WorldWideScience

Sample records for neuromorphic silicon retina

  1. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  2. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  3. Towards neuromorphic electronics: Memristors on foldable silicon fabric

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-11-01

    The advantages associated with neuromorphic computation are rich areas of complex research. We address the fabrication challenge of building neuromorphic devices on structurally foldable platform with high integration density. We present a CMOS compatible fabrication process to demonstrate for the first time memristive devices fabricated on bulk monocrystalline silicon (100) which is next transformed into a flexible thin sheet of silicon fabric with all the pre-fabricated devices. This process preserves the ultra-high integration density advantage unachievable on other flexible substrates. In addition, the memristive devices are of the size of a motor neuron and the flexible/folded architectural form factor is critical to match brain cortex\\'s folded pattern for ultra-compact design.

  4. Silicon retina for optical tracking systems

    Science.gov (United States)

    Strohbehn, K.; Jenkins, R. E.; Sun, X.; Andreou, A. G.

    1993-01-01

    There are a host of position sensors, such as quadcells and CCD's, which are candidates for detecting optical position errors and providing error signals for a mirror positioning loop. We are developing a novel, very high bandwidth, biologically inspired position sensor for optical position tracking systems. We present recent test results and design issues for the use of biologically inspired silicon retinas for spaceborne optical position tracking systems.

  5. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system

    Science.gov (United States)

    Kim, Hyungjin; Hwang, Sungmin; Park, Jungjin; Park, Byung-Gook

    2017-10-01

    Brain-inspired neuromorphic systems have attracted much attention as new computing paradigms for power-efficient computation. Here, we report a silicon synaptic transistor with two electrically independent gates to realize a hardware-based neural network system without any switching components. The spike-timing dependent plasticity characteristics of the synaptic devices are measured and analyzed. With the help of the device model based on the measured data, the pattern recognition capability of the hardware-based spiking neural network systems is demonstrated using the modified national institute of standards and technology handwritten dataset. By comparing systems with and without inhibitory synapse part, it is confirmed that the inhibitory synapse part is an essential element in obtaining effective and high pattern classification capability.

  6. 1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.

    Science.gov (United States)

    Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi

    2015-04-01

    Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.

  7. A silicon retina that reproduces signals in the optic nerve

    Science.gov (United States)

    Zaghloul, Kareem A.; Boahen, Kwabena

    2006-12-01

    Prosthetic devices may someday be used to treat lesions of the central nervous system. Similar to neural circuits, these prosthetic devices should adapt their properties over time, independent of external control. Here we describe an artificial retina, constructed in silicon using single-transistor synaptic primitives, with two forms of locally controlled adaptation: luminance adaptation and contrast gain control. Both forms of adaptation rely on local modulation of synaptic strength, thus meeting the criteria of internal control. Our device is the first to reproduce the responses of the four major ganglion cell types that drive visual cortex, producing 3600 spiking outputs in total. We demonstrate how the responses of our device's ganglion cells compare to those measured from the mammalian retina. Replicating the retina's synaptic organization in our chip made it possible to perform these computations using a hundred times less energy than a microprocessor—and to match the mammalian retina in size and weight. With this level of efficiency and autonomy, it is now possible to develop fully implantable intraocular prostheses.

  8. Benchmarking Neuromorphic Vision: Lessons Learnt from Computer Vision

    Directory of Open Access Journals (Sweden)

    Cheston eTan

    2015-10-01

    Full Text Available Neuromorphic Vision sensors have improved greatly since the first silicon retina was presented almost three decades ago. They have recently matured to the point where they are commercially available and can be operated by laymen. However, despite improved availability of sensors, there remains a lack of good datasets, and algorithms for processing spike-based visual data are still in their infancy. On the other hand, frame-based computer vision algorithms are far more mature, thanks in part to widely accepted datasets which allow direct comparison between algorithms and encourage competition. We are presented with a unique opportunity to shape the development of Neuromorphic Vision benchmarks and challenges by leveraging what has been learnt from the use of datasets in frame-based computer vision. Taking advantage of this opportunity, in this paper we review the role that benchmarks and challenges have played in the advancement of frame-based computer vision, and suggest guidelines for the creation of Neuromorphic Vision benchmarks and challenges. We also discuss the unique challenges faced when benchmarking Neuromorphic Vision algorithms, particularly when attempting to provide direct comparison with frame-based computer vision.

  9. Benchmarking neuromorphic vision: lessons learnt from computer vision.

    Science.gov (United States)

    Tan, Cheston; Lallee, Stephane; Orchard, Garrick

    2015-01-01

    Neuromorphic Vision sensors have improved greatly since the first silicon retina was presented almost three decades ago. They have recently matured to the point where they are commercially available and can be operated by laymen. However, despite improved availability of sensors, there remains a lack of good datasets, while algorithms for processing spike-based visual data are still in their infancy. On the other hand, frame-based computer vision algorithms are far more mature, thanks in part to widely accepted datasets which allow direct comparison between algorithms and encourage competition. We are presented with a unique opportunity to shape the development of Neuromorphic Vision benchmarks and challenges by leveraging what has been learnt from the use of datasets in frame-based computer vision. Taking advantage of this opportunity, in this paper we review the role that benchmarks and challenges have played in the advancement of frame-based computer vision, and suggest guidelines for the creation of Neuromorphic Vision benchmarks and challenges. We also discuss the unique challenges faced when benchmarking Neuromorphic Vision algorithms, particularly when attempting to provide direct comparison with frame-based computer vision.

  10. Foldable neuromorphic memristive electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2014-07-01

    Neuromorphic computer will need folded architectural form factor to match brain cortex\\'s folded pattern for ultra-compact design. In this work, we show a state-of-the-art CMOS compatible pragmatic fabrication approach of building structurally foldable and densely integrated neuromorphic devices for non-volatile memory applications. We report the first ever memristive devices with the size of a motor neuron on bulk mono-crystalline silicon (100) and then with trench-protect-release-recycle process transform the silicon wafer with devices into a flexible and semi-transparent silicon fabric while recycling the remaining wafer for further use. This process unconditionally offers the ultra-large-scale-integration opportunity-increasingly critical for ultra-compact memory.

  11. Serendipitous Offline Learning in a Neuromorphic Robot.

    Science.gov (United States)

    Stewart, Terrence C; Kleinhans, Ashley; Mundy, Andrew; Conradt, Jörg

    2016-01-01

    We demonstrate a hybrid neuromorphic learning paradigm that learns complex sensorimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviors. All sensor data is provided via a spike-based silicon retina camera (eDVS), and all control is implemented via spiking neurons simulated on neuromorphic hardware (SpiNNaker). Given this control system, the robot is capable of simple obstacle avoidance and random exploration. To train the robot to perform more complex tasks, we observe the robot and find instances where the robot accidentally performs the desired action. Data recorded from the robot during these times is then used to update the neural control system, increasing the likelihood of the robot performing that task in the future, given a similar sensor state. As an example application of this general-purpose method of training, we demonstrate the robot learning to respond to novel sensory stimuli (a mirror) by turning right if it is present at an intersection, and otherwise turning left. In general, this system can learn arbitrary relations between sensory input and motor behavior.

  12. Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm

    Science.gov (United States)

    Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Coelli, S.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Monti, M.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.

    2016-07-01

    We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 μs latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time.

  13. Neuromorphic Silicon Neuron Circuits

    National Research Council Canada - National Science Library

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; Schaik, André van; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems...

  14. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa.

    Science.gov (United States)

    Chow, Alan Y; Chow, Vincent Y; Packo, Kirk H; Pollack, John S; Peyman, Gholam A; Schuchard, Ronald

    2004-04-01

    To determine the safety and efficacy of the artificial silicon retina (ASR) microchip implanted in the subretinal space to treat vision loss from retinitis pigmentosa. The ASR microchip is a 2-mm-diameter silicon-based device that contains approximately 5000 microelectrode-tipped microphotodiodes and is powered by incident light. The right eyes of 6 patients with retinitis pigmentosa were implanted with the ASR microchip while the left eyes served as controls. Safety and visual function information was collected. During follow-up that ranged from 6 to 18 months, all ASRs functioned electrically. No patient showed signs of implant rejection, infection, inflammation, erosion, neovascularization, retinal detachment, or migration. Visual function improvements occurred in all patients and included unexpected improvements in retinal areas distant from the implant. Subjective improvements included improved perception of brightness, contrast, color, movement, shape, resolution, and visual field size. No significant safety-related adverse effects were observed. The observation of retinal visual improvement in areas far from the implant site suggests a possible generalized neurotrophic-type rescue effect on the damaged retina caused by the presence of the ASR. A larger clinical trial is indicated to further evaluate the safety and efficacy of a subretinally implanted ASR.

  15. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.

    Science.gov (United States)

    Kim, Eui Tae; Kim, Cinoo; Lee, Seung Woo; Seo, Jong-Mo; Chung, Hum; Kim, Sung June

    2009-09-01

    To adopt micropatterning technology in manufacturing silicone elastomer-based microelectrode arrays for retinal stimulation, a silicone-polyimide hybrid microelectrode array was proposed and tested in vivo. Gold microelectrodes were created by semiconductor manufacturing technology based on polyimide and were hybridized with silicone elastomer by spin coating. The stability of the hybrid between the two materials was flex and blister tested. The feasibility of the hybrid electrode was evaluated in the rabbit eye by reviewing optical coherence tomography (OCT) findings after suprachoroidal implantation. The flex test showed no dehiscence between the two materials for 24 hours of alternative flexion and extension from -45.0 degrees to +45.0 degrees . During the blister test, delamination was observed at 8.33 +/- 1.36 psi of pressure stress; however, this property was improved to 11.50 +/- 1.04 psi by oxygen plasma treatment before hybridization. OCT examination revealed that the implanted electrodes were safely located in the suprachoroidal space during the 4-week follow-up period. The silicone-polyimide hybrid microelectrode array showed moderate physical properties, which are suitable for in vivo application. Appropriate pretreatment before hybridization improved electrode stability. In vivo testing indicated that this electrode is suitable as a stimulation electrode in artificial retina.

  16. Feasibility assessment of a transient sound sensor based on the silicon retina architecture

    Science.gov (United States)

    Willemsen, Jorge F.

    1992-06-01

    In the Background section of the proposal I described the basic conceptual elements which underlie the Silicon Retina (SR) and those which underlie passive mammalian hearing. My original intention was to utilize the frequency discrimination capability manifested in mammalian hearing as the mechanism on which to base an acoustic analogue to the SR concept. Specifically, mammals have sophisticated frequency dependent sensors which transmit responses to discrete and well-resolved frequencies upward to higher processing levels. Each intermediate processor transmits the precise frequency information upstream. Thus one may think of acoustic frequencies as being analogous to visual positional information, since in the ray limit of optics there is a one to one correspondence between the relative locations of external objects and the retinal sensors which are stimulated at any given time. The SR mechanism was to be implemented by comparing individual frequencies with running averages over groups of nearby frequencies, eliciting a response when the intensities of these differed by a prescribed amount. The next step in the program was to remain open-minded regarding the implementation of directional acoustic arrays, with the idea pf steering an array making use of the 'alert' response created by the introduction of a non-background signal. In this way it was envisioned that the 'cocktail party effect' would be achieved.

  17. The artificial silicon retina in retinitis pigmentosa patients (an American Ophthalmological Association thesis).

    Science.gov (United States)

    Chow, Alan Y; Bittner, Ava K; Pardue, Machelle T

    2010-12-01

    In a published pilot study, a light-activated microphotodiode-array chip, the artificial silicon retina (ASR), was implanted subretinally in 6 retinitis pigmentosa (RP) patients for up to 18 months. The ASR electrically induced retinal neurotrophic rescue of visual acuity, contrast, and color perception and raised several questions: (1) Would neurotrophic effects develop and persist in additionally implanted RP patients? (2) Could vision in these patients be reliably assessed? (3) Would the ASR be tolerated and function for extended periods? Four additional RP patients were implanted and observed along with the 6 pilot patients. Of the 10 patients, 6 had vision levels that allowed for more standardized testing and were followed up for 7+ years utilizing ETDRS charts and a 4-alternative forced choice (AFC) Chow grating acuity test (CGAT). A 10-AFC Chow color test (CCT) extended the range of color vision testing. Histologic examination of the eyes of one patient, who died of an unrelated event, was performed. The ASR was well tolerated, and improvement and/or slowing of vision loss occurred in all 6 patients. CGAT extended low vision acuity testing by logMAR 0.6. CCT expanded the range of color vision testing and correlated well with PV-16 (r = 0.77). An ASR recovered from a patient 5 years after implantation showed minor disruption and excellent electrical function. ASR-implanted RP patients experienced prolonged neurotrophic rescue of vision. CGAT and CCT extended the range of acuity and color vision testing in low vision patients. ASR implantation may improve and prolong vision in RP patients.

  18. The Artificial Silicon Retina in Retinitis Pigmentosa Patients (An American Ophthalmological Association Thesis)

    Science.gov (United States)

    Chow, Alan Y.; Bittner, Ava K.; Pardue, Machelle T.

    2010-01-01

    Purpose: In a published pilot study, a light-activated microphotodiode-array chip, the artificial silicon retina (ASR), was implanted subretinally in 6 retinitis pigmentosa (RP) patients for up to 18 months. The ASR electrically induced retinal neurotrophic rescue of visual acuity, contrast, and color perception and raised several questions: (1) Would neurotrophic effects develop and persist in additionally implanted RP patients? (2) Could vision in these patients be reliably assessed? (3) Would the ASR be tolerated and function for extended periods? Methods: Four additional RP patients were implanted and observed along with the 6 pilot patients. Of the 10 patients, 6 had vision levels that allowed for more standardized testing and were followed up for 7+ years utilizing ETDRS charts and a 4-alternative forced choice (AFC) Chow grating acuity test (CGAT). A 10-AFC Chow color test (CCT) extended the range of color vision testing. Histologic examination of the eyes of one patient, who died of an unrelated event, was performed. Results: The ASR was well tolerated, and improvement and/or slowing of vision loss occurred in all 6 patients. CGAT extended low vision acuity testing by logMAR 0.6. CCT expanded the range of color vision testing and correlated well with PV-16 (r = 0.77). An ASR recovered from a patient 5 years after implantation showed minor disruption and excellent electrical function. Conclusion: ASR-implanted RP patients experienced prolonged neurotrophic rescue of vision. CGAT and CCT extended the range of acuity and color vision testing in low vision patients. ASR implantation may improve and prolong vision in RP patients. PMID:21212852

  19. First results of the silicon telescope using an 'artificial retina' for fast track finding

    Energy Technology Data Exchange (ETDEWEB)

    Neri, N. [Istituto Nazionale di Fisica Nucleare - INFN, Sezione di Milano, Milano (Italy); Abba, A.; Caponio, F.; Geraci, A.; Grizzuti, M.; Lusardi, N. [INFN Milano and Politecnico di Milano, Milano (Italy); Citterio, M.; Coelli, S.; Fu, J.; Monti, M.; Petruzzo, M. [INFN Milano, Milano (Italy); Bedeschi, F.; Ninci, D.; Piucci, A.; Spinella, F.; Walsh, J. [INFN Pisa, Pisa (Italy); Cenci, R.; Marino, P.; Morello, M. J.; Stracka, S. [INFN Pisa and Scuola Normale Superiore di Pisa, Pisa (Italy); Punzi, G. [INFN Pisa and Universita di Pisa, Pisa (Italy); Tonelli, D. [CERN, Geneva (Switzerland); Ristori, L. [INFN Pisa, Pisa (Italy); Fermilab, Batavia, Illinois (United States)

    2015-07-01

    We present the first results of the prototype of a silicon tracker with trigger capabilities based on a novel approach for fast track finding. The working principle of the 'artificial retina' is inspired by the processing of visual images by the brain and it is based on extensive parallelization of data distribution and pattern recognition. The algorithm has been implemented in commercial FPGAs in three main logic modules: a switch for the routing of the detector hits, a pool of engines for the digital processing of the hits, and a block for the calculation of the track parameters. The architecture is fully pipelined and allows the reconstruction of real-time tracks with a latency less then 100 clock cycles, corresponding to 0.25 microsecond at 400 MHz clock. The silicon telescope consists of 8 layers of single-sided silicon strip detectors with 512 strips each. The detector size is about 10 cm x 10 cm and the strip pitch is 183 μm. The detectors are read out by the Beetle chip, a custom ASICs developed for LHCb, which provides the measurement of the hit position and pulse height of 128 channels. The 'artificial retina' algorithm has been implemented on custom data acquisition boards based on FPGAs Xilinx Kintex 7 lx160. The parameters of the tracks detected are finally transferred to host PC via USB 3.0. The boards manage the read-out ASICs and the sampling of the analog channels. The read-out is performed at 40 MHz on 4 channels for each ASIC that corresponds to a decoding of the telescope information at 1.1 MHz. We report on the first results of the fast tracking device and compare with simulations. (authors)

  20. Progress in neuromorphic photonics

    Science.gov (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  1. Skimming Digits: Neuromorphic Classification of Spike-Encoded Images

    Directory of Open Access Journals (Sweden)

    Gregory Kevin Cohen

    2016-04-01

    Full Text Available The growing demands placed upon the field of computer vision has renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST,a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM, a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serves to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value.

  2. First prototype of a silicon tracker using an artificial retina for fast track finding

    CERN Document Server

    Neri, N.; Caponio, F.; Citterio, M.; Coelli, S.; Fu, J.; Geraci, A.; Monti, M.; Petruzzo, M.; Bedeschi, F.; Marino, P.; Morello, M.J.; Piucci, A.; Punzi, G.; Spinella, F.; Stracka, S.; Walsh, J.; Ristori, L.; Tonelli, D.

    2014-01-01

    We report on the R\\&D for a first prototype of a silicon tracker based on an alternative approach for fast track finding. The working principle is inspired from neurobiology, in particular by the processing of visual images by the brain as it happens in nature. It is based on extensive parallelisation of data distribution and pattern recognition. In this work we present the design of a practical device that consists of a telescope based on single-sided silicon detectors; we describe the data acquisition system and the implementation of the track finding algorithms using available digital logic of commercial FPGA devices. Tracking performance and trigger capabilities of the device are discussed along with perspectives for future applications.

  3. First prototype of a silicon tracker using an 'artificial retina' for fast track finding

    Science.gov (United States)

    NERI, N.

    We report on the R\\&D for a first prototype of a silicon tracker based on an alternative approach for fast track finding. The working principle is inspired from neurobiology, in particular by the processing of visual images by the brain as it happens in nature. It is based on extensive parallelisation of data distribution and pattern recognition. In this work we present the design of a practical device that consists of a telescope based on single-sided silicon detectors; we describe the data acquisition system and the implementation of the track finding algorithms using available digital logic of commercial FPGA devices. Tracking performance and trigger capabilities of the device are discussed along with perspectives for future applications.

  4. Neuromorphic Computing for Cognitive Cybersecurity

    Science.gov (United States)

    2017-03-20

    neuromorphic computing using threshold gate networks. Keywords: Neuromorphic computing; Neural networks; cybersecurity Introduction Traditional CMOS scaling...for neural nets is a combined multiply-accumulate operation, evaluated by using a threshold . Neurons of this type implement threshold gate...there is much work to be done in the following areas: • One shot learning, unsupervised learning, concept drift; • Data reduction techniques

  5. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  6. Neuromorphic UAS Collision Avoidance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Using biologically-inspired neuromorphic optic flow algorithms is a novel approach in collision avoidance for UAS. Traditional computer vision algorithms rely on...

  7. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems

    Science.gov (United States)

    Broccard, Frédéric D.; Joshi, Siddharth; Wang, Jun; Cauwenberghs, Gert

    2017-08-01

    Objective. Computation in nervous systems operates with different computational primitives, and on different hardware, than traditional digital computation and is thus subjected to different constraints from its digital counterpart regarding the use of physical resources such as time, space and energy. In an effort to better understand neural computation on a physical medium with similar spatiotemporal and energetic constraints, the field of neuromorphic engineering aims to design and implement electronic systems that emulate in very large-scale integration (VLSI) hardware the organization and functions of neural systems at multiple levels of biological organization, from individual neurons up to large circuits and networks. Mixed analog/digital neuromorphic VLSI systems are compact, consume little power and operate in real time independently of the size and complexity of the model. Approach. This article highlights the current efforts to interface neuromorphic systems with neural systems at multiple levels of biological organization, from the synaptic to the system level, and discusses the prospects for future biohybrid systems with neuromorphic circuits of greater complexity. Main results. Single silicon neurons have been interfaced successfully with invertebrate and vertebrate neural networks. This approach allowed the investigation of neural properties that are inaccessible with traditional techniques while providing a realistic biological context not achievable with traditional numerical modeling methods. At the network level, populations of neurons are envisioned to communicate bidirectionally with neuromorphic processors of hundreds or thousands of silicon neurons. Recent work on brain-machine interfaces suggests that this is feasible with current neuromorphic technology. Significance. Biohybrid interfaces between biological neurons and VLSI neuromorphic systems of varying complexity have started to emerge in the literature. Primarily intended as a

  8. Closed-loop neuromorphic benchmarks

    CSIR Research Space (South Africa)

    Stewart, TC

    2015-11-01

    Full Text Available the study was exempt from ethical approval procedures.) Did the study presented in the manuscript involve human or animal subjects: No I v i w 1Closed-loop Neuromorphic Benchmarks Terrence C. Stewart 1,∗, Travis DeWolf 1, Ashley Kleinhans 2 and Chris..._link335 program from ev3dev-c (https://github.com/in4lio/ev3dev-c). This allows the EV3 to336 listen for UDP commands that tell it to set motor values and read sensor values. Communication with337 a PC was over a USB link (although the system also...

  9. Un-explained visual loss following silicone oil removal: results of the Pan American Collaborative Retina Study (PACORES) Group.

    Science.gov (United States)

    Roca, Jose A; Wu, Lihteh; Berrocal, Maria; Rodriguez, Francisco; Alezzandrini, Arturo; Alvira, Gustavo; Velez-Montoya, Raul; Quiroz-Mercado, Hugo; Fernando Arevalo, J; Serrano, Martín; Lima, Luiz H; Figueroa, Marta; Farah, Michel; Chico, Giovanna

    2017-01-01

    To report the incidence and clinical features of patients that experienced un-explained visual loss following silicone oil (SO) removal. Multicenter retrospective study of patients that underwent SO removal during 2000-2012. Visual loss of ≥2 lines was considered significant. A total of 324 eyes of 324 patients underwent SO removal during the study period. Forty two (13%) eyes suffered a significant visual loss following SO removal. Twenty three (7.1%) of these eyes lost vision secondary to known causes. In the remaining 19 (5.9%) eyes, the loss of vision was not explained by any other pathology. Eleven of these 19 patients (57.9%) were male. The mean age of this group was 49.2 ± 16.4 years. Eyes that had an un-explained visual loss had a mean IOP while the eye was filled with SO of 19.6 ± 6.9 mm Hg. The length of time that the eye was filled with SO was 14.8 ± 4.4 months. In comparison, eyes that did not experience visual loss had a mean IOP of 14 ± 7.3 mm Hg (p < 0.0002) and a mean tamponade duration of 9.3 ± 10.9 months (p < 0.0001). An un-explained visual loss after SO removal was observed in 5.9% of eyes. Factors associated with this phenomenon included a higher IOP and longer SO tamponade duration.

  10. The retina

    DEFF Research Database (Denmark)

    van Reyk, David M; Gillies, Mark C; Davies, Michael Jonathan

    2003-01-01

    A prominent and early feature of the retinopathy of diabetes mellitus is a diffuse increase in vascular permeability. As the disease develops, the development of frank macular oedema may result in vision loss. That reactive oxygen species production is likely to be elevated in the retina, and tha...

  11. Large-scale neuromorphic computing systems

    Science.gov (United States)

    Furber, Steve

    2016-10-01

    Neuromorphic computing covers a diverse range of approaches to information processing all of which demonstrate some degree of neurobiological inspiration that differentiates them from mainstream conventional computing systems. The philosophy behind neuromorphic computing has its origins in the seminal work carried out by Carver Mead at Caltech in the late 1980s. This early work influenced others to carry developments forward, and advances in VLSI technology supported steady growth in the scale and capability of neuromorphic devices. Recently, a number of large-scale neuromorphic projects have emerged, taking the approach to unprecedented scales and capabilities. These large-scale projects are associated with major new funding initiatives for brain-related research, creating a sense that the time and circumstances are right for progress in our understanding of information processing in the brain. In this review we present a brief history of neuromorphic engineering then focus on some of the principal current large-scale projects, their main features, how their approaches are complementary and distinct, their advantages and drawbacks, and highlight the sorts of capabilities that each can deliver to neural modellers.

  12. Microfluidic Neurons, a New Way in Neuromorphic Engineering?

    Directory of Open Access Journals (Sweden)

    Timothée Levi

    2016-08-01

    Full Text Available This article describes a new way to explore neuromorphic engineering, the biomimetic artificial neuron using microfluidic techniques. This new device could replace silicon neurons and solve the issues of biocompatibility and power consumption. The biological neuron transmits electrical signals based on ion flow through their plasma membrane. Action potentials are propagated along axons and represent the fundamental electrical signals by which information are transmitted from one place to another in the nervous system. Based on this physiological behavior, we propose a microfluidic structure composed of chambers representing the intra and extracellular environments, connected by channels actuated by Quake valves. These channels are equipped with selective ion permeable membranes to mimic the exchange of chemical species found in the biological neuron. A thick polydimethylsiloxane (PDMS membrane is used to create the Quake valve membrane. Integrated electrodes are used to measure the potential difference between the intracellular and extracellular environments: the membrane potential.

  13. Parallel Evolutionary Optimization for Neuromorphic Network Training

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Disney, Adam [University of Tennessee (UT); Singh, Susheela [North Carolina State University (NCSU), Raleigh; Bruer, Grant [University of Tennessee (UT); Mitchell, John Parker [University of Tennessee (UT); Klibisz, Aleksander [University of Tennessee (UT); Plank, James [University of Tennessee (UT)

    2016-01-01

    One of the key impediments to the success of current neuromorphic computing architectures is the issue of how best to program them. Evolutionary optimization (EO) is one promising programming technique; in particular, its wide applicability makes it especially attractive for neuromorphic architectures, which can have many different characteristics. In this paper, we explore different facets of EO on a spiking neuromorphic computing model called DANNA. We focus on the performance of EO in the design of our DANNA simulator, and on how to structure EO on both multicore and massively parallel computing systems. We evaluate how our parallel methods impact the performance of EO on Titan, the U.S.'s largest open science supercomputer, and BOB, a Beowulf-style cluster of Raspberry Pi's. We also focus on how to improve the EO by evaluating commonality in higher performing neural networks, and present the result of a study that evaluates the EO performed by Titan.

  14. Infrared retina

    Science.gov (United States)

    Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  15. Serendipitous offline learning in a neuromorphic robot

    CSIR Research Space (South Africa)

    Stewart, TC

    2016-02-01

    Full Text Available We demonstrate a hybrid neuromorphic learning paradigm that learns complex senso-rimotor mappings based on a small set of hard-coded reflex behaviors. A mobile robot is first controlled by a basic set of reflexive hand-designed behaviors. All sensor...

  16. Tunable low energy, compact and high performance neuromorphic circuit for spike-based synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Mostafa Rahimi Azghadi

    Full Text Available Cortical circuits in the brain have long been recognised for their information processing capabilities and have been studied both experimentally and theoretically via spiking neural networks. Neuromorphic engineers are primarily concerned with translating the computational capabilities of biological cortical circuits, using the Spiking Neural Network (SNN paradigm, into in silico applications that can mimic the behaviour and capabilities of real biological circuits/systems. These capabilities include low power consumption, compactness, and relevant dynamics. In this paper, we propose a new accelerated-time circuit that has several advantages over its previous neuromorphic counterparts in terms of compactness, power consumption, and capability to mimic the outcomes of biological experiments. The presented circuit simulation results demonstrate that, in comparing the new circuit to previous published synaptic plasticity circuits, reduced silicon area and lower energy consumption for processing each spike is achieved. In addition, it can be tuned in order to closely mimic the outcomes of various spike timing- and rate-based synaptic plasticity experiments. The proposed circuit is also investigated and compared to other designs in terms of tolerance to mismatch and process variation. Monte Carlo simulation results show that the proposed design is much more stable than its previous counterparts in terms of vulnerability to transistor mismatch, which is a significant challenge in analog neuromorphic design. All these features make the proposed design an ideal circuit for use in large scale SNNs, which aim at implementing neuromorphic systems with an inherent capability that can adapt to a continuously changing environment, thus leading to systems with significant learning and computational abilities.

  17. An adaptable neuromorphic model of orientation selectivity based on floating gate dynamics

    Science.gov (United States)

    Gupta, Priti; Markan, C. M.

    2014-01-01

    The biggest challenge that the neuromorphic community faces today is to build systems that can be considered truly cognitive. Adaptation and self-organization are the two basic principles that underlie any cognitive function that the brain performs. If we can replicate this behavior in hardware, we move a step closer to our goal of having cognitive neuromorphic systems. Adaptive feature selectivity is a mechanism by which nature optimizes resources so as to have greater acuity for more abundant features. Developing neuromorphic feature maps can help design generic machines that can emulate this adaptive behavior. Most neuromorphic models that have attempted to build self-organizing systems, follow the approach of modeling abstract theoretical frameworks in hardware. While this is good from a modeling and analysis perspective, it may not lead to the most efficient hardware. On the other hand, exploiting hardware dynamics to build adaptive systems rather than forcing the hardware to behave like mathematical equations, seems to be a more robust methodology when it comes to developing actual hardware for real world applications. In this paper we use a novel time-staggered Winner Take All circuit, that exploits the adaptation dynamics of floating gate transistors, to model an adaptive cortical cell that demonstrates Orientation Selectivity, a well-known biological phenomenon observed in the visual cortex. The cell performs competitive learning, refining its weights in response to input patterns resembling different oriented bars, becoming selective to a particular oriented pattern. Different analysis performed on the cell such as orientation tuning, application of abnormal inputs, response to spatial frequency and periodic patterns reveal close similarity between our cell and its biological counterpart. Embedded in a RC grid, these cells interact diffusively exhibiting cluster formation, making way for adaptively building orientation selective maps in silicon. PMID

  18. Toward exascale computing through neuromorphic approaches.

    Energy Technology Data Exchange (ETDEWEB)

    James, Conrad D.

    2010-09-01

    While individual neurons function at relatively low firing rates, naturally-occurring nervous systems not only surpass manmade systems in computing power, but accomplish this feat using relatively little energy. It is asserted that the next major breakthrough in computing power will be achieved through application of neuromorphic approaches that mimic the mechanisms by which neural systems integrate and store massive quantities of data for real-time decision making. The proposed LDRD provides a conceptual foundation for SNL to make unique advances toward exascale computing. First, a team consisting of experts from the HPC, MESA, cognitive and biological sciences and nanotechnology domains will be coordinated to conduct an exercise with the outcome being a concept for applying neuromorphic computing to achieve exascale computing. It is anticipated that this concept will involve innovative extension and integration of SNL capabilities in MicroFab, material sciences, high-performance computing, and modeling and simulation of neural processes/systems.

  19. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  20. Cancers Affecting the Retina

    Science.gov (United States)

    ... Degeneration Additional Content Medical News Cancers Affecting the Retina By Sonia Mehta, MD, Assistant Professor of Ophthalmology, ... Retinopathy Epiretinal Membrane Hypertensive Retinopathy Retinitis Pigmentosa The retina is the transparent, light-sensitive structure at the ...

  1. Neuromorphic cognitive systems a learning and memory centered approach

    CERN Document Server

    Yu, Qiang; Hu, Jun; Tan Chen, Kay

    2017-01-01

    This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromo...

  2. An Application Development Platform for Neuromorphic Computing

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Mark [University of Tennessee (UT); Chan, Jason [University of Tennessee (UT); Daffron, Christopher [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT); Rose, Garrett [University of Tennessee (UT); Plank, James [University of Tennessee (UT); Birdwell, John Douglas [University of Tennessee (UT); Schuman, Catherine D [ORNL

    2016-01-01

    Dynamic Adaptive Neural Network Arrays (DANNAs) are neuromorphic computing systems developed as a hardware based approach to the implementation of neural networks. They feature highly adaptive and programmable structural elements, which model arti cial neural networks with spiking behavior. We design them to solve problems using evolutionary optimization. In this paper, we highlight the current hardware and software implementations of DANNA, including their features, functionalities and performance. We then describe the development of an Application Development Platform (ADP) to support efficient application implementation and testing of DANNA based solutions. We conclude with future directions.

  3. An Evolutionary Optimization Framework for Neural Networks and Neuromorphic Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Plank, James [University of Tennessee (UT); Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2016-01-01

    As new neural network and neuromorphic architectures are being developed, new training methods that operate within the constraints of the new architectures are required. Evolutionary optimization (EO) is a convenient training method for new architectures. In this work, we review a spiking neural network architecture and a neuromorphic architecture, and we describe an EO training framework for these architectures. We present the results of this training framework on four classification data sets and compare those results to other neural network and neuromorphic implementations. We also discuss how this EO framework may be extended to other architectures.

  4. Neuromorphic computing applications for network intrusion detection systems

    Science.gov (United States)

    Garcia, Raymond C.; Pino, Robinson E.

    2014-05-01

    What is presented here is a sequence of evolving concepts for network intrusion detection. These concepts start with neuromorphic structures for XOR-based signature matching and conclude with computationally based network intrusion detection system with an autonomous structuring algorithm. There is evidence that neuromorphic computation for network intrusion detection is fractal in nature under certain conditions. Specifically, the neural structure can take fractal form when simple neural structuring is autonomous. A neural structure is fractal by definition when its fractal dimension exceeds the synaptic matrix dimension. The authors introduce the use of fractal dimension of the neuromorphic structure as a factor in the autonomous restructuring feedback loop.

  5. VITREO-RETINA

    African Journals Online (AJOL)

    2013-02-20

    Feb 20, 2013 ... as neovascularization, macular edema, neovascular glaucoma, and vitreous hemorrhage were ... intensity was controlled by the App. The 20 diopter lens was used to capture the image of the retina which was .... full field ERG tests the mass electrical response of the retina to photic stimulation, thereby ...

  6. Retina regeneration in zebrafish.

    Science.gov (United States)

    Wan, Jin; Goldman, Daniel

    2016-10-01

    Unlike mammals, zebrafish are able to regenerate a damaged retina. Key to this regenerative response are Müller glia that respond to retinal injury by undergoing a reprogramming event that allows them to divide and generate a retinal progenitor that is multipotent and responsible for regenerating all major retinal neuron types. The fish and mammalian retina are composed of similar cell types with conserved function. Because of this it is anticipated that studies of retina regeneration in fish may suggest strategies for stimulating Müller glia reprogramming and retina regeneration in mammals. In this review we describe recent advances and future directions in retina regeneration research using zebrafish as a model system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. CNTF AND RETINA

    Science.gov (United States)

    Wen, Rong; Tao, Weng; Li, Yiwen; Sieving, Paul A.

    2011-01-01

    Ciliary neurotrophic factor (CNTF) is one of the most studied neurotrophic factors for neuroprotection of the retina. A large body of evidence demonstrates that CNTF promotes rod photoreceptor survival in almost all animal models. Recent studies indicate that CNTF also promotes cone photoreceptor survival and cone outer segment regeneration in the degenerating retina and improves cone function in dogs with congenital achromotopsia. In addition, CNTF is a neuroprotective factor and an axogenesis factor for retinal ganglion cells (RGCs). This review focuses on the effects of exogenous CNTF on photoreceptors and RGCs in the mammalian retina and the potential clinical application of CNTF for retinal degenerative diseases. PMID:22182585

  8. Desprendimiento de retina

    OpenAIRE

    Jaime Claramunt, L.

    2010-01-01

    El desprendimiento de retina (DR) consiste en la separación entre la retina neurosensorial y el epitelio pigmentario subyacente. Su forma más frecuente es el DR regmatógeno, causado por una rotura en la retina. Se manifiesta generalmente como un defecto en el campo visual o mala visión. Si se pesquisa y trata oportunamente tiene buenas posibilidades de éxito. No obstante, sigue siendo una causa importante de mala visión y ceguera, por lo que su prevención tiene un rol fundamental.

  9. Desprendimiento de retina

    Directory of Open Access Journals (Sweden)

    L. Jaime Claramunt, Dr.

    2010-11-01

    Full Text Available El desprendimiento de retina (DR consiste en la separación entre la retina neurosensorial y el epitelio pigmentario subyacente. Su forma más frecuente es el DR regmatógeno, causado por una rotura en la retina. Se manifiesta generalmente como un defecto en el campo visual o mala visión. Si se pesquisa y trata oportunamente tiene buenas posibilidades de éxito. No obstante, sigue siendo una causa importante de mala visión y ceguera, por lo que su prevención tiene un rol fundamental.

  10. Neuromorphic Artificial Touch for Categorization of Naturalistic Textures.

    Science.gov (United States)

    Rongala, Udaya Bhaskar; Mazzoni, Alberto; Oddo, Calogero Maria

    2017-04-01

    We implemented neuromorphic artificial touch and emulated the firing behavior of mechanoreceptors by injecting the raw outputs of a biomimetic tactile sensor into an Izhikevich neuronal model. Naturalistic textures were evaluated with a passive touch protocol. The resulting neuromorphic spike trains were able to classify ten naturalistic textures ranging from textiles to glass to BioSkin, with accuracy as high as 97%. Remarkably, rather than on firing rate features calculated over the stimulation window, the highest achieved decoding performance was based on the precise spike timing of the neuromorphic output as captured by Victor Purpura distance. We also systematically varied the sliding velocity and the contact force to investigate the role of sensing conditions in categorizing the stimuli via the artificial sensory system. We found that the decoding performance based on the timing of neuromorphic spike events was robust for a broad range of sensing conditions. Being able to categorize naturalistic textures in different sensing conditions, these neurorobotic results pave the way to the use of neuromorphic tactile sensors in future real-life neuroprosthetic applications.

  11. CNTF AND RETINA

    OpenAIRE

    Wen, Rong; Tao, Weng; Li, Yiwen; Sieving, Paul A.

    2011-01-01

    Ciliary neurotrophic factor (CNTF) is one of the most studied neurotrophic factors for neuroprotection of the retina. A large body of evidence demonstrates that CNTF promotes rod photoreceptor survival in almost all animal models. Recent studies indicate that CNTF also promotes cone photoreceptor survival and cone outer segment regeneration in the degenerating retina and improves cone function in dogs with congenital achromotopsia. In addition, CNTF is a neuroprotective factor and an axogenes...

  12. Superconducting Optoelectronic Circuits for Neuromorphic Computing

    Science.gov (United States)

    Shainline, Jeffrey M.; Buckley, Sonia M.; Mirin, Richard P.; Nam, Sae Woo

    2017-03-01

    Neural networks have proven effective for solving many difficult computational problems, yet implementing complex neural networks in software is computationally expensive. To explore the limits of information processing, it is necessary to implement new hardware platforms with large numbers of neurons, each with a large number of connections to other neurons. Here we propose a hybrid semiconductor-superconductor hardware platform for the implementation of neural networks and large-scale neuromorphic computing. The platform combines semiconducting few-photon light-emitting diodes with superconducting-nanowire single-photon detectors to behave as spiking neurons. These processing units are connected via a network of optical waveguides, and variable weights of connection can be implemented using several approaches. The use of light as a signaling mechanism overcomes fanout and parasitic constraints on electrical signals while simultaneously introducing physical degrees of freedom which can be employed for computation. The use of supercurrents achieves the low power density (1 mW /cm2 at 20-MHz firing rate) necessary to scale to systems with enormous entropy. Estimates comparing the proposed hardware platform to a human brain show that with the same number of neurons (1 011) and 700 independent connections per neuron, the hardware presented here may achieve an order of magnitude improvement in synaptic events per second per watt.

  13. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  14. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    OpenAIRE

    Abba, A.; Bedeschi, F.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; P. Marino; Morello, M. J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2015-01-01

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of $40\\,\\rm MHz$. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction ...

  15. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    Science.gov (United States)

    Abba, A.; Bedeschi, F.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M. J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2015-03-01

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  16. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.

    Science.gov (United States)

    Walter, Florian; Röhrbein, Florian; Knoll, Alois

    2015-12-01

    The application of biologically inspired methods in design and control has a long tradition in robotics. Unlike previous approaches in this direction, the emerging field of neurorobotics not only mimics biological mechanisms at a relatively high level of abstraction but employs highly realistic simulations of actual biological nervous systems. Even today, carrying out these simulations efficiently at appropriate timescales is challenging. Neuromorphic chip designs specially tailored to this task therefore offer an interesting perspective for neurorobotics. Unlike Von Neumann CPUs, these chips cannot be simply programmed with a standard programming language. Like real brains, their functionality is determined by the structure of neural connectivity and synaptic efficacies. Enabling higher cognitive functions for neurorobotics consequently requires the application of neurobiological learning algorithms to adjust synaptic weights in a biologically plausible way. In this paper, we therefore investigate how to program neuromorphic chips by means of learning. First, we provide an overview over selected neuromorphic chip designs and analyze them in terms of neural computation, communication systems and software infrastructure. On the theoretical side, we review neurobiological learning techniques. Based on this overview, we then examine on-die implementations of these learning algorithms on the considered neuromorphic chips. A final discussion puts the findings of this work into context and highlights how neuromorphic hardware can potentially advance the field of autonomous robot systems. The paper thus gives an in-depth overview of neuromorphic implementations of basic mechanisms of synaptic plasticity which are required to realize advanced cognitive capabilities with spiking neural networks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Fast neuromorphic sound localization for binaural hearing aids.

    Science.gov (United States)

    Park, Paul K J; Ryu, Hyunsurk; Lee, Jun Haeng; Shin, Chang-Woo; Lee, Kyoo Bin; Woo, Jooyeon; Kim, Jun-Seok; Kang, Byung Chang; Liu, Shih-Chii; Delbruck, Tobi

    2013-01-01

    We report on the neuromorphic sound localization circuit which can enhance the perceptual sensation in a hearing aid system. All elements are simple leaky integrate-and-fire neuron circuits with different parameters optimized to suppress the impacts of synaptic circuit noises. The detection range and resolution of the proposed neuromorphic circuit are 500 us and 5 us, respectively. Our results show that, the proposed technique can localize a sound pulse with extremely narrow duration (∼ 1 ms) resulting in real-time response.

  18. A neuromorphic model of spatial lookahead planning.

    Science.gov (United States)

    Ivey, Richard; Bullock, Daniel; Grossberg, Stephen

    2011-04-01

    In order to create spatial plans in a complex and changing world, organisms need to rapidly adapt to novel configurations of obstacles that impede simple routes to goal acquisition. Some animals can mentally create successful multistep spatial plans in new visuo-spatial layouts that preclude direct, one-segment routes to goal acquisition. Lookahead multistep plans can, moreover, be fully developed before an animal executes any step in the plan. What neural computations suffice to yield preparatory multistep lookahead plans during spatial cognition of an obstructed two-dimensional scene? To address this question, we introduce a novel neuromorphic system for spatial lookahead planning in which a feasible sequence of actions is prepared before movement begins. The proposed system combines neurobiologically plausible mechanisms of recurrent shunting competitive networks, visuo-spatial diffusion, and inhibition-of-return. These processes iteratively prepare a multistep trajectory to the desired goal state in the presence of obstacles. The planned trajectory can be stored using a primacy gradient in a sequential working memory and enacted by a competitive queuing process. The proposed planning system is compared with prior planning models. Simulation results demonstrate system robustness to environmental variations. Notably, the model copes with many configurations of obstacles that lead other visuo-spatial planning models into selecting undesirable or infeasible routes. Our proposal is inspired by mechanisms of spatial attention and planning in primates. Accordingly, our simulation results are compared with neurophysiological and behavioral findings from relevant studies of spatial lookahead behavior. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. A Neuromorphic System for Video Object Recognition

    Directory of Open Access Journals (Sweden)

    Deepak eKhosla

    2014-11-01

    Full Text Available Automated video object recognition is a topic of emerging importance in both defense and civilian applications. This work describes an accurate and low-power neuromorphic architecture and system for real-time automated video object recognition. Our system, Neuormorphic Visual Understanding of Scenes (NEOVUS, is inspired by recent findings in computational neuroscience on feed-forward object detection and classification pipelines for processing and extracting relevant information from visual data. The NEOVUS architecture is inspired by the ventral (what and dorsal (where streams of the mammalian visual pathway and combines retinal processing, form-based and motion-based object detection, and convolutional neural nets based object classification. Our system was evaluated by the Defense Advanced Research Projects Agency (DARPA under the NEOVISION2 program on a variety of urban area video datasets collected from both stationary and moving platforms. The datasets are challenging as they include a large number of targets in cluttered scenes with varying illumination and occlusion conditions. The NEOVUS system was also mapped to commercially available off-the-shelf hardware. The dynamic power requirement for the system that includes a 5.6Mpixel retinal camera processed by object detection and classification algorithms at 30 frames per second was measured at 21.7 Watts (W, for an effective energy consumption of 5.4 nanoJoules (nJ per bit of incoming video. In a systematic evaluation of five different teams by DARPA on three aerial datasets, the NEOVUS demonstrated the best performance with the highest recognition accuracy and at least three orders of magnitude lower energy consumption than two independent state of the art computer vision systems. These unprecedented results show that the NEOVUS has the potential to revolutionize automated video object recognition towards enabling practical low-power and mobile video processing applications.

  20. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  1. Thermal Expansion and Aging Effects in Neuromorphic Signal Processor

    NARCIS (Netherlands)

    Zjajo, A.; van Leuken, T.G.R.M.

    2016-01-01

    In this paper, we propose an efficient methodology based on a real-time estimator and predictor-corrector scheme for accurate thermal expansion profile and aging evaluation of a neuromorphic signal processor circuit components. As the experimental results indicate, for comparable mesh size, the

  2. High Fill-Factor Imagers for Neuromorphic Processing Enabled by Floating-Gate Circuits

    Directory of Open Access Journals (Sweden)

    Hasler Paul

    2003-01-01

    Full Text Available In neuromorphic modeling of the retina, it would be very nice to have processing capabilities at the focal plane while retaining the density of typical active pixel sensor (APS imager designs. Unfortunately, these two goals have been mostly incompatible. We introduce our transform imager technology and basic architecture that uses analog floating-gate devices to make it possible to have computational imagers with high pixel densities. This imager approach allows programmable focal-plane processing that can perform retinal and higher-level bioinspired computation. The processing is performed continuously on the image via programmable matrix operations that can operate on the entire image or blocks within the image. The resulting dataflow architecture can directly perform computation of spatial transforms, motion computations, and stereo computations. The core imager performs computations at the pixel plane, but still holds a fill factor greater than 40 percent—comparable to the high fill factors of APS imagers. Each pixel is composed of a photodiode sensor element and a multiplier. We present experimental results from several imager arrays built in 0.5 m process (up to in an area of 4 millimeter squared.

  3. Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications

    Science.gov (United States)

    Romeira, Bruno; Figueiredo, José M. L.; Javaloyes, Julien

    2017-11-01

    With the recent exponential growth of applications using artificial intelligence (AI), the development of efficient and ultrafast brain-like (neuromorphic) systems is crucial for future information and communication technologies. While the implementation of AI systems using computer algorithms of neural networks is emerging rapidly, scientists are just taking the very first steps in the development of the hardware elements of an artificial brain, specifically neuromorphic microchips. In this review article, we present the current state of the art of neuromorphic photonic circuits based on solid-state optoelectronic oscillators formed by nanoscale double barrier quantum well resonant tunneling diodes. We address, both experimentally and theoretically, the key dynamic properties of recently developed artificial solid-state neuron microchips with delayed perturbations and describe their role in the study of neural activity and regenerative memory. This review covers our recent research work on excitable and delay dynamic characteristics of both single and autaptic (delayed) artificial neurons including all-or-none response, spike-based data encoding, storage, signal regeneration and signal healing. Furthermore, the neural responses of these neuromorphic microchips display all the signatures of extended spatio-temporal localized structures (LSs) of light, which are reviewed here in detail. By taking advantage of the dissipative nature of LSs, we demonstrate potential applications in optical data reconfiguration and clock and timing at high-speeds and with short transients. The results reviewed in this article are a key enabler for the development of high-performance optoelectronic devices in future high-speed brain-inspired optical memories and neuromorphic computing.

  4. Neuromorphic elements and systems as the basis for the physical implementation of artificial intelligence technologies

    Science.gov (United States)

    Demin, V. A.; Emelyanov, A. V.; Lapkin, D. A.; Erokhin, V. V.; Kashkarov, P. K.; Kovalchuk, M. V.

    2016-11-01

    The instrumental realization of neuromorphic systems may form the basis of a radically new social and economic setup, redistributing roles between humans and complex technical aggregates. The basic elements of any neuromorphic system are neurons and synapses. New memristive elements based on both organic (polymer) and inorganic materials have been formed, and the possibilities of instrumental implementation of very simple neuromorphic systems with different architectures on the basis of these elements have been demonstrated.

  5. Six Networks on a Universal Neuromorphic Computing Substrate

    Science.gov (United States)

    Pfeil, Thomas; Grübl, Andreas; Jeltsch, Sebastian; Müller, Eric; Müller, Paul; Petrovici, Mihai A.; Schmuker, Michael; Brüderle, Daniel; Schemmel, Johannes; Meier, Karlheinz

    2013-01-01

    In this study, we present a highly configurable neuromorphic computing substrate and use it for emulating several types of neural networks. At the heart of this system lies a mixed-signal chip, with analog implementations of neurons and synapses and digital transmission of action potentials. Major advantages of this emulation device, which has been explicitly designed as a universal neural network emulator, are its inherent parallelism and high acceleration factor compared to conventional computers. Its configurability allows the realization of almost arbitrary network topologies and the use of widely varied neuronal and synaptic parameters. Fixed-pattern noise inherent to analog circuitry is reduced by calibration routines. An integrated development environment allows neuroscientists to operate the device without any prior knowledge of neuromorphic circuit design. As a showcase for the capabilities of the system, we describe the successful emulation of six different neural networks which cover a broad spectrum of both structure and functionality. PMID:23423583

  6. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware

    Directory of Open Access Journals (Sweden)

    Andreas Stöckel

    2017-08-01

    Full Text Available Large-scale neuromorphic hardware platforms, specialized computer systems for energy efficient simulation of spiking neural networks, are being developed around the world, for example as part of the European Human Brain Project (HBP. Due to conceptual differences, a universal performance analysis of these systems in terms of runtime, accuracy and energy efficiency is non-trivial, yet indispensable for further hard- and software development. In this paper we describe a scalable benchmark based on a spiking neural network implementation of the binary neural associative memory. We treat neuromorphic hardware and software simulators as black-boxes and execute exactly the same network description across all devices. Experiments on the HBP platforms under varying configurations of the associative memory show that the presented method allows to test the quality of the neuron model implementation, and to explain significant deviations from the expected reference output.

  7. Qualitative Functional Decomposition Analysis of Evolved Neuromorphic Flight Controllers

    Directory of Open Access Journals (Sweden)

    Sanjay K. Boddhu

    2012-01-01

    Full Text Available In the previous work, it was demonstrated that one can effectively employ CTRNN-EH (a neuromorphic variant of EH method methodology to evolve neuromorphic flight controllers for a flapping wing robot. This paper describes a novel frequency grouping-based analysis technique, developed to qualitatively decompose the evolved controllers into explainable functional control blocks. A summary of the previous work related to evolving flight controllers for two categories of the controller types, called autonomous and nonautonomous controllers, is provided, and the applicability of the newly developed decomposition analysis for both controller categories is demonstrated. Further, the paper concludes with appropriate discussion of ongoing work and implications for possible future work related to employing the CTRNN-EH methodology and the decomposition analysis techniques presented in this paper.

  8. Thermal memristor and neuromorphic networks for manipulating heat flow

    Science.gov (United States)

    Ben-Abdallah, Philippe

    2017-06-01

    A memristor is one of four fundamental two-terminal solid elements in electronics. In addition with the resistor, the capacitor and the inductor, this passive element relates the electric charges to current in solid state elements. Here we report the existence of a thermal analog for this element made with metal-insulator transition materials. We demonstrate that these memristive systems can be used to create thermal neurons opening so the way to neuromorphic networks for smart thermal management and information treatment.

  9. A CAD System for Exploring Neuromorphic Computing with Emerging Technologies

    Science.gov (United States)

    2017-03-01

    Our continued research agenda includes richer applications, including aircraft control and speech recognition , improved evolutionary optimization...phoneme recognition on audio feeds. 
 • A general classification application to make classification decisions on data sets by using pre...Zarella, “TrueHappiness: Neuromorphic Emotion Recognition on TrueNorth,” arXiv:1601- .04183, 2016. 
 9. S. K. Esser et al, “Convolutional Networks for

  10. An improved cortex-like neuromorphic system for target recognitions

    Science.gov (United States)

    Tsitiridis, Aristeidis; Yuen, Peter; Hong, Kan; Chen, Tong; Ibrahim, Izzati; Jackman, James; James, David; Richardson, Mark

    2010-10-01

    This paper reports on the enhancement of biologically-inspired machine vision through a rotation invariance mechanism. Research over the years has suggested that rotation invariance is one of the fundamental generic elements of object constancy, a known generic visual ability of the human brain. Cortex-like vision unlike conventional pixel based machine vision is achieved by mimicking neuromorphic mechanisms of the primates' brain. In this preliminary study, rotation invariance is implemented through histograms from Gabor features of an object. The performance of rotation invariance in the neuromorphic algorithm is assessed by the classification accuracies of a test data set which consists of image objects in five different orientations. It is found that a much more consistent classification result over these five different oriented data sets has been achieved by the integrated rotation invariance neuromorphic algorithm compared to the one without. In addition, the issue of varying aspect ratios of input images to these models is also addressed, in an attempt to create a robust algorithm against a wider variability of input data. The extension of the present achievement is to improve the recognition accuracies while incorporating it to a series of different real-world scenarios which would challenge the approach accordingly.

  11. A neuromorphic system for object detection and classification

    Science.gov (United States)

    Khosla, Deepak; Chen, Yang; Kim, Kyungnam; Cheng, Shinko Y.; Honda, Alexander L.; Zhang, Lei

    2013-05-01

    Unattended object detection, recognition and tracking on unmanned reconnaissance platforms in battlefields and urban spaces are topics of emerging importance. In this paper, we present an unattended object recognition system that automatically detects objects of interest in videos and classifies them into various categories (e.g., person, car, truck, etc.). Our system is inspired by recent findings in visual neuroscience on feed-forward object detection and recognition pipeline and mirrors that via two main neuromorphic modules (1) A front-end detection module that combines form and motion based visual attention to search for and detect "integrated" object percepts as is hypothesized to occur in the human visual pathways; (2) A back-end recognition module that processes only the detected object percepts through a neuromorphic object classification algorithm based on multi-scale convolutional neural networks, which can be efficiently implemented in COTS hardware. Our neuromorphic system was evaluated using a variety of urban area video data collected from both stationary and moving platforms. The data are quite challenging as it includes targets at long ranges, occurring under variable conditions of illuminations and occlusion with high clutter. The experimental results of our system showed excellent detection and classification performance. In addition, the proposed bio-inspired approach is good for hardware implementation due to its low complexity and mapping to off-the-shelf conventional hardware.

  12. Demonstrating Hybrid Learning in a Flexible Neuromorphic Hardware System.

    Science.gov (United States)

    Friedmann, Simon; Schemmel, Johannes; Grubl, Andreas; Hartel, Andreas; Hock, Matthias; Meier, Karlheinz

    2017-02-01

    We present results from a new approach to learning and plasticity in neuromorphic hardware systems: to enable flexibility in implementable learning mechanisms while keeping high efficiency associated with neuromorphic implementations, we combine a general-purpose processor with full-custom analog elements. This processor is operating in parallel with a fully parallel neuromorphic system consisting of an array of synapses connected to analog, continuous time neuron circuits. Novel analog correlation sensor circuits process spike events for each synapse in parallel and in real-time. The processor uses this pre-processing to compute new weights possibly using additional information following its program. Therefore, to a certain extent, learning rules can be defined in software giving a large degree of flexibility. Synapses realize correlation detection geared towards Spike-Timing Dependent Plasticity (STDP) as central computational primitive in the analog domain. Operating at a speed-up factor of 1000 compared to biological time-scale, we measure time-constants from tens to hundreds of micro-seconds. We analyze variability across multiple chips and demonstrate learning using a multiplicative STDP rule. We conclude that the presented approach will enable flexible and efficient learning as a platform for neuroscientific research and technological applications.

