamics (CFD) modelling of the microfluidic implementation. The latter also accounts for the complex interplay between molecular and hydrodynamic phenomena during the nanoprecipitation process, in order to understand the hydrodynamics and its influence on the NP formation process. It is demonstrated that the competitive reactions result in the formation of two types of NPs, i.e., either with or without loading organic actives. The obtained results are interpreted by taking into consideration a new parameter representing the mismatching between the aggregations of the polymers and actives, which plays a decisive role in determining the size and polydispersity of the prepared hybrid NPs. These results expand the current understanding of the co-nanoprecipitation mechanism of active and block copolymer stabilizer, and on the role exerted by the microfluidic environment, giving information that could be translated to the emerging fields of microfluidic formation of NPs and nanomedicine. (paper)

  2. Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity.

    Science.gov (United States)

    Kimani, Stanley G; Kumar, Sushil; Bansal, Nitu; Singh, Kamalendra; Kholodovych, Vladyslav; Comollo, Thomas; Peng, Youyi; Kotenko, Sergei V; Sarafianos, Stefan G; Bertino, Joseph R; Welsh, William J; Birge, Raymond B

    2017-03-08

    TAM receptors (Tyro-3, Axl, and Mertk) are a family of three homologous type I receptor tyrosine kinases that are implicated in several human malignancies. Overexpression of TAMs and their major ligand Growth arrest-specific factor 6 (Gas6) is associated with more aggressive staging of cancers, poorer predicted patient survival, acquired drug resistance and metastasis. Here we describe small molecule inhibitors (RU-301 and RU-302) that target the extracellular domain of Axl at the interface of the Ig-1 ectodomain of Axl and the Lg-1 of Gas6. These inhibitors effectively block Gas6-inducible Axl receptor activation with low micromolar IC 50s in cell-based reporter assays, inhibit Gas6-inducible motility in Axl-expressing cell lines, and suppress H1299 lung cancer tumor growth in a mouse xenograft NOD-SCIDγ model. Furthermore, using homology models and biochemical verifications, we show that RU301 and 302 also inhibit Gas6 inducible activation of Mertk and Tyro3 suggesting they can act as pan-TAM inhibitors that block the interface between the TAM Ig1 ectodomain and the Gas6 Lg domain. Together, these observations establish that small molecules that bind to the interface between TAM Ig1 domain and Gas6 Lg1 domain can inhibit TAM activation, and support the further development of small molecule Gas6-TAM interaction inhibitors as a novel class of cancer therapeutics.

  3. Alterations in neuromuscular function in girls with generalized joint hypermobility

    DEFF Research Database (Denmark)

    Jensen, Bente Rona; Melcher, Jesper Sandfeld; Melcher, Pia Grethe Sandfeld

    2016-01-01

    BACKGROUND: Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. METHODS: Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions...

  4. Neuromuscular function during stair descent in meniscectomized patients and controls

    DEFF Research Database (Denmark)

    Thorlund, Jonas Bloch; Roos, Ewa M; Aagaard, Per

    2011-01-01

    The aim of this study was to identify differences in knee range of motion (ROM), movement speed, ground reaction forces (GRF) profile, neuromuscular activity, and muscle coactivation during the transition between stair descent and level walking in meniscectomized patients at high risk of knee...

  5. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory.

    Science.gov (United States)

    Blundell, Jacqueline; Blaiss, Cory A; Lagace, Diane C; Eisch, Amelia J; Powell, Craig M

    2011-05-01

    The pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction. Male C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N=10-12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals. Corticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone. We demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity.

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M; Ruecker, Andrea; Kumar, T R Santha; Rubiano, Kelly; Ferreira, Pedro E; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P; Ng, Caroline L; Murithi, James M; Corey, Victoria C; Duffy, Sandra; Lieberman, Ori J; Veiga, M Isabel; Sinden, Robert E; Alano, Pietro; Delves, Michael J; Lee Sim, Kim; Winzeler, Elizabeth A; Egan, Timothy J; Hoffman, Stephen L; Avery, Vicky M; Fidock, David A

    2017-10-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.

  7. Hexahydroquinolines are Antimalarial Candidates with Potent Blood Stage and Transmission-Blocking Activity

    Science.gov (United States)

    Vanaerschot, Manu; Lucantoni, Leonardo; Li, Tao; Combrinck, Jill M.; Ruecker, Andrea; Kumar, T.R. Santha; Rubiano, Kelly; Ferreira, Pedro E.; Siciliano, Giulia; Gulati, Sonia; Henrich, Philipp P.; Ng, Caroline L.; Murithi, James M.; Corey, Victoria C.; Duffy, Sandra; Lieberman, Ori J.; Veiga, M. Isabel; Sinden, Robert E.; Alano, Pietro; Delves, Michael J.; Sim, Kim Lee; Winzeler, Elizabeth A.; Egan, Timothy J.; Hoffman, Stephen L.; Avery, Vicky M.; Fidock, David A.

    2017-01-01

    Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress P. berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR/Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 as a determinant of parasite resistance to HHQs. Hemoglobin and heme fractionation assays suggest a mode of action that results in reduced hemozoin levels and might involve inhibition of host hemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs including lumefantrine, confirming that HHQs have a different mode of action than other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria. PMID:28808258

  8. Lifestyle physical activity in persons with multiple sclerosis: the new kid on the MS block.

    Science.gov (United States)

    Motl, Robert W

    2014-07-01

    Supervised exercise training has substantial benefits for persons with multiple sclerosis (MS), yet 80% of those with MS do not meet recommended levels of moderate-to-vigorous physical activity (MVPA). This same problem persisted for decades in the general population of adults and prompted a paradigm shift away from "exercise training for fitness" toward "physical activity for health." The paradigm shift reflects a public health approach of promoting lifestyle physical activity through behavioral interventions that teach people the skills, techniques, and strategies based on established theories for modifying and self-regulating health behaviors. This paper describes: (a) the definitions of and difference between structured exercise training and lifestyle physical activity; (b) the importance and potential impact of the paradigm shift; (c) consequences of lifestyle physical activity in MS; and (d) behavioral interventions for changing lifestyle physical activity in MS. The paper introduces the "new kid on the MS block" with the hope that lifestyle physical activity might become an accepted partner alongside exercise training for inclusion in comprehensive MS care. © The Author(s) 2014.

  9. Effectiveness of Neuromuscular Training Based on the Neuromuscular Risk Profile.

    Science.gov (United States)

    Hewett, Timothy E; Ford, Kevin R; Xu, Yingying Y; Khoury, Jane; Myer, Gregory D

    2017-07-01

    The effects of targeted neuromuscular training (TNMT) on movement biomechanics associated with the risk of anterior cruciate ligament (ACL) injuries are currently unknown. Purpose/Hypotheses: To determine the effectiveness of TNMT specifically designed to increase trunk control and hip strength. The hypotheses were that (1) TNMT would decrease biomechanical and neuromuscular factors related to an increased ACL injury risk and (2) TNMT would decrease these biomechanical and neuromuscular factors to a greater extent in athletes identified as being at a high risk for future ACL injuries. Controlled laboratory study. Female athletes who participated in jumping, cutting, and pivoting sports underwent 3-dimensional biomechanical testing before the season and after completing TNMT. During testing, athletes performed 3 different types of tasks: (1) drop vertical jump, (2) single-leg drop, and (3) single-leg cross drop. Analysis of covariance was used to examine the treatment effects of TNMT designed to enhance core and hip strength on biomechanical and neuromuscular characteristics. Differences were also evaluated by risk profile. Differences were considered statistically significant at P risk before the intervention (risk profile III) had a more significant treatment effect of TNMT than low-risk groups (risk profiles I and II). TNMT significantly improved proximal biomechanics, including increased hip external rotation moments and moment impulses, increased peak trunk flexion, and decreased peak trunk extension. TNMT that focuses exclusively on proximal leg and trunk risk factors is not, however, adequate to induce significant changes in frontal-plane knee loading. Biomechanical changes varied across the risk profile groups, with higher risk groups exhibiting greater improvements in their biomechanics.

  10. Water activity of aqueous solutions of ethylene oxide-propylene oxide block copolymers and maltodextrins

    Directory of Open Access Journals (Sweden)

    N. D. D. Carareto

    2010-03-01

    Full Text Available The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult's law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.

  11. Block-induced Complex Structures Building the Flare-productive Solar Active Region 12673

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shuhong; Zhang, Jun [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Zhu, Xiaoshuai [Max-Planck Institute for Solar System Research, D-37077 Göttingen (Germany); Song, Qiao, E-mail: shuhongyang@nao.cas.cn [Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081 (China)

    2017-11-10

    Solar active region (AR) 12673 produced 4 X-class, 27 M-class, and numerous lower-class flares during its passage across the visible solar disk in 2017 September. Our study is to answer the questions why this AR was so flare-productive and how the X9.3 flare, the largest one of the past decade, took place. We find that there was a sunspot in the initial several days, and then two bipolar regions emerged nearby it successively. Due to the standing of the pre-existing sunspot, the movement of the bipoles was blocked, while the pre-existing sunspot maintained its quasi-circular shaped umbra only with the disappearance of a part of penumbra. Thus, the bipolar patches were significantly distorted, and the opposite polarities formed two semi-circular shaped structures. After that, two sequences of new bipolar regions emerged within the narrow semi-circular zone, and the bipolar patches separated along the curved channel. The new bipoles sheared and interacted with the previous ones, forming a complex topological system, during which numerous flares occurred. At the highly sheared region, a great deal of free energy was accumulated. On September 6, one negative patch near the polarity inversion line began to rapidly rotate and shear with the surrounding positive fields, and consequently the X9.3 flare erupted. Our results reveal that the block-induced complex structures built the flare-productive AR and the X9.3 flare was triggered by an erupting filament due to the kink instability. To better illustrate this process, a block-induced eruption model is proposed for the first time.

  12. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives.

    Science.gov (United States)

    Carron, Michele; Bertoncello, Francesco; Ieppariello, Giovanna

    2018-01-01

    The number of elderly patients is increasing worldwide. This will have a significant impact on the practice of anesthesia in future decades. Anesthesiologists must provide care for an increasing number of elderly patients, who have an elevated risk of perioperative morbidity and mortality. Complications related to postoperative residual neuromuscular blockade, such as muscle weakness, airway obstruction, hypoxemia, atelectasis, pneumonia, and acute respiratory failure, are more frequent in older than in younger patients. Therefore, neuromuscular blockade in the elderly should be carefully monitored and completely reversed before awakening patients at the end of anesthesia. Acetylcholinesterase inhibitors are traditionally used for reversal of neuromuscular blockade. Although the risk of residual neuromuscular blockade is reduced by reversal with neostigmine, it continues to complicate the postoperative course. Sugammadex represents an innovative approach to reversal of neuromuscular blockade induced by aminosteroid neuromuscular-blocking agents, particularly rocuronium, with useful applications in clinical practice. However, aging is associated with certain changes in the pharmacokinetics of sugammadex, and to date there has been no thorough evaluation of the use of sugammadex in elderly patients. The aim of this review was to perform an analysis of the use of sugammadex in older adults based on the current literature. Major issues surrounding the physiologic and pharmacologic effects of aging in elderly patients and how these may impact the routine use of sugammadex in elderly patients are discussed.

  13. Rocuronium and sugammadex in a 3 days old neonate for draining an ovarian cyst. Neuromuscular management and review of the literature

    Directory of Open Access Journals (Sweden)

    Ricardo Vieira Carlos

    2016-08-01

    Full Text Available Abstract A case is reported in which a 3-days old neonate with a giant ovarian cyst was scheduled for surgery. The patient received a dose of sugammadex to reverse a rocuronium-induced neuromuscular block. A fast and efficient recovery from neuromuscular block was achieved within 90 s. No adverse events or other safety concerns were observed. Furthermore, a review of the literature on the use of sugammadex in neonates was performed.

  14. Dengue-associated neuromuscular complications

    OpenAIRE

    Ravindra Kumar Garg; Hardeep Singh Malhotra; Amita Jain; Kiran Preet Malhotra

    2015-01-01

    Dengue is associated with many neurological dysfunctions. Up to 4% of dengue patients may develop neuromuscular complications. Muscle involvement can manifest with myalgias, myositis, rhabdomyolysis and hypokalemic paralysis. Diffuse myalgia is the most characteristic neurological symptom of dengue fever. Dengue-associated myositis can be of varying severity ranging from self-limiting muscle involvement to severe dengue myositis. Dengue-associated hypokalemic paralysis often has a rapidly evo...

  15. Amino Acid Block Copolymers with Broad Antimicrobial Activity and Barrier Properties.

    Science.gov (United States)

    Bevilacqua, Michael P; Huang, Daniel J; Wall, Brian D; Lane, Shalyn J; Edwards, Carl K; Hanson, Jarrod A; Benitez, Diego; Solomkin, Joseph S; Deming, Timothy J

    2017-10-01

    Antimicrobial properties of a long-chain, synthetic, cationic, and hydrophobic amino acid block copolymer are reported. In 5 and 60 min time-kill assays, solutions of K 100 L 40 block copolymers (poly(l-lysine·hydrochloride) 100 -b-poly(l-leucine) 40 ) at concentrations of 10-100 µg mL -1 show multi-log reductions in colony forming units of Gram-positive and Gram-negative bacteria, as well as yeast, including multidrug-resistant strains. Driven by association of hydrophobic segments, K 100 L 40 copolymers form viscous solutions and self-supporting hydrogels in water at concentrations of 1 and 2 wt%, respectively. These K 100 L 40 preparations provide an effective barrier to microbial contamination of wounds, as measured by multi-log decreases of tissue-associated bacteria with deliberate inoculation of porcine skin explants, porcine open wounds, and rodent closed wounds with foreign body. Based on these findings, amino acid copolymers with the features of K 100 L 40 can combine potent, direct antimicrobial activity and barrier properties in one biopolymer for a new approach to prevention of wound infections. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  17. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland; Neelakanda, Pradeep; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2013-01-01

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  18. Gametocytocidal screen identifies novel chemical classes with Plasmodium falciparum transmission blocking activity.

    Directory of Open Access Journals (Sweden)

    Natalie G Sanders

    Full Text Available Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds.

  19. Nerve Blocks

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Nerve Blocks A nerve block is an injection to ... the limitations of Nerve Block? What is a Nerve Block? A nerve block is an anesthetic and/ ...

  20. The effects of neuromuscular training on knee joint motor control during sidecutting in female elite soccer and handball players.

    Science.gov (United States)

    Zebis, Mette K; Bencke, Jesper; Andersen, Lars L; Døssing, Simon; Alkjaer, Tine; Magnusson, S Peter; Kjaer, Michael; Aagaard, Per

    2008-07-01

    The project aimed to implement neuromuscular training during a full soccer and handball league season and to experimentally analyze the neuromuscular adaptation mechanisms elicited by this training during a standardized sidecutting maneuver known to be associated with non-contact anterior cruciate ligament (ACL) injury. The players were tested before and after 1 season without implementation of the prophylactic training and subsequently before and after a full season with the implementation of prophylactic training. A total of 12 female elite soccer players and 8 female elite team handball players aged 26 +/- 3 years at the start of the study. The subjects participated in a specific neuromuscular training program previously shown to reduce non-contact ACL injury. Neuromuscular activity at the knee joint, joint angles at the hip and knee, and ground reaction forces were recorded during a sidecutting maneuver. Neuromuscular activity in the prelanding phase was obtained 10 and 50 ms before foot strike on a force plate and at 10 and 50 ms after foot strike on a force plate. Neuromuscular training markedly increased before activity and landing activity electromyography (EMG) of the semitendinosus (P Neuromuscular training increased EMG activity for the medial hamstring muscles, thereby decreasing the risk of dynamic valgus. This observed neuromuscular adaptation during sidecutting could potentially reduce the risk for non-contact ACL injury.

  1. A randomized controlled trial on the long-term effects of proprioceptive neuromuscular facilitation training, on pain-related outcomes and back muscle activity, in patients with chronic low back pain.

    Science.gov (United States)

    Areeudomwong, Pattanasin; Wongrat, Witchayut; Neammesri, Nertnapa; Thongsakul, Thanaporn

    2017-09-01

    The role of exercise therapy in improving pain-related clinical outcomes and trunk muscle activity in patients with chronic low back pain (CLBP) has been widely reported. There is little information on the effect of proprioceptive neuromuscular facilitation (PNF) training in patients with CLBP. The purpose of the present study was therefore to investigate the persistence of the effects of PNF training on pain intensity, functional disability, patient satisfaction, health-related quality of life (HRQOL) and lower back muscle activity in patients with CLBP. Forty-two participants with CLBP were randomly assigned either to 4-week PNF training or to a control group receiving a Low back pain educational booklet. Pain-related outcomes, including pain intensity, functional disability, patient satisfaction, HRQOL and lumbar erector spinae (LES) muscle activity, were measured before and after the intervention, and at a follow-up session 12 weeks after the last intervention session. Compared with the control group, after undergoing a 4-week PNF training intervention, participants showed a significant reduction in pain intensity and functional disability, and improved patient satisfaction and HRQOL (p pain-related outcomes, and increases lower back muscle activity in patients with CLBP. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Elbow joint position sense after neuromuscular training with handheld vibration.

    Science.gov (United States)

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  3. [Optogenetic activation of dorsal hippocampal astrocytic Rac1 blocks the learning of associative memory].

    Science.gov (United States)

    Guo, Xiao-Mu; Liao, Zhao-Hui; Tao, Ye-Zheng; Wang, Fei-Fei; Ma, Lan

    2017-06-25

    Rac1 belongs to the family of Rho GTPases, and plays important roles in the brain function. It affects the cell migration and axon guidance via regulating the cytoskeleton and cellular morphology. However, the effect of its dynamic activation in regulating physiological function remains unclear. Recently, a photoactivatable analogue of Rac1 (PA-Rac1) has been developed, allowing the activation of Rac1 by the specific wavelength of light in living cells. Thus, we constructed recombinant adeno-associated virus (AAV) of PA-Rac1 and its light-insensitive mutant PA-Rac1-C450A under the control of the mouse glial fibrillary acidic protein (mGFAP) promoter to manipulate Rac1 activity in astrocytes by optical stimulation. Primary culture of hippocampal astrocytes was infected with the recombinant AAV-PA-Rac1 or AAV-PA-Rac1-C450A. Real-time fluorescence imaging showed that the cell membrane of the astrocyte expressing PA-Rac1 protruded near the light spot, while the astrocyte expressing PA-Rac1-C450A did not. We injected AAV-PA-Rac1 and AAV-PA-Rac1-C450A into dorsal hippocampus to investigate the role of the activation of Rac1 in regulating the associative learning. With optical stimulation, the PA-Rac1 group, rather than the PA-Rac1-C450A group, showed slower learning curve during the fear conditioning compared with the control group, indicating that activating astrocytic Rac1 blocks the formation of contextual memory. Our data suggest that the activation of Rac1 in dorsal hippocampal astrocyte plays an important role in the associative learning.

  4. Prolonged neuromuscular block in a preeclamptic patient induced ...

    African Journals Online (AJOL)

    Recent large use of magnesium in the obstetric population should incite anesthesiologists to control its side effects and drugs interactions. We report a case of a 30-year-old woman, with severe preeclampsia and HELLP syndrome, receiving sulfate magnesium and nicardipine, who underwent a cesarean section under ...

  5. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury.

    Science.gov (United States)

    Wei, H; Wei, Y; Tian, F; Niu, T; Yi, G

    2016-01-01

    Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Especially, neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effectively therapeutic agents and treatment strategies. Proteinase-activated receptors (PARs) are a family member of G-protein-coupled receptors and are activated by a proteolytic mechanism. One of its subtypes PAR2 has been reported to be engaged in mechanical and thermal hyperalgesia. Thus, in this study we specifically examined the underlying mechanisms responsible for SCI evoked-neuropathic pain in a rat model. Overall, we demonstrated that SCI increases PAR2 and its downstream pathways TRPV1 and TRPA1 expression in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal PAR2 by intrathecal injection of FSLLRY-NH2 significantly inhibits neuropathic pain responses induced by mechanical and thermal stimulation whereas FSLLRY-NH2 decreases the protein expression of TRPV1 and TRPA1 as well as the levels of substance P and calcitonin gene-related peptide. Results of this study have important implications, i.e. targeting one or more of these signaling molecules involved in activation of PAR2 and TRPV1/TRPA1 evoked by SCI may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  6. Vellozia flavicans Mart. ex Schult. hydroalcoholic extract inhibits the neuromuscular blockade induced by Bothrops jararacussu venom.

    Science.gov (United States)

    Tribuiani, Natália; da Silva, Alexandro Mateus; Ferraz, Miriéle Cristina; Silva, Magali Glauzer; Bentes, Ana Paula Guerreiro; Graziano, Talita Signoreti; dos Santos, Marcio Galdino; Cogo, José Carlos; Varanda, Eliana Aparecida; Groppo, Francisco Carlos; Cogo, Karina; Oshima-Franco, Yoko

    2014-02-08

    Snakebite is a significant public health issue in tropical countries. In Brazil, some of the most common snake envenomations are from Bothrops. Bothrops bites trigger local and systemic effects including edema, pain, erythema, cyanosis, infections, and necrosis. Vellozia flavicans is a plant from the Brazilian "cerrado" (savanna) that is popularly used as an anti-inflammatory medicine. Since inflammation develops quickly after Bothrops bites, which can lead to infection, the aim of the present study was to observe possible anti-snake venom and antimicrobial activities of V. flavicans (Vf). The chromatographic profile of the main constituents from the Vf leaf hydroalcoholic extract was obtained by thin-layer chromatography (TLC). The anti-snake venom activity was measured by Vf's ability to neutralize the in vitro neuromuscular blockade caused by Bothrops jararacussu venom (Bjssu) in a mouse phrenic nerve-diaphragm model (PND). After a 20 min incubation, preparations of PND were added to Tyrode's solution (control); Vf (0.2, 0.5, 1, and 2 mg/mL); 40 μg/mL Bjssu; pre-incubation for 30 min with Bjssu and 1 mg/mL Vf; and a Bjssu pretreated preparation (for 10 min) followed by 1 mg/mL Vf. Myographic recording was performed, and the contractile responses were recorded. The antimicrobial activity (minimum inhibitory concentration [MIC] and minimum bactericidal concentration [MBC]) was obtained for Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis, using gentamicin and vancomycin as positive controls. TLC analysis yielded several compounds from Vf, such as flavonoids (quercetin) and phenolic acids (chlorogenic acid). Bjssu completely blocked the contractile responses of PND preparations, while Vf preserved 97% (±10%) of the contractile responses when incubated with Bjssu. In the PND pretreated with Bjssu, Vf was able to inhibit the neuromuscular blockade progress. MIC and MBC of Vf ranged from 2.5 to 5.0 mg/mL for P. aeruginosa

  7. Caffeine inhibits erythrocyte membrane derangement by antioxidant activity and by blocking caspase 3 activation.

    Science.gov (United States)

    Tellone, Ester; Ficarra, Silvana; Russo, Annamaria; Bellocco, Ersilia; Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Pirolli, Davide; De Rosa, Maria Cristina; Giardina, Bruno; Galtieri, Antonio

    2012-02-01

    The aim of this research was to investigate the effect of caffeine on band 3 (the anion exchanger protein), haemoglobin function, caspase 3 activation and glucose-6-phosphate metabolism during the oxygenation-deoxygenation cycle in human red blood cells. A particular attention has been given to the antioxidant activity by using in vitro antioxidant models. Caffeine crosses the erythrocyte membrane and interacts with the two extreme conformational states of haemoglobin (the T and the R-state within the framework of the simple two states allosteric model) with different binding affinities. By promoting the high affinity state (R-state), the caffeine-haemoglobin interaction does enhance the pentose phosphate pathway. This is of benefit for red blood cells since it leads to an increase of NADPH availability. Moreover, caffeine effect on band 3, mediated by haemoglobin, results in an extreme increase of the anion exchange, particularly in oxygenated erythrocytes. This enhances the transport of the endogenously produced CO(2) thereby avoiding the production of dangerous secondary radicals (carbonate and nitrogen dioxide) which are harmful to the cellular membrane. Furthermore caffeine destabilizes the haeme-protein interactions within the haemoglobin molecule and triggers the production of superoxide and met-haemoglobin. However this damaging effect is almost balanced by the surprising scavenger action of the alkaloid with respect to the hydroxyl radical. These experimental findings are supported by in silico docking and molecular dynamics studies and by what we may call the "caspase silence"; in fact, there is no evidence of any caspase 3 activity enhancement; this is likely due to the promotion of positive metabolic conditions which result in an increase of the cellular reducing power. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Efficacy and safety of sugammadex in the reversal of deep neuromuscular blockade induced by rocuronium in patients with end-stage renal disease: A comparative prospective clinical trial.

    Science.gov (United States)

    de Souza, Camila M; Tardelli, Maria A; Tedesco, Helio; Garcia, Natalia N; Caparros, Mario P; Alvarez-Gomez, Jose A; de Oliveira Junior, Itamar S

    2015-10-01

    Renal failure affects the pharmacology of nondepolarizing neuromuscular blockers making recovery of neuromuscular function unpredictable. Sugammadex antagonises rocuronium-induced neuromuscular blockade by encapsulating rocuronium, creating a stable complex molecule that is mainly excreted by the kidneys. Previous studies suggest that sugammadex is effective in reversing moderate neuromuscular block in the presence of renal failure, but no data are available regarding reversal of profound neuromuscular block in patients with renal failure. The objective of this study is to compare the efficacy and safety of sugammadex in reversing profound neuromuscular block induced by rocuronium in patients with end-stage renal disease and those with normal renal function. A prospective clinical trial. Two university hospitals, from 1 October 2011 to 31 January 2012. Forty patients undergoing kidney transplant: 20 with renal failure [creatinine clearance (ClCr) 90 ml min). Neuromuscular monitoring was performed by acceleromyography and train-of-four (TOF) stimulation. Profound neuromuscular block (posttetanic count, one to three responses) was maintained during surgery. Sugammadex 4 mg kg was administered on completion of skin closure. Recovery of the TOF ratio to 0.9 was recorded. Monitoring of neuromuscular function continued in the postanesthesia care unit for a further 2 h. The efficacy of sugammadex was evaluated by the time taken for the TOF ratio to recover to 0.9. The safety of sugammadex was assessed by monitoring for recurrence of neuromuscular block every 15 min for 2 h. Secondary variables were time to recovery of TOF ratio to 0.7 and 0.8. After sugammadex administration, the mean time for recovery of the TOF ratio to 0.9 was prolonged in the renal failure group (5.6 ± 3.6 min) compared with the control group (2.7 ± 1.3 min, P = 0.003). No adverse events or evidence of recurrence of neuromuscular block were observed. In patients with

  9. Identification and Simulation as Tools for Measurement of Neuromuscular Properties

    National Research Council Canada - National Science Library

    Kearney, R

    2001-01-01

    Quantitative, objective methods for the evaluation of neuromuscular properties are required for the diagnosis of neuromuscular disorders and the evaluation of the effectiveness of treatment and rehabilitation...

  10. Endothelium-Derived 5-Methoxytryptophan Protects Endothelial Barrier Function by Blocking p38 MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Ling-Yun Chu

    Full Text Available The endothelial junction is tightly controlled to restrict the passage of blood cells and solutes. Disruption of endothelial barrier function by bacterial endotoxins, cytokines or growth factors results in inflammation and vascular damage leading to vascular diseases. We have identified 5-methoxytryptophan (5-MTP as an anti-inflammatory factor by metabolomic analysis of conditioned medium of human fibroblasts. Here we postulated that endothelial cells release 5-MTP to protect the barrier function. Conditioned medium of human umbilical vein endothelial cells (HUVECs prevented endothelial hyperpermeability and VE-cadherin downregulation induced by VEGF, LPS and cytokines. We analyzed the metabolomic profile of HUVEC conditioned medium and detected 5-MTP but not melatonin, serotonin or their catabolites, which was confirmed by enzyme-linked immunosorbent assay. Addition of synthetic pure 5-MTP preserved VE-cadherin and maintained barrier function despite challenge with pro-inflammatory mediators. Tryptophan hydroxylase-1, an enzyme required for 5-MTP biosynthesis, was downregulated in HUVECs by pro-inflammatory mediators and it was accompanied by reduction of 5-MTP. 5-MTP protected VE-cadherin and prevented endothelial hyperpermeability by blocking p38 MAPK activation. A chemical inhibitor of p38 MAPK, SB202190, exhibited a similar protective effect as 5-MTP. To determine whether 5-MTP prevents vascular hyperpermeability in vivo, we evaluated the effect of 5-MTP administration on LPS-induced murine microvascular permeability with Evans blue. 5-MTP significantly prevented Evans blue dye leakage. Our findings indicate that 5-MTP is a new class of endothelium-derived molecules which protects endothelial barrier function by blocking p38 MAPK.

  11. The effects of neuromuscular training on knee joint motor control during sidecutting in female elite soccer and handball players

    DEFF Research Database (Denmark)

    Zebis, Mette K; Bencke, Jesper; Andersen, Lars

    2008-01-01

    and knee, and ground reaction forces were recorded during a sidecutting maneuver. Neuromuscular activity in the prelanding phase was obtained 10 and 50 ms before foot strike on a force plate and at 10 and 50 ms after foot strike on a force plate. RESULTS: Neuromuscular training markedly increased before...

  12. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep

    2013-07-01

    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. [The hip joint in neuromuscular disorders].

    Science.gov (United States)

    Strobl, W M

    2009-07-01

    Physiologic motor and biomechanical parameters are prerequisites for normal hip development and hip function. Disorders of muscle activity and lack of weight bearing due to neuromuscular diseases may cause clinical symptoms such as an unstable hip or reduced range of motion. Disability and handicap because of pain, hip dislocation, osteoarthritis, gait disorders, or problems in seating and positioning are dependent on the severity of the disease, the time of occurrence, and the means of prevention and treatment. Preservation of pain-free and stable hip joints should be gained by balancing muscular forces and by preventing progressive dislocation. Most important is the exact indication of therapeutic options such as movement and standing therapy as well as drugs and surgery.

  14. Using block pulse functions for seismic vibration semi-active control of structures with MR dampers

    Science.gov (United States)

    Rahimi Gendeshmin, Saeed; Davarnia, Daniel

    2018-03-01

    This article applied the idea of block pulse functions in the semi-active control of structures. The BP functions give effective tools to approximate complex problems. The applied control algorithm has a major effect on the performance of the controlled system and the requirements of the control devices. In control problems, it is important to devise an accurate analytical technique with less computational cost. It is proved that the BP functions are fundamental tools in approximation problems which have been applied in disparate areas in last decades. This study focuses on the employment of BP functions in control algorithm concerning reduction the computational cost. Magneto-rheological (MR) dampers are one of the well-known semi-active tools that can be used to control the response of civil Structures during earthquake. For validation purposes, numerical simulations of a 5-story shear building frame with MR dampers are presented. The results of suggested method were compared with results obtained by controlling the frame by the optimal control method based on linear quadratic regulator theory. It can be seen from simulation results that the suggested method can be helpful in reducing seismic structural responses. Besides, this method has acceptable accuracy and is in agreement with optimal control method with less computational costs.

  15. Adenosine receptors and muscarinic receptors cooperate in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Santafe, M M; Priego, M; Obis, T; Garcia, N; Tomàs, M; Lanuza, M A; Tomàs, J

    2015-07-01

    Adenosine receptors (ARs) are present in the motor terminals at the mouse neuromuscular junction. ARs and the presynaptic muscarinic acetylcholine receptors (mAChRs) share the functional control of the neuromuscular junction. We analysed their mutual interaction in transmitter release modulation. In electrophysiological experiments with unaltered synaptic transmission (muscles paralysed by blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB), we found that: (i) a collaborative action between different AR subtypes reduced synaptic depression at a moderate activity level (40 Hz); (ii) at high activity levels (100 Hz), endogenous adenosine production in the synaptic cleft was sufficient to reduce depression through A1 -type receptors (A1 Rs) and A2 A-type receptors (A2 A Rs); (iii) when the non-metabolizable 2-chloroadenosine (CADO) agonist was used, both the quantal content and depression were reduced; (iv) the protective effect of CADO on depression was mediated by A1 Rs, whereas A2 A Rs seemed to modulate A1 Rs; (v) ARs and mAChRs absolutely depended upon each other for the modulation of evoked and spontaneous acetylcholine release in basal conditions and in experimental conditions with CADO stimulation; (vi) the purinergic and muscarinic mechanisms cooperated in the control of depression by sharing a common pathway although the purinergic control was more powerful than the muscarinic control; and (vii) the imbalance of the ARs created by using subtype-selective and non-selective inhibitory and stimulatory agents uncoupled protein kinase C from evoked transmitter release. In summary, ARs (A1 Rs, A2 A Rs) and mAChRs (M1 , M2 ) cooperated in the control of activity-dependent synaptic depression and may share a common protein kinase C pathway. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Neuromuscular Control and Coordination during Cycling

    Science.gov (United States)

    Li, Li

    2004-01-01

    The neuromuscular control aspect of cycling has been investigated through the effects of modifying posture and cadence. These studies show that changing posture has a more profound influence on neuromuscular coordination than does changing slope. Most of the changes with standing posture occur late in the downstroke: increased ankle and knee joint…

  17. Kinship and interaction in neuromuscular pharmacology

    NARCIS (Netherlands)

    Schiere, Sjouke

    2006-01-01

    The background of this thesis is presented in the introductory chapters and stafts with a brief history of neuromuscular relaxants. It is followed by a short description of the neuromuscular physiology and pharmacology in chapters 2 and 3, respectively. In chapter 4 the aim of the thesis is

  18. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning: Protocol for the Multicenter Interrupted Time Series INVERT Study.

    Science.gov (United States)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel; Skovgaard, Lene Theil; Østergaard, Doris; Engbaek, Jens; Gätke, Mona Ring

    2017-10-06

    Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an increased risk of respiratory complications. Use of an objective neuromuscular monitoring device may prevent residual block. Despite this, many anesthetists refrain from using the device. Efforts to increase the use of objective monitoring are time consuming and require the presence of expert personnel. A neuromuscular monitoring e-learning module might support consistent use of neuromuscular monitoring devices. The aim of the study is to assess the effect of a neuromuscular monitoring e-learning module on anesthesia staff's use of objective neuromuscular monitoring and the incidence of residual neuromuscular blockade in surgical patients at 6 Danish teaching hospitals. In this interrupted time series study, we are collecting data repeatedly, in consecutive 3-week periods, before and after the intervention, and we will analyze the effect using segmented regression analysis. Anesthesia departments in the Zealand Region of Denmark are included, and data from all patients receiving a muscle relaxant are collected from the anesthesia information management system MetaVision. We will assess the effect of the module on all levels of potential effect: staff's knowledge and skills, patient care practice, and patient outcomes. The primary outcome is use of neuromuscular monitoring in patients according to the type of muscle relaxant received. Secondary outcomes include last recorded train-of-four value, administration of reversal agents, and time to discharge from the postanesthesia care unit as well as a multiple-choice test to assess knowledge. The e-learning module was developed based on a needs assessment process, including focus group interviews, surveys, and expert opinions. The e

  19. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P ... at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation....

