WorldWideScience

Sample records for neurofilament-positive fiber length

  1. Quantitative study of neurofilament-positive fiber length in rat spinal cord lesions using isotropic virtual planes

    DEFF Research Database (Denmark)

    von Euler, Mia; Larsen, Jytte Overgaard; Janson, A M

    1998-01-01

    analysis after spinal cord injury is needed. Length quantification of the putatively spontaneously regenerating fibers has been difficult until recently, when two length estimators based on sampling with isotropic virtual planes within thick physical sections were introduced. The applicability...

  2. Validity of plant fiber length measurement : a review of fiber length measurement based on kenaf as a model

    Science.gov (United States)

    James S. Han; Theodore. Mianowski; Yi-yu. Lin

    1999-01-01

    The efficacy of fiber length measurement techniques such as digitizing, the Kajaani procedure, and NIH Image are compared in order to determine the optimal tool. Kenaf bast fibers, aspen, and red pine fibers were collected from different anatomical parts, and the fiber lengths were compared using various analytical tools. A statistical analysis on the validity of the...

  3. Role of Fiber Length on Phagocytosis & Inflammatory Response

    Science.gov (United States)

    Turkevich, Leonid; Stark, Carahline; Champion, Julie

    2014-03-01

    Asbestos fibers have long been associated with lung cancer death. The inability of immune cells (e.g. macrophages) to effectively remove asbestos leads to chronic inflammation and disease. This study examines the role of fiber length on toxicity at the cellular level using model glass fibers. A major challenge is obtaining single diameter fibers but differing in length. Samples of 1 micron diameter fibers with different length distributions were prepared: short fibers (less than 15 microns) by aggressive crushing, and long fibers (longer than 15 microns) by successive sedimentation. Time-lapse video microscopy monitored the interaction of MH-S murine alveolar macrophages with the fibers: short fibers were easily internalized by the macrophages, but long fibers resisted internalization over many hours. Production of TNF- α (tumor necrosis factor alpha), a general inflammatory secreted cytokine, and Cox-2 (cyclo-oxygenase-2), an enzyme that produces radicals, each exhibited a dose-dependence that was greater for long than for short fibers. These results corroborate the importance of fiber length in both physical and biochemical cell response and support epidemiological observations of higher toxicity for longer fibers.

  4. Extended-length fiber optic carbon dioxide monitoring

    Science.gov (United States)

    Delgado-Alonso, Jesus; Lieberman, Robert A.

    2013-05-01

    This paper discusses the design and performance of fiber optic distributed intrinsic sensors for dissolved carbon dioxide, based on the use optical fibers fabricated so that their entire lengths are chemically sensitive. These fibers use a polymer-clad, silica-core structure where the cladding undergoes a large, reversible, change in optical absorbance in the presence of CO2. The local "cladding loss" induced by this change is thus a direct indication of the carbon dioxide concentration in any section of the fiber. To create these fibers, have developed a carbon dioxide-permeable polymer material that adheres well to glass, is physically robust, has a refractive index lower than fused silica, and acts as excellent hosts for a unique colorimetric indicator system that respond to CO2. We have used this proprietary material to produce carbon-dioxide sensitive fibers up to 50 meters long, using commercial optical fiber fabrication techniques. The sensors have shown a measurement range of dissolved CO2 of 0 to 1,450 mg/l (0 to 100% CO2 saturation), limit of detection of 0.3 mg/l and precision of 1.0 mg/l in the 0 to 50 mg/l dissolved CO2 range, when a 5 meter-long sensor fiber segment is used. Maximum fiber length, minimum detectable concentration, and spatial resolution can be adjusted by adjusting indicator concentration and fiber design.

  5. Experimental Study of Fiber Length and Orientation in Injection Molded Natural Fiber/Starch Acetate Composites

    DEFF Research Database (Denmark)

    Peltola, Heidi; Madsen, Bo; Joffe, Roberts

    2011-01-01

    Composite compounds based on triethyl citrate plasticized starch acetate and hemp and flax fibers were prepared by melt processing. Plasticizer contents from 20 to 35 wt% and fiber contents of 10 and 40 wt% were used. The compounded composites were injection molded to tensile test specimens...... was noticed. A reduction of fiber length along the increasing fiber content and the decreasing plasticizer content was also detected. This reduction originated from the increasing shear forces during compounding, which again depended on the increased viscosity of the material. Hemp fibers were shown to remain...... longer and fibrillate more than flax fibers, leading to higher aspect ratio. Thus, the reinforcement efficiency of hemp fibers by the processing was improved, in contrast with flax fibers. In addition, the analysis of fiber dispersion and orientation showed a good dispersion of fibers in the matrix...

  6. Simulative Global Warming Negatively Affects Cotton Fiber Length through Shortening Fiber Rapid Elongation Duration.

    Science.gov (United States)

    Dai, Yanjiao; Yang, Jiashuo; Hu, Wei; Zahoor, Rizwan; Chen, Binglin; Zhao, Wenqing; Meng, Yali; Zhou, Zhiguo

    2017-08-23

    Global warming could possibly increase the air temperature by 1.8-4.0 °C in the coming decade. Cotton fiber is an essential raw material for the textile industry. Fiber length, which was found negatively related to the excessively high temperature, determines yarn quality to a great extent. To investigate the effects of global warming on cotton fiber length and its mechaism, cottons grown in artificially elevated temperature (34.6/30.5 °C, T day /T night ) and ambient temperature (31.6/27.3 °C) regions have been investigated. Becaused of the high sensitivities of enzymes V-ATPase, PEPC, and genes GhXTH1 and GhXTH2 during fiber elongation when responding to high temperature stress, the fiber rapid elongation duration (FRED) has been shortened, which led to a significant suppression on final fiber length. Through comprehensive analysis, T night had a great influence on fiber elongation, which means T n could be deemed as an ideal index for forecasting the degree of high temperature stress would happen to cotton fiber property in future. Therefore, we speculate the global warming would bring unfavorable effects on cotton fiber length, which needs to take actions in advance for minimizing the loss in cotton production.

  7. Modelling of the glass fiber length and the glass fiber length distribution in the compounding of short glass fiber-reinforced thermoplastics

    Science.gov (United States)

    Kloke, P.; Herken, T.; Schöppner, V.; Rudloff, J.; Kretschmer, K.; Heidemeyer, P.; Bastian, M.; Walther, Dridger, A.

    2014-05-01

    The use of short glass fiber-reinforced thermoplastics for the production of highly stressed parts in the plastics processing industry has experienced an enormous boom in the last few years. The reasons for this are primarily the improvements to the stiffness and strength properties brought about by fiber reinforcement. These positive characteristics of glass fiber-reinforced polymers are governed predominantly by the mean glass fiber length and the glass fiber length distribution. It is not enough to describe the properties of a plastics component solely as a function of the mean glass fiber length [1]. For this reason, a mathematical-physical model has been developed for describing the glass fiber length distribution in compounding. With this model, it is possible on the one hand to optimize processes for the production of short glass fiber-reinforced thermoplastics, and, on the other, to obtain information on the final distribution, on the basis of which much more detailed statements can be made about the subsequent properties of the molded part. Based on experimental tests, it was shown that this model is able to accurately describe the change in glass fiber length distribution in compounding.

  8. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence

    NARCIS (Netherlands)

    Kaspers, O. P.; Sterenborg, H. J. C. M.; Amelink, A.

    2008-01-01

    We have characterized the path length for the differential path-length spectroscopy (DPS) fiber optic geometry for a wide range of optical properties and for fiber diameters ranging from 200 mu m to 1000 mu m. Phantom measurements show that the path length is nearly constant for scattering

  9. IMPROVED ESTIMATION OF FIBER LENGTH FROM 3-DIMENSIONAL IMAGES

    Directory of Open Access Journals (Sweden)

    Joachim Ohser

    2013-03-01

    Full Text Available A new method is presented for estimating the specific fiber length from 3D images of macroscopically homogeneous fiber systems. The method is based on a discrete version of the Crofton formula, where local knowledge from 3x3x3-pixel configurations of the image data is exploited. It is shown that the relative error resulting from the discretization of the outer integral of the Crofton formula amonts at most 1.2%. An algorithmic implementation of the method is simple and the runtime as well as the amount of memory space are low. The estimation is significantly improved by considering 3x3x3-pixel configurations instead of 2x2x2, as already studied in literature.

  10. Mechanical properties of fiber reinforced restorative composite with two distinguished fiber length distribution.

    Science.gov (United States)

    Lassila, Lippo; Garoushi, Sufyan; Vallittu, Pekka K; Säilynoja, Eija

    2016-07-01

    The purpose of this study was to investigate the reinforcing effect of discontinuous glass fiber fillers with different length scales on fracture toughness and flexural properties of dental composite. Experimental fiber reinforced composite (Exp-FRC) was prepared by mixing 27wt% of discontinuous E-glass fibers having two different length scales (micrometer and millimeter) with various weight ratios (1:1, 2:1, 1:0 respectively) to the 23wt% of dimethacrylate based resin matrix and then 50wt% of silane treated silica filler were added gradually using high speed mixing machine. As control, commercial FRC and conventional posterior composites were used (everX Posterior, Alert, and Filtek Superme). Fracture toughness, work of fracture, flexural strength, and flexural modulus were determined for each composite material following ISO standards. The specimens (n=6) were dry stored (37°C for 2 days) before they were tested. Scanning electron microscopy was used to evaluate the microstructure of the experimental FRC composites. The results were statistically analyzed using ANOVA followed by post-hoc Tukey׳s test. Level of significance was set at 0.05. ANOVA revealed that experimental composites reinforced with different fiber length scales (hybrid Exp-FRC) had statistically significantly higher mechanical performance of fracture toughness (4.7MPam(1/2)) and flexural strength (155MPa) (plength scales of discontinues fiber fillers (hybrid) with polymer matrix yielded improved mechanical performance compared to commercial FRC and conventional posterior composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Performance and calibration of wave length shifting fibers for K2K SciBar detector

    International Nuclear Information System (INIS)

    Morita, Taichi

    2004-01-01

    The wave length shifting (WLS) fibers (Kuraray Y11 (200) MS) are used for light collection from scintillators in the SciBar detector. The performance of WLS fibers was measured before installation. Because the number of WLS fibers is about 15,000, it is necessary to make a system to measure attenuation length of WLS fibers efficiently. I will report the pre-calibration method for measurement and the performance of the WLS fibers in SciBar detector. (author)

  12. Influence of fiber length on flexural and impact properties of Zalacca Midrib fiber/HDPE by compression molding

    Science.gov (United States)

    Pamungkas, Agil Fitri; Ariawan, Dody; Surojo, Eko; Triyono, Joko

    2018-02-01

    The aim of the research is to investigate the effect of fiber length on the flexural and impact properties of the composite of Zalacca Midrib Fiber (ZMF)/HDPE. The process of making composite was using compression molding method. The variation of fiber length were 1 mm, 3 mm, 5 mm, 7 mm and 9 mm, at 30% fiber volume fraction. The flexural and impact test according to ASTM D790 and ASTM D5941, respectively. Observing fracture surface was examained by using Scanning Electron Microscopy (SEM). The results showed that the flexural and impact strengths would be increase with the increase of fiber length.

  13. Scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Fluornoy, J.M.; Lyons, P.B.

    1981-01-01

    Scintillators have been employed for several years as ionizing radiation-to-light converters in plasma diagnostic experiments that utilize fiber optics. Until recently, nanosecond and subnanosecond scintillators were available only in the near ultraviolet. However, the bandwidth and transmission properties of fiber optics both strongly favor operation at longer wavelengths. More recently, nanosecond and subnanosecond scintillators with emission peaks around 480 nm have been reported. A time-resolved plasma-imaging experiment using one of these scintillators and 100 channels of graded-index fiber, each 500 m long, has been successfully tested on a nuclear event at the Nevada Test Site. During the past year we have developed several new scintillator systems with emission wavelengths more compatible with fiber optics and with response times in the nanosecond and subnanosecond time region. One scintillator, based on Kodak dye 14567 (DCM), has an emission maximum at 650 nm and a response time (FWHM) of 1.2 ns. Experimental data on system sensitivity and bandwidth versus fiber length are presented for three fluor-fiber systems. Data on fluor formulation, response time, and linearity-of-response are given, and a model for scintillator nonlinearity, based on solvent, radiation-induced, transient absorption, is presented

  14. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Jones William

    2006-03-01

    Full Text Available Abstract Background Synthetic vitreous fibers (SVFs are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm. It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was

  15. Effects of cellulose fiber with different fiber length on rheological properties of wheat dough and quality of baked rolls.

    Science.gov (United States)

    Lauková, Michaela; Kohajdová, Zlatica; Karovičová, Jolana; Kuchtová, Veronika; Minarovičová, Lucia; Tomášiková, Lenka

    2017-09-01

    Powdered cellulose is often used in cereal processing industry. The effects of partial replacement (0.5%, 1%, 2% and 5%) of wheat flour by cellulose fiber with different fiber length (80, 120 and 220 µm) on rheological properties of wheat dough and qualitative parameters of baked rolls were studied. Sensory evaluation of baked products was also performed. Mixing and pasting properties of dough were determined by Mixolab. Generally, cellulose-enriched dough was characterized with higher water absorption, dough stability and parameters C2 and C3. Moreover, it was found that parameters C4 and C5 increased with increasing cellulose fiber length. From the results, it was also concluded that the physical parameters of baked rolls containing cellulose were reduced. It was also observed that the incorporation of cellulose fiber with shorter fiber length concluded in lower rolls volume compared to cellulose fiber with long fiber length. Texture analyses showed that the firmness of rolls containing cellulose at the substitution level 5% was significantly higher than those of the control, whereas the springiness of wheat rolls was not significantly affected. It was also recorded that the firmness and cohesiveness of baked rolls were higher after the addition of cellulose fiber with shorter fiber length. Sensory evaluation indicated that baked rolls with cellulose addition up to 1% were comparable with control rolls. Results also showed that higher levels of cellulose significantly decreased crust, taste, color and porosity of rolls.

  16. Suppression of dynamic laser speckle signals in multimode fibers of various lengths

    NARCIS (Netherlands)

    Petoukhova, Anna; Cleven, Ester; de Mul, F.F.M.; Steenbergen, Wiendelt

    2004-01-01

    The effects of fiber coupling and fiber length on photocurrent fluctuations are studied when the light of a laser diode transmitted to and from a dynamic turbid medium by a step-index multimode fiber is studied. When the laser light is coupled asymmetrically, filling only the higher-order modes, the

  17. The vulnerability of electric equipment to carbon fibers of mixed lengths: An analysis

    Science.gov (United States)

    Elber, W.

    1980-01-01

    The susceptibility of a stereo amplifier to damage from a spectrum of lengths of graphite fibers was calculated. A simple analysis was developed by which such calculations can be based on test results with fibers of uniform lengths. A statistical analysis was applied for the conversation of data for various logical failure criteria.

  18. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers.

    Science.gov (United States)

    Matjasec, Ziga; Campelj, Stanislav; Donlagic, Denis

    2013-05-20

    This paper presents an all-fiber, fully-optically controlled, optical-path length modulator based on highly absorbing optical fiber. The modulator utilizes a high-power 980 nm pump diode and a short section of vanadium-co-doped single mode fiber that is heated through absorption and a non-radiative relaxation process. The achievable path length modulation range primarily depends on the pump's power and the convective heat-transfer coefficient of the surrounding gas, while the time response primarily depends on the heated fiber's diameter. An absolute optical length change in excess of 500 µm and a time-constant as short as 11 ms, were demonstrated experimentally. The all-fiber design allows for an electrically-passive and remote operation of the modulator. The presented modulator could find use within various fiber-optics systems that require optical (remote) path length control or modulation.

  19. Automatic Determination of Fiber-Length Distribution in Composite Material Using 3D CT Data

    Directory of Open Access Journals (Sweden)

    Günther Greiner

    2010-01-01

    Full Text Available Determining fiber length distribution in fiber reinforced polymer components is a crucial step in quality assurance, since fiber length has a strong influence on overall strength, stiffness, and stability of the material. The approximate fiber length distribution is usually determined early in the development process, as conventional methods require a destruction of the sample component. In this paper, a novel, automatic, and nondestructive approach for the determination of fiber length distribution in fiber reinforced polymers is presented. For this purpose, high-resolution computed tomography is used as imaging method together with subsequent image analysis for evaluation. The image analysis consists of an iterative process where single fibers are detected automatically in each iteration step after having applied image enhancement algorithms. Subsequently, a model-based approach is used together with a priori information in order to guide a fiber tracing and segmentation process. Thereby, the length of the segmented fibers can be calculated and a length distribution can be deduced. The performance and the robustness of the segmentation method is demonstrated by applying it to artificially generated test data and selected real components.

  20. Automatic Determination of Fiber-Length Distribution in Composite Material Using 3D CT Data

    Science.gov (United States)

    Teßmann, Matthias; Mohr, Stephan; Gayetskyy, Svitlana; Haßler, Ulf; Hanke, Randolf; Greiner, Günther

    2010-12-01

    Determining fiber length distribution in fiber reinforced polymer components is a crucial step in quality assurance, since fiber length has a strong influence on overall strength, stiffness, and stability of the material. The approximate fiber length distribution is usually determined early in the development process, as conventional methods require a destruction of the sample component. In this paper, a novel, automatic, and nondestructive approach for the determination of fiber length distribution in fiber reinforced polymers is presented. For this purpose, high-resolution computed tomography is used as imaging method together with subsequent image analysis for evaluation. The image analysis consists of an iterative process where single fibers are detected automatically in each iteration step after having applied image enhancement algorithms. Subsequently, a model-based approach is used together with a priori information in order to guide a fiber tracing and segmentation process. Thereby, the length of the segmented fibers can be calculated and a length distribution can be deduced. The performance and the robustness of the segmentation method is demonstrated by applying it to artificially generated test data and selected real components.

  1. Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings.

    Science.gov (United States)

    Barmenkov, Yuri O; Zalvidea, Dobryna; Torres-Peiró, Salvador; Cruz, Jose L; Andrés, Miguel V

    2006-07-10

    In this paper, we describe the properties of Fabry-Perot fiber cavity formed by two fiber Bragg gratings in terms of the grating effective length. We show that the grating effective length is determined by the group delay of the grating, which depends on its diffraction efficiency and physical length. We present a simple analytical formula for calculation of the effective length of the uniform fiber Bragg grating and the frequency separation between consecutive resonances of a Fabry-Perot cavity. Experimental results on the cavity transmission spectra for different values of the gratings' reflectivity support the presented theory.

  2. Properties of discontinuous S2-glass fiber-particulate-reinforced resin composites with two different fiber length distributions.

    Science.gov (United States)

    Huang, Qiting; Garoushi, Sufyan; Lin, Zhengmei; He, Jingwei; Qin, Wei; Liu, Fang; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2017-10-01

    To investigate the reinforcing efficiency and light curing properties of discontinuous S2-glass fiber-particulate reinforced resin composite and to examine length distribution of discontinuous S2-glass fibers after a mixing process into resin composite. Experimental S2-glass fiber-particulate reinforced resin composites were prepared by mixing 10wt% of discontinuous S2-glass fibers, which had been manually cut into two different lengths (1.5 and 3.0mm), with various weight ratios of dimethacrylate based resin matrix and silaned BaAlSiO 2 filler particulates. The resin composite made with 25wt% of UDMA/SR833s resin system and 75wt% of silaned BaAlSiO 2 filler particulates was used as control composite which had similar composition as the commonly used resin composites. Flexural strength (FS), flexural modulus (FM) and work of fracture (WOF) were measured. Fractured specimens were observed by scanning electron microscopy. Double bond conversion (DC) and fiber length distribution were also studied. Reinforcement of resin composites with discontinuous S2-glass fibers can significantly increase the FS, FM and WOF of resin composites over the control. The fibers from the mixed resin composites showed great variation in final fiber length. The mean aspect ratio of experimental composites containing 62.5wt% of particulate fillers and 10wt% of 1.5 or 3.0mm cutting S2-glass fibers was 70 and 132, respectively. No difference was found in DC between resin composites containing S2-glass fibers with two different cutting lengths. Discontinuous S2-glass fibers can effectively reinforce the particulate-filled resin composite and thus may be potential to manufacture resin composites for high-stress bearing application. Copyright © 2017. Published by Elsevier Ltd.