  13. Retina neural circuitry seen with particle detector technology

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Using particle physics techniques, high energy physics researchers have recently provided new insight into neural circuits inside the retina. After uncovering a new type of retinal cell and mapping how the retina deals with colours, the team from Santa Cruz (US), Krakow and Glasgow is now turning its attention to more complex issues such as how the retina gets wired up and how the brain deals with the signals it receives from the retina. All this using technology derived from high-density, multistrip silicon detectors…   Seen from the point of view of a particle physicist, eyes are image detectors that can gather many different types of data: light and dark, different colours, motion, etc. In particular, the retina, a thin tissue that lines the back of the eye, is a biological pixel detector that detects light and converts it to electrical signals that travel through the optic nerve to the brain. Neurobiologists know that many different cell types are involved in these processes, but they...

  14. [Research and development of artificial retina material].

    Science.gov (United States)

    Hu, Ning; Yang, Jun; Peng, Chenglin; Wang, Xing; Zhang, Sijie; Zhang, Ying; Zheng, Erxin

    2008-04-01

    The application of artificial retina was introduced. The principal characteristics of artificial retina material were reviewed in particular. Moreover, the recent research development and application prospect were discussed.

  15. Corpus vitreum, retina og chorioidea biopsi

    DEFF Research Database (Denmark)

    Scherfig, Erik Christian Høegh

    2002-01-01

    oftalmology, biopsy, choroid, corpus vitreum, retina, malignant melanoma, biopsy technic, retinoblastoma......oftalmology, biopsy, choroid, corpus vitreum, retina, malignant melanoma, biopsy technic, retinoblastoma...

  16. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device

    Science.gov (United States)

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-lae; Muqeem Sheri, Ahmad; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang

    2013-09-01

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption. In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.

  17. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.

    Science.gov (United States)

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang

    2013-09-27

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.

  18. The Retina Algorithm

    CERN Multimedia

    CERN. Geneva; PUNZI, Giovanni

    2015-01-01

    Charge particle reconstruction is one of the most demanding computational tasks found in HEP, and it becomes increasingly important to perform it in real time. We envision that HEP would greatly benefit from achieving a long-term goal of making track reconstruction happen transparently as part of the detector readout ("detector-embedded tracking"). We describe here a track-reconstruction approach based on a massively parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature ('RETINA algorithm'). It turns out that high-quality tracking in large HEP detectors is possible with very small latencies, when this algorithm is implemented in specialized processors, based on current state-of-the-art, high-speed/high-bandwidth digital devices.

  19. Neuromorphic meets neuromechanics, part I: the methodology and implementation

    Science.gov (United States)

    Niu, Chuanxin M.; Jalaleddini, Kian; Sohn, Won Joon; Rocamora, John; Sanger, Terence D.; Valero-Cuevas, Francisco J.

    2017-04-01

    Objective: One goal of neuromorphic engineering is to create ‘realistic’ robotic systems that interact with the physical world by adopting neuromechanical principles from biology. Critical to this is the methodology to implement the spinal circuitry responsible for the behavior of afferented muscles. At its core, muscle afferentation is the closed-loop behavior arising from the interactions among populations of muscle spindle afferents, alpha and gamma motoneurons, and muscle fibers to enable useful behaviors. Approach. We used programmable very- large-scale-circuit (VLSI) hardware to implement simple models of spiking neurons, skeletal muscles, muscle spindle proprioceptors, alpha-motoneuron recruitment, gamma motoneuron control of spindle sensitivity, and the monosynaptic circuitry connecting them. This multi-scale system of populations of spiking neurons emulated the physiological properties of a pair of antagonistic afferented mammalian muscles (each simulated by 1024 alpha- and gamma-motoneurones) acting on a joint via long tendons. Main results. This integrated system was able to maintain a joint angle, and reproduced stretch reflex responses even when driving the nonlinear biomechanics of an actual cadaveric finger. Moreover, this system allowed us to explore numerous values and combinations of gamma-static and gamma-dynamic gains when driving a robotic finger, some of which replicated some human pathological conditions. Lastly, we explored the behavioral consequences of adopting three alternative models of isometric muscle force production. We found that the dynamic responses to rate-coded spike trains produce force ramps that can be very sensitive to tendon elasticity, especially at high force output. Significance. Our methodology produced, to our knowledge, the first example of an autonomous, multi-scale, neuromorphic, neuromechanical system capable of creating realistic reflex behavior in cadaveric fingers. This research platform allows us to explore

  20. Neuromorphic Computing – From Materials Research to Systems Architecture Roundtable

    Energy Technology Data Exchange (ETDEWEB)

    Schuller, Ivan K. [Univ. of California, San Diego, CA (United States); Stevens, Rick [Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Chicago, IL (United States); Pino, Robinson [Dept. of Energy (DOE) Office of Science, Washington, DC (United States); Pechan, Michael [Dept. of Energy (DOE) Office of Science, Washington, DC (United States)

    2015-10-29

    Computation in its many forms is the engine that fuels our modern civilization. Modern computation—based on the von Neumann architecture—has allowed, until now, the development of continuous improvements, as predicted by Moore’s law. However, computation using current architectures and materials will inevitably—within the next 10 years—reach a limit because of fundamental scientific reasons. DOE convened a roundtable of experts in neuromorphic computing systems, materials science, and computer science in Washington on October 29-30, 2015 to address the following basic questions: Can brain-like (“neuromorphic”) computing devices based on new material concepts and systems be developed to dramatically outperform conventional CMOS based technology? If so, what are the basic research challenges for materials sicence and computing? The overarching answer that emerged was: The development of novel functional materials and devices incorporated into unique architectures will allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer. To address this challenge, the following issues were considered: The main differences between neuromorphic and conventional computing as related to: signaling models, timing/clock, non-volatile memory, architecture, fault tolerance, integrated memory and compute, noise tolerance, analog vs. digital, and in situ learning New neuromorphic architectures needed to: produce lower energy consumption, potential novel nanostructured materials, and enhanced computation Device and materials properties needed to implement functions such as: hysteresis, stability, and fault tolerance Comparisons of different implementations: spin torque, memristors, resistive switching, phase change, and optical schemes for enhanced breakthroughs in performance, cost, fault tolerance, and/or manufacturability.

  1. Thermal memristor and neuromorphic networks for manipulating heat flow

    Directory of Open Access Journals (Sweden)

    Philippe Ben-Abdallah

    2017-06-01

    Full Text Available A memristor is one of four fundamental two-terminal solid elements in electronics. In addition with the resistor, the capacitor and the inductor, this passive element relates the electric charges to current in solid state elements. Here we report the existence of a thermal analog for this element made with metal-insulator transition materials. We demonstrate that these memristive systems can be used to create thermal neurons opening so the way to neuromorphic networks for smart thermal management and information treatment.

  2. Computational intelligence and neuromorphic computing potential for cybersecurity applications

    Science.gov (United States)

    Pino, Robinson E.; Shevenell, Michael J.; Cam, Hasan; Mouallem, Pierre; Shumaker, Justin L.; Edwards, Arthur H.

    2013-05-01

    In today's highly mobile, networked, and interconnected internet world, the flow and volume of information is overwhelming and continuously increasing. Therefore, it is believed that the next frontier in technological evolution and development will rely in our ability to develop intelligent systems that can help us process, analyze, and make-sense of information autonomously just as a well-trained and educated human expert. In computational intelligence, neuromorphic computing promises to allow for the development of computing systems able to imitate natural neurobiological processes and form the foundation for intelligent system architectures.

  3. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    CERN Document Server

    Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M.J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40MHz. The detailed geometry and charged-particle activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. Excellent performances have been found for the retina pattern-recognition algorithm, comparable with the full LHCb reconstruction algorithm.

  4. The proteome of human retina.

    Science.gov (United States)

    Zhang, Pingbo; Dufresne, Craig; Turner, Randi; Ferri, Sara; Venkatraman, Vidya; Karani, Rabia; Lutty, Gerard A; Van Eyk, Jennifer E; Semba, Richard D

    2015-02-01

    The retina is a delicate tissue that detects light, converts photochemical energy into neural signals, and transmits the signals to the visual cortex of the brain. A detailed protein inventory of the proteome of the normal human eye may provide a foundation for new investigations into both the physiology of the retina and the pathophysiology of retinal diseases. To provide an inventory, proteins were extracted from five retinas of normal eyes and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed in duplicate using LC-MS/MS on an Orbitrap Elite mass spectrometer. A total of 3436 nonredundant proteins were identified in the human retina, including 20 unambiguous protein isoforms, of which eight have not previously been demonstrated to exist at the protein level. The proteins identified in the retina included most of the enzymes involved in the visual cycle and retinoid metabolism. One hundred and fifty-eight proteins that have been associated with age-related macular degeneration were identified in the retina. The MS proteome database of the human retina may serve as a valuable resource for future investigations of retinal biology and disease. All MS data have been deposited in the ProteomeXchange with identifier PXD001242 (http://proteomecentral.proteomexchange.org/dataset/PXD001242). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Memristor: A New Concept in Synchronization of Coupled Neuromorphic Circuits

    Directory of Open Access Journals (Sweden)

    Ch. K. Volos

    2014-10-01

    Full Text Available The existence of the memristor, as a fourth fundamental circuit element, by researchers at Hewlett Packard (HP labs in 2008, has attracted much interest since then. This occurs because the memristor opens up new functionalities in electronics and it has led to the interpretation of phenomena not only in electronic devices but also in biological systems. Furthermore, many research teams work on projects, which use memristors in neuromorphic devices to simulate learning, adaptive and spontaneous behavior while other teams on systems, which attempt to simulate the behavior of biological synapses. In this paper, the latest achievements and applications of this newly development circuit element are presented. Also, the basic features of neuromorphic circuits, in which the memristor can be used as an electrical synapse, are studied. In this direction, a flux-controlled memristor model is adopted for using as a coupling element between coupled electronic circuits, which simulate the behavior of neuron-cells. For this reason, the circuits which are chosen realize the systems of differential equations that simulate the well-known Hindmarsh-Rose and FitzHugh-Nagumo neuron models. Finally, the simulation results of the use of a memristor as an electric synapse present the effectiveness of the proposed method and many interesting dynamic phenomena concerning the behavior of coupled neuron-cells.

  6. Integration of nanoscale memristor synapses in neuromorphic computing architectures.

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Legenstein, Robert; Deligeorgis, George; Prodromakis, Themistoklis

    2013-09-27

    Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.

  7. Generalized Reconfigurable Memristive Dynamical System (MDS for Neuromorphic Applications

    Directory of Open Access Journals (Sweden)

    Mohammad eBavandpour

    2015-11-01

    Full Text Available This study firstly presents (i a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n^2 memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS. Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN, Adaptive Exponential (AdEx integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

  8. Generalized reconfigurable memristive dynamical system (MDS) for neuromorphic applications.

    Science.gov (United States)

    Bavandpour, Mohammad; Soleimani, Hamid; Linares-Barranco, Bernabé; Abbott, Derek; Chua, Leon O

    2015-01-01

    This study firstly presents (i) a novel general cellular mapping scheme for two dimensional neuromorphic dynamical systems such as bio-inspired neuron models, and (ii) an efficient mixed analog-digital circuit, which can be conveniently implemented on a hybrid memristor-crossbar/CMOS platform, for hardware implementation of the scheme. This approach employs 4n memristors and no switch for implementing an n-cell system in comparison with 2n (2) memristors and 2n switches of a Cellular Memristive Dynamical System (CMDS). Moreover, this approach allows for dynamical variables with both analog and one-hot digital values opening a wide range of choices for interconnections and networking schemes. Dynamical response analyses show that this circuit exhibits various responses based on the underlying bifurcation scenarios which determine the main characteristics of the neuromorphic dynamical systems. Due to high programmability of the circuit, it can be applied to a variety of learning systems, real-time applications, and analytically indescribable dynamical systems. We simulate the FitzHugh-Nagumo (FHN), Adaptive Exponential (AdEx) integrate and fire, and Izhikevich neuron models on our platform, and investigate the dynamical behaviors of these circuits as case studies. Moreover, error analysis shows that our approach is suitably accurate. We also develop a simple hardware prototype for experimental demonstration of our approach.

  9. Noise-exploitation and adaptation in neuromorphic sensors

    Science.gov (United States)

    Hindo, Thamira; Chakrabartty, Shantanu

    2012-04-01

    Even though current micro-nano fabrication technology has reached integration levels where ultra-sensitive sensors can be fabricated, the sensing performance (resolution per joule) of synthetic systems are still orders of magnitude inferior to those observed in neurobiology. For example, the filiform hairs in crickets operate at fundamental limits of noise; auditory sensors in a parasitoid fly can overcome fundamental limitations to precisely localize ultra-faint acoustic signatures. Even though many of these biological marvels have served as inspiration for different types of neuromorphic sensors, the main focus these designs have been to faithfully replicate the biological functionalities, without considering the constructive role of "noise". In man-made sensors device and sensor noise are typically considered as a nuisance, where as in neurobiology "noise" has been shown to be a computational aid that enables biology to sense and operate at fundamental limits of energy efficiency and performance. In this paper, we describe some of the important noise-exploitation and adaptation principles observed in neurobiology and how they can be systematically used for designing neuromorphic sensors. Our focus will be on two types of noise-exploitation principles, namely, (a) stochastic resonance; and (b) noise-shaping, which are unified within our previously reported framework called Σ▵ learning. As a case-study, we describe the application of Σ▵ learning for the design of a miniature acoustic source localizer whose performance matches that of its biological counterpart(Ormia Ochracea).

  10. Integration of nanoscale memristor synapses in neuromorphic computing architectures

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Legenstein, Robert; Deligeorgis, George; Prodromakis, Themistoklis

    2013-09-01

    Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.

  11. Neuromorphic device architectures with global connectivity through electrolyte gating

    Science.gov (United States)

    Gkoupidenis, Paschalis; Koutsouras, Dimitrios A.; Malliaras, George G.

    2017-05-01

    Information processing in the brain takes place in a network of neurons that are connected with each other by an immense number of synapses. At the same time, neurons are immersed in a common electrochemical environment, and global parameters such as concentrations of various hormones regulate the overall network function. This computational paradigm of global regulation, also known as homeoplasticity, has important implications in the overall behaviour of large neural ensembles and is barely addressed in neuromorphic device architectures. Here, we demonstrate the global control of an array of organic devices based on poly(3,4ethylenedioxythiophene):poly(styrene sulf) that are immersed in an electrolyte, a behaviour that resembles homeoplasticity phenomena of the neural environment. We use this effect to produce behaviour that is reminiscent of the coupling between local activity and global oscillations in the biological neural networks. We further show that the electrolyte establishes complex connections between individual devices, and leverage these connections to implement coincidence detection. These results demonstrate that electrolyte gating offers significant advantages for the realization of networks of neuromorphic devices of higher complexity and with minimal hardwired connectivity.

  12. Dynamic Neural Fields as a Step Towards Cognitive Neuromorphic Architectures

    Directory of Open Access Journals (Sweden)

    Yulia eSandamirskaya

    2014-01-01

    Full Text Available Dynamic Field Theory (DFT is an established framework for modelling embodied cognition. In DFT, elementary cognitive functions such as memory formation, formation of grounded representations, attentional processes, decision making, adaptation, and learning emerge from neuronal dynamics. The basic computational element of this framework is a Dynamic Neural Field (DNF. Under constraints on the time-scale of the dynamics, the DNF is computationally equivalent to a soft winner-take-all (WTA network, which is considered one of the basic computational units in neuronal processing. Recently, it has been shown how a WTA network may be implemented in neuromorphic hardware, such as analogue Very Large Scale Integration (VLSI device. This paper leverages the relationship between DFT and soft WTA networks to systematically revise and integrate established DFT mechanisms that have previously been spread among different architectures. In addition, I also identify some novel computational and architectural mechanisms of DFT which may be implemented in neuromorphic VLSI devices using WTA networks as an intermediate computational layer. These specific mechanisms include the stabilization of working memory, the coupling of sensory systems to motor dynamics, intentionality, and autonomous learning. I further demonstrate how all these elements may be integrated into a unified architecture to generate behavior and autonomous learning.

  13. Event-Driven Contrastive Divergence for Spiking Neuromorphic Systems

    Directory of Open Access Journals (Sweden)

    Emre eNeftci

    2014-01-01

    Full Text Available Restricted Boltzmann Machines (RBMs and Deep Belief Networks have been demonstrated to perform efficiently in variety of applications, such as dimensionality reduction, feature learning, and classification. Their implementation on neuromorphic hardware platforms emulating large-scale networks of spiking neurons can have significant advantages from the perspectives of scalability, power dissipation and real-time interfacing with the environment. However the traditional RBM architecture and the commonly used training algorithm known as Contrastive Divergence (CD are based on discrete updates and exact arithmetics which do not directly map onto a dynamical neural substrate. Here, we present an event-driven variation of CD to train a RBM constructed with Integrate & Fire (I&F neurons, that is constrained by the limitations of existing and near future neuromorphic hardware platforms. Our strategy is based on neural sampling, which allows us to synthesize a spiking neural network that samples from a target Boltzmann distribution. The reverberating activity of the network replaces the discrete steps of the CD algorithm, while Spike Time Dependent Plasticity (STDP carries out the weight updates in an online, asynchronous fashion.We demonstrate our approach by training an RBM composed of leaky I&F neurons with STDP synapses to learn a generative model of the MNIST hand-written digit dataset, and by testing it in recognition, generation and cue integration tasks. Our results contribute to a machine learning-driven approach for synthesizing networks of spiking neurons capable of carrying out practical, high-level functionality.

  14. An Investigation into Spike-Based Neuromorphic Approaches for Artificial Olfactory Systems

    Directory of Open Access Journals (Sweden)

    Anup Vanarse

    2017-11-01

    Full Text Available The implementation of neuromorphic methods has delivered promising results for vision and auditory sensors. These methods focus on mimicking the neuro-biological architecture to generate and process spike-based information with minimal power consumption. With increasing interest in developing low-power and robust chemical sensors, the application of neuromorphic engineering concepts for electronic noses has provided an impetus for research focusing on improving these instruments. While conventional e-noses apply computationally expensive and power-consuming data-processing strategies, neuromorphic olfactory sensors implement the biological olfaction principles found in humans and insects to simplify the handling of multivariate sensory data by generating and processing spike-based information. Over the last decade, research on neuromorphic olfaction has established the capability of these sensors to tackle problems that plague the current e-nose implementations such as drift, response time, portability, power consumption and size. This article brings together the key contributions in neuromorphic olfaction and identifies future research directions to develop near-real-time olfactory sensors that can be implemented for a range of applications such as biosecurity and environmental monitoring. Furthermore, we aim to expose the computational parallels between neuromorphic olfaction and gustation for future research focusing on the correlation of these senses.

  15. Advances in neuromorphic hardware exploiting emerging nanoscale devices

    CERN Document Server

    2017-01-01

    This book covers all major aspects of cutting-edge research in the field of neuromorphic hardware engineering involving emerging nanoscale devices. Special emphasis is given to leading works in hybrid low-power CMOS-Nanodevice design. The book offers readers a bidirectional (top-down and bottom-up) perspective on designing efficient bio-inspired hardware. At the nanodevice level, it focuses on various flavors of emerging resistive memory (RRAM) technology. At the algorithm level, it addresses optimized implementations of supervised and stochastic learning paradigms such as: spike-time-dependent plasticity (STDP), long-term potentiation (LTP), long-term depression (LTD), extreme learning machines (ELM) and early adoptions of restricted Boltzmann machines (RBM) to name a few. The contributions discuss system-level power/energy/parasitic trade-offs, and complex real-world applications. The book is suited for both advanced researchers and students interested in the field.

  16. Stochastic Learning in Oxide Binary Synaptic Device for Neuromorphic Computing

    Directory of Open Access Journals (Sweden)

    Shimeng eYu

    2013-10-01

    Full Text Available Hardware implementation of neuromorphic computing is attractive as a computing paradigm beyond the conventional digital computing. In this work, we show that the SET (off-to-on transition of metal oxide resistance switching memory becomes probabilistic under a weak programming condition. The switching variability of the binary synaptic device implements a stochastic learning rule. Such stochastic SET transition was statistically measured and modeled for a simulation of a winner-take-all network for competitive learning. The simulation illustrates that with such stochastic learning, the orientation classification function of input patterns can be effectively realized. The system performance metrics were compared between the conventional approach using the analog synapse and the approach in this work that employs the binary synapse utilizing the stochastic learning. The feasibility of using binary synapse in the neurormorphic computing may relax the constraints to engineer continuous multilevel intermediate states and widens the material choice for the synaptic device design.

  17. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing

    Science.gov (United States)

    Wang, Zhongrui; Joshi, Saumil; Savel'Ev, Sergey E.; Jiang, Hao; Midya, Rivu; Lin, Peng; Hu, Miao; Ge, Ning; Strachan, John Paul; Li, Zhiyong; Wu, Qing; Barnell, Mark; Li, Geng-Lin; Xin, Huolin L.; Williams, R. Stanley; Xia, Qiangfei; Yang, J. Joshua

    2017-01-01

    The accumulation and extrusion of Ca2+ in the pre- and postsynaptic compartments play a critical role in initiating plastic changes in biological synapses. To emulate this fundamental process in electronic devices, we developed diffusive Ag-in-oxide memristors with a temporal response during and after stimulation similar to that of the synaptic Ca2+ dynamics. In situ high-resolution transmission electron microscopy and nanoparticle dynamics simulations both demonstrate that Ag atoms disperse under electrical bias and regroup spontaneously under zero bias because of interfacial energy minimization, closely resembling synaptic influx and extrusion of Ca2+, respectively. The diffusive memristor and its dynamics enable a direct emulation of both short- and long-term plasticity of biological synapses, representing an advance in hardware implementation of neuromorphic functionalities.

  18. [Implantation of the artificial retina].

    Science.gov (United States)

    Yagi, T; Hayashida, Y

    1999-05-01

    In some degenerative retinal diseases, e.g., retinitis pigmentosa and age-related macular degeneration, the photoreceptors are destroyed to cause serious visual defects. Recent studies on blind human subjects revealed that a large number of ganglion cells remains intact and is capable of transmitting signals to the brain to evoke partial visual perception. This provided hope to compensate for the visual defects with retinal prostheses. The recent progress of microfabrication technique made it possible to implement the Vary Large Scale Integrated circuit, the artificial retina, which emulates a part of retinal function. The idea of implanting the artificial retina to the patients was proposed recently and experiments using animals have been put into practice. This article surveys the front line of the artificial retina implantation.

  19. Retinal Detachment: Torn or Detached Retina Symptoms

    Science.gov (United States)

    ... Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn or ... Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Symptoms Leer en Español: Síntomas de Desgarramiento o ...

  20. Retinal Detachment: Torn or Detached Retina Treatment

    Science.gov (United States)

    ... Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn or ... Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Treatment Leer en Español: Tratamiento de un Desgarramiento ...

  1. RUPTURED RETINA ARTERY MACRO- ANEURYSM ...

    African Journals Online (AJOL)

    TAIWO

    vitreous, retina and subretinal haemorrhage. Treatment : Conservative management and observation with control of systemic diseases such as hypertension and hyperlipidemia is sufficient in most cases. However, in eyes. 5 with persistent vitreous haemorrhage or macular oedema with lipid exudation, laser treatment is ...

  2. Do artists see their retinas?

    NARCIS (Netherlands)

    Perdreau, F.A.G.; Cavanagh, P.

    2011-01-01

    Our perception starts with the image that falls on our retina and on this retinal image, distant objects are small and shadowed surfaces are dark. But this is not what we see. Visual constancies correct for distance so that, for example, a person approaching us does not appear to become a larger

  3. A hierarchical artificial retina architecture

    Science.gov (United States)

    Parker, Alice C.; Azar, Adi N.

    2009-05-01

    Connectivity in the human retina is complex. Over one hundred million photoreceptors transduce light into electrical signals. These electrical signals are sent to the ganglion cells through amacrine and bipolar cells. Lateral connections involving horizontal and amacrine cells span throughout the outer plexiform layer and inner plexiform layer respectively. Horizontal cells are important for photoreceptor regulation by depolarizing them after an illumination occurs. Horizontal cells themselves form an electrical network that communicates by gap junctions, and these cells exhibit plasticity (change in behavior and structure) with respect to glycine receptors. The bipolar and amacrine cells transfer electrical signals from photoreceptors to the ganglion cells. Furthermore, amacrine cells are responsible for further processing the retinal image. Finally, the ganglion cells receive electrical signals from the bipolar and amacrine cells and will spike at a faster rate if there is a change in the overall intensity for a group of photoreceptors, sending a signal to the brain. Dramatic progress is being made with respect to retinal prostheses, raising hope for an entire synthetic retina in the future. We propose a bio-inspired 3D hierarchical pyramidal architecture for a synthetic retina that mimics the overall structure of the human retina. We chose to use a 3D architecture to facilitate connectivity among retinal cells, maintaining a hierarchical structure similar to that of the biological retina. The first layer of the architecture contains electronic circuits that model photoreceptors and horizontal cells. The second layer contains amacrine and bipolar electronic cells, and the third layer contains ganglion cells. Layer I has the highest number of cells, and layer III has the lowest number of cells, resulting in a pyramidal architecture. In our proposed architecture we intend to use photodetectors to transduce light into electrical signals. We propose to employ

  4. First Results of an "Artificial Retina" Processor Prototype

    Science.gov (United States)

    Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro; Morello, Michael J.; Ninci, Daniele; Piucci, Alessio; Punzi, Giovanni; Ristori, Luciano; Spinella, Franco; Stracka, Simone; Tonelli, Diego; Walsh, John

    2016-11-01

    We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called "artificial retina algorithm", inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. The prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHz crossing rate.

  5. A Review of Current Neuromorphic Approaches for Vision, Auditory, and Olfactory Sensors.

    Science.gov (United States)

    Vanarse, Anup; Osseiran, Adam; Rassau, Alexander

    2016-01-01

    Conventional vision, auditory, and olfactory sensors generate large volumes of redundant data and as a result tend to consume excessive power. To address these shortcomings, neuromorphic sensors have been developed. These sensors mimic the neuro-biological architecture of sensory organs using aVLSI (analog Very Large Scale Integration) and generate asynchronous spiking output that represents sensing information in ways that are similar to neural signals. This allows for much lower power consumption due to an ability to extract useful sensory information from sparse captured data. The foundation for research in neuromorphic sensors was laid more than two decades ago, but recent developments in understanding of biological sensing and advanced electronics, have stimulated research on sophisticated neuromorphic sensors that provide numerous advantages over conventional sensors. In this paper, we review the current state-of-the-art in neuromorphic implementation of vision, auditory, and olfactory sensors and identify key contributions across these fields. Bringing together these key contributions we suggest a future research direction for further development of the neuromorphic sensing field.

  6. Morphologic changes in the retina after selective retina therapy.

    Science.gov (United States)

    Yang, Ji Ho; Yu, Seung-Young; Kim, Tae Gi; Kim, Eung Suk; Kwak, Hyung Woo

    2016-06-01

    To investigate structural changes in the retina by histologic evaluation and in vivo spectral domain optical coherence tomography (SD-OCT) following selective retina therapy (SRT) controlled by optical feedback techniques (OFT). SRT was applied to 12 eyes of Dutch Belted rabbits. Retinal changes were assessed based on fundus photography, fluorescein angiography (FAG), SD-OCT, light microscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) at each of the following time points: 1 h, and 1, 3, 7, 14 and 28 days after SRT. BrdU (5'-bromo-2'-deoxy-uridine) incorporation assay was also conducted to evaluate potential proliferation of RPE cells. SRT lesions at1 h after SRT were ophthalmoscopically invisible. FAG showed leakage in areas corresponding to SRT lesions, and hyperfluorescence disappeared after 7 days. SD-OCT showed that decreased reflectivity corresponding to RPE damage was restored to normal over time in SRT lesions. Histologic analysis revealed that the damage in SRT lesions was primarily limited to the retinal pigment epithelium (RPE) and the outer segments of the photoreceptors. SEM and TEM showed RPE cell migration by day 3 after SRT, and restoration of the RPE monolayer with microvilli by 1 week after SRT. At 14 and 28 days, ultrastructures of the RPE, including the microvilli and tight junctions, were completely restored. The outer segments of the photoreceptors also recovered without sequelae. Interdigitation between the RPE and photoreceptors was observed. BrdU incorporation assay revealed proliferation of RPE on day 3 after SRT, and peak proliferation was observed on day 7 after SRT. Based on multimodal imaging and histologic assessment, our findings demonstrate that SRT with OFT could selectively target the RPE without damaging the neurosensory retina. Therefore, the use of SRT with OFT opens the door to the possibility of clinical trials of well-defined invisible and nondestructive retina therapy, especially

  7. Hierarchical Chunking of Sequential Memory on Neuromorphic Architecture with Reduced Synaptic Plasticity.

    Science.gov (United States)

    Li, Guoqi; Deng, Lei; Wang, Dong; Wang, Wei; Zeng, Fei; Zhang, Ziyang; Li, Huanglong; Song, Sen; Pei, Jing; Shi, Luping

    2016-01-01

    Chunking refers to a phenomenon whereby individuals group items together when performing a memory task to improve the performance of sequential memory. In this work, we build a bio-plausible hierarchical chunking of sequential memory (HCSM) model to explain why such improvement happens. We address this issue by linking hierarchical chunking with synaptic plasticity and neuromorphic engineering. We uncover that a chunking mechanism reduces the requirements of synaptic plasticity since it allows applying synapses with narrow dynamic range and low precision to perform a memory task. We validate a hardware version of the model through simulation, based on measured memristor behavior with narrow dynamic range in neuromorphic circuits, which reveals how chunking works and what role it plays in encoding sequential memory. Our work deepens the understanding of sequential memory and enables incorporating it for the investigation of the brain-inspired computing on neuromorphic architecture.

  8. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system

    Directory of Open Access Journals (Sweden)

    Daniel Brüderle

    2009-06-01

    Full Text Available Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  9. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    Science.gov (United States)

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2008-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085

  10. Polymer-electrolyte-gated nanowire synaptic transistors for neuromorphic applications

    Science.gov (United States)

    Zou, Can; Sun, Jia; Gou, Guangyang; Kong, Ling-An; Qian, Chuan; Dai, Guozhang; Yang, Junliang; Guo, Guang-hua

    2017-09-01

    Polymer-electrolytes are formed by dissolving a salt in polymer instead of water, the conducting mechanism involves the segmental motion-assisted diffusion of ion in the polymer matrix. Here, we report on the fabrication of tin oxide (SnO2) nanowire synaptic transistors using polymer-electrolyte gating. A thin layer of poly(ethylene oxide) and lithium perchlorate (PEO/LiClO4) was deposited on top of the devices, which was used to boost device performances. A voltage spike applied on the in-plane gate attracts ions toward the polymer-electrolyte/SnO2 nanowire interface and the ions are gradually returned after the pulse is removed, which can induce a dynamic excitatory postsynaptic current in the nanowire channel. The SnO2 synaptic transistors exhibit the behavior of short-term plasticity like the paired-pulse facilitation and self-adaptation, which is related to the electric double-effect regulation. In addition, the synaptic logic functions and the logical function transformation are also discussed. Such single SnO2 nanowire-based synaptic transistors are of great importance for future neuromorphic devices.

  11. MEMS technologies for artificial retinas

    Science.gov (United States)

    Mokwa, Wilfried

    2010-02-01

    The mostly cause of blindness in the developed countries is a degeneration of the retina. For restoring this loss of vision one possible approach is the substitution of the lost functions by means of an electronic implant. This approach is based on MEMS technologies. It has been shown that electrical stimulation of retinal ganglion cells yield visual sensations1. Therefore, an artificial retina for blind humans based on this concept seems to be feasible. Besides electrical stimulation of retinal ganglion cells also the direct electrical stimulation of the optic nerve2 and the visual cortex3 have been under investigation. This paper wants to give an overview about the activities on the retinal ganglion cell stimulation.

  12. Performance Evaluation of Neuromorphic-Vision Object Recognition Algorithms

    Science.gov (United States)

    2014-08-01

    develop artificial vision systems based on the design principles employed by mammalian vision systems. Three such algorithms are briefly described...algorithmic emulations of the entire visual pathway - from retina to the visual cortex. The objective of the effort is to explore the potential for...develop artificial vision systems based on the design principles employed by mammalian vision systems. Three such algorithms are briefly described in

  13. Towards photovoltaic powered artificial retina

    OpenAIRE

    Santiago Silvestre; Sandra Bermejo; Daniel Guasch; Pablo Rafael Ortega; Luis Castañer

    2011-01-01

    The aim of this article is to provide an overview of current and future concepts in the field of retinal prostheses, and is focused on the power supply based on solar energy conversion; we introduce the possibility of using PV minimodules as power supply for a new concept of retinal prostheses: Photovoltaic Powered Artificial Retina (PVAR). Main characteristics of these PV modules are presented showing its potential for this application. Peer Reviewed

  14. Towards photovoltaic powered artificial retina

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2011-11-01

    Full Text Available The aim of this article is to provide an overview of current and future concepts in the field of retinal prostheses, and is focused on the power supply based on solar energy conversion; we introduce the possibility of using PV minimodules as power supply for a new concept of retinal prostheses: Photovoltaic Powered Artificial Retina (PVAR. Main characteristics of these PV modules are presented showing its potential for this application.

  15. A Computational Framework for Realistic Retina Modeling.

    Science.gov (United States)

    Martínez-Cañada, Pablo; Morillas, Christian; Pino, Begoña; Ros, Eduardo; Pelayo, Francisco

    2016-11-01

    Computational simulations of the retina have led to valuable insights about the biophysics of its neuronal activity and processing principles. A great number of retina models have been proposed to reproduce the behavioral diversity of the different visual processing pathways. While many of these models share common computational stages, previous efforts have been more focused on fitting specific retina functions rather than generalizing them beyond a particular model. Here, we define a set of computational retinal microcircuits that can be used as basic building blocks for the modeling of different retina mechanisms. To validate the hypothesis that similar processing structures may be repeatedly found in different retina functions, we implemented a series of retina models simply by combining these computational retinal microcircuits. Accuracy of the retina models for capturing neural behavior was assessed by fitting published electrophysiological recordings that characterize some of the best-known phenomena observed in the retina: adaptation to the mean light intensity and temporal contrast, and differential motion sensitivity. The retinal microcircuits are part of a new software platform for efficient computational retina modeling from single-cell to large-scale levels. It includes an interface with spiking neural networks that allows simulation of the spiking response of ganglion cells and integration with models of higher visual areas.

  16. An Energy Efficient Neuromorphic Computing System Using Real Time Sensing Method

    DEFF Research Database (Denmark)

    Farkhani, Hooman; Tohidi, Mohammad; Farkhani, Sadaf

    In spintronic-based neuromorphic computing systems (NCS), the switching of magnetic moment in a magnetic tunnel junction (MTJ) is used to mimic neuron firing. However, the stochastic switching behavior of the MTJ and process variations effect leads to extra stimulation time. This leads to extra e...

  17. Neuromorphic Computing: A Post-Moore's Law Complementary Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Schuman, Catherine D [ORNL; Birdwell, John Douglas [University of Tennessee (UT); Dean, Mark [University of Tennessee (UT); Plank, James [University of Tennessee (UT); Rose, Garrett [University of Tennessee (UT)

    2016-01-01

    We describe our approach to post-Moore's law computing with three neuromorphic computing models that share a RISC philosophy, featuring simple components combined with a flexible and programmable structure. We envision these to be leveraged as co-processors, or as data filters to provide in situ data analysis in supercomputing environments.

  18. A Scalable Multicore Architecture With Heterogeneous Memory Structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs).

    Science.gov (United States)

    Moradi, Saber; Qiao, Ning; Stefanini, Fabio; Indiveri, Giacomo

    2018-02-01

    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here, we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multicore neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.

  19. A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach.

    Science.gov (United States)

    Jimenez-Fernandez, Angel; Cerezuela-Escudero, Elena; Miro-Amarante, Lourdes; Dominguez-Moralse, Manuel Jesus; de Asis Gomez-Rodriguez, Francisco; Linares-Barranco, Alejandro; Jimenez-Moreno, Gabriel

    2017-04-01

    This paper presents a new architecture, design flow, and field-programmable gate array (FPGA) implementation analysis of a neuromorphic binaural auditory sensor, designed completely in the spike domain. Unlike digital cochleae that decompose audio signals using classical digital signal processing techniques, the model presented in this paper processes information directly encoded as spikes using pulse frequency modulation and provides a set of frequency-decomposed audio information using an address-event representation interface. In this case, a systematic approach to design led to a generic process for building, tuning, and implementing audio frequency decomposers with different features, facilitating synthesis with custom features. This allows researchers to implement their own parameterized neuromorphic auditory systems in a low-cost FPGA in order to study the audio processing and learning activity that takes place in the brain. In this paper, we present a 64-channel binaural neuromorphic auditory system implemented in a Virtex-5 FPGA using a commercial development board. The system was excited with a diverse set of audio signals in order to analyze its response and characterize its features. The neuromorphic auditory system response times and frequencies are reported. The experimental results of the proposed system implementation with 64-channel stereo are: a frequency range between 9.6 Hz and 14.6 kHz (adjustable), a maximum output event rate of 2.19 Mevents/s, a power consumption of 29.7 mW, the slices requirements of 11141, and a system clock frequency of 27 MHz.

  20. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems

    Directory of Open Access Journals (Sweden)

    Fabio eStefanini

    2014-08-01

    Full Text Available Neuromorphic hardware offers an electronic substrate for the realization of asynchronousevent-based sensory-motor systems and large-scale spiking neural network architectures. Inorder to characterize these systems, configure them, and carry out modeling experiments, it isoften necessary to interface them to workstations. The software used for this purpose typicallyconsists of a large monolithic block of code highly specific to the hardware setup used. While thisapproach can lead to highly integrated hardware/software systems, it hampers the developmentof modular and neuromorphic infrastructures. To alleviate this problem, we propose PyNCS,an open-source front-end for the definition of neural network models that is interfaced to thehardware through a set of Python Application Programming Interfaces (APIs. The designof PyNCS promotes modularity, portability and expandability and separates implementationfrom hardware description. The high-level front-end that comes with PyNCS includes tools todefine neural network models as well as to create, monitor and analyze spiking data. Here wereport the design philosophy behind the PyNCS framework and describe its implementation.We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carryingout a cognitive decision-making task involving state-dependent computation. PyNCS, alreadyapplicable to a wide range of existing spike-based neuromorphic setups, will accelerate thedevelopment of hybrid software/hardware neuromorphic systems, thanks to its code flexibility.The code developed is open-source and available online at https://github.com/inincs/pyNCS.

  1. Retinal Detachment: Torn or Detached Retina Diagnosis

    Science.gov (United States)

    ... Health / Eye Health A-Z Detached or Torn Retina Sections Retinal Detachment: What Is a Torn or ... Detachment Vision Simulator Retinal Detachment: Torn or Detached Retina Diagnosis Leer en Español: Diagnóstico de un Desgarramiento ...

  2. The Functional Architecture of the Retina.

    Science.gov (United States)

    Masland, Richard H.

    1986-01-01

    Examines research related to the retina's coding of visual input with emphasis on the organization of two kinds of ganglion cell receptive fields. Reviews current techniques for examining the shapes and arrangement in the retina of entire populations of nerve cells. (ML)

  3. SUMOylation Regulation of Retina Development and Functions.

    Science.gov (United States)

    Zhang, L; Li, D W-C

    2016-01-01

    The structure and developmental mechanisms of vertebrate retina are highly conserved. One of the most distinctive events during retinogenesis is the temporally and spatially generation of seven types of retinal cells from the multipotent retinal progenitor cells. The importance and prevalence of SUMOylation in regulation of this process through modulation of gene expression and protein function diversity have been increasingly appreciated. Here, we review the biological significance of SUMOylation in retina development, examine how SUMOylation balances the proliferation and cell cycle exit of retinal progenitor cells, and finally discuss the molecular mechanisms mediating the specification of different retina neurons and photoreceptors through modulation of various transcription factors. The potential role of SUMOylation in normal retina function is illustrated by the abundant expression of key components of SUMOylation machinery in mouse retina, and is also exemplified by the highly conserved SUMOylation site on neurotransmission receptors in ganglion cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    Science.gov (United States)

    Milde, Moritz B.; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware. PMID:28747883

  5. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System

    Directory of Open Access Journals (Sweden)

    Moritz B. Milde

    2017-07-01

    Full Text Available Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  6. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.

    Science.gov (United States)

    Milde, Moritz B; Blum, Hermann; Dietmüller, Alexander; Sumislawska, Dora; Conradt, Jörg; Indiveri, Giacomo; Sandamirskaya, Yulia

    2017-01-01

    Neuromorphic hardware emulates dynamics of biological neural networks in electronic circuits offering an alternative to the von Neumann computing architecture that is low-power, inherently parallel, and event-driven. This hardware allows to implement neural-network based robotic controllers in an energy-efficient way with low latency, but requires solving the problem of device variability, characteristic for analog electronic circuits. In this work, we interfaced a mixed-signal analog-digital neuromorphic processor ROLLS to a neuromorphic dynamic vision sensor (DVS) mounted on a robotic vehicle and developed an autonomous neuromorphic agent that is able to perform neurally inspired obstacle-avoidance and target acquisition. We developed a neural network architecture that can cope with device variability and verified its robustness in different environmental situations, e.g., moving obstacles, moving target, clutter, and poor light conditions. We demonstrate how this network, combined with the properties of the DVS, allows the robot to avoid obstacles using a simple biologically-inspired dynamics. We also show how a Dynamic Neural Field for target acquisition can be implemented in spiking neuromorphic hardware. This work demonstrates an implementation of working obstacle avoidance and target acquisition using mixed signal analog/digital neuromorphic hardware.

  7. Quantum biology of the retina.

    Science.gov (United States)

    Sia, Paul Ikgan; Luiten, André N; Stace, Thomas M; Wood, John Pm; Casson, Robert J

    2014-08-01

    The emerging field of quantum biology has led to a greater understanding of biological processes at the microscopic level. There is recent evidence to suggest that non-trivial quantum features such as entanglement, tunnelling and coherence have evolved in living systems. These quantum features are particularly evident in supersensitive light-harvesting systems such as in photosynthesis and photoreceptors. A biomimetic strategy utilizing biological quantum phenomena might allow new advances in the field of quantum engineering, particularly in quantum information systems. In addition, a better understanding of quantum biological features may lead to novel medical diagnostic and therapeutic developments. In the present review, we discuss the role of quantum physics in biological systems with an emphasis on the retina. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  8. Do artists see their retinas?

    Directory of Open Access Journals (Sweden)

    Florian ePerdreau

    2011-12-01

    Full Text Available Our perception starts with the image that falls on our retina and in this retinal image, distant objects are small and shadowed surfaces are dark. But this is not what we see. Visual constancies correct for distance so that a person approaching us does not appear to become a larger person, a white sheet held in a shadow still appears white, and so forth. Interestingly, an artist, when rendering a scene realistically, must undo all these corrections and return to the image on their retina, making, for example, distant objects appropriately small. Have artists acquired specialized adaptations of vision to accomplish this task? We examined the perceptual abilities of artists compared to non-artists by first asking them to adjust either the size or the brightness of a target to match it to a standard that was presented either on a perspective grid or within a cast shadow. We instructed them to ignore the context, judging size, for example, by imagining the separation between their fingers if they were to pick up the test object from the display screen. Then to test the speed with which artists might access early visual representations, subjects searched for an L-shape in contact with a circle; the target was an L-shape, but because of visual completion, it appeared to be a square occluded behind a circle, camouflaging the L-shape. Surprisingly, artists were as affected by context as non-artists in all three tests. Moreover, artists took, on average, significantly more time to make their judgments, implying that they were doing their best to demonstrate the special skills that we, and they, believed they had acquired. Our data therefore support the proposal from Gombrich that artists do not have special perceptual expertise to undo the effects of constancies. Instead, once the context is present in their drawing, they need only compare the drawing to the scene to match the effect of constancies in both.

  9. Glycogen metabolism in the rat retina.

    Science.gov (United States)

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2004-02-01

    It has been reported that glycogen levels in retina vary with retinal vascularization. However, the electrical activity of isolated retina depends on glucose supply, suggesting that it does not contain energetic reserves. We determined glycogen levels and pyruvate and lactate production under various conditions in isolated retina. Ex vivo retinas from light- and dark-adapted rats showed values of 44 +/- 0.3 and 19.5 +/- 0.4 nmol glucosyl residues/mg protein, respectively. The glycogen content of retinas from light-adapted animals was reduced by 50% when they were transferred to darkness. Glycogen levels were low in retinas incubated in glucose-free media and increased in the presence of glucose. The highest glycogen values were found in media containing 20 mm of glucose. A rapid increase in lactate production was observed in the presence of glucose. Surprisingly, glycogen levels were the lowest and lactate production was also very low in the presence of 30 mm glucose. Our results suggest that glycogen can be used as an immediate accessible energy reserve in retina. We speculate on the possibility that gluconeogenesis may play a protective role by removal of lactic acid.

  10. Memristive and neuromorphic behavior in a LixCoO2 nanobattery

    Science.gov (United States)

    Mai, V. H.; Moradpour, A.; Senzier, P. Auban; Pasquier, C.; Wang, K.; Rozenberg, M. J.; Giapintzakis, J.; Mihailescu, C. N.; Orfanidou, C. M.; Svoukis, E.; Breza, A.; Lioutas, Ch B.; Franger, S.; Revcolevschi, A.; Maroutian, T.; Lecoeur, P.; Aubert, P.; Agnus, G.; Salot, R.; Albouy, P. A.; Weil, R.; Alamarguy, D.; March, K.; Jomard, F.; Chrétien, P.; Schneegans, O.

    2015-01-01

    The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of LixCoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.

  11. Hierarchical Address Event Routing for Reconfigurable Large-Scale Neuromorphic Systems.

    Science.gov (United States)

    Park, Jongkil; Yu, Theodore; Joshi, Siddharth; Maier, Christoph; Cauwenberghs, Gert

    2017-10-01

    We present a hierarchical address-event routing (HiAER) architecture for scalable communication of neural and synaptic spike events between neuromorphic processors, implemented with five Xilinx Spartan-6 field-programmable gate arrays and four custom analog neuromophic integrated circuits serving 262k neurons and 262M synapses. The architecture extends the single-bus address-event representation protocol to a hierarchy of multiple nested buses, routing events across increasing scales of spatial distance. The HiAER protocol provides individually programmable axonal delay in addition to strength for each synapse, lending itself toward biologically plausible neural network architectures, and scales across a range of hierarchies suitable for multichip and multiboard systems in reconfigurable large-scale neuromorphic systems. We show approximately linear scaling of net global synaptic event throughput with number of routing nodes in the network, at 3.6×107 synaptic events per second per 16k-neuron node in the hierarchy.

  12. Real-time neuromorphic algorithms for inverse kinematics of redundant manipulators

    Science.gov (United States)

    Barhen, Jacob; Gulati, Sandeep; Zak, Michail

    1989-01-01

    The paper presents an efficient neuromorphic formulation to accurately solve the inverse kinematics problem for redundant manipulators. The approach involves a dynamical learning procedure based on a novel formalism in neural network theory: the concept of 'terminal' attractors. Topographically mapped terminal attractors are used to define a neural network whose synaptic elements can rapidly encapture the inverse kinematics transformations, and, subsequently generalize to compute joint-space coordinates required to achieve arbitrary end-effector configurations. Unlike prior neuromorphic implementations, this technique can also systematically exploit redundancy to optimize kinematic criteria, e.g., torque optimization. Simulations on 3-DOF and 7-DOF redundant manipulators, are used to validate the theoretical framework and illustrate its computational efficacy.

  13. A memristor crossbar array of titanium oxide for non-volatile memory and neuromorphic applications

    Science.gov (United States)

    Abbas, Haider; Abbas, Yawar; Truong, Son Ngoc; Min, Kyeong-Sik; Park, Mi Ra; Cho, Jongweon; Yoon, Tae-Sik; Kang, Chi Jung

    2017-06-01

    In this work 3 × 3 crossbar arrays of titanium oxide were fabricated and tested for non-volatile memory applications and neuromorphic pattern recognition. The non-volatile memory characteristics of the memristor were examined using retention tests for each memristor. In order to test neuromorphic pattern recognition, the memristor crossbar array was programmed to store '111', '100' and '010' at the first, second and third columns of the array, where '0' and '1' represent the high-resistance state (HRS) and low-resistance state (LRS), respectively. The three similar input patterns of '111', '100' and '010' were applied to the crossbar array, for pattern recognition. Using a twin memristor crossbar array mechanism all three input patterns were recognized.

  14. Applying Memristors Towards Low-Power, Dynamic Learning for Neuromorphic Applications

    Science.gov (United States)

    2017-03-01

    time speech recognition and spatio-temporal navigation. We present simulations of the mrDANNA system using physically integrated memristors (aka ReRAM...neuromorphic computation, which has gained widespread acceptance for its success in areas such as speech recognition , artificial intelligence, and...he top-perform and modified il a network w ionary optimiz rks which sol 2D navigatio Figure 1b. Futu d include thr speech recogn ted in hardwa PGAs

  15. PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.

    Science.gov (United States)

    Stefanini, Fabio; Neftci, Emre O; Sheik, Sadique; Indiveri, Giacomo

    2014-01-01

    Neuromorphic hardware offers an electronic substrate for the realization of asynchronous event-based sensory-motor systems and large-scale spiking neural network architectures. In order to characterize these systems, configure them, and carry out modeling experiments, it is often necessary to interface them to workstations. The software used for this purpose typically consists of a large monolithic block of code which is highly specific to the hardware setup used. While this approach can lead to highly integrated hardware/software systems, it hampers the development of modular and reconfigurable infrastructures thus preventing a rapid evolution of such systems. To alleviate this problem, we propose PyNCS, an open-source front-end for the definition of neural network models that is interfaced to the hardware through a set of Python Application Programming Interfaces (APIs). The design of PyNCS promotes modularity, portability and expandability and separates implementation from hardware description. The high-level front-end that comes with PyNCS includes tools to define neural network models as well as to create, monitor and analyze spiking data. Here we report the design philosophy behind the PyNCS framework and describe its implementation. We demonstrate its functionality with two representative case studies, one using an event-based neuromorphic vision sensor, and one using a set of multi-neuron devices for carrying out a cognitive decision-making task involving state-dependent computation. PyNCS, already applicable to a wide range of existing spike-based neuromorphic setups, will accelerate the development of hybrid software/hardware neuromorphic systems, thanks to its code flexibility. The code is open-source and available online at https://github.com/inincs/pyNCS.

  16. Controllable spiking patterns in long-wavelength VCSELs for neuromorphic photonics systems

    CERN Document Server

    Hurtado, Antonio

    2015-01-01

    Multiple controllable spiking patterns are obtained in a 1310 nm Vertical Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely parallel and orthogonal. Achievement of reproducible spiking responses in VCSELs operating at the telecom wavelengths offers great promise for future uses of these devices in ultrafast neuromorphic photonic systems for non-traditional computing applications.

  17. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines

    Directory of Open Access Journals (Sweden)

    Emre O. Neftci

    2017-06-01

    Full Text Available An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.

  18. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.

    Science.gov (United States)

    Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.

  19. Neuromorphic Kalman filter implementation in IBM’s TrueNorth

    Science.gov (United States)

    Carney, R.; Bouchard, K.; Calafiura, P.; Clark, D.; Donofrio, D.; Garcia-Sciveres, M.; Livezey, J.

    2017-10-01

    Following the advent of a post-Moore’s law field of computation, novel architectures continue to emerge. With composite, multi-million connection neuromorphic chips like IBM’s TrueNorth, neural engineering has now become a feasible technology in this novel computing paradigm. High Energy Physics experiments are continuously exploring new methods of computation and data handling, including neuromorphic, to support the growing challenges of the field and be prepared for future commodity computing trends. This work details the first instance of a Kalman filter implementation in IBM’s neuromorphic architecture, TrueNorth, for both parallel and serial spike trains. The implementation is tested on multiple simulated systems and its performance is evaluated with respect to an equivalent non-spiking Kalman filter. The limits of the implementation are explored whilst varying the size of weight and threshold registers, the number of spikes used to encode a state, size of neuron block for spatial encoding, and neuron potential reset schemes.

  20. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware

    Directory of Open Access Journals (Sweden)

    Narayan eSrinivasa

    2015-12-01

    Full Text Available Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that are can exhibit adaptive behaviors.Many such designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoid it.

  1. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    Science.gov (United States)

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  2. A digital implementation of neuron-astrocyte interaction for neuromorphic applications.

    Science.gov (United States)

    Nazari, Soheila; Faez, Karim; Amiri, Mahmood; Karami, Ehsan

    2015-06-01

    Recent neurophysiologic findings have shown that astrocytes play important roles in information processing and modulation of neuronal activity. Motivated by these findings, in the present research, a digital neuromorphic circuit to study neuron-astrocyte interaction is proposed. In this digital circuit, the firing dynamics of the neuron is described by Izhikevich model and the calcium dynamics of a single astrocyte is explained by a functional model introduced by Postnov and colleagues. For digital implementation of the neuron-astrocyte signaling, Single Constant Multiply (SCM) technique and several linear approximations are used for efficient low-cost hardware implementation on digital platforms. Using the proposed neuron-astrocyte circuit and based on the results of MATLAB simulations, hardware synthesis and FPGA implementation, it is demonstrated that the proposed digital astrocyte is able to change the firing patterns of the neuron through bidirectional communication. Utilizing the proposed digital circuit, it will be illustrated that information processing in synaptic clefts is strongly regulated by astrocyte. Moreover, our results suggest that the digital circuit of neuron-astrocyte crosstalk produces diverse neural responses and therefore enhances the information processing capabilities of the neuromorphic circuits. This is suitable for applications in reconfigurable neuromorphic devices which implement biologically brain circuits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines

    Science.gov (United States)

    Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387

  4. Encoding neural and synaptic functionalities in electron spin: A pathway to efficient neuromorphic computing

    Science.gov (United States)

    Sengupta, Abhronil; Roy, Kaushik

    2017-12-01

    Present day computers expend orders of magnitude more computational resources to perform various cognitive and perception related tasks that humans routinely perform every day. This has recently resulted in a seismic shift in the field of computation where research efforts are being directed to develop a neurocomputer that attempts to mimic the human brain by nanoelectronic components and thereby harness its efficiency in recognition problems. Bridging the gap between neuroscience and nanoelectronics, this paper attempts to provide a review of the recent developments in the field of spintronic device based neuromorphic computing. Description of various spin-transfer torque mechanisms that can be potentially utilized for realizing device structures mimicking neural and synaptic functionalities is provided. A cross-layer perspective extending from the device to the circuit and system level is presented to envision the design of an All-Spin neuromorphic processor enabled with on-chip learning functionalities. Device-circuit-algorithm co-simulation framework calibrated to experimental results suggest that such All-Spin neuromorphic systems can potentially achieve almost two orders of magnitude energy improvement in comparison to state-of-the-art CMOS implementations.

  5. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.