  20. Butein activates p53 in hepatocellular carcinoma cells via blocking MDM2-mediated ubiquitination

    Directory of Open Access Journals (Sweden)

    Zhou Y

    2018-04-01

    Full Text Available Yuanfeng Zhou,1,2 Kuifeng Wang,2 Ni Zhou,2 Tingting Huang,2 Jiansheng Zhu,2 Jicheng Li1 1Institute of Cell Biology, Zhejiang University, Hangzhou, People’s Republic of China; 2Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, People’s Republic of China Introduction: In this study, we aimed to investigate the effect of butein on p53 in hepatocellular carcinoma (HCC cells and the related molecular mechanisms by which p53 was activated. Methods: MTS assay and clonogenic survival assay were used to examine the antitumor activity of butein in vitro. Reporter gene assay was adopted to evaluate p53 transcriptional activity. Flow cytometry and western blotting were performed to study apoptosis induction and protein expression respectively. Xenograft model was applied to determine the in vivo efficacy and the expression of p53 in tumor tissue was detected by immunohistochemistry. Results: HCC cell proliferation and clonogenic survival were significantly inhibited after butein treatment. With the activation of cleaved-PARP and capsase-3, butein induced apoptosis in HCC cells in a dose-dependent manner. The transcriptional activity of p53 was substantially promoted by butein, and the expression of p53-targeted gene was increased accordingly. Mechanism studies demonstrated that the interaction between MDM2 and p53 was blocked by butein and MDM2-mediated p53 ubiquitination was substantially decreased. Short-hairpin RNA experiment results showed that the sensitivity of HCC cells to butein was substantially impaired after p53 was knocked down and butein-induced apoptosis was dramatically decreased. In vivo experiments validated substantial antitumor efficacy of butein against HepG2 xenograft growth, and the expression of p53 in butein-treated tumor tissue was significantly increased. Conclusion: Butein demonstrated potent antitumor activities in HCC by activating p53, and butein or its analogs had

  1. Noncanonical ATM Activation and Signaling in Response to Transcription-Blocking DNA Damage.

    Science.gov (United States)

    Marteijn, Jurgen A; Vermeulen, Wim; Tresini, Maria

    2017-01-01

    Environmental genotoxins and metabolic byproducts generate DNA lesions that can cause genomic instability and disrupt tissue homeostasis. To ensure genomic integrity, cells employ mechanisms that convert signals generated by stochastic DNA damage into organized responses, including activation of repair systems, cell cycle checkpoints, and apoptotic mechanisms. DNA damage response (DDR) signaling pathways coordinate these responses and determine cellular fates in part, by transducing signals that modulate RNA metabolism. One of the master DDR coordinators, the Ataxia Telangiectasia Mutated (ATM) kinase, has a fundamental role in mediating DNA damage-induced changes in mRNA synthesis. ATM acts by modulating a variety of RNA metabolic pathways including nascent RNA splicing, a process catalyzed by the spliceosome. Interestingly, ATM and the spliceosome influence each other's activity in a reciprocal manner by a pathway that initiates when transcribing RNA polymerase II (RNAPII) encounters DNA lesions that prohibit forward translocation. In response to stalling of RNAPII assembly of late-stage spliceosomes is disrupted resulting in increased splicing factor mobility. Displacement of spliceosomes from lesion-arrested RNA polymerases facilitates formation of R-loops between the nascent RNA and DNA adjacent to the transcription bubble. R-loops signal for noncanonical ATM activation which in quiescent cells occurs in absence of detectable dsDNA breaks. In turn, activated ATM signals to regulate spliceosome dynamics and AS genome wide.This chapter describes the use of fluorescence microscopy methods that can be used to evaluate noncanonical ATM activation by transcription-blocking DNA damage. First, we present an immunofluorescence-detection method that can be used to evaluate ATM activation by autophosphorylation, in fixed cells. Second, we present a protocol for Fluorescence Recovery After Photobleaching (FRAP) of GFP-tagged splicing factors, a highly sensitive and

  2. Neuromuscular interactions around the knee in children, adults and elderly

    Science.gov (United States)

    Kellis, Eleftherios; Mademli, Lida; Patikas, Dimitrios; Kofotolis, Nikolaos

    2014-01-01

    Although injury and neuromuscular activation patterns may be common for all individuals, there are certain factors which differentiate neuromuscular activity responses between children, adults and elderly. The purpose of this study is to review recent evidence on age differences in neural activation and muscle balances around the knee when performing single joint movements. Particularly, current evidence indicates that there are some interesting similarities in the neuromuscular mechanisms by which children or the elderly differ compared with adults. Both children and elderly display a lower absolute muscle strength capacity than adults which cannot fully be explained by differences in muscle mass. Quadriceps activation failure is a common symptom of all knee injuries, irrespective of age but it is likely that its effect is more evident in children or adults. While one might expect that antagonist co-activation would differ between age categories, it appears that this is not the case. Although hamstring: quadriceps ratio levels are altered after knee injury, it is not clear whether this is an age specific response. Finally, evidence suggests that both children and the elderly display less stiffness of the quadriceps muscle-tendon unit than adults which affects their knee joint function. PMID:25232523

  3. Metformin blocks progression of obesity-activated thyroid cancer in a mouse model.

    Science.gov (United States)

    Park, Jeongwon; Kim, Won Gu; Zhao, Li; Enomoto, Keisuke; Willingham, Mark; Cheng, Sheue-Yann

    2016-06-07

    Compelling epidemiologic evidence indicates that obesity is associated with a high risk of human malignancies, including thyroid cancer. We previously demonstrated that a high fat diet (HFD) effectively induces the obese phenotype in a mouse model of aggressive follicular thyroid cancer (ThrbPV/PVPten+/-mice). We showed that HFD promotes cancer progression through aberrant activation of the leptin-JAK2-STAT3 signaling pathway. HFD-promoted thyroid cancer progression allowed us to test other molecular targets for therapeutic opportunity for obesity-induced thyroid cancer. Metformin is a widely used drug to treat patients with type II diabetes. It has been shown to reduce incidences of neoplastic diseases and cancer mortality in type II diabetes patients. The present study aimed to test whether metformin could be a therapeutic for obesity-activated thyroid cancer. ThrbPV/PVPten+/-mice were fed HFD together with metformin or vehicle-only, as controls, for 20 weeks. While HFD-ThrbPV/PVPten+/-mice had shorter survival than LFD-treated mice, metformin had no effects on the survival of HFD-ThrbPV/PVPten+/-mice. Remarkably, metformin markedly decreased occurrence of capsular invasion and completely blocked vascular invasion and anaplasia in HFD-ThrbPV/PVPten+/-mice without affecting thyroid tumor growth. The impeded cancer progression was due to the inhibitory effect of metformin on STAT3-ERK-vimentin and fibronectin-integrin signaling to decrease tumor cell invasion and de-differentiation. The present studies provide additional molecular evidence to support the link between obesity and thyroid cancer risk. Importantly, our findings suggest that metformin could be used as an adjuvant in combination with antiproliferative modalities to improve the outcome of patients with obesity-activated thyroid cancer.

  4. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  5. QSAR-Driven Design and Discovery of Novel Compounds With Antiplasmodial and Transmission Blocking Activities.

    Science.gov (United States)

    Lima, Marilia N N; Melo-Filho, Cleber C; Cassiano, Gustavo C; Neves, Bruno J; Alves, Vinicius M; Braga, Rodolpho C; Cravo, Pedro V L; Muratov, Eugene N; Calit, Juliana; Bargieri, Daniel Y; Costa, Fabio T M; Andrade, Carolina H

    2018-01-01

    Malaria is a life-threatening infectious disease caused by parasites of the genus Plasmodium , affecting more than 200 million people worldwide every year and leading to about a half million deaths. Malaria parasites of humans have evolved resistance to all current antimalarial drugs, urging for the discovery of new effective compounds. Given that the inhibition of deoxyuridine triphosphatase of Plasmodium falciparum ( Pf dUTPase) induces wrong insertions in plasmodial DNA and consequently leading the parasite to death, this enzyme is considered an attractive antimalarial drug target. Using a combi-QSAR (quantitative structure-activity relationship) approach followed by virtual screening and in vitro experimental evaluation, we report herein the discovery of novel chemical scaffolds with in vitro potency against asexual blood stages of both P. falciparum multidrug-resistant and sensitive strains and against sporogonic development of P. berghei . We developed 2D- and 3D-QSAR models using a series of nucleosides reported in the literature as Pf dUTPase inhibitors. The best models were combined in a consensus approach and used for virtual screening of the ChemBridge database, leading to the identification of five new virtual Pf dUTPase inhibitors. Further in vitro testing on P. falciparum multidrug-resistant (W2) and sensitive (3D7) parasites showed that compounds LabMol-144 and LabMol-146 demonstrated fair activity against both strains and presented good selectivity versus mammalian cells. In addition, LabMol-144 showed good in vitro inhibition of P. berghei ookinete formation, demonstrating that hit-to-lead optimization based on this compound may also lead to new antimalarials with transmission blocking activity.

  6. Neuroleptics as therapeutic compounds stabilizing neuromuscular transmission in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Patten, Shunmoogum A; Aggad, Dina; Martinez, Jose; Tremblay, Elsa; Petrillo, Janet; Armstrong, Gary Ab; La Fontaine, Alexandre; Maios, Claudia; Liao, Meijiang; Ciura, Sorana; Wen, Xiao-Yan; Rafuse, Victor; Ichida, Justin; Zinman, Lorne; Julien, Jean-Pierre; Kabashi, Edor; Robitaille, Richard; Korngut, Lawrence; Parker, J Alexander; Drapeau, Pierre

    2017-11-16

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal disorder with no effective treatment. We used simple genetic models of ALS to screen phenotypically for potential therapeutic compounds. We screened libraries of compounds in C. elegans, validated hits in zebrafish, and tested the most potent molecule in mice and in a small clinical trial. We identified a class of neuroleptics that restored motility in C. elegans and in zebrafish, and the most potent was pimozide, which blocked T-type Ca2+ channels in these simple models and stabilized neuromuscular transmission in zebrafish and enhanced it in mice. Finally, a short randomized controlled trial of sporadic ALS subjects demonstrated stabilization of motility and evidence of target engagement at the neuromuscular junction. Simple genetic models are, thus, useful in identifying promising compounds for the treatment of ALS, such as neuroleptics, which may stabilize neuromuscular transmission and prolong survival in this disease.

  7. Effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Shim, Jae-Kwang; Choi, Ho-Suk; Shin, Jun-Ho

    2015-12-01

    [Purpose] This study examined the effects of neuromuscular training on knee joint stability after anterior cruciate ligament reconstruction. [Subjects and Methods] The subjects were 16 adults who underwent arthroscopic anterior cruciate reconstruction and neuromuscular training. The Lysholm scale was used to assess functional disorders on the affected knee joint. A KT-2000 arthrometer was used to measure anterior displacement of the tibia against the femur. Surface electromyography was used to detect the muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus before and after neuromuscular training. [Results] There was significant relaxation in tibial anterior displacement of the affected and sound sides in the supine position before neuromuscular training. Furthermore, the difference in the tibial anterior displacement of the affected knee joints in the standing position was reduced after neuromuscular training. Moreover, the variation of the muscle activation evoked higher muscle activation of the vastus medialis oblique, vastus lateralis, biceps femoris, and semitendinosus. [Conclusion] Neuromuscular training may improve functional joint stability in patients with orthopedic musculoskeletal injuries in the postoperative period.

  8. Profile of sugammadex for reversal of neuromuscular blockade in the elderly: current perspectives

    Directory of Open Access Journals (Sweden)

    Carron M

    2017-12-01

    Full Text Available Michele Carron, Francesco Bertoncello, Giovanna Ieppariello Department of Medicine, Anesthesiology, and Intensive Care, University of Padova, Padua, Italy Abstract: The number of elderly patients is increasing worldwide. This will have a significant impact on the practice of anesthesia in future decades. Anesthesiologists must provide care for an increasing number of elderly patients, who have an elevated risk of perioperative morbidity and mortality. Complications related to postoperative residual neuromuscular blockade, such as muscle weakness, airway obstruction, hypoxemia, atelectasis, pneumonia, and acute respiratory failure, are more frequent in older than in younger patients. Therefore, neuromuscular blockade in the elderly should be carefully monitored and completely reversed before awakening patients at the end of anesthesia. Acetylcholinesterase inhibitors are traditionally used for reversal of neuromuscular blockade. Although the risk of residual neuromuscular blockade is reduced by reversal with neostigmine, it continues to complicate the postoperative course. Sugammadex represents an innovative approach to reversal of neuromuscular blockade induced by aminosteroid neuromuscular-blocking agents, particularly rocuronium, with useful applications in clinical practice. However, aging is associated with certain changes in the pharmacokinetics of sugammadex, and to date there has been no thorough evaluation of the use of sugammadex in elderly patients. The aim of this review was to perform an analysis of the use of sugammadex in older adults based on the current literature. Major issues surrounding the physiologic and pharmacologic effects of aging in elderly patients and how these may impact the routine use of sugammadex in elderly patients are discussed. Keywords: sugammadex, aging, elderly, neuromuscular blockade, rocuronium, anesthesia, safety

  9. Bilateral neuromuscular and force differences during a plyometric task.

    Science.gov (United States)

    Ball, Nick B; Scurr, Joanna C

    2009-08-01

    The purpose of this article is to compare the bilateral neuromuscular and force contribution during a plyometric bounce drop jump task and to assess the affects of nonsimultaneous foot placement. Sixteen male participants performed bounce drop jumps from a height of 0.4 m. Mean peak electromyography activity of the soleus, medial, and lateral gastrocnemius of both legs was recorded from each phase of the drop jump and normalized to a reference dynamic muscle action. Resultant ground reaction force, ground contact time, and duration of the drop jumps were recorded from each leg. Multivariate analysis of variance was used to compare bilateral electromyographic activity, resultant peak ground reaction force, and contact duration. Pearson's correlations (r) ascertained relationships between normalized electromyographic activity and contact time. Significant differences were shown between left and right triceps surae normalized electromyography during precontact and contact40ms (p 0.01). Significant differences were found between normalized soleus electromyography and both gastrocnemii for both legs during precontact (p 0.01). Weak relationships were found between normalized electromyographic activity and nonsimultaneous foot contact (r < 0.2). This study showed differences between left and right triceps surae in neuromuscular strategies engaged in the early stages of a drop jump task. Differences in contact time initiation were present; however, they are not significant enough to cause neuromuscular differences in the plantar flexor muscles.

  10. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation.

    Directory of Open Access Journals (Sweden)

    Nishi R Sharma

    2017-10-01

    Full Text Available TIA-1 positive stress granules (SG represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi's sarcoma-associated herpesvirus (KSHV overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT and protein kinase R (PKR through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection.

  11. Síndrome de Tako-Tsubo em decorrência de bloqueio neuromuscular residual: relato de caso Síndrome de Tako-Tsubo como consecuencia de bloqueo neuromuscular residual: relato de caso Tako-Tsubo syndrome secondary to residual neuromuscular blockade: case report

    Directory of Open Access Journals (Sweden)

    Marcos Guilherme Cunha Cruvinel

    2008-12-01

    neuromuscular residual. RELATO DEL CASO: Paciente del sexo femenino, 61 años, estado físico ASA I, sometida a la anestesia general asociada al bloqueo paravertebral cervical para la reparación artroscópica de lesión de manguito de los rotadores. Después de la extubación, quedó demostrado el bloqueo neuromuscular residual a través del examen clínico. En la sala de recuperación postanestésica, evolucionó con somnolencia, taquicardia, hipertensión arterial y acidosis respiratoria grave. Después de la reintubación evolucionó con parada cardíaca en actividad eléctrica sin pulso, revertida con adrenalina y masaje cardíaco externo. En el postoperatorio presentó una elevación de segmento ST, aumento de troponina y acinesia de segmento medio-apical del ventrículo izquierdo, con fracción de eyección estimada en un 30%. La cineangiocoronariografía mostró coronarias exentas de ateromatosis significativa y un grave comprometimiento de la función sistólica con acinesia inferior y ántero-septo-apical, con hipercontratilidad compensatoria de sus porciones basales. Con el tratamiento iniciado, hubo una recuperación funcional completa. CONCLUSIONES: El bloqueo neuromuscular residual asociado a la parálisis diafragmática y la posible atelectasia pulmonar, que conlleva a la insuficiencia respiratoria, hipercapnia y descarga adrenérgica, fueron los factores desencadenantes del síndrome de Tako-Tsubo con su grave repercusión clínica.BACKGROUND AND OBJECTIVES: Tako-Tsubo syndrome is a rare postoperative complication with a 5% mortality rate. The objective of this report was to present residual neuromuscular blockade as a trigger for this syndrome, discuss this disorder, and call attention to the risks of residual neuromuscular blockade. CASE REPORT: A 61-year old female, physical status ASA I, who underwent general anesthesia associated with paravertebral cervical block for arthroscopic repair of a rotator cuff lesion. Physical exam after extubation detected

  12. Reuse of sludge from galvanotechnik industrial activity in the manufacture of concrete blocks for paving (PAVERS)

    International Nuclear Information System (INIS)

    Franco, J.M; Almeida, P.H.S.; Tavares, C.R.G.

    2014-01-01

    This study was to evaluate the interface replacing the cement by galvanic sludge (5-25%) in the production of concrete block paving analyzing the mechanical and microstructural effects of substitution. The results of the blocks produced with 5% of slude had values of compressive strength greater than 35 MPa and lower compared to the reference blocks with 28 days, the interface in cement paste by scanning electron microscopy (SEM) and x-ray diffraction (XRD) showed the presence of empty capillary arrays of crystalline ettringite (C6AS3H32) and calcium silicate (Ca2SiO4) responsible for the compressive strength and decrease the intensity of the peaks of quartz with respect to the reference blocks, revealing the promising applicability and feasibility of using waste electroplating in the construction industry. (author)

  13. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  14. Block That Pain!

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Block That Pain! Past Issues / Fall 2007 Table of ... contrast, most pain relievers used for surgical procedures block activity in all types of neurons. This can ...

  15. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs.

    Science.gov (United States)

    Bühler, Mira; Vollstädt-Klein, Sabine; Klemen, Jane; Smolka, Michael N

    2008-07-22

    Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. To clarify how experimental functional magnetic resonance imaging (fMRI) design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA) 19, 37, 48), parietal areas (BA 7, 40) and areas in the frontal lobe (BA 6, 44). Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli.Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.

  16. Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs

    Directory of Open Access Journals (Sweden)

    Klemen Jane

    2008-07-01

    Full Text Available Abstract Background Existing brain imaging studies, investigating sexual arousal via the presentation of erotic pictures or film excerpts, have mainly used blocked designs with long stimulus presentation times. Methods To clarify how experimental functional magnetic resonance imaging (fMRI design affects stimulus-induced brain activity, we compared brief event-related presentation of erotic vs. neutral stimuli with blocked presentation in 10 male volunteers. Results Brain activation differed depending on design type in only 10% of the voxels showing task related brain activity. Differences between blocked and event-related stimulus presentation were found in occipitotemporal and temporal regions (Brodmann Area (BA 19, 37, 48, parietal areas (BA 7, 40 and areas in the frontal lobe (BA 6, 44. Conclusion Our results suggest that event-related designs might be a potential alternative when the core interest is the detection of networks associated with immediate processing of erotic stimuli. Additionally, blocked, compared to event-related, stimulus presentation allows the emergence and detection of non-specific secondary processes, such as sustained attention, motor imagery and inhibition of sexual arousal.

  17. Neuromuscular control of scapula muscles during a voluntary task in subjects with Subacromial Impingement Syndrome

    DEFF Research Database (Denmark)

    Larsen, C M; Søgaard, Karen; Chreiteh, S S

    2013-01-01

    and time to activity onset. In spite of a tendency to higher activity among SIS 0.10-0.30 between-group differences were not significant neither in ratio of muscle activation 0.80-0.98 nor time to activity onset 0.53-0.98. The hypothesized between-group differences in neuromuscular activity of Trapezius...

  18. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex.

    Science.gov (United States)

    Kyrchanova, Olga; Mogila, Vladic; Wolle, Daniel; Deshpande, Girish; Parshikov, Alexander; Cléard, Fabienne; Karch, Francois; Schedl, Paul; Georgiev, Pavel

    2016-07-01

    Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors.

  19. Neuromuscular diseases: Diagnosis and management.

    Science.gov (United States)

    Mary, P; Servais, L; Vialle, R

    2018-02-01

    Neuromuscular diseases (NMDs) affect the peripheral nervous system, which includes the motor neurons and sensory neurons; the muscle itself; or the neuromuscular junction. Thus, the term NMDs encompasses a vast array of different syndromes. Some of these syndromes are of direct relevance to paediatric orthopaedic surgeons, either because the presenting manifestation is a functional sign (e.g., toe-walking) or deformity (e.g., pes cavus or scoliosis) suggesting a need for orthopaedic attention or because orthopaedic abnormalities requiring treatment develop during the course of a known NMD. The main NMDs relevant to the orthopaedic surgeon are infantile spinal muscular atrophy (a motor neuron disease), peripheral neuropathies (chiefly, Charcot-Marie-Tooth disease), congenital muscular dystrophies, progressive muscular dystrophies, and Steinert myotonic dystrophy (or myotonic dystrophy type 1). Muscle weakness is a symptom shared by all these conditions. The paediatric orthopaedic surgeon must be familiar, not only with the musculoskeletal system, but also with many other domains (particularly respiratory and cardiac function and nutrition) that may interfere with the treatment and require preoperative management. Good knowledge of the natural history of each NMD is essential to ensure optimal timing of the therapeutic interventions, which must be performed under the best possible conditions in these usually frail patients. Timing is particularly crucial for the treatment of spinal deformities due to paraspinal muscle hypotonia during growth: depending on the disease and natural history, the treatment may involve non-operative methods or growing rods, followed by spinal fusion. A multidisciplinary approach is always required. Finally, the survival gains achieved in recent years increasingly require attention to preparing for adult life, to orthopaedic problems requiring treatment before the patient leaves the paediatric environment, and to the transition towards the

  20. Staurosporine potentiates platelet activating factor stimulated phospholipase C activity in rabbit platelets but does not block desensitization by platelet activating factor

    International Nuclear Information System (INIS)

    Morrison, W.J.; Dhar, A.; Shukla, S.D.

    1989-01-01

    The possible involvement of protein kinase C activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets. PAF stimulated incorporation of 32 P into proteins and caused [ 3 H]InsP 3 levels to increase about 260% of control. These responses were compared after platelets were pretreated with either PAF, phorbol 12-myristate 13-acetate (PMA) or staurosporine and also after pretreatments with staurosporine followed by PAF or PMA. Pretreating platelets with staurosporine potentiated PAF-stimulated [ 3 H]InsP 3 levels by 54% and blocked protein phosphorylation. Pretreatments with PAF and PMA caused PAF-stimulated [ 3 H]InsP 3 levels to decrease to 115 and 136%, respectively. Staurosporine pretreatment blocked the decrease caused by the PMA pretreatment but not that by PAF. This study demonstrates that PAF-stimulated PLC activity is negatively affected by protein kinase C (PKC) activation and that inhibition of PKC activity did not prevent desensitization of PLC by PAF

  1. Characterization of Plasmodium vivax transmission-blocking activity in low to moderate malaria transmission settings of the Colombian Pacific coast.

    Science.gov (United States)

    Arévalo-Herrera, Myriam; Solarte, Yezid; Rocha, Leonardo; Alvarez, Diego; Beier, John C; Herrera, Sócrates

    2011-02-01

    Malaria infection induces antibodies capable of suppressing the infectivity of gametocytes and gametes, however, little is known about the duration of the antibody response, the parasite specificity, and the role of complement. We report the analyses of the transmission-blocking (TB) activity of sera collected from 105 Plasmodium vivax-infected and 44 non-infected individuals from a malaria endemic region of Colombia, using a membrane feeding assay in Anopheles albimanus mosquitoes. In infected donors we found that TB activity was antibody dose dependent (35%), lasted for 2-4 months after infection, and in 70% of the cases different P. vivax wild isolates displayed differential susceptibility to blocking antibodies. Additionally, in a number of assays TB was complement-dependent. Twenty-seven percent of non-infected individuals presented TB activity that correlated with antibody titers. Studies here provide preliminary data on factors of great importance for further work on the development of TB vaccines.

  2. Neuromuscular complications of immune checkpoint inhibitor therapy.

    Science.gov (United States)

    Kolb, Noah A; Trevino, Christopher R; Waheed, Waqar; Sobhani, Fatemeh; Landry, Kara K; Thomas, Alissa A; Hehir, Mike

    2018-01-17

    Immune checkpoint inhibitor (ICPI) therapy unleashes the body's natural immune system to fight cancer. ICPIs improve overall cancer survival, however, the unbridling of the immune system may induce a variety of immune-related adverse events. Neuromuscular immune complications are rare but they can be severe. Myasthenia gravis and inflammatory neuropathy are the most common neuromuscular adverse events but a variety of others including inflammatory myopathy are reported. The pathophysiologic mechanism of these autoimmune disorders may differ from that of non-ICPI-related immune diseases. Accordingly, while the optimal treatment for ICPI-related neuromuscular disorders generally follows a traditional paradigm, there are important novel considerations in selecting appropriate immunosuppressive therapy. This review presents 2 new cases, a summary of neuromuscular ICPI complications, and an approach to the diagnosis and treatment of these disorders. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  3. Deep Neuromuscular Blockade Improves Laparoscopic Surgical Conditions

    DEFF Research Database (Denmark)

    Rosenberg, Jacob; Herring, W Joseph; Blobner, Manfred

    2017-01-01

    INTRODUCTION: Sustained deep neuromuscular blockade (NMB) during laparoscopic surgery may facilitate optimal surgical conditions. This exploratory study assessed whether deep NMB improves surgical conditions and, in doing so, allows use of lower insufflation pressures during laparoscopic cholecys...

  4. Neuromuscular Fatigue During 200 M Breaststroke

    Directory of Open Access Journals (Sweden)

    Ana Conceição

    2014-03-01

    Full Text Available The aims of this study were: i to analyze activation patterns of four upper limb muscles (duration of the active and non-active phase in each lap of 200m breaststroke, ii quantify neuromuscular fatigue, with kinematics and physiologic assessment. Surface electromyogram was collected for the biceps brachii, deltoid anterior, pectoralis major and triceps brachii of nine male swimmers performing a maximal 200m breaststroke trial. Swimming speed, SL, SR, SI decreased from the 1st to the 3rd lap. SR increased on the 4th lap (35.91 ± 2.99 stroke·min-1. Peak blood lactate was 13.02 ± 1.72 mmol·l-1 three minutes after the maximal trial. The EMG average rectified value (ARV increased at the end of the race for all selected muscles, but the deltoid anterior and pectoralis major in the 1st lap and for biceps brachii, deltoid anterior and triceps brachii in the 4th lap. The mean frequency of the power spectral density (MNF decreased at the 4th lap for all muscles. These findings suggest the occurrence of fatigue at the beginning of the 2nd lap in the 200m breaststroke trial, characterized by changes in kinematic parameters and selective changes in upper limb muscle action. There was a trend towards a non-linear fatigue state.

  5. Neuromuscular control of prey capture in frogs.

    OpenAIRE

    Nishikawa, K C

    1999-01-01

    While retaining a feeding apparatus that is surprisingly conservative morphologically, frogs as a group exhibit great variability in the biomechanics of tongue protraction during prey capture, which in turn is related to differences in neuromuscular control. In this paper, I address the following three questions. (1) How do frog tongues differ biomechanically? (2) What anatomical and physiological differences are responsible? (3) How is biomechanics related to mechanisms of neuromuscular cont...

  6. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  7. One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis.

    Science.gov (United States)

    Chen, Yu-Fon; Shiau, Ai-Li; Chang, Sue-Joan; Fan, Nai-Shin; Wang, Chung-Teng; Wu, Chao-Liang; Jan, Jeng-Shiung

    2017-06-01

    Herein, we report the oncolytic activity of cationic, one-dimensional (1D) fibril assemblies formed from coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides for cancer therapy. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via the mitochondria-lytic effect. The concept is analogous to that of 1D drug carriers that exhibit enhanced cell penetration. In comparison to free PLL chains, PLL-b-PLT fibril assemblies exhibit selective cytotoxicity toward cancer cells, low hemolysis activity, enhanced membranolytic activity, and a different apoptosis pathway, which may be due to differences in the peptide-membrane interactions. Antitumor studies using a metastatic LL2 lung carcinoma model indicate that the fibril assemblies significantly inhibited tumor growth, improved survival in tumor-bearing mice and suppressed lung metastasis without obvious body weight loss. An additive efficacy was also observed for treatment with both PLL-b-PLT and cisplatin. These results support the feasibility of using 1D fibril assemblies as potential apoptotic anticancer therapeutics. We report that cationic, one-dimensional (1D) fibril assemblies formed by coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides exhibited potent anticancer activity by enhancing membranolysis. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via mitochondria-lytic effect. Moreover, the fibril assemblies exhibited low hemolytic activity and selective cytotoxicity toward cancer cell, which is advantageous as compared to PLL and most antimicrobial/anticancerous peptides. This study provides a new concept of using cationic, 1D fibril assemblies for cancer therapy

  8. Running Economy: Neuromuscular and Joint Stiffness Contributions in Trained Runners.

    Science.gov (United States)

    Tam, Nicholas; Tucker, Ross; Santos-Concejero, Jordan; Prins, Danielle; Lamberts, Robert P

    2018-05-29

    It is debated whether running biomechanics make good predictors of running economy, with little known information about the neuromuscular and joint stiffness contributions to economical running gait. The aim of this study was to understand the relationship between certain neuromuscular and spatiotemporal biomechanical factors associated with running economy. Thirty trained runners performed a 6-minute constant-speed running set at 3.3 m∙s -1 , where oxygen consumption was assessed. Overground running trials were also performed at 3.3 m∙s -1 to assess kinematics, kinetics and muscle activity. Spatiotemporal gait variables, joint stiffness, pre-activation and stance phase muscle activity (gluteus medius; rectus femoris (RF); biceps femoris(BF); peroneus longus (PL); tibialis anterior (TA); gastrocnemius lateralis and medius (LG and MG) were variables of specific interest and thus determined. Additionally, pre-activation and ground contact of agonist:antagonist co-activation were calculated. More economical runners presented with short ground contact times (r=0.639, p<0.001) and greater strides frequencies (r=-0.630, p<0.001). Lower ankle and greater knee stiffness were associated with lower oxygen consumption (r=0.527, p=0.007 & r=0.384, p=0.043, respectively). Only LG:TA co-activation during stance were associated with lower oxygen cost of transport (r=0.672, p<0.0001). Greater muscle pre-activation and bi-articular muscle activity during stance were associated with more economical runners. Consequently, trained runners who exhibit greater neuromuscular activation prior to and during ground contact, in turn optimise spatiotemporal variables and joint stiffness, will be the most economical runners.

  9. Increased sarcolemmal Na+/H+ exchange activity in hypertrophied myocytes from dogs with chronic atrioventricular block

    NARCIS (Netherlands)

    van Borren, Marcel M. G. J.; Vos, Marc A.; Houtman, Marien J. C.; Antoons, Gudrun; Ravesloot, Jan H.

    2013-01-01

    Dogs with compensated biventricular hypertrophy due to chronic atrioventricular block (cAVB), are more susceptible to develop drug-induced Torsade-de-Pointes arrhythmias and sudden cardiac death. It has been suggested that the increased Na+ influx in hypertrophied cAVB ventricular myocytes

  10. Recent advances in antisense oligonucleotide therapy in genetic neuromuscular diseases

    Directory of Open Access Journals (Sweden)

    Ashok Verma

    2018-01-01

    Full Text Available Genetic neuromuscular diseases are caused by defective expression of nuclear or mitochondrial genes. Mutant genes may reduce expression of wild-type proteins, and strategies to activate expression of the wild-type proteins might provide therapeutic benefits. Also, a toxic mutant protein may cause cell death, and strategies that reduce mutant gene expression may provide therapeutic benefit. Synthetic antisense oligonucleotide (ASO can recognize cellular RNA and control gene expression. In recent years, advances in ASO chemistry, creation of designer ASO molecules to enhance their safety and target delivery, and scientific controlled clinical trials to ascertain their therapeutic safety and efficacy have led to an era of plausible application of ASO technology to treat currently incurable neuromuscular diseases. Over the past 1 year, for the first time, the United States Food and Drug Administration has approved two ASO therapies in genetic neuromuscular diseases. This overview summarizes the recent advances in ASO technology, evolution and use of synthetic ASOs as a therapeutic platform, and the mechanism of ASO action by exon-skipping in Duchenne muscular dystrophy and exon-inclusion in spinal muscular atrophy, with comments on their advantages and limitations.

  11. Silent synapses in neuromuscular junction development.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Lanuza, Maria A; García, Neus; Besalduch, Nuria; Tomàs, Marta

    2011-01-01

    In the last few years, evidence has been found to suggest that some synaptic contacts become silent but can be functionally recruited before they completely retract during postnatal synapse elimination in muscle. The physiological mechanism of developmental synapse elimination may be better understood by studying this synapse recruitment. This Mini-Review collects previously published data and new results to propose a molecular mechanism for axonal disconnection. The mechanism is based on protein kinase C (PKC)-dependent inhibition of acetylcholine (ACh) release. PKC activity may be stimulated by a methoctramine-sensitive M2-type muscarinic receptor and by calcium inflow though P/Q- and L-type voltage-dependent calcium channels. In addition, tropomyosin-related tyrosine kinase B (trkB) receptor-mediated brain-derived neurotrophic factor (BDNF) activity may oppose the PKC-mediated ACh release depression. Thus, a balance between trkB and muscarinic pathways may contribute to the final functional suppression of some neuromuscular synapses during development. © 2010 Wiley-Liss, Inc.

  12. Negative Pressure Pulmonary Edema after Reversing Rocuronium-Induced Neuromuscular Blockade by Sugammadex

    Directory of Open Access Journals (Sweden)

    Manzo Suzuki

    2014-01-01

    Full Text Available Negative pressure pulmonary edema (NPPE is a rare complication that accompanies general anesthesia, especially after extubation. We experienced a case of negative pressure pulmonary edema after tracheal extubation following reversal of rocuronium-induced neuromuscular blockade by sugammadex. In this case, the contribution of residual muscular block on the upper airway muscle as well as large inspiratory forces created by the respiratory muscle which has a low response to muscle relaxants, is suspected as the cause.

  13. New strict left bundle branch block criteria reflect left ventricular activation differences

    DEFF Research Database (Denmark)

    Emerek, Kasper Janus Grønn; Risum, Niels; Hjortshøj, Søren Pihlkjær

    2015-01-01

    AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left ven....... CONCLUSION: Interventricular electrical delay predicts left ventricular remodeling after CRT and new, strict ECG criteria of LBBB are superior in predicting remodeling.......AIMS: Pacing lead electrical delays and strict left bundle branch block (LBBB) criteria were assessed against cardiac resynchronization therapy (CRT) outcome. METHODS: Forty-nine patients with LBBB and QRS duration >130 milliseconds underwent CRT-implantation. Sensed right ventricular to left...... ventricular electrical delay (RV-LV-IED) was measured. Response to CRT was defined as ≥15% decrease in left ventricular end-systolic volume. RESULTS: Eighteen of 20 (90%) patients with non-ischemic dilated cardiomyopathy (DCM) and 18 of 29 (62%) with ischemic heart disease (IHD) responded to CRT, p

  14. Dynamic transition on the seizure-like neuronal activity by astrocytic calcium channel block

    International Nuclear Information System (INIS)

    Li, Jiajia; Wang, Rong; Du, Mengmeng; Tang, Jun; Wu, Ying

    2016-01-01

    The involvement of astrocytes in neuronal firing dynamics is becoming increasingly evident. In this study, we used a classical hippocampal tripartite synapse model consisting of soma-dendrite coupled neuron models and a Hodgkin–Huxley-like astrocyte model, to investigate the seizure-like firing in the somatic neuron induced by the over-expressed neuronal N-methyl-d-aspartate (NMDA) receptors. Based on this model, we further investigated the effect of the astrocytic channel block on the neuronal firing through a bifurcation analysis. Results show that blocking inositol-1,4,5-triphosphate(IP3)-dependent calcium channel in astrocytes efficiently suppresses the astrocytic calcium oscillation, which in turn suppresses the seizure-like firing in the neuron.

  15. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process.

    Science.gov (United States)

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-12-06

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory.

  16. Deficits in Endogenous Adenosine Formation by Ecto-5′-Nucleotidase/CD73 Impair Neuromuscular Transmission and Immune Competence in Experimental Autoimmune Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Laura Oliveira

    2015-01-01

    Full Text Available AMP dephosphorylation via ecto-5′-nucleotidase/CD73 is the rate limiting step to generate extracellular adenosine (ADO from released adenine nucleotides. ADO, via A2A receptors (A2ARs, is a potent modulator of neuromuscular and immunological responses. The pivotal role of ecto-5′-nucleotidase/CD73, in controlling extracellular ADO formation, prompted us to investigate its role in a rat model of experimental autoimmune myasthenia gravis (EAMG. Results show that CD4+CD25+FoxP3+ regulatory T cells express lower amounts of ecto-5′-nucleotidase/CD73 as compared to controls. Reduction of endogenous ADO formation might explain why proliferation of CD4+ T cells failed upon blocking A2A receptors activation with ZM241385 or adenosine deaminase in EAMG animals. Deficits in ADO also contribute to neuromuscular transmission failure in EAMG rats. Rehabilitation of A2AR-mediated immune suppression and facilitation of transmitter release were observed by incubating the cells with the nucleoside precursor, AMP. These findings, together with the characteristic increase in serum adenosine deaminase activity of MG patients, strengthen our hypothesis that the adenosinergic pathway may be dysfunctional in EAMG. Given that endogenous ADO formation is balanced by ecto-5′-nucleotidase/CD73 activity and that A2ARs exert a dual role to restore use-dependent neurocompetence and immune suppression in myasthenics, we hypothesize that stimulation of the two mechanisms may have therapeutic potential in MG.