  3. All-fiber, long-active-length Fabry-Perot strain sensor.

    Science.gov (United States)

    Pevec, Simon; Donlagic, Denis

    2011-08-01

    This paper presents a high-sensitivity, all-silica, all-fiber Fabry-Perot strain-sensor. The proposed sensor provides a long active length, arbitrary length of Fabry-Perot cavity, and low intrinsic temperature sensitivity. The sensor was micro-machined from purposely-developed sensor-forming fiber that is etched and directly spliced to the lead-in fiber. This manufacturing process has good potential for cost-effective, high-volume production. Its measurement range of over 3000 µε, and strain-resolution better than 1 µε were demonstrated by the application of a commercial, multimode fiber-based signal processor.

  4. A novel method for length of chirped fiber Bragg grating sensor

    Science.gov (United States)

    Li, Zhenwei; Wei, Peng; Liu, Taolin

    2018-03-01

    Length of chirped fiber Bragg grating sensor is very important for detonation velocity. Different from other ways, we proposed a novel method based on the optical frequency domain reflection theory to measure the length of chirped fiber grating sensor in non-contact condition. This method adopts a tunable laser source to provide wavelength scanning laser, which covers the Full Width at Half Maximum of spectrum of the chirped fiber Bragg grating sensor. A Michelson interferometer is used to produce optical interference signal. Finally, the grating's length is attainable by distance domain signal. In theory, length resolution of chirped fiber Bragg grating sensor could be 0.02 mm. We perform a series of length measurement experiments for chirped fiber grating sensor, including comparison experiments with hot-tip method. And the experiment results show that the novel method could accurately measure the length of chirped fiber Bragg grating sensors, and the length differences between the optical frequency domain reflection method and the hot-tip probe method are very small.

  5. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  6. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length

    OpenAIRE

    Lee, Jennifer K; Hallock, Peter T; Burden, Steven J

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myobla...

  7. Abelson tyrosine-protein kinase 2 Regulates Myoblast Proliferation and Controls Muscle Fiber Length

    OpenAIRE

    Burden, Steven; Lee, Jennifer

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among muscles. Here, we show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm and other muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of available myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but expansion of the diaphragm ...

  8. Effects of fiber length on mechanical properties and fracture behavior of short carbon fiber reinforced geopolymer matrix composites

    International Nuclear Information System (INIS)

    Lin Tiesong; Jia Dechang; He Peigang; Wang Meirong; Liang Defu

    2008-01-01

    A kind of sheet-like carbon fiber preform was developed using short fibers (2, 7 and 12 mm, respectively) as starting materials and used to strengthen a geopolymer. Mechanical properties, fracture behavior, microstructure and toughening mechanisms of the as-prepared composites were investigated by three-point bending test, optical microscope and scanning electron microscopy. The results show that the short carbon fibers disperse uniformly in geopolymer matrix. The C f /geopolymer composites exhibit apparently improved mechanical properties and an obvious noncatastrophic failure behavior. The composite reinforced by the carbon fibers of 7 mm in length shows a maximum flexural strength as well as the highest work of facture, which are nearly 5 times and more than 2 orders higher than that of the geopolymer matrix, respectively. The predominant strengthening and toughening mechanisms are attributed to the apparent fiber bridging and pulling-out effect based on the weak fiber/matrix interface as well as the sheet-like carbon fiber preform

  9. Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete

    Science.gov (United States)

    Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun

    2017-09-01

    In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.

  10. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.

    Science.gov (United States)

    Ai, Jun; Tschirner, Ulrike

    2010-01-01

    Switchgrass (Panicum virgatum), alfalfa stems (Medicago sativa), second year growth hybrid poplar (Populus) and willow (Salix spp.) were examined to determine fiber characteristics, pulping behavior and paper properties. Alfalfa stems and switchgrass both showed length weighted average fiber length (LWW) of 0.78 mm, a very narrow fiber length distribution and high fines content. Willow and hybrid poplar have lower fines content but a very low average fiber length (0.42 and 0.48 mm LWW). In addition, the four biomass species showed distinctly different chemical compositions. Switchgrass was defibered successfully using Soda and Soda Anthraquinone (AQ) pulping and demonstrated good paper properties. Both fast-growing wood species pulped well using the Kraft process, and showed acceptable tensile strength, but low tear strength. Alfalfa stems reacted very poorly to Soda and Soda AQ pulping but responded well to Kraft and Kraft AQ. Pulps with tensile and tear strength considerably higher than those found for commercial aspen pulps were observed for alfalfa. All four biomass species examined demonstrated low pulp yield. The highest yields were obtained with poplar and switchgrass (around 43%). Considering the short fibers and low yields, all four biomass types will likely only be used in paper manufacturing if they offer considerable economic advantage over traditional pulp wood.

  11. Amplification of Frequency-Modulated Similariton Pulses in Length-Inhomogeneous Active Fibers

    Directory of Open Access Journals (Sweden)

    I. O. Zolotovskii

    2012-01-01

    Full Text Available The possibility of an effective gain of the self-similar frequency-modulated (FM wave packets is studied in the length-inhomogeneous active fibers. The dynamics of parabolic pulses with the constant chirp has been considered. The optimal profile for the change of the group-velocity dispersion corresponding to the optimal similariton pulse amplification has been obtained. It is shown that the use of FM pulses in the active (gain and length-inhomogeneous optical fibers with the normal group-velocity dispersion can provide subpicosecond optical pulse amplification up to the energies higher than 1 nJ.

  12. Quantification of dislocations in hemp fibers using acid hydrolysis and fiber segment length distributions

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht

    2008-01-01

    Natural fibers such as flax or hemp may be used in composite materials. However, their use for this purpose is hampered by the large natural variation in tensile strength and other quality parameters. The first step in managing these variations is to develop methods for fast and reliable determin......Natural fibers such as flax or hemp may be used in composite materials. However, their use for this purpose is hampered by the large natural variation in tensile strength and other quality parameters. The first step in managing these variations is to develop methods for fast and reliable...... determination of relevant parameters. One quality parameter of the fibers is the amount of structural distortions known as dislocations or kink bands. Here, a method developed for the quantification of dislocations in pulp fibers was adapted and tested successfully for hemp yarn segments. The method is based...... was correct, and furthermore results showed that fibers broke more often in large dislocations than in small ones. However, it was also found that the hemp fiber segments did not break in all dislocations, and strict standardization of the procedure for acid hydrolysis is therefore necessary if results from...

  13. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Science.gov (United States)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  14. Effect of Different Bar Embedment Length on Bond-Slip in Plain and Fiber Reinforced Concrete

    NARCIS (Netherlands)

    Jankovic, D.; Chopra, M.B.; Kunnath, S.K.

    2001-01-01

    This research aims to study the behaviour of the concrete-steel bond using numerical models, taking into account the effect of the different bar embedment length. Both plain and fiber reinforced concrete (FRC) are modeled. The interface bond stress as well as load-displacement response of the

  15. No change in total length of white matter fibers in Alzheimer's disease

    DEFF Research Database (Denmark)

    Jorgensen, A.M.; Marner, L.; Pakkenberg, B.

    2008-01-01

    White matter changes have been reported as part of Alzheimer dementia. To investigate this, the total subcortical myelinated nerve fiber length was estimated in postmortem brains from eight females (age 79-88 years) with severe Alzheimer's disease (AD) and compared with brains from 10 female...

  16. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length.

    Science.gov (United States)

    Lee, Jennifer K; Hallock, Peter T; Burden, Steven J

    2017-12-12

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2 +/- mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation.

  17. Fiber Length of Calabrian Pine as Related to Position in Cross Section and Growing Region

    Directory of Open Access Journals (Sweden)

    Ibrahim BEKTAS

    2017-03-01

    Full Text Available This paper provides a better understanding of the variation of growing regions and differences in distance from pith to bark on wood fiber lengths. For this aim, Calabrian pines collected from five different growth regions, namely Kahramanmaras, Burdur, Muğla, İzmir and Balıkesir, were used to determine fiber lengths. In experiment, specimens prepared from logs cross section which is taken from three different distances from pith to bark (r/6, 3r/6 and 5r/6 were evaluated. As a result of analysis, distance from pith in the same area have shown a significant effect on fiber dimensions. In the evaluation among the habitat, it was obtained that r/6 and 3r/6 have a significant effect (p<0.001, p<0.05 respectively on fiber dimensions, however; 5r/6 has a nonsignificant. The results showed that, the quite suitable habitat in terms of fiber lenghts is Balıkesir which has high sand (64.4%, moderate clay (24.2% and lime-poor (3.1% soils. These results will make a positive contribution undoubtedly for the plantations will be established in the future of this species.

  18. Optical fiber Bragg gratings. Part II. Modeling of finite-length gratings and grating arrays.

    Science.gov (United States)

    Passaro, Vittorio M N; Diana, Roberto; Armenise, Mario N

    2002-09-01

    A model of both uniform finite-length optical fiber Bragg gratings and grating arrays is presented. The model is based on the Floquet-Bloch formalism and allows rigorous investigation of all the physical aspects in either single- or multiple-periodic structures realized on the core of a monomodal fiber. Analytical expressions of reflectivity and transmittivity for both single gratings and grating arrays are derived. The influence of the grating length and the index modulation amplitude on the reflected and transmitted optical power for both sinusoidal and rectangular profiles is evaluated. Good agreement between our method and the well-known coupled-mode theory (CMT) approach has been observed for both single gratings and grating arrays only in the case of weak index perturbation. Significant discrepancies exist there in cases of strong index contrast because of the increasing approximation of the CMT approach. The effects of intragrating phase shift are also shown and discussed.

  19. Influence of core diameter and length of polymer optical fiber on Brillouin scattering properties

    Science.gov (United States)

    Mizuno, Yosuke; Ishigure, Takaaki; Nakamura, Kentaro

    2012-02-01

    Brillouin scattering in perfluorinated graded-index polymer optical fibers (PFGI-POFs) is potentially useful in developing high-accuracy distributed temperature sensors with reduced strain sensitivity. In this study, we investigate, both experimentally and theoretically, the influence of the fiber core diameter and length on the Brillouin gain spectra (BGS) in PFGI-POFs. First, we show that smaller core diameter drastically enhances the Stokes power using PFGI-POFs with 62.5-μm and 120-μm core diameters, and discuss the Brillouin threshold power. Then, we demonstrate that the PFGI-POF length has little influence on the BGS when the length is longer than 50 m. We also predict that, at 1.55-μm wavelength, it is difficult to reduce the Brillouin threshold power of PFGI-POFs below that of long silica single-mode fibers even if their core diameter is sufficiently reduced to satisfy the single-mode condition. Finally, making use of the enhanced Stokes signal, we confirm the Brillouin linewidth narrowing effect.

  20. Experimental investigation of span length for flexural test of fiber reinforced polymer composite laminates

    Directory of Open Access Journals (Sweden)

    Akhil Mehndiratta

    2018-01-01

    Full Text Available Testing and evaluation of mechanical properties for FRP (Fiber Reinforced Polymer composite parts play a significant role to qualify it for the end use. Among the mechanical properties, the flexural strength is significant and vital as it may vary with specimen depth, temperature and the test span length. The flexural strength varies for different materials with varying the test span length hence the current work aims to find an optimum span length to test flexural strength for the specimens made of Glass (7781, EC9756 and Carbon (HTA7, G801 prepreg materials. Experiments are conducted as per the ASTM Standard D 790 for flexural test by varying the span lengths to understand the behavior of the flexural strength and flexural modulus. The experimental data were compared with those obtained from the finite element program software Altair Hyper works 14.0. The results indicate that flexural modulus increases with the span length to a point and then it decreases. Thereby, an optimum span length can be obtained for testing flexural strength, which will be useful to the designers and the composite manufacturers to accomplish better standard testing procedures.

  1. Improved Fast, Deep Record Length, Time-Resolved Visible Spectroscopy of Plasmas Using Fiber Grids

    Science.gov (United States)

    Brockington, S.; Case, A.; Cruz, E.; Williams, A.; Witherspoon, F. D.; Horton, R.; Klauser, R.; Hwang, D.

    2017-10-01

    HyperV Technologies is developing a fiber-coupled, deep record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified silicon photomultipliers, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. A second generation prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX). Pixel performance of 10 Megaframes/sec with record lengths of up to 256,000 frames ( 25.6 milliseconds) were achieved. Pixel resolution was 12 bits. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. Experimental results will be discussed, along with future plans for this diagnostic. Work supported by USDOE SBIR Grant DE-SC0013801.

  2. Retinal nerve fiber layer thickness is associated with lesion length in acute optic neuritis

    DEFF Research Database (Denmark)

    Kallenbach, K; Simonsen, Helle Juhl; Sander, B

    2010-01-01

    included 41 patients with unilateral optic neuritis and 19 healthy volunteers. All patients were evaluated and examined within 28 days of onset of symptoms. The peripapillary retinal nerve fiber layer thickness (RNFLT), an objective quantitative measure of optic nerve head edema, was measured by optical...... coherence tomography and the length and location of the inflammatory optic nerve lesion were evaluated using MRI. RESULTS: Ophthalmoscopically, 34% of the patients had papillitis. The retinal nerve fiber layer in affected eyes (mean 123.1 microm) was higher during the acute phase than that of fellow eyes......BACKGROUND: Acute optic neuritis occurs with and without papillitis. The presence of papillitis has previously been thought to imply an anterior location of the neuritis, but imaging studies seeking to test this hypothesis have been inconclusive. METHODS: This prospective observational cohort study...

  3. Toward power scaling in an acetylene mid-infrared hollow-core optical fiber gas laser: effects of pressure, fiber length, and pump power

    Science.gov (United States)

    Weerasinghe, H. W. Kushan; Dadashzadeh, Neda; Thirugnanasambandam, Manasadevi P.; Debord, Benoît.; Chafer, Matthieu; Gérôme, Frédéric; Benabid, Fetah; Corwin, Kristan L.; Washburn, Brian R.

    2018-02-01

    The effect of gas pressure, fiber length, and optical pump power on an acetylene mid-infrared hollow-core optical fiber gas laser (HOFGLAS) is experimentally determined in order to scale the laser to higher powers. The absorbed optical power and threshold power are measured for different pressures providing an optimum pressure for a given fiber length. We observe a linear dependence of both absorbed pump energy and lasing threshold for the acetylene HOFGLAS, while maintaining a good mode quality with an M-squared of 1.15. The threshold and mode behavior are encouraging for scaling to higher pressures and pump powers.

  4. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length

    Science.gov (United States)

    Lee, Jennifer K; Hallock, Peter T

    2017-01-01

    Muscle fiber length is nearly uniform within a muscle but widely different among different muscles. We show that Abelson tyrosine-protein kinase 2 (Abl2) has a key role in regulating myofiber length, as a loss of Abl2 leads to excessively long myofibers in the diaphragm, intercostal and levator auris muscles but not limb muscles. Increased myofiber length is caused by enhanced myoblast proliferation, expanding the pool of myoblasts and leading to increased myoblast fusion. Abl2 acts in myoblasts, but as a consequence of expansion of the diaphragm muscle, the diaphragm central tendon is reduced in size, likely contributing to reduced stamina of Abl2 mutant mice. Ectopic muscle islands, each composed of myofibers of uniform length and orientation, form within the central tendon of Abl2+/− mice. Specialized tendon cells, resembling tendon cells at myotendinous junctions, form at the ends of these muscle islands, suggesting that myofibers induce differentiation of tendon cells, which reciprocally regulate myofiber length and orientation. PMID:29231808

  5. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  6. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  7. Quantitative analysis of length-diameter distribution and cross-sectional properties of fibers from three-dimensional tomographic images

    DEFF Research Database (Denmark)

    Miettinen, Arttu; Joffe, Roberts; Madsen, Bo

    2013-01-01

    obtained from optical microscopy of polished cross-sections of a composite. This approach gives accurate yet local results, but a rather large number of optical images have to be processed to achieve a representative description of the morphology of the material. In this work a fully automatic algorithm......A number of rule-of-mixture micromechanical models have been successfully used to predict the mechanical properties of short fiber composites. However, in order to obtain accurate predictions, a detailed description of the internal structure of the material is required. This information is often...... for estimating the length-diameter distribution of solid or hollow fibers, utilizing three-dimensional X-ray tomographic images, is presented. The method is based on a granulometric approach for fiber length distribution measurement, combined with a novel algorithm that relates cross-sectional fiber properties...

  8. Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns.

    Science.gov (United States)

    Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang

    2018-04-01

    The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P abutment heights.

  9. Effect of length and diameter of fiber reinforced composite post (FRC on fracture resistance of remaining tooth structure

    Directory of Open Access Journals (Sweden)

    Mahdiyeh seifi

    2013-03-01

    Full Text Available Introduction: Post and core has been considered for endodontically treated tooth, especially in cases with severe damage crowns. Recently fiber reinforced composite posts (FRC post have been used in the treatment of endodontically treated teeth. Because the length and diameter of posts are effective in stress distribution, the purpose of this study is to evaluate the effect of length and diameter of FRC post on fracture resistance. Methods: In this experimental study, 36 glass fiber posts with combination of 7mm, 9mm, and 12mm length and 1.1mm, 1.3mm and 1.5mm diameter were divided into 9 groups of 4. These posts were cemented in root canals by Panavia. Samples were tested with 45° compressive forces for the evaluation of fracture resistance. Datas were analyzed using SPSS soft ware and One- way and Two-way ANOVA analyses. Results: Fracture resistance did not increase significantly with the effect of length and diameter simultaneously (P=0.85. Samples with 12mm length and 1.5mm diameter had the greatest fracture resistance (1023/33N±239/22. The minimum fracture resistance had occurred in post with 7mm length and 1.5mm diameter (503/13N ±69/18. Fracture resistance increased significantly by increasing the length and the same diameter. Conclusion: It can be concluded that fracture resistance is affected by the length and not the diameter of FRC post.

  10. Numerical analysis of the optimal length and profile of a linearly chirped fiber Bragg grating for dispersion compensation.

    Science.gov (United States)

    Thibault, S; Lauzon, J; Cliche, J F; Martin, J; Duguay, M A; Têtu, M

    1995-03-15

    We propose a theoretical investigation of the length and coupling profile of a linearly chirped fiber Bragg grating for maximum dispersion compensation in a repeaterless optical communication system. The system consists of 100 km of standard optical fiber in which a 1550-nm signal, directly modulated at 2.5 Gbits/s, is launched. We discuss the results obtained with 6-, 4.33-, and 1-cm-long linearly chirped fiber Bragg gratings having Gaussian and uniform coupling profiles. We numerically show that a 4.33-cm-long chirped fiber Bragg grating having a uniform coupling profile is capable of compensating efficiently for the dispersion of our optical communication system.