    Science.gov (United States)

    Barron-Zambrano, Jose Hugo; Torres-Huitzil, Cesar

    2013-09-01

    Neuromorphic engineering is a discipline devoted to the design and development of computational hardware that mimics the characteristics and capabilities of neuro-biological systems. In recent years, neuromorphic hardware systems have been implemented using a hybrid approach incorporating digital hardware so as to provide flexibility and scalability at the cost of power efficiency and some biological realism. This paper proposes an FPGA-based neuromorphic-like embedded system on a chip to generate locomotion patterns of periodic rhythmic movements inspired by Central Pattern Generators (CPGs). The proposed implementation follows a top-down approach where modularity and hierarchy are two desirable features. The locomotion controller is based on CPG models to produce rhythmic locomotion patterns or gaits for legged robots such as quadrupeds and hexapods. The architecture is configurable and scalable for robots with either different morphologies or different degrees of freedom (DOFs). Experiments performed on a real robot are presented and discussed. The obtained results demonstrate that the CPG-based controller provides the necessary flexibility to generate different rhythmic patterns at run-time suitable for adaptable locomotion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Emergent auditory feature tuning in a real-time neuromorphic VLSI system

    Directory of Open Access Journals (Sweden)

    Sadique eSheik

    2012-02-01

    Full Text Available Many sounds of ecological importance, such as communication calls, are characterised by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamocortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP, which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectrotemporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step towards the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems.

  7. Criticality as a Set-Point for Adaptive Behavior in Neuromorphic Hardware.

    Science.gov (United States)

    Srinivasa, Narayan; Stepp, Nigel D; Cruz-Albrecht, Jose

    2015-01-01

    Neuromorphic hardware are designed by drawing inspiration from biology to overcome limitations of current computer architectures while forging the development of a new class of autonomous systems that can exhibit adaptive behaviors. Several designs in the recent past are capable of emulating large scale networks but avoid complexity in network dynamics by minimizing the number of dynamic variables that are supported and tunable in hardware. We believe that this is due to the lack of a clear understanding of how to design self-tuning complex systems. It has been widely demonstrated that criticality appears to be the default state of the brain and manifests in the form of spontaneous scale-invariant cascades of neural activity. Experiment, theory and recent models have shown that neuronal networks at criticality demonstrate optimal information transfer, learning and information processing capabilities that affect behavior. In this perspective article, we argue that understanding how large scale neuromorphic electronics can be designed to enable emergent adaptive behavior will require an understanding of how networks emulated by such hardware can self-tune local parameters to maintain criticality as a set-point. We believe that such capability will enable the design of truly scalable intelligent systems using neuromorphic hardware that embrace complexity in network dynamics rather than avoiding it.

  8. Do artists see their retinas?

    Science.gov (United States)

    Perdreau, Florian; Cavanagh, Patrick

    2011-01-01

    Our perception starts with the image that falls on our retina and on this retinal image, distant objects are small and shadowed surfaces are dark. But this is not what we see. Visual constancies correct for distance so that, for example, a person approaching us does not appear to become a larger person. Interestingly, an artist, when rendering a scene realistically, must undo all these corrections, making distant objects again small. To determine whether years of art training and practice have conferred any specialized visual expertise, we compared the perceptual abilities of artists to those of non-artists in three tasks. We first asked them to adjust either the size or the brightness of a target to match it to a standard that was presented on a perspective grid or within a cast shadow. We instructed them to ignore the context, judging size, for example, by imagining the separation between their fingers if they were to pick up the test object from the display screen. In the third task, we tested the speed with which artists access visual representations. Subjects searched for an L-shape in contact with a circle; the target was an L-shape, but because of visual completion, it appeared to be a square occluded behind a circle, camouflaging the L-shape that is explicit on the retinal image. Surprisingly, artists were as affected by context as non-artists in all three tests. Moreover, artists took, on average, significantly more time to make their judgments, implying that they were doing their best to demonstrate the special skills that we, and they, believed they had acquired. Our data therefore support the proposal from Gombrich that artists do not have special perceptual expertise to undo the effects of constancies. Instead, once the context is present in their drawing, they need only compare the drawing to the scene to match the effect of constancies in both.

  9. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    Science.gov (United States)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  10. Lactate Transport and Receptor Actions in Retina

    DEFF Research Database (Denmark)

    Kolko, Miriam; Vosborg, Fia; Henriksen, Jens Ulrik Lütken

    2016-01-01

    In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also......, such as excitability, metabolism and inflammation. Recent publications predict effects of the lactate receptor on neurodegeneration. Neurodegenerative diseases in retina, where the retinal ganglion cells die, notably glaucoma and diabetic retinopathy, may be linked to disturbed lactate homeostasis. Pilot studies...... reveal high GPR81 mRNA in retina and indicate GPR81 localization in Müller cells and retinal ganglion cells. Moreover, monocarboxylate transporters are expressed in retinal cells. We envision that lactate receptors and transporters could be useful future targets of novel therapeutic strategies to protect...

  11. Retina image–based optic disc segmentation

    Directory of Open Access Journals (Sweden)

    Ching-Lin Wang

    2016-05-01

    Full Text Available The change of optic disc can be used to diagnose many eye diseases, such as glaucoma, diabetic retinopathy and macular degeneration. Moreover, retinal blood vessel pattern is unique for human beings even for identical twins. It is a highly stable pattern in biometric identification. Since optic disc is the beginning of the optic nerve and main blood vessels in retina, it can be used as a reference point of identification. Therefore, optic disc segmentation is an important technique for developing a human identity recognition system and eye disease diagnostic system. This article hence presents an optic disc segmentation method to extract the optic disc from a retina image. The experimental results show that the optic disc segmentation method can give impressive results in segmenting the optic disc from a retina image.

  12. Molecular Anatomy of the Developing Human Retina.

    Science.gov (United States)

    Hoshino, Akina; Ratnapriya, Rinki; Brooks, Matthew J; Chaitankar, Vijender; Wilken, Matthew S; Zhang, Chi; Starostik, Margaret R; Gieser, Linn; La Torre, Anna; Nishio, Mario; Bates, Olivia; Walton, Ashley; Bermingham-McDonogh, Olivia; Glass, Ian A; Wong, Rachel O L; Swaroop, Anand; Reh, Thomas A

    2017-12-18

    Clinical and genetic heterogeneity associated with retinal diseases makes stem-cell-based therapies an attractive strategy for personalized medicine. However, we have limited understanding of the timing of key events in the developing human retina, and in particular the factors critical for generating the unique architecture of the fovea and surrounding macula. Here we define three key epochs in the transcriptome dynamics of human retina from fetal day (D) 52 to 136. Coincident histological analyses confirmed the cellular basis of transcriptional changes and highlighted the dramatic acceleration of development in the fovea compared with peripheral retina. Human and mouse retinal transcriptomes show remarkable similarity in developmental stages, although morphogenesis was greatly expanded in humans. Integration of DNA accessibility data allowed us to reconstruct transcriptional networks controlling photoreceptor differentiation. Our studies provide insights into human retinal development and serve as a resource for molecular staging of human stem-cell-derived retinal organoids. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. An artificial retina processor for track reconstruction at the LHC crossing rate

    Science.gov (United States)

    Bedeschi, F.; Cenci, R.; Marino, P.; Morello, M. J.; Ninci, D.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.

    2017-10-01

    The goal of the INFN-RETINA R&D project is to develop and implement a computational methodology that allows to reconstruct events with a large number (> 100) of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus matching the requirements for processing LHC events at the full bunch-crossing frequency. Our approach relies on a parallel pattern-recognition algorithm, dubbed artificial retina, inspired by the early stages of image processing by the brain. In order to demonstrate that a track-processing system based on this algorithm is feasible, we built a sizable prototype of a tracking processor tuned to 3 000 patterns, based on already existing readout boards equipped with Altera Stratix III FPGAs. The detailed geometry and charged-particle activity of a large tracking detector currently in operation are used to assess its performances. We report on the test results with such a prototype.

  14. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware

    Science.gov (United States)

    Knight, James C.; Tully, Philip J.; Kaplan, Bernhard A.; Lansner, Anders; Furber, Steve B.

    2016-01-01

    SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 2.0 × 104 neurons and 5.1 × 107 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately 45× more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models. PMID:27092061

  15. Large-scale simulations of plastic neural networks on neuromorphic hardware

    Directory of Open Access Journals (Sweden)

    James Courtney Knight

    2016-04-01

    Full Text Available SpiNNaker is a digital, neuromorphic architecture designed for simulating large-scale spiking neural networks at speeds close to biological real-time. Rather than using bespoke analog or digital hardware, the basic computational unit of a SpiNNaker system is a general-purpose ARM processor, allowing it to be programmed to simulate a wide variety of neuron and synapse models. This flexibility is particularly valuable in the study of biological plasticity phenomena. A recently proposed learning rule based on the Bayesian Confidence Propagation Neural Network (BCPNN paradigm offers a generic framework for modeling the interaction of different plasticity mechanisms using spiking neurons. However, it can be computationally expensive to simulate large networks with BCPNN learning since it requires multiple state variables for each synapse, each of which needs to be updated every simulation time-step. We discuss the trade-offs in efficiency and accuracy involved in developing an event-based BCPNN implementation for SpiNNaker based on an analytical solution to the BCPNN equations, and detail the steps taken to fit this within the limited computational and memory resources of the SpiNNaker architecture. We demonstrate this learning rule by learning temporal sequences of neural activity within a recurrent attractor network which we simulate at scales of up to 20000 neurons and 51200000 plastic synapses: the largest plastic neural network ever to be simulated on neuromorphic hardware. We also run a comparable simulation on a Cray XC-30 supercomputer system and find that, if it is to match the run-time of our SpiNNaker simulation, the super computer system uses approximately more power. This suggests that cheaper, more power efficient neuromorphic systems are becoming useful discovery tools in the study of plasticity in large-scale brain models.

  16. A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems.

    Science.gov (United States)

    Brüderle, Daniel; Petrovici, Mihai A; Vogginger, Bernhard; Ehrlich, Matthias; Pfeil, Thomas; Millner, Sebastian; Grübl, Andreas; Wendt, Karsten; Müller, Eric; Schwartz, Marc-Olivier; de Oliveira, Dan Husmann; Jeltsch, Sebastian; Fieres, Johannes; Schilling, Moritz; Müller, Paul; Breitwieser, Oliver; Petkov, Venelin; Muller, Lyle; Davison, Andrew P; Krishnamurthy, Pradeep; Kremkow, Jens; Lundqvist, Mikael; Muller, Eilif; Partzsch, Johannes; Scholze, Stefan; Zühl, Lukas; Mayr, Christian; Destexhe, Alain; Diesmann, Markus; Potjans, Tobias C; Lansner, Anders; Schüffny, René; Schemmel, Johannes; Meier, Karlheinz

    2011-05-01

    In this article, we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results.

  17. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk [Institute of Photonics, SUPA Department of Physics, University of Strathclyde, TIC Centre, 99 George Street, Glasgow G1 1RD (United Kingdom); Javaloyes, Julien [Departament de Fisica, Universitat de les Illes Balears, c/Valldemossa km 7.5, 07122 Mallorca (Spain)

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  18. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Potok, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schuman, Catherine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patton, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hylton, Todd [Brain Corporation, San Diego, CA (United States); Li, Hai [Univ. of Pittsburgh, PA (United States); Pino, Robinson [US Dept. of Energy, Washington, DC (United States)

    2016-12-31

    The White House and Department of Energy have been instrumental in driving the development of a neuromorphic computing program to help the United States continue its lead in basic research into (1) Beyond Exascale—high performance computing beyond Moore’s Law and von Neumann architectures, (2) Scientific Discovery—new paradigms for understanding increasingly large and complex scientific data, and (3) Emerging Architectures—assessing the potential of neuromorphic and quantum architectures. Neuromorphic computing spans a broad range of scientific disciplines from materials science to devices, to computer science, to neuroscience, all of which are required to solve the neuromorphic computing grand challenge. In our workshop we focus on the computer science aspects, specifically from a neuromorphic device through an application. Neuromorphic devices present a very different paradigm to the computer science community from traditional von Neumann architectures, which raises six major questions about building a neuromorphic application from the device level. We used these fundamental questions to organize the workshop program and to direct the workshop panels and discussions. From the white papers, presentations, panels, and discussions, there emerged several recommendations on how to proceed.

  19. Information processing in the outer retina of fish

    NARCIS (Netherlands)

    Endeman, D.

    2017-01-01

    The retina translates light into neuronal activity. Thus, it renders visual information of the external environment. The retina can only send a limited amount of information to the brain within a given period. To use this amount optimally, light stimuli are strongly processed in the retina. This

  20. American Sign Language Alphabet Recognition Using a Neuromorphic Sensor and an Artificial Neural Network.

    Science.gov (United States)

    Rivera-Acosta, Miguel; Ortega-Cisneros, Susana; Rivera, Jorge; Sandoval-Ibarra, Federico

    2017-09-22

    This paper reports the design and analysis of an American Sign Language (ASL) alphabet translation system implemented in hardware using a Field-Programmable Gate Array. The system process consists of three stages, the first being the communication with the neuromorphic camera (also called Dynamic Vision Sensor, DVS) sensor using the Universal Serial Bus protocol. The feature extraction of the events generated by the DVS is the second part of the process, consisting of a presentation of the digital image processing algorithms developed in software, which aim to reduce redundant information and prepare the data for the third stage. The last stage of the system process is the classification of the ASL alphabet, achieved with a single artificial neural network implemented in digital hardware for higher speed. The overall result is the development of a classification system using the ASL signs contour, fully implemented in a reconfigurable device. The experimental results consist of a comparative analysis of the recognition rate among the alphabet signs using the neuromorphic camera in order to prove the proper operation of the digital image processing algorithms. In the experiments performed with 720 samples of 24 signs, a recognition accuracy of 79.58% was obtained.

  1. Memristive and neuromorphic behavior in a Li(x)CoO2 nanobattery.

    Science.gov (United States)

    Mai, V H; Moradpour, A; Senzier, P Auban; Pasquier, C; Wang, K; Rozenberg, M J; Giapintzakis, J; Mihailescu, C N; Orfanidou, C M; Svoukis, E; Breza, A; Lioutas, Ch B; Franger, S; Revcolevschi, A; Maroutian, T; Lecoeur, P; Aubert, P; Agnus, G; Salot, R; Albouy, P A; Weil, R; Alamarguy, D; March, K; Jomard, F; Chrétien, P; Schneegans, O

    2015-01-14

    The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems. Therefore, these LixCoO2-based MIM devices allow for a combination of possibilities, offering new perspectives of usage in nanoelectronics and bio-inspired neuromorphic circuits.

  2. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration.

    Science.gov (United States)

    Yang, Rui; Terabe, Kazuya; Liu, Guangqiang; Tsuruoka, Tohru; Hasegawa, Tsuyoshi; Gimzewski, James K; Aono, Masakazu

    2012-11-27

    A potential route to extend Moore's law beyond the physical limits of existing materials and device architectures is to achieve nanotechnology breakthroughs in materials and device concepts. Here, we discuss an on-demand WO(3-x)-based nanoionic device where electrical and neuromorphic multifunctions are realized through externally induced local migration of oxygen ions. The device is found to possess a wide range of time scales of memorization, resistance switching, and rectification varying from volatile to permanent in a single device, and these can furthermore be realizable in both two- or three-terminal systems. The gradually changing volatile and nonvolatile resistance states are experimentally demonstrated to mimic the human brain's forgetting process for short-term memory and long-term memory.We propose this nanoionic device with its on-demand electrical and neuromorphic multifunction has a unique paradigm shifting potential for the fabrication of configurable circuits, analog memories, digital-neural fused networks, and more in one device architecture.

  3. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Science.gov (United States)

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-01-01

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure–Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods. PMID:27529225

  4. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Directory of Open Access Journals (Sweden)

    Lucas Antón Pastur-Romay

    2016-08-01

    Full Text Available Over the past decade, Deep Artificial Neural Networks (DNNs have become the state-of-the-art algorithms in Machine Learning (ML, speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs. All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS, Quantitative Structure–Activity Relationship (QSAR research, protein structure prediction and genomics (and other omics data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  5. Robust working memory in an asynchronously spiking neural network realized in neuromorphic VLSI

    Directory of Open Access Journals (Sweden)

    Massimiliano eGiulioni

    2012-02-01

    Full Text Available We demonstrate bistable attractor dynamics in a spiking neural network implemented with neuromorphic VLSI hardware. The on-chip network consists of three interacting populations (two excitatory, one inhibitory of integrate-and-fire (LIF neurons. One excitatory population is distinguished by strong synaptic self-excitation, which sustains meta-stable states of ‘high’ and ‘low’-firing activity. Depending on the overall excitability, transitions to the ‘high’ state may be evoked by external stimulation, or may occur spontaneously due to random activity fluctuations. In the former case, the ‘high’ state retains a working memory of a stimulus until well after its release. In the latter case, ‘high’ states remain stable for seconds, three orders of magnitude longer than the largest time-scale implemented in the circuitry. Evoked and spontaneous transitions form a continuum and may exhibit a wide range of latencies, depending on the strength of external stimulation and of recurrent synaptic excitation. In addition, we investigated corrupted ‘high’ states comprising neurons of both excitatory populations. Within a basin of attraction, the network dynamics corrects such states and re-establishes the prototypical ‘high’ state. We conclude that, with effective theoretical guidance, full-fledged attractor dynamics can be realized with comparatively small populations of neuromorphic hardware neurons.

  6. American Sign Language Alphabet Recognition Using a Neuromorphic Sensor and an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Miguel Rivera-Acosta

    2017-09-01

    Full Text Available This paper reports the design and analysis of an American Sign Language (ASL alphabet translation system implemented in hardware using a Field-Programmable Gate Array. The system process consists of three stages, the first being the communication with the neuromorphic camera (also called Dynamic Vision Sensor, DVS sensor using the Universal Serial Bus protocol. The feature extraction of the events generated by the DVS is the second part of the process, consisting of a presentation of the digital image processing algorithms developed in software, which aim to reduce redundant information and prepare the data for the third stage. The last stage of the system process is the classification of the ASL alphabet, achieved with a single artificial neural network implemented in digital hardware for higher speed. The overall result is the development of a classification system using the ASL signs contour, fully implemented in a reconfigurable device. The experimental results consist of a comparative analysis of the recognition rate among the alphabet signs using the neuromorphic camera in order to prove the proper operation of the digital image processing algorithms. In the experiments performed with 720 samples of 24 signs, a recognition accuracy of 79.58% was obtained.

  7. DEVELOPMENT OF NEUROMORPHIC SIFT OPERATOR WITH APPLICATION TO HIGH SPEED IMAGE MATCHING

    Directory of Open Access Journals (Sweden)

    M. Shankayi

    2015-12-01

    Full Text Available There was always a speed/accuracy challenge in photogrammetric mapping process, including feature detection and matching. Most of the researches have improved algorithm's speed with simplifications or software modifications which increase the accuracy of the image matching process. This research tries to improve speed without enhancing the accuracy of the same algorithm using Neuromorphic techniques. In this research we have developed a general design of a Neuromorphic ASIC to handle algorithms such as SIFT. We also have investigated neural assignment in each step of the SIFT algorithm. With a rough estimation based on delay of the used elements including MAC and comparator, we have estimated the resulting chip's performance for 3 scenarios, Full HD movie (Videogrammetry, 24 MP (UAV photogrammetry, and 88 MP image sequence. Our estimations led to approximate 3000 fps for Full HD movie, 250 fps for 24 MP image sequence and 68 fps for 88MP Ultracam image sequence which can be a huge improvement for current photogrammetric processing systems. We also estimated the power consumption of less than10 watts which is not comparable to current workflows.

  8. Neuromorphic crossbar circuit with nanoscale filamentary-switching binary memristors for speech recognition

    Science.gov (United States)

    Truong, Son Ngoc; Ham, Seok-Jin; Min, Kyeong-Sik

    2014-11-01

    In this paper, a neuromorphic crossbar circuit with binary memristors is proposed for speech recognition. The binary memristors which are based on filamentary-switching mechanism can be found more popularly and are easy to be fabricated than analog memristors that are rare in materials and need a more complicated fabrication process. Thus, we develop a neuromorphic crossbar circuit using filamentary-switching binary memristors not using interface-switching analog memristors. The proposed binary memristor crossbar can recognize five vowels with 4-bit 64 input channels. The proposed crossbar is tested by 2,500 speech samples and verified to be able to recognize 89.2% of the tested samples. From the statistical simulation, the recognition rate of the binary memristor crossbar is estimated to be degraded very little from 89.2% to 80%, though the percentage variation in memristance is increased very much from 0% to 15%. In contrast, the analog memristor crossbar loses its recognition rate significantly from 96% to 9% for the same percentage variation in memristance.

  9. Development of Neuromorphic Sift Operator with Application to High Speed Image Matching

    Science.gov (United States)

    Shankayi, M.; Saadatseresht, M.; Bitetto, M. A. V.

    2015-12-01

    There was always a speed/accuracy challenge in photogrammetric mapping process, including feature detection and matching. Most of the researches have improved algorithm's speed with simplifications or software modifications which increase the accuracy of the image matching process. This research tries to improve speed without enhancing the accuracy of the same algorithm using Neuromorphic techniques. In this research we have developed a general design of a Neuromorphic ASIC to handle algorithms such as SIFT. We also have investigated neural assignment in each step of the SIFT algorithm. With a rough estimation based on delay of the used elements including MAC and comparator, we have estimated the resulting chip's performance for 3 scenarios, Full HD movie (Videogrammetry), 24 MP (UAV photogrammetry), and 88 MP image sequence. Our estimations led to approximate 3000 fps for Full HD movie, 250 fps for 24 MP image sequence and 68 fps for 88MP Ultracam image sequence which can be a huge improvement for current photogrammetric processing systems. We also estimated the power consumption of less than10 watts which is not comparable to current workflows.

  10. Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Science.gov (United States)

    Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo

    2015-10-01

    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.

  11. A Study of Complex Deep Learning Networks on High Performance, Neuromorphic, and Quantum Computers

    Energy Technology Data Exchange (ETDEWEB)

    Potok, Thomas E [ORNL; Schuman, Catherine D [ORNL; Young, Steven R [ORNL; Patton, Robert M [ORNL; Spedalieri, Federico [University of Southern California, Information Sciences Institute; Liu, Jeremy [University of Southern California, Information Sciences Institute; Yao, Ke-Thia [University of Southern California, Information Sciences Institute; Rose, Garrett [University of Tennessee (UT); Chakma, Gangotree [University of Tennessee (UT)

    2016-01-01

    Current Deep Learning models use highly optimized convolutional neural networks (CNN) trained on large graphical processing units (GPU)-based computers with a fairly simple layered network topology, i.e., highly connected layers, without intra-layer connections. Complex topologies have been proposed, but are intractable to train on current systems. Building the topologies of the deep learning network requires hand tuning, and implementing the network in hardware is expensive in both cost and power. In this paper, we evaluate deep learning models using three different computing architectures to address these problems: quantum computing to train complex topologies, high performance computing (HPC) to automatically determine network topology, and neuromorphic computing for a low-power hardware implementation. Due to input size limitations of current quantum computers we use the MNIST dataset for our evaluation. The results show the possibility of using the three architectures in tandem to explore complex deep learning networks that are untrainable using a von Neumann architecture. We show that a quantum computer can find high quality values of intra-layer connections and weights, while yielding a tractable time result as the complexity of the network increases; a high performance computer can find optimal layer-based topologies; and a neuromorphic computer can represent the complex topology and weights derived from the other architectures in low power memristive hardware. This represents a new capability that is not feasible with current von Neumann architecture. It potentially enables the ability to solve very complicated problems unsolvable with current computing technologies.

  12. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.

    Science.gov (United States)

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-08-11

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  13. Silicon Brains

    Science.gov (United States)

    Hoefflinger, Bernd

    Beyond the digital neural networks of Chap. 16, the more radical mapping of brain-like structures and processes into VLSI substrates has been pioneered by Carver Mead more than 30 years ago [1]. The basic idea was to exploit the massive parallelism of such circuits and to create low-power and fault-tolerant information-processing systems. Neuromorphic engineering has recently seen a revival with the availability of deep-submicron CMOS technology, which allows for the construction of very-large-scale mixed-signal systems combining local analog processing in neuronal cells with binary signalling via action potentials. Modern implementations are able to reach the complexity-scale of large functional units of the human brain, and they feature the ability to learn by plasticity mechanisms found in neuroscience. Combined with high-performance programmable logic and elaborate software tools, such systems are currently evolving into user-configurable non-von-Neumann computing systems, which can be used to implement and test novel computational paradigms. The chapter introduces basic properties of biological brains with up to 200 Billion neurons and their 1014 synapses, where action on a synapse takes ˜10 ms and involves an energy of ˜10 fJ. We outline 10x programs on neuromorphic electronic systems in Europe and the USA, which are intended to integrate 108 neurons and 1012 synapses, the level of a cat's brain, in a volume of 1 L and with a power dissipation intelligence, we references Hawkins' view to first perceive the task and then design an intelligent technical response.

  14. Comparative gene expression analysis of murine retina and brain.

    Science.gov (United States)

    Hackam, Abigail S; Qian, Jiang; Liu, Dongmei; Gunatilaka, Tushara; Farkas, Ronald H; Chowers, Itay; Kageyama, Masaaki; Parmigiani, Giovanni; Zack, Donald J

    2004-08-31

    Several high-throughput studies have described gene expression in the central nervous system (CNS), and recently there has been increasing interest in analyzing how gene expression compares in different regions of the CNS. As the retina is often used as a model system to study CNS development and function, we compared retina and brain gene expression using microarray analyses. Mouse retina, brain and liver RNA was hybridized to a custom cDNA microarray containing 5,376 genes and ESTs, and the data from the quantified scanned images were analyzed using Bioconductor and SAM. Preferential retina expression was confirmed by real-time PCR. The cellular distribution of genes newly identified as retina enriched genes was determined by immunohistochemistry. Using stringent statistical analyses we identified 733 genes that were preferentially expressed in retina and 389 in brain. The retina-liver hybridizations identified an additional 837 retina enriched genes. The cellular distribution in the retina was determined for two genes that had not previously been reported to be expressed in the retina, the transcription regulatory proteins EWS and PCPB1. Both proteins were found primarily in the inner nuclear layer. Finally, a comparison of the microarray data to publicly available SAGE and EST library databases demonstrated only limited overlap of the sets of retina enriched genes identified by the different methodologies. The preferential retinal expression of a subset of genes from the microarray, which were not identified as differentially expressed by other methods, was confirmed by quantitative PCR. The finding of differences in the groups of identified retina enriched genes from the various profiling techniques supports the use of multiple approaches to obtain a more complete description of retinal gene expression. Characterization of gene expression profiles of retina and brain may facilitate the understanding of the processes that underlie differences between the retina

  15. TRPM3 expression in mouse retina.

    Directory of Open Access Journals (Sweden)

    R Lane Brown

    Full Text Available Transient receptor potential (TRP channels constitute a large family of cation permeable ion channels that serve crucial functions in sensory systems by transducing environmental changes into cellular voltage and calcium signals. Within the retina, two closely related members of the melastatin TRP family, TRPM1 and TRPM3, are highly expressed. TRPM1 has been shown to be required for the depolarizing response to light of ON-bipolar cells, but the role of TRPM3 in the retina is unknown. Immunohistochemical staining of mouse retina with an antibody directed against the C-terminus of TRPM3 labeled the inner plexiform layer (IPL and a subset of cells in the ganglion cell layer. Within the IPL, TRPM3 immunofluorescence was markedly stronger in the OFF sublamina than in the ON sublamina. Electroretinogram recordings showed that the scotopic and photopic a- and b-waves of TRPM3(-/- mice are normal indicating that TRPM3 does not play a major role in visual processing in the outer retina. TRPM3 activity was measured by calcium imaging and patch-clamp recording of immunopurified retinal ganglion cells. Application of the TRPM3 agonist, pregnenolone sulfate (PS, stimulated increases in intracellular calcium in ~40% of cells from wild type and TRPM1(‑/‑ mice, and the PS-stimulated increases in calcium were blocked by co-application of mefenamic acid, a TRPM3 antagonist. No PS-stimulated changes in fluorescence were observed in ganglion cells from TRPM3(-/- mice. Similarly, PS-stimulated currents that could be blocked by mefenamic acid were recorded from wild type retinal ganglion cells but were absent in ganglion cells from TRPM3-/- mice.

  16. Connecting the Retina to the Brain

    Directory of Open Access Journals (Sweden)

    Lynda Erskine

    2014-12-01

    Full Text Available The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.

  17. Connecting the Retina to the Brain

    Science.gov (United States)

    Herrera, Eloisa

    2014-01-01

    The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed. PMID:25504540

  18. Decalcified choroidal osteoma found in the retina

    Directory of Open Access Journals (Sweden)

    Yoshikawa T

    2012-11-01

    Full Text Available Tadanobu Yoshikawa, Kanji TakahashiDepartment of Ophthalmology, Kansai Medical University, Hirakata Hospital, Osaka, JapanAbstract: Choroidal osteoma is a benign tumor of the choroid. Herein, we report a rare case of decalcified choroidal osteoma found in the retina. A 27-year-old woman presented with visual loss. Her best-corrected visual acuity was 20/50 OS. Ophthalmoscopy of the left eye revealed a yellow-white calcified region accompanied by a decalcified region of four disc diameters in size. After 6 years, spectral-domain optical coherence tomography showed a tumor projected strongly upwards from the choroid and partially through the retina with serous retinal detachment, with both a lamellar appearance and mound-like area. The calcified region became more contractive than was observed on the first visit. Conversely, the decalcified region was wider than was observed on the first visit. Her best-corrected visual acuity was 20/400 OS. Choroidal osteoma was worsened by progression of decalcification. The decalcified choroidal osteoma resulted in poor visual acuity, and projected strongly upward from the choroid and into the retina.Keywords: osteoma, decalcification, choroidal osteoma

  19. Proteomic Interactions in the Mouse Vitreous-Retina Complex

    Science.gov (United States)

    Skeie, Jessica M.; Mahajan, Vinit B.

    2013-01-01

    Purpose Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina. Methods Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software. Results We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor. Conclusions Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics. PMID:24312404

  20. Proteomic interactions in the mouse vitreous-retina complex.

    Directory of Open Access Journals (Sweden)

    Jessica M Skeie

    Full Text Available Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina.Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software.We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor.Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.

  1. Effect of diabetes on glycogen metabolism in rat retina.

    Science.gov (United States)

    Sánchez-Chávez, Gustavo; Hernández-Berrones, Jethro; Luna-Ulloa, Luis Bernardo; Coffe, Víctor; Salceda, Rocío

    2008-07-01

    Glucose is the main fuel for energy metabolism in retina. The regulatory mechanisms that maintain glucose homeostasis in retina could include hormonal action. Retinopathy is one of the chemical manifestations of long-standing diabetes mellitus. In order to better understand the effect of hyperglycemia in retina, we studied glycogen content as well as glycogen synthase and phosphorylase activities in both normal and streptozotocin-induced diabetic rat retina and compared them with other tissues. Glycogen levels in normal rat retina are low (46 +/- 4.0 nmol glucosyl residues/mg protein). However, high specific activity of glycogen synthase was found in retina, indicating a substantial capacity for glycogen synthesis. In diabetic rats, glycogen synthase activity increased between 50% and 100% in retina, brain cortex and liver of diabetic rats, but only retina exhibited an increase in glycogen content. Although, total and phosphorylated glycogen synthase levels were similar in normal and diabetic retina, activation of glycogen synthase by glucose-6-P was remarkable increased. Glycogen phosphorylase activity decreased 50% in the liver of diabetic animals; it was not modified in the other tissues examined. We conclude that the increase in glycogen levels in diabetic retina was due to alterations in glycogen synthase regulation.

  2. Effect of shape and coating of a subretinal prosthesis on its integration with the retina.

    Science.gov (United States)

    Butterwick, A; Huie, P; Jones, B W; Marc, R E; Marmor, M; Palanker, D

    2009-01-01

    Retinal stimulation with high spatial resolution requires close proximity of electrodes to target cells. This study examines the effects of material coatings and 3-dimensional geometries of subretinal prostheses on their integration with the retina. A trans-scleral implantation technique was developed to place microfabricated structures in the subretinal space of RCS rats. The effect of three coatings (silicon oxide, iridium oxide and parylene) and three geometries (flat, pillars and chambers) on the retinal integration was compared using passive implants. Retinal morphology was evaluated histologically 6 weeks after implantation. For 3-dimensional implants the retinal cell phenotype was also evaluated using Computational Molecular Phenotyping. Flat implants coated with parylene and iridium oxide were generally well tolerated in the subretinal space, inducing only a mild gliotic response. However, silicon-oxide coatings induced the formation of a significant fibrotic seal around the implants. Glial proliferation was observed at the base of the pillar electrode arrays and inside the chambers. The non-traumatic penetration of pillar tips into the retina provided uniform and stable proximity to the inner nuclear layer. Retinal cells migrated into chambers with apertures larger than 10 mum. Both pillars and chambers achieved better proximity to the inner retinal cells than flat implants. However, isolation of retinal cells inside the chamber arrays is likely to affect their long-term viability. Pillars demonstrated minimal alteration of the inner retinal architecture, and thus appear to be the most promising approach for maintaining close proximity between the retinal prosthetic electrodes and target neurons.

  3. Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing

    Science.gov (United States)

    La Barbera, Selina; Vincent, Adrien F.; Vuillaume, Dominique; Querlioz, Damien; Alibart, Fabien

    2016-12-01

    Bio-inspired computing represents today a major challenge at different levels ranging from material science for the design of innovative devices and circuits to computer science for the understanding of the key features required for processing of natural data. In this paper, we propose a detail analysis of resistive switching dynamics in electrochemical metallization cells for synaptic plasticity implementation. We show how filament stability associated to joule effect during switching can be used to emulate key synaptic features such as short term to long term plasticity transition and spike timing dependent plasticity. Furthermore, an interplay between these different synaptic features is demonstrated for object motion detection in a spike-based neuromorphic circuit. System level simulation presents robust learning and promising synaptic operation paving the way to complex bio-inspired computing systems composed of innovative memory devices.

  4. Sound stream segregation: a neuromorphic approach to solve the "cocktail party problem" in real-time.

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M; Afshar, Saeed; Hamilton, Tara J; Tapson, Jonathan C; Shamma, Shihab A; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the "cocktail party effect." It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation and

  5. A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP

    Science.gov (United States)

    Balduzzi, David; Tononi, Giulio

    2012-01-01

    In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips. PMID:22615855

  6. A bidirectional brain-machine interface featuring a neuromorphic hardware decoder

    Directory of Open Access Journals (Sweden)

    Fabio Boi

    2016-12-01

    Full Text Available Bidirectional brain-machine interfaces (BMIs establish a two-way direct communication link4 between the brain and the external world. A decoder translates recorded neural activity into motor5 commands and an encoder delivers sensory information collected from the environment directly6 to the brain creating a closed-loop system. These two modules are typically integrated in bulky7 external devices. However, the clinical support of patients with severe motor and sensory deficits8 requires compact, low-power, and fully implantable systems that can decode neural signals to9 control external devices. As a first step toward this goal, we developed a modular bidirectional BMI10 setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented11 a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits.12 On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn13 to decode neural signals recorded from the brain into motor outputs controlling the movements14 of an external device. The modularity of the BMI allowed us to tune the individual components15 of the setup without modifying the whole system. In this paper we present the features of16 this modular BMI, and describe how we configured the network of spiking neuron circuits to17 implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm18 that connects bidirectionally the brain of an anesthetized rat with an external object. We show that19 the chip learned the decoding task correctly, allowing the interfaced brain to control the object’s20 trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is21 mature enough for the development of BMI modules that are sufficiently low-power and compact,22 while being highly computationally powerful and adaptive.

  7. A neuromorphic architecture for object recognition and motion anticipation using burst-STDP.

    Directory of Open Access Journals (Sweden)

    Andrew Nere

    Full Text Available In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP. STDP is responsible for the strengthening (or weakening of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips.

  8. Virtual Neurorobotics (VNR) to Accelerate Development of Plausible Neuromorphic Brain Architectures.

    Science.gov (United States)

    Goodman, Philip H; Buntha, Sermsak; Zou, Quan; Dascalu, Sergiu-Mihai

    2007-01-01

    Traditional research in artificial intelligence and machine learning has viewed the brain as a specially adapted information-processing system. More recently the field of social robotics has been advanced to capture the important dynamics of human cognition and interaction. An overarching societal goal of this research is to incorporate the resultant knowledge about intelligence into technology for prosthetic, assistive, security, and decision support applications. However, despite many decades of investment in learning and classification systems, this paradigm has yet to yield truly "intelligent" systems. For this reason, many investigators are now attempting to incorporate more realistic neuromorphic properties into machine learning systems, encouraged by over two decades of neuroscience research that has provided parameters that characterize the brain's interdependent genomic, proteomic, metabolomic, anatomic, and electrophysiological networks. Given the complexity of neural systems, developing tenable models to capture the essence of natural intelligence for real-time application requires that we discriminate features underlying information processing and intrinsic motivation from those reflecting biological constraints (such as maintaining structural integrity and transporting metabolic products). We propose herein a conceptual framework and an iterative method of virtual neurorobotics (VNR) intended to rapidly forward-engineer and test progressively more complex putative neuromorphic brain prototypes for their ability to support intrinsically intelligent, intentional interaction with humans. The VNR system is based on the viewpoint that a truly intelligent system must be driven by emotion rather than programmed tasking, incorporating intrinsic motivation and intentionality. We report pilot results of a closed-loop, real-time interactive VNR system with a spiking neural brain, and provide a video demonstration as online supplemental material.

  9. Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study

    Directory of Open Access Journals (Sweden)

    Thomas Pfeil

    2016-05-01

    Full Text Available High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad

  10. Virtual neurorobotics (VNR to accelerate development of plausible neuromorphic brain architectures

    Directory of Open Access Journals (Sweden)

    Philip H Goodman

    2007-11-01

    Full Text Available Traditional research in artificial intelligence and machine learning has viewed the brain as a specially adapted information-processing system. More recently the field of social robotics has been advanced to capture the important dynamics of human cognition and interaction. An overarching societal goal of this research is to incorporate the resultant knowledge about intelligence into technology for prosthetic, assistive, security, and decision support applications. However, despite many decades of investment in learning and classification systems, this paradigm has yet to yield truly “intelligent” systems. For this reason, many investigators are now attempting to incorporate more realistic neuromorphic properties into machine learning systems, encouraged by over two decades of neuroscience research that has provided parameters that characterize the brain’s interdependent genomic, proteomic, metabolomic, anatomic, and electrophysiological networks. Given the complexity of neural systems, developing tenable models to capture the essence of natural intelligence for real-time application requires that we discriminate features underlying information processing and intrinsic motivation from those reflecting biological constraints (such as maintaining structural integrity and transporting metabolic products. We propose herein a conceptual framework and an iterative method of virtual neurorobotics (VNR intended to rapidly forward-engineer and test progressively more complex putative neuromorphic brain prototypes for their ability to support intrinsically intelligent, intentional interaction with humans. The VNR system is based on the viewpoint that a truly intelligent system must be driven by emotion rather than programmed tasking, incorporating intrinsic motivation and intentionality. We report pilot results of a closed-loop, real-time interactive VNR system with a spiking neural brain, and provide a video demonstration as online supplemental

  11. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    Science.gov (United States)

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  12. AnRAD: A Neuromorphic Anomaly Detection Framework for Massive Concurrent Data Streams.

    Science.gov (United States)

    Chen, Qiuwen; Luley, Ryan; Wu, Qing; Bishop, Morgan; Linderman, Richard W; Qiu, Qinru

    2017-03-17

    The evolution of high performance computing technologies has enabled the large-scale implementation of neuromorphic models and pushed the research in computational intelligence into a new era. Among the machine learning applications, unsupervised detection of anomalous streams is especially challenging due to the requirements of detection accuracy and real-time performance. Designing a computing framework that harnesses the growing computing power of the multicore systems while maintaining high sensitivity and specificity to the anomalies is an urgent research topic. In this paper, we propose anomaly recognition and detection (AnRAD), a bioinspired detection framework that performs probabilistic inferences. We analyze the feature dependency and develop a self-structuring method that learns an efficient confabulation network using unlabeled data. This network is capable of fast incremental learning, which continuously refines the knowledge base using streaming data. Compared with several existing anomaly detection approaches, our method provides competitive detection quality. Furthermore, we exploit the massive parallel structure of the AnRAD framework. Our implementations of the detection algorithm on the graphic processing unit and the Xeon Phi coprocessor both obtain substantial speedups over the sequential implementation on general-purpose microprocessor. The framework provides real-time service to concurrent data streams within diversified knowledge contexts, and can be applied to large problems with multiple local patterns. Experimental results demonstrate high computing performance and memory efficiency. For vehicle behavior detection, the framework is able to monitor up to 16,000 vehicles (data streams) and their interactions in real time with a single commodity coprocessor, and uses less than 0.2 ms for one testing subject. Finally, the detection network is ported to our spiking neural network simulator to show the potential of adapting to the emerging

  13. Ocular silicon distribution and clearance following intravitreal injection of porous silicon microparticles

    Science.gov (United States)

    Nieto, Alejandra; Hou, Huiyuan; Sailor, Michael J.; Freeman, William R.; Cheng, Lingyun

    2013-01-01

    Porous silicon (pSi) microparticles have been investigated for intravitreal drug delivery and demonstrated good biocompatibility. With the appropriate surface chemistry, pSi can reside in vitreous for months or longer. However, ocular distribution and clearance pathway of its degradation product, silicic acid, are not well understood. In the current study, rabbit ocular tissue was collected at different time point following fresh pSi (day 1, 5, 9, 16, and 21) or oxidized pSi (day 3, 7, 14, 21, and 35) intravitreal injection. In addition, dual-probe simultaneous microdialysis of aqueous and vitreous humor was performed following a bolus intravitreal injection of 0.25 mL silicic acid (150 μg/mL) and six consecutive microdialysates were collected every 20 min. Silicon was quantified from the samples using inductively coupled plasma-optical emission spectroscopy. The study showed that following the intravitreal injection of oxidized pSi, free silicon was consistently higher in the aqueous than in the retina (8.1 ± 6.5 vs. 3.4 ± 3.9 μg/mL, p = 0.0031). The area under the concentration-time curve (AUC) of the retina was only about 24% that of the aqueous. The mean residence time was 16 days for aqueous, 13 days for vitreous, 6 days for retina, and 18 days for plasma. Similarly, following intravitreal fresh pSi, free silicon was also found higher in aqueous than in retina (7 ± 4.7 vs. 3.4 ± 4.1 μg/mL, p = 0.014). The AUC for the retina was about 50% of the AUC for the aqueous. The microdialysis revealed the terminal half-life of free silicon in the aqueous was 30 min and 92 min in the vitreous; the AUC for aqueous accounted for 38% of the AUC for vitreous. Our studies indicate that aqueous humor is a significant pathway for silicon egress from the eye following intravitreal injection of pSi crystals. PMID:24036388

  14. Expression and functions of ASIC1 in the zebrafish retina.

    Science.gov (United States)

    Liu, Sha; Wang, Mei-Xia; Mao, Cheng-Jie; Cheng, Xiao-Yu; Wang, Chen-Tao; Huang, Jian; Zhong, Zhao-Min; Hu, Wei-Dong; Wang, Fen; Hu, Li-Fang; Wang, Han; Liu, Chun-Feng

    2014-12-12

    It has been demonstrated that acid sensing ionic channels (ASICs) are present in the central and peripheral nervous system of mammals, including the retina. However, it remains unclear whether the zebrafish retina also expresses ASICs. In the present study, the expression and distribution of zasic1 were examined in the retina of zebrafish. Both zasic1 mRNA and protein expressions were detected in the adult zebrafish retina. A wide distribution of ASIC1 in zebrafish retina was confirmed using whole mount in situ hybridization and immunohistochemistry study. Acidosis-induced currents in the isolated retinal ganglion cells (RGCs) were also recorded using whole cell patch clamping. Moreover, blockade of ASICs channel significantly reduced the locomotion of larval zebrafish in response to light exposure. In sum, our data demonstrate the presence of ASIC1 and its possible functional relevance in the retina of zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A virtual retina for studying population coding.

    Directory of Open Access Journals (Sweden)

    Illya Bomash

    Full Text Available At every level of the visual system - from retina to cortex - information is encoded in the activity of large populations of cells. The populations are not uniform, but contain many different types of cells, each with its own sensitivities to visual stimuli. Understanding the roles of the cell types and how they work together to form collective representations has been a long-standing goal. This goal, though, has been difficult to advance, and, to a large extent, the reason is data limitation. Large numbers of stimulus/response relationships need to be explored, and obtaining enough data to examine even a fraction of them requires a great deal of experiments and animals. Here we describe a tool for addressing this, specifically, at the level of the retina. The tool is a data-driven model of retinal input/output relationships that is effective on a broad range of stimuli - essentially, a virtual retina. The results show that it is highly reliable: (1 the model cells carry the same amount of information as their real cell counterparts, (2 the quality of the information is the same - that is, the posterior stimulus distributions produced by the model cells closely match those of their real cell counterparts, and (3 the model cells are able to make very reliable predictions about the functions of the different retinal output cell types, as measured using Bayesian decoding (electrophysiology and optomotor performance (behavior. In sum, we present a new tool for studying population coding and test it experimentally. It provides a way to rapidly probe the actions of different cell classes and develop testable predictions. The overall aim is to build constrained theories about population coding and keep the number of experiments and animals to a minimum.

  16. A model of the human retina

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1998-01-01

    Traditionally, the human eye is perceived as being "just" a camera, that renders an accurate, although limited, image for processing in the brain. This interpretation probably stems from the apparent similarity between a video- or photo-camera and a human eye with respect to the lens, the iris an...... and the focal length control. By analogy this similarity is extended to the image detection element, i.e. the human retina is assumed to basically have the same function as a CCD-detector or film...

  17. Artificial Retina Project: Electromagnetic and Thermal Effects

    Energy Technology Data Exchange (ETDEWEB)

    Lazzi, Gianluca

    2014-08-29

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  18. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    Science.gov (United States)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  19. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    Science.gov (United States)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  20. Neuroprotective Effects of Lutein in the Retina

    Science.gov (United States)

    Ozawa, Yoko; Sasaki, Mariko; Takahashi, Noriko; Kamoshita, Mamoru; Miyake, Seiji; Tsubota, Kazuo

    2012-01-01

    Although a large variety of pharmaceutical therapies for treating disease have been developed in recent years, there has been little progress in disease prevention. In particular, the protection of neural tissue is essential, because it is hardly regenerated. The use of nutraceuticals for maintaining the health has been supported by several clinical studies, including cross-sectional and interventional studies for age-related macular disease. However, mechanistic evidence for their effects at the molecular level has been very limited. In this review, we focus on lutein, which is a xanthophyll type of carotenoid. Lutein is not synthesized in mammals, and must be obtained from the diet. It is delivered to the retina, and in humans, it is concentrated in the macula. Here, we describe the neuroprotective effects of lutein and their underlying molecular mechanisms in animal models of vision-threatening diseases, such as innate retinal inflammation, diabetic retinopathy, and light-induced retinal degeneration. In lutein-treated mouse ocular disease models, oxidative stress in the retina is reduced, and its downstream pathological signals are inhibited. Furthermore, degradation of the functional proteins, rhodopsin (a visual substance) and synaptophysin (a synaptic vesicle protein also influenced in other neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease), the depletion of brain-derived neurotrophic factor (BDNF), and DNA damage are prevented by lutein, which preserves visual function. We discuss the possibility of using lutein, an antioxidant, as a neuroprotective treatment for humans. PMID:22211688

  1. Choroidal blood flow impairment demonstrated using laser speckle flowgraphy in a case of commotio retinae

    Directory of Open Access Journals (Sweden)

    Ryuya Hashimoto

    2016-12-01

    Conclusion: and importance: We revealed CBF impairment in a case of commotio retinae for the first time. CBF impairment may be involved in the pathogenesis of commotio retinae, and LSFG may be useful for examining CBF in commotio retinae.

  2. Imagen de retina de campo ultra-amplio

    Directory of Open Access Journals (Sweden)

    Gerardo García-Aguirre

    2017-11-01

    Conclusión: Las imágenes de campo ultra-amplio han revolucionado la forma en la que estudiamos y entendemos la enfermedad de la retina. A medida que la tecnología para obtenerlas se haga más accesible, formará parte del armamentario de rutina para estudiar las enfermedades de la retina.

  3. Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization.

    Science.gov (United States)

    Cassidy, Andrew S; Georgiou, Julius; Andreou, Andreas G

    2013-09-01

    We present a design framework for neuromorphic architectures in the nano-CMOS era. Our approach to the design of spiking neurons and STDP learning circuits relies on parallel computational structures where neurons are abstracted as digital arithmetic logic units and communication processors. Using this approach, we have developed arrays of silicon neurons that scale to millions of neurons in a single state-of-the-art Field Programmable Gate Array (FPGA). We demonstrate the validity of the design methodology through the implementation of cortical development in a circuit of spiking neurons, STDP synapses, and neural architecture optimization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Transscleral diode laser retinopexy in retinal reattachment surgery Retinopexia com laser de diodo transescleral na cirurgia de descolamento de retina

    Directory of Open Access Journals (Sweden)

    João Carlos de Miranda Gonçalves

    2004-02-01

    Full Text Available PURPOSE: Transscleral diode retinal photocoagulation (diopexy is becoming an accepted technique in the treatment of selected retinal diseases. The objective of this study is to evaluate diopexy technique in the production of adhesive chorioretinal lesions during the surgical treatment of the rhegmatogenous retinal detachment. METHODS: 25 patients with rhegmatogenous retinal detachment were enrolled in a prospective clinical-surgical study to evaluate the technique of transscleral diode laser photocoagulation to obtain adhesive chorioretinal lesions during retinal reattachment surgery. The surgery consisted of the placement of an exoplant silicon to produce a buckle effect combined with a drainage of subretinal fluid in most cases. RESULTS: By a mean follow-up of 10 months, 21 of 25 eyes had their retinas reattached after only one surgery with diopexy used in all cases. CONCLUSION: Transscleral diode laser photocoagulation was a technically easy, controlled, effective, reproducible and safe means of obtaining chorioretinal adhesion in retinal reattachment surgery.OBJETIVO: Fotocoagulação transescleral com laser de diodo (diopexia está se tornando técnica utilizada no tratamento de algumas doenças retinianas. O objetivo deste estudo é avaliar a técnica de diopexia na produção de lesões coriorretinianas aderentes durante o tratamento cirúrgico do descolamento de retina regmatogênico. MÉTODOS: Vinte e cinco pacientes com descolamento de retina regmatogênico participaram deste estudo clínico-cirúrgico prospectivo para avaliar a técnica de fotocoagulação com laser de diodo transescleral para obter lesões coriorretinianas aderentes durante a cirurgia de descolamento de retina. A cirurgia consistiu de colocação de explante de silicone para produzir efeito de introflexão escleral combinado com drenagem do líquido subretiniano na maioria dos casos. RESULTADOS: Após um período médio de seguimento de 10 meses, em 21 dos 25 olhos

  5. Adaptive optics imaging of the retina

    Directory of Open Access Journals (Sweden)

    Rajani Battu

    2014-01-01

    Full Text Available Adaptive optics is a relatively new tool that is available to ophthalmologists for study of cellular level details. In addition to the axial resolution provided by the spectral-domain optical coherence tomography, adaptive optics provides an excellent lateral resolution, enabling visualization of the photoreceptors, blood vessels and details of the optic nerve head. We attempt a mini review of the current role of adaptive optics in retinal imaging. PubMed search was performed with key words Adaptive optics OR Retina OR Retinal imaging. Conference abstracts were searched from the Association for Research in Vision and Ophthalmology (ARVO and American Academy of Ophthalmology (AAO meetings. In total, 261 relevant publications and 389 conference abstracts were identified.

  6. Infrared camera based on a curved retina.

    Science.gov (United States)

    Dumas, Delphine; Fendler, Manuel; Berger, Frédéric; Cloix, Baptiste; Pornin, Cyrille; Baier, Nicolas; Druart, Guillaume; Primot, Jérôme; le Coarer, Etienne

    2012-02-15

    Design of miniature and light cameras requires an optical design breakthrough to achieve good optical performance. Solutions inspired by animals' eyes are the most promising. The curvature of the retina offers several advantages, such as uniform intensity and no field curvature, but this feature is not used. The work presented here is a solution to spherically bend monolithic IR detectors. Compared to state-of-the-art methods, a higher fill factor is obtained and the device fabrication process is not modified. We made an IR eye camera with a single lens and a curved IR bolometer. Images captured are well resolved and have good contrast, and the modulation transfer function shows better quality when comparing with planar systems.

  7. Numerical optimization for Artificial Retina Algorithm

    Science.gov (United States)

    Borisyak, M.; Ustyuzhanin, A.; Derkach, D.; Belous, M.

    2017-10-01

    High-energy physics experiments rely on reconstruction of the trajectories of particles produced at the interaction point. This is a challenging task, especially in the high track multiplicity environment generated by p-p collisions at the LHC energies. A typical event includes hundreds of signal examples (interesting decays) and a significant amount of noise (uninteresting examples). This work describes a modification of the Artificial Retina algorithm for fast track finding: numerical optimization methods were adopted for fast local track search. This approach allows for considerable reduction of the total computational time per event. Test results on simplified simulated model of LHCb VELO (VErtex LOcator) detector are presented. Also this approach is well-suited for implementation of paralleled computations as GPGPU which look very attractive in the context of upcoming detector upgrades.

  8. Lateral interactions in the outer retina

    Science.gov (United States)

    Thoreson, Wallace B.; Mangel, Stuart C.

    2012-01-01

    Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (ICa) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones. PMID:22580106

  9. Electrical-pulse-induced resistivity modulation in Pt/TiO2-δ/Pt multilayer device related to nanoionics-based neuromorphic function

    Science.gov (United States)

    Kawamura, Kinya; Tsuchiya, Takashi; Takayanagi, Makoto; Terabe, Kazuya; Higuchi, Tohru

    2017-06-01

    Resistivity modulation behavior in Pt/TiO2-δ/Pt multilayer devices was investigated in terms of nanoionics-based neuromorphic function. The current relaxation behavior, which corresponds to short-term and long-term memorization in neuromorphic function, was analyzed using electrical pulses. In contrast to the huge difference in ionic conductivity for bulk crystal materials of TiO2-δ and WO3, the difference in the relaxation behavior was small. Rutherford backscattering spectrometry and hydrogen forward scattering spectrometry revealed that the TiO2-δ thin film contained 5.6 at. % of protons. This indicates that the neuromorphic function in TiO2-δ-based devices is caused by extrinsic proton transport, presumably through the grain boundary.

  10. A differential memristive synapse circuit for on-line learning in neuromorphic computing systems

    Science.gov (United States)

    Nair, Manu V.; Muller, Lorenz K.; Indiveri, Giacomo

    2017-12-01

    Spike-based learning with memristive devices in neuromorphic computing architectures typically uses learning circuits that require overlapping pulses from pre- and post-synaptic nodes. This imposes severe constraints on the length of the pulses transmitted in the network, and on the network’s throughput. Furthermore, most of these circuits do not decouple the currents flowing through memristive devices from the one stimulating the target neuron. This can be a problem when using devices with high conductance values, because of the resulting large currents. In this paper, we propose a novel circuit that decouples the current produced by the memristive device from the one used to stimulate the post-synaptic neuron, by using a novel differential scheme based on the Gilbert normalizer circuit. We show how this circuit is useful for reducing the effect of variability in the memristive devices, and how it is ideally suited for spike-based learning mechanisms that do not require overlapping pre- and post-synaptic pulses. We demonstrate the features of the proposed synapse circuit with SPICE simulations, and validate its learning properties with high-level behavioral network simulations which use a stochastic gradient descent learning rule in two benchmark classification tasks.

  11. Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition.

    Science.gov (United States)

    Wang, Runchun; Thakur, Chetan Singh; Cohen, Gregory; Hamilton, Tara Julia; Tapson, Jonathan; van Schaik, Andre

    2017-06-01

    We present a hardware architecture that uses the neural engineering framework (NEF) to implement large-scale neural networks on field programmable gate arrays (FPGAs) for performing massively parallel real-time pattern recognition. NEF is a framework that is capable of synthesising large-scale cognitive systems from subnetworks and we have previously presented an FPGA implementation of the NEF that successfully performs nonlinear mathematical computations. That work was developed based on a compact digital neural core, which consists of 64 neurons that are instantiated by a single physical neuron using a time-multiplexing approach. We have now scaled this approach up to build a pattern recognition system by combining identical neural cores together. As a proof of concept, we have developed a handwritten digit recognition system using the MNIST database and achieved a recognition rate of 96.55%. The system is implemented on a state-of-the-art FPGA and can process 5.12 million digits per second. The architecture and hardware optimisations presented offer high-speed and resource-efficient means for performing high-speed, neuromorphic, and massively parallel pattern recognition and classification tasks.