  17. Neuromuscular adaptations predict functional disability independently of clinical pain and psychological factors in patients with chronic non-specific low back pain.

    Science.gov (United States)

    Dubois, Jean-Daniel; Abboud, Jacques; St-Pierre, Charles; Piché, Mathieu; Descarreaux, Martin

    2014-08-01

    Patients with chronic low back pain exhibit characteristics such as clinical pain, psychological symptoms and neuromuscular adaptations. The purpose of this study was to determine the independent contribution of clinical pain, psychological factors and neuromuscular adaptations to disability in patients with chronic low back pain. Clinical pain intensity, pain catastrophizing, fear-avoidance beliefs, anxiety, neuromuscular adaptations to chronic pain and neuromuscular responses to experimental pain were assessed in 52 patients with chronic low back pain. Lumbar muscle electromyographic activity was assessed during a flexion-extension task (flexion relaxation phenomenon) to assess both chronic neuromuscular adaptations and neuromuscular responses to experimental pain during the task. Multiple regressions showed that independent predictors of disability included neuromuscular adaptations to chronic pain (β=0.25, p=0.006, sr(2)=0.06), neuromuscular responses to experimental pain (β=-0.24, p=0.011, sr(2)=0.05), clinical pain intensity (β=0.28, p=0.002, sr(2)=0.08) and psychological factors (β=0.58, ppain intensity and psychological factors, and contribute to inter-individual differences in patients' disability. This suggests that disability, in chronic low back pain patients, is determined by a combination of factors, including clinical pain, psychological factors and neuromuscular adaptations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    Science.gov (United States)

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  19. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth.

    Directory of Open Access Journals (Sweden)

    Deidre L Brink

    Full Text Available Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ, we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.

  20. Intrauterine neuromuscular blockade in fetus.

    Science.gov (United States)

    Fan, S Z; Huang, F Y; Lin, S Y; Wang, Y P; Hsieh, F J

    1990-03-01

    Antenatal intrauterine fetal therapy has now become the target of numerous invasive diagnostic and therapeutic maneuvers. Fetal motion during intrauterine fetal therapy not only makes these procedures technically more difficult but also increases the likelihood of trauma to the umbilical vessels and the fetus. Combination of high doses of sedatives, tranquilizers, and narcotics rarely results in adequate suppression of fetal movement. Such medication puts the mother at risk of respiratory depression, regurgitation and aspiration. The use of pancuronium or atracurium to temporarily arrest fetal movement in ten fetus is reported. After an initial ultrasound assessment of fetal lie, placental location, and umbilical cord insertion site, the fetal weight was calculated by the ultrasound parameters of biparietal diameter and abdominal circumference. Under ultrasound guidance, we injected pancuronium 0.15 mg/kg or atracurium 1.0 mg/kg using a 23-gauge spinal needle into the fetal gluteal muscle. Short-term paralysis of the fetus was induced in all cases. Fetal movement stopped by sonographic observation within 5.8 +/- 2.3 min in the pancuronium group and 4.7 +/- 1.8 min in the atracurium group. Fetal movements returned both to maternal sensation or ultrasonic observation by 92 +/- 23 min in the first group and 36 +/- 11 min in the second group. No adverse effect of the relaxant has been observed in any of the mothers. There was no evidence of local soft tissue, nerve or muscle damage at the site of injection on initial examination of the neonates after delivery. The use of neuromuscular relaxant in fetus was a safe and useful method.

  1. Protein defects in neuromuscular diseases

    Directory of Open Access Journals (Sweden)

    Vainzof M.

    2003-01-01

    Full Text Available Muscular dystrophies are a heterogeneous group of genetically determined progressive disorders of the muscle with a primary or predominant involvement of the pelvic or shoulder girdle musculature. The clinical course is highly variable, ranging from severe congenital forms with rapid progression to milder forms with later onset and a slower course. In recent years, several proteins from the sarcolemmal muscle membrane (dystrophin, sarcoglycans, dysferlin, caveolin-3, from the extracellular matrix (alpha2-laminin, collagen VI, from the sarcomere (telethonin, myotilin, titin, nebulin, from the muscle cytosol (calpain 3, TRIM32, from the nucleus (emerin, lamin A/C, survival motor neuron protein, and from the glycosylation pathway (fukutin, fukutin-related protein have been identified. Mutations in their respective genes are responsible for different forms of neuromuscular diseases. Protein analysis using Western blotting or immunohistochemistry with specific antibodies is of the utmost importance for the differential diagnosis and elucidation of the physiopathology of each genetic disorder involved. Recent molecular studies have shown clinical inter- and intra-familial variability in several genetic disorders highlighting the importance of other factors in determining phenotypic expression and the role of possible modifying genes and protein interactions. Developmental studies can help elucidate the mechanism of normal muscle formation and thus muscle regeneration. In the last fifteen years, our research has focused on muscle protein expression, localization and possible interactions in patients affected by different forms of muscular dystrophies. The main objective of this review is to summarize the most recent findings in the field and our own contribution.

  2. The Effect of Proprioceptive Neuromuscular Facilitation on Learning Fine Motor Skills: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Shahabi Kaseb

    2016-09-01

    Full Text Available Introduction: Preparation of neuromuscular system prior to performing motor skills affects the learning of motor skills. The present study was conducted to investigate the effects of Proprioceptive Neuromuscular Facilitation (PNF on limb coordination and accuracy in dart throwing skill. Methods: Thirty two male students were randomly selected as study sample. Based on the pretest scores, the participants were divided into three groups: experimental (proprioceptive neuromuscular facilitation, first control (without warm-up, and second control (specific warm-up. During the acquisition phase, the participants first performed the preparation training related to their own group, then all groups performed the exercise program of dart throwing consisting of 6 blocks of 9 trials in 4 training sessions. Finally, 20 days following the last exercise session, the subjects took the retention and transfer tests. Results: The results of one-way ANOVA test for coordination variable in acquisition test showed no significant difference between the groups, while there was a statistically significant difference between groups regarding coordination variable in retention and transfer tests. Furthermore, the results of one-way ANOVA for the accuracy variable in acquisition and retention tests showed no statistically significant difference between the three groups, while there was a statistically significant difference between groups for accuracy variable in transfer test. Conclusion: It seems that proprioceptive neuromuscular facilitation, as a preparation method before performance, can enhance the efficacy of training to better learn the coordination pattern of fine motor skills.

  3. New learning while consolidating memory during sleep is actively blocked by a protein synthesis dependent process

    Science.gov (United States)

    Levy, Roi; Levitan, David; Susswein, Abraham J

    2016-01-01

    Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory. DOI: http://dx.doi.org/10.7554/eLife.17769.001 PMID:27919318

  4. Protein kinase C isoforms at the neuromuscular junction: localization and specific roles in neurotransmission and development.

    Science.gov (United States)

    Lanuza, Maria A; Santafe, Manel M; Garcia, Neus; Besalduch, Núria; Tomàs, Marta; Obis, Teresa; Priego, Mercedes; Nelson, Phillip G; Tomàs, Josep

    2014-01-01

    The protein kinase C family (PKC) regulates a variety of neural functions including neurotransmitter release. The selective activation of a wide range of PKC isoforms in different cells and domains is likely to contribute to the functional diversity of PKC phosphorylating activity. In this review, we describe the isoform localization, phosphorylation function, regulation and signalling of the PKC family at the neuromuscular junction. Data show the involvement of the PKC family in several important functions at the neuromuscular junction and in particular in the maturation of the synapse and the modulation of neurotransmission in the adult. © 2013 Anatomical Society.

  5. Thermo-responsive, UV-active poly(phenyl acrylate-b-poly(diethyl acrylamide block copolymers

    Directory of Open Access Journals (Sweden)

    M. Maric

    2013-12-01

    Full Text Available The homopolymerization of phenyl acrylate (PA was investigated for the first time by nitroxide mediated polymerization (NMP with the succinimidyl form of the SG1-based unimolecular initiator 2-[N-tert-butyl-2,2-(dimethylpropyl-aminooxy]propionic acid (BlocBuilder MA. The control of PPA homopolymerization was improved by the use of 15 mol% additional free nitroxide SG1 ([tert-butyl[1-(diethoxyphosphoryl-2,2-dimethylpropyl]amino]oxidanyl and dispersities, Mw/Mn, of around 1.2 were achieved. A PPA homopolymer was then successfully chain-extended with diethyl acrylamide (DEAAm to form a block copolymer of PPA-b-PDEAAm where the PDEAAm segment is thermo-responsive, while the PPA block is potentially UV-active. The thermo-responsive behavior of the block copolymer in 0.5 wt% aqueous solution was studied by UV-Vis spectrometry and dynamic light scattering (DLS, indicating cloud point temperatures of 26–30°C, close to that reported for PDEAAm homopolymers.

  6. Effects of heavy metals on the neuromuscular transmission of the mouse diaphragm

    Energy Technology Data Exchange (ETDEWEB)

    Fu, W M; Shiau, S Y.L.

    1978-04-01

    Effects of heavy metals including Mn, Co, Ni, Cd, Zn, Cu, Sr, Ba, and UO/sub 2//sup +/ ions on the neuromuscular transmission of the mouse diaphragm were studied and compared. From the dose-inhibition curves, the concentrations (mM) required to inhibit 50% of the contraction (ID/sub 50/) for Cd, Mn, Co, Ni, Zn and Sr are 0.03, 0.8, 0.75, 0.82, 1.2 and >20 respectively. In addition to the potent neuromuscular blocking action, both Cd and Zn induce a contracture of the mouse diaphram. Among the cations tested, Cu is the most potent in inducing the contracture. Mn does not cause a contracture, while Co and Ni induce a contracture only after a prolonged incubation for 3 hours. The neuromuscular blocking action of most of the cations tested can be completely or partially reversed by either high Ca or cysteine except the irreversible action of Zn and Cu. These findings suggest that most divalent cations block the neuromuscular transmission by binding to the -SH group of the cell membrane and inhibiting Ca influx. On the other hand, both Ba and UO/sub 2/ at low concentration increase but at high concentration inhibit the twitch response. Sine Ba increases the twitch response of the mouse diaphragm stimulated directly in the presence of d-tubocurarine as well as that stimulated indirectly, Ba/sup + +/ acts mainly directly on the muscle. In contrast, UO/sub 2//sup +/ ions at low concentration increases the twitch response possibly by releasing acetylcholine from the nerve endings.

  7. Neuromuscular compensation mechanisms in vocal fold paralysis and paresis.

    Science.gov (United States)

    Dewan, Karuna; Vahabzadeh-Hagh, Andrew; Soofer, Donna; Chhetri, Dinesh K

    2017-07-01

    Vocal fold paresis and paralysis are common conditions. Treatment options include augmentation laryngoplasty and voice therapy. The optimal management for this condition is unclear. The objective of this study was to assess possible neuromuscular compensation mechanisms that could potentially be used in the treatment of vocal fold paresis and paralysis. In vivo canine model. In an in vivo canine model, we examined three conditions: 1) unilateral right recurrent laryngeal nerve (RLN) paresis and paralysis, 2) unilateral superior laryngeal nerve (SLN) paralysis, and 3) unilateral vagal nerve paresis and paralysis. Phonatory acoustics and aerodynamics were measured in each of these conditions. Effective compensation was defined as improved acoustic and aerodynamic profile. The most effective compensation for all conditions was increasing RLN activation and decreasing glottal gap. Increasing RLN activation increased the percentage of possible phonatory conditions that achieved phonation onset. SLN activation generally led to decreased number of total phonation onset conditions within each category. Differential effects of SLN (cricothyroid [CT] muscle) activation were seen. Ipsilateral SLN activation could compensate for RLN paralysis; normal CT compensated well in unilateral SLN paralysis; and in vagal paresis/paralysis, contralateral SLN and RLN displayed antagonistic relationships. Methods to improve glottal closure should be the primary treatment for large glottal gaps. Neuromuscular compensation is possible for paresis. This study provides insights into possible compensatory mechanisms in vocal fold paresis and paralysis. NA Laryngoscope, 127:1633-1638, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  8. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.

    Science.gov (United States)

    Dunn, P M

    1998-09-15

    The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (delta) of 0.18 and a Kd at 0 mV of 20.5 mM. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, inter-spersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, delta = 0.44, and a Kd at 0 mV of 0.15 microM. Clotrimazole applied to the inner face of the membrane at a concentration block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 microM) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel.

  9. Computed tomography (CT) in neuromuscular disorders

    International Nuclear Information System (INIS)

    Novak, M.; Ambler, Z.

    1997-01-01

    For 24 patients with confirmed neuromuscular disorders, the clinical picture of the disease was complemented with CT examination. It is concluded, in accordance with the literature, that CT has a supplementary value as regards the extent and degree of disorder of the affected muscle groups. The basic pathological picture includes muscular atrophies, dystrophies, hypertrophies, and their combinations. The CT images are non-specific for the individual neuromuscular disorders and are of minor importance in the diagnostic process. 1 tab., 7 figs., 6 refs

  10. Research highlights of partial neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Cheng ZHANG

    2014-05-01

    Full Text Available In order to understand the latest progression on neuromuscular disorders for clinicians, this review screened and systemized the papers on neuromuscular disorders which were collected by PubMed from January 2013 to February 2014. This review also introduced the clinical diagnosis and treatment hightlights on glycogen storage disease type Ⅱ (GSD Ⅱ, Duchenne muscular dystrophy (DMD, amyotrophic lateral sclerosis (ALS and spinal muscular atrophy (SMA. The important references will be useful for clinicians. doi: 10.3969/j.issn.1672-6731.2014.05.004

  11. Activity of clinically relevant antimalarial drugs on Plasmodium falciparum mature gametocytes in an ATP bioluminescence "transmission blocking" assay.

    Directory of Open Access Journals (Sweden)

    Joël Lelièvre

    Full Text Available BACKGROUND: Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes. METHODS AND FINDINGS: Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV-V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs. CONCLUSIONS: The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti

  12. Sequence of activation of template biosyntheses in normal and transformed human cells after synchronization with a double thimidine block

    International Nuclear Information System (INIS)

    Alekseev, S.B.; Boikov, P.Ya.; Ebralidze, L.K.; Stepanova, L.G.

    1986-01-01

    The sequences of synthesis of DNA, RNA, and various groups of proteins in normal and transformed human fibroblasts was studied in the first mitotic cycle synchronization of the cells by a double thymidine block. Two peculiarities of the synthesis of acid-soluble histone and acid-insoluble proteins in the normal and transformed cells, were detected: (1) in normal fibroblasts the synthesis of the two groups of proteins is a minimum before DNA replication, and the greatest activity is achieved in the G 2 phase; in transformed cells protein synthesis is a maximum after the removal of the thymine block, while in the G 2 phase it is decreased; (2) in normal fibroblasts the synthesis of acid-insoluble proteins is a maximum before the maximum synthesis of DNA, and that of acid-soluble proteins is a maximum after the maximum of DNA synthesis. The opposite picture is observed in transformed cells. RNA synthesis in normal and transformed cells is activated at the end of the G 2 phase. In normal cells the synthesis of proteins is coupled with the activation of RNA synthesis, while in transformed cells protein synthesis is evidently transferred to the following mitotic cycle. Especially pronounced differences were detected in the expression of certain LMG proteins. Thus, in transformed cells the regulation of the coupling of the template syntheses is modified

  13. The Effect of Antioxidant Activity of Liquid Smoke in Feed Supplement Block on Meat Functional of Muscle Longissimus dorsi

    Science.gov (United States)

    Abustam, E.; Said, M. I.; Yusuf, M.

    2018-02-01

    This study aims to look at the role of liquid smoke as an antioxidant added in feed supplement block and administered to cattle for 45 days on the functional properties of meat. The level of liquid smoke in the feed and the time of maturation in Muscle Longissimus dorsi after slaughtering cattle were the two treatment factors observed for the functional properties of meat. The study used a complete randomized design in which factor 1 was a 10% smoke level in the feed (0, 1, 2%) and factor 2 was maturation time (0, 2, 4, 6, 8 days). The parameters observed were water holding capacity (WHC), raw meat shear force (RMSF), fat oxidation rate (thiobarbituric acid reactive substance) and antioxidant activity (DPPH). The results showed that liquid smoke levels lowered the WHC, RMSF more or less the same, increased fat oxidation rate, and antioxidant activity more or less the same. While maturation tends to increase WHC, increase RMSF, fat oxidation rate, and antioxidant activity. It can be concluded that liquid smoke as an antioxidant in the diet of block supplements can maintain the functional properties of Muscle Longissimus dorsi of Bali cattle during maturation.

  14. Altered knee joint neuromuscular control during landing from a jump in 10-15year old children with Generalised Joint Hypermobility. A substudy of the CHAMPS-study Denmark

    DEFF Research Database (Denmark)

    Junge, Tina; Wedderkopp, Niels; Thorlund, Jonas Bloch

    2015-01-01

    Generalised Joint Hypermobility (GJH) is considered an intrinsic risk factor for knee injuries. Knee neuromuscular control during landing may be altered in GJH due to reduced passive stability. The aim was to identify differences in knee neuromuscular control during landing of the Single...... than controls, all significant findings. Although the groups performed equally in SLHD, GJH had a Gastrocnemius Medialis dominated neuromuscular strategy before landing, plausibly caused by reduced Semitendinosus activity. Reduced Semitendinosus activity was seen in GJH after landing...

  15. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block

    DEFF Research Database (Denmark)

    Kirstetter, Peggy; Anderson, Kristina; Porse, Bo T

    2006-01-01

    Wnt signaling increases hematopoietic stem cell self-renewal and is activated in both myeloid and lymphoid malignancies, indicating involvement in both normal and malignant hematopoiesis. We report here activated canonical Wnt signaling in the hematopoietic system through conditional expression...... of hematopoietic stem cell function was associated with decreased expression of Cdkn1a (encoding the cell cycle inhibitor p21(cdk)), Sfpi1, Hoxb4 and Bmi1 (encoding the transcription factors PU.1, HoxB4 and Bmi-1, respectively) and altered integrin expression in Lin(-)Sca-1(+)c-Kit(+) cells, whereas PU.1...... of a stable form of beta-catenin. This enforced expression led to hematopoietic failure associated with loss of myeloid lineage commitment at the granulocyte-macrophage progenitor stage; blocked erythrocyte differentiation; disruption of lymphoid development; and loss of repopulating stem cell activity. Loss...

  16. Epidural block

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000484.htm Epidural block - pregnancy To use the sharing features on this page, please enable JavaScript. An epidural block is a numbing medicine given by injection (shot) ...

  17. Neuromuscular training based on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program.

    Science.gov (United States)

    Stark, C; Hoyer-Kuhn, H-K; Semler, O; Hoebing, L; Duran, I; Cremer, R; Schoenau, E

    2015-02-01

    Spina bifida is the most common congenital cause of spinal cord lesions resulting in paralysis and secondary conditions like osteoporosis due to immobilization. Physiotherapy is performed for optimizing muscle function and prevention of secondary conditions. Therefore, training of the musculoskeletal system is one of the major aims in the rehabilitation of children with spinal cord lesions. The neuromuscular physiotherapy treatment program Auf die Beine combines 6 months of home-based whole body vibration (WBV) with interval blocks at the rehabilitation center: 13 days of intensive therapy at the beginning and 6 days after 3 months. Measurements are taken at the beginning (M0), after 6 months of training (M6), and after a 6-month follow-up period (M12). Gait parameters are assessed by ground reaction force and motor function by the Gross Motor Function Measurement (GMFM-66). Sixty children (mean age 8.71 ± 4.7 years) who participated in the program until February 2014 were retrospectively analyzed. Walking velocity improved significantly by 0.11 m/s (p = 0.0026) and mobility (GMFM-66) by 2.54 points (p = 0.001) after the training. All changes at follow-up were not significant, but significant changes were observed after the training period. Decreased contractures were observed with increased muscle function. Significant improvements in motor function were observed after the active training period of the new neuromuscular training concept. This first analysis of the new neuromuscular rehabilitation concept Auf die Beine showed encouraging results for a safe and efficient physiotherapy treatment program which increases motor function in children with spina bifida.

  18. Effects of Neuromuscular Electrical Stimulation During Hemodialysis on Peripheral Muscle Strength and Exercise Capacity: A Randomized Clinical Trial.

    Science.gov (United States)

    Brüggemann, Ana Karla; Mello, Carolina Luana; Dal Pont, Tarcila; Hizume Kunzler, Deborah; Martins, Daniel Fernandes; Bobinski, Franciane; Pereira Yamaguti, Wellington; Paulin, Elaine

    2017-05-01

    To evaluate the effects of neuromuscular electrical stimulation of high and low frequency and intensity, performed during hemodialysis, on physical function and inflammation markers in patients with chronic kidney disease (CKD). Randomized clinical trial. Hemodialysis clinic. Patients with CKD (N=51) were randomized into blocks of 4 using opaque sealed envelopes. They were divided into a group of high frequency and intensity neuromuscular electrical stimulation and a group of low frequency and intensity neuromuscular electrical stimulation. The high frequency and intensity neuromuscular electrical stimulation group was submitted to neuromuscular electrical stimulation at a frequency of 50Hz and a medium intensity of 72.90mA, and the low frequency and intensity neuromuscular electrical stimulation group used a frequency of 5Hz and a medium intensity of 13.85mA, 3 times per week for 1 hour, during 12 sessions. Peripheral muscle strength, exercise capacity, levels of muscle trophism marker (insulin growth factor 1) and levels of proinflammatory (tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines. The high frequency and intensity neuromuscular electrical stimulation group showed a significant increase in right peripheral muscle strength (155.35±65.32Nm initial vs 161.60±68.73Nm final; P=.01) and left peripheral muscle strength (156.60±66.51Nm initial vs 164.10±69.76Nm final; P=.02) after the training, which did not occur in the low frequency and intensity neuromuscular electrical stimulation group for both right muscle strength (109.40±32.08Nm initial vs 112.65±38.44Nm final; P=.50) and left muscle strength (113.65±37.79Nm initial vs 116.15±43.01Nm final; P=.61). The 6-minute walk test distance (6MWTD) increased in both groups: high frequency and intensity neuromuscular electrical stimulation group (435.55±95.81m initial vs 457.25±90.64m final; P=.02) and low frequency and intensity neuromuscular electrical stimulation group (403.80

  19. Population Blocks.

    Science.gov (United States)

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  20. Effects of intensive physical rehabilitation on neuromuscular adaptations in adults with poststroke hemiparesis

    DEFF Research Database (Denmark)

    Andersen, Lars L; Zeeman, Peter; Jørgensen, Jørgen R

    2011-01-01

    consisting of isokinetic muscle strength, neuromuscular activation measured with electromyography (EMG), electrically evoked muscle twitch contractile properties, and gait performance (10-m Walk Test and 6-min Walk Test). After the 12-week conditioning program, knee extensor and flexor strength increased...... the effect of intensive physical rehabilitation on neuromuscular and functional adaptations in outpatients suffering from hemiparesis after stroke. A within-subject repeated-measures design with the paretic leg as the experimental leg and the nonparetic leg as the control leg was used. Eleven outpatients...... observed in the nonparetic control leg. Gait performance increased 52-68%. In conclusion, intensive physical rehabilitation after stroke leads to clinically relevant neuromuscular improvements, leading to increased voluntary strength during a wide range of contraction modes and velocities, and improved...

  1. Autosomal-dominant non-autoimmune hyperthyroidism presenting with neuromuscular symptoms.

    Science.gov (United States)

    Elgadi, Aziz; Arvidsson, C-G; Janson, Annika; Marcus, Claude; Costagliola, Sabine; Norgren, Svante

    2005-08-01

    Neuromuscular presentations are common in thyroid disease, although the mechanism is unclear. In the present study, we investigated the pathogenesis in a boy with autosomal-dominant hyperthyroidism presenting with neuromuscular symptoms. The TSHr gene was investigated by direct sequencing. Functional properties of the mutant TSHr were investigated during transient expression in COS-7 cells. Family members were investigated by clinical and biochemical examinations. Sequence analysis revealed a previously reported heterozygous missense mutation Glycine 431 for Serine in the first transmembrane segment, leading to an increased specific constitutive activity. Three additional affected family members carried the same mutation. There was no indication of autoimmune disorder. All symptoms disappeared upon treatment with thacapzol and L-thyroxine and subsequent subtotal thyroidectomy. The data imply that neuromuscular symptoms can be caused by excessive thyroid hormone levels rather than by autoimmunity.

  2. Undecylenic acid: a valuable and physiologically active renewable building block from castor oil.

    Science.gov (United States)

    Van der Steen, Marijke; Stevens, Christian V

    2009-01-01

    A lot of attention is currently being paid to the transition to a biobased economy. In this movement, most efforts concentrate on the development of bioenergy applications including bioethanol, biodiesel, thermochemical conversion of biomass, and others. However, in the energy sector other nonbiomass alternatives are known, whereas no valuable alternatives are available when thinking about chemical building blocks. Therefore, it is also essential to develop new routes for the synthesis of bio-based chemicals and materials derived thereof. Such intermediates can originate either from plants or from animals. Castor oil is a non-edible oil extracted from the seeds of the castor bean plant Ricinus communis (Euphorbiaceae), which grows in tropical and subtropical areas. Globally, around one million tons of castor seeds are produced every year, the leading producing areas being India, PR China, and Brazil.2 10-Undecenoic acid or undecylenic acid is a fatty acid derived from castor oil that, owing to its bifunctional nature, has many possibilities to develop sustainable applications.

  3. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal.

    Science.gov (United States)

    Bickel, C Scott; Gregory, Chris M; Dean, Jesse C

    2011-10-01

    Neuromuscular electrical stimulation (NMES) is commonly used in clinical settings to activate skeletal muscle in an effort to mimic voluntary contractions and enhance the rehabilitation of human skeletal muscles. It is also used as a tool in research to assess muscle performance and/or neuromuscular activation levels. However, there are fundamental differences between voluntary- and artificial-activation of motor units that need to be appreciated before NMES protocol design can be most effective. The unique effects of NMES have been attributed to several mechanisms, most notably, a reversal of the voluntary recruitment pattern that is known to occur during voluntary muscle contractions. This review outlines the assertion that electrical stimulation recruits motor units in a nonselective, spatially fixed, and temporally synchronous pattern. Additionally, it synthesizes the evidence that supports the contention that this recruitment pattern contributes to increased muscle fatigue when compared with voluntary actions and provides some commentary on the parameters of electrical stimulation as well as emerging technologies being developed to facilitate NMES implementation. A greater understanding of how electrical stimulation recruits motor units, as well as the benefits and limitations of its use, is highly relevant when using this tool for testing and training in rehabilitation, exercise, and/or research.

  4. Active Features of Guguan-Guizhen Fault at the Northeast Margin of Qinghai-Tibet Block since Late Quaternary

    Science.gov (United States)

    Shi, Yaqin; Feng, Xijie; Li, Gaoyang; Ma, Ji; Li, Miao; Zhang, Yi

    2015-04-01

    Guguan-Guizhen fault is located at the northeast margin of Qinghai-Tibet Block and northwest margin of Ordos Block; it is the boundary of the two blocks, and one of the multiple faults of northwest Haiyuan-Liupanshan-Baoji fault zone. Guguan-Guizhen fault starts from Putuo Village, Huating County, Gansu Province, and goes through Badu Town, Long County in Shaanxi Province ends in Guozhen Town in Baoji City, Shaanxi Province. The fault has a full length of about 130km with the strike of 310-330°, the dip of SW and the rake of 50-60°, which is a sinistral slip reverse fault in the north part, and a sinistral slip normal fault in the southeast part. Guguan-Guizhen fault has a clear liner structure in satellite images and significant landform elevation difference with a maximum difference of 80m, and is higher in the east lower in the west. The northwest side of Guguan-Guizhen fault is composed of purplish-red Lower Cretaceous sandstones and river terrace; the northeast side is composed of Ordovician Limestone. Shigou, Piliang, Songjiashan, Tianjiagou and Chenjiagou fault profiles are found to the south of Badu Village. After 14C and optically stimulated luminescence dating, the fault does not dislocate the stratum since late Pleistocene (90.5±4.4ka) in Shigou, Piliang and Songjiashan fault profiles, and does not dislocate the cobble layer of Holocene first terrace and recent sliderock (3180±30 BP). But the fault dislocated the stratum of middle Pleistocene in some of the fault profiles. All the evidences above indicate that the fault is active in middle Pleistocene, and being silence since late Pleistocene. It might be active in Holocene to the north of Badu Village due to collapses are found in a certain area. The cause of these collapses is Qinlong M6-7 earthquake in 600 A.D., and might be relevant with Guguan-Guizhen fault after analysis of the scale, feature and age determination of the collapse. If any seismic surface rupture and ancient earthquake traces

  5. A viral vectored prime-boost immunization regime targeting the malaria Pfs25 antigen induces transmission-blocking activity.

    Directory of Open Access Journals (Sweden)

    Anna L Goodman

    Full Text Available The ookinete surface protein Pfs25 is a macrogamete-to-ookinete/ookinete stage antigen of Plasmodium falciparum, capable of exerting high-level anti-malarial transmission-blocking activity following immunization with recombinant protein-in-adjuvant formulations. Here, this antigen was expressed in recombinant chimpanzee adenovirus 63 (ChAd63, human adenovirus serotype 5 (AdHu5 and modified vaccinia virus Ankara (MVA viral vectored vaccines. Two immunizations were administered to mice in a heterologous prime-boost regime. Immunization of mice with AdHu5 Pfs25 at week 0 and MVA Pfs25 at week 10 (Ad-MVA Pfs25 resulted in high anti-Pfs25 IgG titers, consisting of predominantly isotypes IgG1 and IgG2a. A single priming immunization with ChAd63 Pfs25 was as effective as AdHu5 Pfs25 with respect to ELISA titers at 8 weeks post-immunization. Sera from Ad-MVA Pfs25 immunized mice inhibited the transmission of P. falciparum to the mosquito both ex vivo and in vivo. In a standard membrane-feeding assay using NF54 strain P. falciparum, oocyst intensity in Anopheles stephensi mosquitoes was significantly reduced in an IgG concentration-dependent manner when compared to control feeds (96% reduction of intensity, 78% reduction in prevalence at a 1 in 5 dilution of sera. In addition, an in vivo transmission-blocking effect was also demonstrated by direct feeding of immunized mice infected with Pfs25DR3, a chimeric P. berghei line expressing Pfs25 in place of endogenous Pbs25. In this assay the density of Pfs25DR3 oocysts was significantly reduced when mosquitoes were fed on vaccinated as compared to control mice (67% reduction of intensity, 28% reduction in prevalence and specific IgG titer correlated with efficacy. These data confirm the utility of the adenovirus-MVA vaccine platform for the induction of antibodies with transmission-blocking activity, and support the continued development of this alternative approach to transmission-blocking malaria subunit

  6. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K

    1999-01-01

    cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole...

  7. Robotic assessment of neuromuscular characteristics using musculoskeletal models: A pilot study.

    Science.gov (United States)

    Jayaneththi, V R; Viloria, J; Wiedemann, L G; Jarrett, C; McDaid, A J

    2017-07-01

    Non-invasive neuromuscular characterization aims to provide greater insight into the effectiveness of existing and emerging rehabilitation therapies by quantifying neuromuscular characteristics relating to force production, muscle viscoelasticity and voluntary neural activation. In this paper, we propose a novel approach to evaluate neuromuscular characteristics, such as muscle fiber stiffness and viscosity, by combining robotic and HD-sEMG measurements with computational musculoskeletal modeling. This pilot study investigates the efficacy of this approach on a healthy population and provides new insight on potential limitations of conventional musculoskeletal models for this application. Subject-specific neuromuscular characteristics of the biceps and triceps brachii were evaluated using robot-measured kinetics, kinematics and EMG activity as inputs to a musculoskeletal model. Repeatability experiments in five participants revealed large variability within each subjects evaluated characteristics, with almost all experiencing variation greater than 50% of full scale when repeating the same task. The use of robotics and HD-sEMG, in conjunction with musculoskeletal modeling, to quantify neuromuscular characteristics has been explored. Despite the ability to predict joint kinematics with relatively high accuracy, parameter characterization was inconsistent i.e. many parameter combinations gave rise to minimal kinematic error. The proposed technique is a novel approach for in vivo neuromuscular characterization and is a step towards the realization of objective in-home robot-assisted rehabilitation. Importantly, the results have confirmed the technical (robot and HD-sEMG) feasibility while highlighting the need to develop new musculoskeletal models and optimization techniques capable of achieving consistent results across a range of dynamic tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Adjustments with running speed reveal neuromuscular adaptations during landing associated with high mileage running training.

    Science.gov (United States)

    Verheul, Jasper; Clansey, Adam C; Lake, Mark J

    2017-03-01

    It remains to be determined whether running training influences the amplitude of lower limb muscle activations before and during the first half of stance and whether such changes are associated with joint stiffness regulation and usage of stored energy from tendons. Therefore, the aim of this study was to investigate neuromuscular and movement adaptations before and during landing in response to running training across a range of speeds. Two groups of high mileage (HM; >45 km/wk, n = 13) and low mileage (LM; joint stiffness might predominantly be governed by tendon stiffness rather than muscular activations before landing. Estimated elastic work about the ankle was found to be higher in the HM runners, which might play a role in reducing weight acceptance phase muscle activation levels and improve muscle activation efficiency with running training. NEW & NOTEWORTHY Although neuromuscular factors play a key role during running, the influence of high mileage training on neuromuscular function has been poorly studied, especially in relation to running speed. This study is the first to demonstrate changes in neuromuscular conditioning with high mileage training, mainly characterized by lower thigh muscle activation after touch down, higher initial knee stiffness, and greater estimates of energy return, with adaptations being increasingly evident at faster running speeds. Copyright © 2017 the American Physiological Society.

  9. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline-based amphiphilic block copolymers prepared by CuAAC click chemistry

    Directory of Open Access Journals (Sweden)

    S. Gulyuz

    2018-02-01

    Full Text Available Synthesis and characterization of well-defined amphiphilic block copolymers containing poly(2-ethyl-2-oxazoline as hydrophilic block and poly(ε-caprolactone or poly(L-lactide as hydrophobic block is achieved by copper-catalyzed azide-alkyne cycloaddition (CuAAC click chemistry. The clickable precursors, α-alkyne-functionalized poly(ε-caprolactone and poly(L-lactide and ω-azido-functionalized poly(2-ethyl-2-oxazoline are simply prepared and joined using copper sulfate/ascorbic acid catalyst system at room temperature. The structures of precursors and amphiphilic block copolymers are characterized by spectroscopic, chromatographic and thermal analyses. The cytotoxic activities of resulting amphiphilic block copolymers and their precursors are investigated in the prostate epithelial and cancer cells under in-vitro conditions. The treatment of the healthy prostate epithelial cell line PNT1A reveals that no significant cytotoxicity, whereas some significant toxic effects on the prostate cancer cell lines are observed.

  10. Electrical stimulation for physiologic measurement of neuromuscular function and respiratory support during anticholinesterase poisoning. Annual report, October 1983-September 1984

    Energy Technology Data Exchange (ETDEWEB)

    Yodlowski, E.H.

    1984-10-01

    The purpose of this research is to develop the techniques necessary for providing short-term respiratory support for personnel poisoned by organophosphate agents. Following acute exposure to organophosphate compounds, respiration ceases before cardiovascular collapse occurs. Military personnel exposed to these compounds in the field are most likely to die from asphyxiation. By virtue of their ability to cross the blood-brain barrier and inhibit cholinesterase activity the organophosphates are capable of interrupting control of respiration either centrally (i.e. within the central nervous system) or peripherally by blocking neuromuscular transmission or contraction coupling at the peripheral muscles. We hypothesize that it will be possible to overcome organophosphate induced respiratory arrest by providing artificial respiratory pacing. This research is aimed at producing a means of respiratory support via electronic stimulation of the phrenic nerve (s) that can be used when central respiratory drive has become blocked by organophosphate agents. Animal experiments have been conducted to implement and evaluate the transesophageal electrophrenic stimulation technique (TEST) for respiratory pacing and to determine appropriate stimulation parameters to produce effective and efficient respirations.

  11. Neotectonic activity and parity in movements of Udaipur block of the ...

    Indian Academy of Sciences (India)

    region. The epicenters of the infrequent low magnitude earthquakes are located on the Precambrian .... activity is also represented by development of grav- .... GPS permanent networks. ... multidisciplinary approach through the integration.

  12. Optimizing referral of patients with neuromuscular disorders to allied health care.

    NARCIS (Netherlands)

    Pieterse, A.J.; Cup, E.H.C.; Akkermans, R.P.; Hendricks, H.T.; Engelen, B.G.M. van; Wilt, G.J. van der; Oostendorp, R.A.B.