  11. Force generation and temperature-jump and length-jump tension transients in muscle fibers.

    Science.gov (United States)

    Davis, J S; Rodgers, M E

    1995-01-01

    Muscle tension rises with increasing temperature. The kinetics that govern the tension rise of maximally Ca(2+)-activated, skinned rabbit psoas fibers over a temperature range of 0-30 degrees C was characterized in laser temperature-jump experiments. The kinetic response is simple and can be readily interpreted in terms of a basic three-step mechanism of contraction, which includes a temperature-sensitive rapid preequilibrium(a) linked to a temperature-insensitive rate-limiting step and followed by a temperature-sensitive tension-generating step. These data and mechanism are compared and contrasted with the more complex length-jump Huxley-Simmons phases in which all states that generate tension or bear tension are perturbed. The rate of the Huxley-Simmons phase 4 is temperature sensitive at low temperatures but plateaus at high temperatures, indicating a change in rate-limiting step from a temperature-sensitive (phase 4a) to a temperature-insensitive reaction (phase 4b); the latter appears to correlate with the slow, temperature-insensitive temperature-jump relaxation. Phase 3 is absent in the temperature-jump, which excludes it from tension generation. We confirm that de novo tension generation occurs as an order-disorder transition during phase 2slow and the equivalent, temperature-sensitive temperature-jump relaxation. PMID:7612845

  12. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC

    Directory of Open Access Journals (Sweden)

    Hasan Şahan Arel

    Full Text Available The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm. The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio. Keywords: Curing, Fineness, UHPFRC, Mechanical properties, Fiber

  13. Determining the group velocity dispersion by field analysis for the LP0X, LP1X, and LP2X mode groups independently of the fiber length: applications to step-index fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller; Usuga Castaneda, Mario A.; Rottwitt, Karsten

    2017-01-01

    By knowing the electric field distribution of a guided mode in an optical fiber, we are able to evaluate the group velocity dispersion in a weakly guiding step-index fiber for a pure mode in the LP0X, LP1X, and LP2X mode groups independently of the fiber length. We demonstrate the method numerica...

  14. Radial variation in fiber length of some lesser used wood species in ...

    African Journals Online (AJOL)

    Variations in fibre length of ten lesser used wood species were investigated. The mean fibre length varied from 1.07mm in Lannea acida to 2.41mm in Sterculia setigera. Four patterns of within tree radial variations in fibre length were observed in the studied species. In pattern one, fibre length increased from the pith to the ...

  15. The Influence of Fiber Length and Concentration on the Physical Properties of Wheat Husk Fibers Rubber Composites

    Directory of Open Access Journals (Sweden)

    Maged S. Sobhy

    2010-01-01

    Full Text Available Ethylene-propylene-diene terpolymer (EPDM/wheat husk fibers (WHFs composites were prepared using a laboratory size two-roll mill. Cure characteristics and some physical properties such as swelling, mechanical, and thermal properties of the vulcanizates were studied. The adhesion status between the WHF and rubber matrix is lacked in general, but it started to reinforce the matrix at higher WHF contents where a higher restriction to molecular motion of the macromolecules with uniformed stress distribution of the fibers is produced. From the TGA analysis, a thermally stable property is exhibited, which in turn partially enhanced the reinforcement of the WHF-EPDM composites due to the natural adhesion during vulcanization.

  16. Radial variation in fiber length of some lesser used wood species in ...

    African Journals Online (AJOL)

    computer

    2012-09-20

    Sep 20, 2012 ... Variations in fibre length of ten lesser used wood species were investigated. The mean fibre length ..... the growth of coniferous trees. Can. J. Bot.45: 1359-1369 ... morphology and paper properties: a review of literature. Tappi ...

  17. Effect of Full-Length Carbon Fiber Insoles on Lower Limb Kinetics in Patients With Midfoot Osteoarthritis: A Pilot Study.

    Science.gov (United States)

    Yi, Taeim; Kim, Jung Hyun; Oh-Park, Mooyeon; Hwang, Ji Hye

    2018-03-01

    We investigated the effects of full-length carbon fiber (FCF) insoles on gait, muscle activity, kinetics, and pain in patients with midfoot osteoarthritis (OA). We enrolled 13 patients with unilateral midfoot OA (mild: Visual Analog Scale [VAS] range, 1-3; moderate, VAS range, 4-7) and healthy controls. All participants were asked to walk under two conditions: with and without FCF insole. The outcome measures were ground reaction force, quantitative gait parameters, electromyography activities and pain severity (VAS). In the patients with moderate midfoot OA, significantly longer gait cycle and higher muscle activity of lower limb during loading-response phase were observed while walking without FCF insoles. In the mild midfoot OA group, there was no significant difference in VAS score (without, 2.0 ± 1.0 vs. with, 2.0 ± 0.5) with FCF insole use. However, significantly reduced VAS score (without, 5.5 ± 1.4 vs. with, 2.0 ± 0.5) and muscle activity of the tibialis anterior and increased muscle activity of gastrocnemius were observed in the moderate midfoot OA group by using an FCF insole (P < 0.05). Full-length carbon fiber insoles can improve pain in individuals with moderate midfoot OA, which might be associated with changes in the kinetics and muscle activities of the lower limb. Taken together, the results of the present study suggest that FCF insoles may be used as a helpful option for midfoot OA.

  18. Cut-To-Length Harvesting of Short Rotation Eucalyptus at Simpson Tehama Fiber Farm

    Science.gov (United States)

    Bruce R. Hartsough; David J. Cooper

    1999-01-01

    A system consisting of a cut-to-length harvester, forwarder, mobile chipper and chip screen was tested in a 7-year-old plantation. Three levels of debarking effort by the harvester (minimal, partial and full), and two levels of screening (with and without) were evaluated. The harvester had the lowest production rate and highest cost of the system elements. Harvester...

  19. ESTIMATION OF BURSTS LENGTH AND DESIGN OF A FIBER DELAY LINE BASED OBS ROUTER

    Directory of Open Access Journals (Sweden)

    RICHA AWASTHI

    2017-03-01

    Full Text Available The demand for higher bandwidth is increasing day by day and this ever growing demand cannot be catered to with current electronic technology. Thus new communication technology like optical communication needs to be used. In the similar context OBS (optical burst switching is considered as next generation data transfer technology. In OBS information is transmitted in forms of optical bursts of variable lengths. However, contention among the bursts is a major problem in OBS system, and for contention resolution defection routing is mostly preferred. However, deflection routing increases delay. In this paper, it is shown that the arrival of very large bursts is rare event, and for moderate burst length the buffering of contending burst can provide very effective solution. However, in case of arrival of large bursts deflection can be used.

  20. Observation of a rainbow of visible colors in a near infrared cascaded Raman fiber laser and its novel application as a diagnostic tool for length resolved spectral analysis

    Science.gov (United States)

    Aparanji, Santosh; Balaswamy, V.; Arun, S.; Supradeepa, V. R.

    2018-02-01

    In this work, we report and analyse the surprising observation of a rainbow of visible colors, spanning 390nm to 620nm, in silica-based, Near Infrared, continuous-wave, cascaded Raman fiber lasers. The cascaded Raman laser is pumped at 1117nm at around 200W and at full power we obtain 100 W at 1480nm. With increasing pump power at 1117nm, the fiber constituting the Raman laser glows in various hues along its length. From spectroscopic analysis of the emitted visible light, it was identified to be harmonic and sum-frequency components of various locally propagating wavelength components. In addition to third harmonic components, surprisingly, even 2nd harmonic components were observed. Despite being a continuous-wave laser, we expect the phase-matching occurring between the core-propagating NIR light with the cladding-propagating visible wavelengths and the intensity fluctuations characteristic of Raman lasers to have played a major role in generation of visible light. In addition, this surprising generation of visible light provides us a powerful non-contact method to deduce the spectrum of light propagating in the fiber. Using static images of the fiber captured by a standard visible camera such as a DSLR, we demonstrate novel, image-processing based techniques to deduce the wavelength component propagating in the fiber at any given spatial location. This provides a powerful diagnostic tool for both length and power resolved spectral analysis in Raman fiber lasers. This helps accurate prediction of the optimal length of fiber required for complete and efficient conversion to a given Stokes wavelength.

  1. Fiber dielectrophoresis

    International Nuclear Information System (INIS)

    Lipowicz, P.J.; Yeh, H.C.

    1988-01-01

    Dielectrophoresis is the motion of uncharged particles in nonuniform electric fields. We find that the theoretical dielectrophoretic velocity of a conducting fiber in an insulating medium is proportional to the square of the fiber length, and is virtually independent of fiber diameter. This prediction has been verified experimentally. The results point to the development of a fiber length classifier based on dielectrophoresis. (author)

  2. Altering physically effective fiber intake through forage proportion and particle length: chewing and ruminal pH.

    Science.gov (United States)

    Yang, W Z; Beauchemin, K A

    2007-06-01

    Alfalfa silages varying in theoretical chop length and diets high and low in forage proportion were used to evaluate whether increasing the physically effective (pe) neutral detergent fiber (NDF) content of dairy cow diets reduces the risk of acidosis. The experiment was designed as a replicated 4 x 4 Latin square using 8 ruminally cannulated lactating dairy cows. Treatments were arranged in a 2 x 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios [dry matter (DM) basis]. Dietary peNDF content (DM basis) was determined from the sum of the proportion of dietary DM retained on either the 2 sieves (8 and 19 mm) or the 3 sieves (1.18, 8, and 19 mm) of the Penn State Particle Separator multiplied by the NDF content of the diet. The dietary peNDF contents ranged from 9.6 to 19.8% using 2 sieves, or from 28.6 to 34.0% using 3 sieves. Intake of peNDF was increased by increasing both the F:C ratio and the FPL of the diets. However, F:C ratio and FPL affected chewing activity differently; increasing F:C ratio increased chewing time but increasing FPL only increased chewing when a high-forage diet was fed. Mean ruminal pH was increased by 0.5 and 0.2 units with increasing F:C ratio and FPL, respectively. Cows fed the low F:C diet had > 10 or 7 h daily in which ruminal pH was below 5.8 or 5.5, respectively, compared with 1.2 and 0.1 h for cows fed the high F:C ratio diet. Increased F:C ratio reduced ruminal VFA concentration from 135 to 121 mM but increased the acetate:propionate ratio from 1.82 to 3.13. Dietary peNDF content when measured using 2 sieves was positively correlated to chewing time (r = 0.61) and mean ruminal pH (r = 0.73), and negatively correlated to the time that pH was below 5.8 or 5.5 (r = -0.46). This study shows that the risk of ruminal acidosis is high for cows fed a low F:C diet, particularly when finely chopped silage is used. Intake of

  3. Melatonin implantation during the non-growing period of cashmere increases the cashmere yield of female Inner Mongolian cashmere goats by increasing fiber length and density

    International Nuclear Information System (INIS)

    Wu, Z.; Duan, C.; Li, Y.; Duan, T.; Mo, F.; Zhang, W.

    2018-01-01

    This study aimed to evaluate if melatonin implantation at the end of April and June was able to increase cashmere production in female Inner Mongolian cashmere goats and to search for contributing factors accounting for the melatonin increasing in cashmere production. One hundred and fifty female Inner Mongolian cashmere goats (initial body weight 37.2 ± 3.3 kg) were randomly assigned to either a control (n=75) or a treatment (n=75) group. Goats in the treatment group were implanted with melatonin (2 mg/kg of body weight) on April 30 and June 30, 2014 while goats in the control received no treatment. Melatonin implantation increased cashmere yield by 23.4% while increasing the length and density of the cashmere fiber by 19.8% and 11.4%, whereas it decreased cashmere fiber diameter by 4.4%. Melatonin treatment had no effect on doe growth, litter size or birth and weaning weights of kid. Melatonin implantation promoted cashmere yield by increasing fiber length and density without impacting the performance of goats and their offspring. Therefore, melatonin implantation during the cashmere non-growing period (late April and June) is an effective way to increase cashmere yield and improve cashmere characteristics of goats.

  4. Molecular characterization of HOXC8 gene and methylation status analysis of its exon 1 associated with the length of cashmere fiber in Liaoning cashmere goat.

    Science.gov (United States)

    Bai, Wen L; Wang, Jiao J; Yin, Rong H; Dang, Yun L; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H; Xue, Hui L

    2017-02-01

    Homeobox protein Hox-C8 (HOXC8) is a member of Hox family. It is expressed in the dermal papilla of the skin and is thought to be associated with the hair inductive capacity of dermal papilla cells. In the present study, we isolated and characterized a full-length open reading frame of HOXC8 cDNA from the skin tissue of Liaoning cashmere goat, as well as, established a phylogenetic relationship of goat HOXC8 with that of other species. Also, we investigated the effect of methylation status of HOXC8 exon 1 at anagen secondary hair follicle on the cashmere fiber traits in Liaoning cashmere goat. The sequence analysis indicated that the obtained cDNA was 1134-bp in length containing a complete ORF of 729-bp. It encoded a peptide of 242 amino acid residues in length. The structural analysis indicated that goat HOXC8 contained a typical homeobox domain. The phylogenetic analysis revealed that Capra hircus HOXC8 had a closer genetic relationship with that of Ovis aries, followed by Bos Taurus and Bubalus bubalis. The methylation analysis suggested that the methylation degree of HOXC8 exon 1 in anagen secondary hair follicle might be involved in regulating the growth of cashmere fiber in Liaoning cashmere goat. Our results provide new evidence for understanding the molecular structural and evolutionary characteristics of HOXC8 in Liaoning cashmere goat, as well as, for further insight into the role of methylation degree of HOXC8 exon 1 regulates the growth of cashmere fiber in goat.

  5. Fiber

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, cooked artichokes, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  6. Broad bandwidth and 600 μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm

    Science.gov (United States)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-02-01

    A broad bandwidth and 600-μm length photonic crystal fiber polarization filter at the communication window of 1.55 μm is proposed. The physical parameters are analyzed by the finite element method. In the structure, the loss is 705.81 dB/cm for y-polarized mode and 24.06 dB/cm for x-polarized mode at the wavelength of 1.55 μm; the y-polarized mode will be filtered out because of this property. The bandwidth of an extinction ratio (ER) better than -20 dB is 65 nm when the filter length is 600 μm, and the ER is -41 dB at the communication wavelength of 1.55 μm. The filter structure is simple and easy to produce, and it can be used to produce a single-polarization filter.

  7. Design of Electrically Conductive Structural Composites by Modulating Aligned CVD-Grown Carbon Nanotube Length on Glass Fibers.

    Science.gov (United States)

    He, Delong; Fan, Benhui; Zhao, Hang; Lu, Xiaoxin; Yang, Minhao; Liu, Yu; Bai, Jinbo

    2017-01-25

    Function-integration in glass fiber (GF) reinforced polymer composites is highly desired for developing lightweight structures and devices with improved performance and structural health monitoring. In this study, homogeneously aligned carbon nanotube (CNT) shell was in situ grafted on GF by chemical vapor deposition (CVD). It was demonstrated that the CNT shell thickness and weight fraction can be modulated by controlling the CVD conditions. The obtained hierarchical CNTs-GF/epoxy composites show highly improved electrical conductivity and thermo-mechanical and flexural properties. The composite through-plane and in-plane electrical conductivities increase from a quasi-isolator value to ∼3.5 and 100 S/m, respectively, when the weight fraction of CNTs grafted on GF fabric varies from 0% to 7%, respectively. Meanwhile, the composite storage modulus and flexural modulus and strength improve as high as 12%, 21%, and 26%, respectively, with 100% retention of the glass transition temperature. The reinforcing mechanisms are investigated by analyzing the composite microstructure and the interfacial adhesion and wetting properties of CNTs-GF hybrids. Moreover, the specific damage-related resistance variation characteristics could be employed to in situ monitor the structural health state of the composites. The outstanding electrical and structural properties of the CNTs-GF composites were due to the specific interfacial and interphase structures created by homogeneously grafting aligned CNTs on each GF of the fabric.

  8. The dynamic behavior of bacterial macrofibers growing with one end prevented from rotating: variation in shaft rotation along the fiber's length, and supercoil movement on a solid surface toward the constrained end

    Directory of Open Access Journals (Sweden)

    Chen Liling

    2003-08-01

    Full Text Available Abstract Background Bacterial macrofibers twist as they grow, writhe, supercoil and wind up into plectonemic structures (helical forms the individual filaments of which cannot be taken apart without unwinding that eventually carry loops at both of their ends. Terminal loops rotate about the axis of a fiber's shaft in contrary directions at increasing rate as the shaft elongates. Theory suggests that rotation rates should vary linearly along the length of a fiber ranging from maxima at the loop ends to zero at an intermediate point. Blocking rotation at one end of a fiber should lead to a single gradient: zero at the blocked end to maximum at the free end. We tested this conclusion by measuring directly the rotation at various distances along fiber length from the blocked end. The movement of supercoils over a solid surface was also measured in tethered macrofibers. Results Macrofibers that hung down from a floating wire inserted through a terminal loop grew vertically and produced small plectonemic structures by supercoiling along their length. Using these as markers for shaft rotation we observed a uniform gradient of initial rotation rates with slopes of 25.6°/min. mm. and 36.2°/min. mm. in two different fibers. Measurements of the distal tip rotation in a third fiber as a function of length showed increases proportional to increases in length with constant of proportionality 79.2 rad/mm. Another fiber tethered to the floor grew horizontally with a length-doubling time of 74 min, made contact periodically with the floor and supercoiled repeatedly. The supercoils moved over the floor toward the tether at approximately 0.06 mm/min, 4 times faster than the fiber growth rate. Over a period of 800 minutes the fiber grew to 23 mm in length and was entirely retracted back to the tether by a process involving 29 supercoils. Conclusions The rate at which growing bacterial macrofibers rotated about the axis of the fiber shaft measured at various

  9. Increasing physically effective fiber content of dairy cow diets through forage proportion versus forage chop length: chewing and ruminal pH.

    Science.gov (United States)

    Yang, W Z; Beauchemin, K A

    2009-04-01

    A study was conducted to evaluate whether the risk of acidosis in dairy cows can be lowered by increasing the physically effective fiber (peNDF) concentration of the diet, either through increased theoretical chop length of alfalfa silage or higher proportion of forage in the diet. The experiment was designed as a replicated 4 x 4 Latin square using 8 ruminally cannulated lactating dairy cows. Treatments were arranged in a 2 x 2 factorial design; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) forage:concentrate (F:C) ratios [dry matter (DM) basis]. Dietary peNDF concentration (DM basis) was determined from the sum of the proportion of dietary DM retained either on the 2 sieves (8 and 19 mm) or on the 3 sieves (1.18, 8, and 19 mm) of the Penn State Particle Separator multiplied by the neutral detergent fiber concentration of the diet. The dietary peNDF concentrations were altered by changing the F:C or the FPL, and ranged from 10.7 to 17.5% using 2 sieves, or from 23.1 to 28.2% using 3 sieves. Intake of peNDF was increased by increasing FPL but not by increasing F:C ratio because of the reduction of DM intake at the higher F:C ratio. Chewing activity, including number of chews and chewing time, increased with increasing F:C ratio or FPL. Mean ruminal pH was elevated by 0.4 and 0.2 units with increasing F:C ratio and FPL, respectively. Lowering the F:C ratio decreased the duration that ruminal pH was below 5.8 (1.2 vs. 8 h/d). Increased F:C ratio or FPL reduced ruminal volatile fatty acids concentration from 137 to 122 or from 133 to 126 mM, respectively, whereas acetate:propionate ratio was increased from 2.55 to 3.46 with increasing F:C ratio. Dietary peNDF concentration measured using 2 sieves was correlated to chewing time (r = 0.57) and mean ruminal pH (r = 0.75), whereas dietary peNDF concentration measured using 3 sieves was correlated to mean ruminal pH (r = 0.83) and negatively correlated to

  10. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L..