  12. Quasiperiodic AlGaAs superlattices for neuromorphic networks and nonlinear control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, K. V., E-mail: malyshev@bmstu.ru [Electronics and Laser Technology Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation)

    2015-01-28

    The application of quasiperiodic AlGaAs superlattices as a nonlinear element of the FitzHugh–Nagumo neuromorphic network is proposed and theoretically investigated on the example of Fibonacci and figurate superlattices. The sequences of symbols for the figurate superlattices were produced by decomposition of the Fibonacci superlattices' symbolic sequences. A length of each segment of the decomposition was equal to the corresponding figurate number. It is shown that a nonlinear network based upon Fibonacci and figurate superlattices provides better parallel filtration of a half-tone picture; then, a network based upon traditional diodes which have cubic voltage-current characteristics. It was found that the figurate superlattice F{sup 0}{sub 11}(1) as a nonlinear network's element provides the filtration error almost twice less than the conventional “cubic” diode. These advantages are explained by a wavelike shape of the decreasing part of the quasiperiodic superlattice's voltage-current characteristic, which leads to multistability of the network's cell. This multistability promises new interesting nonlinear dynamical phenomena. A variety of wavy forms of voltage-current characteristics opens up new interesting possibilities for quasiperiodic superlattices and especially for figurate superlattices in many areas—from nervous system modeling to nonlinear control systems development.

  13. Neuromorphic Vibrotactile Stimulation of Fingertips for Encoding Object Stiffness in Telepresence Sensory Substitution and Augmentation Applications

    Directory of Open Access Journals (Sweden)

    Francesca Sorgini

    2018-01-01

    Full Text Available We present a tactile telepresence system for real-time transmission of information about object stiffness to the human fingertips. Experimental tests were performed across two laboratories (Italy and Ireland. In the Italian laboratory, a mechatronic sensing platform indented different rubber samples. Information about rubber stiffness was converted into on-off events using a neuronal spiking model and sent to a vibrotactile glove in the Irish laboratory. Participants discriminated the variation of the stiffness of stimuli according to a two-alternative forced choice protocol. Stiffness discrimination was based on the variation of the temporal pattern of spikes generated during the indentation of the rubber samples. The results suggest that vibrotactile stimulation can effectively simulate surface stiffness when using neuronal spiking models to trigger vibrations in the haptic interface. Specifically, fractional variations of stiffness down to 0.67 were significantly discriminated with the developed neuromorphic haptic interface. This is a performance comparable, though slightly worse, to the threshold obtained in a benchmark experiment evaluating the same set of stimuli naturally with the own hand. Our paper presents a bioinspired method for delivering sensory feedback about object properties to human skin based on contingency–mimetic neuronal models, and can be useful for the design of high performance haptic devices.

  14. Development of diabetes-induced acidosis in the rat retina.

    Science.gov (United States)

    Dmitriev, Andrey V; Henderson, Desmond; Linsenmeier, Robert A

    2016-08-01

    We hypothesized that the retina of diabetic animals would be unusually acidic due to increased glycolytic metabolism. Acidosis in tumors and isolated retina has been shown to lead to increased VEGF. To test the hypothesis we have measured the transretinal distribution of extracellular H(+) concentration (H(+)-profiles) in retinae of control and diabetic dark-adapted intact Long-Evans rats with ion-selective electrodes. Diabetes was induced by intraperitoneal injection of streptozotocin. Intact rat retinae are normally more acidic than blood with a peak of [H(+)]o in the outer nuclear layer (ONL) that averages 30 nM higher than H(+) in the choroid. Profiles in diabetic animals were similar in shape, but diabetic retinae began to be considerably more acidic after 5 weeks of diabetes. In retinae of 1-3 month diabetics the difference between the ONL and choroid was almost twice as great as in controls. At later times, up to 6 months, some diabetics still demonstrated abnormally high levels of [H(+)]o, but others were even less acidic than controls, so that the average level of acidosis was not different. Greater variability in H(+)-profiles (both between animals and between profiles recorded in one animal) distinguished the diabetic retinae from controls. Within animals, this variability was not random, but exhibited regions of higher and lower H(+). We conclude that retinal acidosis begins to develop at an early stage of diabetes (1-3 months) in rats. However, it does not progress, and the acidity of diabetic rat retina was diminished at later stages (3-6 months). Also the diabetes-induced acidosis has a strongly expressed local character. As result, the diabetic retinas show much wider variability in [H(+)] distribution than controls. pH influences metabolic and neural processes, and these results suggest that local acidosis could play a role in the pathogenesis of diabetic retinopathy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Correlative Super-resolution and Electron Microscopy to Resolve Protein Localization in Zebrafish Retina.

    Science.gov (United States)

    Mateos, José M; Barmettler, Gery; Doehner, Jana; Ojeda Naharros, Irene; Guhl, Bruno; Neuhauss, Stephan C F; Kaech, Andres; Bachmann-Gagescu, Ruxandra; Ziegler, Urs

    2017-11-10

    We present a method to investigate the subcellular protein localization in the larval zebrafish retina by combining super-resolution light microscopy and scanning electron microscopy. The sub-diffraction limit resolution capabilities of super-resolution light microscopes allow improving the accuracy of the correlated data. Briefly, 110 nanometer thick cryo-sections are transferred to a silicon wafer and, after immunofluorescence staining, are imaged by super-resolution light microscopy. Subsequently, the sections are preserved in methylcellulose and platinum shadowed prior to imaging in a scanning electron microscope (SEM). The images from these two microscopy modalities are easily merged using tissue landmarks with open source software. Here we describe the adapted method for the larval zebrafish retina. However, this method is also applicable to other types of tissues and organisms. We demonstrate that the complementary information obtained by this correlation is able to resolve the expression of mitochondrial proteins in relation with the membranes and cristae of mitochondria as well as to other compartments of the cell.

  16. Retina imaging system with adaptive optics for the eye with or without myopia

    Science.gov (United States)

    Li, Chao; Xia, Mingliang; Jiang, Baoguang; Mu, Quanquan; Chen, Shaoyuan; Xuan, Li

    2009-04-01

    An adaptive optics system for the retina imaging is introduced in the paper. It can be applied to the eye with myopia from 0 to 6 diopters without any adjustment of the system. A high-resolution liquid crystal on silicon (LCOS) device is used as the wave-front corrector. The aberration is detected by a Shack-Harmann wave-front sensor (HASO) that has a Root Mean Square (RMS) measurement accuracy of λ/100 ( λ = 0.633 μm). And an equivalent scale model eye is constructed with a short focal length lens (˜18 mm) and a diffuse reflection object (paper screen) as the retina. By changing the distance between the paper screen and the lens, we simulate the eye with larger diopters than 5 and the depth of field. The RMS value both before and after correction is obtained by the wave-front sensor. After correction, the system reaches the diffraction-limited resolution approximately 230 cycles/mm at the object space. It is proved that if the myopia is smaller than 6 diopters and the depth of field is between -40 and +50 mm, the system can correct the aberration very well.

  17. The artificial retina for track reconstruction at the LHC crossing rate

    Science.gov (United States)

    Abba, A.; Bedeschi, F.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M. J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2016-04-01

    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.

  18. The artificial retina for track reconstruction at the LHC crossing rate

    CERN Document Server

    Abba, A.; Citterio, M.; Caponio, F.; Cusimano, A.; Geraci, A.; Marino, P.; Morello, M.J.; Neri, N.; Punzi, G.; Piucci, A.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.

    2016-01-01

    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at $40\\,\\rm MHz$, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.

  19. Synthesis of silicone magnetic fluid for use in eye surgery

    Science.gov (United States)

    Dailey, J. P.; Phillips, J. P.; Li, C.; Riffle, J. S.

    1999-04-01

    Retinal detachment is repaired by external and internal tamponade. There is as yet no direct internal tamponade which provides 360° coverage to the retina. With a magnetized encircling scleral buckle, magnetic fluids would provide 360° encircling internal tamponade. Our magnetic fluid is a dispersion of ultrafine (4-10 nm) magnetic particles in silicone secured with triblock copolymer steric stabilizers. Triblock copolymers are good steric stabilizers for suspensions of γ-Fe 2O 3 powder in octamethylcyclotetrasiloxane (D 4).

  20. Sound stream segregation: a neuromorphic approach to solve the “cocktail party problem” in real-time

    OpenAIRE

    Chetan Singh Thakur; Runchun Mark Wang; Saeed eAfshar; Tara Julia Hamilton; Jonathan eTapson; Shihab eShamma; André evan Schaik

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the “cocktail party effect.” It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation ...

  1. Risk of retina damage from high intensity light sources

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, V.A.; Romanchuk, K.G.

    1980-05-01

    The risk of thermal damage to the retina of the eye by exposure to excesive light intensities from continuous and pulsed man-made sources is discussed. The probability of injury increases, the larger the radiant power absorbed by the retina and the smaller the size of the retinal image of the source. A method of estimating the temperature increase of the immediately affected area of the retina is presented. The time constants involved are also briefly considered. Using numerical values from literature for the relevant parameters of the eye, threshold values for a variety of conditions can be established. Below these values little risk of retina damage should exist. The degree of hazard when these values are exceeded depends upon the circumstances. A case study of a welding accident showed good agreement between the conclusions of the theoretical analysis and clinical findings.

  2. Simple Experiments on the Physics of Vision: The Retina

    Science.gov (United States)

    Cortel, Adolf

    2005-01-01

    Many simple experiments can be performed in the classroom to explore the physics of vision. Students can learn of the two types of receptive cells (rods and cones), their distribution on the retina and the existence of the blind spot.

  3. Neurodegeneration in Diabetic Retina and Its Potential Drug Targets

    National Research Council Canada - National Science Library

    Mohammad Shamsul Ola; Abdullah S. Alhomida

    2014-01-01

    .... DR is widely recognized as a neurodegenerative disease as evidenced from early changes at cellular and molecular levels in the neuronal component of the diabetic retina, which is further supported...

  4. Neuroprotective effects of quercetin in diabetic rat retina

    Directory of Open Access Journals (Sweden)

    Mohammad S. Ola

    2017-09-01

    Full Text Available Diabetic retinopathy (DR is a severe complication of diabetes and the leading cause of blindness among working adults worldwide. DR is being widely recognized as a neurodegenerative disease of the retina, since, retinal neurons are damaged soon after diabetes onset. Diabetes-induced oxidative stress is considered as central factor that dysregulates neurotrophic factors and activates apoptosis, thereby damages neurons in the diabetic retina. Flavonoids being a powerful antioxidant have been considered to protect neurons in diabetic retina. The purpose of this study was to analyze the beneficial effects of flavonoid, quercetin to protect neurons in the diabetic rat retina. We quantitated the expression levels of BDNF, NGF, TrkB, synaptophysin, Akt, Bcl-2, cytochrome c and caspase-3 using Western blotting techniques in the diabetic retina with and without quercetin treatments and compared with non-diabetic rats. In addition, we employed ELISA techniques to determine the level of BDNF. Caspase-3 activity and the level of glutathione were analyzed by biochemical methods. Our results indicate that quercetin treatment to diabetic rats caused a significant increase in the level of neurotrophic factors and inhibited the level of cytochrome c and caspase-3 activity in the diabetic retina. Furthermore, the level of an anti-apoptotic protein Bcl-2 was augmented in quercetin treated diabetic retina. Thus, quercetin, may protect the neuronal damage in diabetic retina by ameliorating the levels of neurotrophic factors and also by inhibiting the apoptosis of neurons. Therefore, this study suggests that quercetin can be a suitable therapeutic agent to prevent neurodegeneration in diabetic retinopathy.

  5. Immunocytochemical localization of cholinergic amacrine cells in the bat retina.

    Science.gov (United States)

    Park, Eun-Bee; Gu, Ya-Nan; Jeon, Chang-Jin

    2017-05-01

    The purpose of this study was to localize the cholinergic amacrine cells, one of the key elements of a functional retina, in the retina of a microbat, Rhinolophus ferrumequinum. The presence and localization of choline acetyltransferase-immunoreactive (ChAT-IR) cells in the microbat retina were investigated using immunocytochemistry, confocal microscopy, and quantitative analysis. These ChAT-IR cells were present in the ganglion cell layer (GCL) and inner part of the inner nuclear layer (INL), as previously reported in various animals. However, the bat retina also contained some ChAT-IR cells in the outer part of the INL. The dendrites of these cells extended into the outer plexiform layer, and those of the cells in the inner INL extended within the outer part of the inner plexiform layer (IPL). The dendrites of the ChAT-IR cells in the GCL extended into the middle of the IPL and some fibers ramified up to the outer IPL. The average densities of ChAT-IR cells in the GCL, inner INL, and outer INL were 259±31cells/mm 2 , 469±48cells/mm 2 , and 59±8cells/mm 2 , respectively. The average total density of the ChAT-IR cells was 788±58cells/mm 2 (mean±S.D.; n=3; 2799±182 cells/retina). We also found that the cholinergic amacrine cells in the bat retina contained calbindin, one of the calcium-binding proteins, but not calretinin or parvalbumin. As the cholinergic amacrine cells play key roles in the direction selectivity and optokinetic eye reflex in the other mammalian retinas, the present study might provide better information of the cytoarchitecture of bat retina and the basic sources for further physiological studies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Light-evoked S-nitrosylation in the retina

    Science.gov (United States)

    Tooker, Ryan E; Vigh, Jozsef

    2015-01-01

    Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S-nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both species. Pre-treatment with NEM, which occludes S-nitrosylation, or with TRIM, an inhibitor of neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S-nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina, light-evoked NO production leads to extensive S-nitrosylation and that this process is a significant post-translational modification affecting a wide range of proteins under physiological conditions. PMID:25823749

  7. Capillary-contacting horizontal cells in the rodent retina

    OpenAIRE

    Mojumder, Deb Kumar

    2008-01-01

    Horizontal cells, the interneurons in the distal retina, provide feedback control of the photoreceptor synaptic output at the first synapse in the visual pathway. This article, using immunohistological and confocal microscopy techniques, presents anatomical evidence that in rat and mouse retina, the horizontal cell processes are in contact with retinal capillaries as are retinal glial cells. This glia-like property of horizontal cells in these two species, also previously reported in tree shr...

  8. Light-evoked S-nitrosylation in the retina.

    Science.gov (United States)

    Tooker, Ryan E; Vigh, Jozsef

    2015-10-01

    Nitric oxide (NO) synthesis in the retina is triggered by light stimulation. NO has been shown to modulate visual signal processing at multiple sites in the vertebrate retina, via activation of the most sensitive target of NO signaling, soluble guanylate cyclase. NO can also alter protein structure and function and exert biological effects directly by binding to free thiol groups of cysteine residues in a chemical reaction called S-nitrosylation. However, in the central nervous system, including the retina, this reaction has not been considered to be significant under physiological conditions. Here we provide immunohistochemical evidence for extensive S-nitrosylation that takes place in the goldfish and mouse retinas under physiologically relevant light intensities, in an intensity-dependent manner, with a strikingly similar pattern in both species. Pretreatment with N-ethylmaleimide (NEM), which occludes S-nitrosylation, or with 1-(2-trifluromethylphenyl)imidazole (TRIM), an inhibitor of neuronal NO synthase, eliminated the light-evoked increase in S-nitrosylated protein immunofluorescence (SNI) in the retinas of both species. Similarly, light did not increase SNI, above basal levels, in retinas of transgenic mice lacking neuronal NO synthase. Qualitative analysis of the light-adapted mouse retina with mass spectrometry revealed more than 300 proteins that were S-nitrosylated upon illumination, many of which are known to participate directly in retinal signal processing. Our data strongly suggest that in the retina light-evoked NO production leads to extensive S-nitrosylation and that this process is a significant posttranslational modification affecting a wide range of proteins under physiological conditions. © 2015 Wiley Periodicals, Inc.

  9. Neurodegeneration in Diabetic Retina and Its Potential Drug Targets

    OpenAIRE

    Ola, Mohammad Shamsul; Alhomida, Abdullah S

    2014-01-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes causing vision loss and blindness worldwide. DR is widely recognized as a neurodegenerative disease as evidenced from early changes at cellular and molecular levels in the neuronal component of the diabetic retina, which is further supported by various retinal functional tests indicating functional deficits in the retina soon after diabetes progression. Diabetes alters the level of a number of neurodegenerative metabolite...

  10. Analysis of the retina via suprafusion electroretinography.

    Science.gov (United States)

    Bird, J F; Flower, R W; Mowbray, G H

    1980-03-01

    Electroretinographic (ERG) transient responses elicited in monkeys by abrupt changes in the periodicity of a rapidly intermittent (suprafusion) luminance stimulus were studied experimentally, and analyzed and interpreted through a theory of dynamic retinal responses. The suprafusion ERG transients are confirmed to behave in accord with theoretical expectation, as elemental responses (retinal Green's functions). By aid of the theory the ERG wave-forms can be reduced to two significant elements. One element, accounting for approximately two-thirds of the total ERG variance, is strictly linear, and correlates well with simultaneously evoked cortical (VEP) transients which were previously related to suprafusion perception in humans. The other element, comprising approximately one-third the ERG transient, is a rectification, with properties indicating that it may arise from a specific layer of retinal neurons (amacrine cells); on this assumption the theory demonstrates that high-frequency nonlinear ERG flicker can isolate activities proximal and distal to the rectifying (amacrine) layer. Thus, the hypothesis of an amacrine origin for the rectifying element entails the possibility that suprafusion ERG studies could accomplish in vivo "dissection" of the human retina.

  11. Transformation of stimulus correlations by the retina.

    Directory of Open Access Journals (Sweden)

    Kristina D Simmons

    Full Text Available Redundancies and correlations in the responses of sensory neurons may seem to waste neural resources, but they can also carry cues about structured stimuli and may help the brain to correct for response errors. To investigate the effect of stimulus structure on redundancy in retina, we measured simultaneous responses from populations of retinal ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure; these stimuli and recordings are publicly available online. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were modestly more correlated than in response to white noise checkerboards, but they were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio-temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of pairwise correlations across stimuli where receptive field measurements were possible.

  12. Transformation of stimulus correlations by the retina

    Science.gov (United States)

    Prentice, Jason; Simmons, Kristina; Tkacik, Gasper; Homann, Jan; Yee, Heather; Palmer, Stephanie; Nelson, Phillip; Balasubramanian, Vijay

    2014-03-01

    Correlations in the responses of sensory neurons seem to waste neural resources, but can carry cues about structured stimuli and help the brain correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from many retinal ganglion cells presented with natural and artificial stimuli that varied in correlation structure. Responding to spatio-temporally structured stimuli such as natural movies, pairs of ganglion cells were more correlated than in response to white noise checkerboards, but were much less correlated than predicted by a non-adapting functional model of retinal response. Meanwhile, responding to stimuli with purely spatial correlations, pairs of ganglion cells showed increased correlations consistent with a static, non-adapting receptive field and nonlinearity. We found that in response to spatio- temporally correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the pattern of correlations across stimuli.

  13. Resistive Random Access Memory from Materials Development fnd Engineering to Novel Encryption and Neuromorphic Applications

    Science.gov (United States)

    Beckmann, Karsten

    Resistive random access memory (ReRAM or RRAM) is a novel form of non-volatile memory that is expected to play a major role in future computing and memory solutions. It has been shown that the resistance state of ReRAM devices can be precisely tuned by modulating switching voltages, by limiting peak current, and by adjusting the switching pulse properties. This enables the realization of novel applications such as memristive neuromorphic computing and neural network computing. I have developed two processes based on 100 and 300mm wafer platforms to demonstrate functional HfO2 based ReRAM devices. The first process is designed for a rapid materials engineering and device characterization, while the second is an advanced hybrid ReRAM/CMOS combination based on the IBM 65nm 10LPe process technology. The 100mm wafer efforts were used to show impacts of etch processes on ReRAM switching performance and the need for a rigorous structural evaluation of ReRAM devices before starting materials development. After an etch development, a bottom electrode comparison between the inert materials Pt, Ru and W was performed where Ru showed superior results with respect to yield and resilience against environmental impacts such as humidity over a 2-month period. A comparison of amorphous and crystalline devices showed no statistical difference in the performance with respect to random telegraph noise. This demonstrates, that the forming process fundamentally alters the crystallographic structure within and around the filament. The 300mm wafer development efforts were aimed towards implementing ReRAM in the FEOL, combined with CMOS, to yield a seamless process flow of 1 transistor 1 ReRAM structures (1T1R). This technology was customized with custom-developed tungsten metal 1 (M1) and dual tungsten/copper via 1 (V1) structures, within which the ReRAM stack is embedded. The ReRAM itself consists of an inert W bottom electrode, HfO2 based active switching layer, a Ti oxygen scavenger

  14. Mesozeaxanthin Protects Retina from Oxidative Stress in a Rat Model.

    Science.gov (United States)

    Orhan, Cemal; Akdemir, Fatih; Tuzcu, Mehmet; Sahin, Nurhan; Yilmaz, Ismet; Deshpande, Jayant; Juturu, Vijaya; Sahin, Kazim

    2016-11-01

    Mesozeaxanthin (MZ) is able to protect against chronic and cumulative eye damage and neutralize free radicals produced by oxidative stress. The objective of the present study was to evaluate the protective potential of MZ against retinal oxidative damage and growth and transcription factors of the retina in rats fed with high-fat diet (HFD). Twenty-eight Sprague Dawley rats were randomly divided into the following 4 groups: (1) Control, (2) MZ (100 mg/kg bw/d), (3) HFD (42% of calories as fat), and (4) HFD+MZ (100 mg/kg bw/d) group rats were administered daily as supplement for 12 weeks. Consumption of HFD was associated with hyperglycemia and oxidative stress as reflected by increased serum MDA concentration (P retina of rats fed with HFD had increased levels of vascular endothelial growth factor (VEGF), inducible nitric oxide (iNOS), intercellular adhesion molecule-1 (ICAM-1), and nuclear factor-kappa B (NF-κB) levels and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1(HO-1) levels compared to the healthy rat retina (P retina of rats fed (P retina and the ability to modulate oxidative stress of retina in rats fed an HFD by suppressing retinal lipid peroxidation and regulating growth and transcription factors.

  15. Liquid state machine with dendritically enhanced readout for low-power, neuromorphic VLSI implementations.

    Science.gov (United States)

    Roy, Subhrajit; Banerjee, Amitava; Basu, Arindam

    2014-10-01

    In this paper, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM), a popular model for reservoir computing. Compared to the parallel perceptron architecture trained by the p-delta algorithm, which is the state of the art in terms of performance of readout stages, our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity (two compartment model). The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best 'combination' of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that compared to a single perceptron using analog weights, this architecture for the readout can attain, even by using the same number of binary valued synapses, up to 3.3 times less error for a two-class spike train classification problem and 2.4 times less error for an input rate approximation task. Even with 60 times larger synapses, a group of 60 parallel perceptrons cannot attain the performance of the proposed dendritically enhanced readout. An additional advantage of this method for hardware implementations is that the 'choice' of connectivity can be easily implemented exploiting address event representation (AER) protocols commonly used in current neuromorphic systems where the connection matrix is stored in memory. Also, due to the use of binary synapses, our proposed method is more robust against statistical variations.

  16. Reward-based learning under hardware constraints - Using a RISC processor embedded in a neuromorphic substrate

    Directory of Open Access Journals (Sweden)

    Simon eFriedmann

    2013-09-01

    Full Text Available In this study, we propose and analyze in simulations a new, highly flexible method of imple-menting synaptic plasticity in a wafer-scale, accelerated neuromorphic hardware system. Thestudy focuses on globally modulated STDP, as a special use-case of this method. Flexibility isachieved by embedding a general-purpose processor dedicated to plasticity into the wafer. Toevaluate the suitability of the proposed system, we use a reward modulated STDP rule in a spiketrain learning task. A single layer of neurons is trained to fire at specific points in time withonly the reward as feedback. This model is simulated to measure its performance, i.e. the in-crease in received reward after learning. Using this performance as baseline, we then simulatethe model with various constraints imposed by the proposed implementation and compare theperformance. The simulated constraints include discretized synaptic weights, a restricted inter-face between analog synapses and embedded processor, and mismatch of analog circuits. Wefind that probabilistic updates can increase the performance of low-resolution weights, a simpleinterface between analog synapses and processor is sufficient for learning, and performance isinsensitive to mismatch. Further, we consider communication latency between wafer and theconventional control computer system that is simulating the environment. This latency increasesthe delay, with which the reward is sent to the embedded processor. Because of the time continu-ous operation of the analog synapses, delay can cause a deviation of the updates as compared tothe not delayed situation. We find that for highly accelerated systems latency has to be kept to aminimum. This study demonstrates the suitability of the proposed implementation to emulatethe selected reward modulated STDP learning rule. It is therefore an ideal candidate for imple-mentation in an upgraded version of the wafer-scale system developed within the BrainScaleSproject.

  17. A neuromorphic model of motor overflow in focal hand dystonia due to correlated sensory input

    Science.gov (United States)

    Sohn, Won Joon; Niu, Chuanxin M.; Sanger, Terence D.

    2016-10-01

    Objective. Motor overflow is a common and frustrating symptom of dystonia, manifested as unintentional muscle contraction that occurs during an intended voluntary movement. Although it is suspected that motor overflow is due to cortical disorganization in some types of dystonia (e.g. focal hand dystonia), it remains elusive which mechanisms could initiate and, more importantly, perpetuate motor overflow. We hypothesize that distinct motor elements have low risk of motor overflow if their sensory inputs remain statistically independent. But when provided with correlated sensory inputs, pre-existing crosstalk among sensory projections will grow under spike-timing-dependent-plasticity (STDP) and eventually produce irreversible motor overflow. Approach. We emulated a simplified neuromuscular system comprising two anatomically distinct digital muscles innervated by two layers of spiking neurons with STDP. The synaptic connections between layers included crosstalk connections. The input neurons received either independent or correlated sensory drive during 4 days of continuous excitation. The emulation is critically enabled and accelerated by our neuromorphic hardware created in previous work. Main results. When driven by correlated sensory inputs, the crosstalk synapses gained weight and produced prominent motor overflow; the growth of crosstalk synapses resulted in enlarged sensory representation reflecting cortical reorganization. The overflow failed to recede when the inputs resumed their original uncorrelated statistics. In the control group, no motor overflow was observed. Significance. Although our model is a highly simplified and limited representation of the human sensorimotor system, it allows us to explain how correlated sensory input to anatomically distinct muscles is by itself sufficient to cause persistent and irreversible motor overflow. Further studies are needed to locate the source of correlation in sensory input.

  18. The emerging roles of clusterin on reduction of both blood retina barrier breakdown and neural retina damage in diabetic retinopathy.

    Science.gov (United States)

    Zhang, Conghui; Nie, Jing; Feng, Le; Luo, Wentao; Yao, Jun; Wang, Fang; Wang, Hao

    2016-04-01

    Previous proteomic studies revealed that intravitreous clusterin was decreased in diabetic retinopathy (DR) patients. We explored the role of clusterin in reduction of both blood retina barrier (BRB) breakdown and neural retina damage in early DR. Immunofluorescent staining of proliferated diabetic retinopathy (PDR) membranes was performed to detect endogenous clusterin, and intravitreous injection of clusterin (CLU group) or PBS (DR group) to streptozotocin-induced diabetic rats was conducted. Both qPCR and immunofluorescent staining were employed to investigate tight junction (TJ) protein. Fundus fluorescein angiography (FFA) and electroretinogram (ERG) were examined. Finally, HE and TUNEL stainings were used for neural retina assessment. Clusterin was expressed in the endothelial cells of PDR membranes. The expressions of several TJ protein genes were decreased in the retina of DR group (pretina showed that both dropouts and apoptotic death of neural retina cells in diabetic rats were attenuated in CLU group. Clusterin had a promising role in reducing both BRB breakdown and neural retina damage under high glucose; the mechanism might be keeping TJ protein integrated and maintaining anti-apoptosis in early diabetic rats.

  19. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks

    Directory of Open Access Journals (Sweden)

    Runchun Mark Wang

    2015-05-01

    Full Text Available We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP and Spike Timing Dependent Delay Plasticity (STDDP. We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2^26 (64M synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted and/or delayed pre-synaptic spike to the target synapse in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2^36 (64G synaptic adaptors on a current high-end FPGA platform.

  20. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2017-08-01

    Full Text Available Artificial Neural Networks (ANNs, including Deep Neural Networks (DNNs, have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP. The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  1. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing

    Science.gov (United States)

    van de Burgt, Yoeri; Lubberman, Ewout; Fuller, Elliot J.; Keene, Scott T.; Faria, Grégorio C.; Agarwal, Sapan; Marinella, Matthew J.; Alec Talin, A.; Salleo, Alberto

    2017-04-01

    The brain is capable of massively parallel information processing while consuming only ~1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (500 distinct, non-volatile conductance states within a ~1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.

  2. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System.

    Science.gov (United States)

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2017-08-23

    Artificial Neural Networks (ANNs), including Deep Neural Networks (DNNs), have become the state-of-the-art methods in machine learning and achieved amazing success in speech recognition, visual object recognition, and many other domains. There are several hardware platforms for developing accelerated implementation of ANN models. Since Field Programmable Gate Array (FPGA) architectures are flexible and can provide high performance per watt of power consumption, they have drawn a number of applications from scientists. In this paper, we propose a FPGA-based, granularity-variable neuromorphic processor (FBGVNP). The traits of FBGVNP can be summarized as granularity variability, scalability, integrated computing, and addressing ability: first, the number of neurons is variable rather than constant in one core; second, the multi-core network scale can be extended in various forms; third, the neuron addressing and computing processes are executed simultaneously. These make the processor more flexible and better suited for different applications. Moreover, a neural network-based controller is mapped to FBGVNP and applied in a multi-input, multi-output, (MIMO) real-time, temperature-sensing and control system. Experiments validate the effectiveness of the neuromorphic processor. The FBGVNP provides a new scheme for building ANNs, which is flexible, highly energy-efficient, and can be applied in many areas.

  3. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.

    Science.gov (United States)

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2015-01-01

    We present a neuromorphic implementation of multiple synaptic plasticity learning rules, which include both Spike Timing Dependent Plasticity (STDP) and Spike Timing Dependent Delay Plasticity (STDDP). We present a fully digital implementation as well as a mixed-signal implementation, both of which use a novel dynamic-assignment time-multiplexing approach and support up to 2(26) (64M) synaptic plasticity elements. Rather than implementing dedicated synapses for particular types of synaptic plasticity, we implemented a more generic synaptic plasticity adaptor array that is separate from the neurons in the neural network. Each adaptor performs synaptic plasticity according to the arrival times of the pre- and post-synaptic spikes assigned to it, and sends out a weighted or delayed pre-synaptic spike to the post-synaptic neuron in the neural network. This strategy provides great flexibility for building complex large-scale neural networks, as a neural network can be configured for multiple synaptic plasticity rules without changing its structure. We validate the proposed neuromorphic implementations with measurement results and illustrate that the circuits are capable of performing both STDP and STDDP. We argue that it is practical to scale the work presented here up to 2(36) (64G) synaptic adaptors on a current high-end FPGA platform.

  4. Diabetes Impairs the Aldehyde Detoxifying Capacity of the Retina.

    Science.gov (United States)

    McDowell, Rosemary E; McGahon, Mary K; Augustine, Josy; Chen, Mei; McGeown, J Graham; Curtis, Tim M

    2016-09-01

    We studied whether the accumulation of advanced lipoxidation end-products (ALEs) in the diabetic retina is linked to the impairment of lipid aldehyde detoxification mechanisms. Retinas were collected from nondiabetic and diabetic rats and processed for conventional and quantitative RT-PCR (qRT-PCR), Western blotting, immunohistochemistry, and aldehyde dehydrogenase (ALDH) activity assays. The effect of the ALDH1a1 inhibitor, NCT-501, on ALE accumulation and cell viability in cultured Müller glia also was investigated. The rat retina expressed a range of lipid aldehyde detoxifying ALDH and aldo-keto reductase (AKR) genes. In diabetes, mRNA levels were reduced for 5 of 9 transcripts tested. These findings contrasted with those in the lens and cornea where many of these enzymes were upregulated. We have reported previously accumulation of the acrolein (ACR)-derived ALE, FDP-lysine, in retinal Müller glia during diabetes. In the present study, we show that the main ACR-detoxifying ALDH and AKR genes expressed in the retina, namely, ALDH1a1, ALDH2, and AKR1b1, are principally localized to Müller glia. Diabetes-induced FDP-lysine accumulation in Müller glia was associated with a reduction in ALDH1a1 mRNA and protein expression in whole retina and a decrease in ALDH1a1-immunoreactivity specifically within these cells. No such changes were detected for ALDH2 or AKR1b1. Activity of ALDH was suppressed in the diabetic retina and blockade of ALDH1a1 in cultured Müller glia triggered FDP-lysine accumulation and reduced cell viability. These findings suggest that downregulation of ALDH and AKR enzymes, particularly ALDH1a1, may contribute ALE accumulation in the diabetic retina.

  5. Lithographically patterned silicon nanostructures on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Megouda, Nacera [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Piret, Gaeelle; Galopin, Elisabeth; Coffinier, Yannick [Institut de Recherche Interdisciplinaire (IRI, USR 3078), Universite Lille1, Parc de la Haute Borne, 50 Avenue de Halley-BP 70478, 59658 Villeneuve d' Ascq and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN, CNRS-8520), Cite Scientifique, Avenue Poincare-B.P. 60069, 59652 Villeneuve d' Ascq (France); Hadjersi, Toufik, E-mail: hadjersi@yahoo.com [Unite de Developpement de la Technologie du Silicium (UDTS), 2 Bd. Frantz Fanon, B.P. 140 Alger-7 merveilles, Alger (Algeria); Elkechai, Omar [Faculte des Sciences, Universite Mouloud Mammeri, Tizi-Ouzou (Algeria); and others

    2012-06-01

    The paper reports on controlled formation of silicon nanostructures patterns by the combination of optical lithography and metal-assisted chemical dissolution of crystalline silicon. First, a 20 nm-thick gold film was deposited onto hydrogen-terminated silicon substrate by thermal evaporation. Gold patterns (50 {mu}m Multiplication-Sign 50 {mu}m spaced by 20 {mu}m) were transferred onto the silicon wafer by means of photolithography. The etching process of crystalline silicon in HF/AgNO{sub 3} aqueous solution was studied as a function of the silicon resistivity, etching time and temperature. Controlled formation of silicon nanowire arrays in the unprotected areas was demonstrated for highly resistive silicon substrate, while silicon etching was observed on both gold protected and unprotected areas for moderately doped silicon. The resulting layers were characterized using scanning electron microscopy (SEM).

  6. ATLAS helps shed light on the retina

    CERN Document Server

    2007-01-01

    Technology developed for high-energy physics has led to the discovery of a retinal cell that eluded biologists for 40 years. The 512 electrode array, inspired by silicon microstrip detector technology in ATLAS, records the electrical activity of retinal neurones.ATLAS expertise have crossed over to biology enabling the discovery of a retinal cell type that may help humans see motion. The research, carried out by ATLAS collaborators at the University of California, Santa Cruz, and by neurobiologists at the Salk Institute in La Jolla, California, appeared in the 10 October issue of the Journal of Neuroscience and may help open biologists’ eyes to the uses of techniques developed in high-energy physics. At least 22 different types of primate retinal output cell are known from anatomical studies, but the functions of only a handful of these have been determined. The cells discovered have been ca...

  7. Distribution and structure of efferent synapses in the chicken retina

    Science.gov (United States)

    Lindstrom, SH; Nacsa, N; Blankenship, T; Fitzgerald, PG; Weller, C; Vaney, DI; Wilson, M

    2012-01-01

    The visual system of birds includes an efferent projection from a visual area, the isthmooptic nucleus in the midbrain, back to the retina. Using a combination of anterograde labeling of efferent fibers, reconstruction of dye-filled neurons, NADPH-diaphorase staining, and transmission electron microscopy we have examined the distribution of efferent fibers and their synaptic structures in the chicken retina. We show that efferent fibers terminate strictly within the ventral retina. In 2 completely mapped retinas, only 2 fibers from a total of 15,359 terminated in the dorsal retina. The major synapse made by each efferent fiber is with a single Efferent Target Amacrine Cell (TC). This synapse consists of 5-25 boutons of 2μm diameter, each with multiple active zones, pressed into the TC soma or synapsing with a basketwork of rudimentary TC dendrites in the inner nuclear layer (INL). This basketwork, which is sheathed by Muller cells processes, defines a private neuropil in the INL within which TCs were also seen to receive input from retinal neurons. In addition to the major synapse, efferent fibers typically produce several very thin processes that terminate nearby in single small boutons and for which the soma of a local amacrine cell is one of the likely postsynaptic partners. A minority of efferent fibers also give rise to a thicker process terminating in a strongly diaphorase positive ball about 5μm in diameter. PMID:19439107

  8. Aberrant activity in degenerated retinas revealed by electrical imaging

    Directory of Open Access Journals (Sweden)

    Günther eZeck

    2016-02-01

    Full Text Available In this review I present and discuss the current understanding of aberrant electrical activity found in the ganglion cell layer (GCL of rod-degenerated (rd mouse retinas. The reported electrophysiological properties revealed by electrical imaging using high-density microelectrode arrays can be subdivided between spiking activity originating from retinal ganglion cells (RGCs and local field potentials reflecting strong trans-membrane currents within the GCL. RGCs in rod-degenerated retinas show increased and rhythmic spiking compared to age-matched wild-type retinas. Fundamental spiking frequencies range from 5 to 15 Hz in various mouse models. The rhythmic RGC spiking is driven by a presynaptic network comprising AII amacrine and bipolar cells. In the healthy retina this rhythm-generating circuit is inhibited by photoreceptor input. A unique physiological feature of rd retinas is rhythmic local field potentials (LFP manifested as spatially-restricted low-frequency (5–15 Hz voltage changes. Their spatiotemporal characterization revealed propagation and correlation with RGC spiking. LFPs rely on gap-junctional coupling and are shaped by glycinergic and by GABAergic transmission. The aberrant RGC spiking and LFPs provide a simple readout of the functionality of the remaining retinal circuitry which can be used in the development of improved vision restoration strategies.

  9. Characterization of arteriovenous identity in the developing neonate mouse retina.

    Science.gov (United States)

    Crist, Angela M; Young, Chandler; Meadows, Stryder M

    2017-01-01

    The murine retina has become an ideal model to study blood vessel formation. Blood vessels in the retina undergo various processes, including remodeling and differentiation, to form a stereotypical network that consists of precisely patterned arteries and veins. This model presents a powerful tool for understanding many different aspects of angiogenesis including artery and vein (AV) cell fate acquisition and differentiation. However, characterization of AV differentiation has been largely unexplored in the mouse retinal model. In this study, we describe the expression of previously established AV markers and assess arteriovenous acquisition and identity in the murine neonatal retina. Using in situ hybridization and immunofluorescent antibody staining techniques, we analyzed numerous AV differentiation markers such as EphB4-EphrinB2 and members of the Notch pathway. We find that at postnatal day 3 (P3), when blood vessels are beginning to populate the retina, AV identity is not immediately established. However, by P5 expression of many molecular identifiers of arteries and veins become restricted to their respective vessel types. This molecular distinction is more obvious at P7 and remains unchanged through P9. Overall, these studies indicate that, similar to the embryo, acquisition of AV identity occurs in a step-wise process and is largely established by P7 during retina development. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Neuropeptide Y system in the retina: From localization to function.

    Science.gov (United States)

    Santos-Carvalho, Ana; Ambrósio, António Francisco; Cavadas, Cláudia

    2015-07-01

    The retina is a highly complex structure where several types of cells communicate through countless different molecules to codify visual information. Each type of cells plays unique roles in the retina, presenting a singular expression of neurotransmitters. Some neurotransmitter systems in the retina are well understood, while others need to be better explored to unravel the intricate signaling system involved. Neuropeptide Y (NPY), a 36 amino acid peptide, is one of the most common peptide neurotransmitter in the CNS and a highly conserved peptide among species. We review the localization of NPY and NPY receptors (mainly NPY Y1, Y2, Y4 and Y5) in retinal cells. Common features of the expression of NPY and NPY receptors in mammalian and non-mammalian species indicate universal roles of this system in the retina. In the present review, we highlight the putative roles of NPY receptor activation in the retina, discussing, in particular, their involvement in retinal development, neurotransmitter release modulation, neuroprotection, microglia and Muller cells function, retinal pigmented epithelium changes, retinal endothelial physiology and proliferation of retinal progenitor cells. Further studies are needed to confirm that targeting the NPY system might be a potential therapeutic strategy for retinal degenerative diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture.

    Science.gov (United States)

    Layher, Georg; Brosch, Tobias; Neumann, Heiko

    2017-01-01

    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks ( Eedn ) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based

  12. Real-Time Biologically Inspired Action Recognition from Key Poses Using a Neuromorphic Architecture

    Science.gov (United States)

    Layher, Georg; Brosch, Tobias; Neumann, Heiko

    2017-01-01

    Intelligent agents, such as robots, have to serve a multitude of autonomous functions. Examples are, e.g., collision avoidance, navigation and route planning, active sensing of its environment, or the interaction and non-verbal communication with people in the extended reach space. Here, we focus on the recognition of the action of a human agent based on a biologically inspired visual architecture of analyzing articulated movements. The proposed processing architecture builds upon coarsely segregated streams of sensory processing along different pathways which separately process form and motion information (Layher et al., 2014). Action recognition is performed in an event-based scheme by identifying representations of characteristic pose configurations (key poses) in an image sequence. In line with perceptual studies, key poses are selected unsupervised utilizing a feature-driven criterion which combines extrema in the motion energy with the horizontal and the vertical extendedness of a body shape. Per class representations of key pose frames are learned using a deep convolutional neural network consisting of 15 convolutional layers. The network is trained using the energy-efficient deep neuromorphic networks (Eedn) framework (Esser et al., 2016), which realizes the mapping of the trained synaptic weights onto the IBM Neurosynaptic System platform (Merolla et al., 2014). After the mapping, the trained network achieves real-time capabilities for processing input streams and classify input images at about 1,000 frames per second while the computational stages only consume about 70 mW of energy (without spike transduction). Particularly regarding mobile robotic systems, a low energy profile might be crucial in a variety of application scenarios. Cross-validation results are reported for two different datasets and compared to state-of-the-art action recognition approaches. The results demonstrate, that (I) the presented approach is on par with other key pose based

  13. The architecture of functional interaction networks in the retina.

    Science.gov (United States)

    Ganmor, Elad; Segev, Ronen; Schneidman, Elad

    2011-02-23

    Sensory information is represented in the brain by the joint activity of large groups of neurons. Recent studies have shown that, although the number of possible activity patterns and underlying interactions is exponentially large, pairwise-based models give a surprisingly accurate description of neural population activity patterns. We explored the architecture of maximum entropy models of the functional interaction networks underlying the response of large populations of retinal ganglion cells, in adult tiger salamander retina, responding to natural and artificial stimuli. We found that we can further simplify these pairwise models by neglecting weak interaction terms or by relying on a small set of interaction strengths. Comparing network interactions under different visual stimuli, we show the existence of local network motifs in the interaction map of the retina. Our results demonstrate that the underlying interaction map of the retina is sparse and dominated by local overlapping interaction modules.

  14. A Possible Role of Neuroglobin in the Retina After Optic Nerve Injury: A Comparative Study of Zebrafish and Mouse Retina.

    Science.gov (United States)

    Sugitani, Kayo; Koriyama, Yoshiki; Ogai, Kazuhiro; Wakasugi, Keisuke; Kato, Satoru

    2016-01-01

    Neuroglobin (Ngb) is a new member of the family of heme proteins and is specifically expressed in neurons of the central and peripheral nervous systems in all vertebrates. In particular, the retina has a 100-fold higher concentration of Ngb than do other nervous tissues. The role of Ngb in the retina is yet to be clarified. Therefore, to understand the functional role of Ngb in the retina after optic nerve injury (ONI), we used two types of retina, from zebrafish and mice, which have permissible and non-permissible capacity for nerve regeneration after ONI, respectively. After ONI, the Ngb protein in zebrafish was upregulated in the amacrine cells within 3 days, whereas in the mouse retina, Ngb was downregulated in the retinal ganglion cells (RGCs) within 3 days. Zebrafish Ngb (z-Ngb) significantly enhanced neurite outgrowth in retinal explant culture. According to these results, we designed an overexpression experiment with the mouse Ngb (m-Ngb) gene in RGC-5 cells (retinal precursor cells). The excess of m-Ngb actually rescued RGC-5 cells under hypoxic conditions and significantly enhanced neurite outgrowth in cell culture. These data suggest that mammalian Ngb has positive neuroprotective and neuritogenic effects that induce nerve regeneration after ONI.

  15. Pericellular interphotoreceptor matrix dictates outer retina critical surface tension.

    Science.gov (United States)

    Gonzalez-Fernandez, Federico; Fornalik, Mark; Garlipp, Mary Alice; Gonzalez-Fernandez, Priscilla; Sung, Dongjin; Meyer, Anne; Baier, Robert

    2018-02-01

    Retinal detachments create two pathological surfaces, the surface of the outer neural retinal, and an apical retinal-pigmented epithelium (RPE) surface. The physicochemical properties of these two new surfaces are poorly understood. At a molecular level little is known how detachments form, how to optimize reattachment, or prevent extension of the detachment. A major limitation is lack of information about the biophysical consequences of the retina-RPE separation. The primary challenge is determining the molecular properties of the pathological interface surfaces. Here, using detached bovine retina, we show that this hurdle can be overcome through a combination of biophysical and ultrastructural approaches. The outer surface of freshly detached bovine neural retina, and isolated molecular components of the outer retina were subjected to: 1) Contact angle goniometry to determine the critical surface tension of the outer retinal surface, isolated insoluble interphotoreceptor matrix (IPM) and purified interphotoreceptor retinoid binding protein (IRBP); 2) Multiple attenuated internal reflectance infrared (MAIR-IR) spectroscopy was used to characterize the molecular composition of the retinal surface. MAIR-IR depth penetration was established through ellipsometric measurement of barium-stearate films. Light microscopy, immunohistochemistry and electron microscopy defined the structures probed spectroscopically. Furthermore, the data were correlated to IR spectra of docosahexaenoic acid, hyaluronan, chondroitin-6-sulfate and IRBP, and imaging by IR-microscopy. We found that the retinal critical surface tension is 24 mN/m, similar to isolated insoluble IPM and lower than IRBP. Barium-stearate calibration studies established that the MAIR-IR spectroscopy penetration depth was 0.2 μm. Ultrastructural observations and MAIR-IR studies of isolated outer retina components determined that the pericellular IPM coating the outer retinal surface is primarily responsible for

  16. Retina-like sensor image coordinates transformation and display

    Science.gov (United States)

    Cao, Fengmei; Cao, Nan; Bai, Tingzhu; Song, Shengyu

    2015-03-01

    For a new kind of retina-like senor camera, the image acquisition, coordinates transformation and interpolation need to be realized. Both of the coordinates transformation and interpolation are computed in polar coordinate due to the sensor's particular pixels distribution. The image interpolation is based on sub-pixel interpolation and its relative weights are got in polar coordinates. The hardware platform is composed of retina-like senor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes the real-time image acquisition, coordinate transformation and interpolation.

  17. Capillary-contacting horizontal cells in the rodent retina.

    Science.gov (United States)

    Mojumder, Deb Kumar

    2008-06-01

    Horizontal cells, the interneurons in the distal retina, provide feedback control of the photoreceptor synaptic output at the first synapse in the visual pathway. This article, using immunohistological and confocal microscopy techniques, presents anatomical evidence that in rat and mouse retina, the horizontal cell processes are in contact with retinal capillaries as are retinal glial cells. This glia-like property of horizontal cells in these two species, also previously reported in tree shrews by Knabe and Ochs (1999), appear to be a more common theme for these neurons than previously appreciated.

  18. Dynamical pattern selection of growing cellular mosaic in fish retina

    Science.gov (United States)

    Ogawa, Noriaki; Hatsuda, Tetsuo; Mochizuki, Atsushi; Tachikawa, Masashi

    2017-09-01

    A Markovian lattice model for photoreceptor cells is introduced to describe the growth of mosaic patterns on fish retina. The radial stripe pattern observed in wild-type zebrafish is shown to be selected naturally during retina growth, against the geometrically equivalent circular stripe pattern. The mechanism of such dynamical pattern selection is clarified on the basis of both numerical simulations and theoretical analyses, which find that the successive emergence of local defects plays a critical role in the realization of the wild-type pattern.

  19. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Science.gov (United States)

    Bedore, Jake; Martyn, Amanda C; Li, Anson K C; Dolinar, Eric A; McDonald, Ian S; Coupland, Stuart G; Prado, Vania F; Prado, Marco A; Hill, Kathleen A

    2015-01-01

    Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  20. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  1. Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: Design methodology and selected applications.

    Science.gov (United States)

    Kasabov, Nikola; Scott, Nathan Matthew; Tu, Enmei; Marks, Stefan; Sengupta, Neelava; Capecci, Elisa; Othman, Muhaini; Doborjeh, Maryam Gholami; Murli, Norhanifah; Hartono, Reggio; Espinosa-Ramos, Josafath Israel; Zhou, Lei; Alvi, Fahad Bashir; Wang, Grace; Taylor, Denise; Feigin, Valery; Gulyaev, Sergei; Mahmoud, Mahmoud; Hou, Zeng-Guang; Yang, Jie

    2016-06-01

    The paper describes a new type of evolving connectionist systems (ECOS) called evolving spatio-temporal data machines based on neuromorphic, brain-like information processing principles (eSTDM). These are multi-modular computer systems designed to deal with large and fast spatio/spectro temporal data using spiking neural networks (SNN) as major processing modules. ECOS and eSTDM in particular can learn incrementally from data streams, can include 'on the fly' new input variables, new output class labels or regression outputs, can continuously adapt their structure and functionality, can be visualised and interpreted for new knowledge discovery and for a better understanding of the data and the processes that generated it. eSTDM can be used for early event prediction due to the ability of the SNN to spike early, before whole input vectors (they were trained on) are presented. A framework for building eSTDM called NeuCube along with a design methodology for building eSTDM using this is presented. The implementation of this framework in MATLAB, Java, and PyNN (Python) is presented. The latter facilitates the use of neuromorphic hardware platforms to run the eSTDM. Selected examples are given of eSTDM for pattern recognition and early event prediction on EEG data, fMRI data, multisensory seismic data, ecological data, climate data, audio-visual data. Future directions are discussed, including extension of the NeuCube framework for building neurogenetic eSTDM and also new applications of eSTDM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Sound stream segregation: a neuromorphic approach to solve the “cocktail party problem” in real-time

    Science.gov (United States)

    Thakur, Chetan Singh; Wang, Runchun M.; Afshar, Saeed; Hamilton, Tara J.; Tapson, Jonathan C.; Shamma, Shihab A.; van Schaik, André

    2015-01-01

    The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the “cocktail party effect.” It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA). This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR) of the segregated stream (90, 77, and 55 dB for simple tone, complex tone, and speech, respectively) as compared to the SNR of the mixture waveform (0 dB). This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for sound segregation

  3. Sound stream segregation: a neuromorphic approach to solve the ‘cocktail party problem’ in real-time

    Directory of Open Access Journals (Sweden)

    Chetan Singh Thakur

    2015-09-01

    Full Text Available The human auditory system has the ability to segregate complex auditory scenes into a foreground component and a background, allowing us to listen to specific speech sounds from a mixture of sounds. Selective attention plays a crucial role in this process, colloquially known as the ‘cocktail party effect’. It has not been possible to build a machine that can emulate this human ability in real-time. Here, we have developed a framework for the implementation of a neuromorphic sound segregation algorithm in a Field Programmable Gate Array (FPGA. This algorithm is based on the principles of temporal coherence and uses an attention signal to separate a target sound stream from background noise. Temporal coherence implies that auditory features belonging to the same sound source are coherently modulated and evoke highly correlated neural response patterns. The basis for this form of sound segregation is that responses from pairs of channels that are strongly positively correlated belong to the same stream, while channels that are uncorrelated or anti-correlated belong to different streams. In our framework, we have used a neuromorphic cochlea as a frontend sound analyser to extract spatial information of the sound input, which then passes through band pass filters that extract the sound envelope at various modulation rates. Further stages include feature extraction and mask generation, which is finally used to reconstruct the targeted sound. Using sample tonal and speech mixtures, we show that our FPGA architecture is able to segregate sound sources in real-time. The accuracy of segregation is indicated by the high signal-to-noise ratio (SNR of the segregated stream (90, 77 and 55 dB for simple tone, complex tone and speech, respectively as compared to the SNR of the mixture waveform (0 dB. This system may be easily extended for the segregation of complex speech signals, and may thus find various applications in electronic devices such as for

  4. Cysteamine prevents vascular leakage through inhibiting transglutaminase in diabetic retina.

    Science.gov (United States)

    Lee, Yeon-Ju; Jung, Se-Hui; Hwang, JongYun; Jeon, Sohee; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Young-Myeong; Ha, Kwon-Soo

    2017-10-01

    Cysteamine (an aminothiol), which is derived from coenzyme A degradation and metabolized into taurine, has beneficial effects against cystinosis and neurodegenerative diseases; however, its role in diabetic complications is unknown. Thus, we sought to determine the preventive effect of cysteamine against hyperglycemia-induced vascular leakage in the retinas of diabetic mice. Cysteamine and ethanolamine, the sulfhydryl group-free cysteamine analogue, inhibited vascular endothelial growth factor (VEGF)-induced stress fiber formation and vascular endothelial (VE)-cadherin disruption in endothelial cells, which play a critical role in modulating endothelial permeability. Intravitreal injection of the amine compounds prevented hyperglycemia-induced vascular leakage in the retinas of streptozotocin-induced diabetic mice. We then investigated the potential roles of reactive oxygen species (ROS) and transglutaminase (TGase) in the cysteamine prevention of VEGF-induced vascular leakage. Cysteamine, but not ethanolamine, inhibited VEGF-induced ROS generation in endothelial cells and diabetic retinas. In contrast, VEGF-induced TGase activation was prevented by both cysteamine and ethanolamine. Our findings suggest that cysteamine protects against vascular leakage through inhibiting VEGF-induced TGase activation rather than ROS generation in diabetic retinas. © 2017 Society for Endocrinology.

  5. Active HIF-1 in the Normal Human Retina

    NARCIS (Netherlands)

    Hughes, John M.; Groot, Arjan J.; van der Groep, Petra; Sersansie, René; Vooijs, Marc; van Diest, Paul J.; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.; Klaassen, Ingeborg

    2010-01-01

    A unique feature of the retina is the presence of photoreceptors, which require an enormous amount of oxygen for the conversion of light to an electrical signal. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a transcription factor that is the master regulator of cellular adaptation to low oxygen

  6. The Virtual Retina: Is Good Educational Technology Always Strategic?

    Science.gov (United States)

    Dowie, Sandra

    Educational technology units must continually monitor their strategic plans to ensure that they are aligned with the realities of their institutions. Strategic dissonance occurs when previously successful strategies are no longer achieving the same positive outcomes. The Virtual Retina CD-ROM project is used in this paper as an example of…

  7. Functional Architecture of the Retina: Development and Disease

    Science.gov (United States)

    Hoon, Mrinalini; Okawa, Haruhisa; Santina, Luca Della; Wong, Rachel O.L.

    2014-01-01

    Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina. PMID:24984227

  8. CHANGES IN NEUROTRANSMITTER GENE EXPRESSION IN THE AGING RETINA.

    Science.gov (United States)

    To understand mechanisms of neurotoxicity in susceptible populations, we examined age-related changes in constitutive gene expression in the retinas of young (4mos), middle-aged (11 mos) and aged (23 mos) male Long Evans rats. Derived from a pouch of the forebrain during develop...

  9. Localization and characterization of immunocompetent cells in the human retina

    NARCIS (Netherlands)

    Yang, P.; Das, P. K.; Kijlstra, A.