    2009-01-01

    BACKGROUND AND PURPOSE: To report the predictive validity of the perceived limitations in activities and need questionnaire (PLAN-Q), a screening instrument to support neurologists to select patients with neuromuscular disorders (NMD) for referral for a one-off consultation by occupational therapist

  13. Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke.

    Science.gov (United States)

    Mukaino, Masahiko; Ono, Takashi; Shindo, Keiichiro; Fujiwara, Toshiyuki; Ota, Tetsuo; Kimura, Akio; Liu, Meigen; Ushiba, Junichi

    2014-04-01

    Brain computer interface technology is of great interest to researchers as a potential therapeutic measure for people with severe neurological disorders. The aim of this study was to examine the efficacy of brain computer interface, by comparing conventional neuromuscular electrical stimulation and brain computer interface-driven neuromuscular electrical stimulation, using an A-B-A-B withdrawal single-subject design. A 38-year-old male with severe hemiplegia due to a putaminal haemorrhage participated in this study. The design involved 2 epochs. In epoch A, the patient attempted to open his fingers during the application of neuromuscular electrical stimulation, irrespective of his actual brain activity. In epoch B, neuromuscular electrical stimulation was applied only when a significant motor-related cortical potential was observed in the electroencephalogram. The subject initially showed diffuse functional magnetic resonance imaging activation and small electro-encephalogram responses while attempting finger movement. Epoch A was associated with few neurological or clinical signs of improvement. Epoch B, with a brain computer interface, was associated with marked lateralization of electroencephalogram (EEG) and blood oxygenation level dependent responses. Voluntary electromyogram (EMG) activity, with significant EEG-EMG coherence, was also prompted. Clinical improvement in upper-extremity function and muscle tone was observed. These results indicate that self-directed training with a brain computer interface may induce activity- dependent cortical plasticity and promote functional recovery. This preliminary clinical investigation encourages further research using a controlled design.

  14. Extrapunitive and Intropunitive Individuals Activate Different Parts of the Prefrontal Cortex under an Ego-Blocking Frustration

    OpenAIRE

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem...

  15. Cetamolol: a new cardioselective beta-adrenoceptor blocking agent without membrane-stabilizing activity.

    Science.gov (United States)

    Beaulieu, G; Jaramillo, J; Cummings, J R

    1984-03-01

    Cetamolol, a new beta-adrenoceptor blocker with partial agonist activity and cardioselectivity, was studied in vivo to determine its membrane-stabilizing effects. Comparisons were carried out with atenolol, pindolol, practolol, propranolol, timolol, dexpropranolol, lidocaine, and procaine. The following results indicated that cetamolol lacked membrane-stabilizing activity: (i) failure to cause local anesthesia on the rabbit cornea and motor nerve of the rat tail; (ii) ineffectiveness in reversing ventricular arrhythmias induced by coronary artery litigation in dogs; (iii) failure to reduce cardiac automaticity in catecholamine-depleted dogs as determined by the rate of a subatrial rhythm during ventricular (vagal) escape; and (iv) lack of a significant increase in atrioventricular conduction time in vagotomized or atropinized dogs in contrast to the effect in normal dogs indicating a reflex effect of cetamolol. Other results include a restoration of sinus rhythm in dogs with ventricular tachycardia induced by ouabain, and a dose-related decline in the force of cardiac contraction in anesthetized dogs at doses from 3 to 15 mg/kg, which occurred after an initial increase in force owing to intrinsic sympathomimetic activity. Although the mechanisms for the latter two effects are not clear at this time, explanations other than membrane-stabilizing activity have been considered in view of the other findings. It is concluded that cetamolol lacks membrane-stabilizing activity even at inordinately high doses.

  16. Coxiella burnetii lipopolysaccharide blocks p38α-MAPK activation through the disruption of TLR-2 and TLR-4 association

    Directory of Open Access Journals (Sweden)

    Filippo eConti

    2015-01-01

    Full Text Available To survive in macrophages, Coxiella burnetii hijacks the activation pathway of macrophages. Recently, we have demonstrated that C. burnetii, via its lipopolysaccharide (LPS, avoids the activation of p38α-MAPK through an antagonistic engagement of Toll-like receptor (TLR-4. We investigated the fine-tuned mechanism leading to the absence of activation of the p38α-MAPK despite TLR-4 engagement. In macrophages challenged with Escherichia coli LPS or with the LPS from the avirulent variants of C. burnetii, TLR-4 and TLR-2 co-immunoprecipitated. This association was absent in cells challenged by the LPS of pathogenic C. burnetii. The disruption makes TLRs unable to signal during the recognition of the LPS of pathogenic C. burnetii. The disruption of TLR-2 and TLR-4 was induced by the re-organization of the macrophage cytoskeleton by C. burnetii LPS. Interestingly, blocking the actin cytoskeleton re-organization relieved the disruption of the association TLR-2/TLR-4 by pathogenic C. burnetii and rescued the p38α-MAPK activation by C. burnetii. We elucidated an unexpected mechanism allowing pathogenic C. burnetii to avoid activating macrophages by the disruption of the TLR-2 and TLR-4 association.

  17. Blocking of irrelevant memories by posterior alpha activity boosts memory encoding.

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jensen, Ole

    2014-08-01

    In our daily lives, we are confronted with a large amount of information. Because only a small fraction can be encoded in long-term memory, the brain must rely on powerful mechanisms to filter out irrelevant information. To understand the neuronal mechanisms underlying the gating of information into long-term memory, we employed a paradigm where the encoding was directed by a "Remember" or a "No-Remember" cue. We found that posterior alpha activity increased prior to the "No-Remember" stimuli, whereas it decreased prior to the "Remember" stimuli. The sources were localized in the parietal cortex included in the dorsal attention network. Subjects with a larger cue-modulation of the alpha activity had better memory for the to-be-remembered items. Interestingly, alpha activity reflecting successful inhibition following the "No-Remember" cue was observed in the frontal midline structures suggesting preparatory inhibition was mediated by anterior parts of the dorsal attention network. During the presentation of the memory items, there was more gamma activity for the "Remember" compared to the "No-Remember" items in the same regions. Importantly, the anticipatory alpha power during cue predicted the gamma power during item. Our findings suggest that top-down controlled alpha activity reflects attentional inhibition of sensory processing in the dorsal attention network, which then finally gates information to long-term memory. This gating is achieved by inhibiting the processing of visual information reflected by neuronal synchronization in the gamma band. In conclusion, the functional architecture revealed by region-specific changes in the alpha activity reflects attentional modulation which has consequences for long-term memory encoding. Copyright © 2014 Wiley Periodicals, Inc.

  18. Active site electrostatics protect genome integrity by blocking abortive hydrolysis during DNA recombination

    Science.gov (United States)

    Ma, Chien-Hui; Rowley, Paul A; Macieszak, Anna; Guga, Piotr; Jayaram, Makkuni

    2009-01-01

    Water, acting as a rogue nucleophile, can disrupt transesterification steps of important phosphoryl transfer reactions in DNA and RNA. We have unveiled this risk, and identified safeguards instituted against it, during strand cleavage and joining by the tyrosine site-specific recombinase Flp. Strand joining is threatened by a latent Flp endonuclease activity (type I) towards the 3′-phosphotyrosyl intermediate resulting from strand cleavage. This risk is not alleviated by phosphate electrostatics; neutralizing the negative charge on the scissile phosphate through methylphosphonate (MeP) substitution does not stimulate type I endonuclease. Rather, protection derives from the architecture of the recombination synapse and conformational dynamics within it. Strand cleavage is protected against water by active site electrostatics. Replacement of the catalytic Arg-308 of Flp by alanine, along with MeP substitution, elicits a second Flp endonuclease activity (type II) that directly targets the scissile phosphodiester bond in DNA. MeP substitution, combined with appropriate active site mutations, will be useful in revealing anti-hydrolytic mechanisms engendered by systems that mediate DNA relaxation, DNA transposition, site-specific recombination, telomere resolution, RNA splicing and retrohoming of mobile introns. PMID:19440204

  19. ["Habitual" left branch block alternating with 2 "disguised" bracnch block].

    Science.gov (United States)

    Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R

    1976-10-01

    Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".

  20. Blocking Surgically Induced Lysyl Oxidase Activity Reduces the Risk of Lung Metastases

    Directory of Open Access Journals (Sweden)

    Chen Rachman-Tzemah

    2017-04-01

    Full Text Available Surgery remains the most successful curative treatment for cancer. However, some patients with early-stage disease who undergo surgery eventually succumb to distant metastasis. Here, we show that in response to surgery, the lungs become more vulnerable to metastasis due to extracellular matrix remodeling. Mice that undergo surgery or that are preconditioned with plasma from donor mice that underwent surgery succumb to lung metastases earlier than controls. Increased lysyl oxidase (LOX activity and expression, fibrillary collagen crosslinking, and focal adhesion signaling contribute to this effect, with the hypoxic surgical site serving as the source of LOX. Furthermore, the lungs of recipient mice injected with plasma from post-surgical colorectal cancer patients are more prone to metastatic seeding than mice injected with baseline plasma. Downregulation of LOX activity or levels reduces lung metastasis after surgery and increases survival, highlighting the potential of LOX inhibition in reducing the risk of metastasis following surgery.

  1. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Mei [Department of Pharmacy, Shanghai Institute of Health Sciences and Health School Attached to SJTU-SM, 279 Zhouzhu Road, Shanghai 201318 (China); Liu, Ya-Rong; Liu, Hai-Jun [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Fang, Chao, E-mail: fangchao100@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Hong-Zhuan, E-mail: hongzhuan_chen@hotmail.com [Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China)

    2014-11-15

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC.

  2. Platycodin D inhibits tumor growth by antiangiogenic activity via blocking VEGFR2-mediated signaling pathway

    International Nuclear Information System (INIS)

    Luan, Xin; Gao, Yun-Ge; Guan, Ying-Yun; Xu, Jian-Rong; Lu, Qin; Zhao, Mei; Liu, Ya-Rong; Liu, Hai-Jun; Fang, Chao; Chen, Hong-Zhuan

    2014-01-01

    Platycodin D (PD) is an active component mainly isolated from the root of Platycodon grandiflorum. Recent studies proved that PD exhibited inhibitory effect on proliferation, migration, invasion and xenograft growth of diverse cancer cell lines. However, whether PD is suppressive for angiogenesis, an important hallmark in cancer development, remains unknown. Here, we found that PD could dose-dependently inhibit human umbilical vein endothelial cell (HUVEC) proliferation, motility, migration and tube formation. PD also significantly inhibited angiogenesis in the chick embryo chorioallantoic membrane (CAM). Moreover, the antiangiogenic activity of PD contributed to its in vivo anticancer potency shown in the decreased microvessel density and delayed growth of HCT-15 xenograft in mice with no overt toxicity. Western blot analysis indicated that PD inhibited the phosphorylation of VEGFR2 and its downstream protein kinase including PLCγ1, JAK2, FAK, Src, and Akt in endothelial cells. Molecular docking simulation showed that PD formed hydrogen bonds and hydrophobic interactions within the ATP binding pocket of VEGFR2 kinase domain. The present study firstly revealed the high antiangiogenic activity and the underlying molecular basis of PD, suggesting that PD may be a potential antiangiogenic agent for angiogenesis-related diseases. - Highlights: • Platycodin D inhibits HUVEC proliferation, motility, migration and tube formation. • Platycodin D inhibits the angiogenesis in chick embryo chorioallantoic membrane. • Platycodin D suppresses the angiogenesis and growth of HCT-15 xenograft in mice. • Platycodin D inhibits the phosphorylation of VEGFR2 and downstream kinases in HUVEC

  3. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zong-Sian, E-mail: gary810426@hotmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liu, Che Fu, E-mail: s9823002@m98.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Fu, Brian, E-mail: brianfu9@gmail.com [Northwood High School, Irvine, CA (United States); Chou, Ruey-Hwang, E-mail: rhchou@mail.cmu.edu.tw [Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan (China); Department of Biotechnology, Asia University, Taiwan (China); Yu, Chin, E-mail: cyu.nthu@gmail.com [Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China)

    2016-09-02

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by {sup 1}H-{sup 15}N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  4. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity

    International Nuclear Information System (INIS)

    Wu, Zong-Sian; Liu, Che Fu; Fu, Brian; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs. - Highlights: • The interfacial residues on hFGF1-FGFR2 D2 and hFGF1-Suramin contact surface were mapped by "1H-"1"5N HSQC experiments. • hFGF1-FGFR2 D2 and hFGF1-Suramin complex models were generated from NMR restraints by using HADDOCK program. • We analyzed hFGF1-Suramin complex models and found the interaction between hFGF1-Suramin is hydrophobic. • The bioactivity of the hFGF1-FGFR2 D2 and hFGF1-Suramin complex was studied by using WST1 assay.

  5. Prominent fatigue in spinal muscular atrophy and spinal and bulbar muscular atrophy: evidence of activity-dependent conduction block.

    Science.gov (United States)

    Noto, Yu-ichi; Misawa, Sonoko; Mori, Masahiro; Kawaguchi, Naoki; Kanai, Kazuaki; Shibuya, Kazumoto; Isose, Sagiri; Nasu, Saiko; Sekiguchi, Yukari; Beppu, Minako; Ohmori, Shigeki; Nakagawa, Masanori; Kuwabara, Satoshi

    2013-09-01

    To clarify whether patients with spinal muscular atrophy (SMA) or spinal and bulbar muscular atrophy (SBMA) suffer disabling muscle fatigue, and whether activity-dependent conduction block (ADCB) contributes to their fatigue. ADCB is usually caused by reduced safety factor for impulse transmission in demyelinating diseases, whereas markedly increased axonal branching associated with collateral sprouting may reduce the safety factor in chronic lower motor neuron disorders. We assessed the fatigue severity scale (FSS) in 22 patients with SMA/SBMA, and in 100 disease controls (multiple sclerosis, myasthenia gravis, chronic inflammatory demyelinating polyneuropathy (CIDP), and axonal neuropathy). We then performed stimulated-single fibre electromyography (s-SFEMG) in the extensor digitorum communis (EDC) muscle of 21 SMA/SBMA patients, 6 CIDP patients, and 10 normal subjects. The FSS score was the highest in SMA/SBMA patients [4.9 ± 1.1 (mean ± SD)], with 81% of them complaining of disabling fatigue, compared with normal controls (3.5 ± 1.0), whereas patients with multiple sclerosis (4.3 ± 1.6), myasthenia gravis (4.0 ± 1.6) or CIDP (4.3 ± 1.4) also showed higher FSS score. When 2000 stimuli were delivered at 20 Hz in s-SFEMG, conduction block of single motor axons developed in 46% of patients with SMA/SBMA, and 40% of CIDP patients, but in none of the normal controls. SMA/SBMA patients frequently suffer from disabling fatigue presumably caused by ADCB induced by voluntary activity. ADCB could be the mechanism for muscle fatigue in chronic lower motor neuron diseases. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Neuromuscular adaptations to training, injury and passive interventions: implications for running economy.

    Science.gov (United States)

    Bonacci, Jason; Chapman, Andrew; Blanch, Peter; Vicenzino, Bill

    2009-01-01

    has also been observed. Muscle activity during running after cycling has yet to be fully investigated, and to date, the effect of alterations in muscle coordination on running economy is largely unknown. Stretching, which is another mode of training, may induce acute neuromuscular effects but does not appear to alter running economy. There are also factors other than training structure that may influence running economy and neuromuscular adaptations. For example, passive interventions such as shoes and in-shoe orthoses, as well as the presence of musculoskeletal injury, may be considered important modulators of neuromuscular control and run performance. Alterations in muscle activity and running economy have been reported with different shoes and in-shoe orthoses; however, these changes appear to be subject-specific and non-systematic. Musculoskeletal injury has been associated with modifications in lower limb neuromuscular control, which may persist well after an athlete has returned to activity. The influence of changes in neuromuscular control as a result of injury on running economy has yet to be examined thoroughly, and should be considered in future experimental design and training analysis.

  7. Neuromuscular rate of force development deficit in Parkinson disease.

    Science.gov (United States)

    Hammond, Kelley G; Pfeiffer, Ronald F; LeDoux, Mark S; Schilling, Brian K

    2017-06-01

    Bradykinesia and reduced neuromuscular force exist in Parkinson disease. The interpolated twitch technique has been used to evaluate central versus peripheral manifestations of neuromuscular strength in healthy, aging, and athletic populations, as well as moderate to advanced Parkinson disease, but this method has not been used in mild Parkinson disease. This study aimed to evaluate quadriceps femoris rate of force development and quantify potential central and peripheral activation deficits in individuals with Parkinson disease. Nine persons with mild Parkinson Disease (Hoehn & Yahr≤2, Unified Parkinson Disease Rating Scale total score=mean 19.1 (SD 5.0)) and eight age-matched controls were recruited in a cross-sectional investigation. Quadriceps femoris voluntary and stimulated maximal force and rate of force development were evaluated using the interpolated twitch technique. Thirteen participants satisfactorily completed the protocol. Individuals with early Parkinson disease (n=7) had significantly slower voluntary rate of force development (p=0.008; d=1.97) and rate of force development ratio (p=0.004; d=2.18) than controls (n=6). No significant differences were found between groups for all other variables. Persons with mild-to-moderate Parkinson disease display disparities in rate of force development, even without deficits in maximal force. The inability to produce force at a rate comparable to controls is likely a downstream effect of central dysfunction of the motor pathway in Parkinson disease. Copyright © 2017. Published by Elsevier Ltd.

  8. Effect of salbutamol on neuromuscular function in endurance athletes.

    Science.gov (United States)

    Decorte, Nicolas; Bachasson, Damien; Guinot, Michel; Flore, Patrice; Levy, Patrick; Verges, Samuel; Wuyam, Bernard

    2013-10-01

    The potential ergogenic effects of therapeutic inhaled salbutamol doses in endurance athletes have been controversially discussed for decades. We hypothesized that salbutamol inhalation may increase peripheral muscle contractility, reduce fatigability, and improve force recovery after a localized exercise in endurance athletes. Eleven healthy, nonasthmatic male athletes with high aerobic capacities were recruited to be compared in a double-blinded, randomized crossover study of two dose levels of salbutamol (200 and 800 μg) and a placebo administered by inhalation before a quadriceps fatigue test. Subjects performed an incremental exercise protocol consisting in sets of 10 intermittent isometric contractions starting at 20% of maximum voluntary contraction (MVC) with 10% MVC increment until exhaustion. Femoral nerve magnetic stimulation was used during and after MVC to evaluate neuromuscular fatigue after each set, at task failure, and after 10 and 30 min of recovery. Initial MVC and evoked muscular responses were not modified with salbutamol (P > 0.05). The total number of submaximal contractions until task failure significantly differed between treatments (placebo, 72 ± 7; 200 µg, 78 ± 8; and 800 µg, 82 ± 7; P 0.05). Voluntary activation was unaffected by the fatiguing task and treatments (P > 0.05). Supratherapeutic inhaled doses of β2-agonists increased quadriceps endurance during an incremental and localized fatiguing task in healthy endurance-trained athletes without significant effect on neuromuscular fatigue. Further studies are needed to clarify the underlying mechanisms.

  9. Broadening of neutralization activity to directly block a dominant antibody-driven SARS-coronavirus evolution pathway.

    Directory of Open Access Journals (Sweden)

    Jianhua Sui

    2008-11-01

    Full Text Available Phylogenetic analyses have provided strong evidence that amino acid changes in spike (S protein of animal and human SARS coronaviruses (SARS-CoVs during and between two zoonotic transfers (2002/03 and 2003/04 are the result of positive selection. While several studies support that some amino acid changes between animal and human viruses are the result of inter-species adaptation, the role of neutralizing antibodies (nAbs in driving SARS-CoV evolution, particularly during intra-species transmission, is unknown. A detailed examination of SARS-CoV infected animal and human convalescent sera could provide evidence of nAb pressure which, if found, may lead to strategies to effectively block virus evolution pathways by broadening the activity of nAbs. Here we show, by focusing on a dominant neutralization epitope, that contemporaneous- and cross-strain nAb responses against SARS-CoV spike protein exist during natural infection. In vitro immune pressure on this epitope using 2002/03 strain-specific nAb 80R recapitulated a dominant escape mutation that was present in all 2003/04 animal and human viruses. Strategies to block this nAb escape/naturally occurring evolution pathway by generating broad nAbs (BnAbs with activity against 80R escape mutants and both 2002/03 and 2003/04 strains were explored. Structure-based amino acid changes in an activation-induced cytidine deaminase (AID "hot spot" in a light chain CDR (complementarity determining region alone, introduced through shuffling of naturally occurring non-immune human VL chain repertoire or by targeted mutagenesis, were successful in generating these BnAbs. These results demonstrate that nAb-mediated immune pressure is likely a driving force for positive selection during intra-species transmission of SARS-CoV. Somatic hypermutation (SHM of a single VL CDR can markedly broaden the activity of a strain-specific nAb. The strategies investigated in this study, in particular the use of structural

  10. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    Science.gov (United States)

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  11. Neuromuscular Exercise Post Partial Medial Meniscectomy

    DEFF Research Database (Denmark)

    Hall, Michelle; Hinman, Rana S; Wrigley, Tim V

    2015-01-01

    PURPOSE: To evaluate the effects of a 12-week, home-based, physiotherapist-guided neuromuscular exercise program on the knee adduction moment (an indicator of mediolateral knee load distribution) in people with a medial arthroscopic partial meniscectomy within the past 3-12 months. METHODS......: An assessor-blinded, randomised controlled trial including people aged 30-50 years with no to mild pain following medial arthroscopic partial meniscectomy was conducted. Participants were randomly allocated to either a 12-week neuromuscular exercise program that targeted neutral lower limb alignment...... or a control group with no exercise. The exercise program included eight individual sessions with one of seven physiotherapists in private clinics, together with home exercises. Primary outcomes were the peak external knee adduction moment during normal pace walking and during a one-leg sit-to-stand. Secondary...

  12. Enaminones as Building Blocks for the Synthesis of Substituted Pyrazoles with Antitumor and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sayed M. Riyadh

    2011-02-01

    Full Text Available Novel N-arylpyrazole-containing enaminones 2a,b were synthesized as key intermediates. Reactions of 2a,b with active methylene compounds in acetic acid in the presence of ammonium acetate afforded substituted pyridine derivatives 5a-d. Enaminones 2a,b also reacted with aliphatic amines such as hydrazine hydrate and hydroxylamine hydrochloride to give bipyrazoles 8a,b and pyrazolylisoxazoles 9a,b, respectively. On the other hand, treatment of 2a,b with a heterocyclic amine and its diazonium salt yielded the respective [1,2,4]triazolo[4,3-a]pyrimidines 12a,b and pyrazolylcarbonyl[1,2,4]triazolo-[3,4-c][1,2,4]triazines 14a,b. Moreover, 2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one (17 was prepared via reaction of enaminone 2a with aminothiouracil (15. Cyclocondensation of 17 with the appropriate hydrazonoyl chlorides 18a-c gave the corresponding pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-ones 21a-c. The cytotoxic effects of compounds 2b, 14a and 17 against human breast cell line (MCF-7 and liver carcinoma cell line (HEPG2 were screened and in both lines they showed inhibition effects comparable to those of 5-fluorouracil, used as a standard. The antimicrobial activity of some products chosen as representative examples was also evaluated.

  13. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Directory of Open Access Journals (Sweden)

    Shirley Luckhart

    2013-02-01

    Full Text Available The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d, energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial

  14. Neuromuscular performance in the hip joint of elderly fallers and non-fallers.

    Science.gov (United States)

    Morcelli, Mary Hellen; LaRoche, Dain Patrick; Crozara, Luciano Fernandes; Marques, Nise Ribeiro; Hallal, Camilla Zamfolini; Rossi, Denise Martineli; Gonçalves, Mauro; Navega, Marcelo Tavella

    2016-06-01

    Low strength and neuromuscular activation of the lower limbs have been associated with falls making it an important predictor of functional status in the elderly. To compare the rate of neuromuscular activation, rate of torque development, peak torque and reaction time between young and elderly fallers and non-fallers for hip flexion and extension. We evaluated 44 elderly people who were divided into two groups: elderly fallers (n = 20) and elderly non-fallers (n = 24); and 18 young people. The subjects performed three isometric hip flexion and extension contractions. Electromyography data were collected for the rectus femoris, gluteus maximus and biceps femoris muscles. The elderly had 49 % lower peak torque and 68 % lower rate of torque development for hip extension, 28 % lower rate of neuromuscular activation for gluteus maximus and 38 % lower rate of neuromuscular activation for biceps femoris than the young (p neuromuscular for rectus femoris than the young (p < 0.05). The elderly fallers showed consistent trend toward a lower rate of torque development than elderly non-fallers for hip extension at 50 ms (29 %, p = 0.298, d = 0.76) and 100 ms (26 %, p = 0.452, d = 0.68).The motor time was 30 % slower for gluteus maximus, 42 % slower for rectus femoris and 50 % slower for biceps femoris in the elderly than in the young. Impaired capacity of the elderly, especially fallers, may be explained by neural and morphological aspects of the muscles. The process of senescence affects the muscle function of the hip flexion and extension, and falls may be related to lower rate of torque development and slower motor time of biceps femoris.

  15. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kazuyo [Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD (United States); Adhikari, Rewati [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Yamada, Kenneth M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2015-08-14

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection.

  16. Hemin activation of innate cellular response blocks human immunodeficiency virus type-1-induced osteoclastogenesis

    International Nuclear Information System (INIS)

    Takeda, Kazuyo; Adhikari, Rewati; Yamada, Kenneth M.; Dhawan, Subhash

    2015-01-01

    The normal skeletal developmental and homeostatic process termed osteoclastogenesis is exacerbated in numerous pathological conditions and causes excess bone loss. In cancer and HIV-1-infected patients, this disruption of homeostasis results in osteopenia and eventual osteoporesis. Counteracting the factors responsible for these metabolic disorders remains a challenge for preventing or minimizing this co-morbidity associated with these diseases. In this report, we demonstrate that a hemin-induced host protection mechanism not only suppresses HIV-1 associated osteoclastogenesis, but it also exhibits anti-osteoclastogenic activity for non-infected cells. Since the mode of action of hemin is both physiological and pharmacological through induction of heme oxygenase-1 (HO-1), an endogenous host protective response to an FDA-licensed therapeutic used to treat another disease, our study suggests an approach to developing novel, safe and effective therapeutic strategies for treating bone disorders, because hemin administration in humans has previously met required FDA safety standards. - Highlights: • HIV-1 infection induced osteoclastogenesis in primary human macrophages. • Heme oxygenase-1 (HO-1) induction inhibited HIV-1-induced osteoclastogenesis in macrophages. • HO-1 induction suppressed RANKL-enhanced osteoclastogenesis in HIV-1-infected macrophages. • This inverse relationship between HO-1 and HIV-1 pathogenesis may define a novel host defense response against HIV-1 infection

  17. Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors.

    Science.gov (United States)

    Saa, Laura; Grinyte, Ruta; Sánchez-Iglesias, Ana; Liz-Marzán, Luis M; Pavlov, Valeri

    2016-05-04

    The anisotropic morphology of gold nanorods (AuNRs) has been shown to lead to nonuniform ligand distribution and preferential etching through their tips. We have recently demonstrated that this effect can be achieved by biocatalytic oxidation with hydrogen peroxide, catalyzed by the enzyme horseradish peroxidase (HRP). We report here that modification of AuNRs with thiol-containing organic molecules such as glutathione and thiocholine hinders enzymatic AuNR etching. Higher concentrations of thiol-containing molecules in the reaction mixture gradually decrease the rate of enzymatic etching, which can be monitored by UV-vis spectroscopy through changes in the AuNR longitudinal plasmon band. This effect can be applied to develop novel optical assays for acetylcholinesterase (AChE) activity. The biocatalytic hydrolysis of acetylthiocholine by AChE yields thiocholine, which prevents enzymatic AuNR etching in the presence of HRP. Additionally, the same bioassay can be used for the detection of nanomolar concentrations of AChE inhibitors such as paraoxon and galanthamine.

  18. Antitumor activity in RAS-driven tumors by blocking AKT and MEK.

    Science.gov (United States)

    Tolcher, Anthony W; Khan, Khurum; Ong, Michael; Banerji, Udai; Papadimitrakopoulou, Vassiliki; Gandara, David R; Patnaik, Amita; Baird, Richard D; Olmos, David; Garrett, Christopher R; Skolnik, Jeffrey M; Rubin, Eric H; Smith, Paul D; Huang, Pearl; Learoyd, Maria; Shannon, Keith A; Morosky, Anne; Tetteh, Ernestina; Jou, Ying-Ming; Papadopoulos, Kyriakos P; Moreno, Victor; Kaiser, Brianne; Yap, Timothy A; Yan, Li; de Bono, Johann S

    2015-02-15

    KRAS is the most commonly mutated oncogene in human tumors. KRAS-mutant cells may exhibit resistance to the allosteric MEK1/2 inhibitor selumetinib (AZD6244; ARRY-142886) and allosteric AKT inhibitors (such as MK-2206), the combination of which may overcome resistance to both monotherapies. We conducted a dose/schedule-finding study evaluating MK-2206 and selumetinib in patients with advanced treatment-refractory solid tumors. Recommended dosing schedules were defined as MK-2206 at 135 mg weekly and selumetinib at 100 mg once daily. Grade 3 rash was the most common dose-limiting toxicity (DLT); other DLTs included grade 4 lipase increase, grade 3 stomatitis, diarrhea, and fatigue, and grade 3 and grade 2 retinal pigment epithelium detachment. There were no meaningful pharmacokinetic drug-drug interactions. Clinical antitumor activity included RECIST 1.0-confirmed partial responses in non-small cell lung cancer and low-grade ovarian carcinoma. Responses in KRAS-mutant cancers were generally durable. Clinical cotargeting of MEK and AKT signaling may be an important therapeutic strategy in KRAS-driven human malignancies (Trial NCT number NCT01021748). ©2014 American Association for Cancer Research.

  19. Anti-tumour activity in RAS-driven tumours by blocking AKT and MEK

    Science.gov (United States)

    Tolcher, Anthony W.; Khan, Khurum; Ong, Michael; Banerji, Udai; Papadimitrakopoulou, Vassiliki; Gandara, David R.; Patnaik, Amita; Baird, Richard D.; Olmos, David; Garrett, Christopher R.; Skolnik, Jeffrey M.; Rubin, Eric H.; Smith, Paul D.; Huang, Pearl; Learoyd, Maria; Shannon, Keith A.; Morosky, Anne; Tetteh, Ernestina; Jou, Ying-Ming; Papadopoulos, Kyriakos P.; Moreno, Victor; Kaiser, Brianne; Yap, Timothy A.; Yan, Li; de Bono, Johann S.

    2014-01-01

    Purpose KRAS is the most commonly mutated oncogene in human tumours. KRAS-mutant cells may exhibit resistance to the allosteric MEK1/2 inhibitor selumetinib (AZD6244; ARRY-142886) and allosteric AKT inhibitors (such as MK-2206), the combination of which may overcome resistance to both monotherapies. Experimental Design We conducted a dose/schedule-finding study evaluating MK-2206 and selumetinib in patients with advanced treatment-refractory solid tumours. Recommended dosing schedules were defined as MK-2206 135 mg weekly and selumetinib 100 mg once-daily. Results Grade 3 rash was the most common dose-limiting toxicity (DLT); other DLTs included grade 4 lipase increase, grade 3 stomatitis, diarrhoea, and fatigue, and grade 3 and grade 2 retinal pigment epithelium detachment. There were no meaningful pharmacokinetic drug-drug interactions. Clinical anti-tumour activity included RECIST 1.0-confirmed partial responses in non-small cell lung cancer and low-grade ovarian carcinoma. Conclusion Responses in KRAS-mutant cancers were generally durable. Clinical co-targeting of MEK and AKT signalling may be an important therapeutic strategy in KRAS-driven human malignancies (Trial NCT number NCT01021748). PMID:25516890

  20. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion.

    Science.gov (United States)

    Xia, Qin; Wang, Hongfeng; Hao, Zongbing; Fu, Cheng; Hu, Qingsong; Gao, Feng; Ren, Haigang; Chen, Dong; Han, Junhai; Ying, Zheng; Wang, Guanghui

    2016-01-18

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by selective loss of motor neurons in brain and spinal cord. TAR DNA-binding protein 43 (TDP-43) was identified as a major component of disease pathogenesis in ALS, frontotemporal lobar degeneration (FTLD), and other neurodegenerative disease. Despite the fact that TDP-43 is a multi-functional protein involved in RNA processing and a large number of TDP-43 RNA targets have been discovered, the initial toxic effect and the pathogenic mechanism underlying TDP-43-linked neurodegeneration remain elusive. In this study, we found that loss of TDP-43 strongly induced a nuclear translocation of TFEB, the master regulator of lysosomal biogenesis and autophagy, through targeting the mTORC1 key component raptor. This regulation in turn enhanced global gene expressions in the autophagy-lysosome pathway (ALP) and increased autophagosomal and lysosomal biogenesis. However, loss of TDP-43 also impaired the fusion of autophagosomes with lysosomes through dynactin 1 downregulation, leading to accumulation of immature autophagic vesicles and overwhelmed ALP function. Importantly, inhibition of mTORC1 signaling by rapamycin treatment aggravated the neurodegenerative phenotype in a TDP-43-depleted Drosophila model, whereas activation of mTORC1 signaling by PA treatment ameliorated the neurodegenerative phenotype. Taken together, our data indicate that impaired mTORC1 signaling and influenced ALP may contribute to TDP-43-mediated neurodegeneration. © 2015 The Authors.

  1. A Markov computer simulation model of the economics of neuromuscular blockade in patients with acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Chow John L

    2006-03-01

    Full Text Available Abstract Background Management of acute respiratory distress syndrome (ARDS in the intensive care unit (ICU is clinically challenging and costly. Neuromuscular blocking agents may facilitate mechanical ventilation and improve oxygenation, but may result in prolonged recovery of neuromuscular function and acute quadriplegic myopathy syndrome (AQMS. The goal of this study was to address a hypothetical question via computer modeling: Would a reduction in intubation time of 6 hours and/or a reduction in the incidence of AQMS from 25% to 21%, provide enough benefit to justify a drug with an additional expenditure of $267 (the difference in acquisition cost between a generic and brand name neuromuscular blocker? Methods The base case was a 55 year-old man in the ICU with ARDS who receives neuromuscular blockade for 3.5 days. A Markov model was designed with hypothetical patients in 1 of 6 mutually exclusive health states: ICU-intubated, ICU-extubated, hospital ward, long-term care, home, or death, over a period of 6 months. The net monetary benefit was computed. Results Our computer simulation modeling predicted the mean cost for ARDS patients receiving standard care for 6 months to be $62,238 (5% – 95% percentiles $42,259 – $83,766, with an overall 6-month mortality of 39%. Assuming a ceiling ratio of $35,000, even if a drug (that cost $267 more hypothetically reduced AQMS from 25% to 21% and decreased intubation time by 6 hours, the net monetary benefit would only equal $137. Conclusion ARDS patients receiving a neuromuscular blocker have a high mortality, and unpredictable outcome, which results in large variability in costs per case. If a patient dies, there is no benefit to any drug that reduces ventilation time or AQMS incidence. A prospective, randomized pharmacoeconomic study of neuromuscular blockers in the ICU to asses AQMS or intubation times is impractical because of the highly variable clinical course of patients with ARDS.

  2. N-terminal prodomain of Pfs230 synthesized using a cell-free system is sufficient to induce complement-dependent malaria transmission-blocking activity.

    Science.gov (United States)

    Tachibana, Mayumi; Wu, Yimin; Iriko, Hideyuki; Muratova, Olga; MacDonald, Nicholas J; Sattabongkot, Jetsumon; Takeo, Satoru; Otsuki, Hitoshi; Torii, Motomi; Tsuboi, Takafumi

    2011-08-01

    The aim of a malaria transmission-blocking vaccine is to block the development of malaria parasites in the mosquito and thus prevent subsequent infection of the human host. Previous studies have demonstrated that the gametocyte/gamete surface protein Pfs230 can induce transmission-blocking immunity and have evaluated Escherichia coli-produced Pfs230 as a transmission-blocking vaccine candidate. In this study, we used the wheat germ cell-free expression system to produce N-terminal fragments of Pfs230 and evaluated the transmission-blocking activity of antisera raised against the recombinant Pfs230 protein. The rabbit antisera reacted to the surface of cultured gametocytes and gametes of the Plasmodium falciparum NF54 line, recognized the 360-kDa form of parasite-produced Pfs230 by Western blot assay, and reduced the infectivity of NF54 parasites to Anopheles stefensi mosquitoes in the presence of complement in a standard membrane feeding assay. Thus, our data demonstrate that the N-terminal pro domain of Pfs230 is sufficient to induce complement-dependent transmission-blocking activity against P. falciparum.