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available Cotton (Gossypium hirsutum L. is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  11. High Resolution Consensus Mapping of Quantitative Trait Loci for Fiber Strength, Length and Micronaire on Chromosome 25 of the Upland Cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Zhang, Zhen; Li, Junwen; Muhammad, Jamshed; Cai, Juan; Jia, Fei; Shi, Yuzhen; Gong, Juwu; Shang, Haihong; Liu, Aiying; Chen, Tingting; Ge, Qun; Palanga, Koffi Kibalou; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Li, Wei; Sun, Linyang; Gong, Wankui; Yuan, Youlu

    2015-01-01

    Cotton (Gossypium hirsutum L.) is an important agricultural crop that provides renewable natural fiber resources for the global textile industry. Technological developments in the textile industry and improvements in human living standards have increased the requirement for supplies and better quality cotton. Upland cotton 0-153 is an elite cultivar harboring strong fiber strength genes. To conduct quantitative trait locus (QTL) mapping for fiber quality in 0-153, we developed a population of 196 recombinant inbred lines (RILs) from a cross between 0-153 and sGK9708. The fiber quality traits in 11 environments were measured and a genetic linkage map of chromosome 25 comprising 210 loci was constructed using this RIL population, mainly using simple sequence repeat markers and single nucleotide polymorphism markers. QTLs were identified across diverse environments using the composite interval mapping method. A total of 37 QTLs for fiber quality traits were identified on chromosome 25, of which 17 were stably expressed in at least in two environments. A stable fiber strength QTL, qFS-chr25-4, which was detected in seven environments and was located in the marker interval between CRI-SNP120491 and BNL2572, could explain 6.53%-11.83% of the observed phenotypic variations. Meta-analysis also confirmed the above QTLs with previous reports. Application of these QTLs could contribute to improving fiber quality and provide information for marker-assisted selection.

  12. Effect of length to thickness ratio on free vibration analysis of thick fiber reinforced plastic skew cross-ply laminate with circular cutout

    Science.gov (United States)

    Srividya, K.; Reddy, Ch. Kishore; Sumanth, Ch. Mohan; Krishnaiah, P. Gopala; Kishan, V. Mallikharjuna

    2018-04-01

    The present investigation deals with the free vibration analysis of a thick four-layered symmetric cross-ply skew laminated composite plate with a circular cutout. Three dimensional finite element models (FEM) which use the elasticity theory for the determination of stiffness matrices are modeled in ANSYS software to evaluate first five natural frequencies of the laminate. The variations of the first five natural frequencies with respect to length to thickness ratio (S) for different diameter to length ratios (d/l) are presented. It is observed that, the natural frequencies decreases with increase of thickness ratio(S).

  13. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  14. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  15. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  16. Photovoltaic fibers

    Science.gov (United States)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  17. Fiber-optic seismic sensor

    International Nuclear Information System (INIS)

    Finch, G. W.; Udd, E.

    1985-01-01

    A vibration sensor is constructed by providing two preferably matched coils of fiber-optic material. When the sensor experiences vibration, a differential pressure is exerted on the two fiber coils. The differential pressure results in a variation in the relative optical path lengths between the two fibers so that light beams transmitted through the two fibers are differently delayed, the phase difference therebetween being a detectable indication of the vibration applied to the sensor

  18. SBIR-Long fluoride fiber

    Science.gov (United States)

    Jaeger, Raymond E.; Vacha, Lubos J.

    1987-08-01

    This report summarizes results obtained under a program aimed at developing new techniques for fabricating long lengths of heavy metal fluoride glass (HMFG) optical fiber. A new method for overcladding conventional HMFG preforms with a low melting oxide glass was developed, and improvements in the rotational casting method were made to increase preform length. The resulting composite glass canes consist of a fluoride glass overcoat layer to enhance strength and chemical durability. To show feasibility, prototype optical fiber preforms up to 1.6 cm in diameter with lengths of 22 cm were fabricated. These were drawn into optical fibers with lengths up to 900 meters.

  19. Optical fiber stripper positioning apparatus

    Science.gov (United States)

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  20. Fiber webs

    Science.gov (United States)

    Roger M. Rowell; James S. Han; Von L. Byrd

    2005-01-01

    Wood fibers can be used to produce a wide variety of low-density three-dimensional webs, mats, and fiber-molded products. Short wood fibers blended with long fibers can be formed into flexible fiber mats, which can be made by physical entanglement, nonwoven needling, or thermoplastic fiber melt matrix technologies. The most common types of flexible mats are carded, air...

  1. Photometric device using optical fibers

    International Nuclear Information System (INIS)

    Boisde, Gilbert; Perez, J.-J.

    1981-02-01

    Remote measurements in radioactive environment are now possible with optical fibers. Measurement instruments developed by CEA are constitued of: - an optical probe (5 mm to 1 meter optical path length), - a photometric measurement device, - optical fiber links. 'TELEPHOT' is a photometric device for industrial installations. It is uses interferentiel filters for 2 to 5 simultaneous wave lengths. 'CRUDMETER' measures the muddiness of water. It can be equipped with a high sensitivity cell of 50 cm optical path length tested up to 250 bars. Coupling a double beam spectrophotometer to a remote optical probe, up to 1 meter optical path length, is carried out by means of an optical device using optical fibers links, eventually several hundred meter long. For these equipments special step index large core fibers, 1 to 1.5 mm in diameter, have been developed as well connectors. For industrial control and research these instruments offer new prospect thanks to optical fibers use [fr

  2. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    Science.gov (United States)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  3. Long fiber polymer composite property calculation in injection molding simulation

    Science.gov (United States)

    Jin, Xiaoshi; Wang, Jin; Han, Sejin

    2013-05-01

    Long fiber filled polymer composite materials have attracted a great attention and usage in recent years. However, the injection and compression molded long fiber composite materials possess complex microstructures that include spatial variations in fiber orientation and length. This paper presents the recent implemented anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation distribution[1] and a newly developed fiber breakage model[2] for predicting fiber length distribution in injection and compression molding simulation, and Eshelby-Mori-Tanaka model[3,4] with fiber-matrix de-bonding model[5] have been implemented to calculate the long fiber composite property distribution with predicted fiber orientation and fiber length distributions. A validation study on fiber orientation, fiber breakage and mechanical property distributions are given with injection molding process simulation.

  4. Influence of forming conditions on fiber tilt

    Science.gov (United States)

    David W. Vahey; John M. Considine; Michael A. and MacGregor

    2013-01-01

    Fiber tilt describes the projection of fiber length in the thickness direction of paper. The projection is described by the tilt angle of fibers with respect to the plane of the sheet. A simple model for fiber tilt is based on jet-to-wire velocity differential in combination with cross-flows on the wire. The tilt angle of a fiber is found to vary as the sine of its in-...

  5. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    2018-06-01

    Full Text Available A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration. Keywords: Tapered optical fibers, Fiber Bragg gratings, Random lasers

  6. Photorefractive Fibers

    National Research Council Canada - National Science Library

    Kuzyk, Mark G

    2003-01-01

    ... scope of the project. In addition to our work in optical limiting fibers, spillover results included making fiber-based light-sources, writing holograms in fibers, and developing the theory of the limits of the nonlinear...

  7. Simulations and experiments on polarization squeezing in optical fiber

    DEFF Research Database (Denmark)

    Corney, J.F.; Heersink, J.; Dong, R.

    2008-01-01

    We investigate polarization squeezing of ultrashort pulses in optical fiber, over a wide range of input energies and fiber lengths. Comparisons are made between experimental data and quantum dynamical simulations to find good quantitative agreement. The numerical calculations, performed using both...... effects cause a marked deterioration of squeezing at higher energies and longer fiber lengths. We also calculate the optimum fiber length for maximum squeezing....

  8. Improved terbium-doped, lithium-loaded glass scintillator fibers

    International Nuclear Information System (INIS)

    Spector, G.B.; McCollum, T.; Spowart, A.R.

    1993-01-01

    An improved terbium-doped, 6 Li-loaded glass scintillator has been drawn into fibers. Tests indicate that the neutron detection response of the fibers is superior to the response with fibers drawn from the original terbium-doped glass. The new fibers offer less attenuation (1/e length of ∝40 cm) and improved gamma ray/neutron discrimination. The improved fibers will be incorporated in a scintillator fiber optic long counter for neutron detection. (orig.)

  9. Cerenkov fiber sampling calorimeters

    International Nuclear Information System (INIS)

    Arrington, K.; Kefford, D.; Kennedy, J.; Pisani, R.; Sanzeni, C.; Segall, K.; Wall, D.; Winn, D.R.; Carey, R.; Dye, S.; Miller, J.; Sulak, L.; Worstell, W.; Efremenko, Y.; Kamyshkov, Y.; Savin, A.; Shmakov, K.; Tarkovsky, E.

    1994-01-01

    Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles (1 degree--7 degree). The 7 λ deep hadron tower contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented

  10. Fiber Amplifiers

    DEFF Research Database (Denmark)

    Rottwitt, Karsten

    2017-01-01

    The chapter provides a discussion of optical fiber amplifiers and through three sections provides a detailed treatment of three types of optical fiber amplifiers, erbium doped fiber amplifiers (EDFA), Raman amplifiers, and parametric amplifiers. Each section comprises the fundamentals including...... the basic physics and relevant in-depth theoretical modeling, amplifiers characteristics and performance data as a function of specific operation parameters. Typical applications in fiber optic communication systems and the improvement achievable through the use of fiber amplifiers are illustrated....

  11. Extraction and characterization of Retama monosperma fibers | Aizi ...

    African Journals Online (AJOL)

    The Young's modulus was 13.3 GPa, tensile strength was 110 MPa and density was 1.3 g/cm3. The average fiber length was 155.7 mm. The fibers yield and characteristics showed that R. monosperma plant may in future be suitable source for natural fibers. Key words: Retama monosperma young stems, fibers, extraction, ...

  12. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...

  13. Fiber break location technique utilizing stimulated Brillouin scattering effects in optical fiber

    International Nuclear Information System (INIS)

    Bakar, A A A; Al-Mansoori, M H; Mahdi, M A; Mohd Azau, M A; Zainal Abidin, M S

    2009-01-01

    A new technique of fiber break detection system in optical communication networks is proposed and experimentally demonstrated in this paper. This technique is based-on continuous wave light source rather than pulsed source that is commonly deployed in existing techniques. The nonlinear effect of stimulated Brillouin scattering is manipulated to locate the fiber-break position in optical communication networks. This technique enables the utilization of a less-sensitive photodetector to detect the Brillouin Stokes line since its intensity increases with the fiber length in the detectable region. The fiber break location can be determined with accuracy of more than 98% for fiber length less than 50 km using this technique

  14. On the effect of the fiber orientation on the flexural stiffness of injection molded short fiber reinforced polycarbonate plates

    NARCIS (Netherlands)

    Neves, N.M.; Isdell, G.; Pouzada, A.S.; Powell, P.C.

    1998-01-01

    The through-thickness fiber orientation distribution of injection molded polycarbonate plates was experimentally determined by light reflection microscopy and manual digitization of polished cross sections. Fiber length distribution was determined by pyrolysis tests followed by image analysis. A

  15. Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure.

    Science.gov (United States)

    Park, Jung-Jun; Yoo, Doo-Yeol; Park, Gi-Joon; Kim, Sung-Wook

    2017-01-28

    In this study, the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) is examined as a function of fiber length and volume fraction. Straight steel fiber with three different lengths ( l f ) of 13, 19.5, and 30 mm and four different volume fractions ( v f ) of 0.5%, 1.0%, 1.5%, and 2.0% are considered. Test results show that post-cracking flexural properties of UHPFRC, such as flexural strength, deflection capacity, toughness, and cracking behavior, improve with increasing fiber length and volume fraction, while first-cracking properties are not significantly influenced by fiber length and volume fraction. A 0.5 vol % reduction of steel fiber content relative to commercial UHPFRC can be achieved without deterioration of flexural performance by replacing short fibers ( l f of 13 mm) with longer fibers ( l f of 19.5 mm and 30 mm).

  16. Fiber cavities with integrated mode matching optics.

    Science.gov (United States)

    Gulati, Gurpreet Kaur; Takahashi, Hiroki; Podoliak, Nina; Horak, Peter; Keller, Matthias

    2017-07-17

    In fiber based Fabry-Pérot Cavities (FFPCs), limited spatial mode matching between the cavity mode and input/output modes has been the main hindrance for many applications. We have demonstrated a versatile mode matching method for FFPCs. Our novel design employs an assembly of a graded-index and large core multimode fiber directly spliced to a single mode fiber. This all-fiber assembly transforms the propagating mode of the single mode fiber to match with the mode of a FFPC. As a result, we have measured a mode matching of 90% for a cavity length of ~400 μm. This is a significant improvement compared to conventional FFPCs coupled with just a single mode fiber, especially at long cavity lengths. Adjusting the parameters of the assembly, the fundamental cavity mode can be matched with the mode of almost any single mode fiber, making this approach highly versatile and integrable.

  17. Brillouin lasing in single-mode tapered optical fiber with inscribed fiber Bragg grating array

    Science.gov (United States)

    Popov, S. M.; Butov, O. V.; Chamorovskiy, Y. K.; Isaev, V. A.; Kolosovskiy, A. O.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.; Mégret, P.; Odnoblyudov, M.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    A tapered optical fiber has been manufactured with an array of fiber Bragg gratings (FBG) inscribed during the drawing process. The total fiber peak reflectivity is 5% and the reflection bandwidth is ∼3.5 nm. A coherent frequency domain reflectometry has been applied for precise profiling of the fiber core diameter and grating reflectivity both distributed along the whole fiber length. These measurements are in a good agreement with the specific features of Brillouin lasing achieved in the semi-open fiber cavity configuration.

  18. Fiber Optic Calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1997-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processes to allow phase shifts as small as 1 microradian (microrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  19. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    This PhD thesis considers higher order modes (HOMs) in optical fibers. That includes their excitation and characteristics. Within the last decades, HOMs have been applied both for space multiplexing in optical communications, group velocity dispersion management and sensing among others......-radial polarization as opposed to the linear polarization of the LP0X modes. The effect is investigated numerically in a double cladding fiber with an outer aircladding using a full vectorial modesolver. Experimentally, the bowtie modes are excited using a long period grating and their free space characteristics...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  20. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.R.; Bayliss, S.C.; Bracken, D.S.; Bush, I.J.; Davis, P.G.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using optical fibers for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microrad to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 rad of phase shift per mW of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  1. Fiber optic calorimetry

    International Nuclear Information System (INIS)

    Rudy, C.; Bayliss, S.; Bracken, D.; Bush, J.; Davis, P.

    1998-01-01

    A twin-bridge calorimeter using optical fiber as the sensor element was constructed and tested. This system demonstrates the principle and capability of using fiber for heat-flow measurements of special nuclear material. This calorimeter uses piezoelectric-generated phase-carrier modulation with subsequent electronic signal processing to allow phase shifts as small as 1 microradian (μrad) to be measured. The sensing element consists of 21-m lengths of single-mode optical fiber wrapped around sample and reference chambers. The sensitivity of the calorimeter was determined to be 74 radians (rad) of phase shift per milliwatt of thermal power. One milliwatt of thermal power is equivalent to 400 mg of plutonium (6% 240 Pu). The system noise base was about 0.2 rad, equivalent to about 1 mg of plutonium

  2. Recycled fiber quality from a laboratory-scale blade separator/blender

    Science.gov (United States)

    Bei-Hong Liang; Stephen M. Shaler; Laurence Mott; Leslie Groom

    1994-01-01

    A simple and inexpensive fiber separator/blender was developed to generate useful secondary fibers from hydropulped waste paper. Processing wet hydropulped fiber resulted in a furnish with no change in average fiber length in three out of four types of recycled fibers tested. In all cases, the canadian standard freeness increased after processing compared to...

  3. Recycled fiber quality from a laboratory-scale blade separator/blend

    Science.gov (United States)

    Bei-Hong Liang; Stephen M. Shaler; Laurence Mott; Leslie Groom

    1994-01-01

    A simple and inexpensive fiber separator/blender was developed to generate useful secondary fibers from hydropulped waste paper. Processing wet hydropulped fiber resulted in a furnish with no change in average fiber length in three out of four types of recycled fibers tested. In all cases, the Canadian Standard freeness increased after processing compared to...

  4. Physical determinants of fibrinolysis in single fibrin fibers.

    Directory of Open Access Journals (Sweden)

    Igal Bucay

    Full Text Available Fibrin fibers form the structural backbone of blood clots; fibrinolysis is the process in which plasmin digests fibrin fibers, effectively regulating the size and duration of a clot. To understand blood clot dissolution, the influence of clot structure and fiber properties must be separated from the effects of enzyme kinetics and perfusion rates into clots. Using an inverted optical microscope and fluorescently-labeled fibers suspended between micropatterned ridges, we have directly measured the lysis of individual fibrin fibers. We found that during lysis 64 ± 6% of fibers were transected at one point, but 29 ± 3% of fibers increase in length rather than dissolving or being transected. Thrombin and plasmin dose-response experiments showed that the elongation behavior was independent of plasmin concentration, but was instead dependent on the concentration of thrombin used during fiber polymerization, which correlated inversely with fiber diameter. Thinner fibers were more likely to lyse, while fibers greater than 200 ± 30 nm in diameter were more likely to elongate. Because lysis rates were greatly reduced in elongated fibers, we hypothesize that plasmin activity depends on fiber strain. Using polymer physics- and continuum mechanics-based mathematical models, we show that fibers polymerize in a strained state and that thicker fibers lose their prestrain more rapidly than thinner fibers during lysis, which may explain why thick fibers elongate and thin fibers lyse. These results highlight how subtle differences in the diameter and prestrain of fibers could lead to dramatically different lytic susceptibilities.

  5. Polarization-preserving holey fibers

    DEFF Research Database (Denmark)

    Broeng, Jes; Mogilevtsev, Dmitri; Libori, Stig E. Barkou

    2001-01-01

    In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization......In this work we suggest and discuss a microstructure of air capillaries with elliptical cross-section in a tread of glass that gives opportunity for Creation of polarization-preserving fiber with very small beat length between the fundamental modes of different polarization...

  6. Stimulated Brillouin scattering continuous wave phase conjugation in step-index fiber optics.

    Science.gov (United States)

    Massey, Steven M; Spring, Justin B; Russell, Timothy H

    2008-07-21

    Continuous wave (CW) stimulated Brillouin scattering (SBS) phase conjugation in step-index optical fibers was studied experimentally and modeled as a function of fiber length. A phase conjugate fidelity over 80% was measured from SBS in a 40 m fiber using a pinhole technique. Fidelity decreases with fiber length, and a fiber with a numerical aperture (NA) of 0.06 was found to generate good phase conjugation fidelity over longer lengths than a fiber with 0.13 NA. Modeling and experiment support previous work showing the maximum interaction length which yields a high fidelity phase conjugate beam is inversely proportional to the fiber NA(2), but find that fidelity remains high over much longer fiber lengths than previous models calculated. Conditions for SBS beam cleanup in step-index fibers are discussed.

  7. Random fiber laser based on artificially controlled backscattering fibers.

    Science.gov (United States)

    Wang, Xiaoliang; Chen, Daru; Li, Haitao; She, Lijuan; Wu, Qiong

    2018-01-10

    The random fiber laser (RFL), which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previously reported RFLs are based on distributed feedback of Rayleigh scattering amplified through the stimulated Raman-Brillouin scattering effect in single-mode fibers, which require long-distance (tens of kilometers) single-mode fibers and high threshold, up to watt level, due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open-cavity RFL based on a segment of an artificially controlled backscattering single-mode fiber with a length of 210 m, 310 m, or 390 m. A fiber Bragg grating with a central wavelength of 1530 nm and a segment of artificially controlled backscattering single-mode fiber fabricated by using a femtosecond laser form the half-open cavity. The proposed RFL achieves thresholds of 25 mW, 30 mW, and 30 mW, respectively. Random lasing at a wavelength of 1530 nm and extinction ratio of 50 dB is achieved when a segment of 5 m erbium-doped fiber is pumped by a 980 nm laser diode in the RFL. A novel RFL with many short cavities has been achieved with low threshold.