    2000-01-01

    Recent studies have shown that experimental uveitis can be induced by the appropriate administration of various retinal antigens. Little is known about the in-situ interactions between immune cells in the retina as a prerequisite for understanding the mechanisms involving the presentation of

  10. Delayed response of the retina after hyperbaric oxygen exposure

    DEFF Research Database (Denmark)

    Kofoed, Peter Kristian; Hasler, Pascal W; Sander, Birgit

    2011-01-01

    .020). The bulk of the response to HBO was found in the foveal and parafoveal regions. No detectable change was seen in mfERG amplitudes or in the volume or thickness of the retina. Conclusion: A mfERG component related to bipolar and Müller cell function was accelerated by a short intermittent exposure to HBO...

  11. Müller glia cell reprogramming and retina regeneration

    Science.gov (United States)

    Goldman, Daniel

    2014-01-01

    Müller glia are the major glial component of the retina. They are one of the last retinal cell types to be born during development and they function to maintain retinal homeostasis and integrity. In mammals, Müller glia respond to retinal injury in a variety of ways that can be either protective or detrimental to retinal function. Although under special circumstances these cells can be coaxed to proliferate and generate neurons, these responses are meager and insufficient for repairing a damaged retina. By contrast, in teleost fish (such as zebrafish) the response of Müller glia to retinal injury involves a reprogramming event that imparts retinal stem cell characteristics and allows them to produce a proliferating population of progenitors that can regenerate all major retinal cell types and restore vision. Recent studies have revealed a number of important mechanisms underlying Müller glia reprogramming and retina regeneration in fish that may lead to new strategies for stimulating retina regeneration in mammals. PMID:24894585

  12. Fluorescence spectroscopy of the retina from scrapie-infected mice

    Science.gov (United States)

    Recently, we have proposed that the fluorescence spectra of sheep retina can be well correlated to the presence or absence of scrapie. Scrapie is the most widespread TSE (transmissible spongiform encephalopathy) affecting sheep and goats worldwide. Mice eyes have been previously reported as a model ...

  13. File list: Oth.Oth.10.AllAg.Retina [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.10.AllAg.Retina mm9 TFs and others Others Retina SRX151679,SRX429085,SRX018...X429082,SRX700316,SRX018604,SRX1365304,SRX700325 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.10.AllAg.Retina.bed ...

  14. File list: Oth.Oth.20.AllAg.Retina [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.20.AllAg.Retina mm9 TFs and others Others Retina SRX429085,SRX429087,SRX700...X1365304,SRX700326,SRX151679,SRX700325,SRX700324 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Oth.20.AllAg.Retina.bed ...

  15. File list: InP.Oth.05.AllAg.Retina [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.05.AllAg.Retina mm9 Input control Others Retina SRX1365331,SRX018605,SRX018...601,SRX018603,SRX1365332,SRX1365338,SRX1365337,SRX1365333,SRX1365336,SRX1365334,SRX1365335 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.05.AllAg.Retina.bed ...

  16. File list: InP.Oth.50.AllAg.Retina [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Oth.50.AllAg.Retina mm9 Input control Others Retina SRX018603,SRX018605,SRX0186...01,SRX1365338,SRX1365337,SRX1365334,SRX1365336,SRX1365335,SRX1365331,SRX1365333,SRX1365332 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Oth.50.AllAg.Retina.bed ...

  17. Silicon Photonics-Silicon Raman Lasers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 10. Silicon Photonics - Silicon Raman Lasers. P K Basu. General Article Volume 12 ... Keywords. Silicon photonics; Si Raman laser; semiconductor laser; light emitter; optical interconnect; optical communication; Indirect gap semiconductors.

  18. Impact of bronchopulmonary dysplasia on brain and retina

    Directory of Open Access Journals (Sweden)

    Annie Wing Hoi Poon

    2016-04-01

    Full Text Available Many premature newborns develop bronchopulmonary dysplasia (BPD, a chronic lung disease resulting from prolonged mechanical ventilation and hyperoxia. BPD survivors typically suffer long-term injuries not only to the lungs, but also to the brain and retina. However, currently it is not clear whether the brain and retinal injuries in these newborns are related only to their prematurity, or also to BPD. We investigated whether the hyperoxia known to cause histologic changes in the lungs similar to BPD in an animal model also causes brain and retinal injuries. Sprague Dawley rat pups were exposed to hyperoxia (95% O2, ‘BPD’ group or room air (21% O2, ‘control’ group from postnatal day 4–14 (P4–14; the rat pups were housed in room air between P14 and P28. At P28, they were sacrificed, and their lungs, brain, and eyes were extracted. Hematoxylin and eosin staining was performed on lung and brain sections; retinas were stained with Toluidine Blue. Hyperoxia exposure resulted in an increased mean linear intercept in the lungs (P<0.0001. This increase was associated with a decrease in some brain structures [especially the whole-brain surface (P=0.02], as well as a decrease in the thickness of the retinal layers [especially the total retina (P=0.0008], compared to the room air control group. In addition, a significant negative relationship was observed between the lung structures and the brain (r=−0.49, P=0.02 and retina (r=−0.70, P=0.0008 structures. In conclusion, hyperoxia exposure impaired lung, brain, and retina structures. More severe lung injuries correlated with more severe brain and retinal injuries. This result suggests that the same animal model of chronic neonatal hyperoxia can be used to simultaneously study lung, brain and retinal injuries related to hyperoxia.

  19. Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration.

    Science.gov (United States)

    Kim, Benjamin J; Irwin, David J; Song, Delu; Daniel, Ebenezer; Leveque, Jennifer D; Raquib, Aaishah R; Pan, Wei; Ying, Gui-Shuang; Aleman, Tomas S; Dunaief, Joshua L; Grossman, Murray

    2017-10-10

    Whereas Alzheimer disease (AD) is associated with inner retina thinning visualized by spectral-domain optical coherence tomography (SD-OCT), we sought to determine if the retina has a distinguishing biomarker for frontotemporal degeneration (FTD). Using a cross-sectional design, we examined retinal structure in 38 consecutively enrolled patients with FTD and 44 controls using a standard SD-OCT protocol. Retinal layers were segmented with the Iowa Reference Algorithm. Subgroups of highly predictive molecular pathology (tauopathy, TAR DNA-binding protein 43, unknown) were determined by clinical criteria, genetic markers, and a CSF biomarker (total tau: β-amyloid) to exclude presumed AD. We excluded eyes with poor image quality or confounding diseases. SD-OCT measures of patients (n = 46 eyes) and controls (n = 69 eyes) were compared using a generalized linear model accounting for intereye correlation, and correlations between retinal layer thicknesses and Mini-Mental State Examination (MMSE) were evaluated. Adjusting for age, sex, and race, patients with FTD had a thinner outer retina than controls (132 vs 142 μm, p = 0.004). Patients with FTD also had a thinner outer nuclear layer (ONL) (88.5 vs 97.9 μm, p = 0.003) and ellipsoid zone (EZ) (14.5 vs 15.1 μm, p = 0.009) than controls, but had similar thicknesses for inner retinal layers. The outer retina thickness of patients correlated with MMSE (Spearman r = 0.44, p = 0.03). The highly predictive tauopathy subgroup (n = 31 eyes) also had a thinner ONL (88.7 vs 97.4 μm, p = 0.01) and EZ (14.4 vs 15.1 μm, p = 0.01) than controls. FTD is associated with outer retina thinning, and this thinning correlates with disease severity. © 2017 American Academy of Neurology.

  20. The human brain on a computer, the design neuromorphic chips aims to process information as does the mind; El cerebro humano en un ordenador

    Energy Technology Data Exchange (ETDEWEB)

    Pajuelo, L.

    2015-07-01

    Develop chips that mimic the brain processes It will help create computers capable of interpreting information from image, sound and touch so that it may offer answers intelligent-not programmed before- according to these sensory data. chips neuromorphic may mimic the electrical activity neurons and brain synapses, and will be key to intelligence systems artificial (ia) that require interaction with the environment being able to extract information cognitive of what surrounds them. (Author)

  1. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  2. Standard anatomical and visual space for the mouse retina: computational reconstruction and transformation of flattened retinae with the Retistruct package.

    Directory of Open Access Journals (Sweden)

    David C Sterratt

    Full Text Available The concept of topographic mapping is central to the understanding of the visual system at many levels, from the developmental to the computational. It is important to be able to relate different coordinate systems, e.g. maps of the visual field and maps of the retina. Retinal maps are frequently based on flat-mount preparations. These use dissection and relaxing cuts to render the quasi-spherical retina into a 2D preparation. The variable nature of relaxing cuts and associated tears limits quantitative cross-animal comparisons. We present an algorithm, "Retistruct," that reconstructs retinal flat-mounts by mapping them into a standard, spherical retinal space. This is achieved by: stitching the marked-up cuts of the flat-mount outline; dividing the stitched outline into a mesh whose vertices then are mapped onto a curtailed sphere; and finally moving the vertices so as to minimise a physically-inspired deformation energy function. Our validation studies indicate that the algorithm can estimate the position of a point on the intact adult retina to within 8° of arc (3.6% of nasotemporal axis. The coordinates in reconstructed retinae can be transformed to visuotopic coordinates. Retistruct is used to investigate the organisation of the adult mouse visual system. We orient the retina relative to the nictitating membrane and compare this to eye muscle insertions. To align the retinotopic and visuotopic coordinate systems in the mouse, we utilised the geometry of binocular vision. In standard retinal space, the composite decussation line for the uncrossed retinal projection is located 64° away from the retinal pole. Projecting anatomically defined uncrossed retinal projections into visual space gives binocular congruence if the optical axis of the mouse eye is oriented at 64° azimuth and 22° elevation, in concordance with previous results. Moreover, using these coordinates, the dorsoventral boundary for S-opsin expressing cones closely matches

  3. Expression of connexin genes in the human retina

    Directory of Open Access Journals (Sweden)

    Joussen Antonia

    2010-10-01

    Full Text Available Abstract Background Gap junction channels allow direct metabolically and electrical coupling between adjacent cells in various mammalian tissues. Each channel is composed of 12 protein subunits, termed connexins (Cx. In the mouse retina, Cx43 could be localized mostly between astroglial cells whereas expression of Cx36, Cx45 and Cx57 genes has been detected in different neuronal subtypes. In the human retina, however, the expression pattern of connexin genes is largely unknown. Methods Northern blot hybridizations, RT-PCR as well as immunofluorescence analyses helped to explore at least partially the expression pattern of the following human connexin genes GJD2 (hCx36, GJC1 (hCx45, GJA9 (hCx59 and GJA10 (hCx62 in the human retina. Results Here we report that Northern blot hybridization signals of the orthologuous hCx36 and hCx45 were found in human retinal RNA. Immunofluorescence signals for both connexins could be located in both inner and outer plexiform layer (IPL, OPL. Expression of a third connexin gene denoted as GJA10 (Cx62 was also detected after Northern blot hybridization in the human retina. Interestingly, its gene structure is similar to that of Gja10 (mCx57 being expressed in mouse horizontal cells. RT-PCR analysis suggested that an additional exon of about 25 kb further downstream, coding for 12 amino acid residues, is spliced to the nearly complete reading frame on exon2 of GJA10 (Cx62. Cx59 mRNA, however, with high sequence identity to zebrafish Cx55.5 was only weakly detectable by RT-PCR in cDNA of human retina. Conclusion In contrast to the neuron-expressed connexin genes Gjd2 coding for mCx36, Gjc1 coding for mCx45 and Gja10 coding for mCx57 in the mouse, a subset of 4 connexin genes, including the unique GJA9 (Cx59 and GJA10 (Cx62, could be detected at least as transcript isoforms in the human retina. First immunofluorescence analyses revealed a staining pattern of hCx36 and hCx45 expression both in the IPL and OPL, partially

  4. Infrared reflectance as a diagnostic adjunct for subclinical commotio retinae

    Directory of Open Access Journals (Sweden)

    Nicholas H Andrew

    2014-01-01

    Full Text Available Commotio retinae (CR is an outer retinal disorder following blunt trauma to the eye. Histologically it is characterized by disruption of the photoreceptor outer segments (OS, typically without injury to other retinal layers. Using spectral-domain optical coherence tomography (OCT the condition is visible as hyper-reflectivity of the OS. Most cases of CR are associated with transient grey-white discoloration of the retina and are easily diagnosed clinically, but there have been reports of OCT-confirmed CR without retinal discoloration. It is likely that this subclinical variant of CR is under-recognized as the OCT features of CR are subtle. Here, we report a case of OCT-confirmed subclinical CR that demonstrated prominent infrared hypo-reflectance, using the infrared protocol of the SPECTRALIS® OCT, Heidelberg Engineering. This case suggests that infrared reflectance may have a role in diagnosing cases of subclinical CR.

  5. Modeling and Simulation of Microelectrode-Retina Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M

    2002-11-30

    The goal of the retinal prosthesis project is the development of an implantable microelectrode array that can be used to supply visually-driven electrical input to cells in the retina, bypassing nonfunctional rod and cone cells, thereby restoring vision to blind individuals. This goal will be achieved through the study of the fundamentals of electrical engineering, vision research, and biomedical engineering with the aim of acquiring the knowledge needed to engineer a high-density microelectrode-tissue hybrid sensor that will restore vision to millions of blind persons. The modeling and simulation task within this project is intended to address the question how best to stimulate, and communicate with, cells in the retina using implanted microelectrodes.

  6. [Cataract extraction and blue light--impact on the retina].

    Science.gov (United States)

    Engelmann, K; Funk, R H

    2009-10-01

    This review focuses on the scientific background for the use of "yellow artificial lenses". We will address the fact that numerous basic scientific publications point to a rationale for this practice although it is often difficult to derive clear-cut evidence from clinical epidemiological studies for the preventive use of yellow artificial lenses. In the first part we refer to studies showing that especially the shortwave part of the visible spectrum of light can be harmful for the retina and optic nerve. For this, we have screened the literature for the major sources of radical production and for the targets of oxidative stress after impingement of "blue light" on the retina. Furthermore, we can show that many studies in cell and molecular biology, animal experiments and first clinical trials point to a preferential use of yellow-tinted lenses especially in the elderly and AMD patients. Georg Thieme Verlag KG Stuttgart.New York.

  7. Transcriptome of the human retina, retinal pigmented epithelium and choroid

    Science.gov (United States)

    Tian, Lifeng; Kazmierkiewicz, Krista L; Bowman, Anita S; Li, Mingyao; Curcio, Christine A; Stambolian, Dwight E

    2015-01-01

    The retina and its adjacent supporting tissues -- retinal pigmented epithelium (RPE) and choroid -- are critical structures in human eyes required for normal visual perception. Abnormal changes in these layers have been implicated in diseases such as age-related macular degeneration and glaucoma. With the advent of high-throughput methods, such as serial analysis of gene expression, cDNA microarray, and RNA sequencing, there is unprecedented opportunity to facilitate our understanding of the normal retina, RPE, and choroid. This information can be used to identify dysfunction in age-related macular degeneration and glaucoma. In this review, we describe the current status in our understanding of these transcriptomes through the use of high throughput techniques. PMID:25645700

  8. Optical Coherence Tomography and Raman Spectroscopy of the retina

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J W; Zawadzki, R J; Liu, R; Chan, J; Lane, S; Werner, J S

    2009-01-16

    Imaging the structure and correlating it with the biochemical content of the retina holds promise for fundamental research and for clinical applications. Optical coherence tomography (OCT) is commonly used to image the 3D structure of the retina and while the added functionality of biochemical analysis afforded by Raman scattering could provide critical molecular signatures for clinicians and researchers, there are many technical challenges to combining these imaging modalities. We present an ex vivo OCT microscope combined with Raman spectroscopy capable of collecting morphological and molecular information about a sample simultaneously. The combined instrument will be used to investigate remaining technical challenges to combine these imaging modalities, such as the laser power levels needed to achieve a Raman signal above the noise level without damaging the sample.

  9. Cholesterol in the retina: the best is yet to come

    OpenAIRE

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understand...

  10. Molecular Probes for Imaging of Hypoxia in the Retina

    OpenAIRE

    Evans, Stephanie M.; Kim, Kwangho; Moore, Chauca E.; Uddin, Md Imam; Capozzi, Megan E.; Craft, Jason R.; Gary A Sulikowski; Jayagopal, Ashwath

    2014-01-01

    Hypoxia has been associated with retinal diseases which lead the causes of irreversible vision loss, including diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. Therefore, technologies for imaging hypoxia in the retina are needed for early disease detection, monitoring of disease progression, and assessment of therapeutic responses in the patient. Toward this goal, we developed two hypoxia-sensitive imaging agents based on nitroimidazoles which are capabl...

  11. Mechanical characteristics of the porcine retina in low temperatures.

    Science.gov (United States)

    Chen, Kinon; Weiland, James D

    2012-04-01

    We previously observed that the stiffness of the porcine retina was significantly higher when deforming at room temperature than at body temperature. The present study further investigates this phenomenon by examining the mechanical properties of the retina in saline at temperature lower than room temperature. Tensile testing was performed on a total of 15 retinal strips dissected from pig eyes. Equal amount of strips from the dissection were tested at 37.0 ± 0.3°C, 26.1 ± 0.1°C, and 7.8 ± 1.2°C. Their transition modulus, stress, and strain were measured for statistical analysis. The transition modulus, the transition stress, and the transition strain of the retinal strips were found to be 11.12 ± 6.10 kPa, 0.12 ± 0.07 kPa, and 0.016 ± 0.001, respectively, at 37.0°C. These values were 111.25 ± 88.16 kPa, 1.11 ± 0.85 kPa, and 0.016 ± 0.001 at 26.1°C, and 125.13 ± 63.61 kPa, 1.30 ± 0.50 kPa, and 0.017 ± 0.003 at 7.8°C, respectively. The differences of the transition modulus and the transition stress at between 37.0°C and 26.1°C and at between 37.0°C and 7.8°C were statistically significant (P retina from body temperature is potentially useful to decrease retinal damage in posterior eye surgeries by increasing the resistance of the retina to mechanical deformation.

  12. Effects and Responses to Spaceflight in the Mouse Retina

    Science.gov (United States)

    Zanello, Susana B.; Theriot, Corey; Westby, Christian; Boyle, Richard

    2011-01-01

    Several stress environmental factors are combined in a unique fashion during spaceflight, affecting living beings widely across their physiological systems. Recently, attention has been placed on vision changes in astronauts returning from long duration missions. Alterations include hyperoptic shift, globe flattening, choroidal folds and optic disc edema, which are probably associated with increased intracranial pressure. These observations justify a better characterization of the ocular health risks associated with spaceflight. This study investigates the impact of spaceflight on the biology of the mouse retina. Within a successful tissue sharing effort, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (Animal Enclosure Module) mice were used as ground controls. Oxidative stress-induced DNA damage was higher in the flight samples compared to controls on R+1, and decreased on R+7. A trend toward higher oxidative and cellular stress response gene expression was also observed on R+1 compared to AEM controls, and these levels decreased on R+7. Several genes coding for key antioxidant enzymes, namely, heme-oxygenase-1, peroxiredoxin, and catalase, were among those upregulated after flight. Likewise, NF B and TGFbeta1, were upregulated in one flight specimen that overall showed the most elevated oxidative stress markers on R+1. In addition, retinas from vivarium control mice evidenced higher oxidative stress markers, NF B and TGFbeta1, likely due to the more intense illumination in vivarium cages versus the AEM. These preliminary data suggest that spaceflight represents a source of environmental stress that translates into oxidative and cellular stress in the retina, which is partially reversible upon return to Earth. Further work is needed to dissect the contribution of the various spaceflight factors (microgravity, radiation) and to

  13. Lipid peroxidation of membrane phospholipids in the vertebrate retina.

    Science.gov (United States)

    Catala, Angel

    2011-01-01

    Retina is very rich in membranes containing polyunsaturated fatty acids. Reactive oxygen species initiates chain reactions of lipid peroxidation which injure the retina, especially the membranes that play important roles in visual function. Furthermore, biomolecules such as proteins or amino lipids can be covalently modified by lipid decomposition products. In retinal membranes, peroxidation of lipids is also usually accompanied by oxidation of membrane proteins. In consequence, lipid peroxidation may alter the arrangement of proteins in bilayers and by that interfere with their physiological role on the membrane function. Here, we review several studies on the lipid peroxidation of membrane phospholipids in retina. Particular emphasis is placed on the molecular changes of very long chain polyunsaturated fatty acids associated with protein modifications during peroxidation of photoreceptor membranes. Furthermore we use liposomes to analyze peroxidation of retinal lipids. Conjugated dienes formed from oxidized PUFAs, and TBARS products derived from the breakdown of these fatty acids located in phospholipids can be analyzed during lipid peroxidation of liposomes made of retinal lipids using Fe2+ and Fe3+ as initiators.

  14. The role of apelin in the retina of diabetic rats.

    Directory of Open Access Journals (Sweden)

    Qiang Lu

    Full Text Available PURPOSE: Apelin is a novel adipocytokine participating in diabetes, but its role in diabetic retinopathy (DR is unknown. Our study aimed to investigate the effect of apelin on the proliferative potential in DR along with its antagonist inhibitory effects. PRINCIPAL FINDINGS: Strong staining of apelin, co-localized with glial fibrillary acidic protein (GFAP and vascular endothelial growth factor (VEGF was observed in the retina of diabetic rats. Apelin, GFAP, and VEGF mRNA and protein levels were significantly increased in the sample's retinas. Moreover, exogenous apelin promoted retinal Müller cell proliferation in vivo. Simultaneously, apelin induced GFAP and VEGF expression. F13A markedly reduced retinal gliosis caused by diabetes. Furthermore, F13A suppressed both GFAP and VEGF expression in vivo. SIGNIFICANCE: Our results strongly suggest that apelin is associated with the development of DR and contributes to changes in the retinas of diabetic rats. Apelin induced promotion of cell proliferation lends support to the possibility that apelin may play a role in the progression of DR to a proliferative phase. This possible role deserves further investigation, which may offer new perspectives in the early prevention and treatment of DR.

  15. Light pollution: the possible consequences of excessive illumination on retina.

    Science.gov (United States)

    Contín, M A; Benedetto, M M; Quinteros-Quintana, M L; Guido, M E

    2016-02-01

    Light is the visible part of the electromagnetic radiation within a range of 380-780 nm; (400-700 on primates retina). In vertebrates, the retina is adapted to capturing light photons and transmitting this information to other structures in the central nervous system. In mammals, light acts directly on the retina to fulfill two important roles: (1) the visual function through rod and cone photoreceptor cells and (2) non-image forming tasks, such as the synchronization of circadian rhythms to a 24 h solar cycle, pineal melatonin suppression and pupil light reflexes. However, the excess of illumination may cause retinal degeneration or accelerate genetic retinal diseases. In the last century human society has increased its exposure to artificial illumination, producing changes in the Light/Dark cycle, as well as in light wavelengths and intensities. Although, the consequences of unnatural illumination or light pollution have been underestimated by modern society in its way of life, light pollution may have a strong impact on people's health. The effects of artificial light sources could have direct consequences on retinal health. Constant exposure to different wavelengths and intensities of light promoted by light pollution may produce retinal degeneration as a consequence of photoreceptor or retinal pigment epithelium cells death. In this review we summarize the different mechanisms of retinal damage related to the light exposure, which generates light pollution.

  16. In vivo intrinsic optical signal imaging of mouse retinas

    Science.gov (United States)

    Wang, Benquan; Yao, Xincheng

    2016-03-01

    Intrinsic optical signal (IOS) imaging is a promising noninvasive method for advanced study and diagnosis of eye diseases. Before pursuing clinical applications, more IOS studies employing animal models are necessary to establish the relationship between IOS distortions and eye diseases. Ample mouse models are available for investigating the relationship between IOS distortions and eye diseases. However, in vivo IOS imaging of mouse retinas is challenging due to the small ocular lens (compared to frog eyes) and inevitable eye movements. We report here in vivo IOS imaging of mouse retinas using a custom-designed functional OCT. The OCT system provided high resolution (3 μm) and high speed (up to 500 frames/s) imaging of mouse retinas. An animal holder equipped with a custom designed ear bar and bite bar was used to minimize eye movement due to breathing and heartbeats. Residual eye movement in OCT images was further compensated by accurate image registration. Dynamic OCT imaging revealed rapid IOSs from photoreceptor outer segments immediately (inner retinal layers with delayed time courses compared to that of photoreceptor IOSs.

  17. Neurodegeneration in diabetic retina and its potential drug targets.

    Science.gov (United States)

    Ola, Mohammad Shamsul; Alhomida, Abdullah S

    2014-07-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes causing vision loss and blindness worldwide. DR is widely recognized as a neurodegenerative disease as evidenced from early changes at cellular and molecular levels in the neuronal component of the diabetic retina, which is further supported by various retinal functional tests indicating functional deficits in the retina soon after diabetes progression. Diabetes alters the level of a number of neurodegenerative metabolites, which increases influx through several metabolic pathways which in turn induce an increase in oxidative stress and a decrease in neurotrophic factors, thereby damage retinal neurons. Loss of neurons may implicate in vascular pathology, a clinical signs of DR observed at later stages of the disease. Here, we discuss diabetes-induced potential metabolites known to be detrimental to neuronal damage and their mechanism of action. In addition, we highlight important neurotrophic factors, whose level have been found to be dysregulated in diabetic retina and may damage neurons. Furthermore, we discuss potential drugs and strategies based on targeting diabetes-induced metabolites, metabolic pathways, oxidative stress, and neurotrophins to protect retinal neurons, which may ameliorate vision loss and vascular damage in DR.

  18. Meduloepitelioma teratóide da retina: relato de caso Teratoid medulloepithelioma of the retina: case report

    Directory of Open Access Journals (Sweden)

    Ramon Coral Ghanem

    2004-06-01

    Full Text Available O meduloepitelioma é um tumor intra-ocular congênito originário do epitélio medular primitivo que, por sua vez, é responsável pela formação do epitélio não pigmentado do corpo ciliar. Ocorre geralmente na infância, de forma unilateral, acometendo o corpo ciliar. O objetivo deste trabalho é documentar um caso raro de meduloepitelioma teratóide originário da retina. Paciente de nove anos, feminina, apresentava baixa acuidade visual (AV, estrabismo e leucocoria no olho esquerdo (OE. A AV era de 1,0 no olho direito e movimentos de mão no OE. Foi observada tumoração retrocristaliniana branco-acinzentada no OE, aparentemente subretiniana, vascularizada, de grande extensão, com alterações císticas na sua superfície. Foram realizadas tomografia de crânio e órbitas e ecografia ocular. A paciente foi submetida à enucleação com suspeita clínica de retinoblastoma. Pelo aspecto histopatológico foi feito o diagnóstico de meduloepitelioma teratóide benigno originário da retina. Na maioria dos casos apresentados na literatura o meduloepitelioma tem origem a partir do epitélio não pigmentado do corpo ciliar. No nosso caso, a neoplasia parece ter tido origem a partir da retina, já que os cortes revelaram epitélio do corpo ciliar preservado e não foi reconhecida a estrutura normal da retina. Embora o tumor apresentado neste relato tenha sido classificado como benigno, o fato de ser lesão de grandes proporções e de crescimento aparentemente recente, justifica a conduta cirúrgica empregada. O tratamento do meduloepitelioma deve objetivar a intervenção cirúrgica precoce, na tentativa de se evitar a disseminação extra-ocular.Medulloepithelioma is a congenital intraocular tumor that usually arises from the primitive medullary epithelium that is destined to form the nonpigmented ciliary epithelium of the ciliary body. It occurs most frequently in early childhood and is unilateral. This report documents a rare case of

  19. Estimating the location and size of retinal injections from orthogonal images of an intact retina.

    Science.gov (United States)

    Hjorth, J J Johannes; Savier, Elise; Sterratt, David C; Reber, Michaël; Eglen, Stephen J

    2015-11-21

    To study the mapping from the retina to the brain, typically a small region of the retina is injected with a dye, which then propagates to the retina's target structures. To determine the location of the injection, usually the retina is dissected out of the eye, flattened and then imaged, causing tears and stretching of the retina. The location of the injection is then estimated from the image of the flattened retina. Here we propose a new method that avoids dissection of the retina. We have developed IntactEye, a software package that uses two orthogonal images of the intact retina to locate focal injections of a dye. The two images are taken while the retina is still inside the eye. This bypasses the dissection step, avoiding unnecessary damage to the retina, and speeds up data acquisition. By using the native spherical coordinates of the eye, we avoid distortions caused by interpreting a curved structure in a flat coordinate system. Our method compares well to the projection method and to the Retistruct package, which both use the flattened retina as a starting point. We have tested the method also on synthetic data, where the injection location is known. Our method has been designed for analysing mouse retinas, where there are no visible landmarks for discerning retinal orientation, but can also be applied to retinas from other species. IntactEye allows the user to precisely specify the location and size of a retinal injection from two orthogonal images taken of the eye. We are solving the abstract problem of locating a point on a spherical object from two orthogonal images, which might have applications outside the field of neuroscience.

  20. Feasibility of neuro-morphic computing to emulate error-conflict based decision making.

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.

    2009-09-01

    A key aspect of decision making is determining when errors or conflicts exist in information and knowing whether to continue or terminate an action. Understanding the error-conflict processing is crucial in order to emulate higher brain functions in hardware and software systems. Specific brain regions, most notably the anterior cingulate cortex (ACC) are known to respond to the presence of conflicts in information by assigning a value to an action. Essentially, this conflict signal triggers strategic adjustments in cognitive control, which serve to prevent further conflict. The most probable mechanism is the ACC reports and discriminates different types of feedback, both positive and negative, that relate to different adaptations. Unique cells called spindle neurons that are primarily found in the ACC (layer Vb) are known to be responsible for cognitive dissonance (disambiguation between alternatives). Thus, the ACC through a specific set of cells likely plays a central role in the ability of humans to make difficult decisions and solve challenging problems in the midst of conflicting information. In addition to dealing with cognitive dissonance, decision making in high consequence scenarios also relies on the integration of multiple sets of information (sensory, reward, emotion, etc.). Thus, a second area of interest for this proposal lies in the corticostriatal networks that serve as an integration region for multiple cognitive inputs. In order to engineer neurological decision making processes in silicon devices, we will determine the key cells, inputs, and outputs of conflict/error detection in the ACC region. The second goal is understand in vitro models of corticostriatal networks and the impact of physical deficits on decision making, specifically in stressful scenarios with conflicting streams of data from multiple inputs. We will elucidate the mechanisms of cognitive data integration in order to implement a future corticostriatal-like network in silicon

  1. A Re-configurable On-line Learning Spiking Neuromorphic Processor comprising 256 neurons and 128K synapses

    Directory of Open Access Journals (Sweden)

    Ning eQiao

    2015-04-01

    Full Text Available Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm 2 , and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  2. Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardware.

    Science.gov (United States)

    Pfeil, Thomas; Potjans, Tobias C; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists.

  3. Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware

    Science.gov (United States)

    Pfeil, Thomas; Potjans, Tobias C.; Schrader, Sven; Potjans, Wiebke; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz

    2012-01-01

    Large-scale neuromorphic hardware systems typically bear the trade-off between detail level and required chip resources. Especially when implementing spike-timing dependent plasticity, reduction in resources leads to limitations as compared to floating point precision. By design, a natural modification that saves resources would be reducing synaptic weight resolution. In this study, we give an estimate for the impact of synaptic weight discretization on different levels, ranging from random walks of individual weights to computer simulations of spiking neural networks. The FACETS wafer-scale hardware system offers a 4-bit resolution of synaptic weights, which is shown to be sufficient within the scope of our network benchmark. Our findings indicate that increasing the resolution may not even be useful in light of further restrictions of customized mixed-signal synapses. In addition, variations due to production imperfections are investigated and shown to be uncritical in the context of the presented study. Our results represent a general framework for setting up and configuring hardware-constrained synapses. We suggest how weight discretization could be considered for other backends dedicated to large-scale simulations. Thus, our proposition of a good hardware verification practice may rise synergy effects between hardware developers and neuroscientists. PMID:22822388

  4. Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss

    Directory of Open Access Journals (Sweden)

    Jeff Chiles

    2017-11-01

    Full Text Available We propose and experimentally demonstrate a photonic routing architecture that can efficiently utilize the space of multi-plane (3D photonic integration. A wafer with three planes of amorphous silicon waveguides was fabricated and characterized, demonstrating < 3 × 1 0 − 4 dB loss per out-of-plane waveguide crossing, 0.05 ± 0.02 dB per interplane coupler, and microring resonators on three planes with a quality factors up to 8.2 × 1 0 4 . We also explore a phase velocity mapping strategy to mitigate the cross talk between co-propagating waveguides on different planes. These results expand the utility of 3D photonic integration for applications such as optical interconnects, neuromorphic computing and optical phased arrays.

  5. Silicon takes a spin

    NARCIS (Netherlands)

    Jansen, R.

    An efficient way to transport electron spins from a ferromagnet into silicon essentially makes silicon magnetic, and provides an exciting step towards integration of magnetism and mainstream semiconductor electronics.

  6. Producing Silicon Carbide/Silicon Nitride Fibers

    Science.gov (United States)

    1986-01-01

    Manufacturing process makes CxSiyNz fibers. Precursor fibers spun from extruding machine charged with polycarbosilazane resin. When pyrolyzed, resin converted to cross-linked mixture of silicon carbide and silicon nitride, still in fiber form. CxSiyNz fibers promising substitutes for carbon fibers in high-strength, low-weight composites where high electrical conductivity unwanted.

  7. Thermofusion of the retina with the RPE to seal tears during retinal detachment repair.

    Science.gov (United States)

    Heriot, Wilson J

    2016-04-01

    To develop an animal model to test the hypothesis that immediate adhesion of the retina to the choroid (retinopexy) can be created by elimination of the water separating the retina from the retinal pigment epithelium (RPE) prior to photocoagulation. The retina and RPE are hydrophobic lipoprotein structures separated intraoperatively by a thin layer of fluid despite surgical drainage. If the RPE and retina are contacting, heating should create a unified local coagulum and achieve instantaneous fusing of the retina and RPE, thus sealing the subretinal space around the retinal tear. The surgical technique and histological findings in a rabbit model of rhegmatogenous retinal detachment (RRD) are reported here. Nine Dutch-belted, pigmented rabbits underwent vitrectomy with lensectomy, creation of localised retinal detachment by subretinal injection of balanced salt solution (BSS), enlargement of the hole and fluid-gas exchange to "re-attach" the retina. Dehydration of the retina surrounding the hole was achieved by an airstream from a flute needle. A laser (810 nm) was applied in long pulses to achieve a mild retinal reaction around the hole in the dehydrated adjacent retina. The BSS irrigation was resumed. Eyes were then enucleated and the treated retina examined histologically. The dehydrated and lasered retinal tear margin demonstrated fusion of the retina with the RPE/choroid. The non-dehydrated adjacent areas showed thermal tissue changes in the retina, RPE/choroid and adjacent sclera but remained separated by persistent subretinal fluid and no fusion or unified coagulum developed. Immediate laser-induced thermal fusion of the retina with the RPE at the margin of a retinal tear can be achieved by removing the subretinal fluid prior to photocoagulation. The integrated coagulum seals the tear margin preventing further fluid entering the subretinal space, thus correcting the cause of RRD. This method may facilitate RRD repair without buckling or internal tamponade.

  8. Silicon: electrochemistry and luminescence

    NARCIS (Netherlands)

    Kooij, Ernst Stefan

    1997-01-01

    The electrochemistry of crystalline and porous silicon and the luminescence from porous silicon has been studied. One chapter deals with a model for the anodic dissolution of silicon in HF solution. In following chapters both the electrochemistry and various ways of generating visible

  9. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Elkrief, Laurent

    2016-01-01

    is known about the distribution of the enzymes involved in the synthesis and degradation of these eCBs. We therefore examined the expression and localization of the main components of the eCB system in the retina of mice, tree shrews, and monkeys. We found that CB1R and FAAH distributions are well...... of the outer retina and in retinal neurons of the inner retina; in monkeys, CB2R is restricted to Müller cells. Finally, the expression patterns of MAGL and DAGLα are differently expressed across species. Overall, these results provide evidence that the eCB system is differently expressed in the retina...

  10. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  11. A Perspective on the Müller Cell-Neuron Metabolic Partnership in the Inner Retina

    DEFF Research Database (Denmark)

    Toft-Kehler, A K; Skytt, D M; Kolko, Miriam

    2017-01-01

    The Müller cells represent the predominant macroglial cell in the retina. In recent decades, Müller cells have been acknowledged to be far more influential on neuronal homeostasis in the retina than previously assumed. With its unique localization, spanning the entire retina being interposed...... between the vessels and neurons, Müller cells are responsible for the functional and metabolic support of the surrounding neurons. As a consequence of major energy demands in the retina, high levels of glucose are consumed and processed by Müller cells. The present review provides a perspective...

  12. Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina

    DEFF Research Database (Denmark)

    Klitten, Laura L; Rath, Martin F; Coon, Steven L

    2008-01-01

    Levels of dopamine and melatonin exhibit diurnal rhythms in the rat retina. Dopamine is high during daytime adapting the retina to light, whereas melatonin is high during nighttime participating in the adaptation of the retina to low light intensities. Dopamine inhibits the synthesis of melatonin...... in the photoreceptors via Drd4 receptors located on the cell membrane of these cells. In this study, we show by semiquantitative in situ hybridization a prominent day/night variation in Drd4 expression in the retina of the Sprague-Dawley rat with a peak during the nighttime. Drd4 expression is seen in all retinal...

  13. Dual illumination for cornea and retina imaging using spectral domain optical coherence tomography

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Wijesinghe, Ruchire Eranga; Ravichandran, Naresh Kumar; Jeon, Mansik; Kim, Jeehyun

    2017-04-01

    A dual illumination system is proposed for cornea and retina imaging using spectral domain optical coherence tomography (SD-OCT). The system is designed to acquire cornea and retina imaging with dual illumination with limited optics and using a single spectrometer. The beam propagation for cornea and retina imaging in dual illumination enables to acquire the images of different segments. This approach will reduce the imaging time for separate corneal and retinal imaging. The in vivo imaging of both the cornea and retina of a health volunteer shows the feasibility of the system for clinical applications

  14. Automated retina identification based on multiscale elastic registration.

    Science.gov (United States)

    Figueiredo, Isabel N; Moura, Susana; Neves, Júlio S; Pinto, Luís; Kumar, Sunil; Oliveira, Carlos M; Ramos, João D

    2016-12-01

    In this work we propose a novel method for identifying individuals based on retinal fundus image matching. The method is based on the image registration of retina blood vessels, since it is known that the retina vasculature of an individual is a signature, i.e., a distinctive pattern of the individual. The proposed image registration consists of a multiscale affine registration followed by a multiscale elastic registration. The major advantage of this particular two-step image registration procedure is that it is able to account for both rigid and non-rigid deformations either inherent to the retina tissues or as a result of the imaging process itself. Afterwards a decision identification measure, relying on a suitable normalized function, is defined to decide whether or not the pair of images belongs to the same individual. The method is tested on a data set of 21721 real pairs generated from a total of 946 retinal fundus images of 339 different individuals, consisting of patients followed in the context of different retinal diseases and also healthy patients. The evaluation of its performance reveals that it achieves a very low false rejection rate (FRR) at zero FAR (the false acceptance rate), equal to 0.084, as well as a low equal error rate (EER), equal to 0.053. Moreover, the tests performed by using only the multiscale affine registration, and discarding the multiscale elastic registration, clearly show the advantage of the proposed approach. The outcome of this study also indicates that the proposed method is reliable and competitive with other existing retinal identification methods, and forecasts its future appropriateness and applicability in real-life applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Rod progenitor cells in the mature zebrafish retina.

    Science.gov (United States)

    Morris, Ann C; Scholz, Tamera; Fadool, James M

    2008-01-01

    The zebrafish is an excellent model organism in which to study the retina's response to photoreceptor degeneration and/or acute injury. While much has been learned about the retinal stem and progenitor cells that mediate the damage response, several questions remain that cannot be addressed by acute models of injury. The development of genetic models, such as the XOPS-mCFP transgenic line, should further efforts to understand the nature of the signals that promote rod progenitor proliferation and differentiation following photoreceptor loss. This in turn may help to refine future approaches in higher vertebrates aimed at enhancing retinal progenitor cell activity for therapeutic purposes.

  16. [Ketamine-induced ultrastructural changes in the retina].

    Science.gov (United States)

    Magdolina, A

    1978-10-01

    Alterations of the retina caused by ketamin were studied in experiment. After a 60-minutes monoanaesthesia with ketamin ultrastructural changes were observed on the inner members of receptor cells, in the three nuclear layers and in the layer of nerve fibres. Severe damage to the structure of the Müller's glial cells providing nutrition to neural-elements was also revealed. Three days after the anaesthesia beside the regression of these alterations, glycogen deposits could be seen in the Müller's cells. This phenomenon and some side effects caused by ketamin can be explained by increased utilization of oxygen and relative hypoxia.

  17. Instant website optimization for retina displays how-to

    CERN Document Server

    Larson, Kyle J

    2013-01-01

    Written in an accessible and practical manner which quickly imparts the knowledge you want to know. As a How-to book it will use applied examples and teach you to optimize websites for retina displays. This book is for web designers and developers who are familiar with HTML, CSS, and editing graphics who would like to improve their existing website or their next web project with high-resolution images. You'll need to have a high-definition device to be able to test the examples in this book and a server to upload your code to if you're not developing it on that device.

  18. Silicon photonics beyond silicon-on-insulator

    Science.gov (United States)

    Chiles, Jeff; Fathpour, Sasan

    2017-05-01

    The standard platform for silicon photonics has been ridge or channel waveguides fabricated on silicon-on-insulator (SOI) wafers. SOI waveguides are so versatile and the technology built around it is so mature and popular that silicon photonics is almost regarded as synonymous with SOI photonics. However, due to several shortcomings of SOI photonics, novel platforms have been recently emerging. The shortcomings could be categorized into two sets: (a) those due to using silicon as the waveguide core material; and (b) those due to using silicon dioxide as the bottom cladding layer. Several heterogeneous platforms have been developed to address the first set of shortcomings. In such important heterogeneous integrated photonic platforms, the top silicon layer of SOI is typically replaced by a thin film of another optical material with a refractive index higher than the buried oxide (BOX) bottom cladding layer. Silicon is still usually preferred as the substrate of choice, but silicon has no optical functionality. In contrast, the second category of solutions aim at using silicon as the core waveguide material, while resolving issues related to the BOX layer. Particularly, one of the main drawbacks of SOI is that the BOX layer induces high optical loss in the mid-wavelength infrared (mid-IR) range. Accordingly, a host of platforms have been proposed, and some have been demonstrated, in which the BOX is replaced with insulating materials that have low intrinsic loss in the mid-IR. Examples are sapphire, lithium niobate, silicon nitride and air (suspended Si membrane waveguides). Although silicon is still the preferred substrate, sometimes a thin film of silicon, on which the optical waveguide is formed, is directly placed on top of another substrate (e.g., sapphire or lithium niobate). These alternative substrates act as both mechanical support and the lower cladding layer. In addition to the demands of mid-IR photonics, the non-SOI platforms can potentially offer other

  19. The chemistry of silicon

    CERN Document Server

    Rochow, E G; Emeléus, H J; Nyholm, Ronald

    1975-01-01

    Pergamon Texts in Organic Chemistry, Volume 9: The Chemistry of Silicon presents information essential in understanding the chemical properties of silicon. The book first covers the fundamental aspects of silicon, such as its nuclear, physical, and chemical properties. The text also details the history of silicon, its occurrence and distribution, and applications. Next, the selection enumerates the compounds and complexes of silicon, along with organosilicon compounds. The text will be of great interest to chemists and chemical engineers. Other researchers working on research study involving s

  20. Design and characterization of biofunctional magnetic porous silicon flakes.

    Science.gov (United States)

    Muñoz Noval, A; García, R; Ruiz Casas, D; Losada Bayo, D; Sánchez Vaquero, V; Torres Costa, V; Martín Palma, R J; García, M A; García Ruiz, J P; Serrano Olmedo, J J; Muñoz Negrete, J F; del Pozo Guerrero, F; Manso Silván, M

    2013-04-01

    Magnetic porous silicon flakes (MPSF) were obtained from mesoporous silicon layers formed by multi-step anodization and subsequent composite formation with Fe oxide nanoparticles by thermal annealing. The magnetic nanoparticles adhered to the surface and penetrated inside the pores. Their structure evolved as a result of the annealing treatments derived from X-ray diffraction and X-ray absorption analyses. Moreover, by tailoring the magnetic load, the dynamic and hydrodynamic properties of the particles were controlled, as observed by the pressure displayed against a sensor probe. Preliminary functionality experiments were performed using an eye model, seeking potential use of MPSF as reinforcement for restored detached retina. It was observed that optimal flake immobilization is obtained when the MPSF reach values of magnetic saturation >10(-4)Am(2)g(-1). Furthermore, the MPSF were demonstrated to be preliminarily biocompatible in vitro. Moreover, New Zealand rabbit in vivo models demonstrated their short-term histocompatibility and their magnetic functionality as retina pressure actuators. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  2. Tratamento do hemangioma de coróide e descolamento total da retina com vitrectomia posterior: relato de caso Choroidal hemangioma with extensive retinal detachment treated with posterior vitrectomy: case report

    Directory of Open Access Journals (Sweden)

    Luciana Duarte Rodrigues

    2007-06-01

    Full Text Available Apresentar a evolução de um caso de hemangioma circunscrito da coróide associado a descolamento total da retina tratado com vitrectomia posterior e endofotocoagulação. Relato de caso intervencional. Paciente do sexo feminino, com 41 anos, apresentava mancha escura na visão do olho direito há uma semana, com progressão da mancha para o campo inferior e diminuição súbita da acuidade visual há dois dias. Ao exame oftalmológico, apresentava acuidade visual menor que 20/400 no olho direito. À fundoscopia do olho direito, observava-se elevação da retina neurossensorial nos quatro quadrantes e uma lesão sub-retiniana avermelhada no pólo posterior, com bordas pouco nítidas. O ultra-som do olho direito mostrava membranas móveis de alta refletividade na cavidade vítrea (retina aderidas ao nervo óptico e presença de lesão sólida hiperecogênica, homogênea, no pólo posterior, com picos de média refletividade no seu interior, sugestiva de hemangioma de coróide Todos os exames sistêmicos foram normais. Optou-se pela vitrectomia posterior com endodrenagem, retinopexia, endofotocoagulação do tumor e colocação de gás C3F8. A retina manteve-se aplicada nos quinze primeiros dias da cirurgia, quando então apresentou novo descolamento inferior da retina sobre o tumor. Optou-se por nova vitrectomia posterior com endofotocoagulação e colocação de óleo de silicone. A paciente encontra-se no 6º mês de pós-operatório com a retina aplicada, óleo de silicone na cavidade vítrea, hemangioma com marcas de fotocoagulação (inativo?, acuidade visual igual a 20/400 no olho direito. A vitrectomia posterior surge como opção no tratamento do hemangioma da coróide associado a descolamentos extensos da retina, visando restabelecer a anatomia e diminuir as complicações funcionais tardias na retina.To describe a case of circumscribed choroidal hemangioma with extensive retinal detachment treated with vitrectomy and endolaser

  3. QRI, a retina-specific gene, encodes an extracellular matrix protein exclusively expressed during neural retina differentiation.

    Science.gov (United States)

    Casado, F J; Pouponnot, C; Jeanny, J C; Lecoq, O; Calothy, G; Pierani, A

    1996-02-01

    Neural retina development results from growth arrest of neuroectodermal precursors and differentiation of postmitotic cells. The QRI gene is specifically expressed in Müller retinal glial cells. Its expression coincides with the stage of withdrawal from the cell cycle and establishment of differentiation and is repressed upon induction of retinal cell proliferation by the v-src gene product. In this report, we show that the QR1 gene encodes several glycosylated proteins that are secreted and can either associate with the extracellular matrix or remain diffusible in the medium. By using pulse-chase experiments, the 100-103 kDa forms seem to appear first and are specifically incorporated into the extracellular matrix, whereas the 108 and 60 kDa polypeptides appear later and are detected as soluble forms in the culture medium. We also report that expression of the QR1 gene is developmentally regulated in the chicken. Its mRNA is first detectable at embryonic day 10, reaches a maximal level at embryonic day 15 and is no longer detected at embryonic day 18. Immunolocalization of the QR1 protein in chicken retina sections during development shows that expression of the protein parallels the differentiation pattern of post-miotic cells (in particular Müller cells and rods), corresponding to the two differentiation gradients in the retina: from the ganglion cell layer to the inner nuclear layer and outer nuclear layer, and from the optic nerve to the iris. At embryonic day 10, expression of the QR1 protein(s) is restricted to the optic nerve region and the inner nuclear layer, colocalizing with Müller cell bodies. As development proceeds, QR1 protein localization spreads towards the iris and towards the outer nuclear layer, following Müller cell elongations towards the photoreceptors. Between embryonic days 16 and 18, the QR1 protein is no longer detectable in the optic nerve region and is concentrated around the basal segment of the photoreceptors in the peripheral

  4. Emulated Muscle Spindle and Spiking Afferents Validates VLSI Neuromorphic Hardware as a Testbed for Sensorimotor Function and Disease

    Directory of Open Access Journals (Sweden)

    Chuanxin M. Niu

    2014-12-01

    Full Text Available The lack of multi-scale empirical measurements (e.g. recording simultaneously from neurons, muscles, whole body, etc. complicates understanding of sensorimotor function in humans. This is particularly true for the understanding of development during childhood, which requires evaluation of measurements over many years. We have developed a synthetic platform for emulating multi-scale activity of the vertebrate sensorimotor system. Our design benefits from Very Large Scale Integrated-circuit (VLSI technology to provide considerable scalability and high-speed, as much as 365x faster than real-time. An essential component of our design is the proprioceptive sensor, or muscle spindle. Here we demonstrate an accurate and extremely fast emulation of a muscle spindle and its spiking afferents, which are computationally expensive but fundamental for reflex functions. We implemented a well-known rate-based model of the spindle (Mileusnic et al., 2006 and a simplified spiking sensory neuron model using the Izhikevich approximation to the Hodgkin-Huxley model. The resulting behavior of our afferent sensory system is qualitatively compatible with classic cat soleus recording (Matthews, 1964; 1972; Crowe and Matthews, 1964b. Our results suggest that this simplified structure of the spindle and afferent neuron is sufficient to produce physiologically-realistic behavior. The VLSI technology allows us to accelerate this behavior beyond 365x real-time. Our goal is to use this testbed for predicting years of disease progression with only a few days of emulation. This is the first hardware emulation of the spindle afferent system, and it may have application not only for emulation of human health and disease, but also for the construction of compliant neuromorphic robotic systems.

  5. Emulated muscle spindle and spiking afferents validates VLSI neuromorphic hardware as a testbed for sensorimotor function and disease.

    Science.gov (United States)

    Niu, Chuanxin M; Nandyala, Sirish K; Sanger, Terence D

    2014-01-01

    The lack of multi-scale empirical measurements (e.g., recording simultaneously from neurons, muscles, whole body, etc.) complicates understanding of sensorimotor function in humans. This is particularly true for the understanding of development during childhood, which requires evaluation of measurements over many years. We have developed a synthetic platform for emulating multi-scale activity of the vertebrate sensorimotor system. Our design benefits from Very Large Scale Integrated-circuit (VLSI) technology to provide considerable scalability and high-speed, as much as 365× faster than real-time. An essential component of our design is the proprioceptive sensor, or muscle spindle. Here we demonstrate an accurate and extremely fast emulation of a muscle spindle and its spiking afferents, which are computationally expensive but fundamental for reflex functions. We implemented a well-known rate-based model of the spindle (Mileusnic et al., 2006) and a simplified spiking sensory neuron model using the Izhikevich approximation to the Hodgkin-Huxley model. The resulting behavior of our afferent sensory system is qualitatively compatible with classic cat soleus recording (Crowe and Matthews, 1964b; Matthews, 1964, 1972). Our results suggest that this simplified structure of the spindle and afferent neuron is sufficient to produce physiologically-realistic behavior. The VLSI technology allows us to accelerate this behavior beyond 365× real-time. Our goal is to use this testbed for predicting years of disease progression with only a few days of emulation. This is the first hardware emulation of the spindle afferent system, and it may have application not only for emulation of human health and disease, but also for the construction of compliant neuromorphic robotic systems.

  6. Reward-based learning under hardware constraints—using a RISC processor embedded in a neuromorphic substrate

    Science.gov (United States)

    Friedmann, Simon; Frémaux, Nicolas; Schemmel, Johannes; Gerstner, Wulfram; Meier, Karlheinz

    2013-01-01

    In this study, we propose and analyze in simulations a new, highly flexible method of implementing synaptic plasticity in a wafer-scale, accelerated neuromorphic hardware system. The study focuses on globally modulated STDP, as a special use-case of this method. Flexibility is achieved by embedding a general-purpose processor dedicated to plasticity into the wafer. To evaluate the suitability of the proposed system, we use a reward modulated STDP rule in a spike train learning task. A single layer of neurons is trained to fire at specific points in time with only the reward as feedback. This model is simulated to measure its performance, i.e., the increase in received reward after learning. Using this performance as baseline, we then simulate the model with various constraints imposed by the proposed implementation and compare the performance. The simulated constraints include discretized synaptic weights, a restricted interface between analog synapses and embedded processor, and mismatch of analog circuits. We find that probabilistic updates can increase the performance of low-resolution weights, a simple interface between analog synapses and processor is sufficient for learning, and performance is insensitive to mismatch. Further, we consider communication latency between wafer and the conventional control computer system that is simulating the environment. This latency increases the delay, with which the reward is sent to the embedded processor. Because of the time continuous operation of the analog synapses, delay can cause a deviation of the updates as compared to the not delayed situation. We find that for highly accelerated systems latency has to be kept to a minimum. This study demonstrates the suitability of the proposed implementation to emulate the selected reward modulated STDP learning rule. It is therefore an ideal candidate for implementation in an upgraded version of the wafer-scale system developed within the BrainScaleS project. PMID:24065877

  7. An experimental platform for systemic drug delivery to the retina.

    LENUS (Irish Health Repository)

    Campbell, Matthew

    2009-10-20

    Degenerative retinopathies, including age-related macular degeneration, diabetic retinopathy, and hereditary retinal disorders--major causes of world blindness--are potentially treatable by using low-molecular weight neuroprotective, antiapoptotic, or antineovascular drugs. These agents are, however, not in current systemic use owing to, among other factors, their inability to passively diffuse across the microvasculature of the retina because of the presence of the inner blood-retina barrier (iBRB). Moreover, preclinical assessment of the efficacies of new formulations in the treatment of such conditions is similarly compromised. We describe here an experimental process for RNAi-mediated, size-selective, transient, and reversible modulation of the iBRB in mice to molecules up to 800 Da by suppression of transcripts encoding claudin-5, a protein component of the tight junctions of the inner retinal vasculature. MRI produced no evidence indicative of brain or retinal edema, and the process resulted in minimal disturbance of global transcriptional patterns analyzed in neuronal tissue. We show that visual function can be improved in IMPDH1(-\\/-) mice, a model of autosomal recessive retinitis pigmentosa, and that the rate of photoreceptor cell death can be reduced in a model of light-induced retinal degeneration by systemic drug delivery after reversible barrier opening. These findings provide a platform for high-throughput drug screening in models of retinal degeneration, and they ultimately could result in the development of a novel "humanized" approach to therapy for conditions with little or no current forms of treatment.