  3. Combined arm stretch positioning and neuromuscular electrical stimulation during rehabilitation does not improve range of motion, shoulder pain or function in patients after stroke : a randomised trial

    NARCIS (Netherlands)

    de Jong, Lex D.; Dijkstra, Pieter U.; Gerritsen, Johan; Geurts, Alexander C. H.; Postema, Klaas

    2013-01-01

    Question Does static stretch positioning combined with simultaneous neuromuscular electrical stimulation (NMES) in the subacute phase after stroke have beneficial effects on basic arm body functions and activities? Design Multicentre randomised trial with concealed allocation, assessor blinding, and

  4. [Perioperative management of a patient with myotonic dystrophy developing the cardiac symptoms initially prior to the neuromuscular symptoms].

    Science.gov (United States)

    Wake, M; Matsushita, M; Aono, H; Matsumoto, M; Kohri, Y

    1994-08-01

    The authors anesthetized a 48-year-old woman with endometrial cancer and a large ovarian cyst. She developed cardiac failure initially followed by the sick sinus syndrome and A-V block from hypertrophic cardiomyopathy, prior to neuromuscular symptoms. Epidural anesthesia assisted by general anesthesia was carried out safely without intravenous administration of any muscle relaxants. From this experience, it is considered that epidural anesthesia assisted with some other proper methods is suitable for surgery of lower abdomen.

  5. Improving Neuromuscular Monitoring and Reducing Residual Neuromuscular Blockade With E-Learning

    DEFF Research Database (Denmark)

    Thomsen, Jakob Louis Demant; Mathiesen, Ole; Hägi-Pedersen, Daniel

    2017-01-01

    BACKGROUND: Muscle relaxants facilitate endotracheal intubation under general anesthesia and improve surgical conditions. Residual neuromuscular blockade occurs when the patient is still partially paralyzed when awakened after surgery. The condition is associated with subjective discomfort and an......-learning module can increase anesthetists' use of neuromuscular monitoring. TRIAL REGISTRATION: Clinicaltrials.gov NCT02925143; https://clinicaltrials.gov/ct2/show/NCT02925143 (Archived by WebCite® at http://www.webcitation.org/6s50iTV2x)....

  6. The reverse-mode NCX1 activity inhibitor KB-R7943 promotes prostate cancer cell death by activating the JNK pathway and blocking autophagic flux.

    Science.gov (United States)

    Long, Zhou; Chen, BaiJun; Liu, Qian; Zhao, Jiang; Yang, ZhenXing; Dong, XingYou; Xia, LiuBin; Huang, ShengQuan; Hu, XiaoYan; Song, Bo; Li, LongKun

    2016-07-05

    We explored the effects of KB-R7943, an inhibitor of reverse-mode NCX1 activity, in prostate cancer (PCa). NCX1 was overexpressed in PCa tissues and cell lines, and higher NCX1 levels were associated higher PCa grades. At concentrations greater than 10 μM, KB-R7943 dose-dependently decreased PC3 and LNCaP cell viability. KB-R7943 also increased cell cycle G1/S phase arrest and induced apoptosis in PC3 cells. KB-R7943 increased autophagosome accumulation in PCa cells as indicated by increases in LC3-II levels and eGFP-LC3 puncta. Combined treatment with chloroquine (CQ) and KB-R7943 decreased P62 and increased LC3-II protein levels in PC3 cells, indicating that KB-R7943 blocked autophagic flux. KB-R7943 induced autophagosome accumulation mainly by downregulating the PI3K/AKT/m-TOR pathway and upregulating the JNK pathway. In xenograft experiments, KB-R7943 inhibited tumor growth. Combined treatment with KB-R7943 and an autophagy inhibitor inhibited growth and increased apoptosis. These results indicate that KB-R7943 promotes cell death in PCa by activating the JNK signaling pathway and blocking autophagic flux.

  7. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide.

    Science.gov (United States)

    Yakimov, Alexander; Pobegalov, Georgii; Bakhlanova, Irina; Khodorkovskii, Mikhail; Petukhov, Michael; Baitin, Dmitry

    2017-09-19

    The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.

    Science.gov (United States)

    Pan, Dongmei; Li, Nan; Liu, Yanyan; Xu, Qiang; Liu, Qingping; You, Yanting; Wei, Zhenquan; Jiang, Yubao; Liu, Minying; Guo, Tianfeng; Cai, Xudong; Liu, Xiaobao; Wang, Qiang; Liu, Mingling; Lei, Xujie; Zhang, Mingying; Zhao, Xiaoshan; Lin, Changsong

    2018-02-01

    In rheumatoid arthritis (RA), fibroblast-like synoviocytes (FLSs) play an essential role in cartilage destruction. Aggressive migration and invasion by FLSs significantly affect RA pathology. Kaempferol has been shown to inhibit cancer cell migration and invasion. However, the effects of kaempferol on RA FLSs have not been investigated. Our study aimed to determine the effects of kaempferol on RA both in vitro and in vivo. In vitro, cell migration and invasion were measured using scratch assays and the Boyden chamber method, respectively. The cytoskeletal reorganization of RA FLSs was evaluated by immunofluorescence staining. Matrix metalloproteinase (MMP) levels were measured by real-time PCR, and protein expression levels were measured by western blotting. In vivo, the effects of kaempferol were evaluated in mice with CIA. The results showed that kaempferol reduced migration, invasion and MMP expression in RA FLSs. In addition, we demonstrated that kaempferol inhibited reorganization of the actin cytoskeleton during cell migration. Moreover, kaempferol dramatically suppressed tumor necrosis factor (TNF)-α-induced MAPK activation without affecting the expression of TNF-α receptors. We also demonstrated that kaempferol attenuated the severity of arthritis in mice with CIA. Taken together, these results suggested that kaempferol inhibits the migration and invasion of FLSs in RA by blocking MAPK pathway activation without affecting the expression of TNF-α receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comparison of pancuronium and vecuronium for fetal neuromuscular blockade during invasive procedures.

    Science.gov (United States)

    Watson, W J; Atchison, S R; Harlass, F E

    1996-01-01

    Neuromuscular blocking agents, used to arrest fetal motion for invasive intrauterine procedures, may cause temporary fetal heart rate changes. After 21 invasive procedures using either pancuronium bromide or vecuronium bromide, post-procedure fetal heart rate tracings were retrospectively compared. Pancuronium was associated with an increased fetal heart rate and decreased beat-to-beat variability for 2.5 hours after its use, whereas vecuronium caused no fetal heart rate changes. Vecuronium bromide offers advantages over pancuronium, because the decreased effect on the fetal heart allows better assessment of fetal well-being immediately following invasive intrauterine procedures.

  10. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    Karen K Y Ling

    2010-11-01

    Full Text Available Spinal muscular atrophy (SMA is a major genetic cause of death in childhood characterized by marked muscle weakness. To investigate mechanisms underlying motor impairment in SMA, we examined the spinal and neuromuscular circuitry governing hindlimb ambulatory behavior in SMA model mice (SMNΔ7. In the neuromuscular circuitry, we found that nearly all neuromuscular junctions (NMJs in hindlimb muscles of SMNΔ7 mice remained fully innervated at the disease end stage and were capable of eliciting muscle contraction, despite a modest reduction in quantal content. In the spinal circuitry, we observed a ∼28% loss of synapses onto spinal motoneurons in the lateral column of lumbar segments 3-5, and a significant reduction in proprioceptive sensory neurons, which may contribute to the 50% reduction in vesicular glutamate transporter 1(VGLUT1-positive synapses onto SMNΔ7 motoneurons. In addition, there was an increase in the association of activated microglia with SMNΔ7 motoneurons. Together, our results present a novel concept that synaptic defects occur at multiple levels of the spinal and neuromuscular circuitry in SMNΔ7 mice, and that proprioceptive spinal synapses could be a potential target for SMA therapy.

  11. Whole-body vibration does not influence knee joint neuromuscular function or proprioception.

    Science.gov (United States)

    Hannah, R; Minshull, C; Folland, J P

    2013-02-01

    This study examined the acute effects of whole-body vibration (WBV) on knee joint position sense and indices of neuromuscular function, specifically strength, electromechanical delay and the rate of force development. Electromyography and electrically evoked contractions were used to investigate neural and contractile responses to WBV. Fourteen healthy males completed two treatment conditions on separate occasions: (1) 5 × 1 min of unilateral isometric squat exercise on a synchronous vibrating platform [30 Hz, 4 mm peak-to-peak amplitude] (WBV) and (2) a control condition (CON) of the same exercise without WBV. Knee joint position sense (joint angle replication task) and quadriceps neuromuscular function were assessed pre-, immediately-post and 1 h post-exercise. During maximum voluntary knee extensions, the peak force (PF(V)), electromechanical delay (EMD(V)), rate of force development (RFD(V)) and EMG of the quadriceps were measured. Twitch contractions of the knee extensors were electrically evoked to assess EMD(E) and RFD(E). The results showed no influence of WBV on knee joint position, EMD(V), PF(V) and RFD(V) during the initial 50, 100 or 150 ms of contraction. Similarly, electrically evoked neuromuscular function and neural activation remained unchanged following the vibration exercise. A single session of unilateral WBV did not influence any indices of thigh muscle neuromuscular performance or knee joint proprioception. © 2011 John Wiley & Sons A/S.

  12. Detection block

    International Nuclear Information System (INIS)

    Bezak, A.

    1987-01-01

    A diagram is given of a detection block used for monitoring burnup of nuclear reactor fuel. A shielding block is an important part of the detection block. It stabilizes the fuel assembly in the fixing hole in front of a collimator where a suitable gamma beam is defined for gamma spectrometry determination of fuel burnup. The detector case and a neutron source case are placed on opposite sides of the fixing hole. For neutron measurement for which the water in the tank is used as a moderator, the neutron detector-fuel assembly configuration is selected such that neutrons from spontaneous fission and neutrons induced with the neutron source can both be measured. The patented design of the detection block permits longitudinal travel and rotation of the fuel assembly to any position, and thus more reliable determination of nuclear fuel burnup. (E.S.). 1 fig

  13. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    Science.gov (United States)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which

  14. Fatiguing exercise intensity influences the relationship between parameters reflecting neuromuscular function and postural control variables.

    Directory of Open Access Journals (Sweden)

    Sébastien Boyas

    Full Text Available The purpose of this study was to investigate the influence of fatiguing exercise intensity on the nature and extent of fatigue-induced changes in neuromuscular function and postural stability in quiet standing. We also explored the contribution of selected neuromuscular mechanisms involved in force production to postural stability impairment observed following fatigue using an approach based on multivariate regressions. Eighteen young subjects performed 30-s postural trials on one leg with their eyes closed. Postural trials were performed before and after fatiguing exercises of different intensities: 25, 50 and 75% of maximal isometric plantarflexor torque. Fatiguing exercises consisted of sustaining a plantarflexor isometric contraction at the target intensity until task failure. Maximal isometric plantarflexor torque, electromyographic activity of plantarflexor and dorsiflexor muscles, activation level (twitch interpolation technique and twitch contractile properties of plantarflexors were used to characterize neuromuscular function. The 25% exercise was associated with greater central fatigue whereas the 50 and 75% exercises involved mostly peripheral fatigue. However, all fatiguing exercises induced similar alterations in postural stability, which was unexpected considering previous literature. Stepwise multiple regression analyses showed that fatigue-related changes in selected parameters related to neuromuscular function could explain more than half (0.51≤R(2≤0.82 of the changes in postural variables for the 25% exercise. On the other hand, regression models were less predictive (0.17≤R(2≤0.73 for the 50 and 75% exercises. This study suggests that fatiguing exercise intensity does not influence the extent of postural stability impairment, but does influence the type of fatigue induced and the neuromuscular function predictors explaining changes in postural variables.

  15. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  16. The FRJ-1 (MERLIN) research reactor: its main activity inventory has been removed by successful demolition of the reactor block

    International Nuclear Information System (INIS)

    Stahn, B.; Printz, R.; Matela, K.; Zehbe, C.; Poeppinghaus, J.; Cremer, J.

    2004-01-01

    The FRJ-1 (MERLIN) research reactor was decommissioned in 1985 after twenty-three years of operation. Demolition of the plant was begun in 1996. The article contains a survey of the demolition steps carried out so far within the framework of three partial permits. The main activity is the demolition of the reactor core structures as a precondition for subsequent measures to ensure clearance measurements of the building. The core structures are demolished which were exposed to high neutron fluxes during reactor operation and now show the highest activity and dose rate levels, except for the core internals. For demolition and disassembly of the metal structures in this part of the plant, the tools specially designed and made include a remotely operated sawing system and a pipe cutting system for internal segmentation of the beam lines. The universal demolition tool for use also above and beyond the concrete structures has been found to be a remotely controlled electrohydraulic demolition shovel. Spreading contamination in the course of the demolition work was avoided. One major reason for this success was the fact that no major airborne contamination existed at any time as a consequence of the quality of the material demolished and also of the consistent use of technical tools. While the reactor block was being demolished, an application for clearance measurement of the reactor hall and subsequent release from the scope of the Atomic Energy Act was filed as early as in mid-2003. The fourth partial permit covering these activities is expected to be issued in the spring of 2004. (orig.)

  17. Anormalidades neuromuscular no desuso, senilidade e caquexia Neuromuscular abnormalities in disuse, cachexia and ageing

    Directory of Open Access Journals (Sweden)

    João Aris Kouyoumdjian

    1993-09-01

    Full Text Available É feita revisão de literatura sobre as principais alterações do sistema neuromuscular no desuso, senilidade e caquexia no ser humano e em modelos animais. A diminuição do diâmetro das fibras musculares após período de inatividade/imobilidade (desuso deve-se à perda de miofibrilas periféricas não ocorrendo formação de core-targetóides ou diminuição da atividade da miofosforilase, próprias da desnervação; mantêm-se a liberação espontânea de acetilcolina e fatores tróficos na junção mio-neural; em geral são afetadas preferencialmente fibras II, que podem assumir forma angular. Existe um processo contínuo intrínseco de envelhecimento de nervos e músculos, com desnervação e reinervação lenta e progressiva; o número de unidades motoras se reduz após 60 anos, sem ocorrência de atividade elétrica desnervatória; a quantidade de acetilcolina liberada nos neurônios terminais e a capacidade máxima de utilização de oxigênio estão diminuídas; a redução da capacidade oxidativa mitocondrial pode explicar o aumento de fibras I, mantendo-se o equilíbrio energético. Após poucas semanas de caquexia as fibras musculares podem ter o diâmetro reduzido em 30%, essa redução ocorre em ordem decrescente nos músculos dos membros inferiores, superiores e tronco; existe atrofia II preferencial com fibras angulares ocasionais, redução de RNA/síntese proteica, mantendo-se DNA normal.Cachexia, ageing and disuse and their effects on the human and animals neuromuscular system are reviewed. Disuse induces reduction of muscle fibers (mainly II diameter with peripheral myofibrils lost; there is no core-targetoid or even reduction on myophosphorilase activity, both typical of denervation; the acetylcholine spontaneous release and trophic factors on myoneural junction are maintained; muscle fibers could change to angular shape. Ageing affects nerve and muscle by a continuous and progressive process of denervation and reinner

  18. NEUROMUSCULAR CONTROL IN LUMBAR DISORDERS

    Directory of Open Access Journals (Sweden)

    Ville Leinonen

    2004-03-01

    Full Text Available Impaired motor and sensory functions have been associated with low back pain (LBP. This includes disturbances in a wide range of sensorimotor control e.g. sensory dysfunctions, impaired postural responses and psychomotor control. However, the physiological mechanisms, clinical relevance and characteristics of these findings in different spinal pathologies require further clarification. The purposes of this study were to investigate postural control, lumbar muscle function, movement perception and associations between these findings in healthy volunteers (n=35, patients with lumbar disc herniation (n=20 and lumbar spinal stenosis (LSS, n=26. Paraspinal muscle responses for sudden upper limb loading and muscle activation during flexion-extension movement and the lumbar endurance test were measured by surface electromyography (EMG. Postural stability was measured on a force platform during two- and one-footed standing. Lumbar movement perception was assessed in a motorised trunk rotation unit in the seated position. In addition, measurements of motor-(MEP and somatosensory evoked potentials (SEP and needle EMG examination of lumbar multifidus muscles were performed in the LSS patients. Clinical and questionnaire data were also recorded. A short latency paraspinal muscle response (~50 ms for sudden upper limb loading was observed. The latency of the response was shortened by expectation (p=0.017. The response latency for unexpected loading was similar in healthy persons and disc herniation patients but the latency was not shortened by expectation in the patients (p = 0.014. Also impaired postural control (p < 0.05 and lumbar movement perception (p = 0.012 were observed in disc herniation patients. The impaired lumbar movement perception (p=0.054 and anticipatory muscle activation (p = 0.043 tended to be restored after successful surgery but postural control had still not recovered after 3 months of follow-up. The majority of LSS patients were unable

  19. Block-copolymer assisted synthesis of arrays of metal nanoparticles and their catalytic activities for the growth of SWNTs

    International Nuclear Information System (INIS)

    Bhaviripudi, Sreekar; Reina, Alfonso; Qi, Jifa; Kong, Jing; Belcher, Angela M

    2006-01-01

    Block copolymer micellar templates were used for the controlled synthesis of large arrays of mono-metallic (Fe, Co, Ni, Mo) and bi-metallic (Fe-Mo) nanoparticles with average diameters ranging from 1 to 4 nm and the distance between the nanoparticles ranging from 40 to 45 nm. XPS data reveal the presence of mono-metallic nanoparticles in their oxidized states. These uniform arrays of nanoparticles serve as an excellent tool to investigate the catalytic effect of different metal/metal oxide nanoparticles for the growth of carbon nanotubes, and in this work, they were used to investigate the growth of single-walled carbon nanotubes with the chemical vapour deposition (CVD) process, using both ethanol and hydrocarbon (methane + ethylene) gases as carbon sources. The periodicity and the arrangement of nanoparticles were unaffected even at high growth temperatures, indicating that nanoparticle agglomeration on the Si substrate does not take place during growth. AFM and SEM results reveal uniform growth of nanotubes with diameters smaller than the initial size of the catalyst nanoparticles. The Fe, Co and Ni nanoparticles all serve as effective catalysts for nanotube growth with both types of carbon feed stock, and Co and Ni give rise to a relatively higher yield than Fe. The catalytic activity of Fe and bi-metallic Fe-Mo nanoparticles of similar size and identical densities using ethanol CVD are also compared

  20. Japanese encephalitis virus non-coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3.

    Science.gov (United States)

    Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin

    2013-09-27

    Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration.

    Science.gov (United States)

    Jaster, Henrique; Arend, Giordana Demaman; Rezzadori, Katia; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Petrus, José Carlos Cunha

    2018-02-01

    Strawberry juice was concentrated using block freeze concentration process. The concentrate was used to produce two yogurts with different concentrations of cryoconcentrated strawberry pulp (15% and 30%). Total lactic acid bacteria count, physicochemical and rheological properties was evaluated during storage (7days) for all yogurts. Also, the beverages produced were compared with two commercial trademarks. It was observed that the total lactic acid bacteria count remained higher than 10 8 CFU·mL -1 during the storage time for all beverages studied. The viscosity of the yogurts decreased when the ratio of strawberry cryoconcentrate was increased. The Power Law model was successfully applied to describe the flow of the yogurts, which had a thixotropic behaviour. The incorporation of the cryoconcentrated strawberry pulp in the yogurt resulted in a product with 3-fold more anthocyanins content and antioxidant activity. The enrichment of natural yogurt with strawberry cryoconcentrated pulp proved to be effective in the production of a beverage with higher nutritional characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Neuromuscular Manifestations of West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    A. Arturo eLeis

    2012-03-01

    Full Text Available The most common neuromuscular manifestation of West Nile virus (WNV infection is a poliomyelitis syndrome with asymmetric paralysis variably involving one (monoparesis to four limbs (quadriparesis, with or without brainstem involvement and respiratory failure. This syndrome of acute flaccid paralysis may occur without overt fever or meningoencephalitis. Although involvement of anterior horn cells in the spinal cord and motor neurons in the brainstem are the major sites of pathology responsible for neuromuscular signs, inflammation also may involve skeletal or cardiac muscle (myositis, myocarditis, motor axons (polyradiculitis, peripheral nerve (Guillain-Barré syndrome, brachial plexopathy. In addition, involvement of spinal sympathetic neurons and ganglia provides a plausible explanation for autonomic instability seen in some patients. Many patients also experience prolonged subjective generalized weakness and disabling fatigue. Despite recent evidence that WNV may persist long term in the central nervous system or periphery in animals, the evidence in humans is controversial. WNV persistence would be of great concern in immunosuppressed patients or in those with prolonged or recurrent symptoms. Support for the contention that WNV can lead to autoimmune disease arises from reports of patients presenting with various neuromuscular diseases that presumably involve autoimmune mechanisms (GBS, other demyelinating neu¬ropathies, myasthenia gravis, brachial plexopathies, stiff-person syndrome, and delayed or recurrent symptoms. Although there is no specific treatment or vaccine currently approved in humans, and the standard remains supportive care, drugs that can alter the cascade of immunobiochemical events leading to neuronal death may be potentially useful (high-dose corticosteroids, interferon preparations, and intravenous immune globulin containing WNV-specific antibodies. Human experience with these agents seems promising based on anecdotal

  3. Acute neuromuscular weakness associated with dengue infection

    Directory of Open Access Journals (Sweden)

    Harmanjit Singh Hira

    2012-01-01

    Full Text Available Background: Dengue infections may present with neurological complications. Whether these are due to neuromuscular disease or electrolyte imbalance is unclear. Materials and Methods: Eighty-eight patients of dengue fever required hospitalization during epidemic in year 2010. Twelve of them presented with acute neuromuscular weakness. We enrolled them for study. Diagnosis of dengue infection based on clinical profile of patients, positive serum IgM ELISA, NS1 antigen, and sero-typing. Complete hemogram, kidney and liver functions, serum electrolytes, and creatine phosphokinase (CPK were tested. In addition, two patients underwent nerve conduction velocity (NCV test and electromyography. Results: Twelve patients were included in the present study. Their age was between 18 and 34 years. Fever, myalgia, and motor weakness of limbs were most common presenting symptoms. Motor weakness developed on 2 nd to 4 th day of illness in 11 of 12 patients. In one patient, it developed on 10 th day of illness. Ten of 12 showed hypokalemia. One was of Guillain-Barré syndrome and other suffered from myositis; they underwent NCV and electromyography. Serum CPK and SGOT raised in 8 out of 12 patients. CPK of patient of myositis was 5098 IU. All of 12 patients had thrombocytopenia. WBC was in normal range. Dengue virus was isolated in three patients, and it was of serotype 1. CSF was normal in all. Within 24 hours, those with hypokalemia recovered by potassium correction. Conclusions: It was concluded that the dengue virus infection led to acute neuromuscular weakness because of hypokalemia, myositis, and Guillain-Barré syndrome. It was suggested to look for presence of hypokalemia in such patients.

  4. Medical back belt with integrated neuromuscular electrical stimulation

    NARCIS (Netherlands)

    Bottenberg, E. (Eliza); Brinks, G.J. (Ger); Hesse, J. (Jenny)

    2014-01-01

    The medical back belt with integrated neuromuscular electrical stimulation is anorthopedic device, which has two main functions. The first function is to stimulate the backmuscles by using a neuromuscular electrical stimulation device that releases regular,electrical impulses. The second function of

  5. Recent achievements in restorative neurology: Progressive neuromuscular diseases

    International Nuclear Information System (INIS)

    Dimitrijevic, M.R.; Kakulas, B.A.; Vrbova, G.

    1986-01-01

    This book contains 27 chapters. Some of the chapter titles are: Computed Tomography of Muscles in Neuromuscular Disease; Mapping the Genes for Muscular Dystrophy; Trophic Factors and Motor Neuron Development; Size of Motor Units and Firing Rate in Muscular Dystrophy; Restorative Possibilities in Relation to the Pathology of Progressive Neuromuscular Disease; and An Approach to the Pathogenesis of some Congenital Myopathies

  6. S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction.

    Science.gov (United States)

    Montagna, Costanza; Di Giacomo, Giuseppina; Rizza, Salvatore; Cardaci, Simone; Ferraro, Elisabetta; Grumati, Paolo; De Zio, Daniela; Maiani, Emiliano; Muscoli, Carolina; Lauro, Filomena; Ilari, Sara; Bernardini, Sergio; Cannata, Stefano; Gargioli, Cesare; Ciriolo, Maria R; Cecconi, Francesco; Bonaldo, Paolo; Filomeni, Giuseppe

    2014-08-01

    Nitric oxide (NO) production is implicated in muscle contraction, growth and atrophy, and in the onset of neuropathy. However, many aspects of the mechanism of action of NO are not yet clarified, mainly regarding its role in muscle wasting. Notably, whether NO production-associated neuromuscular atrophy depends on tyrosine nitration or S-nitrosothiols (SNOs) formation is still a matter of debate. Here, we aim at assessing this issue by characterizing the neuromuscular phenotype of S-nitrosoglutathione reductase-null (GSNOR-KO) mice that maintain the capability to produce NO, but are unable to reduce SNOs. We demonstrate that, without any sign of protein nitration, young GSNOR-KO mice show neuromuscular atrophy due to loss of muscle mass, reduced fiber size, and neuropathic behavior. In particular, GSNOR-KO mice show a significant decrease in nerve axon number, with the myelin sheath appearing disorganized and reduced, leading to a dramatic development of a neuropathic phenotype. Mitochondria appear fragmented and depolarized in GSNOR-KO myofibers and myotubes, conditions that are reverted by N-acetylcysteine treatment. Nevertheless, although atrogene transcription is induced, and bulk autophagy activated, no removal of damaged mitochondria is observed. These events, alongside basal increase of apoptotic markers, contribute to persistence of a neuropathic and myopathic state. Our study provides the first evidence that GSNOR deficiency, which affects exclusively SNOs reduction without altering nitrotyrosine levels, results in a clinically relevant neuromuscular phenotype. These findings provide novel insights into the involvement of GSNOR and S-nitrosylation in neuromuscular atrophy and neuropathic pain that are associated with pathological states; for example, diabetes and cancer.

  7. Free fatty acids induce ER stress and block antiviral activity of interferon alpha against hepatitis C virus in cell culture

    Directory of Open Access Journals (Sweden)

    Gunduz Feyza

    2012-08-01

    Full Text Available Abstract Background Hepatic steatosis is recognized as a major risk factor for liver disease progression and impaired response to interferon based therapy in chronic hepatitis C (CHC patients. The mechanism of response to interferon-alpha (IFN-α therapy under the condition of hepatic steatosis is unexplored. We investigated the effect of hepatocellular steatosis on hepatitis C virus (HCV replication and IFN-α antiviral response in a cell culture model. Methods Sub-genomic replicon (S3-GFP and HCV infected Huh-7.5 cells were cultured with a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in these cells was visualized by Nile red staining and electron microscopy then quantified by microfluorometry. The effect of FFA treatment on HCV replication and IFN-α antiviral response was measured by flow cytometric analysis, Renilla luciferase activity, and real-time RT-PCR. Results FFA treatment induced dose dependent hepatocellular steatosis and lipid droplet accumulation in the HCV replicon cells was confirmed by Nile red staining, microfluorometry, and by electron microscopy. Intracellular fat accumulation supports replication more in the persistently HCV infected culture than in the sub-genomic replicon (S3-GFP cell line. FFA treatment also partially blocked IFN-α response and viral clearance by reducing the phosphorylation of Stat1 and Stat2 dependent IFN-β promoter activation. We show that FFA treatment induces endoplasmic reticulum (ER stress response and down regulates the IFNAR1 chain of the type I IFN receptor leading to defective Jak-Stat signaling and impaired antiviral response. Conclusion These results suggest that intracellular fat accumulation in HCV cell culture induces ER stress, defective Jak-Stat signaling, and attenuates the antiviral response, thus providing an explanation to the clinical observation regarding how hepatocellular steatosis influences IFN

  8. Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction.

    Science.gov (United States)

    Wu, Min; Dumalska, Iryna; Morozova, Elena; van den Pol, Anthony; Alreja, Meenakshi

    2009-10-06

    A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.

  9. Effects of six weeks of resistance exercise with reciprocal contractions on knee extensors neuromuscular performance : Randomized controlled trial

    NARCIS (Netherlands)

    Cardoso, Euler; Bottaro, Martim; Rodrigues, Pâmella; Souza, Igor Eduardo; Durigan, João; Lima, Ricardo Moreno; Júnior, Silvio Assis Oliveira; Carregaro, Rodrigo Luiz

    2015-01-01

    BACKGROUND: Studies have shown that reciprocal exercise using a pre-Activation of antagonist muscles may increase the agonist neuromuscular performance. OBJECTIVE: To compare the efficiency of two modalities of resistance training (with and without antagonist muscle pre-Activation) during a six week

  10. Effectiveness and Patient Acceptability of Stellate Ganglion Block (SGB) for Treatment of Posttraumatic Stress Disorder (PTSD) Symptoms among Active Duty Military Members

    Science.gov (United States)

    2017-03-01

    as well as active  engagement through social media channels. We also are exploring the placement of paid  advertisements  in local  newspapers , both...Page 1 of 2 AWARD NUMBER: W81XWH-15-2-0015 TITLE: Effectiveness and Patient Acceptability of Stellate Ganglion Block (SGB) for Treatment of...SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-2-0015 Effectiveness and Patient Acceptability of Stellate Ganglion Block (SGB) for Treatment of

  11. A systematic review and meta-analysis of lower limb neuromuscular alterations associated with knee osteoarthritis during level walking.

    Science.gov (United States)

    Mills, Kathryn; Hunt, Michael A; Leigh, Ryan; Ferber, Reed

    2013-08-01

    Neuromuscular alterations are increasingly reported in individuals with knee osteoarthritis (KOA) during level walking. We aimed to determine which neuromuscular alterations are consistent in KOA individuals and how these may be influenced by osteoarthritis severity, varus alignment and/or joint laxity. Electronic databases were searched up to July 2012. Cross-sectional observational studies comparing lower-limb neuromuscular activity in individuals with KOA, healthy controls or with different KOA cohorts were included. Two reviewers assessed methodological quality. Effect sizes were used to quantify the magnitude of observed differences. Where studies were homogenous, effect sizes were pooled using a fixed-effects model. Fourteen studies examining neuromuscular alterations in indices of co-contraction, muscle amplitude and muscle activity duration were included. Data pooling revealed that moderate KOA individuals exhibit increased co-contraction of lateral knee muscles (ES 0.64 [0.3 to 0.97]) and moderately increased rectus femoris (ES 0.73 [0.23 to 1.22]), vastus lateralis (ES 0.77 [0.27 to 1.27]) and biceps femoris (ES 1.18 [0.67 to 1.7]) mean amplitude. Non-pooled data indicated prolonged activity of these muscles. Increased medial knee neuromuscular activity was prevalent for those exhibiting varus alignment and medial knee joint laxity. Interpretation Individuals with KOA exhibited increased co-contraction, amplitude and duration of lateral knee muscles regardless of disease severity, limb alignment or medial joint laxity. Individuals with severe disease, varus alignment and medial joint laxity demonstrate up-regulation of medial knee muscles. Future research investigating the efficacy of neuromuscular rehabilitation programs should consider the effect of simultaneous up-regulation of medial and lateral knee muscles on disease progression. © 2013.

  12. Role of the activation gate in determining the extracellular potassium dependency of block of HERG by trapped drugs.

    Science.gov (United States)

    Pareja, Kristeen; Chu, Elaine; Dodyk, Katrina; Richter, Kristofer; Miller, Alan

    2013-01-01

    Drug induced long QT syndrome (diLQTS) results primarily from block of the cardiac potassium channel HERG (human-ether-a-go-go related gene). In some cases long QT syndrome can result in the lethal arrhythmia torsade de pointes, an arrhythmia characterized by a rapid heart rate and severely compromised cardiac output. Many patients requiring medication present with serum potassium abnormalities due to a variety of conditions including gastrointestinal dysfunction, renal and endocrine disorders, diuretic use, and aging. Extracellular potassium influences HERG channel inactivation and can alter block of HERG by some drugs. However, block of HERG by a number of drugs is not sensitive to extracellular potassium. In this study, we show that block of WT HERG by bepridil and terfenadine, two drugs previously shown to be trapped inside the HERG channel after the channel closes, is insensitive to extracellular potassium over the range of 0 mM to 20 mM. We also show that bepridil block of the HERG mutant D540K, a mutant channel that is unable to trap drugs, is dependent on extracellular potassium, correlates with the permeant ion, and is independent of HERG inactivation. These results suggest that the lack of extracellular potassium dependency of block of HERG by some drugs may in part be related to the ability of these drugs to be trapped inside the channel after the channel closes.

  13. Biomechanical and neuromuscular characteristics of male athletes: implications for the development of anterior cruciate ligament injury prevention programs.

    Science.gov (United States)

    Sugimoto, Dai; Alentorn-Geli, Eduard; Mendiguchía, Jurdan; Samuelsson, Kristian; Karlsson, Jon; Myer, Gregory D

    2015-06-01

    Prevention of anterior cruciate ligament (ACL) injury is likely the most effective strategy to reduce undesired health consequences including reconstruction surgery, long-term rehabilitation, and pre-mature osteoarthritis occurrence. A thorough understanding of mechanisms and risk factors of ACL injury is crucial to develop effective prevention programs, especially for biomechanical and neuromuscular modifiable risk factors. Historically, the available evidence regarding ACL risk factors has mainly involved female athletes or has compared male and female athletes without an intra-group comparison for male athletes. Therefore, the principal purpose of this article was to review existing evidence regarding the investigation of biomechanical and neuromuscular characteristics that may imply aberrant knee kinematics and kinetics that would place the male athlete at risk of ACL injury. Biomechanical evidence related to knee kinematics and kinetics was reviewed by different planes (sagittal and frontal/coronal), tasks (single-leg landing and cutting), situation (anticipated and unanticipated), foot positioning, playing surface, and fatigued status. Neuromuscular evidence potentially related to ACL injury was reviewed. Recommendations for prevention programs for ACL injuries in male athletes were developed based on the synthesis of the biomechanical and neuromuscular characteristics. The recommendations suggest performing exercises with multi-plane biomechanical components including single-leg maneuvers in dynamic movements, reaction to and decision making in unexpected situations, appropriate foot positioning, and consideration of playing surface condition, as well as enhancing neuromuscular aspects such as fatigue, proprioception, muscle activation, and inter-joint coordination.

  14. Electrophysiological study in neuromuscular junction disorders

    Directory of Open Access Journals (Sweden)

    Ajith Cherian

    2013-01-01

    Full Text Available This review is on ultrastructure and subcellular physiology at normal and abnormal neuromuscular junctions. The clinical and electrophysiological findings in myasthenia gravis, Lambert-Eaton myasthenic syndrome (LEMS, congenital myasthenic syndromes, and botulinum intoxication are discussed. Single fiber electromyography (SFEMG helps to explain the basis of testing neuromuscular junction function by repetitive nerve stimulation (RNS. SFEMG requires skill and patience and its availability is limited to a few centers. For RNS supramaximal stimulation is essential and so is display of the whole waveform of each muscle response at maximum amplitude. The amplitudes of the negative phase of the first and fourth responses are measured from baseline to negative peak, and the percent change of the fourth response compared with the first represents the decrement or increment. A decrement greater than 10% is accepted as abnormal and smooth progression of response amplitude train and reproducibility form the crux. In suspected LEMS the effect of fast rates of stimulation should be determined after RNS response to slow rates of stimulation. Caution is required to avoid misinterpretation of potentiation and pseudofacilitation.