  8. Optical Communication over Plastic Optical Fibers Integrated Optical Receiver Technology

    CERN Document Server

    Atef, Mohamed

    2013-01-01

    This book presents high-performance data transmission over plastic optical fibers (POF) using integrated optical receivers having good properties with multilevel modulation, i.e. a higher sensitivity and higher data rate transmission over a longer plastic optical fiber length. Integrated optical receivers and transmitters with high linearity are introduced for multilevel communication. For binary high-data rate transmission over plastic optical fibers, an innovative receiver containing an equalizer is described leading also to a high performance of a plastic optical fiber link. The cheap standard PMMA SI-POF (step-index plastic optical fiber) has the lowest bandwidth and the highest attenuation among multimode fibers. This small bandwidth limits the maximum data rate which can be transmitted through plastic optical fibers. To overcome the problem of the plastic optical fibers high transmission loss, very sensitive receivers must be used to increase the transmitted length over POF. The plastic optical fiber li...

  9. A multi-scale investigation of the mechanical behavior of durable sisal fiber cement composites

    OpenAIRE

    Silva, Flávio de Andrade; Toledo Filho, Romildo D.; Mobasher, Barzin; Chawla, Nikhilesh

    2010-01-01

    Durable sisal fiber cement composites reinforced with long unidirectional aligned fibers were developed and their mechanical behavior was characterized in a multi-scale level. Tensile tests were performed in individual sisal fibers. Weibull statistics were used to quantify the degree of variability in fiber strength at different gage lengths. The fiber-matrix pull-out behavior was evaluated at several curing ages and embedded lengths. The composite's mechanical response was measured under dir...

  10. Optical fiber sensors for harsh environments

    Science.gov (United States)

    Xu, Juncheng; Wang, Anbo

    2007-02-06

    A diaphragm optic sensor comprises a ferrule including a bore having an optical fiber disposed therein and a diaphragm attached to the ferrule, the diaphragm being spaced apart from the ferrule to form a Fabry-Perot cavity. The cavity is formed by creating a pit in the ferrule or in the diaphragm. The components of the sensor are preferably welded together, preferably by laser welding. In some embodiments, the entire ferrule is bonded to the fiber along the entire length of the fiber within the ferrule; in other embodiments, only a portion of the ferrule is welded to the fiber. A partial vacuum is preferably formed in the pit. A small piece of optical fiber with a coefficient of thermal expansion chosen to compensate for mismatches between the main fiber and ferrule may be spliced to the end of the fiber.

  11. Two Fiber Optical Fiber Thermometry

    Science.gov (United States)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  12. Photonic crystal fibers for supercontinuum generation pumped by a gain-switched CW fiber laser

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Hansen, Kim P.

    2012-01-01

    Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations...... of the laser can be exploited to enhance the broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output power of up to 30 W can...

  13. Radiation response of SiC-based fibers

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Jones, R.H. [Battelle Pacific Northwest Labs., Richland, WA (United States); Kohyama, A. [Inst. of Advanced Energy, Kyoto Univ. (Japan); Snead, L.L. [Oak Ridge National Lab., TN (United States)

    1998-10-01

    Loss of strength in irradiated fiber-reinforced SiC/SiC composite generally is related to degradation in the reinforcing fiber. To assess fiber degradation, the density and length changes were determined for four types of SiC-based fibers (Tyranno, Nicalon CG, Hi Nicalon and Dow X) after high temperature (up to 1000 C) and high dose (up to 80 dpa-SiC) irradiations. For the fibers with nonstoichiometric compositions (the first three types in the list), the fiber densities increased from 6% to 12%. In contrast, a slight decrease in density (<1%) was observed for the Dow X fiber with a quasi-stoichiometric composition. Fiber length changes (0-5.6% shrinkage) suggested small mass losses (1-6%) had occurred for irradiated uncoated fibers. In contrast, excessive linear shrinkage of the pyrocarbon-coated Nicalon CG and Tyranno fibers (7-9% and 16-32%, respectively) indicated that much larger mass losses (11-84%) had occurred for these coated fibers. Crystallization and crystal growth were observed to have taken place at fiber surfaces by SEM and in the bulk by XRD, moreso for irradiated Nicalon CG than for Hi Nicalon fiber. The radiation response of the quasi-stoichiometric Dow X fiber was the most promising. Further testing of this type fiber is recommended. (orig.) 11 refs.

  14. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...

  15. Benefits of glass fibers in solar fiber optic lighting systems.

    Science.gov (United States)

    Volotinen, Tarja T; Lingfors, David H S

    2013-09-20

    The transmission properties and coupling of solar light have been studied for glass core multimode fibers in order to verify their benefits for a solar fiber optic lighting system. The light transportation distance can be extended from 20 m with plastic fibers to over 100 m with the kind of glass fibers studied here. A high luminous flux, full visible spectrum, as well as an outstanding color rendering index (98) and correlated color temperature similar to the direct sun light outside have been obtained. Thus the outstanding quality of solar light transmitted through these fibers would improve the visibility of all kinds of objects compared to fluorescent and other artificial lighting. Annual relative lighting energy savings of 36% in Uppsala, Sweden, and 76% in Dubai were estimated in an office environment. The absolute savings can be doubled by using glass optical fibers, and are estimated to be in the order of 550 kWh/year in Sweden and 1160 kWh/year in Dubai for one system of only 0.159 m(2) total light collecting area. The savings are dependent on the fiber length, the daily usage time of the interior, the type of artificial lighting substituted, the system light output flux, and the available time of sunny weather at the geographic location.

  16. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  17. Multipoint fiber-optic laser-ultrasonic actuator based on fiber core-opened tapers.

    Science.gov (United States)

    Tian, Jiajun; Dong, Xiaolong; Gao, Shimin; Yao, Yong

    2017-11-27

    In this study, a novel fiber-optic, multipoint, laser-ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser-ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser-ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.

  18. Microring embedded hollow polymer fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Linslal, C. L., E-mail: linslal@gmail.com; Sebastian, S.; Mathew, S.; Radhakrishnan, P.; Nampoori, V. P. N.; Girijavallabhan, C. P.; Kailasnath, M. [International School of Photonics, Cochin University of Science and Technology, Cochin 22 (India)

    2015-03-30

    Strongly modulated laser emission has been observed from rhodamine B doped microring resonator embedded in a hollow polymer optical fiber by transverse optical pumping. The microring resonator is fabricated on the inner wall of a hollow polymer fiber. Highly sharp lasing lines, strong mode selection, and a collimated laser beam are observed from the fiber. Nearly single mode lasing with a side mode suppression ratio of up to 11.8 dB is obtained from the strongly modulated lasing spectrum. The microring embedded hollow polymer fiber laser has shown efficient lasing characteristics even at a propagation length of 1.5 m.

  19. Colloid-templated multisectional porous polymeric fibers.

    Science.gov (United States)

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  20. Femtosecond Fiber Lasers

    Science.gov (United States)

    Bock, Katherine J.

    -order dispersion contribution from the diffraction gratings inside the laser cavity was studied, as it was also considered to be an energy-limiting factor. No significant effect was found as a result of third-order dispersion; however, a region of operation was observed where two different pulse regimes were found at the same values of net cavity group velocity dispersion. Results verify the main idea and indicate that a long length of low-doped gain fiber is preferable to a shorter, more highly doped one. The low-doped fiber in an otherwise equivalent cavity allows the nonlinear phase shift to grow at a slower rate, which results in the pulse achieving a higher peak power before reaching the nonlinear phase shift threshold at which optical wave breaking occurs. For a range of net cavity group velocity dispersion values, the final result is that the low doped fiber generates pulses of approximately twice the value of energy of the highly-doped gain fiber. Two techniques of mode-locking cavities were investigated to achieve this result. The first cavity used NPE mode-locking which masked the results, and the second used a SESAM for mode-locking which gave clear results supporting the hypothesis.

  1. Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity

    Science.gov (United States)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.

  2. Multicore optical fiber grating array fabrication for medical sensing applications

    Science.gov (United States)

    Westbrook, Paul S.; Feder, K. S.; Kremp, T.; Taunay, T. F.; Monberg, E.; Puc, G.; Ortiz, R.

    2015-03-01

    In this work we report on a fiber grating fabrication platform suitable for parallel fabrication of Bragg grating arrays over arbitrary lengths of multicore optical fiber. Our system exploits UV transparent coatings and has precision fiber translation that allows for quasi-continuous grating fabrication. Our system is capable of both uniform and chirped fiber grating array spectra that can meet the demands of medical sensors including high speed, accuracy, robustness and small form factor.

  3. Scintillating optical fibers for fine-grained hodoscopes

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber

  4. Pullout behavior of steel fibers from cement-based composites

    DEFF Research Database (Denmark)

    Shannag, M. Jamal; Brincker, Rune; Hansen, Will

    1997-01-01

    A comprehensive experimental program on pullout tests of steel fibers from cement based matrices is described. A specially designed single fiber pullout apparatus was used to provide a quantitative determination of interfacial properties that are relevant to toughening brittle materials through...... fiber reinforcement. The parameters investigated included a specially designed high strength cement based matrix called Densified Small Particles system (DSP), a conventional mortar matrix, fiber embeddment length, and the fiber volume fraction. The mediums from which the fiber was pulled included...... fraction in the cement matrix increase the peak pullout load and the pullout work. (3) The major bond mechanism in both systems is frictional sliding. ...

  5. Side-emitting fiber optic position sensor

    Science.gov (United States)

    Weiss, Jonathan D [Albuquerque, NM

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  6. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  7. Soft capacitor fibers using conductive polymers for electronic textiles

    Science.gov (United States)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-11-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60-100 nF m-1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L-1, which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage.

  8. Soft capacitor fibers using conductive polymers for electronic textiles

    International Nuclear Information System (INIS)

    Gu, Jian Feng; Gorgutsa, Stephan; Skorobogatiy, Maksim

    2010-01-01

    A novel, highly flexible, conductive polymer-based fiber with high electric capacitance is reported. In its cross section the fiber features a periodic sequence of hundreds of conductive and isolating plastic layers positioned around metallic electrodes. The fiber is fabricated using the fiber drawing method, where a multi-material macroscopic preform is drawn into a sub-millimeter capacitor fiber in a single fabrication step. Several kilometers of fibers can be obtained from a single preform with fiber diameters ranging between 500 and 1000 µm. A typical measured capacitance of our fibers is 60–100 nF m −1 and it is independent of the fiber diameter. Analysis of the fiber frequency response shows that in its simplest interrogation mode the capacitor fiber has a transverse resistance of 5 kΩ m L −1 , which is inversely proportional to the fiber length L and is independent of the fiber diameter. Softness of the fiber materials, the absence of liquid electrolyte in the fiber structure, ease of scalability to large production volumes and high capacitance of our fibers make them interesting for various smart textile applications ranging from distributed sensing to energy storage

  9. Imaging c-PAM-induced flocculation of paper fibers.

    Science.gov (United States)

    Hartley, William H; Banerjee, Sujit

    2008-04-01

    The flocculation of paper fibers by cationic polyacrylamides (c-PAM) was studied by imaging the fibers that remain free during flocculation. Studies with fibers of different lengths showed that the degree of flocculation increases with fiber length, with the best flocs being formed with mixtures of short and long fibers. Short fibers did not flocculate by themselves but were captured by flocs formed with longer fibers. The short fibers strengthen the floc and give it shear resistance. Shear had the expected effect of promoting flocculation at low Reynolds number but disrupting it at higher values. For a given polymer the maximum floc size for a mixture of fibers is dictated by the length distribution of the fibers. The polymer dose governs the rate of flocculation. The technique is especially useful in following the tail end of the flocculation process. At this stage a floc is almost fully grown and a small increase in its size would be very difficult to measure by conventional techniques. In contrast, the number of free fibers measured by single fiber imaging decreases rapidly at this point.

  10. Optical fiber composition and radiation hardness

    International Nuclear Information System (INIS)

    Wall, J.A.; Loretz, T.J.

    1982-01-01

    Germanium phosphosilicate and germanium borosilicate fibers doped with cerium were fabricated and tested for their responses to steady-state Co-60 radiation at -55 C, +20 C and +125 C. A fiber with germanium, boron and phosphorous in the silicate core and doped with antimony in the core and clad was similarly tested. All of the fibers showed significant improvements in radiation hardness at 20 C compared to undoped fibers of the same base composition. At -55 C, however, all except the cerium doped germanium phosphosilicate were very radiation sensitive and also showed increases in the rate of induced loss at +125 C. The cerium doped germanium phosphosilicate fiber showed virtually no change in radiation sensitivity at the temperature extremes and could prove useful in applications requiring relatively short lengths of fiber

  11. Uncladded sensing fiber for refractive index measurement

    International Nuclear Information System (INIS)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-01-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  12. Uncladded sensing fiber for refractive index measurement

    Science.gov (United States)

    Bhardwaj, V.; Gangwar, R. K.; Pathak, A. K.; Singh, V. K.

    2016-05-01

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  13. Uncladded sensing fiber for refractive index measurement

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, V., E-mail: bhardwajphyism@gmail.com; Gangwar, R. K.; Pathak, A. K.; Singh, V. K. [Department of Applied Physics Indian School of Mines Dhanbad, Jharkhand (India)

    2016-05-06

    The formation of chemically etched optical fiber for use in refractive index sensor is addressed. This presented design of a refractive index (RI) sensor is based on recording the power loss exhibited by radiation propagating through an etched multimode fiber (MMF) immersed in the liquid under study. The decreasing diameters of fibers are found to be strongly dependent on the temperature and etchant composition. This experiment was performed for different unclad etched fibers for same sensing length and the RI changes from 1.33 RIU to 1.38 RIU. When the multimode fiber (MMF) is etched for 12 hours the sensitivity of the sensor is approximately 204.25dBm/RIU, which is larger than without etched fiber having sensitivity 127.2dBm/RIU.

  14. Polymer optical fiber with Rhodamine doped cladding for fiber light systems

    Energy Technology Data Exchange (ETDEWEB)

    Narro-García, R., E-mail: roberto.narro@gmail.com [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Quintero-Torres, R. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Domínguez-Juárez, J.L. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Cátedras CONACyT, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico); Ocampo, M.A. [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230 (Mexico)

    2016-01-15

    Both preform and polymer optical fiber with a Poly(methyl methacrylate) core and THV–Rhodamine 6G cladding were characterized. UV–vis absorbance, photoluminescence spectra and lifetime of the preform were measured. Axial and lateral photoluminescence spectra of the polymer optical fiber were studied under 404 nm excitation in order to study the illumination performance of the fiber. It was observed that the peak wavelength from the fiber photoluminescence spectra is higher than the peak wavelength from the fiber preform and that the peak wavelength from the fiber photoluminescence spectra is red shifted with the fiber length in the case of axial emission. The obtained results suggest the influence of self-absorption on the photoluminescence shape. Strong lateral emission along the fiber was observed with the naked eyes in all the cases. The lateral photoluminescence spectra show that the lateral emission is a combination between the pump laser and the Rh6G molecule photoluminescence. The results suggest that this polymer optical fiber could be a potential candidate for the development of fiber lighting systems. - Highlights: • Axial and lateral emission along the fiber was studied. • Self-absorption effect was confirmed in the case of axial photoluminescence. • The lateral emission is a combination between the laser and the RhG6 emission. • This fiber could be a potential candidate for the development of lighting systems.

  15. A Study of Array Direction HDPE Fiber Reinforced Mortar

    Science.gov (United States)

    Kamsuwan, Trithos

    2018-02-01

    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  16. Low-fiber diet

    Science.gov (United States)

    ... residue; Low-fiber diet; Fiber restricted diet; Crohn disease - low fiber diet; Ulcerative colitis - low fiber diet; ... them if they do not contain seeds or pulp: Yellow squash (without seeds) Spinach Pumpkin Eggplant Potatoes, ...

  17. Extended fuel cycle length

    International Nuclear Information System (INIS)

    Bruyere, M.; Vallee, A.; Collette, C.

    1986-09-01

    Extended fuel cycle length and burnup are currently offered by Framatome and Fragema in order to satisfy the needs of the utilities in terms of fuel cycle cost and of overall systems cost optimization. We intend to point out the consequences of an increased fuel cycle length and burnup on reactor safety, in order to determine whether the bounding safety analyses presented in the Safety Analysis Report are applicable and to evaluate the effect on plant licensing. This paper presents the results of this examination. The first part indicates the consequences of increased fuel cycle length and burnup on the nuclear data used in the bounding accident analyses. In the second part of this paper, the required safety reanalyses are presented and the impact on the safety margins of different fuel management strategies is examined. In addition, systems modifications which can be required are indicated

  18. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  19. X-ray imaging and detection using plastic scintillating fibers

    CERN Document Server

    Ikhlef, A; Beddar, A S

    2000-01-01

    This paper discusses the application of plastic scintillating fiber array in X-ray imaging with low-energy radiation. This array is coupled to a multichannel intensified photocathode and then to a CCD detector via a fiber optics taper. The length of the fiber array is experimentally optimized for the radiation used. We found here that the length of the fibers (interaction medium) does not contribute too much in the degradation of the spatial resolution under 10 keV irradiation along the axis of the fiber array. Modulation Transfer Function (MTF) measurements of the PSF array are compared to the optics MTF of the imaging system (without the sample) and that cross-talk in the fiber array is found to be negligible for a fiber array thickness of 20 mm.

  20. Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: In-Vitro Testing

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Janting, Jakob; Aasmul, Soren

    2016-01-01

    We present in-vitro sensing of glucose using a newly developed efficient optical fiber glucose sensor based on a Compound Parabolic Concentrator (CPC) tipped polymer optical fiber (POF). A batch of 9 CPC tipped POF sensors with a 35 mm fiber length is shown to have an enhanced fluorescence pickup...... efficiency with an average increment factor of 1.7 as compared to standard POF sensors with a plane cut fiber tip. Invitro measurements for two glucose concentrations (40 and 400 mg/dL) confirm that the CPC tipped sensors efficiently can detect both glucose concentrations. it sets the footnote at the bottom...

  1. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  2. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  3. Optical fiber cable chemical stripping fixture

    Science.gov (United States)

    Kolasinski, John R. (Inventor); Coleman, Alexander M. (Inventor)

    1995-01-01

    An elongated fixture handle member is connected to a fixture body member with both members having interconnecting longitudinal central axial bores for the passage of an optical cable therethrough. The axial bore of the fixture body member, however, terminates in a shoulder stop for the outer end of a jacket of the optical cable covering both an optical fiber and a coating therefor, with an axial bore of reduced diameter continuing from the shoulder stop forward for a predetermined desired length to the outer end of the fixture body member. A subsequent insertion of the fixture body member including the above optical fiber elements into a chemical stripping solution results in a softening of the exposed external coating thereat which permits easy removal thereof from the optical fiber while leaving a desired length coated fiber intact within the fixture body member.

  4. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  5. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  6. Application Specific Optical Fibers

    OpenAIRE

    Pal, Bishnu P.

    2010-01-01

    In this chapter we have attempted to provide a unified summary description of the most important propagation characteristics of an optical fiber followed by discussion on several variety of special fibers for realizing fiber amplifiers, dispersion compensating fibers, microstructured optical fibers, and so on. Even though huge progress has been made on development of optical fibers for telecom application, a need for developing special fibers, not necessarily for telecom alone, has arisen. Th...

  7. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  8. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  9. Dispersion Compensation of Fiber Optic Systems for KSC Applications

    Science.gov (United States)

    Kozaitis, Samuel P.; Hand, Larry

    1996-01-01

    Installed fibers such as those at the Kennedy Space Center (KSC) are optimized for use at 1310 nm because they have zero dispersion at that wavelength. An installed fiber system designed to operate at 1310 nm will operate at a much lower data rate when operated at 1550 nm because the dispersion is not zero at 1550 nm. Using dispersion measurements of both installed and dispersion compensating fibers, we compensated a 21.04 km length of installed fiber with 4.25 km of dispersion compensating fiber. Using the compensated fiber-optic link, we reduced the dispersion to 0.494 ps/nm-km, from an uncompensated dispersion of 16.8 ps/nm-km. The main disadvantage of the compensated link using DC fiber was an increase in attenuation. Although the increase was not necessarily severe, it could be significant when insertion losses, connector losses, and fiber attenuation are taken into account.