  8. Pharmacological analysis of intrinsic neuronal oscillations in rd10 retina.

    Directory of Open Access Journals (Sweden)

    Sonia Biswas

    Full Text Available In the widely used mouse model of retinal degeneration, rd1, the loss of photoreceptors leads to rhythmic electrical activity of around 10-16 Hz in the remaining retinal network. Recent studies suggest that this oscillation is formed within the electrically coupled network of AII amacrine cells and ON-bipolar cells. A second mouse model, rd10, displays a delayed onset and slower progression of degeneration, making this mouse strain a better model for human retinitis pigmentosa. In rd10, oscillations occur at a frequency of 3-7 Hz, raising the question whether oscillations have the same origin in the two mouse models. As rd10 is increasingly being used as a model to develop experimental therapies, it is important to understand the mechanisms underlying the spontaneous rhythmic activity. To study the properties of oscillations in rd10 retina we combined multi electrode recordings with pharmacological manipulation of the retinal network. Oscillations were abolished by blockers for ionotropic glutamate receptors and gap junctions. Frequency and amplitude of oscillations were modulated strongly by blockers of inhibitory receptors and to a lesser extent by blockers of HCN channels. In summary, although we found certain differences in the pharmacological modulation of rhythmic activity in rd10 compared to rd1, the overall pattern looked similar. This suggests that the generation of rhythmic activity may underlie similar mechanisms in rd1 and rd10 retina.

  9. Flash photolysis of rhodopsin in the cat retina

    Science.gov (United States)

    1981-01-01

    The bleaching of rhodopsin by short-duration flashes of a xenon discharge lamp was studied in vivo in the cat retina with the aid of a rapid, spectral-scan fundus reflectometer. Difference spectra recorded over a broad range of intensities showed that the bleaching efficacy of high-intensity flashes was less than that of longer duration, steady lights delivering the same amount of energy. Both the empirical results and those derived from a theoretical analysis of flash photolysis indicate that, under the conditions of these experiments, the upper limit of the flash bleaching of rhodopsin in cat is approximately 90%. Although the fact that a full bleach could not be attained is attributable to photoreversal, i.e., the photic regeneration of rhodopsin from its light-sensitive intermediates, the 90% limit is considerably higher than the 50% (or lower) value obtained under other experimental circumstances. Thus, it appears that the duration (approximately 1 ms) and spectral composition of the flash, coupled with the kinetic parameters of the thermal and photic reactions in the cat retina, reduce the light-induced regeneration of rhodopsin to approximately 10%. PMID:7252476

  10. A Retina Inspired Model for Enhancing Visibility of Hazy Images

    Directory of Open Access Journals (Sweden)

    Xian-Shi eZhang

    2015-12-01

    Full Text Available The mammalian retina seems far smarter than scientists have believed so far. Inspired by the visual processing mechanisms in the retina, from the layer of photoreceptors to the layer of retinal ganglion cells (RGCs, we propose a computational model for haze removal from a single input image, which is an important issue in the field of image enhancement. In particular, the bipolar cells serve to roughly remove the low-frequency of haze, and the amacrine cells modulate the output of cone bipolar cells to compensate the loss of details by increasing the image contrast. Then the RGCs with disinhibitory receptive field surround refine the local haze removal as well as the image detail enhancement. Results on a variety of real-world and synthetic hazy images show that the proposed model yields results comparative to or even better than the state-of-the-art methods, having the advantage of simultaneous dehazing and enhancing of single hazy image with simple and straightforward implementation.

  11. How Azobenzene Photoswitches Restore Visual Responses to the Blind Retina.

    Science.gov (United States)

    Tochitsky, Ivan; Helft, Zachary; Meseguer, Victor; Fletcher, Russell B; Vessey, Kirstan A; Telias, Michael; Denlinger, Bristol; Malis, Jonatan; Fletcher, Erica L; Kramer, Richard H

    2016-10-05

    Azobenzene photoswitches confer light sensitivity onto retinal ganglion cells (RGCs) in blind mice, making these compounds promising candidates as vision-restoring drugs in humans with degenerative blindness. Remarkably, photosensitization manifests only in animals with photoreceptor degeneration and is absent from those with intact rods and cones. Here we show that P2X receptors mediate the entry of photoswitches into RGCs, where they associate with voltage-gated ion channels, enabling light to control action-potential firing. All charged photoswitch compounds require permeation through P2X receptors, whose gene expression is upregulated in the blind retina. Photoswitches and membrane-impermeant fluorescent dyes likewise penetrate through P2X receptors to label a subset of RGCs in the degenerated retina. Electrophysiological recordings and mapping of fluorescently labeled RGC dendritic projections together indicate that photosensitization is highly selective for OFF-RGCs. Hence, P2X receptors are a natural conduit allowing cell-type-selective and degeneration-specific delivery of photoswitches to restore visual function in blinding disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Microglia-Derived Nerve Growth Factor Causes Cell Death in the Developing Retina

    National Research Council Canada - National Science Library

    Frade, José María; Barde, Yves-Alain

    1998-01-01

    ... antibodies reduces normally occurring cell death in the avian retina ( Frade et al. 1996 ). Already during the fourth day of development in the chick, dying cells can be observed, particularly in the central retina, and it has been suggested that this may serve the purpose of creating space to accommodate the incoming axons of the retinal gangl...

  13. Pannexin1 channel proteins in the zebrafish retina have shared and unique properties

    NARCIS (Netherlands)

    Kurtenbach, Sarah; Prochnow, Nora; Kurtenbach, Stefan; Klooster, Jan; Zoidl, Christiane; Dermietzel, Rolf; Kamermans, Maarten; Zoidl, Georg

    2013-01-01

    In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina,

  14. Wavy multistratified amacrine cells in the monkey retina contain immunoreactive secretoneurin

    DEFF Research Database (Denmark)

    Bordt, Andrea S; Long, Ye; Kouyama, Nobuo

    2017-01-01

    The goals of this study were to describe the morphology, neurotransmitter content and synaptic connections of neurons in primate retinas that contain the neuropeptide secretoneurin. Amacrine cells were labeled with antibodies to secretoneurin in macaque and baboon retinas. Their processes formed ...

  15. Protein changes in the retina following experimental retinal detachment in rabbits

    DEFF Research Database (Denmark)

    Mandal, Nakul; Lewis, Geoffrey P; Fisher, Steven K

    2011-01-01

    Retinal detachment leads to the widespread cellular remodeling of the retina. The purpose of this study was to identify protein changes that accompany these cellular alterations by comparing the proteomic profiles of sham and experimentally detached rabbit retina. Elucidation of the proteins most...

  16. A comparison of some organizational characteristics of the mouse central retina and the human macula.

    Science.gov (United States)

    Volland, Stefanie; Esteve-Rudd, Julian; Hoo, Juyea; Yee, Claudine; Williams, David S

    2015-01-01

    Mouse models have greatly assisted our understanding of retinal degenerations. However, the mouse retina does not have a macula, leading to the question of whether the mouse is a relevant model for macular degeneration. In the present study, a quantitative comparison between the organization of the central mouse retina and the human macula was made, focusing on some structural characteristics that have been suggested to be important in predisposing the macula to stresses leading to degeneration: photoreceptor density, phagocytic load on the RPE, and the relative thinness of Bruch's membrane. Light and electron microscopy measurements from retinas of two strains of mice, together with published data on human retinas, were used for calculations and subsequent comparisons. As in the human retina, the central region of the mouse retina possesses a higher photoreceptor cell density and a thinner Bruch's membrane than in the periphery; however, the magnitudes of these periphery to center gradients are larger in the human. Of potentially greater relevance is the actual photoreceptor cell density, which is much greater in the mouse central retina than in the human macula, underlying a higher phagocytic load for the mouse RPE. Moreover, at eccentricities that correspond to the peripheral half of the human macula, the rod to cone ratio is similar between mouse and human. Hence, with respect to photoreceptor density and phagocytic load of the RPE, the central mouse retina models at least the more peripheral part of the macula, where macular degeneration is often first evident.

  17. In vivo cellular visualization of the human retina using optical coherence tomography and adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Jones, S M; Chen, D C; Zawadzki, R J; Choi, S S; Laut, S P; Werner, J S

    2006-01-05

    Optical coherence tomography (OCT) sees the human retina sharply with adaptive optics. In vivo cellular visualization of the human retina at micrometer-scale resolution is possible by enhancing Fourier-domain optical-coherence tomography with adaptive optics, which compensate for the eye's optical aberrations.

  18. A method to determine the mechanical properties of the retina based on an experiment in vivo.

    Science.gov (United States)

    Qian, Xiuqing; Zhang, Kunya; Liu, Zhicheng

    2015-01-01

    A method is proposed to determine the mechanical properties of retina based on in vivo experiments and numerical simulations. First, saline water was injected into the anterior chamber of the right eye of a cat to cause acute high intraocular pressure. After the eye was scanned using optical coherence tomography under different acute high intraocular pressures, the images of the retina in vivo were obtained and the thickness of the retina was calculated. Then, the three-dimensional structure of the optic nerve head including the retina and the choroid were reconstructed using image processing technology. Three different material models for the retina and the choroid were taken and the finite element models of the optic nerve head were constructed. Finally, an inverse method was proposed to determine the parameters of a constitutive model of the retina and of the choroid simultaneously. The results showed that the deformation of the retina can be properly simulated taking into consideration the nonlinear elastic properties of the retina and of the choroid.

  19. Immune cells in the porcine retina: distribution, characterization and morphological features

    NARCIS (Netherlands)

    Yang, Peizeng; Chen, Ling; Zwart, Rob; Kijlstra, Aize

    2002-01-01

    To investigate the presence of immunocompetent cells in the porcine retina and to compare the findings with those obtained earlier in human retinas. Retinal wholemounts or cryostat sections from outbred Dutch Landrace pigs were analyzed for the presence of microglia (CD45), macrophages-monocytes

  20. Pannexin1 in the outer retina of the zebrafish, Danio rerio

    NARCIS (Netherlands)

    Prochnow, N.; Hoffmann, S.; Vroman, R.; Klooster, J.; Bunse, S.; Kamermans, M.; Dermietzel, R.; Zoidl, G.

    2009-01-01

    In the retina, chemical and electrical synapses couple neurons into functional networks. New candidates encoding for electrical synapse proteins have recently emerged. In the present study, we determined the localization of the candidate protein pannexin1 (zfPanx1) in the zebrafish retina and

  1. Noninvasive functional imaging of the retina reveals outer retinal and hemodynamic intrinsic optical signal origins

    NARCIS (Netherlands)

    Ts’o, Daniel; Schallek, Jesse; Kwon, Young; Kardon, Randy; Abramoff, Michael; Soliz, Peter

    2009-01-01

    We have adapted intrinsic signal optical imaging of neural activity to the noninvasive functional imaging of the retina. Results to date demonstrate the feasibility and potential of this new method of functional assessment of the retina. In response to visual stimuli, we have imaged reflectance

  2. Delayed neurogenesis with respect to eye growth shapes the pigeon retina for high visual acuity.

    Science.gov (United States)

    Rodrigues, Tania; Krawczyk, Michal; Skowronska-Krawczyk, Dorota; Matter-Sadzinski, Lidia; Matter, Jean-Marc

    2016-12-15

    The macula and fovea located at the optical centre of the retina make primate visual perception unique among mammals. Our current understanding of retina ontogenesis is primarily based on animal models having no macula and no fovea. However, the pigeon retina and the human macula share a number of structural and functional properties that justify introducing the former as a new model system for retina development. Comparative transcriptome analysis of pigeon and chicken retinas at different embryonic stages reveals that the genetic programmes underlying cell differentiation are postponed in the pigeon until the end of the period of cell proliferation. We show that the late onset of neurogenesis has a profound effect on the developmental patterning of the pigeon retina, which is at odds with the current models of retina development. The uncoupling of tissue growth and neurogenesis is shown to result from the fact that the pigeon retinal epithelium is inhibitory to cell differentiation. The sum of these developmental features allows the pigeon to build a retina that displays the structural and functional traits typical of primate macula and fovea. © 2016. Published by The Company of Biologists Ltd.

  3. MPP1 links the Usher protein network and the Crumbs protein complex in the retina.

    NARCIS (Netherlands)

    Gosens, I.; Wijk, E. van; Kersten, F.F.J.; Krieger, E.; Zwaag, B. van der; Marker, T.; Letteboer, S.J.F.; Dusseljee, S.; Peters, T.; Spierenburg, H.A.; Punte, I.M.; Wolfrum, U.; Cremers, F.P.M.; Kremer, H.; Roepman, R.

    2007-01-01

    The highly ordered distribution of neurons is an essential feature of a functional mammalian retina. Disruptions in the apico-basal polarity complexes at the outer limiting membrane (OLM) of the retina are associated with retinal patterning defects in vertebrates. We have analyzed the binding

  4. ENERGETICS TRANSFER IN THE PHOTODYNAMIC REACTIONS. I. PHOTODYNAMIC SENSITIVITY OF THE RETINA. II. PHOTODYNAMIC ACTION AND CANCER. III. PHOTOCHEMICAL SYNTHESIS OF AMINO ACIDS IN ABIOGENIC CONDITIONS.

    Science.gov (United States)

    PHOTOSENSITIVITY(BIOLOGICAL), *CANCER, * AMINO ACIDS , RETINA, PHOTOCHEMICAL REACTIONS, RETINA, PATHOLOGY, RESPIRATION, GLYCOLYSIS, FISHES, ELECTROPHYSIOLOGY, FORMALDEHYDE, CATALYSTS, LIGHT, STIMULATION(PHYSIOLOGY), CHEMORECEPTORS, OXYGEN, ULTRAVIOLET RADIATION, MICE, ITALY.

  5. Heterogeneity of glia in the retina and optic nerve of birds and mammals.

    Directory of Open Access Journals (Sweden)

    Andy J Fischer

    2010-06-01

    Full Text Available We have recently described a novel type of glial cell that is scattered across the inner layers of the avian retina [1]. These cells are stimulated by insulin-like growth factor 1 (IGF1 to proliferate, migrate distally into the retina, and up-regulate the nestin-related intermediate filament transition. These changes in glial activity correspond with increased susceptibility of neurons to excitotoxic damage. This novel cell-type has been termed the Non-astrocytic Inner Retinal Glia-like (NIRG cells. The purpose of the study was to investigate whether the retinas of non-avian species contain cells that resemble NIRG cells. We assayed for NIRG cells by probing for the expression of Sox2, Sox9, Nkx2.2, vimentin and nestin. NIRG cells were distinguished from astrocytes by a lack of expression for Glial Fibrilliary Acidic Protein (GFAP. We examined the retinas of adult mice, guinea pigs, dogs and monkeys (Macaca fasicularis. In the mouse retina and optic nerve head, we identified numerous astrocytes that expressed GFAP, S100beta, Sox2 and Sox9; however, we found no evidence for NIRG-like cells that were positive for Nkx2.2, nestin, and negative for GFAP. In the guinea pig retina, we did not find astrocytes or NIRG cells in the retina, whereas we identified astrocytes in the optic nerve. In the eyes of dogs and monkeys, we found astrocytes and NIRG-like cells scattered across inner layers of the retina and within the optic nerve. We conclude that NIRG-like cells are present in the retinas of canines and non-human primates, whereas the retinas of mice and guinea pigs do not contain NIRG cells.

  6. Effectiveness of selenium on acrylamide toxicity to retina

    Directory of Open Access Journals (Sweden)

    Mervat Ahmed Ali

    2014-08-01

    Full Text Available AIM: To investigate the hematological parameters, biochemical and electrophysiological role of acrylamide (ACR in the retina and to assess whether selenium (Se has protective potential in experimental oral intoxication with ACR.METHODS: Sixty Wistar age matched-albino rats (3mo weighing 195-230 g comprised of both sex were divided into 4 groups. Group I served as the control one in which animals take saline; group II was animals administrated ACR in dose of 15 mg/kg body weight per day for 28d; group III was animals received ACR then additionally Se (0.1 mg/kg body weight for 28d; and group IV was animals received Se only (0.1 mg/kg body weight for 28d. Blood analysis and serum trace element levels (Fe, Cu, and Zn were measured. The electroretinogram (ERG was recorded, the levels of malondialdehyde (MDA and glutathione peroxidase (GSH-Px in the retinal tissues were determined. Moreover the regulation of ion channels such as calcium, sodium and potassium were studied. All measurements were done for all groups after 28d.RESULTS:Administration of ACR in group II caused a significant decrease (P<0.05 in hemoglobin (Hb, red blood cells (RBCs, hematocrit (HCT, white blood cells (WBCs and lymphocyte of rats. A significant decrease (P<0.05 in Zn level, and alkaline phosphatase enzyme was observed compared to control. ERG which is a reflection of the electric activity in the retina; a- and-b wave amplitudes in ACR group had a reduction of 40% and 20% respectively. These changes accompanied by significant increases (P<0.05 in MDA level in the ACR group, in contrast with GSH-Px which is significant decreased (P<0.05. Moreover sodium and calcium were significant increased but potassium was significant decreased (P<0.05 compared to control group. There were no significant differences between group III (treated with Se and control in all hematological parameter. Also serum trace elements levels (Cu, Fe and Zn, alkaline phosphatase enzyme and electric activity

  7. Liquid Silicon Pouch Anode

    Science.gov (United States)

    2017-09-06

    Docket No. 300139 1 of 13 LIQUID SILICON POUCH ANODE STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured... silicon -based anodes during cycling, lithium insertion and deinsertion. Mitigation of this problem has long been sought and will result in improved...with other potential lithium alloy materials such as gallium and tin. Silicon -based solid state anodes are typically composed of small particles of

  8. Silicon spin communication

    OpenAIRE

    Dery, Hanan; Song, Yang; Li, Pengke; Zutic, Igor

    2011-01-01

    Recent experimental breakthroughs have demonstrated that the electron spin in silicon can be reliably injected and detected as well as transferred over distances exceeding 1 mm. We propose an on-chip communication paradigm which is based on modulating spin polarization of a constant current in silicon wires. We provide figures of merit for this scheme by studying spin relaxation and drift-diffusion models in silicon.

  9. Handbook of silicon photonics

    CERN Document Server

    Pavesi, Lorenzo

    2013-01-01

    The development of integrated silicon photonic circuits has recently been driven by the Internet and the push for high bandwidth as well as the need to reduce power dissipation induced by high data-rate signal transmission. To reach these goals, efficient passive and active silicon photonic devices, including waveguide, modulators, photodetectors, multiplexers, light sources, and various subsystems, have been developed that take advantage of state-of-the-art silicon technology.

  10. Silicon web process development

    Science.gov (United States)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  11. New insights into retinoid metabolism and cycling within the retina

    Science.gov (United States)

    Tang, Peter H.; Kono, Masahiro; Koutalos, Yiannis; Ablonczy, Zsolt; Crouch, Rosalie K.

    2013-01-01

    The retinoid cycle is a series of biochemical reactions within the eye that is responsible for synthesizing the chromophore, 11-cis retinal, for visual function. The chromophore is bound to G-protein coupled receptors, opsins, within rod and cone photoreceptor cells forming the photosensitive visual pigments. Integral to the sustained function of photoreceptors is the continuous generation of chromophore by the retinoid cycle through two separate processes, one that supplies both rods and cones and another that exclusively supplies cones. Recent findings such as RPE65 localization within cones and the pattern of distribution of retinoid metabolites within mouse and human retinas have challenged previous proposed schemes. This review will focus on recent findings regarding the transport of retinoids, the mechanisms by which chromophore is supplied to both rods and cones, and the metabolism of retinoids within the posterior segment of the eye. PMID:23063666

  12. The circadian clock system in the mammalian retina.

    Science.gov (United States)

    Tosini, Gianluca; Pozdeyev, Nikita; Sakamoto, Katsuhiko; Iuvone, P Michael

    2008-07-01

    Daily rhythms are a ubiquitous feature of living systems. Generally, these rhythms are not just passive consequences of cyclic fluctuations in the environment, but instead originate within the organism. In mammals, including humans, the master pacemaker controlling 24-hour rhythms is localized in the suprachiasmatic nuclei of the hypothalamus. This circadian clock is responsible for the temporal organization of a wide variety of functions, ranging from sleep and food intake, to physiological measures such as body temperature, heart rate and hormone release. The retinal circadian clock was the first extra-SCN circadian oscillator to be discovered in mammals and several studies have now demonstrated that many of the physiological, cellular and molecular rhythms that are present within the retina are under the control of a retinal circadian clock, or more likely a network of hierarchically organized circadian clocks that are present within this tissue. BioEssays 30:624-633, 2008. (c) 2008 Wiley Periodicals, Inc.

  13. Using Stem Cells to Model Diseases of the Outer Retina

    Directory of Open Access Journals (Sweden)

    Camille Yvon

    2015-01-01

    Full Text Available Retinal degeneration arises from the loss of photoreceptors or retinal pigment epithelium (RPE. It is one of the leading causes of irreversible blindness worldwide with limited effective treatment options. Generation of induced pluripotent stem cell (IPSC-derived retinal cells and tissues from individuals with retinal degeneration is a rapidly evolving technology that holds a great potential for its use in disease modelling. IPSCs provide an ideal platform to investigate normal and pathological retinogenesis, but also deliver a valuable source of retinal cell types for drug screening and cell therapy. In this review, we will provide some examples of the ways in which IPSCs have been used to model diseases of the outer retina including retinitis pigmentosa (RP, Usher syndrome (USH, Leber congenital amaurosis (LCA, gyrate atrophy (GA, juvenile neuronal ceroid lipofuscinosis (NCL, Best vitelliform macular dystrophy (BVMD and age related macular degeneration (AMD.

  14. Visual system based on artificial retina for motion detection.

    Science.gov (United States)

    Barranco, Francisco; Díaz, Javier; Ros, Eduardo; del Pino, Begoña

    2009-06-01

    We present a bioinspired model for detecting spatiotemporal features based on artificial retina response models. Event-driven processing is implemented using four kinds of cells encoding image contrast and temporal information. We have evaluated how the accuracy of motion processing depends on local contrast by using a multiscale and rank-order coding scheme to select the most important cues from retinal inputs. We have also developed some alternatives by integrating temporal feature results and obtained a new improved bioinspired matching algorithm with high stability, low error and low cost. Finally, we define a dynamic and versatile multimodal attention operator with which the system is driven to focus on different target features such as motion, colors, and textures.

  15. Pixel detectors for use in retina neurophysiology studies

    CERN Document Server

    Cunningham, W; Chichilnisky, E J; Horn, M; Litke, A M; Mathieson, K; McEwan, F A; Melone, J; O'Shea, V; Rahman, M; Smith, K M

    2003-01-01

    One area of major inter-disciplinary co-operation is between the particle physics and bio-medical communities. The type of large detector arrays and fast electronics developed in laboratories like CERN are becoming used for a wide range of medical and biological experiments. In the present work fabrication technology developed for producing semiconductor radiation detectors has been applied to produce arrays which have been used in neuro-physiological experiments on retinal tissue. We have exploited UVIII, a low molecular weight resist, that has permitted large area electron beam lithography. This allows the resolution to go below that of conventional photolithography and hence the production of densely packed similar to 500 electrode arrays with feature sizes down to below 2 mum. The neural signals from significant areas of the retina may thus be captured.

  16. Electrophysiological responses of the mouse retina to 12C ions.

    Science.gov (United States)

    Sannita, Walter G; Peachey, Neal S; Strettoi, Enrica; Ball, Sherry L; Belli, Francesco; Bidoli, Vittorio; Carozzo, Simone; Casolino, Marco; Di Fino, Luca; Picozza, Piergiorgio; Pignatelli, Vincenzo; Rinaldi, Adele; Saturno, Moreno; Schardt, Dieter; Vazquez, Marcelo; Zaconte, Veronica; Narici, Livio

    2007-04-18

    Phosphenes ("light flashes") have been reported by most astronauts on space missions and by healthy subjects whose eyes were exposed to ionizing radiation in early experiments in particle accelerators. The conditions of occurrence suggested retinal effects of heavy ions. To develop an in vivo animal model, we irradiated the eyes of anesthetized wild-type mice with repeated bursts of 12C ions delivered under controlled conditions in accelerator. 12C ions evoked electrophysiological retinal mass responses and activated the visual system as indicated by responses recorded from the visual cortex. No retinal immunohistological damage was detected. Mice proved a suitable animal model to study radiation-induced phosphenes in vivo and our findings are consistent with an origin of phosphenes in radiation activating the retina.

  17. Melanopsin bistability: a fly's eye technology in the human retina.

    Directory of Open Access Journals (Sweden)

    Ludovic S Mure

    Full Text Available In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP. Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of "photic memory" since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms.

  18. Specific sphingolipid content decrease in Cerkl knockdown mouse retinas

    Science.gov (United States)

    Garanto, Alejandro; Mandal, Nawajes A.; Egido-Gabás, Meritxell; Marfany, Gemma; Fabriàs, Gemma; Anderson, Robert E.; Casas, Josefina; Gonzàlez-Duarte, Roser

    2014-01-01

    Sphingolipids (SPLs) are finely tuned structural compounds and bioactive molecules involved in membrane fluidity and cellular homeostasis. The core sphingolipid, ceramide (CER), and its derivatives, regulate several crucial processes in neuronal cells, among them cell differentiation, cell–cell interactions, membrane conductance, synaptic transmission, and apoptosis. Mutations in Ceramide Kinase-Like (CERKL) cause autosomal recessive Retinitis Pigmentosa and Cone Rod Dystrophy. The presence of a conserved lipid kinase domain and the overall similarity with CERK suggested that CERKL might play a role in the SPL metabolism as a CER kinase. Unfortunately, CERKL function and substrate(s), as well as its contribution to the retinal etiopathology, remain as yet unknown. In this work we aimed to characterize the mouse retinal sphingolipidome by UPLC-TOF to first, thoroughly investigate the SPL composition of the murine retina, compare it to our Cerkl −/− model, and finally assess new possible CERKL substrates by phosphorus quantification and protein-lipid overlay. Our results showed a consistent and notable decrease of the retinal SPL content (mainly ranging from 30% to 60%) in the Cerkl −/− compared to WT retinas, which was particularly evident in the glucosyl/galactosyl ceramide species (Glc/GalCer) whereas the phospholipids and neutral lipids remained unaltered. Moreover, evidence in favor of CERKL binding to GlcCer, GalCer and sphingomyelin has been gathered. Altogether, these results highlight the involvement of CERKL in the SPL metabolism, question its role as a kinase, and open new scenarios concerning its function. PMID:23501591

  19. Multifunctional glial support by Semper cells in the Drosophila retina.

    Directory of Open Access Journals (Sweden)

    Mark A Charlton-Perkins

    2017-05-01

    Full Text Available Glial cells play structural and functional roles central to the formation, activity and integrity of neurons throughout the nervous system. In the retina of vertebrates, the high energetic demand of photoreceptors is sustained in part by Müller glia, an intrinsic, atypical radial glia with features common to many glial subtypes. Accessory and support glial cells also exist in invertebrates, but which cells play this function in the insect retina is largely undefined. Using cell-restricted transcriptome analysis, here we show that the ommatidial cone cells (aka Semper cells in the Drosophila compound eye are enriched for glial regulators and effectors, including signature characteristics of the vertebrate visual system. In addition, cone cell-targeted gene knockdowns demonstrate that such glia-associated factors are required to support the structural and functional integrity of neighboring photoreceptors. Specifically, we show that distinct support functions (neuronal activity, structural integrity and sustained neurotransmission can be genetically separated in cone cells by down-regulating transcription factors associated with vertebrate gliogenesis (pros/Prox1, Pax2/5/8, and Oli/Olig1,2, respectively. Further, we find that specific factors critical for glial function in other species are also critical in cone cells to support Drosophila photoreceptor activity. These include ion-transport proteins (Na/K+-ATPase, Eaat1, and Kir4.1-related channels and metabolic homeostatic factors (dLDH and Glut1. These data define genetically distinct glial signatures in cone/Semper cells that regulate their structural, functional and homeostatic interactions with photoreceptor neurons in the compound eye of Drosophila. In addition to providing a new high-throughput model to study neuron-glia interactions, the fly eye will further help elucidate glial conserved "support networks" between invertebrates and vertebrates.

  20. Axonal synapses utilize multiple synaptic ribbons in the mammalian retina.

    Directory of Open Access Journals (Sweden)

    Hong-Lim Kim

    Full Text Available In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.

  1. FABRICATION OF A RETINAL PROSTHETIC TEST DEVICE USING ELECTRODEPOSITED SILICON OVER POLYPYRROLE PATTERNED WITH SU-8 PHOTORESIST.

    Science.gov (United States)

    Miller, Eric; Ellis, Daniel; Charles, Duran; McKenzie, Jason

    2015-01-01

    A materials fabrication study of a photodiode array for possible application of retina prosthesis was undertaken. A test device was fabricated using a glassy carbon electrode patterned with SU-8 photoresist. In the openings, p-type polypyrrole was first electrodeposited using 1-butyl-1-methylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquid. The polypyrrole was self-doped with imide ion at ~1.5 mole %, was verified as p-type, and had a resistivity of ~20 Ωcm. N-type Silicon was then electrodeposited over this layer using silicon tetrachloride / phosphorus trichloride in acetonitrile and passivated in a second electrodeposition using trimethylchlorosilane. Electron microscopy revealed the successful electrodeposition of silicon over patterned polypyrrole. Rudimentary photodiode behavior was observed. The passivation improved but did not completely protect the electrodeposited silicon from oxidation by air.

  2. Normal retina releases a diffusible factor stimulating cone survival in the retinal degeneration mouse

    Science.gov (United States)

    Mohand-Said, Saddek; Deudon-Combe, Alain; Hicks, David; Simonutti, Manuel; Forster, Valérie; Fintz, Anne-Claire; Léveillard, Thierry; Dreyfus, Henri; Sahel, José-Alain

    1998-01-01

    The role of cellular interactions in the mechanism of secondary cone photoreceptor degeneration in inherited retinal degenerations in which the mutation specifically affects rod photoreceptors was studied. We developed an organ culture model of whole retinas from 5-week-old mice carrying the retinal degeneration mutation, which at this age contain few remaining rods and numerous surviving cones cocultured with primary cultures of mixed cells from postnatal day 8 normal-sighted mice (C57BL/6) retinas or retinal explants from normal (C57BL/6) or dystrophic (C3H/He) 5-week-old mice. After 7 days, the numbers of residual cone photoreceptors were quantified after specific peanut lectin or anti-arrestin antibody labeling by using an unbiased stereological approach. Examination of organ cultured retinas revealed significantly greater numbers of surviving cones (15–20%) if cultured in the presence of retinas containing normal rods as compared with controls or cocultures with rod-deprived retinas. These data indicate the existence of a diffusible trophic factor released from retinas containing rod cells and acting on retinas in which only cones are present. Because cones are responsible for high acuity and color vision, such data could have important implications not only for eventual therapeutic approaches to human retinal degenerations but also to define interactions between retinal photoreceptor types. PMID:9653191

  3. AII amacrine cells express the MT1 melatonin receptor in human and macaque retina.

    Science.gov (United States)

    Scher, Judite; Wankiewicz, Ellen; Brown, Gregory M; Fujieda, Hiroki

    2003-09-01

    AII amacrine cells are critical interneurons in the rod pathway of mammalian retina, active primarily in dim lighting conditions. Melatonin, a neuromodulator produced at night in the retina, is believed to induce retinal adaptation to dim lighting conditions in most vertebrate species examined to date, including humans. We hypothesized that melatonin may influence retinal light adaptation by acting on AII cells directly and thus investigated whether melatonin receptors were expressed in AII neurons. Postmortem nonpathological eyes from four human donors as well as two eyes from two Macaque Fasicularis monkeys were analyzed. Double immunocytochemistry was performed using an anti-MT(1) antibody and an antibody to calretinin, an AII marker. Analysis utilized confocal microscopy. A polyclonal anti-calretinin antibody labelled amacrine cells exhibiting the distinct AII morphology, in both human and macaque retina. MT(1) immunoreactivity in macaque retina was similar to human staining, in that horizontal, amacrine and ganglion cell bodies were stained, as were inner segments of photoreceptors. In human retina 86% of calretinin positive cells expressed the MT(1) receptor peripherally, whereas centrally, 78% colocalization was observed. In the macaque retina, 100% of AII amacrine cells expressed MT(1) immunoreactivity both centrally and peripherally. That virtually all AII neurons express the MT(1) receptor in both human and macaque retina, may provide the first evidence demonstrating a role for melatonin in AII regulation, furthering the hypothesis of melatonin function in retinal light adaptation.

  4. The photoreceptor populations in the retina of the greater horseshoe bat Rhinolophus ferrumequinum.

    Science.gov (United States)

    Kim, Tae-Jin; Jeon, Young-Ki; Lee, Jea-Young; Lee, Eun-Shil; Jeon, Chang-Jin

    2008-10-31

    Recently, we reported the existence of AII "rod" amacrine cells in the retina of the greater horseshoe bat Rhinolophus ferrumequinum (Jeon et al., 2007). In order to enhance our understanding of bat vision, in the present study, we report on a quantitative analysis of cone and rod photoreceptors. The average cone density was 9,535 cells/mm2, giving a total number of cones of 33,538 cells/retina. The average rod density was 368,891 cells/mm2, giving a total number of rods of 1,303,517 cells. On average, the total populations of rods were 97.49%, and cones were 2.51% of all the photoreceptors. Rod: cone ratios ranged from 33.85:1 centrally to 42.26:1 peripherally, with a mean ratio of 38.96:1. The average regularity index of the cone mosaic in bat retina was 3.04. The present results confirm the greater horseshoe bat retina to be strongly rod-dominated. The rod-dominated retina, with the existence of AII cells discovered in our previous study, strongly suggests that the greater horseshoe bat retina has a functional scotopic property of vision. However, the existence of cone cells also suggests that the bat retina has a functional photopic property of vision.

  5. Insulin stimulated-glucose transporter Glut 4 is expressed in the retina.

    Directory of Open Access Journals (Sweden)

    Gustavo Sánchez-Chávez

    Full Text Available The vertebrate retina is a very metabolically active tissue whose energy demands are normally met through the uptake of glucose and oxygen. Glucose metabolism in this tissue relies upon adequate glucose delivery from the systemic circulation. Therefore, glucose transport depends on the expression of glucose transporters. Here, we show retinal expression of the Glut 4 glucose transporter in frog and rat retinas. Immunohistochemistry and in situ hybridization studies showed Glut 4 expression in the three nuclear layers of the retina: the photoreceptor, inner nuclear and ganglionar cell layers. In the rat retina immunoprecipitation and Western blot analysis revealed a protein with an apparent molecular mass of 45 kDa. ¹⁴C-glucose accumulation by isolated rat retinas was significantly enhanced by physiological concentrations of insulin, an effect blocked by inhibitors of phosphatidyl-inositol 3-kinase (PI3K, a key enzyme in the insulin-signaling pathway in other tissues. Also, we observed an increase in ³H-cytochalasin binding sites in the presence of insulin, suggesting an increase in transporter recruitment at the cell surface. Besides, insulin induced phosphorylation of Akt, an effect also blocked by PI3K inhibition. Expression of Glut 4 was not modified in retinas of a type 1 diabetic rat model. To our knowledge, our results provide the first evidence of Glut4 expression in the retina, suggesting it as an insulin- responsive tissue.

  6. Fragile X Mental Retardation Protein expression in the retina is regulated by light.

    Science.gov (United States)

    Guimarães-Souza, E M; Perche, O; Morgans, C W; Duvoisin, R M; Calaza, K C

    2016-05-01

    Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein that modulates protein synthesis at the synapse and its function is regulated by glutamate. The retina is the first structure that participates in vision, and uses glutamate to transduce electromagnetic signals from light to electrochemical signals to neurons. FMRP has been previously detected in the retina, but its localization has not been studied yet. In this work, our objectives were to describe the localization of FMRP in the retina, to determine whether different exposure to dark or light stimulus alters FMRP expression in the retina, and to compare the pattern in two different species, the mouse and chick. We found that both FMRP mRNA and protein are expressed in the retina. By immunohistochemistry analysis we found that both mouse and chick present similar FMRP expression localized mainly in both plexiform layers and the inner retina. It was also observed that FMRP is down-regulated by 24 h dark adaptation compared to its expression in the retina of animals that were exposed to light for 1 h after 24 h in the dark. We conclude that FMRP is likely to participate in retinal physiology, since its expression changes with light exposure. In addition, the expression pattern and regulation by light of FMRP seems well conserved since it was similar in both mouse and chick. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Early Divergence of Central and Peripheral Neural Retina Precursors During Vertebrate Eye Development

    Science.gov (United States)

    Venters, Sara J.; Mikawa, Takashi; Hyer, Jeanette

    2015-01-01

    During development of the vertebrate eye, optic tissue is progressively compartmentalized into functionally distinct tissues. From the central to the peripheral optic cup, the original optic neuroepithelial tissue compartmentalizes, forming retina, ciliary body and iris. The retina can be further sub-divided into peripheral and central compartments, where the central domain is specialized for higher visual acuity, having a higher ratio and density of cone photoreceptors in most species. Classically, models depict a segregation of the early optic cup into only two domains, neural and non-neural. Recent studies, however, uncovered discrete precursors for central and peripheral retina in the optic vesicle, indicating that the neural retina cannot be considered as a single unit with homogeneous specification and development. Instead, central and peripheral retina may be subject to distinct developmental pathways that underlie their specialization. This review focuses on lineage relationships in the retina and revisits the historical context for segregation of central and peripheral retina precursors before overt eye morphogenesis. PMID:25329498

  8. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  9. ALICE silicon strip module

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    This small silicon detector strip will be inserted into the inner tracking system (ITS) on the ALICE detector at CERN. This detector relies on state-of-the-art particle tracking techniques. These double-sided silicon strip modules have been designed to be as lightweight and delicate as possible as the ITS will eventually contain five square metres of these devices.

  10. Silicon Valley: Planet Startup

    NARCIS (Netherlands)

    Dr. P. Ester; dr. A. Maas

    2016-01-01

    For decades now, Silicon Valley has been the home of the future. It's the birthplace of the world's most successful high-tech companies-including Apple, Yahoo, Google, Facebook, Twitter, and many more. So what's the secret? What is it about Silicon Valley that fosters entrepreneurship and

  11. Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus.

    Science.gov (United States)

    Moore, K B; Moody, S A

    1999-08-01

    An individual retina descends from a restricted and invariant group of nine animal blastomeres at the 32-cell stage. We tested which molecular signaling pathways are responsible for the competence of animal blastomeres to contribute to the retina. Inactivation of activin/Vg1 or fibroblast growth factor (FGF) signaling by expression of dominant-negative receptors does not prevent an animal blastomere from contributing to the retina. However, increasing bone morphogenetic protein (BMP) signaling in the retina-producing blastomeres significantly reduces their contribution. Conversely, reducing BMP signaling by expression of a dominant-negative BMP receptor or Noggin allows other animal blastomeres to contribute to the retina. Thus, the initial step in the retinal lineage is regulated by position within the BMP/Noggin field of epidermal versus neural induction. Vegetal tier blastomeres, in contrast, cannot contribute to the retina even when given access to the appropriate position and signaling fields by transplantation to the dorsal animal pole. We tested whether expression of molecules within the mesoderm inducing (activin, FGF), mesoderm-modifying (Wnt), or neural-inducing (BMP, Noggin) pathways impart a retinal fate on vegetal cell descendants. None of these, several of which induce secondary head structures, caused vegetal cells to contribute to retina. This was true even if the injected blastomeres were transplanted to the dorsal animal pole. Two pathways that specifically induce head tissues also were investigated. The simultaneous blockade of Wnt and BMP signaling, which results in the formation of a complete secondary axis with head and eyes, did not cause the vegetal clone to give rise to retina. However, Cerberus, a secreted protein that also induces an ectopic head with eyes, redirected vegetal progeny into the retina. These experiments indicate that vegetal blastomere incompetence to express a retinal fate is not due to a lack of components of known

  12. Increased frequency of anti-retina antibodies in asymptomatic patients with chronic t. gondii infection

    Directory of Open Access Journals (Sweden)

    Sylvia Regina Temer Cursino

    2010-01-01

    Full Text Available PURPOSE: To search for anti-retina antibodies that serve as markers for eye disease in uveitis. MATERIALS AND METHODS: Stored sera from patients with uveitis, ocular toxoplasmosis (n = 30 and non-infectious, immune-mediated uveitis (n = 50 and from asymptomatic individuals who were positive (n = 250 and negative (n = 250 for anti-Toxoplasma antibodies were tested. Serum anti-retina IgG was detected by an optimized ELISA using a solid-phase whole human retina extract, bovine S-antigen or interphotoreceptor retinoid-binding protein. RESULTS: Uveitis patients showed a higher mean reactivity to whole human retina extract, interphotoreceptor retinoid-binding protein and S-antigen in comparison to the asymptomatic population. These findings were independent of the uveitis origin and allowed the determination of the lower anti-retina antibody cut-off for the three antigens. Asymptomatic anti-Toxoplasma serum-positive individuals showed a higher frequency of antihuman whole retina extract antibodies in comparison to asymptomatic anti-Toxoplasma serum-negative patients. The bovine S-antigen and interphotoreceptor retinoid-binding protein ELISAs also showed a higher mean reactivity in the uveitis groups compared to the asymptomatic group, but the observed reactivities were lower and overlapped without discrimination. CONCLUSION: We detected higher levels of anti-retina antibodies in uveitis patients and in a small fraction of asymptomatic patients with chronic toxoplasmosis. The presence of anti-retina antibodies in sera might be a marker of eye disease in asymptomatic patients, especially when whole human retina extract is used in a solid-phase ELISA.

  13. M-Type Pyruvate Kinase Isoforms and Lactate Dehydrogenase A in the Mammalian Retina: Metabolic Implications.

    Science.gov (United States)

    Casson, Robert J; Wood, John P M; Han, Guoge; Kittipassorn, Thaksaon; Peet, Daniel J; Chidlow, Glyn

    2016-01-01

    Like cancer cells, photoreceptor cells produce lactate aerobically, requiring lactate dehydrogenase A (LDH-A). Cancer cells also use glycolytic intermediates for biosynthesis. The molecular switch controlling glycolytic flow is thought to be an isoenzyme of pyruvate kinase (PKM2). Here, we determined the expression and localization of PKM2 and LDH-A in mammalian retina and make comparisons with the brain. Single- and double-labeling immunohistochemistry for PKM2, pyruvate kinase M1 (PKM1), and LDH-A were performed using retinal sections from C57BL/6 mice, Sprague-Dawley rats, rabbits, marmosets, and humans. Pyruvate kinase M1 and PKM2 mRNA and protein expression levels were quantified in rodent retina and brain by using qPCR and immunoblotting. The quaternary forms of PKM2 in rat retina were also determined. Pyruvate kinase M2 was present in some glial cells and rod and cone photoreceptors in the retina of all species but was exclusively localized to glia in the brain. Pyruvate kinase M1 was confined to neurons in the retina and brain. Lactate dehydrogenase A was principally found in photoreceptors and inner portion of the avascular rabbit retina. Western blotting and qPCR confirmed high levels of PKM2 and LDH-A in the retina. There was a 6- to 9-fold greater expression of PKM2 mRNA in the rodent retina than in the brain. Both the dimeric (inactive, biosynthesis-driving form) and the active tetrameric (glycolytic-driving) forms of PKM2 were present in retina but not in brain. Mammalian photoreceptors contain dimeric and tetrameric PKM2 and LDH-A. This is consistent with the ability to switch between energy production and biosynthesis like a proliferating tissue, possibly due to demands of opsin synthesis.

  14. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina.

    Science.gov (United States)

    Su, Xinyi; Tan, Queenie S W; Parikh, Bhav H; Tan, Alison; Mehta, Milan N; Sia Wey, Yeo; Tun, Sai Bo Bo; Li, Ling-Jun; Han, Xiao-Yan; Wong, Tien Y; Hunziker, Walter; Luu, Chi D; Owada, Yuji; Barathi, Veluchamy A; Zhang, Samuel S; Chaurasia, Shyam S

    2016-06-01

    To characterize the mouse retina lacking fatty acid binding protein (FABP7-/-). Immunohistochemistry (IHC) was performed in 8-week-old mice to localize FABP7 in the retina. Retinal thickness was measured using image-guided spectral-domain optical coherence topography images. Electroretinography was carried out to assess retinal function. Fundus photography and fundus fluorescein angiography were performed on FABP7-/- and littermate wild-type (WT) mice, and retinal vascular changes were calculated using Singapore I Vessel Assessment (SIVA) analysis. Blood glucose levels were measured in the 8-week-old WT and FABP7-/- mice. In addition, retina was processed for trypsin digestion and retinal flat mounts for isolectin staining. Transcript levels of FABP7, VEGF, GFAP, and Na+K+ATPase were quantified using real-time PCR, and protein expression was analyzed by IHC and Western blot. Fatty acid binding protein 7 is expressed in the inner nuclear layer, outer plexiform layer, and photoreceptor inner segments. No significant difference in retinal thickness and ERG responses was observed between FABP7-deficient and WT retinas. FABP7-/- mice have significantly decreased retinal venular caliber retinal arteriolar fractal dimension compared with WT littermates. FABP7-/- mice showed significant increased areas of fluorescein leakage in the retina. FABP7-/- mice exhibited elevated high blood glucose levels compared with WT mice. Trypsin digested FABP7-/- mice retina showed increased acellular strands and endothelial cell drop outs, and reduced microvasculature branching compared with WT retina. FABP7-/- mice retina also have increased GFAP and VEGF expression. Fatty acid binding protein 7 is expressed in the retina and might play an important role in maintaining retinal vasculature.

  15. Advances in silicon nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Pu, Minhao

    plasma effect have been tested up to 40 Gbit/s, and hybrid evanescent silicon lasers have been realized both in the form of distributed feed-back lasers and micro-disk lasers. For enhancing the impact of silicon photonics in future ultrafast and energy-efficient all-optical signal processing, e......Silicon has long been established as an ideal material for passive integrated optical circuitry due to its high refractive index, with corresponding strong optical confinement ability, and its low-cost CMOS-compatible manufacturability. However, the inversion symmetry of the silicon crystal lattice...... has been an obstacle for a simple realization of electro-optic modulators, and its indirect band gap has prevented the realization of efficient silicon light emitting diodes and lasers. Still, significant progress has been made in the past few years. Electro-optic modulators based on the free carrier...

  16. Silicone-containing composition

    Science.gov (United States)

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  17. Intraventricular Silicone Oil

    Science.gov (United States)

    Mathis, Stéphane; Boissonnot, Michèle; Tasu, Jean-Pierre; Simonet, Charles; Ciron, Jonathan; Neau, Jean-Philippe

    2016-01-01

    Abstract Intracranial silicone oil is a rare complication of intraocular endotamponade with silicone oil. We describe a case of intraventricular silicone oil fortuitously observed 38 months after an intraocular tamponade for a complicated retinal detachment in an 82 year-old woman admitted in the Department of Neurology for a stroke. We confirm the migration of silicone oil along the optic nerve. We discuss this rare entity with a review of the few other cases reported in the medical literature. Intraventricular migration of silicone oil after intraocular endotamponade is usually asymptomatic but have to be known of the neurologists and the radiologists because of its differential diagnosis that are intraventricular hemorrhage and tumor. PMID:26735537

  18. Evaluation of Electrical Stimulus Current Applied to Retina Cells for Retinal Prosthesis

    Science.gov (United States)

    Motonami, Keita; Watanabe, Taiichiro; Deguchi, Jun; Fukushima, Takafumi; Tomita, Hiroshi; Sugano, Eriko; Sato, Manami; Kurino, Hiroyuki; Tamai, Makoto; Koyanagi, Mitsumasa

    2006-04-01

    We have proposed a novel multilayer stacked retinal prosthesis chip based on three-dimensional integration technology. Implantable stimulus electrode arrays in polyimide flexible cables were fabricated for the electrical stimulation of the retina. To evaluate optimal retinal stimulus current, electrically evoked potential (EEP) was recorded in animal experiments using Japanese white rabbits. The EEP waveform was compared with visually evoked potential (VEP) waveform. The amplitude of the recorded EEP increased with stimulus current. The EEP waveform shows a similar behavior to the VEP waveform, indicating that the electrical stimulation of the retina can be exploited for the blind to perceive incident light to the retina.

  19. Semiconductor nanorod-carbon nanotube biomimetic films for wire-free photostimulation of blind retinas.

    Science.gov (United States)

    Bareket, Lilach; Waiskopf, Nir; Rand, David; Lubin, Gur; David-Pur, Moshe; Ben-Dov, Jacob; Roy, Soumyendu; Eleftheriou, Cyril; Sernagor, Evelyne; Cheshnovsky, Ori; Banin, Uri; Hanein, Yael

    2014-11-12

    We report the development of a semiconductor nanorod-carbon nanotube based platform for wire-free, light induced retina stimulation. A plasma polymerized acrylic acid midlayer was used to achieve covalent conjugation of semiconductor nanorods directly onto neuro-adhesive, three-dimensional carbon nanotube surfaces. Photocurrent, photovoltage, and fluorescence lifetime measurements validate efficient charge transfer between the nanorods and the carbon nanotube films. Successful stimulation of a light-insensitive chick retina suggests the potential use of this novel platform in future artificial retina applications.

  20. Feedback from luminosity horizontal cells mediates depolarizing responses of chromaticity horizontal cells in the Xenopus retina.

    OpenAIRE

    Witkovsky, P; Gabriel, R; Krizaj, D; Akopian, A.

    1995-01-01

    It has been proposed that the depolarizing responses of chromaticity horizontal cells (C-HCs) to red light depend on a feedback signal from luminosity horizontal cells (L-HCs) to short-wavelength-sensitive cones in the retinas of lower vertebrates. In this regard we studied the C-HCs of the Xenopus retina. C-HCs and L-HCs were identified by physiological criteria and then injected with neurobiotin. The retina then was incubated with peanut agglutinin, which stains red-but not blue-sensitive c...

  1. Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina

    DEFF Research Database (Denmark)

    Blixt, Frank W; Radziwon-Balicka, Aneta; Edvinsson, Lars

    2017-01-01

    (RAMP1). While there is a growing recognition that CGRP plays a key role in migraine, the function of CGRP in the retina has not been fully established. This study aims to investigate the distribution of CGRP and its two receptor components in the rat retina, visually by immunohistochemistry...... and quantitatively using flow cytometry. CGRP immunoreactivity was found in the Müller cells while CLR/RAMP1 was located in the nerve fiber layer. Furthermore, since almost all RAMP1 immunoreactive cells co-express CLR, we propose that RAMP1 expression in the retina reflects functional CGRP receptors....

  2. Dual-path handheld system for cornea and retina imaging using optical coherence tomography

    Science.gov (United States)

    Shirazi, Muhammad Faizan; Wijesinghe, Ruchire Eranga; Ravichandran, Naresh Kumar; Kim, Pilun; Jeon, Mansik; Kim, Jeehyun

    2017-04-01

    A dual-path handheld system is proposed for cornea and retina imaging using spectral domain optical coherence tomography. The handheld sample arm is designed to acquire two images simultaneously. Both eyes of a person can be imaged at the same time to obtain the images of the cornea of one eye and the retina of the other eye. Cornea, retina, and optic disc images are acquired with the proposed sample arm. Experimental results demonstrate the usefulness of this system for imaging of different eye segments. This system reduces the time required for imaging of the two eyes and is cost effective.

  3. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  4. Unexpected and permanent central visual loss after removal of intraocular silicone oil

    Directory of Open Access Journals (Sweden)

    Toso A

    2014-09-01

    Full Text Available Antonio Toso, Ezio Cappello, Simonetta Morselli Department of Ophthalmology, Saint Bassiano Hospital, Bassano del Grappa, Italy Abstract: Here we report a case of unexplained sudden visual loss after removal of silicone oil for rhegmatogenous retinal detachment repair. A patient with visual loss in one eye after removal of silicone oil was investigated with best-corrected Snellen visual acuity assessment, fundus biomicroscopy, optical coherence tomography, color fundus photograph, fluorescein angiography, electrophysiologic examination, automated perimetry, and visual evoked potentials. Best-corrected Snellen visual acuity was 20/30 while the silicone oil was in place. Visual acuity dropped dramatically to 20/200 after silicone oil removal. No other complications associated with oil removal were noted. The retina remained attached. Visual evoked potentials revealed decreased amplitude due to a damaged optic nerve, while the earliest central visual field defects disappeared unexpectedly almost 2 years after the last surgical procedure. No other abnormalities were demonstrated. Vision loss is a possible complication of silicone oil and removal. This case was distinguished by the permanent decrease of visual acuity despite the unexplained and quite complete recovery of the foveal threshold with no other relevant visual field defects. Keywords: central visual loss, intraocular silicone oil, removal

  5. Layer cake-silicone oil under the internal limiting membrane in an optic pit eye.

    Science.gov (United States)

    Muether, Philipp S; Liakopoulos, Sandra; Kirchhof, Bernd

    2012-01-01

    To describe a case of sub-internal limiting membrane (ILM) silicone oil dislocation in a patient with optic pit of the disk pathology. Interventional case report. The patient had been previously subjected to silicone oil surgery because of pit of the disk-associated retinal detachment. After silicone oil removal, persistent oil emulsifications were diagnosed within the posterior pole. Both the spatial location within the retina and the interpretation of preoperative spectral-domain optical coherence tomography images were impaired because of posterior capsule opacification. Upon explorative revitrectomy, mobile silicone oil appeared underneath a clear membrane. Internal limiting membrane peeling led to silicone oil ascension into the vitreous cavity. The macular area appeared atrophic after oil removal. Previously described formation of internal limiting membrane ridges in optic pit with subsequent emergence of sub-internal limiting membrane cavities may have facilitated silicone oil dislocation into sub-internal limiting membrane space through the optic pit. Our findings add to the features of possible spatial fluid dislocations in patients with pit of the disk pathology. Complete internal limiting membrane removal and careful evaluation of tamponade use, are desirable in surgical treatment of optic pit cases.

  6. Organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro.

    Directory of Open Access Journals (Sweden)

    Satoru Moritoh

    Full Text Available BACKGROUND: Organotypic tissue culture of adult rodent retina with an acute gene transfer that enables the efficient introduction of variable transgenes would greatly facilitate studies into retinas of adult rodents as animal models. However, it has been a difficult challenge to culture adult rodent retina. The purpose of this present study was to develop organotypic tissue culture of adult rodent retina followed by particle-mediated acute gene transfer in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We established an interphase organotypic tissue culture for adult rat retinas (>P35 of age which was optimized from that used for adult rabbit retinas. We implemented three optimizations: a greater volume of Ames' medium (>26 mL per retina, a higher speed (constant 55 rpm of agitation by rotary shaker, and a greater concentration (10% of horse serum in the medium. We also successfully applied this method to adult mouse retina (>P35 of age. The organotypic tissue culture allowed us to keep adult rodent retina morphologically and structurally intact for at least 4 days. However, mouse retinas showed less viability after 4-day culture. Electrophysiologically, ganglion cells in cultured rat retina were able to generate action potentials, but exhibited less reliable light responses. After transfection of EGFP plasmids by particle-mediated acute gene transfer, we observed EGFP-expressing retinal ganglion cells as early as 1 day of culture. We also introduced polarized-targeting fusion proteins such as PSD95-GFP and melanopsin-EYFP (hOPN4-EYFP into rat retinal ganglion cells. These fusion proteins were successfully transferred into appropriate locations on individual retinal neurons. CONCLUSIONS/SIGNIFICANCE: This organotypic culture method is largely applicable to rat retinas, but it can be also applied to mouse retinas with a caveat regarding cell viability. This method is quite flexible for use in acute gene transfection in adult rodent retina, replacing

  7. The organization of melanopsin-immunoreactive cells in microbat retina.

    Science.gov (United States)

    Jeong, Mi-Jin; Kim, Hang-Gu; Jeon, Chang-Jin

    2018-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) respond to light and play roles in non-image forming vision, such as circadian rhythms, pupil responses, and sleep regulation, or image forming vision, such as processing visual information and directing eye movements in response to visual clues. The purpose of the present study was to identify the distribution, types, and proportion of melanopsin-immunoreactive (IR) cells in the retina of a nocturnal animal, i.e., the microbat (Rhinolophus ferrumequinum). Three types of melanopsin-IR cells were observed in the present study. The M1 type had dendritic arbors that extended into the OFF sublayer of the inner plexiform layer (IPL). M1 soma locations were identified either in the ganglion cell layer (GCL, M1c; 21.00%) or in the inner nuclear layer (INL, M1d; 5.15%). The M2 type had monostratified dendrites in the ON sublayer of the IPL and their cell bodies lay in the GCL (M2; 5.79%). The M3 type was bistratified cells with dendrites in both the ON and OFF sublayers of the IPL. M3 soma locations were either in the GCL (M3c; 26.66%) or INL (M3d; 4.69%). Additionally, some M3c cells had curved dendrites leading up towards the OFF sublayer of the IPL and down to the ON sublayer of the IPL (M3c-crv; 7.67%). Melanopsin-IR cells displayed a medium soma size and medium dendritic field diameters. There were 2-5 primary dendrites and sparsely branched dendrites with varicosities. The total number of the neurons in the GCL was 12,254.17 ± 660.39 and that of the optic nerve axons was 5,179.04 ± 208.00 in the R. ferrumequinum retina. The total number of melanopsin-IR cells was 819.74 ± 52.03. The ipRGCs constituted approximately 15.83% of the total RGC population. This study demonstrated that the nocturnal microbat, R. ferrumequinum, has a much higher density of melanopsin-IR cells than documented in diurnal animals.