  15. Motor neuron, nerve, and neuromuscular junction disease.

    Science.gov (United States)

    Finsterer, Josef; Papić, Lea; Auer-Grumbach, Michaela

    2011-10-01

    The aim is to review the most relevant findings published during the last year concerning clinical, genetic, pathogenic, and therapeutic advances in motor neuron disease, neuropathies, and neuromuscular junction disorders. Studies on animal and cell models have improved the understanding of how mutated survival motor neuron protein in spinal muscular atrophy governs the pathogenetic processes. New phenotypes of SOD1 mutations have been described. Moreover, animal models enhanced the insight into the pathogenetic background of sporadic and familial amyotrophic lateral sclerosis. Novel treatment options for motor neuron disease have been described in humans and animal models. Considerable progress has been achieved also in elucidating the genetic background of many forms of inherited neuropathies and high clinical and genetic heterogeneity has been demonstrated. Mutations in MuSK and GFTP1 have been shown to cause new types of congenital myasthenic syndromes. A third type of autoantibodies (Lrp4) has been detected to cause myasthenia gravis. Advances in the clinical and genetic characterization of motor neuron diseases, neuropathies, and neuromuscular transmission defects have important implications on the fundamental understanding, diagnosis, and management of these disorders. Identification of crucial steps of the pathogenetic process may provide the basis for the development of novel therapeutic strategies.

  16. Onset and duration of action of rocuronium - from tracheal intubation, through intense block to complete recovery

    DEFF Research Database (Denmark)

    Schultz, P.; Ibsen, M.; Østergaard, Doris

    2001-01-01

    pharmacodynamic, neuromuscular relaxant, rocuronium, neuromuscular transmission, nerve stimulator, post tetanic count......pharmacodynamic, neuromuscular relaxant, rocuronium, neuromuscular transmission, nerve stimulator, post tetanic count...

  17. Nicotinic receptor activation contrasts pathophysiological bursting and neurodegeneration evoked by glutamate uptake block on rat hypoglossal motoneurons.

    Science.gov (United States)

    Corsini, Silvia; Tortora, Maria; Nistri, Andrea

    2016-11-15

    Impaired uptake of glutamate builds up the extracellular level of this excitatory transmitter to trigger rhythmic neuronal bursting and delayed cell death in the brainstem motor nucleus hypoglossus. This process is the expression of the excitotoxicity that underlies motoneuron degeneration in diseases such as amyotrophic lateral sclerosis affecting bulbar motoneurons. In a model of motoneuron excitotoxicity produced by pharmacological block of glutamate uptake in vitro, rhythmic bursting is suppressed by activation of neuronal nicotinic receptors with their conventional agonist nicotine. Emergence of bursting is facilitated by nicotinic receptor antagonists. Following excitotoxicity, nicotinic receptor activity decreases mitochondrial energy dysfunction, endoplasmic reticulum stress and production of toxic radicals. Globally, these phenomena synergize to provide motoneuron protection. Nicotinic receptors may represent a novel target to contrast pathological overactivity of brainstem motoneurons and therefore to prevent their metabolic distress and death. Excitotoxicity is thought to be one of the early processes in the onset of amyotrophic lateral sclerosis (ALS) because high levels of glutamate have been detected in the cerebrospinal fluid of such patients due to dysfunctional uptake of this transmitter that gradually damages brainstem and spinal motoneurons. To explore potential mechanisms to arrest ALS onset, we used an established in vitro model of rat brainstem slice preparation in which excitotoxicity is induced by the glutamate uptake blocker dl-threo-β-benzyloxyaspartate (TBOA). Because certain brain neurons may be neuroprotected via activation of nicotinic acetylcholine receptors (nAChRs) by nicotine, we investigated if nicotine could arrest excitotoxic damage to highly ALS-vulnerable hypoglossal motoneurons (HMs). On 50% of patch-clamped HMs, TBOA induced intense network bursts that were inhibited by 1-10 μm nicotine, whereas nAChR antagonists

  18. Neuromuscular Strain Increases Symptom Intensity in Chronic Fatigue Syndrome.

    Directory of Open Access Journals (Sweden)

    Peter C Rowe

    Full Text Available Chronic fatigue syndrome (CFS is a complex, multisystem disorder that can be disabling. CFS symptoms can be provoked by increased physical or cognitive activity, and by orthostatic stress. In preliminary work, we noted that CFS symptoms also could be provoked by application of longitudinal neural and soft tissue strain to the limbs and spine of affected individuals. In this study we measured the responses to a straight leg raise neuromuscular strain maneuver in individuals with CFS and healthy controls. We randomly assigned 60 individuals with CFS and 20 healthy controls to either a 15 minute period of passive supine straight leg raise (true neuromuscular strain or a sham straight leg raise. The primary outcome measure was the symptom intensity difference between the scores during and 24 hours after the study maneuver compared to baseline. Fatigue, body pain, lightheadedness, concentration difficulties, and headache scores were measured individually on a 0-10 scale, and summed to create a composite symptom score. Compared to individuals with CFS in the sham strain group, those with CFS in the true strain group reported significantly increased body pain (P = 0.04 and concentration difficulties (P = 0.02 as well as increased composite symptom scores (all P = 0.03 during the maneuver. After 24 hours, the symptom intensity differences were significantly greater for the CFS true strain group for the individual symptom of lightheadedness (P = 0.001 and for the composite symptom score (P = 0.005. During and 24 hours after the exposure to the true strain maneuver, those with CFS had significantly higher individual and composite symptom intensity changes compared to the healthy controls. We conclude that a longitudinal strain applied to the nerves and soft tissues of the lower limb is capable of increasing symptom intensity in individuals with CFS for up to 24 hours. These findings support our preliminary observations that increased mechanical

  19. Reversal of neuromuscular blockade with sugammadex or neostigmine/atropine: Effect on postoperative gastrointestinal motility.

    Science.gov (United States)

    Sen, A; Erdivanli, B; Tomak, Y; Pergel, A

    2016-08-01

    To compare sugammadex with conventional reversal of neuromuscular block in terms of postoperative gastrointestinal motility. Double blinded, randomized, controlled clinical trial. Operating room, postoperative recovery area. Seventy-two patients with ASA physical status I or II, scheduled for total thyroid surgery were studied. When 4 twitches were observed on train-of-four stimulation, neuromuscular block was reversed conversatively in the control group, and with sugammadex in the study group. Time to first flatus and feces, incidence of postoperative nausea, vomiting, diarrhea and constipation were collected. Median time of first flatus was 24 hours (18-32 [10-36]) in the neostigmine group, and 24 (18-28 [12-48]) in the sugammadex group (P > .05). Median (IQR) time of first feces was 24 hours (18-36 [10-48]) in neostigmine group, 32 hours (28-36 [12-72]) in sugammadex group (P > .05). There were no occurrences of nausea, vomiting, diarrhea, or constipation. Sugammadex may be safely used in cases where postoperative ileus is expected. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Khosravi, Claire; Battaglia, Evy; Kun, Roland S.; Dalhuijsen, Sacha; Visser, Jaap; Aguilar-Pontes, Maria V.; Zhou, Miamiao; Heyman, Heino M.; Kim, Young-Mo; Baker, Scott E.; de Vries, Ronald P.

    2018-03-22

    Background: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. Results: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. Conclusion: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.

  1. An 8-Week Neuromuscular Exercise Program for Patients With Mild to Moderate Knee Osteoarthritis

    DEFF Research Database (Denmark)

    Clausen, Brian; Holsgaard-Larsen, Anders; Roos, Ewa M

    2017-01-01

    OBJECTIVE:   To describe the feasibility of a neuromuscular exercise (NEMEX) program in patients with mild to moderate knee osteoarthritis (KOA). BACKGROUND:   Neuromuscular exercise has been increasingly used in patients with osteoarthritis to achieve sensorimotor control and improved daily...... function. TREATMENT:   A study of the first 23 physically active patients (11 men, 12 women; age range = 48-70 years) who had mild to moderate KOA and were undergoing an 8-week, twice-weekly program, consisting of 11 exercises with 3 to 4 levels of difficulty, as part of an ongoing randomized controlled...... to increased (n = 2) or persisting (n = 1) knee pain. However, their pain ratings did not show worsening symptoms. UNIQUENESS:   This NEMEX-KOA program was designed for physically active middle-aged patients with mild to moderate KOA; therefore, it involved exercises and difficulty levels that were more...

  2. Alterations in neuromuscular function in girls with generalized joint hypermobility.

    Science.gov (United States)

    Jensen, Bente Rona; Sandfeld, Jesper; Melcher, Pia Sandfeld; Johansen, Katrine Lyders; Hendriksen, Peter; Juul-Kristensen, Birgit

    2016-10-03

    Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions (90°) at 20 % Maximum Voluntary Contraction, and explosive isometric knee flexions while sitting. EMG was recorded from knee flexor and extensor muscles. Early rate of torque development was 53 % faster for GJH. Reduced hamstring muscle activation in girls with GJH was found while knee extensor and calf muscle activation did not differ between groups. Flexion-extension and medial-lateral co-activation ratio during flexions were higher for girls with GJH than NGJH girls. Girls with GJH had higher capacity to rapidly generate force than NGJH girls which may reflect motor adaptation to compensate for hypermobility. Higher medial muscle activation indicated higher levels of medial knee joint compression in girls with GJH. Increased flexion-extension co-activation ratios in GJH were explained by decreased agonist drive to the hamstrings.

  3. Ensayos en Ambiente Hospitalario de Técnicas de Monitorización de Bloqueo Neuromuscular: Resultados Preliminares

    Directory of Open Access Journals (Sweden)

    Yadel Forneiro Martín Viaña

    2014-07-01

    Introduction: In order to evaluate the magnitude of neuromuscular blocking during anesthesia, the anesthesiologists consider the muscular response to peripheral nerves stimulation. Objective: Study aims to calculate muscle relaxation indicators, through neuromuscular blocking and its algorithms using a Cuban made monitoring device during the medical procedure. Materials and methods: Thumb kinetic response and muscles relaxation indicators were registered and calculated automatically; for this purpose, median and nerves trials using Troin-of – Four (TOF were conducted in shorter surgeries, which allowed to monitor patients’ neuromuscular, intraoperative function. Scientific consel and the Committee of Ethics of the Clinical Surgical Hospital “HermanosAmeijeiras” approved the protocol, based on a research project conducted by the ICID – Medical Digital technology and the Hospital. Results: the monitoring was stable during all medical procedures as indicated on graph data obtained during five sample cases indicating muscle relaxation indicators. Conclusion: muscle relaxation indicators registered during trials showed significant relevance relation to patient’s clinical history, giving support to evidence of the monitoring implemented techniques based on specialists’ criteria.

  4. Effects of regular Tai Chi practice and jogging on neuromuscular reaction during lateral postural control in older people.

    Science.gov (United States)

    Wang, Shao-Jun; Xu, Dong-Qing; Li, Jing-Xian

    2017-01-01

    This study examined the effects of regular Tai Chi practice and jogging on the neuromuscular activity of the trunk, hip, and ankle joint muscles of older people during lateral postural perturbation. A total of 42 older people participated in the study and formed the Tai Chi, jogging, and sedentary control groups. Electromyography signals were collected from the peroneus longus, anterior tibialis, gluteus medius, and erector spinae during unpredictable mediolateral perturbation. The Tai Chi group exhibited significantly faster latencies of the tibialis anterior and erector spinae than the control group. The jogging group showed a significantly shorter neuromuscular reaction time of the erector spinae than the control group. No significant difference was observed between the Tai Chi and jogging groups. Long-term regular Tai Chi practice enhanced the neuromuscular reaction of the erector spinae and tibialis anterior to lateral perturbation and will help timely posture correction when lateral postural distributions occur.

  5. Effects of neuromuscular training on the reaction time and electromechanical delay of the peroneus longus muscle.

    Science.gov (United States)

    Linford, Christena W; Hopkins, J Ty; Schulthies, Shane S; Freland, Brent; Draper, David O; Hunter, Iain

    2006-03-01

    To examine the influence of a 6-week neuromuscular training program on the electromechanical delay and reaction time of the peroneus longus muscle. A 2 x 2 pre-post factorial design. Human performance research center biomechanics laboratory. Thirty-six healthy, physically active, college-age subjects were recruited for this study and 26 completed it. There were 5 men and 8 women in the treatment group (mean age +/- standard deviation, 21.9+/-2.1 y; height, 173.7+/-11.1cm; weight, 67.4+/-17.8 kg) and 6 men and 7 women in the control group (age, 21.8+/-2.3 y; height, 173.7+/-11.9 cm; weight, 70.8+/-19.4 kg). Subjects were not currently experiencing any lower-extremity pathology and had no history of injuries requiring treatment to either lower extremity. Subjects in the treatment group completed a 6-week neuromuscular training program involving various therapeutic exercises. Subjects in the control group were asked to continue their normal physical activity during the 6-week period. The electromechanical delay of the peroneus longus was determined by the onset of force contribution after artificial activation, as measured by electromyographic and forceplate data. Reaction time was measured after a perturbation during walking. Data were analyzed using two 2 x 2 analyses of covariance (covariate pretest score). Group (treatment, control) and sex (male, female) were between-subject factors. Neuromuscular training caused a decrease in reaction time to perturbation during walking compared with controls (F=4.030, P=.029), while there was a trend toward an increase in electromechanical delay (F=4.227, P=.052). There was no significant difference between sexes or the interaction of sex and treatment in either reaction time or electromechanical delay. The 6-week training program significantly reduced reaction time of the peroneus longus muscle in healthy subjects. Neuromuscular training may have a beneficial effect on improving dynamic restraint during activity.

  6. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase.

    Science.gov (United States)

    Kaushik, Nidhi; Subramani, Chandru; Anang, Saumya; Muthumohan, Rajagopalan; Shalimar; Nayak, Baibaswata; Ranjith-Kumar, C T; Surjit, Milan

    2017-11-01

    to treat HEV cases, there are known side effects and limitations of such therapy. Our discovery of the ability of zinc salts to block HEV replication by virtue of their ability to inhibit the activity of viral RdRp is important because these findings pave the way to test the efficacy of zinc supplementation therapy in HEV-infected patients. Since zinc supplementation therapy is known to be safe in healthy individuals and since high-dose zinc is used in the treatment of Wilson's disease, it may be possible to control HEV-associated health problems following a similar treatment regimen. Copyright © 2017 American Society for Microbiology.

  7. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction.

    Science.gov (United States)

    Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep

    2015-12-01

    Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.

  8. The neurotoxic effects of amitriptyline are mediated by apoptosis and are effectively blocked by inhibition of caspase activity

    NARCIS (Netherlands)

    Lirk, Philipp; Haller, Ingrid; Hausott, Barbara; Ingorokva, Shota; Deibl, Martina; Gerner, Peter; Klimaschewski, Lars

    2006-01-01

    Oral tricyclic antidepressants, widely used as adjuncts in the treatment of chronic pain, block sodium channels in vitro and nerve conduction in vivo. However, toxicity of amitriptyline has been observed after neural application. We therefore investigated the mechanism and possible prevention of

  9. The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1-4

    Science.gov (United States)

    Kamii, Constance; Miyakawa, Yoko; Kato, Yasuhiko

    2004-01-01

    To study the developmental interrelationships among various aspects of logico-mathematical knowledge, 80 one- to 4-year-olds were individually asked to build "something tall" with 20 blocks. Percentages of new and significant behaviors increased with age and were analyzed in terms of the development of logico-mathematical relationships. It was…

  10. A Dual Active Bridge Converter with an Extended High-Efficiency Range by DC Blocking Capacitor Voltage Control

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Yanfeng; Loh, Poh Chiang

    2018-01-01

    of hard switching and high circulating power. Thus, a new modulation scheme has been proposed, whose main idea is to introduce a voltage offset across the dc blocking capacitor connected in series with the transformer. Operational principle of the proposed modulation has been introduced, before analyzing...

  11. Sugammadex antagonism of rocuronium-induced neuromuscular blockade in patients with liver cirrhosis undergoing liver resection: a randomized controlled study.

    Science.gov (United States)

    Abdulatif, Mohamed; Lotfy, Maha; Mousa, Mahmoud; Afifi, Mohamed H; Yassen, Khaled

    2018-02-05

    This randomized controlled study compared the recovery times of sugammadex and neostigmine as antagonists of moderate rocuroniuminduced neuromuscular block in patients with liver cirrhosis and controls undergoing liver resection. The study enrolled 27 adult patients with Child class "A" liver cirrhosis and 28 patients with normal liver functions. Normal patients and patients with liver cirrhosis were randomized according to the type of antagonist (sugammadex 2mg/kg or neostigmine 50μg/kg). The primary outcome was the time from antagonist administration to a trainoffour (TOF) ratio of 0.9 using mechanosensor neuromuscular transmission module. The durations of the intubating and topup doses of rocuronium, the length of stay in the postanesthesia care unit (PACU), and the incidence of postoperative re curarization were recorded. The durations of the intubating and topup doses of rocuronium were prolonged in patients with liver cirrhosis than controls. The times to a TOF ratio of 0.9 were 3.1 (1.0) and 2.6 (1.0) min after sugammadex administration in patients with liver cirrhosis and controls, respectively, p=1.00. The corresponding times after neostigmine administration were longer than sugammadex 14.5 (3.6) and 15.7 (3.6) min, respectively, psugammadex compared to neostigmine. We did not encounter postoperative recurarization after sugammadex or neostigmine. Sugammadex rapidly antagonize moderate residual rocuronium induced neuromuscular block in patients with Child class "A" liver cirrhosis undergoing liver resection. Sugammadex antagonism is associated with 80% reduction in the time to adequate neuromuscular recovery compared to neostigmine.

  12. An adaptive neuromuscular controller for assistive lower-limb exoskeletons : A preliminary study on subjects with spinal cord injury

    NARCIS (Netherlands)

    Wu, Amy R.; Dzeladini, Florin; Brug, Tycho J.H.; Tamburella, Federica; Tagliamonte, Nevio L.; Van Asseldonk, Edwin H.F.; van der Kooij, H.; Ijspeert, Auke J.

    2017-01-01

    Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery.

  13. An adaptive neuromuscular controller for assistive lower-limb exoskeletons : A preliminary study on subjects with spinal cord injury

    NARCIS (Netherlands)

    Wu, Amy R.; Dzeladini, Florin; Brug, Tycho J.H.; Tamburella, Federica; Tagliamonte, Nevio L.; Van Asseldonk, Edwin H.F.; Van Der Kooij, Herman; IJspeert, Auke Jan

    2017-01-01

    Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery.

  14. Rocuronium and sugammadex in a 3 days old neonate for draining an ovarian cyst. Neuromuscular management and review of the literature

    Directory of Open Access Journals (Sweden)

    Ricardo Vieira Carlos

    2016-07-01

    Full Text Available A case is reported in which a 3-days old neonate with a giant ovarian cyst was scheduled for surgery. The patient received a dose of sugammadex to reverse a rocuronium-induced neuromuscular block. A fast and efficient recovery from neuromuscular block was achieved within 90 s. No adverse events or other safety concerns were observed. Furthermore, a review of the literature on the use of sugammadex in neonates was performed. Resumo: Relato do caso de uma criança recém-nascida de 3 dias de idade com um cisto ovariano gigante programada para a cirurgia. A paciente recebeu uma dose de sugamadex para reverter o bloqueio neuromuscular induzido por rocurônio. Uma recuperação rápida e eficiente do bloqueio neuromuscular foi obtida dentro de 90 segundos. Não foram observados efeitos adversos ou outros problemas de segurança. Além disso, uma revisão da literatura sobre o uso de sugamadex em recém-nascidos foi realizada. Keywords: Neonates, Ovarian cyst, Sugammadex, Rocuronium, Reversal agent, Palavras-chave: Recém-nascidos, Cisto ovariano, Sugammadex, Rocurônio, Agente de reversão

  15. Neuromuscular Monitoring, Muscle Relaxant Use, and Reversal at a Tertiary Teaching Hospital 2.5 Years after Introduction of Sugammadex: Changes in Opinions and Clinical Practice

    Directory of Open Access Journals (Sweden)

    Thomas Ledowski

    2015-01-01

    Full Text Available Sugammadex was introduced to Royal Perth Hospital in early 2011 without access restriction. Two departmental audits (26-page online survey and 1-week in-theatre snapshot audit were undertaken to investigate the change of beliefs and clinical practice related to the use of neuromuscular blocking agents at the Royal Perth Hospital since this introduction. Results were compared with data from 2011. We found that, in the 2.5 years since introduction of Sugammadex, more anesthetists (69.5 versus 38% utilized neuromuscular monitoring, and aminosteroidal neuromuscular blocking agents were used in 94.3% of cases (versus 77% in 2011. Furthermore, 53% of anesthetists identified with a practice of “deeper and longer” intraoperative paralysis of patients. All 71 patients observed during the 5-day in-theatre audit were reversed with Sugammadex. Since the introduction of Sugammadex, 69% (n=20 of respondents felt it provided “faster turnover,” less postoperative residual neuromuscular blockade (n=23; 79%, and higher anesthetist satisfaction (n=17; 59%. 45% (n=13 of colleagues reported that they would feel professionally impaired without the unrestricted availability of Sugammadex, and 1 colleague would refuse to work in a hospital without this drug being freely available. In clinical practice Sugammadex was frequently (57% mildly overdosed, with 200 mg being the most commonly administered dose.

  16. Neuromechanical evidence of improved neuromuscular control around knee joint in volleyball players.

    Science.gov (United States)

    Masci, Ilaria; Vannozzi, Giuseppe; Gizzi, Leonardo; Bellotti, Pasquale; Felici, Francesco

    2010-02-01

    The aim of the present work was to verify that skilled volleyball players present specific adaptations in both neuromuscular control and movement biomechanics, showing an improved neuromuscular control around the knee joint than in non-jumper athletes. Seven male volleyball players and seven male non-jumper athletes were recruited for this study. The following tests were performed in a random order: single countermovement jump (CMJ), single squat jump. At the end of the series, subjects performed a repetitive CMJ test. Electromyographic signals were recorded from vastus lateralis and biceps femoris muscles on both sides. Ground reaction forces and moments were measured with a force plate. Volleyball athletes performed better in all tests and were more resistant to fatigue than non-jumper athletes. Furthermore, volleyball athletes showed a reduced co-activation of knee flexor/extensor muscles. The present results seem to stand for a neural adaptation of the motor control scheme to training.

  17. Tilted seat position for non-ambulant individuals with neurological and neuromuscular impairment: a systematic review.

    Science.gov (United States)

    Michael, S M; Porter, D; Pountney, T E

    2007-12-01

    To determine the effects of tilt-in-space seating on outcomes for people with neurological or neuromuscular impairment who cannot walk. Search through electronic databases (MEDLINE, Embase, CINAHL, AMED). Discussions with researchers who are active in field. Selection criteria included interventional studies that investigated the effects of seat tilt on outcome or observational studies that identified outcomes for those who had used tilt-in-space seating in populations with neurological or neuromuscular impairments. Two reviewers independently selected trials for inclusion, assessed quality and extracted data. Nineteen studies were identified which fulfilled the selection criteria. Seventeen of these were essentially before-after studies investigating the immediate effects of tilting the seating. All studies looked at populations with neurological impairment, and most were on children with cerebral palsy (n=8) or adults with spinal cord injury (n=8). REVIEWER'S CONCLUSION: Posterior tilt can reduce pressures at the interface under the pelvis.

  18. Immobilization of high activity nuclear wastes in sintered glass. Fabrication of blocks at semi-industrial scale by hot pressing technique

    International Nuclear Information System (INIS)

    Russo, D.O.; Messi, N.B.; Riquelme, R.; Sterba, M.E.; Audero, M.A.

    1990-01-01

    The sintering process under glass pressure has been studied as an alternative of melting with the aim of obtaining a monolytic material apt to preserve the high activity nuclear wastes. Different properties of the products obtained have been evaluated where the material is selected on the basis of the results attained. The purpose of this work is the equipment development and the process adjusting for the blocks obtainment. (Author) [es

  19. Genetics of Pediatric-Onset Motor Neuron and Neuromuscular Diseases

    Science.gov (United States)

    2015-08-24

    Spinal Muscular Atrophy; Charcot-Marie-Tooth Disease; Muscular Dystrophy; Spinal Muscular Atrophy With Respiratory Distress 1; Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Disease; Peroneal Muscular Atrophy; Fragile X Syndrome

  20. The role of proprioception and neuromuscular stability in carpal instabilities.

    Science.gov (United States)

    Hagert, E; Lluch, A; Rein, S

    2016-01-01

    Carpal stability has traditionally been defined as dependent on the articular congruity of joint surfaces, the static stability maintained by intact ligaments, and the dynamic stability caused by muscle contractions resulting in a compression of joint surfaces. In the past decade, a fourth factor in carpal stability has been proposed, involving the neuromuscular and proprioceptive control of joints. The proprioception of the wrist originates from afferent signals elicited by sensory end organs (mechanoreceptors) in ligaments and joint capsules that elicit spinal reflexes for immediate joint stability, as well as higher order neuromuscular influx to the cerebellum and sensorimotor cortices for planning and executing joint control. The aim of this review is to provide an understanding of the role of proprioception and neuromuscular control in carpal instabilities by delineating the sensory innervation and the neuromuscular control of the carpus, as well as descriptions of clinical applications of proprioception in carpal instabilities. © The Author(s) 2015.

  1. Effects of napping on neuromuscular fatigue in myasthenia gravis.

    Science.gov (United States)

    Kassardjian, Charles D; Murray, Brian J; Kokokyi, Seint; Jewell, Dana; Barnett, Carolina; Bril, Vera; Katzberg, Hans D

    2013-11-01

    The relationship between sleep and neuromuscular fatigue is understood poorly. The goal of this study was to evaluate the effects of napping on quantitative measures of neuromuscular fatigue in patients with myasthenia gravis (MG). Eight patients with mild to moderate MG were recruited. Patients underwent maintenance of wakefulness tests (MWT) and multiple sleep latency tests (MSLT). The Quantitative Myasthenia Gravis Score (QMGS) was measured before nap and after each nap to examine the effects of napping and sleep on neuromuscular weakness. Results showed that QMGS improves only after naps where patients slept more than 5 min but not where patients did not sleep or slept less than 5 min. Daytime napping mitigates neuromuscular fatigue in patients with MG, especially if patients slept for more than 5 min. Copyright © 2013 Wiley Periodicals, Inc.

  2. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.

    Science.gov (United States)

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-07-15

    The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.

  3. Transmission blocking activity of a standardized neem (Azadirachta indica) seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    Science.gov (United States)

    2010-01-01

    Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT) lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid) abundant in neem (Azadirachta indica, Meliaceae) seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications) did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality of the microtubule

  4. Transmission blocking activity of a standardized neem (Azadirachta indica seed extract on the rodent malaria parasite Plasmodium berghei in its vector Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Esposito Fulvio

    2010-03-01

    Full Text Available Abstract Background The wide use of gametocytocidal artemisinin-based combination therapy (ACT lead to a reduction of Plasmodium falciparum transmission in several African endemic settings. An increased impact on malaria burden may be achieved through the development of improved transmission-blocking formulations, including molecules complementing the gametocytocidal effects of artemisinin derivatives and/or acting on Plasmodium stages developing in the vector. Azadirachtin, a limonoid (tetranortriterpenoid abundant in neem (Azadirachta indica, Meliaceae seeds, is a promising candidate, inhibiting Plasmodium exflagellation in vitro at low concentrations. This work aimed at assessing the transmission-blocking potential of NeemAzal®, an azadirachtin-enriched extract of neem seeds, using the rodent malaria in vivo model Plasmodium berghei/Anopheles stephensi. Methods Anopheles stephensi females were offered a blood-meal on P. berghei infected, gametocytaemic BALB/c mice, treated intraperitoneally with NeemAzal, one hour before feeding. The transmission-blocking activity of the product was evaluated by assessing oocyst prevalence, oocyst density and capacity to infect healthy mice. To characterize the anti-plasmodial effects of NeemAzal® on early midgut stages, i.e. zygotes and ookinetes, Giemsa-stained mosquito midgut smears were examined. Results NeemAzal® completely blocked P. berghei development in the vector, at an azadirachtin dose of 50 mg/kg mouse body weight. The totally 138 examined, treated mosquitoes (three experimental replications did not reveal any oocyst and none of the healthy mice exposed to their bites developed parasitaemia. The examination of midgut content smears revealed a reduced number of zygotes and post-zygotic forms and the absence of mature ookinetes in treated mosquitoes. Post-zygotic forms showed several morphological alterations, compatible with the hypothesis of an azadirachtin interference with the functionality

  5. Neuromuscular fatigue and recovery profiles in individuals with intellectual disability

    OpenAIRE

    Borji , Rihab; Zghal , Firas; Zarrouk , Nidhal; Martin , Vincent; Sahli , Sonia; Rebai , Haithem

    2017-01-01

    International audience; Purpose: This study aimed to explore neuromuscular fatigue and recovery profiles in individuals with intellectual disability (ID) after exhausting submaximal contraction.Methods: Ten men with ID were compared to 10 men without ID. The evaluation of neuromuscular function consisted in brief (3 s) isometric maximal voluntary contraction (IMVC) of the knee extension superimposed with electrical nerve stimulation before, immediately after, and during 33 min after an exhaus...

  6. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion....... Sulfate reduction rates increase with increasing pressure and show maximum values at pressures higher than in situ. (C) 2003 Elsevier Science B.V. All rights reserved....

  7. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal

    2014-02-27

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  8. Enhancing carrier injection in the active region of a 280nm emission wavelength LED using graded hole and electron blocking layers

    KAUST Repository

    Janjua, Bilal; Ng, Tien Khee; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2014-01-01

    A theoretical investigation of AlGaN UV-LED with band engineering of hole and electron blocking layers (HBL and EBL, respectively) was conducted with an aim to improve injection efficiency and reduce efficiency droop in the UV LEDs. The analysis is based on energy band diagrams, carrier distribution and recombination rates (Shockley-Reed-Hall, Auger, and radiative recombination rates) in the quantum well, under equilibrium and forward bias conditions. Electron blocking layer is based on AlaGa1-aN / Al b → cGa1-b → 1-cN / AldGa 1-dN, where a < d < b < c. A graded layer sandwiched between large bandgap AlGaN materials was found to be effective in simultaneously blocking electrons and providing polarization field enhanced carrier injection. The graded interlayer reduces polarization induced band bending and mitigates the related drawback of impediment of holes injection. Similarly on the n-side, the Alx → yGa1-x → 1-yN / AlzGa 1-zN (x < z < y) barrier acts as a hole blocking layer. The reduced carrier leakage and enhanced carrier density in the active region results in significant improvement in radiative recombination rate compared to a structure with the conventional rectangular EBL layers. The improvement in device performance comes from meticulously designing the hole and electron blocking layers to increase carrier injection efficiency. The quantum well based UV-LED was designed to emit at 280nm, which is an effective wavelength for water disinfection application.

  9. Neuromuscular Effects of Rocuronium Bromide in Patients in Statin Therapy for at least Three Months.

    Science.gov (United States)

    Ren, Hongwei; Lv, Huangwei

    2016-12-01

    Statins cause skeletal muscle myopathy. However, the neuromuscular effects of non-depolarizing neuromuscular-blocking agent in patients in long-term statin therapy remain unclear. Hence, we investigated the neuromuscular effects of rocuronium and muscle injury in patients in long-term statin therapy. Eighteen statin users using statins for at least 3 months were included in the statin group and 18 non-statin users were included in the non-statin group. General anaesthesia was induced with intravenous midazolam, etomidate, sufentanil and rocuronium 0.9 mg/kg (3ED 95 ) for intubation. Anaesthesia was maintained with 1% propofol and remifentanil. The onset time and duration 10% T 1 and 25% T 1 of rocuronium were recorded. Blood samples were obtained before induction and 5 min., 1 hr, 2 hr, 4 hr, 12 hr and 24 hr after rocuronium administration to measure creatine kinase (CK), myoglobin and potassium. Myalgia was determined at 2 and 24 hr after surgery. There were no significant differences in the basic clinical characteristics between the two groups. The onset time of the statin group was significantly shorter than that of the non-statin group (p = 0.02), while the duration 10% T 1 and duration 25% T 1 of the statin group were significantly longer than those of the non-statin group (p = 0.006; p = 0.045). The myoglobin and CK concentrations increased after rocuronium administration as compared to baseline in both groups. CK concentration in the statin group was significantly higher than in the non-statin group just at 24 hr (p = 0.000003). However, myoglobin showed no significant difference between the two groups. The onset time of rocuronium decreases and its duration time increases in patients in long-term statin therapy. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Neuromuscular prehabilitation to prevent osteoarthritis after a traumatic joint injury.

    Science.gov (United States)

    Tenforde, Adam S; Shull, Pete B; Fredericson, Michael

    2012-05-01

    Post-traumatic osteoarthritis (PTOA) is a process resulting from direct forces applied to a joint that cause injury and degenerative changes. An estimated 12% of all symptomatic osteoarthritis (OA) of the hip, knee, and ankle can be attributed to a post-traumatic cause. Neuromuscular prehabilitation is the process of improving neuromuscular function to prevent development of PTOA after an initial traumatic joint injury. Prehabilitation strategies include restoration of normative movement patterns that have been altered as the result of traumatic injury, along with neuromuscular exercises and gait retraining to prevent the development of OA after an injury occurs. A review of the current literature shows that no studies have been performed to evaluate methods of neuromuscular prehabilitation to prevent PTOA after a joint injury. Instead, current research has focused on management strategies after knee injuries, the value of exercise in the management of OA, and neuromuscular exercises after total knee arthroplasty. Recent work in gait retraining that alters knee joint loading holds promise for preventing the development of PTOA after joint trauma. Future research should evaluate methods of neuromuscular prehabilitation strategies in relationship to the outcome of PTOA after joint injury. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. Neuromuscular training injury prevention strategies in youth sport: a systematic review and meta-analysis.

    Science.gov (United States)

    Emery, Carolyn A; Roy, Thierry-Olivier; Whittaker, Jackie L; Nettel-Aguirre, Alberto; van Mechelen, Willem

    2015-07-01

    Youth have very high participation and injury rates in sport. Sport is the leading cause of injury in youth. Sport injury reduces future participation in physical activity which adversely affects future health. Sport injury may lead to overweight/obesity and post-traumatic osteoarthritis. The objective of the systematic review and meta-analysis was to evaluate the efficacy of injury prevention neuromuscular training strategies in youth sport. Three electronic databases were systematically searched up to September 2014. Studies selected met the following criteria: original data; analytic prospective design; investigated a neuromuscular training prevention strategy intervention(s) and included outcomes for injury sustained during sport participation. Two authors assessed the quality of evidence using Downs and Black (DB) criteria. Meta-analyses including randomised controlled trials only (RCTs) to ensure study design homogeneity were completed for lower extremity and knee injury outcomes. Of 2504 potentially relevant studies, 25 were included. Meta-analysis revealed a combined preventative effect of neuromuscular training in reducing the risk of lower extremity injury (incidence rate ratio: IRR=0.64 (95% CI 0.49 to 0.84)). Though not statistically significant, the point estimate suggests a protective effect of such programmes in reducing the risk of knee injury (IRR=0.74 (95% CI 0.51 to 1.07)). There is evidence for the effectiveness of neuromuscular training strategies in the reduction of injury in numerous team sports. Lack of uptake and ongoing maintenance of such programmes is an ongoing concern. A focus on implementation is critical to influence knowledge, behaviour change and sustainability of evidence informed injury prevention practice. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Effects of Short- and Long-Duration Space Flight on Neuromuscular Function

    Science.gov (United States)

    Buxton, Roxanne E.; Spiering, Barry A.; Ryder, Jeffrey W.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    The Functional Task Tests (FTT) is an interdisciplinary study designed to correlate the changes in functional tasks (such as emergency egress, ladder climbing, and hatch opening) with changes in neuromuscular, cardiovascular, and sensorimotor function. One aspect of the FTT, the neuromuscular function test, is used to investigate the neuromuscular component underlying changes in the ability of astronauts to perform functional tasks (representative of critical mission tasks) safely and quickly after flight. PURPOSE: To describe neuromuscular function after short- and long-duration space flight. METHODS: To date, 5 crewmembers on short-duration (10- to 15-day) missions and 3 on long-duration missions have participated. Crewmembers were assessed 30 days before flight, on landing day (short-duration subjects only) and 1, 6, and 30 days after landing. The interpolated twitch technique, which utilizes a combination of maximal voluntary contractions and electrically evoked contractions, was used to assess the maximal voluntary isometric force (MIF) and central activation capacity of the knee extensors. Leg-press and bench-press devices were used to assess MIF and maximal dynamic power of the lower and upper body respectively. Specifically, power was measured during concentric-only ballistic throws of the leg-press sled and bench-press bar loaded to 40% and 30% of MIF respectively. RESULTS: Data are currently being collected from both Shuttle and ISS crewmembers. Emerging data indicate that measures of knee extensor muscle function are decreased with long-duration flight. DISCUSSION: The relationships between flight duration, neural drive, and muscle performance are of particular interest. Ongoing research will add to the current sample size and will focus on defining changes in muscle performance measures after long-duration space flight.