  10. Recovery of uranium from seawater using amidoxime hollow fibers

    International Nuclear Information System (INIS)

    Saito, K.; Uezu, K.; Hori, T.; Furusaki, S.; Sugo, T.; Okamoto, J.

    1988-01-01

    A novel amidoxime-group-containing adsorbent of hollow-fiber form (AO-H fiber) was prepared by radiation-induced graft polymerization of acrylonitrile onto a polyethylene hollow fiber, followed by chemical conversion of the produced cyano group to an amidoxime group. Distribution of the amidoxime group was uniform throughout hollow-fiber membrane. The fixed-bed adsorption column, 30 cm in length and charged with the bundle of AO-H fibers, was found to adsorb uranium from natural seawater at a sufficiently high rate: 0.66 mg uranium per g of adsorbent in 25 days

  11. Monitoring techniques for the manufacture of tapered optical fibers.

    Science.gov (United States)

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  12. Boron isotope fractionation in column chromatography with glucamine type fibers

    International Nuclear Information System (INIS)

    Sonoda, Akinari; Makita, Yoji; Hirotsu, Takahiro

    2008-01-01

    Glucamine type polymers have specific affinity toward boric acid and borate ion. Among them, Chelest Fiber GRY-L showed larger fractionation for boron isotopes than other polymers in our previous study. For this study, we used Chelest Fibers with different fiber lengths (1.0 mm, 0.5 mm, and 0.3 mm) as column packing materials to perform chromatographic separation of boron isotopes. The shorter fiber has larger packing density when packed into the column using a dry method. The 0.3-mm-long fiber has a larger backpressure than fibers of other lengths. Boron adsorption capacities were measured using the breakthrough operation. At this time, the 0.5-mm-long fiber showed the highest capacity. When we measured the isotope ratio profile for fibers of different length using column chromatography, 0.5-mm-long fibers displayed the highest boron isotope fractionation. The 0.5-mm-long fiber is promising as a packing material of column chromatography for boron isotope separation. We also changed operation methods. The lower eluent concentration and the slower flow rate are suitable for boron isotope separation. (author)

  13. Characterizing Cellulosic Fibers from Ulex europaeus

    OpenAIRE

    Richard Celis; Marco Torres; Paulina Valenzuela; Rolando Rios; William Gacitúa; Héctor Pesenti

    2014-01-01

    Information on the morphological and physical properties of biofibers is necessary to support the mechanical understanding of the biological design of plants, as well as for the development of new technology that adds value to non-traditional bioresources, such as those based on Ulex europaeus fibers. Ulex europaeus fibers were extracted through a chemical pulping process at 170 °C and with 40 g/L NaOH. The dimensions of the fibers produced were 0.97 ± 0.1 mm in length and 13 ± 2 μm in diamet...

  14. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  15. Odd Length Contraction

    Science.gov (United States)

    Smarandache, Florentin

    2013-09-01

    Let's denote by VE the speed of the Earth and byVR the speed of the rocket. Both travel in the same direction on parallel trajectories. We consider the Earth as a moving (at a constant speed VE -VR) spacecraft of almost spherical form, whose radius is r and thus the diameter 2r, and the rocket as standing still. The non-proper length of Earth's diameter, as measured by the astronaut is: L = 2 r√{ 1 -|/VE -VR|2 c2 } rocket! Also, let's assume that the astronaut is laying down in the direction of motion. Therefore, he would also shrink, or he would die!

  16. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  17. The impact of dietary fibers on dendritic cell responses IN VITRO is dependent on the differential effects of the fibers on intestinal epithelial cells

    NARCIS (Netherlands)

    Bermudez-Brito, Miriam; Sahasrabudhe, Neha M.; Rosch, Christiane; Schols, Henk A.; Faas, Marijke M.; de Vos, Paul

    Scope: In the present study, the direct interaction of commonly consumed fibers with epithelial or dendritic cells (DCs) was studied. Methods and results: The fibers were characterized for their sugar composition and chain length profile. When in direct contact, fibers activate DCs only mildly. This

  18. The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells

    NARCIS (Netherlands)

    Bermudez-Brito, M.; Sahasrabudhe, N.M.; Rösch, C.; Schols, H.A.; Faas, M.M.; Vos, de P.

    2015-01-01

    Scope In the present study, the direct interaction of commonly consumed fibers with epithelial or dendritic cells (DCs) was studied. Methods and results The fibers were characterized for their sugar composition and chain length profile. When in direct contact, fibers activate DCs only mildly. This

  19. Relationship between fiber degradation and residence time distribution in the processing of long fiber reinforced thermoplastics

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Long fiber reinforced thermoplastics (LFT were processed by in-line compounding equipment with a modified single screw extruder. A pulse stimulus response technique using PET spheres as the tracer was adopted to obtain residence time distribution (RTD of extrusion compounding. RTD curves were fitted by the model based on the supposition that extrusion compounding was the combination of plug flow and mixed flow. Characteristic parameters of RTD model including P the fraction of plug flow reactor (PFR and d the fraction of dead volume of continuous stirred tank reactor (CSTR were used to associate with fiber degradation presented by fiber length and dispersion. The effects of screw speed, mixing length and channel depth on RTD curves, and characteristic parameters of RTD models as well as their effects on the fiber degradation were investigated. The influence of shear force with different screw speeds and variable channel depth on fiber degradation was studied and the main impetus of fiber degradation was also presented. The optimal process for obtaining the balance of fiber length and dispersion was presented.

  20. Solidification microstructures in a short fiber reinforced alloy composite containing different fiber fractions

    Directory of Open Access Journals (Sweden)

    JING Qing-xiu

    2006-02-01

    Full Text Available The solidification microstructures and micro-segregation of a fiber reinforced Al-9 Cu alloy, containing different volume fractions of Al2O3 short fibers about 6 μm diameter and made by squeeze casting have been studied. The results indicate that as volume fraction of fiber Vf increases, the size of final grains becomes finer in the matrix. If λf /λ>1, the fibers have almost no influence on the solidification behavior of the matrix, so the final grains grow coarse, where λf is the average inter-fiber spacing and λ is the secondary dendrite arm spacing. While if λf /λ<1, the growth of crystals in the matrix is affected significantly by the fibers and the grain size is reduced to the value of the inter-fiber spacing. The fibers influence the average length of a solidification volume element L of the matrix and also influence the solidification time θt of the matrix. As a result of fibers influencing L and θt, the micro-segregation in the matrix is improved when the composite contains more fibers, although the level of the improvement is slight. The Clyne-Kurz model can be used to semi-quantitatively analyze the relationship between Vf and the volume fraction fe of the micro-segregation eutectic structure.

  1. Quantification of the fate of dietary fiber in humans by a newly developed radiolabeled fiber marker

    International Nuclear Information System (INIS)

    Carryer, P.W.; Brown, M.I.; Malagelada, J.R.; Carlson, G.L.; McCall, J.T.

    1982-01-01

    A radiolabeled cellulose ( 131 I-fiber) that retains the essential physical and chemical properties of this class of fiber was developed in our laboratory. Researchers quantified the fate of orally ingested 131 I-fiber in healthy individuals by external gamma camera monitoring and fecal collections. The marker passes virtually intact through the human gastrointestinal tract with negligible release and absorption of the label in the gut. Comparison of the gastric emptying rate of 131 I-fiber with that of a predominantly aqueous marker, 99 mTc-diethylenetriamine pentaacetic acid ( 99 mTc-DTPA), showed that 131 I-fiber strands were evacuated more slowly than intragastric fluids. An important finding was that some 131 I-fiber emptying occurred during most time periods, even before liquids were completely evacuated. This suggests that the human stomach is able to empty simultaneously liquids and fiber strands (1-15 mm in length) that are resistant to grinding by antral mechanical forces and to digestion by acid-peptic secretion. Thus, some nondigestible solids may be emptied with the bulk of a meal, although at a slower rate. 131 I-Fiber may be a useful marker for quantifying gastric emptying of nondigestible solids. Further, the stability of 131 I-fiber in the gut, as opposed to most other physiologic solid labels, should enable future investigation of intestinal and colonic transit of fiber, which is an important component of the human diet

  2. Quantification of the fate of dietary fiber in humans by a newly developed radiolabeled fiber marker

    Energy Technology Data Exchange (ETDEWEB)

    Carryer, P.W.; Brown, M.I.; Malagelada, J.R.; Carlson, G.L.; McCall, J.T.

    1982-06-01

    A radiolabeled cellulose (/sup 131/I-fiber) that retains the essential physical and chemical properties of this class of fiber was developed in our laboratory. Researchers quantified the fate of orally ingested /sup 131/I-fiber in healthy individuals by external gamma camera monitoring and fecal collections. The marker passes virtually intact through the human gastrointestinal tract with negligible release and absorption of the label in the gut. Comparison of the gastric emptying rate of /sup 131/I-fiber with that of a predominantly aqueous marker, /sup 99/mTc-diethylenetriamine pentaacetic acid (/sup 99/mTc-DTPA), showed that /sup 131/I-fiber strands were evacuated more slowly than intragastric fluids. An important finding was that some /sup 131/I-fiber emptying occurred during most time periods, even before liquids were completely evacuated. This suggests that the human stomach is able to empty simultaneously liquids and fiber strands (1-15 mm in length) that are resistant to grinding by antral mechanical forces and to digestion by acid-peptic secretion. Thus, some nondigestible solids may be emptied with the bulk of a meal, although at a slower rate. /sup 131/I-Fiber may be a useful marker for quantifying gastric emptying of nondigestible solids. Further, the stability of /sup 131/I-fiber in the gut, as opposed to most other physiologic solid labels, should enable future investigation of intestinal and colonic transit of fiber, which is an important component of the human diet.

  3. Refractive Index Sensor Using a Two-Hole Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cortes, D; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); Margulis, W [Department Fiber Photonics, ACREO, Electrum 236, 16440 Stockholm (Sweden); Dominguez-Cruz, R; May-Arrioja, D A, E-mail: darrioja@uat.edu.mx [Depto. de Ingenieria Electronica, UAM Reynosa Rodhe, Universidad Autonoma de Tamaulipas, Carr. Reynosa-San Fernando S/N, Reynosa, Tamaulipas 88779 (Mexico)

    2011-01-01

    We propose to use a twin-hole fiber to measure refractive index of liquids. The key idea is to have a single mode fiber (SMF) having two large air-holes running along the fiber length, the holes do not interact with the core. However, using wet chemical etching we can have access to the hole around the fiber, and further etching increases the holes diameter. The diameter is increased until the fiber exhibits a specific birefringence. Since the holes are open, by immersing the fiber in different liquids (n=1.33 to n=1.42) the value of the birefringence is modified and the refractive index of the liquid can be estimated from the change on the beat length. This process provides a very simple and highly sensitive mechanism for sensing refractive index in liquids, and can also be used for other applications.

  4. The Weibull probabilities analysis on the single kenaf fiber

    Science.gov (United States)

    Ibrahim, I.; Sarip, S.; Bani, N. A.; Ibrahim, M. H.; Hassan, M. Z.

    2018-05-01

    Kenaf fiber has a great potential to be replaced with the synthetic composite due to their advantages such as environmentally friendly and outstanding performance. However, the main issue of this natural fiber that to be used in structural composite is inconsistency of their mechanical properties. Here, the influence of the gage length on the mechanical properties of single kenaf fiber was evaluated. This fiber was tested using the Universal testing machine at a loading rate of 1mm per min following ASTM D3822 standard. In this study, the different length of treated fiber including 20, 30 and 40mm were being tested. Following, Weibull probabilities analysis was used to characterize the tensile strength and Young modulus of kenaf fiber. The predicted average tensile strength from this approach is in good agreement with experimental results for the obtained parameter.

  5. The effect of neutron irradiation on silicon carbide fibers

    International Nuclear Information System (INIS)

    Newsome, G.A.

    1997-01-01

    Nine types of SiC fiber have been exposed to neutron radiation in the Advanced Test Reactor at 250 C for various lengths of time ranging from 83 to 128 days. The effects of these exposures have been initially determined using scanning electron microscopy. The fibers tested were Nicalon trademark CG, Tyranno, Hi-Nicalon trademark, Dow Corning SiC, Carborundum SiC, Textron SCS-6, polymethysilane (PMS) derived SiC from the University of Michigan, and two types of MER SiC fiber. This covers a range of fibers from widely used commercial fibers to developmental fibers. Consistent with previous radiation experiments, Nicalon fiber was severely degraded by the neutron irradiation. Similarly, Tyranno suffered severe degradation. The more advanced fibers which approach the composition and properties of SiC performed well under irradiation. Of these, the Carborundum SiC fiber appeared to perform the best. The Hi-Nicalon and Dow Corning Fibers exhibited good general stability, but also appear to have some surface roughening. The MER fibers and the Textron SCS-6 fibers both had carbon cores which adversely influenced the overall stability of the fibers

  6. Characterization technique for long optical fiber cavities based on beating spectrum of multi-longitudinal mode fiber laser and beating spectrum in the RF domain

    Science.gov (United States)

    Adib, George A.; Sabry, Yasser M.; Khalil, Diaa

    2016-03-01

    The characterization of long fiber cavities is essential for many systems to predict the system practical performance. The conventional techniques for optical cavity characterization are not suitable for long fiber cavities due to the cavities' small free spectral ranges and due to the length variations caused by the environmental effects. In this work, we present a novel technique to characterize long fiber cavities using multi-longitudinal mode fiber laser source and RF spectrum analyzer. The fiber laser source is formed in a ring configuration, where the fiber laser cavity length is chosen to be 15 km to ensure that the free spectral range is much smaller than the free spectral range of the characterized passive fiber cavities. The method has been applied experimentally to characterize ring cavities with lengths of 6.2 m and 2.4 km. The results are compared to theoretical predictions with very good agreement.

  7. Microdroplet-etched highly birefringent low-loss fiber tapers.

    Science.gov (United States)

    Mikkelsen, Jared C; Poon, Joyce K S

    2012-07-01

    We use hydrofluoric acid microdroplets to directly etch highly birefringent biconical fiber tapers from standard single-mode fibers. The fiber tapers have micrometer-sized cross sections, which are controlled by the etching condition. The characteristic teardrop cross section leads to a high group birefringence of B(G)≈0.017 and insertion losses <0.7 dB over waist lengths of about 2.1 mm.

  8. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    OpenAIRE

    Ajay Kumar; Dr. Pramod Kumar

    2014-01-01

    This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF) optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that th...

  9. Epoxy Nanocomposites - Curing Rheokinetics, Wetting and Adhesion to Fibers

    International Nuclear Information System (INIS)

    Ilyin, S. O.; Kotomin, S. V.; Kulichikhin, V. G.

    2010-01-01

    Epoxy nanocomposites considered as challenging polymeric matrix for advanced reinforced plastics. Nanofillers change rheokinetics of epoxy resin curing, affect wetting and adhesion to aramid and carbon fibers. In all cases extreme dependence of adhesive strength vs filler content in the binder was observed. New experimental techniques were developed to study wettability and fiber-matrix adhesion interaction, using yarn penetration path length, aramid fiber knot pull-up test and electrical admittance of the fracture surface of CFRP.

  10. Long wavelength scintillators for fiber-optic applications

    International Nuclear Information System (INIS)

    Lyons, P.B.; Franks, L.; Lutz, S.; Flournoy, J.; Fullman, E.

    1980-01-01

    The use of fiber optics in plasma diagnostics has spurred the development of long wavelength scintillators with fast temporal characteristics. In this paper we describe several new liquid scintillator systems with fluorescent emissions maxima up to 730 nm. Subnanosecond scintillator FWHM response times have been obtained by the operation of liquid scintillators at elevated temperatures. Data on fiber system sensitivity versus fiber length and scintillator emission wavelength will be presented

  11. Fiber Tracking Cylinder Nesting

    International Nuclear Information System (INIS)

    Stredde, H.

    1999-01-01

    The fiber tracker consists of 8 concentric carbon fiber cylinders of varying diameters, from 399mm to 1032.2mm and two different lengths. 1.66 and 2.52 meters. Each completed cylinder is covered over the entire o.d. with scintillating fiber ribbons with a connector on each ribbon. These ribbons are axial (parallel to the beam line) at one end and stereo (at 3 deg. to the beam line) at the other. The ribbon connectors have dowel pins which are used to match with the connectors on the wave guide ribbons. These dowel pins are also used during the nesting operation, locating and positioning measurements. The nesting operation is the insertion of one cylinder into another, aligning them with one another and fastening them together into a homogeneous assembly. For ease of assembly. the nesting operation is accomplished working from largest diameter to smallest. Although the completed assembly of all 8 cylinders glued and bolted together is very stiff. individual cylinders are relatively flexible. Therefore. during this operation, No.8 must be supported in a manner which maintains its integrity and yet allows the insertion of No.7. This is accomplished by essentially building a set of dummy end plates which replicate a No.9 cylinder. These end plates are mounted on a wheeled cart that becomes the nesting cart. Provisions for a protective cover fastened to these rings has been made and will be incorporated in finished product. These covers can be easily removed for access to No.8 and/or the connection of No.8 to No.9. Another wheeled cart, transfer cart, is used to push a completed cylinder into the cylinder(s) already mounted in the nesting cart.

  12. Distributed fiber?optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.M.J.; Van de Giesen, N.; Stejskal, M.; Zeman, J.; Westhoff, M.; Parlange, M.B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  13. Distributed fiber-optic temperature sensing for hydrologic systems

    NARCIS (Netherlands)

    Selker, John S.; Thévenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick C.; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.

    2006-01-01

    Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We

  14. High-density multicore fiber with heterogeneous core arrangement

    DEFF Research Database (Denmark)

    Amma, Y.; Sasaki, Y.; Takenaga, K.

    2015-01-01

    A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m.......A 30-core fiber with heterogeneous cores that achieved large spatial multiplicity and low crosstalk of less than −40 dB at 100 km was demonstrated. The correlation lengths were estimated to be more than 1 m....

  15. Effect of fiber extensibility on the fracture toughness of short fiber or brittle matrix composites

    International Nuclear Information System (INIS)

    Jain, L.K.; Wetherhold, R.C.

    1992-01-01

    A micromechanical model based on probabilistic principles is proposed to determine the effective fracture toughness increment and the bridging stress-crack opening displacement relationship for brittle matrix composites reinforced with short, poorly bonded fibers. Emphasis is placed on studying the effect of fiber extensibility on the bridging stress and the bridging fracture energy, and to determine its importance in cementitious matrix composites. Since the fibers may not be in an ideal aligned or random state, the analysis is placed in sufficiently general terms to consider any prescribable fiber orientation distribution. The model incorporates the snubbing effect observed during pull-out of fibers inclined at an angle to the crack face normal. In addition, the model allows the fibers to break; any fiber whose load meets or exceeds a single-valued failure stress will fracture rather than pull out. The crack bridging results may be expressed as the sum of results for inextensible fibers and an additional term due to fiber extensibility. An exact analysis is given which gives the steady-state bridging toughness G directly, but presents a non-linear problem for the bridging stress-crack opening (σ b -γ) relationship. An approximate analysis is then presented which gives both G and σ b -γ directly. To illustrate the effect extensibility on bridging stress and fracture energy increment due to bridging fibers, a comparison with the inextensible fiber case is provided. It is found that effect of extensibility on fracture energy is negligible for common materials systems. However extensibility may have a significant effect on the bridging stress-crack opening relationship. The effect of other physical and material parameters such as fiber length, fiber orientation and snubbing friction coefficient is also studied. 28 refs., 9 figs., 1 tab

  16. Chemical Modification Effect on the Mechanical Properties of Coir Fiber

    Directory of Open Access Journals (Sweden)

    Samia Sultana Mir

    2012-04-01

    Full Text Available Natural fiber has a vital role as a reinforcing agent due to its renewable, low cost, biodegradable, less abrasive and eco-friendly nature. Whereas synthetic fibers like glass, boron, carbon, metallic, ceramic and inorganic fibers are expensive and not eco-friendly. Coir is one of the natural fibers easily available in Bangladesh and cheap. It is derived from the husk of the coconut (Cocos nucifera. Coir has one of the highest concentrations of lignin, which makes it stronger. In recent years, wide range of research has been carried out on fiber reinforced polymer composites [4-13].The aim of the present research is to characterize brown single coir fiber for manufacturing polymer composites reinforced with characterized fibers. Adhesion between the fiber and polymer is one of factors affecting the strength of manufactured composites. In order to increase the adhesion, the coir fiber was chemically treated separately in single stage (with Cr2(SO43•12(H2O and double stages (with CrSO4 and NaHCO3. Both the raw and treated fibers were characterized by tensile testing, Fourier transform infrared (FTIR spectroscopic analysis, scanning electron microscopic analysis. The result showed that the Young’s modulus increased, while tensile strength and strain to failure decreased with increase in span length. Tensile properties of chemically treated coir fiber was found higher than raw coir fiber, while the double stage treated coir fiber had better mechanical properties compared to the single stage treated coir fiber. Scanning electron micrographs showed rougher surface in case of the raw coir fiber. The surface was found clean and smooth in case of the treated coir fiber. Thus the performance of coir fiber composites in industrial application can be improved by chemical treatment.