  8. Transformational silicon electronics

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-02-25

    In today\\'s traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry\\'s most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications. © 2014 American Chemical Society.

  9. Transformational silicon electronics.

    Science.gov (United States)

    Rojas, Jhonathan Prieto; Torres Sevilla, Galo Andres; Ghoneim, Mohamed Tarek; Inayat, Salman Bin; Ahmed, Sally M; Hussain, Aftab Mustansir; Hussain, Muhammad Mustafa

    2014-02-25

    In today's traditional electronics such as in computers or in mobile phones, billions of high-performance, ultra-low-power devices are neatly integrated in extremely compact areas on rigid and brittle but low-cost bulk monocrystalline silicon (100) wafers. Ninety percent of global electronics are made up of silicon. Therefore, we have developed a generic low-cost regenerative batch fabrication process to transform such wafers full of devices into thin (5 μm), mechanically flexible, optically semitransparent silicon fabric with devices, then recycling the remaining wafer to generate multiple silicon fabric with chips and devices, ensuring low-cost and optimal utilization of the whole substrate. We show monocrystalline, amorphous, and polycrystalline silicon and silicon dioxide fabric, all from low-cost bulk silicon (100) wafers with the semiconductor industry's most advanced high-κ/metal gate stack based high-performance, ultra-low-power capacitors, field effect transistors, energy harvesters, and storage to emphasize the effectiveness and versatility of this process to transform traditional electronics into flexible and semitransparent ones for multipurpose applications.

  10. Apoptosis and necrosis occurring in excitotoxic cell death in isolated chick embryo retina

    National Research Council Canada - National Science Library

    Ientile, Riccardo; Macaione, Vincenzo; Teletta, Maria; Pedale, Santa; Torre, Valerio; Macaione, Salvatore

    2001-01-01

    Excitotoxic studies using isolated chick embryo retina indicated that such an in vitro model provides a valid tool to characterize the effect of different agonists for subtypes of glutamate ionotropic receptors...

  11. Frequency spectrum might act as communication code between retina and visual cortex I.

    Science.gov (United States)

    Yang, Xu; Gong, Bo; Lu, Jian-Wei

    2015-01-01

    To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.

  12. Müller glia provide essential tensile strength to the developing retina

    Science.gov (United States)

    MacDonald, Ryan B.; Randlett, Owen; Oswald, Julia; Yoshimatsu, Takeshi

    2015-01-01

    To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS. PMID:26416961

  13. Multi-functional optical coherence tomography imaging of spontaneous neovascularization in the mouse retina

    Science.gov (United States)

    Augustin, Marco; Wechdorn, Matthias; Pfeiffenberger, Ulrike; Fialová, Stanislava; Werkmeister, René M.; Hitzenberger, Christoph K.; Baumann, Bernhard

    2017-07-01

    A multi-functional OCT approach is used to identify different tissue types during the early development of spontaneous neovascularizations in the mouse retina based on their intrinsic optical properties.

  14. Silicon applications in photonics

    Science.gov (United States)

    Jelenski, A. M.; Gawlik, G.; Wesolowski, M.

    2005-09-01

    Silicon technology enabled the miniaturization of computers and other electronic system for information storage, transmission and transformation allowing the development of the Knowledge Based Information Society. Despite the fact that silicon roadmap indicates possibilities for further improvement, already now the speed of electrons and the bandwidth of electronic circuits are not sufficient and photons are commonly utilized for signal transmission through optical fibers and purely photonic circuits promise further improvements. However materials used for these purposes II/V semiconductor compounds, glasses make integration of optoelectronic circuits with silicon complex an expensive. Therefore research on light generation, transformation and transmission in silicon is very active and recently, due to nanotechnology some spectacular results were achieved despite the fact that mechanisms of light generation are still discussed. Three topics will be discussed. Porous silicon was actively investigated due to its relatively efficient electroluminescence enabling its use in light sources. Its index of refraction, differs considerably from the index of silicon, and this allows its utilization for Bragg mirrors, wave guides and photonic crystals. The enormous surface enables several applications on medicine and biotechnology and in particular due to the effective chemo-modulation of its refracting index the design of optical chemosensors. An effective luminescence of doped and undoped nanocrystalline silicon opened another way for the construction of silicon light sources. Optical amplification was already discovered opening perspectives for the construction of nanosilicon lasers. Luminescences was observed at red, green and blue wavelengths. The used technology of silica and ion implantation are compatible with commonly used CMOS technology. Finally the recently developed and proved idea of optically pumped silicon Raman lasers, using nonlinearity and vibrations in the

  15. A guide to the removal of heavy silicone oil.

    Science.gov (United States)

    Stappler, T; Williams, R; Gibran, S K; Liazos, E; Wong, D

    2008-06-01

    Heavy silicone oil removal can be challenging and differs considerably from conventional oil. Traditionally, strong active aspiration had to be applied through a long 18G needle just above the optic disc. We present a novel technique using a much shorter (7.5 mm) and smaller (20G) needle allowing its removal "from a distance." Active aspiration on a vacuum of 600 mm Hg of the "viscous fluid injector" was applied using the 20G cannula in a polymethylmethacrylate model eye chamber that was surface-modified to mimic the surface properties of the retina. Measurements were taken using still photographs. Under injection the maximum diameter of a silicone oil bubble supported by interfacial tension alone was 5 mm for a steel and 7 mm for a polyurethane cannula. Under suction, the silicone bubble changed shape and became conical, thus further increasing the cannula's reach. This conical shape illustrated "tubeless siphoning," which is a physical property of non-Newtonian fluids. The use of shorter and smaller gauge cannula for removal of Densiron obviates the need to enlarge the sclerotomy beyond 20G or to apply suction in close proximity to disc and fovea. This potentially reduces the risk of iatrogenic damage such as entry site tears or postoperative hypotony.

  16. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    Directory of Open Access Journals (Sweden)

    ROBERTO PAES-DE-CARVALHO

    2002-09-01

    Full Text Available The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation.O nucleosídeo adenosina apresenta um importante papel como neurotransmissor ou neuromodulador no sistema nervoso central, inclusive na retina. Neste artigo apresentamos uma revisão das evidências que mostram que a adenosina é uma molécula sinalizadora na retina em desenvolvimento. Na retina de pinto, transportadores de adenosina estão presentes desde estágios precoces do desenvolvimento, antes do aparecimento dos receptores A1 que modulam a atividade adenilato ciclase dependente de dopamina ou dos receptores A2 que ativam diretamente a enzima. Experimentos usando culturas de células de retina revelaram que a adenosina é captada por populações celulares específicas que, quando estimuladas por despolarização ou por

  17. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  18. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  19. Silicon tracker for LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bencze, G.; Bosteels, M.; Brenner, R.; Czellar, S.; Ekman, K.; Hentinen, A.; Hietanen, I.; Huhtinen, M.; Inkinen, S.; Karimaeki, V.; Karttaavi, T.; Kinnunen, R.; Lindgren, J.; Merlo, J.P.; Oksakivi, T.; Onnela, A.; Orava, R.; Pietarinen, E.; Pimiae, M.; Roth, W.; Roennqvist, C.; Saarikko, J.P.; Schulman, T.; Tuuva, T.; Voutilainen, M.; Vuoskoski, J.; Oesterberg, K. (Research Inst. for High Energy Physics, SEFT, Helsinki (Finland) Physics Dept., Univ. of Helsinki (Finland) Univ. of Technology, Helsinki, Espoo (Finland) AAbo Akademi, Domkyrkotorget, Turku (Finland) Univ. of Technology, Tampere (Finland) DAPNIA, Centre d' Etudes Nucleaires, 91 Gif-sur-Yvette, Saclay (France) CERN, Geneva (Switzerland))

    1993-05-01

    A study of a possible layout of a Silicon tracker has been done. The design is based on simulations done in the context of the Compact Muon Solenoid (CMS) detector for the LHC. The high granularity of the silicon strip detectors yields to low occupancies. New type of a silicon strip detector, single sided stereo angle detector (SSSD), has been designed to match the requirements of a LHC tracker. This detector allows a z-coordinate measurement without increasing the number of channels i.e. power consumption and it facilitates a tracker design with reasonable complicity. (orig.)

  20. Release of endogenous ascorbic acid preserves extracellular dopamine in the mammalian retina.

    Science.gov (United States)

    Neal, M J; Cunningham, J R; Matthews, K L

    1999-11-01

    To investigate whether the inhibitory effect of nitric oxide (NO) on dopamine release from the retina is due to chemical oxidation of dopamine in the extracellular medium rather than to an inhibitory effect on dopamine release from retinal neurons. Dopamine was incubated in Krebs bicarbonate medium and its rate of chemical degradation measured by high-performance liquid chromatography (HPLC). The effects of NO donors and antioxidants on dopamine were assessed by comparing dopamine degradation in the presence and absence of drug. The effects of NO donors on the K-evoked release of [3H]dopamine were measured from isolated superfused rabbit retinas. The release of ascorbic acid from the isolated rat retina and from an eyecup preparation in anesthetized rabbits was measured by HPLC. After 10 minutes' incubation in Krebs bicarbonate medium, the dopamine concentration decreased by 20%. This decline increased to 80% in the presence of S-nitroso-N-acetyl-DL-penicillamine (SNAP) or sodium nitroprusside (SNP). The increased rate of dopamine degradation was abolished if retina was incubated in the medium and then removed before the incubation of dopamine. The protective effect of preincubation with tissue was lost in the presence of ascorbate oxidase suggesting the release of ascorbic acid. HPLC analysis confirmed a substantial release of ascorbic acid from both rabbit and rat retinas. The K-evoked release of [3H]dopamine from the rabbit retina was inhibited by SNP. NO can rapidly, oxidize dopamine in physiological medium, but in the presence of retina, sufficient endogenous antioxidants (mainly ascorbate) are released to prevent this chemical reaction. Thus, the inhibitory action of NO on dopamine release results from an action on retinal neurons. Ascorbate release in the retina may have an important physiological role in prolonging the life of dopamine, which often has to diffuse long distances from axons in the inner plexiform layer to receptors in other retinal layers.

  1. Studio caso-controllo multicentrico su distacco di retina e movimentazione manuale di carichi

    OpenAIRE

    Zanardi, Francesca

    2013-01-01

    Obiettivo Valutare l’ipotesi secondo cui la movimentazione manuale di carichi possa essere un fattore di rischio per il di distacco di retina. Metodi Si è condotto uno studio caso-controllo ospedaliero multicentrico, a Bologna, (reparto di Oculistica del policlinico S. Orsola Malpighi, Prof. Campos), e a Brescia (reparto di oculistica “Spedali Civili” Prof. Semeraro). I casi sono 104 pazienti operati per distacco di retina. I controlli sono 173 pazienti reclutati tra l’utenza degli ambulatori...

  2. Transcriptome networks in the mouse retina: An exon level BXD RI database.

    Science.gov (United States)

    King, Rebecca; Lu, Lu; Williams, Robert W; Geisert, Eldon E

    2015-01-01

    Differences in gene expression provide diverse retina phenotypes and may also contribute to susceptibility to injury and disease. The present study defines the transcriptome of the retina in the BXD RI strain set, using the Affymetrix Mouse Gene 2.0 ST array to investigate all exons of traditional protein coding genes, non-coding RNAs, and microRNAs. These data are presented in a highly interactive database on the GeneNetwork website. In the Normal Retina Database, the mRNA levels of the transcriptome from retinas was quantified using the Affymetrix Mouse Gene 2.0 ST array. This database consists of data from male and female mice. The data set includes a total of 52 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), and a reciprocal cross. In combination with GeneNetwork, the Department of Defense (DoD) Congressionally Directed Medical Research Programs (CDMRP) Normal Retina Database provides a large resource for mapping, graphing, analyzing, and testing complex genetic networks. Protein-coding and non-coding RNAs can be used to map quantitative trait loci (QTLs) that contribute to expression differences among the BXD strains and to establish links between classical ocular phenotypes associated with differences in the genomic sequence. Using this resource, we extracted transcriptome signatures for retinal cells and defined genetic networks associated with the maintenance of the normal retina. Furthermore, we examined differentially expressed exons within a single gene. The high level of variation in mRNA levels found among the BXD RI strains makes it possible to identify expression networks that underline differences in retina structure and function. Ultimately, we will use this database to define changes that occur following blast injury to the retina.

  3. Mouse embryonic retina delivers information controlling cortical neurogenesis.

    Directory of Open Access Journals (Sweden)

    Ciro Bonetti

    2010-12-01

    Full Text Available The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded, the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal. Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system.

  4. Optimal Prediction in the Retina and Natural Motion Statistics

    Science.gov (United States)

    Salisbury, Jared M.; Palmer, Stephanie E.

    2016-03-01

    Almost all behaviors involve making predictions. Whether an organism is trying to catch prey, avoid predators, or simply move through a complex environment, the organism uses the data it collects through its senses to guide its actions by extracting from these data information about the future state of the world. A key aspect of the prediction problem is that not all features of the past sensory input have predictive power, and representing all features of the external sensory world is prohibitively costly both due to space and metabolic constraints. This leads to the hypothesis that neural systems are optimized for prediction. Here we describe theoretical and computational efforts to define and quantify the efficient representation of the predictive information by the brain. Another important feature of the prediction problem is that the physics of the world is diverse enough to contain a wide range of possible statistical ensembles, yet not all inputs are probable. Thus, the brain might not be a generalized predictive machine; it might have evolved to specifically solve the prediction problems most common in the natural environment. This paper summarizes recent results on predictive coding and optimal predictive information in the retina and suggests approaches for quantifying prediction in response to natural motion. Basic statistics of natural movies reveal that general patterns of spatiotemporal correlation are present across a wide range of scenes, though individual differences in motion type may be important for optimal processing of motion in a given ecological niche.

  5. Visualization of endothelial actin cytoskeleton in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Alessia Fraccaroli

    Full Text Available Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs, orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs, enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation.

  6. Mapping a complete neural population in the retina.

    Science.gov (United States)

    Marre, Olivier; Amodei, Dario; Deshmukh, Nikhil; Sadeghi, Kolia; Soo, Frederick; Holy, Timothy E; Berry, Michael J

    2012-10-24

    Recording simultaneously from essentially all of the relevant neurons in a local circuit is crucial to understand how they collectively represent information. Here we show that the combination of a large, dense multielectrode array and a novel, mostly automated spike-sorting algorithm allowed us to record simultaneously from a highly overlapping population of >200 ganglion cells in the salamander retina. By combining these methods with labeling and imaging, we showed that up to 95% of the ganglion cells over the area of the array were recorded. By measuring the coverage of visual space by the receptive fields of the recorded cells, we concluded that our technique captured a neural population that forms an essentially complete representation of a region of visual space. This completeness allowed us to determine the spatial layout of different cell types as well as identify a novel group of ganglion cells that responded reliably to a set of naturalistic and artificial stimuli but had no measurable receptive field. Thus, our method allows unprecedented access to the complete neural representation of visual information, a crucial step for the understanding of population coding in sensory systems.

  7. Transcriptome analysis for UVB-induced phototoxicity in mouse retina.

    Science.gov (United States)

    An, Mi-Jin; Kim, Chul-Hong; Nam, Gyu-You; Kim, Dae-Hyun; Rhee, Sangmyung; Cho, Sung-Jin; Kim, Jung-Woong

    2017-10-17

    Throughout life, the human eye is continuously exposed to sunlight and artificial lighting. Ambient light exposure can lead to visual impairment and transient or permanent blindness. To mimic benign light stress conditions, Mus musculus eyes were exposed to low-energy UVB radiation, ensuring no severe morphological changes in the retinal structure post-exposure. We performed RNA-seq analysis to reveal the early transcriptional changes and key molecular pathways involved before the activation of the canonical cell death pathway. RNA-seq analysis identified 537 genes that were differentially modulated, out of which 126 were clearly up regulated (>2-fold, P retina. Gene ontology analysis revealed that UVB exposure affected pathways for cellular stress and signaling (eg, Creb3, Ddrgk1, Grin1, Map7, Uqcc2, Uqcrb), regulation of chromatin and gene expression (eg, Chd5, Jarid2, Kat6a, Smarcc2, Sumo1, Zfp84), transcription factors (eg, Asxl2, Atf7, Per1, Phox2a, Rxra), RNA processing, and neuronal genes (eg, B4gal2, Drd1, Grm5, Rnf40, Rnps1, Usp39, Wbp4). The differentially expressed genes from the RNA-seq analysis were validated by quantitative PCR. Both analyses yielded similar gene expression patterns. The genes and pathways identified here improve the understanding of early transcriptional responses to UVB irradiation. They may also help in elucidating the genes responsible for the inherent susceptibility of humans to UVB-induced retinal diseases. © 2017 Wiley Periodicals, Inc.

  8. Cholesterol in the retina: the best is yet to come

    Science.gov (United States)

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  9. Cholesterol in the retina: the best is yet to come.

    Science.gov (United States)

    Pikuleva, Irina A; Curcio, Christine A

    2014-07-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because of eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes' roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Phenotypic and functional characterization of Bst+/− mouse retina

    Directory of Open Access Journals (Sweden)

    Hamidreza Riazifar

    2015-08-01

    Full Text Available The belly spot and tail (Bst+/− mouse phenotype is caused by mutations of the ribosomal protein L24 (Rpl24. Among various phenotypes in Bst+/− mice, the most interesting are its retinal abnormalities, consisting of delayed closure of choroid fissures, decreased ganglion cells and subretinal vascularization. We further characterized the Bst+/− mouse and investigated the underlying molecular mechanisms to assess the feasibility of using this strain as a model for stem cell therapy of retinal degenerative diseases due to retinal ganglion cell (RGC loss. We found that, although RGCs are significantly reduced in retinal ganglion cell layer in Bst+/− mouse, melanopsin+ RGCs, also called ipRGCs, appear to be unchanged. Pupillary light reflex was completely absent in Bst+/− mice but they had a normal circadian rhythm. In order to examine the pathological abnormalities in Bst+/− mice, we performed electron microscopy in RGC and found that mitochondria morphology was deformed, having irregular borders and lacking cristae. The complex activities of the mitochondrial electron transport chain were significantly decreased. Finally, for subretinal vascularization, we also found that angiogenesis is delayed in Bst+/− associated with delayed hyaloid regression. Characterization of Bst+/− retina suggests that the Bst+/− mouse strain could be a useful murine model. It might be used to explore further the pathogenesis and strategy of treatment of retinal degenerative diseases by employing stem cell technology.

  11. Advanced silicon on insulator technology

    Science.gov (United States)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  12. Survival, excitability, and transfection of retinal neurons in an organotypic culture of mature zebrafish retina.

    Science.gov (United States)

    Kustermann, Stefan; Schmid, Susanne; Biehlmaier, Oliver; Kohler, Konrad

    2008-05-01

    Over the last 20 years, the zebrafish has become an important model organism for research on retinal function and development. Many retinal diseases do not become apparent until the later stages of life. This means that it is important to be able to analyze (gene) function in the mature retina. To meet this need, we have established an organotypic culture system of mature wild-type zebrafish retinas in order to observe changes in retinal morphology. Furthermore, cell survival during culture has been monitored by determining apoptosis in the tissue. The viability and excitability of ganglion cells have been tested at various time points in vitro by patch-clamp recordings, and retinal functionality has been assessed by measuring light-triggered potentials at the ganglion cell site. Since neurogenesis is persistent in adult zebrafish retinas, we have also monitored proliferating cells during culture by tracking their bromodeoxyuridine uptake. Reverse genetic approaches for probing the function of adult zebrafish retinas are not yet available. We have therefore established a rapid and convenient protocol for delivering plasmid DNA or oligonucleotides by electroporation to the retinal tissue in vitro. The organotypic culture of adult zebrafish retinas presented here provides a reproducible and convenient method for investigating the function of drugs and genes in the retina under well-defined conditions in vitro.

  13. Layer-specific manganese-enhanced MRI of the retina in light and dark adaptation.

    Science.gov (United States)

    De La Garza, Bryan H; Li, Guang; Shih, Yen-Yu I; Duong, Timothy Q

    2012-07-03

    To employ functional manganese-enhanced MRI (MEMRI) to image layer-specific changes in calcium-dependent activities in the rat retina during light versus dark adaptation. Functional MEMRI at 20 × 20 × 700 μm was used to study light and dark adaptation in the same animals (N = 10) in which one eye was covered and the fellow eye was not. The activity encoding of the light and dark adaptation was achieved in awake conditions and imaged under anesthesia. T(1)-weighted MRI at 11.7 tesla (T) was performed using two identical radiofrequency transceiver coils to allow interleaved MRI acquisitions of the two eyes. An intravascular contrast agent was also used to verify layer assignments. MEMRI detected contrasts among the inner retina, outer retina, and choroid. Independent confirmation of the vascular layers and boundaries between layers was documented with an intravascular contrast agent. The retinal layer thicknesses agreed with published data. The outer retina had lower MEMRI activity in light compared with dark adaption (P dark current." The inner retina had higher MEMRI activity in light compared with dark adaption (P dark adaptation (P > 0.05). This study demonstrated a high-resolution MEMRI protocol to image functional activities among different layers of the retinas in awake animals during light and dark adaptation. This approach could have potential applications in animal models of retinal dysfunction.

  14. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    2016-01-01

    Full Text Available The endocannabinoid (eCB system is widely expressed in various parts of the central nervous system, including the retina. The localization of the key eCB receptors, particularly CB1R and CB2R, has been recently reported in rodent and primate retinas with striking interspecies differences. Little is known about the distribution of the enzymes involved in the synthesis and degradation of these eCBs. We therefore examined the expression and localization of the main components of the eCB system in the retina of mice, tree shrews, and monkeys. We found that CB1R and FAAH distributions are well-preserved among these species. However, expression of NAPE-PLD is circumscribed to the photoreceptor layer only in monkeys. In contrast, CB2R expression is variable across these species; in mice, CB2R is found in retinal neurons but not in glial cells; in tree shrews, CB2R is expressed in Müller cell processes of the outer retina and in retinal neurons of the inner retina; in monkeys, CB2R is restricted to Müller cells. Finally, the expression patterns of MAGL and DAGLα are differently expressed across species. Overall, these results provide evidence that the eCB system is differently expressed in the retina of these mammals and suggest a distinctive role of eCBs in visual processing.

  15. Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina

    Science.gov (United States)

    Rachel, Rivka A.; Dolen, Gul; Hayes, Nancy L.; Lu, Alice; Erskine, Lynda; Nowakowski, Richard S.; Mason, Carol A.

    2002-01-01

    In albino mammals, lack of pigment in the retinal pigment epithelium is associated with retinal defects, including poor visual acuity from a photoreceptor deficit in the central retina and poor depth perception from a decrease in ipsilaterally projecting retinal fibers. Possible contributors to these abnormalities are reported delays in neuronogenesis (Ilia and Jeffery, 1996) and retinal maturation (Webster and Rowe, 1991). To further determine possible perturbations in neuronogenesis and/or differentiation, we used cell-specific markers and refined birth dating methods to examine these events during retinal ganglion cell (RGC) genesis in albino and pigmented mice from embryonic day 11 (E11) to E18. Our data indicate that relative to pigmented mice, more ganglion cells are born in the early stages of neuronogenesis in the albino retina, although the initiation of RGC genesis in the albino is unchanged. The cellular organization of the albino retina is perturbed as early as E12. In addition, cell cycle kinetics and output along the nasotemporal axis differ in retinas of albino and pigmented mice, both absolutely, with the temporal aspect of the retina expanded in albino, and relative to the position of the optic nerve head. Finally, blocking melanin synthesis in pigmented eyecups in culture leads to an increase in RGC differentiation, consistent with a role for melanin formation in regulating RGC neuronogenesis. These results point to spatiotemporal defects in neuronal production in the albino retina, which could perturb expression of genes that specify cell fate, number, and/or projection phenotype.

  16. Plasticity of TRPM1 expression and localization in the wild type and degenerating mouse retina.

    Science.gov (United States)

    Križaj, David; Huang, Wei; Furukawa, Takahisa; Punzo, Claudio; Xing, Wei

    2010-11-23

    The light response in retinal ON bipolar cells is associated with disinhibition of current flow through cation channels recently identified as type 1 members of the melastatin transient receptor potential (TRPM) family. We determined the developmental expression of Trpm1 in the wild type C57BL/6, DBA/2J, DBA2J-Gpnmb mouse retinas and in Pde6brd1 retinas characterized by degeneration of rod photoreceptors. Trpm1 mRNA in wild type retinas was low at birth but exhibited progressive increases in abundance up to early adulthood at postnatal day 21 (P21). Retinal Trpm1 mRNA content did not decrease following loss of photoreceptors. At P21, TRPM1-immunopositive perikarya migrated into the outer nuclear layer. The TRPM1 protein was trafficked to discrete postsynaptic puncta in wild type retinas whereas in adult Pde6brd1 mouse retinas, TRPM1 translocated to bipolar perikarya and bar-like structures in the distal inner nuclear layer. These findings show that expression and localization of the TRPM1 in the mouse retina is plastic, modulated by use-dependence and availability of sustained excitatory input. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. The ciliary margin zone of the mammalian retina generates retinal ganglion cells

    Science.gov (United States)

    Marcucci, Florencia; Murcia-Belmonte, Veronica; Coca, Yaiza; Ferreiro-Galve, Susana; Wang, Qing; Kuwajima, Takaaki; Khalid, Sania; Ross, M. Elizabeth; Herrera, Eloisa; Mason, Carol

    2016-01-01

    Summary The retina of lower vertebrates grows continuously by integrating new neurons generated from progenitors in the ciliary margin zone (CMZ). Whether the mammalian CMZ provides the neural retina with retinal cells is controversial. Live-imaging of embryonic retina expressing eGFP in the CMZ shows that cells migrate laterally from the CMZ to the neural retina where differentiated retinal ganglion cells (RGCs) reside. As Cyclin D2, a cell-cycle regulator, is enriched in ventral CMZ, we analyzed Cyclin D2−/− mice to test whether the CMZ is a source of retinal cells. Neurogenesis is diminished in Cyclin D2 mutants, leading to a reduction of RGCs in the ventral retina. In line with these findings, in the albino retina, the decreased production of ipsilateral RGCs is correlated with fewer Cyclin D2+ cells. Together, these results implicate the mammalian CMZ as a neurogenic site that produces RGCs and whose proper generation depends on Cyclin D2 activity. PMID:28009286

  18. Adaptation of the Central Retina for High Acuity Vision: Cones, the Fovea and the Avascular Zone

    Science.gov (United States)

    Provis, Jan M; Dubis, Adam M; Maddess, Ted; Carroll, Joseph

    2013-01-01

    Presence of a fovea centralis is directly linked to molecular specification of an avascular area in central retina, before the fovea (or `pit') begins to form. Modeling suggests that mechanical forces, generated within the eye, initiate formation of a pit within the avascular area, and its later remodeling in the postnatal period. Within the avascular area the retina is dominated by `midget' circuitry, in which signals are transferred from a single cone to a single bipolar cell, then a single ganglion cell. Thus in inner, central retina there are relatively few lateral connections between neurons. This renders the region adaptable to tangential forces, that translocate of ganglion cells laterally / centrifugally, to form the fovea. Optical coherence tomography enables live imaging of the retina, and shows that there is greater variation in the morphology of foveae in humans than previously thought. This variation is associated with differences in size of the avascular area and appears to be genetically based, but can be modified by environmental factors, including prematurity. Even when the fovea is absent (foveal hypoplasia), cones in central retina adopt an elongated and narrow morphology, enabling them to pack more densely to increase the sampling rate, and to act as more effective waveguides. Given these findings, what then is the adaptive advantage of a fovea? We suggest that the advantages of having a pit in central retina are relatively few, and minor, but together work to enhance acuity. PMID:23500068

  19. Silicon microfabricated beam expander

    Energy Technology Data Exchange (ETDEWEB)

    Othman, A., E-mail: aliman@ppinang.uitm.edu.my; Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A. [Faculty of Electrical Engineering, Universiti Teknologi MARA Malaysia, 40450, Shah Alam, Selangor (Malaysia); Ain, M. F. [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300,Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  20. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  1. ALICE Silicon Pixel Detector

    CERN Multimedia

    2003-01-01

    The Silicon Pixel Detector (SPD) is part of the Inner Tracking System (ITS) of the ALICE experiment : . SPD Structure . Bump Bonding . Test beam . ALICE1LHCb Readout Chip . Chip Tests . Data from the SPD

  2. Silicon production process evaluations

    Science.gov (United States)

    1982-05-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  3. Amorphous silicon crystalline silicon heterojunction solar cells

    CERN Document Server

    Fahrner, Wolfgang Rainer

    2013-01-01

    Amorphous Silicon/Crystalline Silicon Solar Cells deals with some typical properties of heterojunction solar cells, such as their history, the properties and the challenges of the cells, some important measurement tools, some simulation programs and a brief survey of the state of the art, aiming to provide an initial framework in this field and serve as a ready reference for all those interested in the subject. This book helps to "fill in the blanks" on heterojunction solar cells. Readers will receive a comprehensive overview of the principles, structures, processing techniques and the current developmental states of the devices. Prof. Dr. Wolfgang R. Fahrner is a professor at the University of Hagen, Germany and Nanchang University, China.

  4. Oxygen defect processes in silicon and silicon germanium

    KAUST Repository

    Chroneos, A.

    2015-06-18

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  5. Silicon-Based Light Sources for Silicon Integrated Circuits

    Directory of Open Access Journals (Sweden)

    L. Pavesi

    2008-01-01

    Full Text Available Silicon the material per excellence for electronics is not used for sourcing light due to the lack of efficient light emitters and lasers. In this review, after having introduced the basics on lasing, I will discuss the physical reasons why silicon is not a laser material and the approaches to make it lasing. I will start with bulk silicon, then I will discuss silicon nanocrystals and Er3+ coupled silicon nanocrystals where significant advances have been done in the past and can be expected in the near future. I will conclude with an optimistic note on silicon lasing.

  6. Expression and cellular localization of the Mas receptor in the adult and developing mouse retina.

    Science.gov (United States)

    Prasad, Tuhina; Verma, Amrisha; Li, Qiuhong

    2014-01-01

    Recent studies have provided evidence that a local renin-angiotensin system (RAS) exists in the retina and plays an important role in retinal neurovascular function. We have recently shown that increased expression of ACE2 and angiotensin (1-7) [Ang (1-7)], two components of the protective axis of the RAS, in the retina via adeno-associated virus (AAV)-mediated gene delivery, conferred protection against diabetes-induced retinopathy. We hypothesized that the protective molecular and cellular mechanisms of Ang (1-7) are mediated by its receptor, Mas, and the expression level and cellular localization dictate the response to Ang (1-7) and activation of subsequent protective signaling pathways. We tested this hypothesis by examining the expression and cellular localization of the Mas receptor in adult and developing mouse retinas. The cellular localization of the Mas receptor protein was determined with immunofluorescence of the eyes of adult and postnatal day 1 (P1), P5, P7, P15, and P21 mice using the Mas receptor-specific antibody, and mRNA was detected with in situ hybridization of paraffin-embedded sections. Western blotting and real-time reverse-transcription (RT)-PCR analysis were performed to determine the relative levels of the Mas protein and mRNA in adult and developing retinas, as well as in cultured retinal Müller glial and RPE cells. In the adult eye, the Mas receptor protein was abundantly present in retinal ganglion cells (RGCs) and photoreceptor cells; a lower level of expression was observed in endothelial cells, Müller glial cells, and other neurons in the inner nuclear layer of the retina. In the developing retina, Mas receptor mRNA and protein expression was detected in the inner retina at P1, and the expression levels increased with age to reach the adult level and pattern by P15. In the adult mouse retina, Mas receptor mRNA was expressed at a much higher level when compared to angiotensin II (Ang II) type I (AT1R) and type II (AT2R) receptor m

  7. Foundations of Neuromorphic Computing

    Science.gov (United States)

    2013-05-01

    make informed decisions quicker than our adversaries. 2.0 INTRODUCTION The increasing resolution and speed of today’s advanced sensor ...transistor, and if the total combined potential at the adding node is greater than the threshold voltage, Vth, of the MOSFET transistor, the output of the... resistance state depends on its previous state and present electrical biasing conditions, and when combined with transistors in a hybrid chip

  8. Electrical responses of rods in the retina of Bufo marinus

    Science.gov (United States)

    Cervetto, L.; Pasino, E.; Torre, V.

    1977-01-01

    1. Intracellular responses to flashes and steps of light have been recorded from the outer segment and the cell body of rods in the retina of the Bufo marinus. The identification of the origin of recorded responses has been confirmed by intracellular marking. 2. Responses to flashes delivered in darkness or superimposed on a background were analysed. Responses recorded from outer segments conform to the principle of `spectral univariance'. The shape of the response is not affected by enlarging the spot diameter from 150 to 1000 μm. 3. The membrane potential measured in darkness at the outer segments varied from -15 to -25 mV. Injection of steady hyperpolarizing currents increases the size of the response to light; depolarizing currents reduce the response. The mean value of the input resistance is 97 ± 30 MΩ in darkness and increases by 20-30% during illumination. 4. The responses obtained from the cell body of rods have the same shape, time course and spectral sensitivity of those recorded at the outer segment. Injection of steady current at the cell body produces different effects than at the outer segment: hyperpolarizing currents reduce the amplitude of the response to light; depolarizing currents increase the response. 5. The experimental data are fitted according to a model similar to that used to describe the responses of turtle cones (Baylor & Hodgkin, 1974; Baylor, Hodgkin & Lamb, 1974a, b). 6. The model reproduces the electrical responses of the rod outer segment to a variety of stimuli: (a) brief flashes and steps of light in dark adapted conditions; (b) bright flashes superimposed on background illuminations; (c) pairs of flashes delivered at different time intervals. Responses to hyperpolarizing steps of current are also reproduced by the model. ImagesABCD PMID:406383

  9. Endocannabinoids in the retina: from marijuana to neuroprotection.

    Science.gov (United States)

    Yazulla, Stephen

    2008-09-01

    The active component of the marijuana plant Cannabis sativa, Delta9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the "cannabinergic" field to the retinal community. All of the fundamental works on cannabinoids have been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptations, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases.

  10. Mapping the Differential Distribution of Proteoglycan Core Proteins in the Adult Human Retina, Choroid, and Sclera

    Science.gov (United States)

    Keenan, Tiarnan D. L.; Clark, Simon J.; Unwin, Richard D.; Ridge, Liam A.; Day, Anthony J.; Bishop, Paul N.

    2012-01-01

    Purpose. To examine the presence and distribution of proteoglycan (PG) core proteins in the adult human retina, choroid, and sclera. Methods. Postmortem human eye tissue was dissected into Bruch's membrane/choroid complex, isolated Bruch's membrane, or neurosensory retina. PGs were extracted and partially purified by anion exchange chromatography. Trypsinized peptides were analyzed by tandem mass spectrometry and PG core proteins identified by database search. The distribution of PGs was examined by immunofluorescence microscopy on human macular tissue sections. Results. The basement membrane PGs perlecan, agrin, and collagen-XVIII were identified in the human retina, and were present in the internal limiting membrane, blood vessel walls, and Bruch's membrane. The hyalectans versican and aggrecan were also detected. Versican was identified in Bruch's membrane, while aggrecan was distributed throughout the retina, choroid, and sclera. The cartilage link protein HAPLN1 was abundant in the interphotoreceptor matrix and sclera, while HAPLN4 (brain link protein 2) was found throughout the retina and choroid. The small leucine-rich repeat PG (SLRP) family members biglycan, decorin, fibromodulin, lumican, mimecan, opticin, and prolargin were present, with different patterns of distribution in the retina, choroid, and sclera. Conclusions. A combination of proteomics and immunohistochemistry approaches has provided for the first time a comprehensive analysis of the presence and distribution of PG core proteins throughout the human retina, choroid, and sclera. This complements our knowledge of glycosaminoglycan chain distribution in the human eye, and has important implications for understanding the structure and functional regulation of the eye in health and disease. PMID:23074202

  11. AII amacrine cells in the mammalian retina show disabled-1 immunoreactivity.

    Science.gov (United States)

    Lee, Eun-Jin; Kim, Hyun-Ju; Lim, Eun-Jin; Kim, In-Beom; Kang, Wha-Sun; Oh, Su-Ja; Rickman, Dennis W; Chung, Jin-Woong; Chun, Myung-Hoon

    2004-03-15

    Disabled 1 (Dab1) is an adapter molecule in a signaling pathway, stimulated by Reelin, which controls cell positioning in the developing brain. It has been localized to AII amacrine cells in the mouse and guinea pig retinas. This study was conducted to identify whether Dab1 is commonly localized to AII amacrine cells in the retinas of other mammals. We investigated Dab1-labeled cells in human, rat, rabbit, and cat retinas in detail by immunocytochemistry with antisera against Dab1. Dab1 immunoreactivity was found in certain populations of amacrine cells, with lobular appendages in the outer half of the inner plexiform layer (IPL) and a bushy, smooth dendritic tree in the inner half of the IPL. Double-labeling experiments demonstrated that all Dab1-immunoreactive amacrine cells were immunoreactive to antisera against calretinin or parvalbumin (i.e., other markers for AII amacrine cells in the mammalian retina) and that they made contacts with the axon terminals of the rod bipolar cells in the IPL close to the ganglion cell layer. Furthermore, all Dab1-labeled amacrine cells showed glycine transporter-1 immunoreactivity, indicating that they are glycinergic. The peak density was relatively high in the human and rat retinas, moderate in the cat retina, and low in the rabbit retina. Together, these morphological and histochemical observations clearly indicate that Dab1 is commonly localized to AII amacrine cells and that antiserum against Dab1 is a reliable and specific marker for AII amacrine cells of diverse mammals. Copyright 2004 Wiley-Liss, Inc.

  12. Prox1 Is a Marker for AII Amacrine Cells in the Mouse Retina.

    Science.gov (United States)

    Pérez de Sevilla Müller, Luis; Azar, Shaghauyegh S; de Los Santos, Janira; Brecha, Nicholas C

    2017-01-01

    The transcription factor Prox1 is expressed in multiple cells in the retina during eye development. This study has focused on neuronal Prox1 expression in the inner nuclear layer (INL) of the adult mouse retina. Prox1 immunostaining was evaluated in vertical retinal sections and whole mount preparations using a specific antibody directed to the C-terminus of Prox1. Strong immunostaining was observed in numerous amacrine cell bodies and in all horizontal cell bodies in the proximal and distal INL, respectively. Some bipolar cells were also weakly immunostained. Prox1-immunoreactive amacrine cells expressed glycine, and they formed 35 ± 3% of all glycinergic amacrine cells. Intracellular Neurobiotin injections into AII amacrine cells showed that all gap junction-coupled AII amacrine cells express Prox1, and no other Prox1-immunostained amacrine cells were in the immediate area surrounding the injected AII amacrine cell. Prox1-immunoreactive amacrine cell bodies were distributed across the retina, with their highest density (3887 ± 160 cells/mm(2)) in the central retina, 0.5 mm from the optic nerve head, and their lowest density (3133 ± 350 cells/mm(2)) in the mid-peripheral retina, 2 mm from the optic nerve head. Prox1-immunoreactive amacrine cell bodies comprised ~9.8% of the total amacrine cell population, and they formed a non-random mosaic with a regularity index (RI) of 3.4, similar to AII amacrine cells in the retinas of other mammals. Together, these findings indicate that AII amacrine cells are the predominant and likely only amacrine cell type strongly expressing Prox1 in the adult mouse retina, and establish Prox1 as a marker of AII amacrine cells.

  13. Optical imaging of the retina in response to the electrical stimulation

    Science.gov (United States)

    Fujikado, Takashi; Okawa, Yoshitaka; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Tano, Yasuo

    2008-02-01

    Purposes: To determine if reflectance changes of the retina can be detected following electrical stimulation to the retina using a newly developed optical-imaging fundus camera. Methods: Eyes of cats were examined after pupil dilation. Retina was stimulated either focally by a ball-type electrode (BE) placed on the fenestrated sclera or diffusely using a ring-type electrode (RE) placed on the corneoscleral limbus. Electrical stimulation by biphasic pulse trains was applied for 4 seconds. Fundus images with near-infrared (800-880 nm) light were obtained between 2 seconds before and 20 seconds after the electrical stimulation (ES). A two-dimensional map of the reflectance changes (RCs) was constructed. The effect of Tetrodotoxin (TTX) was also investigated on RCs by ES using RE. Results: RCs were observed around the retinal locus where the stimulating electrodes were positioned (BE) or in the retina of the posterior pole (RE), in which the latency was about 0.5 to 1.0 sec and the peak time about 2 to 5 sec after the onset of ES. The intensity of the RCs increased with the increase of the stimulus current in both cases. RCs were completely suppressed after the injection of TTX. Conclusions: The functional changes of the retina either by focal or diffuse electrical stimulation were successfully detected by optical imaging of the retina. The contribution of retinal ganglion cells on RCs by ES was confirmed by TTX experiment. This method may be applied to the objective evaluation of the artificial retina.

  14. Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds.

    Science.gov (United States)

    Mayazur Rahman, S; Reichenbach, Andreas; Zink, Mareike; Mayr, Stefan G

    2016-04-14

    Development of neuronal tissue, such as folding of the brain, and formation of the fovea centralis in the human retina are intimately connected with the mechanical properties of the underlying cells and the extracellular matrix. In particular for neuronal tissue as complex as the vertebrate retina, mechanical properties are still a matter of debate due to their relation to numerous diseases as well as surgery, where the tension of the retina can result in tissue detachment during cutting. However, measuring the elasticity of adult retina wholemounts is difficult and until now only the mechanical properties at the surface have been characterized with micrometer resolution. Many processes, however, such as pathological changes prone to cause tissue rupture and detachment, respectively, are reflected in variations of retina elasticity at smaller length scales at the protein level. In the present work we demonstrate that freely oscillating cantilevers composed of nanostructured TiO2 scaffolds can be employed to study the frequency-dependent mechanical response of adult mammalian retina explants at the nanoscale. Constituting highly versatile scaffolds with strong tissue attachment for long-term organotypic culture atop, these scaffolds perform damped vibrations as fingerprints of the mechanical tissue properties that are derived using finite element calculations. Since the tissue adheres to the nanostructures via constitutive proteins on the photoreceptor side of the retina, the latter are stretched and compressed during vibration of the underlying scaffold. Probing mechanical response of individual proteins within the tissue, the proposed mechanical spectroscopy approach opens the way for studying tissue mechanics, diseases and the effect of drugs at the protein level.

  15. Neural retina identity is specified by lens-derived BMP signals.

    Science.gov (United States)

    Pandit, Tanushree; Jidigam, Vijay K; Patthey, Cedric; Gunhaga, Lena

    2015-05-15

    The eye has served as a classical model to study cell specification and tissue induction for over a century. Nevertheless, the molecular mechanisms that regulate the induction and maintenance of eye-field cells, and the specification of neural retina cells are poorly understood. Moreover, within the developing anterior forebrain, how prospective eye and telencephalic cells are differentially specified is not well defined. In the present study, we have analyzed these issues by manipulating signaling pathways in intact chick embryo and explant assays. Our results provide evidence that at blastula stages, BMP signals inhibit the acquisition of eye-field character, but from neural tube/optic vesicle stages, BMP signals from the lens are crucial for the maintenance of eye-field character, inhibition of dorsal telencephalic cell identity and specification of neural retina cells. Subsequently, our results provide evidence that a Rax2-positive eye-field state is not sufficient for the progress to a neural retina identity, but requires BMP signals. In addition, our results argue against any essential role of Wnt or FGF signals during the specification of neural retina cells, but provide evidence that Wnt signals together with BMP activity are sufficient to induce cells of retinal pigment epithelial character. We conclude that BMP activity emanating from the lens ectoderm maintains eye-field identity, inhibits telencephalic character and induces neural retina cells. Our findings link the requirement of the lens ectoderm for neural retina specification with the molecular mechanism by which cells in the forebrain become specified as neural retina by BMP activity. © 2015. Published by The Company of Biologists Ltd.

  16. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    Science.gov (United States)

    Larrayoz, Ignacio M; Rey-Funes, Manuel; Contartese, Daniela S; Rolón, Federico; Sarotto, Anibal; Dorfman, Veronica B; Loidl, Cesar F; Martínez, Alfredo

    2016-01-01

    Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP), including RNA-binding motif protein 3 (RBM3) and cold inducible RNA-binding protein (CIRP), but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C) and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C). Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina.

  17. Requirement for Microglia for the Maintenance of Synaptic Function and Integrity in the Mature Retina.

    Science.gov (United States)

    Wang, Xu; Zhao, Lian; Zhang, Jun; Fariss, Robert N; Ma, Wenxin; Kretschmer, Friedrich; Wang, Minhua; Qian, Hao Hua; Badea, Tudor C; Diamond, Jeffrey S; Gan, Wen-Biao; Roger, Jerome E; Wong, Wai T

    2016-03-02

    Microglia, the principal resident immune cell of the CNS, exert significant influence on neurons during development and in pathological situations. However, if and how microglia contribute to normal neuronal function in the mature uninjured CNS is not well understood. We used the model of the adult mouse retina, a part of the CNS amenable to structural and functional analysis, to investigate the constitutive role of microglia by depleting microglia from the retina in a sustained manner using genetic methods. We discovered that microglia are not acutely required for the maintenance of adult retinal architecture, the survival of retinal neurons, or the laminar organization of their dendritic and axonal compartments. However, sustained microglial depletion results in the degeneration of photoreceptor synapses in the outer plexiform layer, leading to a progressive functional deterioration in retinal light responses. Our results demonstrate that microglia are constitutively required for the maintenance of synaptic structure in the adult retina and for synaptic transmission underlying normal visual function. Our findings on constitutive microglial function are relevant in understanding microglial contributions to pathology and in the consideration of therapeutic interventions that reduce or perturb constitutive microglial function. Microglia, the principal resident immune cell population in the CNS, has been implicated in diseases in the brain and retina. However, how they contribute to the everyday function of the CNS is unclear. Using the model of the adult mouse retina, we examined the constitutive role of microglia by depleting microglia from the retina. We found that in the absence of microglia, retinal neurons did not undergo overt cell death or become structurally disorganized in their processes. However, connections between neurons called synapses begin to break down, leading to a decreased ability of the retina to transmit light responses. Our results indicate

  18. Expression of Inducible Nitric Oxide Synthase (iNOS) in Microglia of the Developing Quail Retina

    Science.gov (United States)

    Sierra, Ana; Navascués, Julio; Cuadros, Miguel A.; Calvente, Ruth; Martín-Oliva, David; Ferrer-Martín, Rosa M.; Martín-Estebané, María; Carrasco, María-Carmen; Marín-Teva, José L.

    2014-01-01

    Inducible nitric oxide synthase (iNOS), which produce large amounts of nitric oxide (NO), is induced in macrophages and microglia in response to inflammatory mediators such as LPS and cytokines. Although iNOS is mainly expressed by microglia that become activated in different pathological and experimental situations, it was recently reported that undifferentiated amoeboid microglia can also express iNOS during normal development. The aim of this study was to investigate the pattern of iNOS expression in microglial cells during normal development and after their activation with LPS by using the quail retina as model. iNOS expression was analyzed by iNOS immunolabeling, western-blot, and RT-PCR. NO production was determined by using DAR-4M AM, a reliable fluorescent indicator of subcellular NO production by iNOS. Embryonic, postnatal, and adult in situ quail retinas were used to analyze the pattern of iNOS expression in microglial cells during normal development. iNOS expression and NO production in LPS-treated microglial cells were investigated by an in vitro approach based on organotypic cultures of E8 retinas, in which microglial cell behavior is similar to that of the in situ retina, as previously demonstrated in our laboratory. We show here that amoeboid microglia in the quail retina express iNOS during normal development. This expression is stronger in microglial cells migrating tangentially in the vitreal part of the retina and is downregulated, albeit maintained, when microglia differentiate and become ramified. LPS treatment of retina explants also induces changes in the morphology of amoeboid microglia compatible with their activation, increasing their lysosomal compartment and upregulating iNOS expression with a concomitant production of NO. Taken together, our findings demonstrate that immature microglial cells express iNOS during normal development, suggesting a certain degree of activation. Furthermore, LPS treatment induces overactivation of amoeboid

  19. Cold Shock Proteins Are Expressed in the Retina Following Exposure to Low Temperatures.

    Directory of Open Access Journals (Sweden)

    Ignacio M Larrayoz

    Full Text Available Hypothermia has been proposed as a therapeutic intervention for some retinal conditions, including ischemic insults. Cold exposure elevates expression of cold-shock proteins (CSP, including RNA-binding motif protein 3 (RBM3 and cold inducible RNA-binding protein (CIRP, but their presence in mammalian retina is so far unknown. Here we show the effects of hypothermia on the expression of these CSPs in retina-derived cell lines and in the retina of newborn and adult rats. Two cell lines of retinal origin, R28 and mRPE, were exposed to 32°C for different time periods and CSP expression was measured by qRT-PCR and Western blotting. Neonatal and adult Sprague-Dawley rats were exposed to a cold environment (8°C and expression of CSPs in their retinas was studied by Western blotting, multiple inmunofluorescence, and confocal microscopy. RBM3 expression was upregulated by cold in both R28 and mRPE cells in a time-dependent fashion. On the other hand, CIRP was upregulated in R28 cells but not in mRPE. In vivo, expression of CSPs was negligible in the retina of newborn and adult rats kept at room temperature (24°C. Exposure to a cold environment elicited a strong expression of both proteins, especially in retinal pigment epithelium cells, photoreceptors, bipolar, amacrine and horizontal cells, Müller cells, and ganglion cells. In conclusion, CSP expression rapidly rises in the mammalian retina following exposure to hypothermia in a cell type-specific pattern. This observation may be at the basis of the molecular mechanism by which hypothermia exerts its therapeutic effects in the retina.

  20. Atrofia girata de coróide e retina: relato de caso Girate atrophy of the retina and choroid: case report

    Directory of Open Access Journals (Sweden)

    Emerson Kenji Oyamaguchi

    2003-08-01

    Full Text Available OBJETIVO: Relatar um caso de atrofia girata de coróide e retina com confirmação por meio da bioquímica do plasma. MÉTODO: Aferiu-se a melhor acuidade visual corrigida de ambos olhos (AO em tabela de Snellen. Foram realizados biomicroscopia do segmento anterior, refração, mapeamento de retina, angiografia fluoresceínica, campo visual e dosagem da ornitina sérica (aminoacidograma. RESULTADOS: Paciente de 22 anos, sexo feminino, cor branca, apresentando alta miopia e acuidade visual (AV 20/100 em AO. À biomicroscopia do segmento anterior apresentava catarata subcapsular posterior em AO. À oftalmoscopia foram verificadas lesões atróficas da coróide e da retina bem delimitadas em meia periferia de AO. O aminoacidograma constatou elevação correspondente ao complexo da ornitina. CONCLUSÃO: Relata-se um caso típico de atrofia girata, distrofia retiniana rara associada a hiperornitinemia.PURPOSE: To report a case of gyrate atrophy confirmed by biochemical blood analysis. METHODS: Best corrected visual acuity was evaluated. Biomicroscopy of the anterior segment, indirect ophthalmoscopy, fluorescein angiography and computerized visual fields were performed. Color vision was assessed and plasma ornithine level was determined. RESULTS: 22-year-old white female with high myopia, visual acuity of 20/100 in both eyes. Biomicroscopy showed posterior subcapsular cataract in both eyes. Retinography showed well-delineated atrophic lesions of the choroid and retina in the mid-periphery and around the optic nerve in both eyes. Blood aminoacid determination showed high levels of ornithine. CONCLUSION: We describe here a typical case of girate atrophy of the retina and choroid, a rare disease associated with high levels of plasma ornithine.

  1. Active processing of spatio-temporal input patterns in silicon dendrites.

    Science.gov (United States)

    Wang, Yingxue; Liu, Shih-Chii

    2013-06-01

    Capturing the functionality of active dendritic processing into abstract mathematical models will help us to understand the role of complex biophysical neurons in neuronal computation and to build future useful neuromorphic analog Very Large Scale Integrated (aVLSI) neuronal devices. Previous work based on an aVLSI multi-compartmental neuron model demonstrates that the compartmental response in the presence of either of two widely studied classes of active mechanisms, is a nonlinear sigmoidal function of the degree of either input temporal synchrony OR input clustering level. Using the same silicon model, this work expounds the interaction between both active mechanisms in a compartment receiving input patterns of varying temporal AND spatial clustering structure and demonstrates that this compartmental response can be captured by a combined sigmoid and radial-basis function over both input dimensions. This paper further shows that the response to input spatio-temporal patterns in a one-dimensional multi-compartmental dendrite, can be described by a radial-basis like function of the degree of temporal synchrony between the inter-compartmental inputs.

  2. P3-7: On Prototyping a Visual Prosthesis System with Artificial Retina and Optic Nerve Based on Arrayed Microfibers

    OpenAIRE

    Jian Hong Chen; Lon Alex Wang

    2012-01-01

    The traditional visual prosthesis system combines both a camera and a microelectrode array implanted on the visual neural network including retina, optic nerve, and visual cortex. Here, we introduce a new visual prosthesis system in which an artificial retina and optic nerve are demonstrated. The prototype of optic nerve for image transmission is comprised of arrayed PMMA microfibers with both ends connected with two planes, one functioned as retina for light reception and another attached to...

  3. The Effect of Viscosity of PDMS Based Silicone-Oil Tamponade Agents on the Movement Relative to the Eye Wall during Eye Movements

    Directory of Open Access Journals (Sweden)

    Chan Yau Kei

    2011-05-01

    Full Text Available Silicone oil tamponade is used as vitreous substitute to treat complicated retinal diseases. It provides support to the retina and acts against contraction of the retina and as such plays a vital role in preventing eyes from certain blindness. Silicone oil however has a tendency to emulsify and is accountable to inflammation and glaucoma. In in-vitro study, it was found that using silicone-oil with higher viscosity reduce the occurrences of emulsifications. In this study, an eye model chamber was used to capture the movement of silicone oil bubbles inside the model eye chamber by rapid serial photography. A few tamponades derived from the same material but with different shear viscosities were used. Our objective of this experiment is to investigate the effect of viscosity of tamponade to the movement of tamponade relative to retinal phase in model eye chambers mimicking saccadic eye movements. Our experiment confirms that shear viscosity determines the relative movement between the silicone bubble and the chamber wall. The higher the viscosity, the smaller the movement of tamponade relative to the chamber wall. We suggested that using much viscous tamponade may reduce the onset of emulsification due to the reduction of relative movement.

  4. Spatiotemporal realization of an artificial retina model and performance evaluation through ISI- and spike count-based image reconstruction methods

    OpenAIRE

    KARAGÖZ, İrfan; ÖZDEN, Mustafa

    2014-01-01

    Development of an artificial retina model that can mimic the biologic retina is a highly challenging task and this task is an important step in the development of a visual prosthesis. The receptive field structure of the retina layer is usually modeled as a 2D difference of Gaussian (DOG) filter profile. In the present study, as a different approach, a retina model including a 3D 2-stage DOG filter (3D-ADOG) that has an adaptively changing bandwidth with respect to the local image stati...