  13. The pharmacological effect of Bothrops neuwiedii pauloensis (jararaca-pintada snake venom on avian neuromuscular transmission

    Directory of Open Access Journals (Sweden)

    C.R. Borja-Oliveira

    2003-05-01

    Full Text Available The neuromuscular effects of Bothrops neuwiedii pauloensis (jararaca-pintada venom were studied on isolated chick biventer cervicis nerve-muscle preparations. Venom concentrations of 5-50 µg/ml produced an initial inhibition and a secondary increase of indirectly evoked twitches followed by a progressive concentration-dependent and irreversible neuromuscular blockade. At venom concentrations of 1-20 µg/ml, the responses to 13.4 mM KCl were inhibited whereas those to 110 µM acetylcholine alone and cumulative concentrations of 1 µM to 10 mM were unaffected. At venom concentrations higher than 50 µg/ml, there was pronounced muscle contracture with inhibition of the responses to acetylcholine, KCl and direct stimulation. At 20-24ºC, the venom (50 µg/ml produced only partial neuromuscular blockade (30.7 ± 8.0%, N = 3 after 120 min and the initial inhibition and the secondary increase of the twitch responses caused by the venom were prolonged and pronounced and the response to KCl was unchanged. These results indicate that B.n. pauloensis venom is neurotoxic, acting primarily at presynaptic sites, and that enzyme activity may be involved in this pharmacological action.

  14. Possible applications of Neuromuscular Taping in pain reduction in Multiple Sclerosis subject: a preliminary report

    Directory of Open Access Journals (Sweden)

    Carmine Berlingieri

    2016-12-01

    Full Text Available Pain is a common disabling symptom in patients with Multiple Sclerosis (MS. It has been indicated that pain prevalence in MS patients is between 29–86 %. It is evident that most MS patients requiring treatment will be also searching pain related treatments to assist in day to day activities. Neuropathic pain is a difficult symptom and is generally inadequately relieved even though different rehabilitative approaches may be used. Neuromuscular Taping inducing micro-movements by stimulating receptors in the skin has been described in literature as a possible intervention in neurological and orthopedic rehabilitation improving mobility and in pain reduction. The aim of this preliminary report was to analyze the effect and to evaluate the possible applications of Neuromuscular Taping (NMT in patients with MS in order to reduce pain in comparison to the Transcutaneous Electrical Nerve Stimulation (TENS and to physical rehabilitation treatment alone. We observed that NMT together with standard physical rehabilitation was able to reduce neuropathic pain to greater lengths, with statistically significant differences between pre and post treatment, compared to the other treatments evaluated. This study showed increased efficacy in pain reduction when NMT was applied to standard physical treatment in long standing pain conditions. Neuromuscular Taping may constitute a low cost treatment strategy for neuropathic pain conditions in MS.

  15. Muscle synergies and complexity of neuromuscular control during gait in cerebral palsy.

    Science.gov (United States)

    Steele, Katherine M; Rozumalski, Adam; Schwartz, Michael H

    2015-12-01

    Individuals with cerebral palsy (CP) have impaired movement due to a brain injury near birth. Understanding how neuromuscular control is altered in CP can provide insight into pathological movement. We sought to determine if individuals with CP demonstrate reduced complexity of neuromuscular control during gait compared with unimpaired individuals and if changes in control are related to functional ability. Muscle synergies during gait were retrospectively analyzed for 633 individuals (age range 3.9-70y): 549 with CP (hemiplegia, n=122; diplegia, n=266; triplegia, n=73; quadriplegia, n=88) and 84 unimpaired individuals. Synergies were calculated using non-negative matrix factorization from surface electromyography collected during previous clinical gait analyses. Synergy complexity during gait was compared with diagnosis subtype, functional ability, and clinical examination measures. Fewer synergies were required to describe muscle activity during gait in individuals with CP compared with unimpaired individuals. Changes in synergies were related to functional impairment and clinical examination measures including selective motor control, strength, and spasticity. Individuals with CP use a simplified control strategy during gait compared with unimpaired individuals. These results were similar to synergies during walking among adult stroke survivors, suggesting similar neuromuscular control strategies between these clinical populations. © 2015 Mac Keith Press.

  16. The effect of additional joint mobilization on neuromuscular performance in individuals with functional ankle instability.

    Science.gov (United States)

    Shih, Yi-Fen; Yu, Hsiang-Ting; Chen, Wen-Yin; Liao, Kwong-Kum; Lin, Hsiu-Chen; Yang, Yea-Ru

    2018-03-01

    To examine the effects of joint mobilization and exercise training on neuromuscular performance in individuals with functional ankle instability (FAI). A cross-sectional study. Forty five subjects with FAI were randomized into three groups: control (CG, n = 15, 27.9 ± 6.6yr), training (TG, n = 15, 26.9 ± 5.8yr) and mobilization with training group (MTG, n = 15, 26.5 ± 4.8yr). Four weeks of neuromuscular training for TG; neuromuscular training and joint mobilization for MTG. Electromyography of the peroneus longus (PL), tibialis anterior (TA), and soleus (SOL) and the reaching distance of the Y balance test (YBT), dorsiflexion range of motion (DFROM), Cumberland ankle instability tool (CAIT), and global rating scale (GRS). Two-way repeated measures MANOVA were used with the significance level p Joint mobilization resulted in additional benefits on self-reported ankle instability severity, dorsiflexion mobility, and posterolateral balance performance in individuals with FAI, but its effects on general improvement, muscle activation, and other balance tasks remained uncertain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Evaluation of skeletal muscular involvement in neuromuscular disorders with thallium-201 whole body scintigraphy

    International Nuclear Information System (INIS)

    Yamamoto, Shuhei; Sotobata, Iwao; Indo, Toshikatsu; Matsuoka, Yukihiko; Matsushima, Hideo; Suzuki, Akio; Abe, Tetsutaro; Sakuma, Sadayuki

    1986-01-01

    The extent as well as severity of pathologic changes of skeletal muscles were analyzed with thallium-201 whole body scintigraphy (WBS) in 29 cases of various types of neuromuscular diseases (18 cases of myogenic and 11 cases of neurogenic muscular diseases) and 14 cases of normal controls. After intravenous injection of 2 mCi of thallium-201 chloride, WBS was performed for 15 minutes using a gamma camera with twin-opposed large rectangular detectors. Counts at brachia, forearms, thighs, and calves were assessed after reconstruction of the scintigram of the whole body by taking the geometric mean of the anterior and posterior data. WBS showed uniform tracer activities in the 4 extremities in 12 cases among 14 controls. Laterality in distribution of counts of both legs and arms was noted in the remaining 2 controls. WBS revealed decrease of perfusion in the extremities with muscular atrophy and/or weakness in neuromuscular diseases. The overall diagnostic accuracy of WBS for evaluation of skeletal muscle involvement was 75 to 80 % except for the bilateral brachia for which it decreased to 65 %. All of the three cases of muscular dystrophy with pseudohypertrophy of the calves or thighs showed unequivocal decrease of perfusion of those regions in WBS. In conclusion, thallium-201 WBS was considered to be a useful clinical means in evaluating the extent and severity of muscular involvement of various types of neuromuscular disorders. (author)

  18. Saponins from soy bean and mung bean inhibit the antigen specific activation of helper T cells by blocking cell cycle progression.

    Science.gov (United States)

    Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon

    2013-02-01

    Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.

  19. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Neuromuscular adjustments of the quadriceps muscle after repeated cycling sprints.

    Directory of Open Access Journals (Sweden)

    Olivier Girard

    Full Text Available PURPOSE: This study investigated the supraspinal processes of fatigue of the quadriceps muscle in response to repeated cycling sprints. METHODS: Twelve active individuals performed 10 × 6-s "all-out" sprints on a cycle ergometer (recovery = 30 s, followed 6 min later by 5 × 6-s sprints (recovery = 30 s. Transcranial magnetic and electrical femoral nerve stimulations during brief (5-s and sustained (30-s isometric contractions of the knee extensors were performed before and 3 min post-exercise. RESULTS: Maximal strength of the knee extensors decreased during brief and sustained contractions (~11% and 9%, respectively; P0.05. While cortical voluntary activation declined (P 40% reduced (P<0.001 following exercise. CONCLUSION: The capacity of the motor cortex to optimally drive the knee extensors following a repeated-sprint test was shown in sustained, but not brief, maximal isometric contractions. Additionally, peripheral factors were largely involved in the exercise-induced impairment in neuromuscular function, while corticospinal excitability was well-preserved.

  1. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Directory of Open Access Journals (Sweden)

    Pantoja Patrícia Dias

    2014-07-01

    Full Text Available This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions.

  2. Neuromuscular Responses of Elite Skaters During Different Roller Figure Skating Jumps

    Science.gov (United States)

    Pantoja, Patrícia Dias; Mello, André; Liedtke, Giane Veiga; Kanitz, Ana Carolina; Cadore, Eduardo Lusa; Pinto, Stephanie Santana; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2014-01-01

    This study aimed to describe the neuromuscular activity of elite athletes who performed various roller figure skating jumps, to determine whether the muscle activation is greater during jumps with more rotations and in which phase the muscles are more active. This study also aimed to analyze if there is any difference in the muscle activity pattern between female and male skaters. Four elite skaters were evaluated, and each participated in two experimental sessions. During the first session, anthropometric data were collected, and the consent forms were signed. For the second session, neuromuscular data were collected during jumps, which were performed with skates at a rink. The following four roller figure skating jumps were evaluated: single Axel, double Axel, double Mapes and triple Mapes. The neuromuscular activity of the following seven muscles was obtained with an electromyograph which was fixed to the waist of each skater with a strap: biceps femoris, lateral gastrocnemius, tibialis anterior, rectus femoris, vastus lateralis, vastus medialis and gluteus maximus. The signal was transmitted wirelessly to a laptop. During the roller figure skating jumps, the lateral gastrocnemius, rectus femoris, vastus lateralis, biceps femoris and gluteus maximus, showed more activation during the jumps with more rotations, and the activation mainly occurred during the propulsion and flight phases. Female skaters demonstrated higher muscle activities in tibialis anterior, vastus lateralis, vastus medialis and gluteus maximus during the landing phase of the triple Mapes, when compared to their male counterparts. The results obtained in this study should be considered when planning training programs with specific exercises that closely resemble the roller figure skating jumps. This may be important for the success of elite skaters in competitions. PMID:25114728

  3. [CLINICAL STUDIES ON EFFECT OF ARTHROSCOPIC INTERCONDYLAR FOSSA ANGIOPLASTY ON ABILITY OF NEUROMUSCULAR CONTROL IN ELDERLY PATIENTS WITH KNEE OSTEOARTHRITIS].

    Science.gov (United States)

    Huang, Jingmin; Wang, Haijiao; Wu, Jiang; Li, Dongchao; Li, Yuhong

    2015-08-01

    To study the effect of arthroscopic intercondylar fossa angioplasty on the ability of neuromuscular control of the knee joint in elderly patients with knee osteoarthritis (KOA). Between June 2012 and March 2013, 20 elderly patients with KOA and in accordance with inclusion and exclusion criteria underwent arthroscopic intercondylar fossa angioplasty (operation group), and 20 healthy elderly people served as control group. There was no significant difference in age, height, weight, and body mass index between 2 groups (P > 0.05). The proprioception capability (using passive regeneration test at measurement angles of 15, 30, and 60°) and quadriceps mobilization [including maximum voluntary contraction (MVC), central activation ratio (CAR), and activation deficit (AD)] were measured to avaluate the neuromuscular control of the knee; the Lysholm score was used to evaluate knee function. The above indexes were measured to assess the knee neuromuscular control and recovery of joint function in patients of operation group at 3, 6, and 9 months after operation. Compared with the control group, MVC, CAR, and Lysholm scores were significantly decreased, and the AD and passive knee angle difference were significantly increased in operation group (P 0.05). Arthroscopic intercondylar fossa angioplasty can relieve ACL pressure, abrasion, and impact, which will recover the ability of neuromuscular control, increase proprioception and quadriceps mobilization capacity, and improve the joint function.

  4. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    Science.gov (United States)

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  5. Neuromuscular paralysis by the basic phospholipase A2 subunit of crotoxin from Crotalus durissus terrificus snake venom needs its acid chaperone to concurrently inhibit acetylcholine release and produce muscle blockage.

    Science.gov (United States)

    Cavalcante, Walter L G; Noronha-Matos, José B; Timóteo, Maria A; Fontes, Marcos R M; Gallacci, Márcia; Correia-de-Sá, Paulo

    2017-11-01

    Crotoxin (CTX), a heterodimeric phospholipase A 2 (PLA 2 ) neurotoxin from Crotalus durissus terrificus snake venom, promotes irreversible blockade of neuromuscular transmission. Indirect electrophysiological evidence suggests that CTX exerts a primary inhibitory action on transmitter exocytosis, yet contribution of a postsynaptic action of the toxin resulting from nicotinic receptor desensitization cannot be excluded. Here, we examined the blocking effect of CTX on nerve-evoked transmitter release measured directly using radioisotope neurochemistry and video microscopy with the FM4-64 fluorescent dye. Experiments were conducted using mice phrenic-diaphragm preparations. Real-time fluorescence video microscopy and liquid scintillation spectrometry techniques were used to detect transmitter exocytosis and nerve-evoked [ 3 H]-acetylcholine ([ 3 H]ACh) release, respectively. Nerve-evoked myographic recordings were also carried out for comparison purposes. Both CTX (5μg/mL) and its basic PLA 2 subunit (CB, 20μg/mL) had biphasic effects on nerve-evoked transmitter exocytosis characterized by a transient initial facilitation followed by a sustained decay. CTX and CB reduced nerve-evoked [ 3 H]ACh release by 60% and 69%, respectively, but only the heterodimer, CTX, decreased the amplitude of nerve-evoked muscle twitches. Data show that CTX exerts a presynaptic inhibitory action on ACh release that is highly dependent on its intrinsic PLA 2 activity. Given the high safety margin of the neuromuscular transmission, one may argue that the presynaptic block caused by the toxin is not enough to produce muscle paralysis unless a concurrent postsynaptic inhibitory action is also exerted by the CTX heterodimer. Copyright © 2017. Published by Elsevier Inc.

  6. Postoperative Residual Neuromuscular Paralysis at an Australian Tertiary Children’s Hospital

    Directory of Open Access Journals (Sweden)

    Thomas Ledowski

    2015-01-01

    Full Text Available Purpose. Residual neuromuscular blockade (RNMB is known to be a significant but frequently overlooked complication after the use of neuromuscular blocking agents (NMBA. Aim of this prospective audit was to investigate the incidence and severity of RNMB at our Australian tertiary pediatric center. Methods. All children receiving NMBA during anesthesia were included over a 5-week period at the end of 2011 (Mondays to Fridays; 8 a.m.–6 p.m.. At the end of surgery, directly prior to tracheal extubation, the train-of-four (TOF ratio was assessed quantitatively. Data related to patient postoperative outcome was collected in the postoperative acute care unit. Results. Data of 64 patients were analyzed. Neostigmine was given in 34 cases and sugammadex in 1 patient. The incidence of RNMB was 28.1% overall (without reversal: 19.4%; after neostigmine: 37.5%; n.s.. Severe RNMB (TOF ratio < 0.7 was found in 6.5% after both no reversal and neostigmine, respectively. Complications in the postoperative acute care unit were infrequent, with no differences between reversal and no reversal groups. Conclusions. In this audit, RNMB was frequently observed, particularly in cases where patients were reversed with neostigmine. These findings underline the well-known problems associated with the use of NMBA that are not fully reversed.

  7. A high-pressure thermal gradient block for investigating microbial activity in multiple deep-sea samples

    DEFF Research Database (Denmark)

    Kallmeyer, J.; Ferdelman, TG; Jansen, KH

    2003-01-01

    Details about the construction and use of a high-pressure thermal gradient block for the simultaneous incubation of multiple samples are presented. Most parts used are moderately priced off-the-shelf components that easily obtainable. In order to keep the pressure independent of thermal expansion...... range of temperatures and pressures and can easily be modified to accommodate different experiments, either biological or chemical. As an application, we present measurements of bacterial sulfate reduction rates in hydrothermal sediments from Guyamas Basin over a wide range of temperatures and pressures...

  8. Time course of action of sugammadex (Org 25969) on rocuronium-induced block in the Rhesus monkey, using a simple model of equilibration of complex formation.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Driessen, J.J.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: Reversal of neuromuscular block can be accomplished by chemical encapsulation of rocuronium by sugammadex (Org 25969), a synthetic gamma-cyclodextrin derivative. The present study determined the time course of the reversal action of sugammadex on rocuronium-induced block in the

  9. The neuromuscular differential diagnosis of joint hypermobility.

    Science.gov (United States)

    Donkervoort, S; Bonnemann, C G; Loeys, B; Jungbluth, H; Voermans, N C

    2015-03-01

    Joint hypermobility is the defining feature of various inherited connective tissue disorders such as Marfan syndrome and various types of Ehlers-Danlos syndrome and these will generally be the first conditions to be considered by geneticists and pediatricians in the differential diagnosis of a patient presenting with such findings. However, several congenital and adult-onset inherited myopathies also present with joint hypermobility in the context of often only mild-to-moderate muscle weakness and should, therefore, be included in the differential diagnosis of joint hypermobility. In fact, on the molecular level disorders within both groups represent different ends of the same spectrum of inherited extracellular matrix (ECM) disorders. In this review we will summarize the measures of joint hypermobility, illustrate molecular mechanisms these groups of disorders have in common, and subsequently discuss the clinical features of: 1) the most common connective tissue disorders with myopathic or other neuromuscular features: Ehlers-Danlos syndrome, Marfan syndrome and Loeys-Dietz syndrome; 2) myopathy and connective tissue overlap disorders (muscle extracellular matrix (ECM) disorders), including collagen VI related dystrophies and FKBP14 related kyphoscoliotic type of Ehlers-Danlos syndrome; and 3) various (congenital) myopathies with prominent joint hypermobility including RYR1- and SEPN1-related myopathy. The aim of this review is to assist clinical geneticists and other clinicians with recognition of these disorders. © 2015 Wiley Periodicals, Inc.

  10. Assessment of Motor Units in Neuromuscular Disease.

    Science.gov (United States)

    Henderson, Robert D; McCombe, Pamela A

    2017-01-01

    The motor unit comprises the anterior horn cell, its axon, and the muscle fibers that it innervates. Although the true number of motor units is unknown, the number of motor units appears to vary greatly between different muscles and between different individuals. Assessment of the number and function of motor units is needed in diseases of the anterior horn cell and other motor nerve disorders. Amyotrophic lateral sclerosis is the most important disease of anterior horn cells. The need for an effective biomarker for assessing disease progression and for use in clinical trials in amyotrophic lateral sclerosis has stimulated the study of methods to measure the number of motor units. Since 1970 a number of different methods, including the incremental, F-wave, multipoint, and statistical methods, have been developed but none has achieved widespread applicability. Two methods (MUNIX and the multipoint incremental method) are in current use across multiple centres and are discussed in detail in this review, together with other recently published methods. Imaging with magnetic resonance and ultrasound is increasingly being applied to this area. Motor unit number estimates have also been applied to other neuromuscular diseases such as spinal muscular atrophy, compression neuropathies, and prior poliomyelitis. The need for an objective measure for the assessment of motor units remains tantalizingly close but unfulfilled in 2016.

  11. Neuromuscular dentistry: Occlusal diseases and posture.

    Science.gov (United States)

    Khan, Mohd Toseef; Verma, Sanjeev Kumar; Maheshwari, Sandhya; Zahid, Syed Naved; Chaudhary, Prabhat K

    2013-01-01

    Neuromuscular dentistry has been a controversial topic in the field of dentistry and still remains debatable. The issue of good occlusion and sound health has been repeatedly discussed. Sometimes we get complains of sensitive teeth and sometimes of tired facial muscles on getting up in the morning. Owing to the intimate relation of masticatory apparatus with the cranium and cervico-scapular muscular system, the disorders in any system, draw attention from concerned clinicians involved in management, to develop an integrated treatment protocol for the suffering patients. There may be patients reporting to the dental clinics after an occlusal restoration or extraction, having pain in or around the temporomandibular joint, headache or neck pain. Although their esthetic demands must not be undermined during the course of treatment plan, whenever dental treatment of any sort is planned, occlusion/bite should be given prime importance. Very few dentist are able to diagnose the occlusal disease and of those who diagnose many people resort to aggressive treatment modalities. This paper aims to report the signs of occlusal disease, and discuss their association with TMDs and posture.

  12. Stem cell route to neuromuscular therapies.

    Science.gov (United States)

    Partridge, Terence A

    2003-02-01

    As applied to skeletal muscle, stem cell therapy is a reincarnation of myoblast transfer therapy that has resulted from recent advances in the cell biology of skeletal muscle. Both strategies envisage the reconstruction of damaged muscle from its precursors, but stem cell therapy employs precursors that are earlier in the developmental hierarchy. It is founded on demonstrations of apparently multipotential cells in a wide variety of tissues that can assume, among others, a myogenic phenotype. The main demonstrated advantage of such cells is that they are capable of colonizing many tissues, including skeletal and cardiac muscle via the blood vascular system, thereby providing the potential for a body-wide distribution of myogenic progenitors. From a practical viewpoint, the chief disadvantage is that such colonization has been many orders of magnitude too inefficient to be useful. Proposals for overcoming this drawback are the subject of much speculation but, so far, relatively little experimentation. This review attempts to give some perspective to the status of the stem cell as a therapeutic instrument for neuromuscular disease and to identify issues that need to be addressed for application of this technology.

  13. An efficient, block-by-block algorithm for inverting a block tridiagonal, nearly block Toeplitz matrix

    International Nuclear Information System (INIS)

    Reuter, Matthew G; Hill, Judith C

    2012-01-01

    We present an algorithm for computing any block of the inverse of a block tridiagonal, nearly block Toeplitz matrix (defined as a block tridiagonal matrix with a small number of deviations from the purely block Toeplitz structure). By exploiting both the block tridiagonal and the nearly block Toeplitz structures, this method scales independently of the total number of blocks in the matrix and linearly with the number of deviations. Numerical studies demonstrate this scaling and the advantages of our method over alternatives.

  14. The Glycolytic Metabolite, Fructose-1,6-bisphosphate, Blocks Epileptiform Bursts by Attenuating Voltage-Activated Calcium Currents in Hippocampal Slices

    Directory of Open Access Journals (Sweden)

    Li-Rong Shao

    2018-06-01

    Full Text Available Manipulation of metabolic pathways (e.g., ketogenic diet (KD, glycolytic inhibition alters neural excitability and represents a novel strategy for treatment of drug-refractory seizures. We have previously shown that inhibition of glycolysis suppresses epileptiform activity in hippocampal slices. In the present study, we aimed to examine the role of a “branching” metabolic pathway stemming off glycolysis (i.e., the pentose-phosphate pathway, PPP in regulating seizure activity, by using a potent PPP stimulator and glycolytic intermediate, fructose-1,6-bisphosphate (F1,6BP. Employing electrophysiological approaches, we investigated the action of F1,6BP on epileptiform population bursts, intrinsic neuronal firing, glutamatergic and GABAergic synaptic transmission and voltage-activated calcium currents (ICa in the CA3 area of hippocampal slices. Bath application of F1,6BP (2.5–5 mM blocked epileptiform population bursts induced in Mg2+-free medium containing 4-aminopyridine, in ~2/3 of the slices. The blockade occurred relatively rapidly (~4 min, suggesting an extracellular mechanism. However, F1,6BP did not block spontaneous intrinsic firing of the CA3 neurons (when synaptic transmission was eliminated with DNQX, AP-5 and SR95531, nor did it significantly reduce AMPA or NMDA receptor-mediated excitatory postsynaptic currents (EPSCAMPA and EPSCNMDA. In contrast, F1,6BP caused moderate reduction (~50% in GABAA receptor-mediated current, suggesting it affects excitatory and inhibitory synapses differently. Finally and unexpectedly, F1,6BP consistently attenuated ICa by ~40% without altering channel activation or inactivation kinetics, which may explain its anticonvulsant action, at least in this in vitro seizure model. Consistent with these results, epileptiform population bursts in CA3 were readily blocked by the nonspecific Ca2+ channel blocker, CdCl2 (20 μM, suggesting that these bursts are calcium dependent. Altogether, these data

  15. Analysis of Block OMP using Block RIP

    OpenAIRE

    Wang, Jun; Li, Gang; Zhang, Hao; Wang, Xiqin

    2011-01-01

    Orthogonal matching pursuit (OMP) is a canonical greedy algorithm for sparse signal reconstruction. When the signal of interest is block sparse, i.e., it has nonzero coefficients occurring in clusters, the block version of OMP algorithm (i.e., Block OMP) outperforms the conventional OMP. In this paper, we demonstrate that a new notion of block restricted isometry property (Block RIP), which is less stringent than standard restricted isometry property (RIP), can be used for a very straightforw...

  16. Preventing Ischial Pressure Ulcers: III. Clinical Pilot Study of Chronic Neuromuscular Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Hilton M. Kaplan

    2011-01-01

    Full Text Available Objective: BIONs™ (BIOnic Neurons are injectable, wireless microstimulators that make chronic BION Active Seating (BAS possible for pressure ulcer prevention (PUP. Neuromuscular electrical stimulation (NMES produces skeletal motion and activates trophic factors, counteracting three major etiological mechanisms leading to pressure ulcers (PUs: immobility, soft-tissue atrophy, and ischemia. Companion papers I and II reviewed prior experience with NMES for PUP, and analyzed the biomechanical considerations, respectively. This paper presents a treatment strategy derived from this analysis, and the clinical results of the first three cases.

  17. Reversal of rocuronium-induced neuromuscular blockade by sugammadex allows for optimization of neural monitoring of the recurrent laryngeal nerve.

    Science.gov (United States)

    Lu, I-Cheng; Wu, Che-Wei; Chang, Pi-Ying; Chen, Hsiu-Ya; Tseng, Kuang-Yi; Randolph, Gregory W; Cheng, Kuang-I; Chiang, Feng-Yu

    2016-04-01

    The use of neuromuscular blocking agent may effect intraoperative neuromonitoring (IONM) during thyroid surgery. An enhanced neuromuscular-blockade (NMB) recovery protocol was investigated in a porcine model and subsequently clinically applied during human thyroid neural monitoring surgery. Prospective animal and retrospective clinical study. In the animal experiment, 12 piglets were injected with rocuronium 0.6 mg/kg and randomly allocated to receive normal saline, sugammadex 2 mg/kg, or sugammadex 4 mg/kg to compare the recovery of laryngeal electromyography (EMG). In a subsequent clinical application study, 50 patients who underwent thyroidectomy with IONM followed an enhanced NMB recovery protocol-rocuronium 0.6 mg/kg at anesthesia induction and sugammadex 2 mg/kg at the operation start. The train-of-four (TOF) ratio was used for continuous quantitative monitoring of neuromuscular transmission. In our porcine model, it took 49 ± 15, 13.2 ± 5.6, and 4.2 ± 1.5 minutes for the 80% recovery of laryngeal EMG after injection of saline, sugammadex 2 mg/kg, and sugammadex 4 mg/kg, respectively. In subsequent clinical human application, the TOF ratio recovered from 0 to >0.9 within 5 minutes after administration of sugammadex 2 mg/kg at the operation start. All patients had positive and high EMG amplitude at the early stage of the operation, and intubation was without difficulty in 96% of patients. Both porcine modeling and clinical human application demonstrated that sugammadex 2 mg/kg allows effective and rapid restoration of neuromuscular function suppressed by rocuronium. Implementation of this enhanced NMB recovery protocol assures optimal conditions for tracheal intubation as well as IONM in thyroid surgery. NA. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Arrays of Au-TiO{sub 2} Janus-like nanoparticles fabricated by block copolymer templates and their photocatalytic activity in the degradation of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiaoning; Liu Jun; Yang Hui; Sun Jiuchuan [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Li Xue, E-mail: lixue0312@yahoo.com [Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, 106 Jiwei Road, Jinan 250022 (China); Zhang Xiaokai [College of Physics and Electronics, Shandong Normal University, 88 Wenhuadong Road, Jinan 250014 (China); Jia Yuxi, E-mail: jia_yuxi@sdu.edu.cn [School of Materials Science and Engineering, Shandong University, Jinan 250061 (China)

    2011-10-17

    Highlights: {center_dot} Fabrication of an array of Au-titania Janus nanoparticles on silicon substrate. {center_dot} PS-b-PEO block copolymer is used as templates. {center_dot} Au-TiO{sub 2} Janus-like nanoparticles exhibit higher photocatalytic activity. - Abstract: A simple approach towards the fabrication of an array of Au-titania Janus-like nanoparticles is presented. Monolayer organic-inorganic hybrid films are produced by spin coating the mixture of polystyrene-block-poly (ethylene oxide) (PS-b-PEO)/HAuCl{sub 4} solution and titania sol-gel precursor solution. HAuCl{sub 4} and titania are incorporated in the PEO domains. After removing the organic matrix by deep UV irradiation, arrays of Au-TiO{sub 2} Janus-like nanoparticles on the substrate surface are obtained. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are employed to characterize the Janus-like nanoparticles. The photocatalytic degradation of methylene blue (MB) chosen as the test reaction to examine the photocatalytic activity of the Au-TiO{sub 2} Janus-like nanoparticles is shown to be more effective as compared to that of TiO{sub 2} nanoparticles or Au-TiO{sub 2} composite nanoparticles. The increased photocatalytic activity of Au-TiO{sub 2} Janus-like nanoparticles is attributed to the Au-TiO{sub 2} heterointerfaces.

  19. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men.

    Directory of Open Access Journals (Sweden)

    Ricardo Mora-Rodríguez

    Full Text Available PURPOSE: To investigate whether caffeine ingestion counteracts the morning reduction in neuromuscular performance associated with the circadian rhythm pattern. METHODS: Twelve highly resistance-trained men underwent a battery of neuromuscular tests under three different conditions; i morning (10:00 a.m. with caffeine ingestion (i.e., 3 mg kg(-1; AM(CAFF trial; ii morning (10:00 a.m. with placebo ingestion (AM(PLAC trial; and iii afternoon (18:00 p.m. with placebo ingestion (PM(PLAC trial. A randomized, double-blind, crossover, placebo controlled experimental design was used, with all subjects serving as their own controls. The neuromuscular test battery consisted in the measurement of bar displacement velocity during free-weight full-squat (SQ and bench press (BP exercises against loads that elicit maximum strength (75% 1RM load and muscle power adaptations (1 m s(-1 load. Isometric maximum voluntary contraction (MVC(LEG and isometric electrically evoked strength of the right knee (EVOK(LEG were measured to identify caffeine's action mechanisms. Steroid hormone levels (serum testosterone, cortisol and growth hormone were evaluated at the beginning of each trial (PRE. In addition, plasma norepinephrine (NE and epinephrine were measured PRE and at the end of each trial following a standardized intense (85% 1RM 6 repetitions bout of SQ (POST. RESULTS: In the PM(PLAC trial, dynamic muscle strength and power output were significantly enhanced compared with AM(PLAC treatment (3.0%-7.5%; p≤0.05. During AM(CAFF trial, muscle strength and power output increased above AM(PLAC levels (4.6%-5.7%; p≤0.05 except for BP velocity with 1 m s(-1 load (p = 0.06. During AM(CAFF, EVOK(LEG and NE (a surrogate of maximal muscle sympathetic nerve activation were increased above AM(PLAC trial (14.6% and 96.8% respectively; p≤0.05. CONCLUSIONS: These results indicate that caffeine ingestion reverses the morning neuromuscular declines in highly resistance

  20. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults.

    Science.gov (United States)

    Hristovska, Ana-Marija; Duch, Patricia; Allingstrup, Mikkel; Afshari, Arash

    2017-08-14

    Acetylcholinesterase inhibitors, such as neostigmine, have traditionally been used for reversal of non-depolarizing neuromuscular blocking agents. However, these drugs have significant limitations, such as indirect mechanisms of reversal, limited and unpredictable efficacy, and undesirable autonomic responses. Sugammadex is a selective relaxant-binding agent specifically developed for rapid reversal of non-depolarizing neuromuscular blockade induced by rocuronium. Its potential clinical benefits include fast and predictable reversal of any degree of block, increased patient safety, reduced incidence of residual block on recovery, and more efficient use of healthcare resources. The main objective of this review was to compare the efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade caused by non-depolarizing neuromuscular agents in adults. We searched the following databases on 2 May 2016: Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (WebSPIRS Ovid SP), Embase (WebSPIRS Ovid SP), and the clinical trials registries www.controlled-trials.com, clinicaltrials.gov, and www.centerwatch.com. We re-ran the search on 10 May 2017. We included randomized controlled trials (RCTs) irrespective of publication status, date of publication, blinding status, outcomes published, or language. We included adults, classified as American Society of Anesthesiologists (ASA) I to IV, who received non-depolarizing neuromuscular blocking agents for an elective in-patient or day-case surgical procedure. We included all trials comparing sugammadex versus neostigmine that reported recovery times or adverse events. We included any dose of sugammadex and neostigmine and any time point of study drug administration. Two review authors independently screened titles and abstracts to identify trials for eligibility, examined articles for eligibility, abstracted data, assessed the articles, and excluded obviously irrelevant reports. We resolved

  1. Pilates and Proprioceptive Neuromuscular Facilitation Methods Induce Similar Strength Gains but Different Neuromuscular Adaptations in Elderly Women.

    Science.gov (United States)

    Teixeira de Carvalho, Fabiana; de Andrade Mesquita, Laiana Sepúlveda; Pereira, Rafael; Neto, Osmar Pinto; Amaro Zangaro, Renato

    2017-01-01

    Background/Study Context: The aging process is associated with a decline in muscle mass, strength, and conditioning. Two training methods that may be useful to improve muscle function are Pilates and proprioceptive neuromuscular facilitation (PNF). Thus, the present study aimed to compare the influence of training programs using Pilates and PNF methods with elderly women. Sixty healthy elderly women were randomly divided into three groups: Pilates group, PNF group, and control group. Pilates and PNF groups underwent 1-month training programs with Pilates and PNF methods, respectively. The control group received no intervention during the 1 month. The maximal isometric force levels from knee extension and flexion, as well as the electromyography (EMG) signals from quadriceps and biceps femoris, were recorded before and after the 1-month intervention period. A two-way analysis of variance revealed that the Pilates and PNF methods induced similar strength gains from knee flexors and extensors, but Pilates exhibited greater low-gamma drive (i.e., oscillations in 30-60 Hz) in the EMG power spectrum after the training period. These results support use of both Pilates and PNF methods to enhance lower limb muscle strength in older groups, which is very important for gait, postural stability, and performance of daily life activities.

  2. Protein S blocks the extrinsic apoptotic cascade in tissue plasminogen activator/N-methyl D-aspartate-treated neurons via Tyro3-Akt-FKHRL1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Freeman Robert S

    2011-02-01

    Full Text Available Abstract Background Thrombolytic therapy with tissue plasminogen activator (tPA benefits patients with acute ischemic stroke. However, tPA increases the risk for intracerebral bleeding and enhances post-ischemic neuronal injury if administered 3-4 hours after stroke. Therefore, combination therapies with tPA and neuroprotective agents have been considered to increase tPA's therapeutic window and reduce toxicity. The anticoagulant factor protein S (PS protects neurons from hypoxic/ischemic injury. PS also inhibits N-methyl-D-aspartate (NMDA excitotoxicity by phosphorylating Bad and Mdm2 which blocks the downstream steps in the intrinsic apoptotic cascade. To test whether PS can protect neurons from tPA toxicity we studied its effects on tPA/NMDA combined injury which in contrast to NMDA alone kills neurons by activating the extrinsic apoptotic pathway. Neither Bad nor Mdm2 which are PS's targets and control the intrinsic apoptotic pathway can influence the extrinsic cascade. Thus, based on published data one cannot predict whether PS can protect neurons from tPA/NMDA injury by blocking the extrinsic pathway. Neurons express all three TAM (Tyro3, Axl, Mer receptors that can potentially interact with PS. Therefore, we studied whether PS can activate TAM receptors during a tPA/NMDA insult. Results We show that PS protects neurons from tPA/NMDA-induced apoptosis by suppressing Fas-ligand (FasL production and FasL-dependent caspase-8 activation within the extrinsic apoptotic pathway. By transducing neurons with adenoviral vectors expressing the kinase-deficient Akt mutant AktK179A and a triple FKHRL1 Akt phosphorylation site mutant (FKHRL1-TM, we show that Akt activation and Akt-mediated phosphorylation of FKHRL1, a member of the Forkhead family of transcription factors, are critical for FasL down-regulation and caspase-8 inhibition. Using cultured neurons from Tyro3, Axl and Mer mutants, we show that Tyro3, but not Axl and Mer, mediates

  3. Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys.