  17. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2015-01-01

    Full Text Available In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0.30%, and 0.35%. When the effect of length is researched, different lengths of basalt fibers with 4 mm, 8 mm, 12 mm, and 15 mm are put into soil at the same content of 0.05%. Experimental results show that basalt fiber can effectively improve the UCS of clay soil. And the best content and length are 0.25% and 12 mm, respectively. The results also show that the basalt fiber reinforced clay soil has the “poststrong” characteristic. About the reinforcement mechanism, the fiber and soil column-net model is proposed in this paper. Based on this model and SEM images, the effect of fiber content and length is related to the change of fiber-soil column and formation of effective fiber-soil net.

  18. Micromechanisms of damage in unidirectional fiber reinforced composites

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl

    2009-01-01

    strength of a composite at the pre-critical load, while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost independent from the crack length...... in the numerical experiments. The effect of the statistical variability of fiber strengths, viscosity of the polymer matrix as well as the interaction between the damage processes in matrix, fibers and interface are investigated numerically. It is demonstrated that fibers with constant strength ensure higher......Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber reinforced composites are presented. A program code for the automatic generation of 3D micromechanical unit cell models of composites with damageable elements is developed, and used...

  19. An electromagnetically actuated fiber optic switch using magnetized ferromagnetic materials

    Science.gov (United States)

    Pandojirao-S, Praveen; Dhaubanjar, Naresh; Phuyal, Pratibha C.; Chiao, Mu; Chiao, J.-C.

    2008-03-01

    This paper presents the design, fabrication and testing of a fiber optic switch actuated electromagnetically. The ferromagnetic gel coated optical fiber is actuated using external electromagnetic fields. The ferromagnetic gel consists of ferromagnetic powders dispersed in epoxy. The fabrication utilizes a simple cost-effective coating setup. A direct fiberto-fiber alignment eliminates the need for complementary optical parts and the displacement of fiber switches the laser coupling. The magnetic characteristics of magnetized ferromagnetic materials are performed using alternating gradient magnetometer and the magnetic hysteresis curves are measured for different ferromagnetic materials including iron, cobalt, and nickel. Optical fiber switches with various fiber lengths are actuated and their static and dynamic responses for the same volume of ferromagnetic gel are summarized. The highest displacement is 1.345 mm with an input current of 260mA. In this paper, the performance of fiber switches with various coating materials is presented.

  20. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers

    Directory of Open Access Journals (Sweden)

    Seong-Cheol Lee

    2015-03-01

    Full Text Available In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter. In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress–strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  1. Compressive Behavior of Fiber-Reinforced Concrete with End-Hooked Steel Fibers.

    Science.gov (United States)

    Lee, Seong-Cheol; Oh, Joung-Hwan; Cho, Jae-Yeol

    2015-03-27

    In this paper, the compressive behavior of fiber-reinforced concrete with end-hooked steel fibers has been investigated through a uniaxial compression test in which the variables were concrete compressive strength, fiber volumetric ratio, and fiber aspect ratio (length to diameter). In order to minimize the effect of specimen size on fiber distribution, 48 cylinder specimens 150 mm in diameter and 300 mm in height were prepared and then subjected to uniaxial compression. From the test results, it was shown that steel fiber-reinforced concrete (SFRC) specimens exhibited ductile behavior after reaching their compressive strength. It was also shown that the strain at the compressive strength generally increased along with an increase in the fiber volumetric ratio and fiber aspect ratio, while the elastic modulus decreased. With consideration for the effect of steel fibers, a model for the stress-strain relationship of SFRC under compression is proposed here. Simple formulae to predict the strain at the compressive strength and the elastic modulus of SFRC were developed as well. The proposed model and formulae will be useful for realistic predictions of the structural behavior of SFRC members or structures.

  2. A novel method for preparing microplastic fibers

    Science.gov (United States)

    Cole, Matthew

    2016-10-01

    Microscopic plastic (microplastic, 0.1 µm-5 mm) is a widespread pollutant impacting upon aquatic ecosystems across the globe. Environmental sampling has revealed synthetic fibers are prevalent in seawater, sediments and biota. However, microplastic fibers are rarely used in laboratory studies as they are unavailable for purchase and existing preparation techniques have limited application. To facilitate the incorporation of environmentally relevant microplastic fibers into future studies, new methods are required. Here, a novel cryotome protocol has been developed. Nylon, polyethylene terephthalate and polypropylene fibers (10-28 μm diameter) were aligned, embedded in water-soluble freezing agent, and sectioned (40-100 μm length) using a cryogenic microtome. Microplastic fibers were prepared to specified lengths (P < 0.05, ANOVA) and proved consistent in size. Fluorescent labelling of Nylon microfibers with Nile Red facilitated imaging. A 24 h feeding experiment confirmed bioavailability of 10 × 40 μm Nylon fibers to brine shrimp (Artemia sp). This protocol provides a consistent method for preparing standardised fibrous microplastics, with widths similar to those observed in the natural environment, which could ultimately lead to a better understanding of the biological and ecological effects of microplastic debris in the environment.

  3. The mechanical properties of dry, electrospun fibrinogen fibers

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Stephen; Sigley, Justin; Helms, Christine C. [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States); Stitzel, Joel [Department of Biomedical Engineering, Wake Forest University Health Sciences, Winston-Salem, NC, 27157 (United States); Berry, Joel; Bonin, Keith [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States); Guthold, Martin, E-mail: gutholdm@wfu.edu [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2012-02-01

    Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 {mu}m wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30-200 nm) can stretch to 74% beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15% beyond their original length. Using incremental stress-strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s. In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer. - Highlights: Black-Right-Pointing-Pointer Fabricated dry, electrospun, fibrinogen fibers; average diameter, D{sub avg.} = 95 nm. Black-Right-Pointing-Pointer Determined mechanical properties with combined atomic force/optical microscope. Black-Right-Pointing-Pointer Fibers are very extensible ({epsilon}{sub max} = 74%) and elastic ({epsilon}{sub elastic} = 15%). Black-Right-Pointing-Pointer Fiber total modulus, E{sub tot.} = 4.2 GPa; elastic modulus, E{sub el.} = 3.7 GPa. Black-Right-Pointing-Pointer Fiber stress relaxation times: {tau}{sub 1} = 1.2 s and {tau}{sub 2} = 11 s.

  4. The mechanical properties of dry, electrospun fibrinogen fibers

    International Nuclear Information System (INIS)

    Baker, Stephen; Sigley, Justin; Helms, Christine C.; Stitzel, Joel; Berry, Joel; Bonin, Keith; Guthold, Martin

    2012-01-01

    Due to their low immunogenicity, biodegradability and native cell-binding domains, fibrinogen fibers may be good candidates for tissue engineering scaffolds, drug delivery vehicles and other medical devices. We used a combined atomic force microscope (AFM)/optical microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in dry, ambient conditions. The AFM was used to stretch individual fibers suspended over 13.5 μm wide grooves in a transparent substrate. The optical microscope, located below the sample, was used to monitor the stretching process. Electrospun fibrinogen fibers (diameter, 30–200 nm) can stretch to 74% beyond their original length before rupturing at a stress of 2.1 GPa. They can stretch elastically up to 15% beyond their original length. Using incremental stress–strain curves the viscoelastic behavior of these fibers was determined. The total stretch modulus was 4.2 GPa while the relaxed elastic modulus was 3.7 GPa. When held at constant strain, fibrinogen fibers display stress relaxation with a fast and slow relaxation time of 1.2 s and 11 s. In comparison to native and electrospun collagen fibers, dry electrospun fibrinogen fibers are significantly more extensible and elastic. In comparison to wet electrospun fibrinogen fibers, dry fibers are about 1000 times stiffer. - Highlights: ► Fabricated dry, electrospun, fibrinogen fibers; average diameter, D avg. = 95 nm. ► Determined mechanical properties with combined atomic force/optical microscope. ► Fibers are very extensible (ε max = 74%) and elastic (ε elastic = 15%). ► Fiber total modulus, E tot. = 4.2 GPa; elastic modulus, E el. = 3.7 GPa. ► Fiber stress relaxation times: τ 1 = 1.2 s and τ 2 = 11 s.

  5. Electrically tunable Brillouin fiber laser based on a metal-coated single-mode optical fiber

    Directory of Open Access Journals (Sweden)

    S.M. Popov

    Full Text Available We explore tunability of the Brillouin fiber laser employing Joule heating. For this purpose, 10-m-length of a metal-coated single-mode optical cavity fiber has been directly included into an electrical circuit, like a conductor wire. With the current up to ∼3.5 A the laser tuning is demonstrated over a spectrum range of ∼400 MHz. The observed laser line broadening up to ∼2 MHz is explained by frequency drift and mode-hoping in the laser caused by thermal noise. Keywords: Brillouin fiber laser, Metal-coated optical fiber, Laser tuning, Fiber sensors

  6. Environmental performance of an elliptical core polarization maintaining optical fiber for fiber optic gyro applications

    Science.gov (United States)

    Martinelli, Vincent P.; Squires, Emily M.; Watkins, James J.

    1994-03-01

    Corning has introduced a new polarization-maintaining optical fiber to satisfy customer requirements for a range of commercial and military FOG applications. This fiber has an elliptical core, matched-clad design, and is intended for operation in the 780 to 850 nm wavelength region. The fiber has a beat length less than 1.5 mm, attenuation rate less than 10 dB/km, and a typical coiled h-parameter less than 1.5 X 10-4 m-1 in the designated operating wavelength range. It has a cladding diameter of 80 micrometers and a coating diameter of 185 micrometers . The coating is an acrylate system, similar to that used in telecommunications optical fibers. We report on the performance of this elliptical core fiber for a variety of environmental exposures representative of an automotive application.

  7. Strength and Deformability of Fiber Reinforced Cement Paste on the Basis of Basalt Fiber

    Directory of Open Access Journals (Sweden)

    Yury Barabanshchikov

    2016-01-01

    Full Text Available The research object of the paper is cement paste with the particulate reinforcement of basalt fiber. Regardless of fibers’ length at the same fiber cement mix workability and cement consumption equality compressive solidity of the specimens is reduced with increasing fiber content. This is due to the necessity to increase the water-cement ratio to obtain a given workability. The flexural stability of the specimens with increasing fiber content increments in the same conditions. There is an optimum value of the fibers’ dosage. That is why stability has a maximum when crooking. The basaltic fiber particulate reinforcement usage can abruptly increase the cement paste level limiting extensibility, which is extremely important in terms of crack resistance.

  8. Fiber optical asssembly for fluorescence spectrometry

    Science.gov (United States)

    Piltch, Martin S.; Gray, Perry Clayton; Rubenstein, Richard

    2015-08-18

    System is provided for detecting the presence of an analyte of interest in a sample, said system comprising an elongated, transparent container for a sample; an excitation source in optical communication with the sample, wherein radiation from the excitation source is directed along the length of the sample, and wherein the radiation induces a signal which is emitted from the sample; and, at least two linear arrays disposed about the sample holder, each linear array comprising a plurality of optical fibers having a first end and a second end, wherein the first ends of the fibers are disposed along the length of the container and in proximity thereto; the second ends of the fibers of each array are bundled together to form a single end port.

  9. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    International Nuclear Information System (INIS)

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs

  10. Fibered F-Algebra

    OpenAIRE

    Kleyn, Aleks

    2007-01-01

    The concept of F-algebra and its representation can be extended to an arbitrary bundle. We define operations of fibered F-algebra in fiber. The paper presents the representation theory of of fibered F-algebra as well as a comparison of representation of F-algebra and of representation of fibered F-algebra.

  11. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  12. Photonic crystal fibers -

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou

    2002-01-01

    . Such micro-structured fibers are the ones most often trated in literature concerning micro-structured fibers. These micro-structured fibers offer a whole range of novel wave guiding characteristics, including the possibility of fibers that guide only one mode irrespective of the frequency of light...

  13. Tunable Fiber Bragg Grating Ring Lasers using Macro Fiber Composite Actuators

    Science.gov (United States)

    Geddis, Demetris L.; Allison, Sidney G.; Shams, Qamar A.

    2006-01-01

    The research reported herein includes the fabrication of a tunable optical fiber Bragg grating (FBG) fiber ring laser (FRL)1 from commercially available components as a high-speed alternative tunable laser source for NASA Langley s optical frequency domain reflectometer (OFDR) interrogator, which reads low reflectivity FBG sensors. A Macro-Fiber Composite (MFC) actuator invented at NASA Langley Research Center (LaRC) was selected to tune the laser. MFC actuators use a piezoelectric sheet cut into uniaxially aligned rectangular piezo-fibers surrounded by a polymer matrix and incorporate interdigitated electrodes to deliver electric fields along the length of the piezo-fibers. This configuration enables MFC actuators to produce displacements larger than the original uncut piezoelectric sheet. The FBG filter was sandwiched between two MFC actuators, and when strained, produced approximately 3.62 nm of wavelength shift in the FRL when biasing the MFC actuators from 500 V to 2000 V. This tunability range is comparable to that of other tunable lasers and is adequate for interrogating FBG sensors using OFDR technology. Three different FRL configurations were studied. Configuration A examined the importance of erbium-doped fiber length and output coupling. Configuration B demonstrated the importance of the FBG filter. Configuration C added an output coupler to increase the output power and to isolate the filter. Only configuration C was tuned because it offered the best optical power output of the three configurations. Use of Plastic Optical Fiber (POF) FBG s holds promise for enhanced tunability in future research.

  14. Fiber optic connector

    Science.gov (United States)

    Rajic, Slobodan; Muhs, Jeffrey D.

    1996-01-01

    A fiber optic connector and method for connecting composite materials within which optical fibers are imbedded. The fiber optic connector includes a capillary tube for receiving optical fibers at opposing ends. The method involves inserting a first optical fiber into the capillary tube and imbedding the unit in the end of a softened composite material. The capillary tube is injected with a coupling medium which subsequently solidifies. The composite material is machined to a desired configuration. An external optical fiber is then inserted into the capillary tube after fluidizing the coupling medium, whereby the optical fibers are coupled.

  15. A probabilistic analysis of electrical equipment vulnerability to carbon fibers

    Science.gov (United States)

    Elber, W.

    1980-01-01

    The statistical problems of airborne carbon fibers falling onto electrical circuits were idealized and analyzed. The probability of making contact between randomly oriented finite length fibers and sets of parallel conductors with various spacings and lengths was developed theoretically. The probability of multiple fibers joining to bridge a single gap between conductors, or forming continuous networks is included. From these theoretical considerations, practical statistical analyses to assess the likelihood of causing electrical malfunctions was produced. The statistics obtained were confirmed by comparison with results of controlled experiments.

  16. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    Science.gov (United States)

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  17. Basic study on radiation distribution sensing with normal optical fiber

    International Nuclear Information System (INIS)

    Naka, R.; Kawarabayashi, J.; Uritani, A.; Iguchi, T.; Kaneko, J.; Takeuchi, H.; Kakuta, T.

    2000-01-01

    Recently, some methods of radiation distribution sensing with optical fibers have been proposed. These methods employ scintillating fibers or scintillators with wavelength-shifting fibers. The positions of radiation interactions are detected by applying a time-of-flight (TOF) technique to the scintillation photon propagation. In the former method, the attenuation length for the scintillation photons in the scintillating fiber is relatively short, so that the operating length of the sensor is limited to several meters. In the latter method, a radiation distribution cannot continuously be obtained but discretely. To improve these shortcomings, a normal optical fiber made of polymethyl methacrylate (PMMA) is used in this study. Although the scintillation efficiency of PMMA is very low, several photons are emitted through interaction with a radiation. The fiber is transparent for the emitted photons to have a relatively long operating length. A radiation distribution can continuously be obtained. This paper describes a principle of the position sensing method based on the time of flight technique and preliminary results obtained for 90 Sr- 90 Y beta rays, 137 Cs gamma rays, and 14 MeV neutrons. The spatial resolutions for the above three kinds of radiations are 0.30 m, 0.37 m, 0.13 m, and the detection efficiencies are 1.1 x 10 -3 , 1.6 x 10 -7 , 5.4 x 10 -6 , respectively, with 10 m operation length. The results of a spectroscopic study on the optical property of the fiber are also described. (author)

  18. Rare-earth-doped fluorozirconate fiber lasers

    International Nuclear Information System (INIS)

    Brierly, M.C.; France, P.W.; Moore, M.W.; Davey, S.T.

    1988-01-01

    Rare-earth-doped fiber lasers fabricated using silica-based fibers are rapidly becoming an established technology. Simultaneously, in the search for lower losses to achieve longer repeaterless communications links, another fiber technology based on fluorozirconate glasses is emerging. Fluorozirconate glass systems are known to be suitable laser hosts, and the authors have already reported Nd-doped fiber lasers using this technology. Recently the authors have used a 0.5-m length of 44-μm core fluorozirconate fiber doped with 1000 ppm of Nd 3+ ions in a longitudinally pumped Fabry-Perot cavity with a 90% output coupler. They observed lasing at 1.05 μm with a threshold of 33-mW launched power at 514 nm and a slope efficiency of 16.8%. The authors attribute this improvement to the higher dopant concentration, better fiber to mirror coupling, and more optimum output coupler reflectivity. In addition the same fiber used with two high-reflector mirrors at 1.35μm produced lasing at 1.35μm with a threshold of 60-mW launched power

  19. Femtosecond nonlinear fiber optics in the ionization regime.

    Science.gov (United States)

    Hölzer, P; Chang, W; Travers, J C; Nazarkin, A; Nold, J; Joly, N Y; Saleh, M F; Biancalana, F; Russell, P St J

    2011-11-11

    By using a gas-filled kagome-style photonic crystal fiber, nonlinear fiber optics is studied in the regime of optically induced ionization. The fiber offers low anomalous dispersion over a broad bandwidth and low loss. Sequences of blueshifted pulses are emitted when 65 fs, few-microjoule pulses, corresponding to high-order solitons, are launched into the fiber and undergo self-compression. The experimental results are confirmed by numerical simulations which suggest that free-electron densities of ∼10(17) cm(-3) are achieved at peak intensities of 10(14) W/cm(2) over length scales of several centimeters.

  20. Introducing Modified Degree 4 Chordal Rings with Two Chord Lengths

    DEFF Research Database (Denmark)

    Pedersen, Jens Myrup

    2007-01-01

    In this paper an analysis of modified degree 4 Chordal Rings with two chord lengths named CHRm is presented and compared to similar topologies: Chordal Rings, N2R and modified N2R. Formulas for approximating diameters and average path lengths are provided and verified, and it is shown...... that the distances in CHRm are significantly smaller than in traditional Chordal Rings and N2R, and also smaller than modified N2R for topologies with up to 1500 nodes. Despite the proposed CHRm being of degree 4, and the modified N2R of degree 3, CHRm may be better suited for the optical level of fiber rings, due...