  5. Nanoslits in silicon chips.

    Science.gov (United States)

    Aref, Thomas; Brenner, Matthew; Bezryadin, Alexey

    2009-01-28

    Potassium hydroxide (KOH) etching of a patterned [100] oriented silicon wafer produces V-shaped etch pits. We demonstrate that the remaining thickness of silicon at the tip of the etch pit can be reduced to approximately 5 microm using an appropriately sized etch mask and optical feedback. Starting from such an etched chip, we have developed two different routes for fabricating 100 nm scale slits that penetrate through the macroscopic silicon chip (the slits are approximately 850 microm wide at one face of the chip and gradually narrow to approximately 100-200 nm wide at the opposite face of the chip). In the first process, the etched chips are sonicated to break the thin silicon at the tip of the etch pit and then further KOH etched to form a narrow slit. In the second process, focused ion beam milling is used to etch through the thin silicon at the tip of the etch pit. The first method has the advantage that it uses only low-resolution technology while the second method offers more control over the length and width of the slit. Our slits can be used for preparing mechanically stable, transmission electron microscopy samples compatible with electrical transport measurements or as nanostencils for depositing nanowires seamlessly connected to their contact pads.

  6. CLRN1 is nonessential in the mouse retina but is required for cochlear hair cell development.

    Science.gov (United States)

    Geller, Scott F; Guerin, Karen I; Visel, Meike; Pham, Aaron; Lee, Edwin S; Dror, Amiel A; Avraham, Karen B; Hayashi, Toshinori; Ray, Catherine A; Reh, Thomas A; Bermingham-McDonogh, Olivia; Triffo, William J; Bao, Shaowen; Isosomppi, Juha; Västinsalo, Hanna; Sankila, Eeva-Marja; Flannery, John G

    2009-08-01

    Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.

  7. CLRN1 is nonessential in the mouse retina but is required for cochlear hair cell development.

    Directory of Open Access Journals (Sweden)

    Scott F Geller

    2009-08-01

    Full Text Available Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3, a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH, laser capture microdissection (LCM, and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal

  8. Nitrosative Stress in the Rat Retina at the Onset of Streptozotocin-Induced Diabetes.

    Science.gov (United States)

    Hernández-Ramírez, Ernesto; Sánchez-Chávez, Gustavo; Estrella-Salazar, Luis A; Salceda, Rocío

    2017-01-01

    Nitric oxide is a multifunctional molecule that can modify proteins via nitrosylation; it can also initiate signaling cascades through the activation of soluble guanylate cyclase. Diabetic retinopathy is the leading cause of blindness, but its pathogenesis is unknown. Multiple mechanisms including oxidative-nitrosative stress have been implicated. Our main goal was to find significant changes in nitric oxide (NO) levels and determine their association with nitrosative stress in the rat retina at the onset of diabetes. Diabetes was induced by a single intraperitoneal administration of streptozotocin. The possible nitric oxide effects on the rat retina were evaluated by the presence of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a specific marker for NO-producing neurons, detected by histochemistry performed on whole retinas and retina sections. Immunohistochemistry was also performed on retina sections for iNOS, 3-nitrotyrosine (3-NT) and glial fibrillary acidic protein (GFAP). Retinal nitric oxide levels were assessed by measuring total nitrate/nitrite concentrations. Retinal cGMP levels were determined by radioimmunoassay. Western blots for nitrotyrosine (3-NT) and oxidized proteins were performed. In the present study, we found increased activity of NADPH-diaphorase and iNOS immunoreactivity in the rat retina at the onset of diabetes; this increase correlated with a remarkable increase in NO levels as early as 7 days after the onset of diabetes. However, cGMP levels were not modified by diabetes, suggesting that NO did not activate its signaling cascade. Even so, Western blots revealed a progressive increase in nitrated proteins at 7 days after diabetes induction. Likewise, positive nitrotyrosine immunolabeling was observed in the photoreceptor layer, ganglion cell layer, inner nuclear layer and some Müller cell processes in the retinas of diabetic rats. In addition, levels of oxidized proteins were increased in the retina early after

  9. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  10. The Retinome – Defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium

    Directory of Open Access Journals (Sweden)

    Goetz Thomas

    2004-07-01

    Full Text Available Abstract Background The mammalian retina is a valuable model system to study neuronal biology in health and disease. To obtain insight into intrinsic processes of the retina, great efforts are directed towards the identification and characterization of transcripts with functional relevance to this tissue. Results With the goal to assemble a first genome-wide reference transcriptome of the adult mammalian retina, referred to as the retinome, we have extracted 13,037 non-redundant annotated genes from nearly 500,000 published datasets on redundant retina/retinal pigment epithelium (RPE transcripts. The data were generated from 27 independent studies employing a wide range of molecular and biocomputational approaches. Comparison to known retina-/RPE-specific pathways and established retinal gene networks suggest that the reference retinome may represent up to 90% of the retinal transcripts. We show that the distribution of retinal genes along the chromosomes is not random but exhibits a higher order organization closely following the previously observed clustering of genes with increased expression. Conclusion The genome wide retinome map offers a rational basis for selecting suggestive candidate genes for hereditary as well as complex retinal diseases facilitating elaborate studies into normal and pathological pathways. To make this unique resource freely available we have built a database providing a query interface to the reference retinome 1.

  11. Stage-dependent requirement of neuroretinal Pax6 for lens and retina development.

    Science.gov (United States)

    Klimova, Lucie; Kozmik, Zbynek

    2014-03-01

    The physical contact of optic vesicle with head surface ectoderm is an initial event triggering eye morphogenesis. This interaction leads to lens specification followed by coordinated invagination of the lens placode and optic vesicle, resulting in formation of the lens, retina and retinal pigmented epithelium. Although the role of Pax6 in early lens development has been well documented, its role in optic vesicle neuroepithelium and early retinal progenitors is poorly understood. Here we show that conditional inactivation of Pax6 at distinct time points of mouse neuroretina development has a different impact on early eye morphogenesis. When Pax6 is eliminated in the retina at E10.5 using an mRx-Cre transgene, after a sufficient contact between the optic vesicle and surface ectoderm has occurred, the lens develops normally but the pool of retinal progenitor cells gradually fails to expand. Furthermore, a normal differentiation program is not initiated, leading to almost complete disappearance of the retina after birth. By contrast, when Pax6 was inactivated at the onset of contact between the optic vesicle and surface ectoderm in Pax6(Sey/flox) embryos, expression of lens-specific genes was not initiated and neither the lens nor the retina formed. Our data show that Pax6 in the optic vesicle is important not only for proper retina development, but also for lens formation in a non-cell-autonomous manner.

  12. HB-EGF is necessary and sufficient for Müller glia dedifferentiation and retina regeneration

    Science.gov (United States)

    Wan, Jin; Ramachandran, Rajesh; Goldman, Daniel

    2011-01-01

    Summary Müller glia (MG) dedifferentiation into a cycling population of multipotent progenitors is crucial to zebrafish retina regeneration. The mechanisms underlying MG dedifferentiation are unknown. Here we report that heparin-binding epidermal-like growth factor (HB-EGF) is rapidly induced in MG residing at the injury site and that proHB-EGF ectodomain shedding is necessary for retina regeneration. Remarkably, HB-EGF stimulates the formation of multipotent MG-derived progenitors in the uninjured retina. We show that HB-EGF mediates its effects via an EGFR/MAPK signal transduction cascade that regulates the expression of regeneration-associated genes, like ascl1a and pax6b. We also uncover an HB-EGF/Ascl1a/Notch/hb-egfa signaling loop that helps define the zone of injury-responsive MG. Finally, we show that HB-EGF acts upstream of the Wnt/β-catenin signaling cascade that controls progenitor proliferation. These data provide a link between extracellular signaling and regeneration-associated gene expression in the injured retina and suggest strategies for stimulating retina regeneration in mammals. PMID:22340497

  13. Mathematical and computational models of the retina in health, development and disease.

    Science.gov (United States)

    Roberts, Paul A; Gaffney, Eamonn A; Luthert, Philip J; Foss, Alexander J E; Byrne, Helen M

    2016-07-01

    The retina confers upon us the gift of vision, enabling us to perceive the world in a manner unparalleled by any other tissue. Experimental and clinical studies have provided great insight into the physiology and biochemistry of the retina; however, there are questions which cannot be answered using these methods alone. Mathematical and computational techniques can provide complementary insight into this inherently complex and nonlinear system. They allow us to characterise and predict the behaviour of the retina, as well as to test hypotheses which are experimentally intractable. In this review, we survey some of the key theoretical models of the retina in the healthy, developmental and diseased states. The main insights derived from each of these modelling studies are highlighted, as are model predictions which have yet to be tested, and data which need to be gathered to inform future modelling work. Possible directions for future research are also discussed. Whilst the present modelling studies have achieved great success in unravelling the workings of the retina, they have yet to achieve their full potential. For this to happen, greater involvement with the modelling community is required, and stronger collaborations forged between experimentalists, clinicians and theoreticians. It is hoped that, in addition to bringing the fruits of current modelling studies to the attention of the ophthalmological community, this review will encourage many such future collaborations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Flavonoid Naringenin Attenuates Oxidative Stress, Apoptosis and Improves Neurotrophic Effects in the Diabetic Rat Retina.

    Science.gov (United States)

    Al-Dosari, Dalia I; Ahmed, Mohammed M; Al-Rejaie, Salim S; Alhomida, Abdullah S; Ola, Mohammad S

    2017-10-24

    Diabetic retinopathy (DR) is one of the leading causes of decreased vision and blindness worldwide. Diabetes-induced oxidative stress is believed to be the key factor that initiates neuronal damage in the diabetic retina leading to DR. Experimental approaches to utilize dietary flavonoids, which possess both antidiabetic and antioxidant activities, might protect the retinal damage in diabetes. The aim of this study was to investigate the potential protective effects of naringenin in the retina of streptozotocin-induced diabetic rats. Diabetic rats were orally treated and untreated with naringenin (50 mg/kg/day) for five weeks and retinas were analyzed for markers of oxidative stress, apoptosis and neurotrophic factors. Systemic effects of naringenin treatments were also analyzed and compared with untreated groups. The results showed that elevated levels of thiobarbituric acid reactive substances (TBARs) and decreased level of glutathione (GSH) in diabetic rats were ameliorated with naringenin treatments. Moreover, decreased levels of neuroprotective factors (Brain derived neurotrophic factor (BDNF)), tropomyosin related kinase B (TrkB) and synaptophysin in diabetic retina were augmented with naringenin treatments. In addition, naringenin treatment ameliorated the levels of apoptosis regulatory proteins; B cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax) and caspase-3 in the diabetic retina. Thus, the study demonstrates the beneficial effects of naringenin that possesses anti-diabetic, antioxidant and antiapoptotic properties, which may limit neurodegeneration by providing neurotrophic support to prevent retinal damage in diabetic retinopathy.

  15. Frequency of Toxoplasma gondii in the retina in eye banks in Brazil.

    Science.gov (United States)

    Costa, Deise F; Nascimento, Heloisa; Sutili, Aline; Nobrega, Fernando A J; Fowler, Flavio; Nobrega, Mario Junqueira; Garrido, Cristina; de Oliveira Dias, Janaina; Adán, Consuelo B D; Rizzo, Luiz Vicente; Silveira, Claudio; Belfort, Rubens; Commodaro, Alessandra G

    2017-07-01

    Ocular toxoplasmosis is the main cause of posterior uveitis worldwide frequently leading to vision loss. In Brazil, the seroprevalence of Toxoplasma gondii infection ranges from 50 to 80% depending of the region studied. The frequency of toxoplasmic retinal scar may reach 18% of the adults in the South of Brazil. Our goal was to determine the frequency of T. gondii DNA in retinas from eye banks from different regions in Brazil. A total of 162 eyes were obtained from eye banks in Manaus (n = 60), Sao Paulo (n = 60), Chapeco (n = 26), and Joinville (n = 16). The retinas were macroscopically analyzed and collected for DNA extraction. Real-time PCR (qPCR) was performed using the T. gondii B1 marker. By qPCR, a higher frequency of T. gondii DNA in the retinas from the eye bank of Joinville (25%) was found when compared to Manaus (5%). The retinas from Sao Paulo and Chapeco were qPCR negative. Clinical examination determined the retina lesions to be compatible with toxoplasmosis in the following frequencies: Joinville (62.5%), Manaus (10%), Sao Paulo (6.7%), and Chapeco (15.4%).

  16. Benign familial fleck retina: multimodal imaging including optical coherence tomography angiography.

    Science.gov (United States)

    Garcia, Jose Mauricio Botto de Barros; Isaac, David Leonardo Cruvinel; Sardeiro, Tainara; Aquino, Érika; Avila, Marcos

    2017-01-01

    This report presents multimodal imaging of a 27-year-old woman diagnosed with benign familial fleck retina (OMIM 228980), an uncommon disorder. Fundus photographs revealed retinal flecks that affected her post-equatorial retina but spared the macular area. Fundus autofluorescence and infrared imaging demonstrated a symmetrical pattern of yellow-white fleck lesions that affected both eyes. Her full-field electroretinogram and electrooculogram were normal. An optical coherence tomography B-scan was performed for both eyes, revealing increased thickness of the retinal pigmented epithelium leading to multiple small pigmented epithelium detachments. The outer retina remained intact in both eyes. Spectral-domain optical coherence tomography angiography with split-spectrum amplitude decorrelation algorithm and 3 × 3 mm structural en face optical coherence tomography did not show macular lesions. Benign familial fleck retina belongs to a heterogenous group of so-called flecked retina syndromes, and should be considered in patients with yellowish-white retinal lesions without involvement of the macula.

  17. Intrinsic lens potential of neural retina inhibited by Notch signaling as the cause of lens transdifferentiation.

    Science.gov (United States)

    Iida, Hideaki; Ishii, Yasuo; Kondoh, Hisato

    2017-01-15

    Embryonic neural retinas of avians produce lenses under spreading culture conditions. This phenomenon has been regarded as a paradigm of transdifferentiation due to the overt change in cell type. Here we elucidated the underlying mechanisms. Retina-to-lens transdifferentiation occurs in spreading cultures, suggesting that it is triggered by altered cell-cell interactions. Thus, we tested the involvement of Notch signaling based on its role in retinal neurogenesis. Starting from E8 retina, a small number of crystallin-expressing lens cells began to develop after 20 days in control spreading cultures. By contrast, addition of Notch signal inhibitors to cultures after day 2 strongly promoted lens development beginning at day 11, and a 10-fold increase in δ-crystallin expression level. After Notch signal inhibition, transcription factor genes that regulate the early stage of eye development, Prox1 and Pitx3, were sequentially activated. These observations indicate that the lens differentiation potential is intrinsic to the neural retina, and this potential is repressed by Notch signaling during normal embryogenesis. Therefore, Notch suppression leads to lens transdifferentiation by disinhibiting the neural retina-intrinsic program of lens development. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Retinal degeneration progression changes lentiviral vector cell targeting in the retina.

    Directory of Open Access Journals (Sweden)

    Maritza Calame

    Full Text Available In normal mice, the lentiviral vector (LV is very efficient to target the RPE cells, but transduces retinal neurons well only during development. In the present study, the tropism of LV has been investigated in the degenerating retina of mice, knowing that the retina structure changes during degeneration. We postulated that the viral transduction would be increased by the alteration of the outer limiting membrane (OLM. Two different LV pseudotypes were tested using the VSVG and the Mokola envelopes, as well as two animal models of retinal degeneration: light-damaged Balb-C and Rhodopsin knockout (Rho-/- mice. After light damage, the OLM is altered and no significant increase of the number of transduced photoreceptors can be obtained with a LV-VSVG-Rhop-GFP vector. In the Rho-/- mice, an alteration of the OLM was also observed, but the possibility of transducing photoreceptors was decreased, probably by ongoing gliosis. The use of a ubiquitous promoter allows better photoreceptor transduction, suggesting that photoreceptor-specific promoter activity changes during late stages of photoreceptor degeneration. However, the number of targeted photoreceptors remains low. In contrast, LV pseudotyped with the Mokola envelope allows a wide dispersion of the vector into the retina (corresponding to the injection bleb with preferential targeting of Müller cells, a situation which does not occur in the wild-type retina. Mokola-pseudotyped lentiviral vectors may serve to engineer these glial cells to deliver secreted therapeutic factors to a diseased area of the retina.

  19. Complement anaphylatoxin C3a is a potent inducer of embryonic chick retina regeneration

    Science.gov (United States)

    Haynes, Tracy; Luz-Madrigal, Agustin; Reis, Edimara S.; Echeverri Ruiz, Nancy P.; Grajales-Esquivel, Erika; Tzekou, Apostolia; Tsonis, Panagiotis A.; Lambris, John D.; Del Rio-Tsonis, Katia

    2013-01-01

    Identifying the initiation signals for tissue regeneration in vertebrates is one of the major challenges in regenerative biology. Much of the research thus far has indicated that certain growth factors have key roles. Here we show that complement fragment C3a is sufficient to induce complete regeneration of the embryonic chick retina from stem/progenitor cells present in the eye, independent of fibroblast growth factor receptor signaling. Instead, C3a induces retina regeneration via STAT3 activation, which in turn activates the injury- and inflammation-responsive factors, IL-6, IL-8 and TNF-α. This activation sets forth regulation of Wnt2b, Six3 and Sox2, genes associated with retina stem and progenitor cells. Thus, our results establish a mechanism for retina regeneration based on injury and inflammation signals. Furthermore, our results indicate a unique function for complement anaphylatoxins that implicate these molecules in the induction and complete regeneration of the retina, opening new avenues of experimentation in the field. PMID:23942241

  20. Wavelength-dependent change of retinal nerve fiber layer reflectance in glaucomatous retinas.

    Science.gov (United States)

    Huang, Xiang-Run; Zhou, Ye; Knighton, Robert W; Kong, Wei; Feuer, William J

    2012-08-24

    Retinal nerve fiber layer (RNFL) reflectance is often used in optical methods for RNFL assessment in clinical diagnosis of glaucoma, yet little is known about the reflectance property of the RNFL under the development of glaucoma. This study measured the changes in RNFL reflectance spectra that occurred in retinal nerve fiber bundles with different degrees of glaucomatous damage. A rat model of glaucoma with laser photocoagulation of trabecular meshwork was used. Reflectance of the RNFL in an isolated retina was measured at wavelengths of 400-830 nm. Cytostructural distribution of the bundles measured optically was evaluated by confocal imaging of immunohistochemistry staining of cytoskeletal components, F-actin, microtubules, and neurofilaments. RNFL reflectance spectra were studied in bundles with normal-looking appearance, early F-actin distortion, and apparent damage of all cytoskeletal components. Changes of RNFL reflectance spectra were studied at different radii (0.22, 0.33, and 0.44 mm) from the optic nerve head (ONH). Bundles in 30 control retinas and 41 glaucomatous retinas were examined. In normal retinas, reflectance spectra were similar along the same bundles. In glaucomatous retinas, reflectance spectra changed along bundles with the spectra becoming flatter as bundle areas approached the ONH. Elevation of intraocular pressure (IOP) causes nonuniform changes in RNFL reflectance across wavelengths. Changes of reflectance spectra occur early in bundles near the ONH and prior to apparent cytoskeletal distortion. Using the ratio of RNFL reflectance measured at different wavelengths can provide early and sensitive detection of glaucomatous damage.

  1. Silicon Bulk Micromachined Vibratory Gyroscope

    Science.gov (United States)

    Tang, T. K.; Gutierrez, R. C.; Wilcox, J. Z.; Stell, C.; Vorperian, V.; Calvet, R.; Li, W. J.; Charkaborty, I.; Bartman, R.; Kaiser, W. J.

    1996-01-01

    This paper reports on design, modeling, fabrication, and characterization of a novel silicon bulk micromachined vibratory rate gyroscope designed for microspacecraft applications. The new microgyroscope consists of a silicon four leaf cloverstructure with a post attached to the center.

  2. Wnt signaling in form deprivation myopia of the mice retina.

    Directory of Open Access Journals (Sweden)

    Mingming Ma

    Full Text Available BACKGROUND: The canonical Wnt signaling pathway plays important roles in cellular proliferation and differentiation, axonal outgrowth, cellular maintenance in retinas. Here we test the hypothesis that elements of the Wnt signaling pathway are involved in the regulation of eye growth and prevention of myopia, in the mouse form-deprivation myopia model. METHODOLOGY/PRINCIPAL FINDINGS: (1 One hundred twenty-five C57BL/6 mice were randomly distributed into form-deprivation myopia and control groups. Form-deprivation myopia (FDM was induced by suturing the right eyelid, while the control group received no treatment. After 1, 2, and 4 weeks of treatment, eyes were assessed in vivo by cycloplegic retinoscopic refraction and axial length measurement by photography or A-scan ultrasonography. Levels of retinal Wnt2b, Fzd5 and β-catenin mRNA and protein were evaluated using RT-PCR and western blotting, respectively. (2 Another 96 mice were divided into three groups: control, drugs-only, and drugs+FDM (by diffuser. Experimentally treated eyes in the last two groups received intravitreal injections of vehicle or the proteins, DKK-1 (Wnt-pathway antagonist or Norrin (Wnt-pathway agonist, once every three days, for 4 injections total. Axial length and retinoscopic refraction were measured on the 14th day of form deprivation. Following form-deprivation for 1, 2, and 4 weeks, FDM eyes had a relatively myopic refractive error, compared with contralateral eyes. There were no significant differences in refractive error between right and left eye in control group. The amounts of Wnt2b, Fzd5 and β-catenin mRNA and protein were significantly greater in form-deprived myopia eyes than in control eyes.DKK-1 (antagonist reduced the myopic shift in refractive error and increase in axial elongation, whereas Norrin had the opposite effect in FDM eyes. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the Wnt2b signaling pathway may play a role in the

  3. The LHCb Silicon Tracker

    CERN Document Server

    Vollhardt, A

    2004-01-01

    The LHCb detector is a collider experiment at the new LHC at CERN/Switzerland. It is dedicated to measure precisely CP violation parameters in the B-system. The LHCb Silicon Tracker is covering the regions of the tracking detector with the highest particle fluences. The silicon sensors are wide pitch strip detectors connected to multi-channel analogue readout amplifiers. The analogue data is then digitized and transmitted optically to the counting room for further processing. The following paper describes R&D of the silicon sensors performed including testbeam data. We present readout chip performance followed by an overview of the used data transmission system, which has been designed for radiation tolerance and low cost.

  4. Integrated Silicon Optoelectronics

    CERN Document Server

    Zimmermann, Horst K

    2010-01-01

    Integrated Silicon Optoelectronics synthesizes topics from optoelectronics and microelectronics. The book concentrates on silicon as the major base of modern semiconductor devices and circuits. Starting from the basics of optical emission and absorption, as well as from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed. Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included. The book, furthermore, contains a review of the newest state of research on eagerly anticipated silicon light emitters. In order to cover the topics comprehensively, also included are integrated waveguides, gratings, and optoelectronic power devices. Numerous elaborate illustrations facilitate and enhance comprehension. This extended edition will be of value to engineers, physicists, and scientists in industry and at universities. The book is also recommended to graduate student...

  5. Floating Silicon Method

    Energy Technology Data Exchange (ETDEWEB)

    Kellerman, Peter

    2013-12-21

    The Floating Silicon Method (FSM) project at Applied Materials (formerly Varian Semiconductor Equipment Associates), has been funded, in part, by the DOE under a “Photovoltaic Supply Chain and Cross Cutting Technologies” grant (number DE-EE0000595) for the past four years. The original intent of the project was to develop the FSM process from concept to a commercially viable tool. This new manufacturing equipment would support the photovoltaic industry in following ways: eliminate kerf losses and the consumable costs associated with wafer sawing, allow optimal photovoltaic efficiency by producing high-quality silicon sheets, reduce the cost of assembling photovoltaic modules by creating large-area silicon cells which are free of micro-cracks, and would be a drop-in replacement in existing high efficiency cell production process thereby allowing rapid fan-out into the industry.

  6. Silicon containing copolymers

    CERN Document Server

    Amiri, Sahar; Amiri, Sanam

    2014-01-01

    Silicones have unique properties including thermal oxidative stability, low temperature flow, high compressibility, low surface tension, hydrophobicity and electric properties. These special properties have encouraged the exploration of alternative synthetic routes of well defined controlled microstructures of silicone copolymers, the subject of this Springer Brief. The authors explore the synthesis and characterization of notable block copolymers. Recent advances in controlled radical polymerization techniques leading to the facile synthesis of well-defined silicon based thermo reversible block copolymers?are described along with atom transfer radical polymerization (ATRP), a technique utilized to develop well-defined functional thermo reversible block copolymers. The brief also focuses on Polyrotaxanes and their great potential as stimulus-responsive materials which produce poly (dimethyl siloxane) (PDMS) based thermo reversible block copolymers.

  7. The Silicon Cube detector

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I.; Adimi, N. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Blank, B. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France)], E-mail: blank@cenbg.in2p3.fr; Canchel, G.; Giovinazzo, J. [Centre d' Etudes Nucleaires de Bordeaux Gradignan - Universite Bordeaux 1 - UMR 5797, CNRS/IN2P3, Chemin du Solarium, BP 120, F-33175 Gradignan Cedex (France); Borge, M.J.G.; Dominguez-Reyes, R.; Tengblad, O. [Insto. Estructura de la Materia, CSIC, Serrano 113bis, E-28006 Madrid (Spain); Thomas, J.-C. [GANIL, CEA/DSM - CNRS/IN2P3, BP 55027, F-14076 Caen Cedex 5 (France)

    2009-08-21

    A new experimental device, the Silicon Cube detector, consisting of six double-sided silicon strip detectors placed in a compact geometry was developed at CENBG. Having a very good angular coverage and high granularity, it allows simultaneous measurements of energy and angular distributions of charged particles emitted from unbound nuclear states. In addition, large-volume Germanium detectors can be placed close to the collection point of the radioactive species to be studied. The setup is ideally suited for isotope separation on-line (ISOL)-type experiments to study multi-particle emitters and was tested during an experiment at the low-energy beam line of SPIRAL at GANIL.

  8. Silicon detectors at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E. [University of Oregon, Eugene, OR 97405-1274 (United States)], E-mail: jimbrau@uoregon.edu; Breidenbach, Martin [Stanford Linear Accelerator Center, Menlo Park, CA 94025 (United States); Baltay, Charles [Yale University, New Haven, CT 06520-8120 (United States); Frey, Raymond E.; Strom, David M. [University of Oregon, Eugene, OR 97405-1274 (United States)

    2007-09-01

    Silicon detectors are being developed for several applications in ILC detectors. These include vertex detection, tracking, electromagnetic calorimetry, and forward detectors. The advantages of silicon detector technology have been incorporated into a full detector design, SiD (the Silicon Detector). A brief overview of this effort is presented.

  9. Silicon quantum dots: surface matters

    NARCIS (Netherlands)

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, K.

    2014-01-01

    Silicon quantum dots (SiQDs) hold great promise for many future technologies. Silicon is already at the core of photovoltaics and microelectronics, and SiQDs are capable of efficient light emission and amplification. This is crucial for the development of the next technological frontiers—silicon

  10. Comparative study of Pax2 expression in glial cells in the retina and optic nerve of birds and mammals.

    Science.gov (United States)

    Stanke, Jennifer; Moose, Holly E; El-Hodiri, Heithem M; Fischer, Andy J

    2010-06-15

    Little is known about the expression of Pax2 in mature retina or optic nerve. Here we probed for the expression of Pax2 in late stages of embryonic development and in mature chick retina. We find two distinct Pax2 isoforms expressed by cells within the retina and optic nerve. Surprisingly, Müller glia in central regions of the retina express Pax2, and levels of expression are decreased with increasing distance from the nerve head. In Müller glia, the expression levels of Pax2 are increased by acute retinal damage or treatment with growth factors. At the optic nerve, Pax2 is expressed by peripapillary glia, at the junction of the neural retina and optic nerve head and by glia within the optic nerve. In addition, we assayed for Pax2 expression in glial cells in mammalian retinas. In mammalian retinas, unlike the case in chick retina, the Müller glia do not express Pax2. Pax2-expressing cells are found in the optic nerve and astrocytes within the mouse retina. By comparison, Pax2-positive cells are not found within the guinea pig retina; Pax2-expressing glia are confined to the optic nerve. In dog and monkey (Macaca fascicularis), Pax2 is expressed by astrocytes that are scattered across inner retinal layers and by numerous glia within the optic nerve. Interestingly, Pax2-positive glial cells are found at the peripheral edge of the dog retina, but only in older animals. We conclude that the expression of Pax2 in the vertebrate eye is restricted to retinal astrocytes, peripapillary glia, and glia within the optic nerve. Copyright 2010 Wiley-Liss, Inc.

  11. Testbeam results of the first real-time embedded tracking system with artificial retina

    Energy Technology Data Exchange (ETDEWEB)

    Neri, N., E-mail: nicola.neri@mi.infn.it; Abba, A.; Caponio, F.; Citterio, M.; Coelli, S.; Fu, J.; Merli, A.; Monti, M.; Petruzzo, M.

    2017-02-11

    We present the testbeam results of the first real-time embedded tracking system based on artificial retina algorithm. The tracking system prototype is capable of fast track reconstruction with a latency of the response below 1 μs and track parameter resolutions that are comparable with the offline results. The artificial retina algorithm was implemented in hardware in a custom data acquisition board based on commercial FPGA. The system was tested successfully using a 180 GeV/c proton beam at the CERN SPS with a maximum track rate of about 280 kHz. Online track parameters were found in good agreement with offline results and with the simulated response. - Highlights: • First real-time tracking system based on artificial retina algorithm tested on beam. • Fast track reconstruction within one microsecond latency and offline like quality. • Fast tracking algorithm implemented in commercial FPGAs.

  12. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    Science.gov (United States)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  13. Rod photoreceptors express GPR55 in the adult vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R) and cannabinoid CB2 receptor (CB2R). In recent years, the G-protein coupled receptor 55 (GPR55) was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol...... components (Müller cells). The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin......, the photosensitive pigment in rods, revealed a clear overlap of expression throughout the rod structure with most prominent staining in the inner segments. Additionally, double-label of GPR55 with calbindin, a specific marker for cone photoreceptors in the primate retina, allowed us to exclude expression of GPR55...

  14. The sarcoglycan-sarcospan complex localization in mouse retina is independent from dystrophins

    Science.gov (United States)

    Fort, Patrice; Estrada, Francisco-Javier; Bordais, Agnès; Mornet, Dominique; Sahel, José-Alain; Picaud, Serge; Vargas, Haydeé Rosas; Coral-Vázquez, Ramón M.; Rendon, Alvaro

    2005-01-01

    The sarcoglycan–sarcospan (SG–SSPN) complex is part of the dystrophin-glycoprotein complex that has been extensively characterized in muscle. To establish the framework for functional studies of sarcoglycans in retina here, we quantified sarcoglycans mRNA levels with real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and performed immunohistochemistry to determine their cellular and subcellular distribution. We showed that the β-, δ-, γ-, ε-sarcoglycans and sarcospan are expressed in mouse retina. They are localized predominantly in the outer and the inner limiting membranes, probably in the Müller cells and also in the ganglion cells axons where the expression of dystrophins have never been reported. We also investigated the status of the sarcoglycans in the retina of mdx3cv mutant mice for all Duchene Muscular Dystrophy (DMD) gene products. The absence of dystrophin did not produce any change in the sarcoglycan–sarcospan components expression and distribution. PMID:15993965

  15. Sobre la terapia génica para enfermedades de la retina.

    Science.gov (United States)

    Fischer, M Dominik

    2017-07-11

    Las mutaciones en un gran número de genes provocan degeneración de la retina y ceguera sin que exista actualmente cura alguna. En las últimas décadas, la terapia génica para enfermedades de la retina ha evolucionado y se ha convertido en un nuevo y prometedor paradigma terapéutico para estas enfermedades poco comunes. Este artículo refleja las ideas y los conceptos que parten de la ciencia básica hacia la aplicabilidad de la terapia génica en el ámbito clínico. Se describen los avances y las reflexiones actuales sobre la eficacia de los ensayos clínicos en la actualidad y se discuten los posibles obstáculos y soluciones de cara al futuro de la terapia génica para enfermedades de la retina. © 2017 S. Karger AG, Basel.

  16. The biocytin wide-field bipolar cell in the rabbit retina selectively contacts blue cones

    Science.gov (United States)

    MacNeil, Margaret A.; Gaul, Paulette A.

    2010-01-01

    The biocytin wide-field bipolar cell in rabbit retina is a sparsely populated ON cone bipolar cell with a broad dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the cone types that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. PMID:17990268

  17. Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones.

    Science.gov (United States)

    MacNeil, Margaret A; Gaul, Paulette A

    2008-01-01

    The biocytin wide-field bipolar cell in rabbit retina has a broad axonal arbor in layer 5 of the inner plexiform layer and a wide dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the types of cones that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin, and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas. Copyright 2007 Wiley-Liss, Inc.

  18. Training and professional profile of retinologists in Spain: Retina 2 project, Report 4

    Directory of Open Access Journals (Sweden)

    Pastor JC

    2011-04-01

    Full Text Available J Carlos Pastor1,3, Itziar Fernández2, Jimena Rojas1, Rosa Coco1, Maria R Sanabria1, Enrique Rodríguez-de la Rúa1,3, Diego Sánchez3, Carmen Valverde3, Anna Sala Puigdollers1,31University Institute of Applied Ophthalmobiology (IOBA, Retina Group, 2Ministry of Science and Innovation CIBER-BBN, Statistics Department, 3Clinic University Hospital, University of Valladolid, Valladolid, SpainBackground: Uniform postresidency systems to train medical specialists have not been developed in most European countries. Before developing a framework for such a system, we established the learning and professional profiles of Spanish ophthalmologists dedicated to medical retina and vitreoretina subspecialties.Methods: After identification of presumed subspecialists by experts from different autonomous regions, a self-administered questionnaire was mailed in 2006. A reminder was sent three weeks later. Postal mail was used. Nonresponder bias was determined.Results: Of 492 possible retina subspecialists, 261 replied to the questionnaires. While about 86% received specific retinal training, standardized fellowship programs were uncommon for both medical retina and vitreoretina (around 10%. Of the responders, 24.5% performed only medical retina, 11.8% vitreoretina, and 63.6% both. Most (60.5% practiced anterior segment surgery, and 78.7% declared skills in vitrectomy.Conclusion: We have developed a database of Spanish ophthalmologists dedicated to retinal pathologies and identified some characteristics of their professional profile. Although most of them have received specific retinal training, standardized mastership programs are still uncommon. These data will be useful in creating a standardized Retina Mastership, an important goal of the European Higher Education Area.Keywords: clinical activity, fellowship, mastership, professional profile, retinologist training

  19. Receptive field properties of rod-driven horizontal cells in the skate retina

    Science.gov (United States)

    1992-01-01

    The large receptive fields of retinal horizontal cells result primarily from extensive intercellular coupling via gap (electrical) junctions; thus, the extent of the receptive field provides an index of the degree to which the cells are electrically coupled. For rod-driven horizontal cells in the dark-adapted skate retina, a space constant of 1.18 +/- 0.15 mm (SD) was obtained from measurements with a moving slit stimulus, and a comparable value (1.43 +/- 0.55 mm) was obtained with variation in spot diameter. These values, and the extensive spread of a fluorescent dye (Lucifer Yellow) from the site of injection to neighboring cells, indicate that the horizontal cells of the all-rod retina of skate are well coupled electrically. Neither the receptive field properties nor the gap-junctional features of skate horizontal cells were influenced by the adaptive state of the retina: (a) the receptive field organization was unaffected by light adaptation, (b) similar dye coupling was seen in both dark- and light-adapted retinae, and (c) no significant differences were found in the gap-junctional particle densities measured in dark- and light-adapted retinas, i.e., 3,184 +/- 286/microns 2 (n = 8) and 3,073 +/- 494/microns 2 (n = 11), respectively. Moreover, the receptive fields of skate horizontal cells were not altered by either dopamine, glycine, GABA, or the GABAA receptor antagonists bicuculline and picrotoxin. We conclude that the rod-driven horizontal cells of the skate retina are tightly coupled to one another, and that the coupling is not affected by photic and pharmacological conditions that are known to modulate intercellular coupling between cone-driven horizontal cells in other species. PMID:1359000

  20. Efficacy of Antibody Delivery to the Retina and Optic Nerve by Topical Administration.

    Science.gov (United States)

    Hu, Stacy; Koevary, Steven

    2016-05-01

    The purpose of this study was to determine whether nonspecific and ICAM-1-specific IgG1 antibodies can accumulate in the rat retina following topical application, and to develop a model system to show that antibodies that reach the posterior segment retain their pharmacological properties. Eye drops containing mouse IgG1 or anti-ICAM-1 and the permeation enhancer saponin were topically applied to the eyes of Lewis rats. Concentrations were determined in the retina and optic nerve up to 30 min later using ELISA assays. We also developed an in vitro model to assess the pharmacologic activity of topically delivered antibodies in the retina based on the requirement of human umbilical vein endothelial cells (HUVECs) for vascular endothelial growth factor (VEGF) for growth. Rat eyes were treated with anti-VEGF antibody in the same manner as above; their retinas, harvested shortly thereafter, were added to HUVECs cultured in VEGF-containing media. The effect of these retinal homogenates on HUVEC proliferation was then assessed. Significant concentrations of IgG1 were detected in the optic nerve (P < 0.001) and retina (P < 0.0001) following topical application. Anti-ICAM-1 antibody also accumulated in the retina after topical application, though levels were less than those seen with IgG1 probably owing to a lower starting concentration. Retinal homogenates from eyes treated with anti-VEGF antibody significantly suppressed HUVEC proliferation (P < 0.0001). Our data support the contention that topically applied antibodies can accumulate in the posterior segment, and suggest they retain their pharmacological properties.

  1. [Detection of light intensity in the frog retina: evidence from dark and light adaptation].

    Science.gov (United States)

    Izmaĭlov, Ch A; Zimachev, M M

    2010-01-01

    The frog retina was stimulated with light flashes homogeneous in space but not time. The time heterogeneity of stimulation was created by abrupt change of a referent stimulus for a stimulus with different luminance. Such changes form a time pattern, as well as sharp borders of luminance between the neighbor areas of the visual field form a spatial pattern. The electroretinogram recorded in response to presentation of a triad of stimuli: the onset of a short flash of homogeneous light after long dark (or light) adaptation of a retina, brief sequence of the referent and test light flashes varied in luminance, and the offset, with returning to the initial level of adaptation. It was shown that responses of the retina under conditions of time heterogeneity of stimulation could be divided in two types as well as under conditions of spatial heterogeneity. Such a dual change in amplitude confirms our earlier hypothesis on the existence of two mechanisms of luminance coding in the frog retina. The first mechanism encodes power characteristics of light, it forms the information on the absolute level of the environmental luminance. Its activity is connected basically with receptors and cells of the external plexiform layer of the frog's retina. It is responsible for the b-wave of the electroretinogram. The other mechanism associated with RERG is based on a vector code of stimuli. This mechanism forms the information on spatial and time differentiation of the light flow in the visual field and is connected basically with cells of the internal plexiform layer. The results suggest that the frog retina has the individual mechanism for time pattern detection, distinguishing it from the homogeneous light flow in a similar way as in case of spatial light pattern detection. It is possible that the first mechanism is responsible for the detection of any new stimulus in general, irrespective of its specificity, whereas the second mechanism serves for the measurement of suprathreshold

  2. Transducin duplicates in the zebrafish retina and pineal complex: differential specialisation after the teleost tetraploidisation.

    Directory of Open Access Journals (Sweden)

    David Lagman

    Full Text Available Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation.

  3. Tissue response of selective retina therapy by means of a feedback-controlled energy ramping mode.

    Science.gov (United States)

    Park, Young-Gun; Seifert, Eric; Roh, Young J; Theisen-Kunde, Dirk; Kang, Seungbum; Brinkmann, Ralf

    2014-12-01

    The purpose of the study was to evaluate the safety and selectivity of the retinal pigment epithelium lesions by using automatic energy ramping and dosimetry technique for selective retina therapy and to investigate the healing response. Ten eyes of Chinchilla Bastard rabbits were treated with an automatic dosage controlled selective retina therapy laser (frequency doubled Q-switched Nd:YLF, wavelength: 527 nm, pulse duration: 1.7 μs, repetition rate: 100 Hz, pulse energy: linear increasing from pulse to pulse up to shut down - maximal 110 μJ, max. number of pulses in a burst: 30, retinal spot diameter: 133 μm). After treatment, fundus photography, optical coherence tomography and fluorescein angiography were performed at three time points from 1 h to 3 weeks. Histological analysis was performed. A total of 381 selective retina therapy laser spots were tested (range 13-104 μJ).Typical fundus photographs obtained at 1 h after irradiation showed that 379 out of 381 lesions produced by selective retina therapy were not visible ophthalmoscopically and the lesions could be detected by angiography only. Optical coherence tomography images revealed that the structure of photoreceptors was preserved, but a disrupted retinal pigment epithelium layer was observed as was expected. By 3 weeks, histology showed selective retinal pigment epithelium damage without any effect on the inner retina and focal proliferation of the retinal pigment epithelium layer. Automatically controlled selective retina therapy is a significant improvement in this innovative treatment. It could be demonstrated that the non-contact, reflectometric technique with a controlled pulse energy ramp is safe and selective. © 2014 Royal Australian and New Zealand College of Ophthalmologists.

  4. Transducin Duplicates in the Zebrafish Retina and Pineal Complex: Differential Specialisation after the Teleost Tetraploidisation

    Science.gov (United States)

    Lagman, David; Callado-Pérez, Amalia; Franzén, Ilkin E.

    2015-01-01

    Gene duplications provide raw materials that can be selected for functional adaptations by evolutionary mechanisms. We describe here the results of 350 million years of evolution of three functionally related gene families: the alpha, beta and gamma subunits of transducins, the G protein involved in vision. Early vertebrate tetraploidisations resulted in separate transducin heterotrimers: gnat1/gnb1/gngt1 for rods, and gnat2/gnb3/gngt2 for cones. The teleost-specific tetraploidisation generated additional duplicates for gnb1, gnb3 and gngt2. We report here that the duplicates have undergone several types of subfunctionalisation or neofunctionalisation in the zebrafish. We have found that gnb1a and gnb1b are co-expressed at different levels in rods; gnb3a and gnb3b have undergone compartmentalisation restricting gnb3b to the dorsal and medial retina, however, gnb3a expression was detected only at very low levels in both larvae and adult retina; gngt2b expression is restricted to the dorsal and medial retina, whereas gngt2a is expressed ventrally. This dorsoventral distinction could be an adaptation to protect the lower part of the retina from intense light damage. The ontogenetic analysis shows earlier onset of expression in the pineal complex than in the retina, in accordance with its earlier maturation. Additionally, gnb1a but not gnb1b is expressed in the pineal complex, and gnb3b and gngt2b are transiently expressed in the pineal during ontogeny, thus showing partial temporal subfunctionalisation. These retina-pineal distinctions presumably reflect their distinct functional roles in vision and circadian rhythmicity. In summary, this study describes several functional differences between transducin gene duplicates resulting from the teleost-specific tetraploidisation. PMID:25806532

  5. Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina.

    Science.gov (United States)

    García-Ayuso, Diego; Galindo-Romero, Caridad; Di Pierdomenico, Johnny; Vidal-Sanz, Manuel; Agudo-Barriuso, Marta; Villegas Pérez, María P

    2017-08-01

    In this work we study the effects of an acute light-induced retinal degeneration on the population of melanopsin positive retinal ganglion cells (m+RGCs) and the expression of the melanopsin protein in the retina. The m+RGCs may be more resistant than other RGCs to lesion, but the effects of an acute light exposure in this population are unknown. Albino rats were exposed to white light (3000 lux) continuously for 48 h and processed 0, 3, 7 or 30 days after light exposure (ALE). Whole-mounted retinas were immunodetected with antibodies against melanopsin, Brn3a, and rhodopsin to study the populations of m+RGC, Brn3a+RGC and rods (which are the most abundant photoreceptors in the rat retina). Three days ALE there was substantial rod loss in an arciform area of the superior retina and with time this loss expanded in the form of rings all throughout the retina. Light exposure did not affect the number of Brn3a+RGCs but diminished the numbers of m+RGCs. Immediately ALE there was a significant decrease in the mean number of immunodetected m+RGCs that was more marked in the superior retina. Later, the number of m+RGCs increased progressively and reached normal values one month ALE. Western blot analysis showed that melanopsin expression down-regulates shortly ALE and recovers thereafter, in accordance with the anatomical data. This study demonstrates that there is a transient downregulation of melanopsin expression in the RGCs during the first month ALE. Further studies would be needed to clarify the long-term effect of light exposure on the m+RGC population. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina.

    Science.gov (United States)

    Boye, Shannon E; Alexander, John J; Witherspoon, C Douglas; Boye, Sanford L; Peterson, James J; Clark, Mark E; Sandefer, Kristen J; Girkin, Chris A; Hauswirth, William W; Gamlin, Paul D

    2016-08-01

    Adeno-associated virus (AAV) has emerged as the preferred vector for targeting gene expression to the retina. Subretinally injected AAV can efficiently transduce retinal pigment epithelium and photoreceptors in primate retina. Inner and middle primate retina can be transduced by intravitreally delivered AAV, but with low efficiency. This is due to dilution of vector, potential neutralization of capsid because it is not confined to the immune-privileged retinal compartment, and the presence of the inner limiting membrane (ILM), a barrier separating the vitreous from the neural retina. We here describe a novel "subILM" injection method that addresses all three issues. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. In an initial experiment, we injected viscoelastic (Healon(®)), a substance we confirmed was biocompatible with AAV, to create a subILM bleb and subsequently injected AAV2-GFP into the bleb after irrigation with basic salt solution. For later experiments, we used a Healon-AAV mixture to place single, subILM injections. In all cases, subILM delivery of AAV was well tolerated-no inflammation or gross structural changes were observed by ophthalmological examination or optical coherence tomography. In-life fluorescence imaging revealed profound transgene expression within the area of the subILM injection bleb that persisted for the study duration. Uniform and extensive transduction of retinal ganglion cells (RGCs) was achieved in the areas beneath the subILM bleb. Transduction of Müller glia, ON bipolar cells, and photoreceptors was also observed. Robust central labeling from green fluorescent protein-expressing RGCs confirmed their continued survival, and was observed in the lateral geniculate nucleus, the superior colliculus, and the pretectum. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and

  7. Expression and distribution of peroxiredoxins in the retina and optic nerve.

    Science.gov (United States)

    Chidlow, Glyn; Wood, John P M; Knoops, Bernard; Casson, Robert J

    2016-11-01

    Oxidative stress is implicated in various pathological conditions of the retina and optic nerve. Peroxiredoxins (Prdxs) comprise a recently characterized family of antioxidant enzymes. To date, little information exists regarding the distribution of Prdxs in the eye. Herein, we employed a combination of qRT-PCR, immunohistochemistry and Western blotting to determine the level of expression and distribution of the six Prdx isoforms in the retina and optic nerve of the rat. In addition, we performed some parallel analyses on the common marmoset (Callithrix Jacchus). In the rat, all of the Prdx transcripts were expressed in relatively high amounts in both retina and optic nerve, with abundances ranging from approximately 3-50 % of the level of the housekeeping gene cyclophilin. With regard to protein expression, each isoform was detected in the retina and optic nerve by either Western blotting and/or immunohistochemistry. Excepting Prdx4, there was a good correspondence between the rodent and primate results. In the retina, Prdx1 and Prdx2 were principally localized to neurons in the inner nuclear layer and cone photoreceptors, Prdx3 and Prdx5 displayed characteristic mitochondrial immunolabeling, while Prdx6 was associated with astrocytes and Müller cells. In the optic nerve, Prdx1 was robustly expressed by oligodendrocytes, Prdx3 and Prdx5 were observed in axons, and Prdx6 was restricted to astrocytes. The present findings augment our understanding of the distribution and expression of the Prdxs in the retina and optic nerve of rodents and primates and lay the foundation for subsequent analysis of their involvement in relevant blinding diseases.

  8. Rod photoreceptors express GPR55 in the adult vervet monkey retina.

    Directory of Open Access Journals (Sweden)

    Joseph Bouskila

    Full Text Available Cannabinoids exert their actions mainly through two receptors, the cannabinoid CB1 receptor (CB1R and cannabinoid CB2 receptor (CB2R. In recent years, the G-protein coupled receptor 55 (GPR55 was suggested as a cannabinoid receptor based on its activation by anandamide and tetrahydrocannabinol. Yet, its formal classification is still a matter of debate. CB1R and CB2R expression patterns are well described for rodent and monkey retinas. In the monkey retina, CB1R has been localized in its neural (cone photoreceptor, horizontal, bipolar, amacrine and ganglion cells and CB2R in glial components (Müller cells. The aim of this study was to determine the expression pattern of GPR55 in the monkey retina by using confocal microscopy. Our results show that GPR55 is strictly localized in the photoreceptor layer of the extrafoveal portion of the retina. Co-immunolabeling of GPR55 with rhodopsin, the photosensitive pigment in rods, revealed a clear overlap of expression throughout the rod structure with most prominent staining in the inner segments. Additionally, double-label of GPR55 with calbindin, a specific marker for cone photoreceptors in the primate retina, allowed us to exclude expression of GPR55 in cones. The labeling of GPR55 in rods was further assessed with a 3D visualization in the XZ and YZ planes thus confirming its exclusive expression in rods. These results provide data on the distribution of GPR55 in the monkey retina, different than CB1R and CB2R. The presence of GPR55 in rods suggests a function of this receptor in scotopic vision that needs to be demonstrated.

  9. Müller cells express the cannabinoid CB2 receptor in the vervet monkey retina

    DEFF Research Database (Denmark)

    Bouskila, Joseph; Javadi, Pasha; Casanova, Christian

    2013-01-01

    dissimilarities. Double labeling of CB2R and glutamine synthetase shows that CB2R is restricted to Müller cell processes, extending from the internal limiting membrane, with very low staining, to the external limiting membrane, with heavy labeling. We conclude that CB2R is indeed present in the retina...... but exclusively in the retinal glia, whereas CB1R is expressed only in the neuroretina. These results extend our knowledge on the expression and distribution of cannabinoid receptors in the monkey retina, although further experiments are still needed to clarify their role in retinal functions....

  10. Photonic crystal light collectors in fish retina improve vision in turbid water.

    Science.gov (United States)

    Kreysing, Moritz; Pusch, Roland; Haverkate, Dorothee; Landsberger, Meik; Engelmann, Jacob; Ruiter, Janina; Mora-Ferrer, Carlos; Ulbricht, Elke; Grosche, Jens; Franze, Kristian; Streif, Stefan; Schumacher, Sarah; Makarov, Felix; Kacza, Johannes; Guck, Jochen; Wolburg, Hartwig; Bowmaker, James K; von der Emde, Gerhard; Schuster, Stefan; Wagner, Hans-Joachim; Reichenbach, Andreas; Francke, Mike

    2012-06-29

    Despite their diversity, vertebrate retinae are specialized to maximize either photon catch or visual acuity. Here, we describe a functional type that is optimized for neither purpose. In the retina of the elephantnose fish (Gnathonemus petersii), cone photoreceptors are grouped together within reflecting, photonic crystal-lined cups acting as macroreceptors, but rod photoreceptors are positioned behind these reflectors. This unusual arrangement matches rod and cone sensitivity for detecting color-mixed stimuli, whereas the photoreceptor grouping renders the fish insensitive to spatial noise; together, this enables more reliable flight reactions in the fish's dim and turbid habitat as compared with fish lacking this retinal specialization.

  11. Desprendimiento de retina regmatógeno. Actuación de Enfermería

    OpenAIRE

    Domínguez Manzano, María

    2016-01-01

    El objetivo principal de este trabajo es, la realización y presentación con la recopilación e información actualizada en el desprendimiento de retina regmatógeno, para preparar los conocimientos teóricos y prácticos necesarios y poder realizar el trabajo diario con la mayor calidad posible. Los principales objetivos secundarios planteados son: 1. Conocer en qué consiste la patología del desprendimiento de retina y definir la etiología, patogenia, evolución, tratamiento y posibles compli...

  12. Surgical treatment in combined hamartoma of the retina and retinal pigment epithelium.

    Science.gov (United States)

    Sánchez-Vicente, J L; Rueda-Rueda, T; Llerena-Manzorro, L; Molina-Socola, F E; Contreras-Díaz, M; Szewc, M; Vital-Berral, C; Alfaro-Juárez, A; Medina-Tapia, A; López-Herrero, F; González-García, L; Muñoz-Morales, A

    2017-03-01

    The case is presented of a 39 year-old man with a combined hamartoma of the retina and retinal pigment epithelium, who experienced progressive visual loss and worsening of metamorphopsia. The patient underwent vitrectomy and epiretinal component peeling, with improvement in visual acuity, metamorphopsia, and retinal architecture, assessed by optical coherence tomography. Selected patients with combined hamartomas of the retina and retinal pigment epithelium may benefit from surgical management. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Modelling image formation on the retina and backscattered light in the human eye with cataracts

    Science.gov (United States)

    Kelly-Pérez, Ismael; Bruce, Neil C.; Berriel-Valdos, Luis R.

    2011-05-01

    We develop a computational model to analyze the effect of scattering on image formation in the human eye with cataracts. With this model we compare the scattered light on the retina and in the exit pupil of the eye and find significant differences in the effects observed. We found that the effect of scattering due to the retina reduces the effect of scattering due to cataracts in the second pass, and the most important parameter that affects scattering is the size of the particles.

  14. Cross-synaptic synchrony and transmission of signal and noise across the mouse retina

    OpenAIRE

    Grimes, William N; Hoon, Mrinalini; Briggman, Kevin L; Wong, Rachel O; Rieke, Fred

    2014-01-01

    eLife digest The human eye is capable of detecting a single photon of starlight. This level of sensitivity is made possible by the high sensitivity of photoreceptors called rods. There are around 120 million rods in the retina, and they support vision in levels of light that are too low to activate the photoreceptors called cones that allow us to see in color. This is why we cannot see colors in the dark. Signals are relayed through the retina via a circuit made up of multiple types of neuron...

  15. Involvement of small-field horizontal cells in feedback effects on green cones of turtle retina.

    OpenAIRE

    Neyton, J.; Piccolino, M; Gerschenfeld, H M

    1981-01-01

    Light stimuli depolarize green cones of turtle retina through a circuit involving a feedback connection from luminosity horizontal cells (L-HC) to green cones. In turtle retina two types of L-HC have been distinguished: large-field L-HC and small-field L-HC. The spatial properties of the feedback depolarizations of green cones were compared with those of both large- and small-field L-HC. Green cones were found to be more effectively depolarized by relatively small spots of red light than by l...

  16. Simultaneous in vivo imaging of melanin and lipofuscin in the retina with multimodal photoacoustic ophthalmoscopy

    Science.gov (United States)

    Zhang, Xiangyang; Zhang, Hao F.; Zhou, Lixiang; Jiao, Shuliang

    2012-02-01

    We combined photoacoustic ophthalmoscopy (PAOM) with autofluorescence imaging for simultaneous in vivo imaging of dual molecular contrasts in the retina using a single light source. The dual molecular contrasts come from melanin and lipofuscin in the retinal pigment epithelium (RPE). Melanin and lipofuscin are two types of pigments and are believed to play opposite roles (protective vs. exacerbate) in the RPE in the aging process. We successfully imaged the retina of pigmented and albino rats at different ages. The experimental results showed that multimodal PAOM system can be a potentially powerful tool in the study of age-related degenerative retinal diseases.

  17. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  18. Silicone/Acrylate Copolymers

    Science.gov (United States)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  19. On nanostructured silicon success

    DEFF Research Database (Denmark)

    Sigmund, Ole; Jensen, Jakob Søndergaard; Frandsen, Lars Hagedorn

    2016-01-01

    Recent Letters by Piggott et al. 1 and Shen et al. 2 claim the smallest ever dielectric wave length and polarization splitters. The associated News & Views article by Aydin3 states that these works “are the first experimental demonstration of on-chip, silicon photonic components based on complex ...

  20. DELPHI Silicon Tracker

    CERN Document Server

    DELPHI was one of the four experiments installed at the LEP particle accelerator from 1989 - 2000. The silicon tracking detector was nearest to the collision point in the centre of the detector. It was used to pinpoint the collision and catch short-lived particles.