    NARCIS (Netherlands)

    Boer, H.D. de; Egmond, J. van; Pol, F. van de; Bom, A.; Booij, L.H.D.J.

    2006-01-01

    BACKGROUND: Reversal of neuromuscular blockade can be accomplished by chemical encapsulation of rocuronium by sugammadex, a synthetic gamma-cyclodextrin derivative. The current study determined the feasibility of reversal of rocuronium-induced profound neuromuscular blockade with sugammadex in the

  4. What occupant kinematics and neuromuscular responses tell us about whiplash injury.

    Science.gov (United States)

    Siegmund, Gunter P

    2011-12-01

    Literature-based review. To review the published data on occupant kinematic and neuromuscular responses during low-speed impacts and analyze how these data inform our understanding of whiplash injury. A stereotypical kinematic and neuromuscular response has been observed in human subjects exposed to rear-end impacts. Combined with various models of injury, these response data have been used to develop anti-whiplash seats that prevent whiplash injury in many, but not all, individuals exposed to a rear-end crash. Synthesis of the literature. Understanding of the occupant kinematics and neuromuscular responses, combined with data from various seat-related interventions, have shown that differential motion between the superior and inferior ends of the cervical spine is responsible for many whiplash injuries. The number of whiplash injuries not prevented by current anti-whiplash seats suggests than further work remains, possibly related to designing seats that respond dynamically to the occupant and collision properties. Neck muscles alter the head and neck kinematics during the interval in which injury likely occurs, even in initially relaxed occupants. It remains unclear whether muscle activation mitigates or exacerbates whiplash injury. If muscle activation mitigates injury, then advance warning could be used to help occupant tense their muscles before impact. Alternatively, if muscle activation exacerbates whiplash injury, then a loud preimpact sound that uncouples the startle and postural components of the muscle response could reduce peak muscle activation during a whiplash exposure. Our improved understanding of whiplash injury has led to anti-whiplash seats that have prevented many whiplash injuries. Further work remains to optimize these and possibly other systems to further reduce the number of whiplash injuries.

  5. Left bundle-branch block

    DEFF Research Database (Denmark)

    Risum, Niels; Strauss, David; Sogaard, Peter

    2013-01-01

    The relationship between myocardial electrical activation by electrocardiogram (ECG) and mechanical contraction by echocardiography in left bundle-branch block (LBBB) has never been clearly demonstrated. New strict criteria for LBBB based on a fundamental understanding of physiology have recently...

  6. Doxorubicin-loaded micelles of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers as efficient "active" chemotherapeutic agents.

    Science.gov (United States)

    Cambón, A; Rey-Rico, A; Mistry, D; Brea, J; Loza, M I; Attwood, D; Barbosa, S; Alvarez-Lorenzo, C; Concheiro, A; Taboada, P; Mosquera, V

    2013-03-10

    Five reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BOnEOmBOn, with BO ranging from 8 to 21 units and EO from 90 to 411 were synthesized and evaluated as efficient chemotherapeutic drug delivery nanocarriers and inhibitors of the P-glycoprotein (P-gp) efflux pump in a multidrug resistant (MDR) cell line. The copolymers were obtained by reverse polymerization of poly(butylene oxide), which avoids transfer reaction and widening of the EO block distribution, commonly found in commercial poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamers). BOnEOmBOn copolymers formed spherical micelles of 10-40 nm diameter at lower concentrations (one order of magnitude) than those of equivalent poloxamers. The influence of copolymer block lengths and BO/EO ratios on the solubilization capacity and protective environment for doxorubicin (DOXO) was investigated. Micelles showed drug loading capacity ranging from ca. 0.04% to 1.5%, more than 150 times the aqueous solubility of DOXO, and protected the cargo from hydrolysis for more than a month due to their greater colloidal stability in solution. Drug release profiles at various pHs, and the cytocompatibility and cytotoxicity of the DOXO-loaded micelles were assessed in vitro. DOXO loaded in the polymeric micelles accumulated more slowly inside the cells than free DOXO due to its sustained release. All copolymers were found to be cytocompatible, with viability extents larger than 95%. In addition, the cytotoxicity of DOXO-loaded micelles was higher than that observed for free drug solutions in a MDR ovarian NCI-ADR-RES cell line which overexpressed P-gp. The inhibition of the P-gp efflux pump by some BOnEOmBOn copolymers, similar to that measured for the common P-gp inhibitor verapamil, favored the retention of DOXO inside the cell increasing its cytotoxic activity. Therefore, poly(butylene oxide)-poly(ethylene oxide) block copolymers offer interesting features as cell

  7. Programming Cardiac Resynchronization Therapy for Electrical Synchrony: Reaching Beyond Left Bundle Branch Block and Left Ventricular Activation Delay.

    Science.gov (United States)

    Varma, Niraj; O'Donnell, David; Bassiouny, Mohammed; Ritter, Philippe; Pappone, Carlo; Mangual, Jan; Cantillon, Daniel; Badie, Nima; Thibault, Bernard; Wisnoskey, Brian

    2018-02-06

    QRS narrowing following cardiac resynchronization therapy with biventricular (BiV) or left ventricular (LV) pacing is likely affected by patient-specific conduction characteristics (PR, qLV, LV-paced propagation interval), making a universal programming strategy likely ineffective. We tested these factors using a novel, device-based algorithm (SyncAV) that automatically adjusts paced atrioventricular delay (default or programmable offset) according to intrinsic atrioventricular conduction. Seventy-five patients undergoing cardiac resynchronization therapy (age 66±11 years; 65% male; 32% with ischemic cardiomyopathy; LV ejection fraction 28±8%; QRS duration 162±16 ms) with intact atrioventricular conduction (PR interval 194±34, range 128-300 ms), left bundle branch block, and optimized LV lead position were studied at implant. QRS duration (QRSd) reduction was compared for the following pacing configurations: nominal simultaneous BiV (Mode I: paced/sensed atrioventricular delay=140/110 ms), BiV+SyncAV with 50 ms offset (Mode II), BiV+SyncAV with offset that minimized QRSd (Mode III), or LV-only pacing+SyncAV with 50 ms offset (Mode IV). The intrinsic QRSd (162±16 ms) was reduced to 142±17 ms (-11.8%) by Mode I, 136±14 ms (-15.6%) by Mode IV, and 132±13 ms (-17.8%) by Mode II. Mode III yielded the shortest overall QRSd (123±12 ms, -23.9% [ P <0.001 versus all modes]) and was the only configuration without QRSd prolongation in any patient. QRS narrowing occurred regardless of QRSd, PR, or LV-paced intervals, or underlying ischemic disease. Post-implant electrical optimization in already well-selected patients with left bundle branch block and optimized LV lead position is facilitated by patient-tailored BiV pacing adjusted to intrinsic atrioventricular timing using an automatic device-based algorithm. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  8. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade

    DEFF Research Database (Denmark)

    Brueckmann, B; Sasaki, N; Grobara, P

    2015-01-01

    BACKGROUND: This study aimed to investigate whether reversal of rocuronium-induced neuromuscular blockade with sugammadex reduced the incidence of residual blockade and facilitated operating room discharge readiness. METHODS: Adult patients undergoing abdominal surgery received rocuronium, followed...... by randomized allocation to sugammadex (2 or 4 mg kg(-1)) or usual care (neostigmine/glycopyrrolate, dosing per usual care practice) for reversal of neuromuscular blockade. Timing of reversal agent administration was based on the providers' clinical judgement. Primary endpoint was the presence of residual...... measured at PACU entry. Zero out of 74 sugammadex patients and 33 out of 76 (43.4%) usual care patients had TOF-Watch® SX-assessed residual neuromuscular blockade at PACU admission (odds ratio 0.0, 95% CI [0-0.06], P

  9. Total hip arthroplasty in patients with neuromuscular imbalance.

    Science.gov (United States)

    Konan, S; Duncan, C P

    2018-01-01

    Patients with neuromuscular imbalance who require total hip arthroplasty (THA) present particular technical problems due to altered anatomy, abnormal bone stock, muscular imbalance and problems of rehabilitation. In this systematic review, we studied articles dealing with THA in patients with neuromuscular imbalance, published before April 2017. We recorded the demographics of the patients and the type of neuromuscular pathology, the indication for surgery, surgical approach, concomitant soft-tissue releases, the type of implant and bearing, pain and functional outcome as well as complications and survival. Recent advances in THA technology allow for successful outcomes in these patients. Our review suggests excellent benefits for pain relief and good functional outcome might be expected with a modest risk of complication. Cite this article: Bone Joint J 2018;100-B(1 Supple A):17-21. ©2018 The British Editorial Society of Bone & Joint Surgery.

  10. Surgical Space Conditions During Low-Pressure Laparoscopic Cholecystectomy with Deep Versus Moderate Neuromuscular Blockade

    DEFF Research Database (Denmark)

    Staehr-Rye, Anne K; Rasmussen, Lars S.; Rosenberg, Jacob

    2014-01-01

    : In this assessor-blinded study, 48 patients undergoing elective laparoscopic cholecystectomy were administered rocuronium for neuromuscular blockade and randomized to either deep neuromuscular blockade (rocuronium bolus plus infusion maintaining a posttetanic count 0-1) or moderate neuromuscular blockade...... (rocuronium repeat bolus only for inadequate surgical conditions with spontaneous recovery of neuromuscular function). Patients received anesthesia with propofol, remifentanil, and rocuronium. The primary outcome was the proportion of procedures with optimal surgical space conditions (assessed by the surgeon...

  11. Influence of neuromuscular noise and walking speed on fall risk and dynamic stability in a 3D dynamic walking model.

    Science.gov (United States)

    Roos, Paulien E; Dingwell, Jonathan B

    2013-06-21

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Non-surface activity and micellization behavior of cationic amphiphilic block copolymer synthesized by reversible addition-fragmentation chain transfer process.

    Science.gov (United States)

    Ghosh, Arjun; Yusa, Shin-ichi; Matsuoka, Hideki; Saruwatari, Yoshiyuki

    2011-08-02

    Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.

  13. Flexible strategy for immobilizing redox-active compounds using in situ generation of diazonium salts. Investigations of the blocking and catalytic properties of the layers.

    Science.gov (United States)

    Noël, Jean-Marc; Sjöberg, Béatrice; Marsac, Rémi; Zigah, Dodzi; Bergamini, Jean-François; Wang, Aifang; Rigaut, Stéphane; Hapiot, Philippe; Lagrost, Corinne

    2009-11-03

    A versatile two-step method is developed to covalently immobilize redox-active molecules onto carbon surfaces. First, a robust anchoring platform is grafted onto surfaces by electrochemical reduction of aryl diazonium salts in situ generated. Depending on the nature of the layer termini, -COOH or -NH(2), a further chemical coupling involving ferrocenemethylamine or ferrocene carboxylic acid derivatives leads to the covalent binding of ferrocene centers. The chemical strategy using acyl chloride activation is efficient and flexible, since it can be applied either to surface-reactive end groups or to reactive species in solution. Cyclic voltammetry analyses point to the covalent binding of ferrocene units restricted to the upper layers of the underlying aryl films, while AFM measurements show a lost of compactness of the layers after the chemical attachment of ferrocene centers. The preparation conditions of the anchoring layers were found to determine the interfacial properties of the resulted ferrocenyl-modified electrodes. The ferrocene units promoted effective redox mediation providing that the free redox probes are adequately chosen (i.e., vs size/formal potential) and the underlying layers exhibit strong blocking properties. For anchoring films with weaker blocking effect, the coexistence of two distinct phenomena, redox mediation and ET at pinholes could be evidenced.

  14. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

    Directory of Open Access Journals (Sweden)

    Martin eBehrens

    2015-05-01

    Full Text Available Previously published studies on the effect of short-term endurance training on the neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after eight weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms and isometric maximum voluntary contraction of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave, peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that the endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue

  15. Exercise Therapy in Spinobulbar Muscular Atrophy and Other Neuromuscular Disorders

    DEFF Research Database (Denmark)

    Dahlqvist, Julia Rebecka; Vissing, John

    2016-01-01

    There is no curative treatment for most neuromuscular disorders. Exercise, as a treatment for these diseases, has therefore received growing attention. When executed properly, exercise can maintain and improve health and reduce the risk of cardiovascular disease, obesity, and diabetes. In persons...... in patients with neuromuscular diseases associated with weakness and wasting. We review studies that have investigated different types of exercise in both myopathies and motor neuron diseases, with particular emphasis on training of persons affected by spinobulbar muscular atrophy (SBMA). Finally, we provide...

  16. Neuromuscular exercise as treatment of degenerative knee disease

    DEFF Research Database (Denmark)

    Ageberg, Eva; Roos, Ewa M.

    2015-01-01

    Exercise is recommended as first-line treatment of degenerative knee disease. Our hypothesis is that neuromuscular exercise is feasible and at least as effective as tradionally used strength or aerobic training, but aims to more closely target the sensorimotor deficiencies and functional...... instability associated with the degenerative knee disease than traditionally used training methods.SUMMARY FOR TABLE OF CONTENTS PAGECurrent data suggests that the effect from neuromuscular exercise on pain and function is comparable to the effects seen from other forms of exercise....

  17. Development of a neuromuscular electrical stimulation protocol for sprint training.

    Science.gov (United States)

    Russ, David W; Clark, Brian C; Krause, Jodi; Hagerman, Fredrick C

    2012-09-01

    Sprint training is associated with several beneficial adaptations in skeletal muscle, including an enhancement of sarcoplasmic reticulum (SR) Ca(2+) release. Unfortunately, several patient populations (e.g., the elderly, those with cardiac dysfunction) that might derive great benefit from sprint exercise are unlikely to tolerate it. The purpose of this report was to describe the development of a tolerable neuromuscular electrical stimulation (NMES) protocol that induces skeletal muscle adaptations similar to those observed with sprint training. Our NMES protocol was modeled after a published sprint exercise protocol and used a novel electrode configuration and stimulation sequence to provide adequate training stimulus while maintaining subject tolerance. Nine young, healthy subjects (four men) began and completed the training protocol of the knee extensor muscles. All subjects completed the protocol, with ratings of discomfort far less than those reported in studies of traditional NMES. Training induced significant increases in SR Ca(2+) release and citrate synthase activity (~16% and 32%, respectively), but SR Ca(2+) uptake did not change. The percentage of myosin heavy chain IIx isoform was decreased significantly after training. At the whole muscle level, neither central activation nor maximum voluntary isometric contraction force were significantly altered, although isometric force did exhibit a trend toward an increase (~3%, P = 0.055). Surprisingly, the NMES training produced a significant increase in muscle cross-sectional area (~3%, P = 0.04). It seems that an appropriately designed NMES protocol can mimic many of the benefits of sprint exercise training, with a low overall time commitment and training volume. These findings suggest that NMES has the potential to bring the benefits of sprint exercise to individuals who are unable to tolerate traditional sprint training.

  18. The blocking activity of birch pollen-specific immunotherapy-induced IgG4 is not qualitatively superior to that of other IgG subclasses

    DEFF Research Database (Denmark)

    Ejrnaes, Anne M; Bødtger, Uffe; Larsen, Jørgen N

    2004-01-01

    IgE were detected using 125I-labelled rBet v 1.2801, a recombinant variant of the major allergen of Betula verrucosa pollen. Results show that IgG4-depletion resulted in equivalent reductions in binding and blocking activities. In contrast, a significant but less than two-fold higher relative...... for the clinical efficacy of SIT. In this study, fractionated serum samples from 14 SIT-treated birch pollen allergic individuals enabled determination of the inhibitory capacity of IgG4 alone versus non-IgG4 IgG. Allergen-binding activities of IgG and the IgG-mediated inhibition of allergen binding to autologous...

  19. Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change.

    Science.gov (United States)

    Hetrick, Byron; Han, Min Suk; Helgeson, Luke A; Nolen, Brad J

    2013-05-23

    Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Neuromuscular Coordination Deficit Persists 12 Months after ACL Reconstruction But Can Be Modulated by 6 Weeks of Kettlebell Training: A Case Study in Women’s Elite Soccer

    Directory of Open Access Journals (Sweden)

    Mette K. Zebis

    2017-01-01

    Full Text Available The aim of the present single-case study was to investigate the effect of 6 weeks’ kettlebell training on the neuromuscular risk profile for ACL injury in a high-risk athlete returning to sport after ACL reconstruction. A female elite soccer player (age 21 years with no previous history of ACL injury went through neuromuscular screening as measured by EMG preactivity of vastus lateralis and semitendinosus during a standardized sidecutting maneuver. Subsequently, the player experienced a noncontact ACL injury. The player was screened again following postreconstruction rehabilitation, then underwent 6-week kettlebell training, and was subsequently screened again at 6-week follow-up. Prior to and after postreconstruction rehabilitation the player demonstrated a neuromuscular profile during sidecutting known to increase the risk for noncontact ACL injury, that is, reduced EMG preactivity for semitendinosus and elevated EMG preactivity for vastus lateralis. Subsequently, the 6-week kettlebell training increased semitendinosus muscle preactivity during sidecutting by 38 percentage points to a level equivalent to a neuromuscular low-risk profile. An ACL rehabilitated female athlete with a high-risk neuromuscular profile changed to low-risk in response to 6 weeks of kettlebell training. Thus, short-term kettlebell exercise with documented high levels of medial hamstring activation was found to transfer into high medial hamstring preactivation during a sidecutting maneuver.

  1. TTI-621 (SIRPαFc): A CD47-Blocking Innate Immune Checkpoint Inhibitor with Broad Antitumor Activity and Minimal Erythrocyte Binding.

    Science.gov (United States)

    Petrova, Penka S; Viller, Natasja Nielsen; Wong, Mark; Pang, Xinli; Lin, Gloria H Y; Dodge, Karen; Chai, Vien; Chen, Hui; Lee, Vivian; House, Violetta; Vigo, Noel T; Jin, Debbie; Mutukura, Tapfuma; Charbonneau, Marilyse; Truong, Tran; Viau, Stephane; Johnson, Lisa D; Linderoth, Emma; Sievers, Eric L; Maleki Vareki, Saman; Figueredo, Rene; Pampillo, Macarena; Koropatnick, James; Trudel, Suzanne; Mbong, Nathan; Jin, Liqing; Wang, Jean C Y; Uger, Robert A

    2017-02-15

    Purpose: The ubiquitously expressed transmembrane glycoprotein CD47 delivers an anti-phagocytic (do not eat) signal by binding signal-regulatory protein α (SIRPα) on macrophages. CD47 is overexpressed in cancer cells and its expression is associated with poor clinical outcomes. TTI-621 (SIRPαFc) is a fully human recombinant fusion protein that blocks the CD47-SIRPα axis by binding to human CD47 and enhancing phagocytosis of malignant cells. Blockade of this inhibitory axis using TTI-621 has emerged as a promising therapeutic strategy to promote tumor cell eradication. Experimental Design: The ability of TTI-621 to promote macrophage-mediated phagocytosis of human tumor cells was assessed using both confocal microscopy and flow cytometry. In vivo antitumor efficacy was evaluated in xenograft and syngeneic models and the role of the Fc region in antitumor activity was evaluated using SIRPαFc constructs with different Fc tails. Results: TTI-621 enhanced macrophage-mediated phagocytosis of both hematologic and solid tumor cells, while sparing normal cells. In vivo , TTI-621 effectively controlled the growth of aggressive AML and B lymphoma xenografts and was efficacious in a syngeneic B lymphoma model. The IgG1 Fc tail of TTI-621 plays a critical role in its antitumor activity, presumably by engaging activating Fcγ receptors on macrophages. Finally, TTI-621 exhibits minimal binding to human erythrocytes, thereby differentiating it from CD47 blocking antibodies. Conclusions: These data indicate that TTI-621 is active across a broad range of human tumors. These results further establish CD47 as a critical regulator of innate immune surveillance and form the basis for clinical development of TTI-621 in multiple oncology indications. Clin Cancer Res; 23(4); 1068-79. ©2016 AACR . ©2016 American Association for Cancer Research.

  2. Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-κB activation

    International Nuclear Information System (INIS)

    Kim, Dae-Seok; Kim, Bora; Tahk, Hongmin; Kim, Dong-Hyun; Ahn, Eu-Ree; Choi, Changsun; Jeon, Yoon; Park, Seo Young; Lee, Ho; Oh, Seung Hyun; Kim, Soo-Youl

    2010-01-01

    Research highlights: → No acute renal tubular necrotic lesions were found in TGase2 -/- mice with ischemic kidney injury. → NF-κB activation is reduced in TGase2 -/- mice with ischemic kidney injury. → Hypoxic stress did not increase NF-κB activity in MEFs from TGase2 -/- mice. → COX-2 induction is suppressed in TGase2 -/- mice with ischemic kidney injury. -- Abstract: Transglutaminase 2 knockout (TGase2 -/- ) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-κB (NF-κB) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-κB activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-κB activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-κB activity in mouse embryogenic fibroblasts (MEFs) from TGase2 -/- mice remained at the control level while the NF-κB activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-κB activity remained at the control level in TGase2 -/- mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-κB activation in ischemic injury.

  3. Frequency of Use and Cost of Selected Anesthetic Induction and Neuromuscular Blocking Agents

    Science.gov (United States)

    1997-07-15

    persons with a known egg allergy caused by the use of egg lecithin to prepare the emulsion (Geniton, 1992). Pain may be experienced upon injection...Barash et al. , 1992; Katzung, 1995) and rapid spontaneous recovery (Bevan, 1994). It is completely and rapidly hydrolyzed by plasma cholinesterase

  4. Pharmacokinetic basis of the neuromuscular blocking effects of vecuronium bromide; a study in animals and man

    NARCIS (Netherlands)

    Bencini, Anthony F.

    1986-01-01

    De proeven in dieren dienden om zowel het algemene farmacokinetische gedrag en het spierverslappende effect van vecuronium te karakteriseren alsmede om de functie van de lever in de verdelinge en eliminatie van vecuronium nauwkeuriger te definiëren. Het is echter bekend dat zowel de effecten als de

  5. An evaluation of the active fracture concept with modeling unsaturated flow and transport in a fractured meter-sized block of rock

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Kneafsey, Timothy J.; Ito, Kazumasa

    2003-01-01

    Numerical simulation is an effective and economical tool for optimally designing laboratory experiments and deriving practical experimental conditions. We executed a detailed numerical simulation study to examine the active fracture concept (AFC, Liu et al., 1998) using a cubic meter-sized block model. The numerical simulations for this study were performed by applying various experimental conditions, including different bottom flow boundaries, varying injection rates, and different fracture-matrix interaction (by increasing absolute matrix permeability at the fracture matrix boundary) for a larger fracture interaction under transient or balanced-state flow regimes. Two conceptual block models were developed based on different numerical approaches: a two-dimensional discrete-fracture-network model (DFNM) and a one-dimensional dual continuum model (DCM). The DFNM was used as a surrogate for a natural block to produce synthetic breakthrough curves of water and tracer concentration under transient or balanced-state conditions. The DCM is the approach typically used for the Yucca Mountain Project because of its computational efficiency. The AFC was incorporated into the DCM to capture heterogeneous flow patterns that occur in unsaturated fractured rocks. The simulation results from the DCM were compared with the results from the DFNM to determine whether the DCM could predict the water flow and tracer transport observed in the DFNM at the scale of the experiment. It was found that implementing the AFC in the DCM improved the prediction of unsaturated flow and that the flow and transport experiments with low injection rates in the DFNM were compared better with the AFC implemented DCM at the meter scale. However, the estimated AFC parameter varied from 0.38 to 1.0 with different flow conditions, suggesting that the AFC parameter was not a sufficient to fully capture the complexity of the flow processes in a one meter sized discrete fracture network

  6. Effects of novel tubing gait on neuromuscular imbalance in cerebral palsy.

    Science.gov (United States)

    Shin, Yoon Kyum; Lee, Dong Ryul; Kim, Do Hyun; Lee, Jae Jin; You, Sung Joshua Hyun; Yi, Chung Hwi; Jeon, Hye Seon

    2014-01-01

    Gait impairments from a neuromuscular imbalance are crucial issues in cerebral palsy. The purpose of our study was to compare the effects of the assistive tubing gait (ATG) and assistive-resistive tubing gait (ARTG) on improving the vasti and hamstring muscle imbalance during the initial contact to mid-stance phases in individuals with spastic diplegic cerebral palsy (CP). Fourteen age-matched individuals including seven normal individuals (11.7 years) and seven individuals with CP (12.9 years) were recruited. All participants underwent electromyography (EMG) measurement of the unilateral vasti and hamstring muscle activity during the three gait training conditions of no-tubing gait (NTG), ATG, and ARTG. A statistical one-way repeated-measure analysis of variance (ANOVA) was used to determine differences in the vasti and hamstring activity, the vasti/hamstring ratio, and the knee joint angle across the three gait training conditions for each group. The initial vasti and hamstring muscle imbalance in CP was significantly improved by applying the ARTG compared with the ATG. The vasti/hamstring ratio during the ARTG was compatible with the ratio value obtained from the NTG of normal individuals. The knee joint angle in CP was not improved in this short-term intervention. The ARTG proportionately increased the vasti activation and reciprocally inhibited the hamstring activity, subsequently improving the neuromuscular imbalance associated with the flexed-knee gait in individuals with spastic diplegic CP.

  7. Efficacy of tricaine methanesulfonate (MS-222 as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Carlana Ramlochansingh

    Full Text Available Anesthetics are drugs that reversibly relieve pain, decrease body movements and suppress neuronal activity. Most drugs only cover one of these effects; for instance, analgesics relieve pain but fail to block primary fiber responses to noxious stimuli. Alternately, paralytic drugs block synaptic transmission at neuromuscular junctions, thereby effectively paralyzing skeletal muscles. Thus, both analgesics and paralytics each accomplish one effect, but fail to singularly account for all three. Tricaine methanesulfonate (MS-222 is structurally similar to benzocaine, a typical anesthetic for anamniote vertebrates, but contains a sulfate moiety rendering this drug more hydrophilic. MS-222 is used as anesthetic in poikilothermic animals such as fish and amphibians. However, it is often argued that MS-222 is only a hypnotic drug and its ability to block neural activity has been questioned. This prompted us to evaluate the potency and dynamics of MS-222-induced effects on neuronal firing of sensory and motor nerves alongside a defined motor behavior in semi-intact in vitro preparations of Xenopus laevis tadpoles. Electrophysiological recordings of extraocular motor discharge and both spontaneous and evoked mechanosensory nerve activity were measured before, during and after administration of MS-222, then compared to benzocaine and a known paralytic, pancuronium. Both MS-222 and benzocaine, but not pancuronium caused a dose-dependent, reversible blockade of extraocular motor and sensory nerve activity. These results indicate that MS-222 as benzocaine blocks the activity of both sensory and motor nerves compatible with the mechanistic action of effective anesthetics, indicating that both caine-derivates are effective as single-drug anesthetics for surgical interventions in anamniotes.

  8. Professional Soccer Player Neuromuscular Responses and Perceptions to Acute Whole Body Vibration Differ from Amateur Counterparts

    Directory of Open Access Journals (Sweden)

    Ross Cloak, Andrew Lane, Matthew Wyon

    2016-03-01

    Full Text Available Acute whole body vibration (WBV is an increasingly popular training technique amongst athletes immediately prior to performance and during scheduled breaks in play. Despite its growing popularity, evidence to demonstrate its effectiveness on acute neuromuscular responses is unclear, and suggestions that athlete ability impacts effectiveness warrant further investigation. The purpose of this study was to compare the neuromuscular effects of acute WBV and perceptions of whether WBV is an effective intervention between amateur and professional soccer players. Participants were 44 male soccer players (22 professional and 22 amateur; age: 23.1 ± 3.7 years, body mass: 75.6 ± 8.8 kg and height: 1.77 ± 0.05 m. Participants in each group were randomly assigned to either an intervention of 3 x 60 s of WBV at 40 Hz (8mm peak-to-peak displacement or control group. Peak knee isometric force, muscle activation and post activation potentiation (PAP of the knee extensors along with self-report questionnaire of the perceived benefits of using the intervention were collected. A three-way ANOVA with repeated measures revealed professional players demonstrated a significant 10.6% increase (p < 0.01, Partial Eta2 = 0.22 in peak knee isometric force following acute WBV with no significant differences among amateur players. A significant difference (p < 0.01, Partial Eta2 = 0.16 in PAP amongst professional players following acute WBVT was also reported. No significant differences amongst amateur players were reported across measurements. Results also indicated professional players reported significantly stronger positive beliefs in the effectiveness of the WBV intervention (p < 0.01, Partial Eta2 = 0.27 compared to amateur players. Acute WBV elicited a positive neuromuscular response amongst professional players identified by PAP and improvements in knee isometric peak force as well as perceived benefits of the intervention, benefits not found among amateur players.

  9. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak

    2013-09-01

    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  10. Muscle Expression of SOD1G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta.

    Science.gov (United States)

    Dobrowolny, Gabriella; Martini, Martina; Scicchitano, Bianca Maria; Romanello, Vanina; Boncompagni, Simona; Nicoletti, Carmine; Pietrangelo, Laura; De Panfilis, Simone; Catizone, Angela; Bouchè, Marina; Sandri, Marco; Rudolf, Rüdiger; Protasi, Feliciano; Musarò, Antonio

    2018-04-20

    Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1 G93A in transgenic MLC/SOD1 G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1 G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1 G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.

  11. Comparison of nutritional compositions and antioxidant activities of building blocks in shinseoncho and kale green vegetable juices.

    Science.gov (United States)

    Kim, Seong Yeong

    2012-12-01

    Shinseoncho and kale were divided into stem [shinseoncho stems (SS) and kale stems (KS)] and leaf parts [shinseoncho leaves (SL) and kale leaves (KL)] and made into green vegetable juices for analyses of nutritional compositions and antioxidant activities. Higher values of total acidity were observed in SL (0.736%) and KL (0.841%) than in SS (0.417%) and KS (0.335%) (p KL (218.494 μg/mL)> KS (107.269 μg/mL)> SS (75.894 μg/mL). KL exerted the highest DPPH radical scavenging activity (84.834%) (p SL (63.473%)> KS (52.894%)> SS (35.443%). ABTS radical scavenging activity showed that SL (66.088%) and KL (38.511%) had higher scavenging activities, whereas SS (7.695%) and KS (9.609%) demonstrated to be lower activities (pgreen vegetable juices and the consumption of them may be beneficial as a nutrition source and in health protection.

  12. Injection of a soluble fragment of neural agrin (NT-1654 considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction.

    Directory of Open Access Journals (Sweden)

    Stefan Hettwer

    Full Text Available Treatment of neuromuscular diseases is still an unsolved problem. Evidence over the last years strongly indicates the involvement of malformation and dysfunction of neuromuscular junctions in the development of such medical conditions. Stabilization of NMJs thus seems to be a promising approach to attenuate the disease progression of muscle wasting diseases. An important pathway for the formation and maintenance of NMJs is the agrin/Lrp4/MuSK pathway. Here we demonstrate that the agrin biologic NT-1654 is capable of activating the agrin/Lrp4/MuSK system in vivo, leading to an almost full reversal of the sarcopenia-like phenotype in neurotrypsin-overexpressing (SARCO mice. We also show that injection of NT-1654 accelerates muscle re-innervation after nerve crush. This report demonstrates that a systemically administered agrin fragment has the potential to counteract the symptoms of neuromuscular disorders.

  13. BAFF promotes regulatory T-cell apoptosis and blocks cytokine production by activating B cells in primary biliary cirrhosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo; Hu, Mintao [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China); Zhang, Peng [Nanjing Medical University, Nanjing, Jiangsu (China); Cao, Hong [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China); Wang, Yongzhen [The Second Hospital of Nanjing, Nanjing, Jiangsu (China); Wang, Zheng; Su, Tingting [Department of Hepatology, Wuxi Infectious Diseases Hospital, Wuxi, Jiangsu (China)

    2013-05-10

    Primary biliary cirrhosis (PBC) is a chronic and slowly progressive cholestatic liver disease of autoimmune etiology. A number of questions regarding its etiology are unclear. CD4+CD25+ regulatory T cells (Tregs) play a critical role in self-tolerance and, for unknown reasons, their relative number is reduced in PBC patients. B-cell-activating factor (BAFF) is a key survival factor during B-cell maturation and its concentration is increased in peripheral blood of PBC patients. It has been reported that activated B cells inhibit Treg cell proliferation and there are no BAFF receptors on Tregs. Therefore, we speculated that excessive BAFF may result in Treg reduction via B cells. To prove our hypothesis, we isolated Tregs and B cells from PBC and healthy donors. BAFF and IgM concentrations were then analyzed by ELISA and CD40, CD80, CD86, IL-10, and TGF-β expression in B cells and Tregs were measured by flow cytometry. BAFF up-regulated CD40, CD80, CD86, and IgM expression in B cells. However, BAFF had no direct effect on Treg cell apoptosis and cytokine secretion. Nonetheless, we observed that BAFF-activated B cells could induce Treg cell apoptosis and reduce IL-10 and TGF-β expression. We also showed that BAFF-activated CD4+ T cells had no effect on Treg apoptosis. Furthermore, we verified that bezafibrate, a hypolipidemic drug, can inhibit BAFF-induced Treg cell apoptosis. In conclusion, BAFF promotes Treg cell apoptosis and inhibits cytokine production by activating B cells in PBC patients. The results of this study suggest that inhibition of BAFF activation is a strategy for PBC treatment.

  14. Diagnostic value of CT scanning in neuromuscular diseases

    International Nuclear Information System (INIS)

    Bulcke, J.A.L.; Leuven Univ.; Herpels, V.

    1983-01-01

    The diagnosis of myopathies has become easier since the CT technique is available. In this article the possibilities of CT for diagnostic procedures of neuromuscular diseases are pointed out. Density measurements increase differentiation of atrophy or hypertrophy of muscles as well as other pathological changes. (orig.)

  15. Neuromuscular stimulation after stroke: from technology to clinical deployment

    NARCIS (Netherlands)

    IJzerman, Maarten Joost; Renzenbrink, Gerbert J.; Geurts, Alexander C.H.

    2009-01-01

    Since the early 1960s, electrical or neuromuscular electrical stimulation (NMES) has been used to support the rehabilitation of stroke patients. One of the earliest applications of NMES included the use of external muscle stimulation to correct drop-foot after stroke. During the last few decades

  16. Imaging of respiratory muscles in neuromuscular disease: A review.

    Science.gov (United States)

    Harlaar, L; Ciet, P; van der Ploeg, A T; Brusse, E; van der Beek, N A M E; Wielopolski, P A; de Bruijne, M; Tiddens, H A W M; van Doorn, P A

    2018-03-01

    Respiratory muscle weakness frequently occurs in patients with neuromuscular disease. Measuring respiratory function with standard pulmonary function tests provides information about the contribution of all respiratory muscles, the lungs and airways. Imaging potentially enables the study of different respiratory muscles, including the diaphragm, separately. In this review, we provide an overview of imaging techniques used to study respiratory muscles in neuromuscular disease. We identified 26 studies which included a total of 573 patients with neuromuscular disease. Imaging of respiratory muscles was divided into static and dynamic techniques. Static techniques comprise chest radiography, B-mode (brightness mode) ultrasound, CT and MRI, and are used to assess the position and thickness of the diaphragm and the other respiratory muscles. Dynamic techniques include fluoroscopy, M-mode (motion mode) ultrasound and MRI, used to assess diaphragm motion in one or more directions. We discuss how these imaging techniques relate with spirometric values and whether these can be used to study the contribution of the different respiratory muscles in patients with neuromuscular disease. Copyright © 2017. Published by Elsevier B.V.

  17. Neuromuscular blockade for improvement of surgical conditions during laparotomy

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Scheppan, Susanne; Kissmeyer, Peter

    2015-01-01

    neuromuscular blockade (NMB), defined as a post-tetanic-count (PTC) of 0-1, paralyses the abdominal wall muscles and the diaphragm. We hypothesised that deep NMB (PTC 0-1) would improve surgical conditions during upper laparotomy as compared to standard NMB with bolus administration. METHODS...

  18. Neuromuscular Bandage: Neurophysiological Effects and the Role of Fascias

    Directory of Open Access Journals (Sweden)

    Ximena María Villota Chicaíza

    2014-05-01

    Full Text Available During the last years, neuromuscular bandage, a therapeutic application created in 1979 by doctor Kenzo Kase has been introduced in the management of many disorders of the musculo-skeletal system and even more so in the treatment of neurological disorders; This therapeutic tool which consists of a self adhesive elastic bandage allows recovery of the injured party without diminishing its bodily funct