  1. Influence of the optical fiber type on the performances of fiber-optics current sensor dedicated to plasma current measurement in ITER.

    Science.gov (United States)

    Aerssens, Matthieu; Descamps, Frédéric; Gusarov, Andrei; Mégret, Patrice; Moreau, Philippe; Wuilpart, Marc

    2015-07-01

    In this paper, we compare, by means of simulations using the Jones formalism, the performances of several optical fiber types (low birefringence and spun fibers) for the measurement of plasma current in international thermonuclear experimental reactor (ITER). The main results presented in this paper concern the minimum value of the ratio between the beat length and the spun period, which allows meeting the ITER current measurement specifications. Assuming a high-birefringence spun fiber with a beat length of 3 mm, we demonstrate that the minimum ratio between the beat length and the spun period is 4.4 when considering a 28 m long sensing fiber surrounding the vacuum vessel. This minimum ratio rises to 10.14 when a 100 m long lead fiber connecting the interrogating system to the sensing fiber is taken into account.

  2. Random fiber lasers based on artificially controlled backscattering fibers

    Science.gov (United States)

    Chen, Daru; Wang, Xiaoliang; She, Lijuan; Qiang, Zexuan; Yu, Zhangwei

    2017-10-01

    The random fiber laser (RFL) which is a milestone in laser physics and nonlinear optics, has attracted considerable attention recently. Most previous RFLs are based on distributed feedback of Rayleigh scattering amplified through stimulated Raman/Brillouin scattering effect in single mode fibers, which required long-distance (tens of kilometers) single mode fibers and high threshold up to watt-level due to the extremely small Rayleigh scattering coefficient of the fiber. We proposed and demonstrated a half-open cavity RFL based on a segment of a artificially controlled backscattering SMF(ACB-SMF) with a length of 210m, 310m or 390m. A fiber Bragg grating with the central wavelength of 1530nm and a segment of ACB-SMF forms the half-open cavity. The proposed RFL achieves the threshold of 25mW, 30mW and 30mW, respectively. Random lasing at the wavelength of 1530nm and the extinction ratio of 50dB is achieved when a segment of 5m EDF is pumped by a 980nm LD in the RFL. Another half-open cavity RFL based on a segment of a artificially controlled backscattering EDF(ACBS-EDF) is also demonstrated without an ACB-SMF. The 3m ACB-EDF is fabricated by using the femtosecond laser with pulse energy of 0.34mJ which introduces about 50 reflectors in the EDF. Random lasing at the wavelength of 1530nm is achieved with the output power of 7.5mW and the efficiency of 1.88%. Two novel RFLs with much short cavities have been achieved with low threshold and high efficiency.

  3. A note on the effect of the fiber curvature on the micromechanical behavior of natural fiber reinforced thermoplastic composites

    Directory of Open Access Journals (Sweden)

    M. A. Escalante-Solis

    2015-12-01

    Full Text Available To better understand the role of the fiber curvature on the tensile properties of short-natural-fiber reinforced composites, a photoelastic model and a finite element analysis were performed in a well characterized henequen fiber-high density polyethylene composite material. It was hypothesized that the angle of orientation of the inclusion and the principal material orientation with respect to the applied load was very important in the reinforcement mechanics. From the photoelastic and finite element analysis it was found that the stress distribution around the fiber inclusion was different on the concave side from that observed on the convex side and an efficient length of stress transfer was estimated to be approximately equal to one third the average fiber length. This approach was used to predict the short-natural-fiber reinforced composite mechanical properties using probabilistic functions modifications of the rule of mixtures models developed by Fukuda-Chow and the Fukuda-Kawata. Recognizing the inherent flexibility that curves the natural fibers during processing, the consideration of a length of one third of the average length l should improve the accuracy of the calculations of the mechanical properties using theoretical models.

  4. Optical fiber configurations for transmission of laser energy over great distances

    Science.gov (United States)

    Rinzler, Charles C; Zediker, Mark S

    2013-10-29

    There are provided optical fiber configurations that provide for the delivery of laser energy, and in particular, the transmission and delivery of high power laser energy over great distances. These configurations further are hardened to protect the optical fibers from the stresses and conditions of an intended application. The configurations provide means for determining the additional fiber length (AFL) need to obtain the benefits of such additional fiber, while avoiding bending losses.

  5. Comparative Evaluation of Physical and Structural Properties of Water Retted and Non-retted Flax Fibers

    Directory of Open Access Journals (Sweden)

    Vijaya Raghavan

    2013-10-01

    Full Text Available Flax stems of Modran variety were subjected to water retting under laboratory conditions and its physical properties were compared with non-retted fibers. Physical properties including percentage of impurities, weighted average length, linear density, tenacity and elongation were analyzed and the results were compared. The analysis of retted and non-retted flax fibers showed that retting is the most important step in the processing of flax fibers and it directly affects quality attributes like strength, fineness, and homogeneity. Scanning Electron microscope images of fibers were also analyzed and the retted fibers showed much cleaner surface when compared to decorticated non-retted fibers.

  6. On turbulence structure in vertical pipe flow of fiber suspensions [refractivity, flow measurement, turbulent flow, glass fibers, fluid flow

    International Nuclear Information System (INIS)

    Steen, M.

    1989-01-01

    A suspension of glass fibers in alcohol has been used to investigate a upward vertical developing pipe flow. The refractive index of the alcohol was matched to that of the glass fibers, making the whole suspension transparent. Laser Doppler Anemometry (LDA) was applied, and fluid velocities could then be measured for consistencies up to c = 12 g/l. Radial profiles of axial U-velocity and turbulence spectra have been recorded at various positions (z/D = 2, 5, 36) downstream of an orifice (step) with 64% open area. Measurements were taken for different consistencies (c = 1.2, 12 g/l), fiber lengths (l = 1, 3 mm) and Reynolds numbers (R e = 8.5 ⋅ 10 3 , 6.5 ⋅ 10 4 ). The fiber crowding factor (n f ) has been used to discuss the observed effects of the present fibers on momentum transfer and turbulence structure. The results show both an increase (l= 1 mm, c= 1.2 g/l) and decrease (l=3 mm, c = 12 g/l) in turbulence levels in the presence of fibers. Suspensions with long fibers at the highest consistency show plug flow in parts of the core. This causes damping of the turbulence mainly at smaller length scales. For short fibers at low consistency, the increased turbulent energy was mainly observed at small length scales in the spectrum. (author)

  7. Modeling illumination performance of plastic optical fiber passive daylighting system

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, F; Ahmad, A [Universiti Teknologi MARA, Shah Alam (Malaysia). Faculty of Electrical Engineering; Ahmed, A Z [Universiti Teknologi MARA, Shah Alam (Malaysia). Bureau of Reseaarch and Consultancy

    2006-12-15

    of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings.

  8. Modeling illumination performance of plastic optical fiber passive daylighting system

    International Nuclear Information System (INIS)

    Sulaiman, F.; Ahmad, A.; Ahmed, A.Z.

    2006-01-01

    One of the most direct methods of utilizing solar energy for energy conservation is to bring natural light indoors to light up an area. This paper reports on the investigation of the feasibility to utilize large core optical fibers to convey and distribute solar light passively throughout residential or commercial structures. The focus of this study is on the mathematical modeling of the illumination performance and the light transmission efficiency of solid core end light fiber for optical day lighting systems. The Meatball simulations features the optical fiber transmittance for glass and plastic fibers, illumination performance over lengths of plastic end-lit fiber, spectral transmission, light intensity loss through the large diameter solid core optical fibers as well as the transmission efficiency of the optical fiber itself. It was found that plastic optical fiber has less transmission loss over the distance of the fiber run which clearly shows that the Plastic Optical Fiber should be optimized for emitting visible light. The findings from the analysis on the performance of large diameter optical fibers for day lighting systems seems feasible for energy efficient lighting system in commercial or residential buildings

  9. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  10. Optical Fiber Fusion Splicing

    CERN Document Server

    Yablon, Andrew D

    2005-01-01

    This book is an up-to-date treatment of optical fiber fusion splicing incorporating all the recent innovations in the field. It provides a toolbox of general strategies and specific techniques that the reader can apply when optimizing fusion splices between novel fibers. It specifically addresses considerations important for fusion splicing of contemporary specialty fibers including dispersion compensating fiber, erbium-doped gain fiber, polarization maintaining fiber, and microstructured fiber. Finally, it discusses the future of optical fiber fusion splicing including silica and non-silica based optical fibers as well as the trend toward increasing automation. Whilst serving as a self-contained reference work, abundant citations from the technical literature will enable readers to readily locate primary sources.

  11. Orange fiber laser for ophthalmology

    Science.gov (United States)

    Adachi, M.; Kojima, K.; Hayashi, K.

    2007-02-01

    For the light source of photocoagulators for ophthalmology, orange laser is more suitable than green laser because of low scattering loss by the crystalline lens, and low absorption by xanthophylls in the retina. We developed two orange fiber lasers (580 nm and 590 nm) to investigate the effect depending on the difference in the range of orange. The 580nm laser is composed of a 1160 nm fiber laser and a Periodically Polled Lithium Niobate (PPLN) crystal for second harmonic generation. The 1160 nm fiber laser beam is focused into the MgO-doped PPLN crystal whose length is 30 mm with 3-pass configuration. Continuous-wave 1.3 W output power of 580 nm was obtained with 5.8 W input power of 1160nm for the first time. The conversion efficiency was 22%. The band width of the second harmonic was 0.006 nm (FWHM). The 590 nm laser is almost the same as 580 nm laser source. In this case we used a Raman shift fiber to generate 1180 nm, and the output power of 590 nm was 1.4 W. We developed an evaluation model of photocoagulator system using these two laser sources. A 700 mW coagulation output power was obtained with this orange fiber laser photocoagulator system. This is enough power for the eye surgery. We have the prospect of the maintenance-free, long-life system that is completely air-cooled. We are planning to evaluate this photocoagulator system in order to investigate the difference between the two wavelengths at the field test.

  12. Amplitude-modulated fiber-ring laser

    DEFF Research Database (Denmark)

    Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter

    2000-01-01

    Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...

  13. Penetration of asbestos fibers in respirator filters

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  14. Iron Fibers Arrays Prepared by Electrodepositing in Reverse Liquid Crystalline

    Institute of Scientific and Technical Information of China (English)

    ZHAO Suling; LIN Dong; GUAN Jianguo; ZHANG Lianmeng

    2006-01-01

    Ordered iron fiber arrays were electrodeposited on the surface of zinc foils using "FeSO4 solution-sodium caprylate-Decanol" 3-component reverse hexagonal liquid crystal as soft templates. The structure of the soft templates and the synthesized iron fibers were characterized by polarizing microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis etc. The experimental results show that the synthesized iron fibers with α crystal phase grew up in the form of fiber clusters of about 200 nm along the direction perpendicular to the cathode surface. Each cluster was composed of several tens of fibers. The fibers had almost the same length of more than 10 μm with a diameter of about 50 nm.

  15. Recent Progress in Distributed Fiber Optic Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoyi Bao

    2012-06-01

    Full Text Available Rayleigh, Brillouin and Raman scatterings in fibers result from the interaction of photons with local material characteristic features like density, temperature and strain. For example an acoustic/mechanical wave generates a dynamic density variation; such a variation may be affected by local temperature, strain, vibration and birefringence. By detecting changes in the amplitude, frequency and phase of light scattered along a fiber, one can realize a distributed fiber sensor for measuring localized temperature, strain, vibration and birefringence over lengths ranging from meters to one hundred kilometers. Such a measurement can be made in the time domain or frequency domain to resolve location information. With coherent detection of the scattered light one can observe changes in birefringence and beat length for fibers and devices. The progress on state of the art technology for sensing performance, in terms of spatial resolution and limitations on sensing length is reviewed. These distributed sensors can be used for disaster prevention in the civil structural monitoring of pipelines, bridges, dams and railroads. A sensor with centimeter spatial resolution and high precision measurement of temperature, strain, vibration and birefringence can find applications in aerospace smart structures, material processing, and the characterization of optical materials and devices.

  16. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  17. Steel fiber reinforced concrete

    International Nuclear Information System (INIS)

    Baloch, S.U.

    2005-01-01

    Steel-Fiber Reinforced Concrete is constructed by adding short fibers of small cross-sectional size .to the fresh concrete. These fibers reinforce the concrete in all directions, as they are randomly oriented. The improved mechanical properties of concrete include ductility, impact-resistance, compressive, tensile and flexural strength and abrasion-resistance. These uniqlte properties of the fiber- reinforcement can be exploited to great advantage in concrete structural members containing both conventional bar-reinforcement and steel fibers. The improvements in mechanical properties of cementitious materials resulting from steel-fiber reinforcement depend on the type, geometry, volume fraction and material-properties of fibers, the matrix mix proportions and the fiber-matrix interfacial bond characteristics. Effects of steel fibers on the mechanical properties of concrete have been investigated in this paper through a comprehensive testing-programme, by varying the fiber volume fraction and the aspect-ratio (Lid) of fibers. Significant improvements are observed in compressive, tensile, flexural strength and impact-resistance of concrete, accompanied by marked improvement in ductility. optimum fiber-volume fraction and aspect-ratio of steel fibers is identified. Test results are analyzed in details and relevant conclusions drawn. The research is finally concluded with future research needs. (author)

  18. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    Science.gov (United States)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  19. Fiber optics in adverse environments

    International Nuclear Information System (INIS)

    Lyous, P.B.

    1982-01-01

    Radiation effects in optical fibers are considered, taking into account recent progress in the investigation of radiation resistant optical fibers, radiation damage in optical fibers, radiation-induced transient absorption in optical fibers, X-ray-induced transient attenuation at low temperatures in polymer clad silica (PCS) fibers, optical fiber composition and radiation hardness, the response of irradiated optical waveguides at low temperatures, and the effect of ionizing radiation on fiber-optic waveguides. Other topics explored are related to environmental effects on components of fiber optic systems, and radiation detection systems using optical fibers. Fiber optic systems in adverse environments are also discussed, giving attention to the survivability of Army fiber optics systems, space application of fiber optics systems, fiber optic wavelength multiplexing for civil aviation applications, a new fiber optic data bus topology, fiber optics for aircraft engine/inlet control, and application of fiber optics in high voltage substations

  20. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    Science.gov (United States)

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.

  1. Carbon fiber reinforcements for sheet molding composites

    Science.gov (United States)

    Ozcan, Soydan; Paulauskas, Felix L.

    2017-11-14

    A method of processing a carbon fiber tow includes the steps of providing a carbon fiber tow made of a plurality of carbon filaments, depositing a sizing composition at spaced-apart sizing sites along a length of the tow, leaving unsized interstitial regions of the tow, and cross-cutting the tow into a plurality of segments. Each segment includes at least a portion of one of the sizing sites and at least a portion of at least one of the unsized regions of the tow, the unsized region including and end portion of the segment.

  2. Computer simulation of the 30-nanometer chromatin fiber.

    Science.gov (United States)

    Wedemann, Gero; Langowski, Jörg

    2002-06-01

    A new Monte Carlo model for the structure of chromatin is presented here. Based on our previous work on superhelical DNA and polynucleosomes, it reintegrates aspects of the "solenoid" and the "zig-zag" models. The DNA is modeled as a flexible elastic polymer chain, consisting of segments connected by elastic bending, torsional, and stretching springs. The electrostatic interaction between the DNA segments is described by the Debye-Hückel approximation. Nucleosome core particles are represented by oblate ellipsoids; their interaction potential has been parameterized by a comparison with data from liquid crystals of nucleosome solutions. DNA and chromatosomes are linked either at the surface of the chromatosome or through a rigid nucleosome stem. Equilibrium ensembles of 100-nucleosome chains at physiological ionic strength were generated by a Metropolis-Monte Carlo algorithm. For a DNA linked at the nucleosome stem and a nucleosome repeat of 200 bp, the simulated fiber diameter of 32 nm and the mass density of 6.1 nucleosomes per 11 nm fiber length are in excellent agreement with experimental values from the literature. The experimental value of the inclination of DNA and nucleosomes to the fiber axis could also be reproduced. Whereas the linker DNA connects chromatosomes on opposite sides of the fiber, the overall packing of the nucleosomes leads to a helical aspect of the structure. The persistence length of the simulated fibers is 265 nm. For more random fibers where the tilt angles between two nucleosomes are chosen according to a Gaussian distribution along the fiber, the persistence length decreases to 30 nm with increasing width of the distribution, whereas the other observable parameters such as the mass density remain unchanged. Polynucleosomes with repeat lengths of 212 bp also form fibers with the expected experimental properties. Systems with larger repeat length form fibers, but the mass density is significantly lower than the measured value. The

  3. Fiber Optics Technology.

    Science.gov (United States)

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  4. Fiber Optics Instrumentation Development

    Science.gov (United States)

    Chan, Patrick Hon Man; Parker, Allen R., Jr.; Richards, W. Lance

    2010-01-01

    This is a general presentation of fiber optics instrumentation development work being conducted at NASA Dryden for the past 10 years and recent achievements in the field of fiber optics strain sensors.

  5. Shaped fiber composites

    Science.gov (United States)

    Kinnan, Mark K.; Roach, Dennis P.

    2017-12-05

    A composite article is disclosed that has non-circular fibers embedded in a polymer matrix. The composite article has improved damage tolerance, toughness, bending, and impact resistance compared to composites having traditional round fibers.

  6. Advances in Fiber Lasers

    National Research Council Canada - National Science Library

    Morse, T

    1999-01-01

    Most of the time of this contract has been devoted toward improvements in optical fiber lasers and toward gathering experience to improve our program in high power, cladding pumped optical fiber lasers...

  7. Cohesive zone model of carbon nanotube-coated carbon fiber/polyester composites

    International Nuclear Information System (INIS)

    Agnihotri, Prabhat Kamal; Kar, Kamal K; Basu, Sumit

    2012-01-01

    It has been previously reported that the average properties of carbon nanotube-coated carbon fiber/polyester multiscale composites critically depend on the length and density of nanotubes on the fiber surface. In this paper the effect of nanotube length and density on the interfacial properties of the carbon nanotube-coated carbon fiber–polymer interface has been studied using shear lag and a cohesive zone model. The latter model incorporates frictional sliding after complete debonding between the fiber and matrix and has been developed to quantify the effect of nanotube coating on various interfacial characterizing parameters. Our numerical results indicate that fibers with an optimal coverage and length of nanotubes significantly increase the interfacial strength and friction between the fiber and polymer. However, they also embrittle the interface compared with bare fibers. (paper)

  8. Hierarchically Structured Electrospun Fibers

    Science.gov (United States)

    2013-01-07

    in the natural lotus and silver ragwort leaves. Figure 4. Examples of electrospun bio-mimics of natural hierarchical structures. (A) Lotus leaf...B) pillared poly(methyl methacrylate) (PMMA) electrospun fiber mimic; (C) silver ragwort leaf; (D) electrospun fiber mimic made from nylon 6 and...domains containing the protein in the surrounding EVA fibers [115]. A wide variety of core-shell fibers have been generated, including PCL/ gelatin

  9. Superlattice Microstructured Optical Fiber

    Science.gov (United States)

    Tse, Ming-Leung Vincent; Liu, Zhengyong; Cho, Lok-Hin; Lu, Chao; Wai, Ping-Kong Alex; Tam, Hwa-Yaw

    2014-01-01

    A generic three-stage stack-and-draw method is demonstrated for the fabrication of complex-microstructured optical fibers. We report the fabrication and characterization of a silica superlattice microstructured fiber with more than 800 rhomboidally arranged air-holes. A polarization-maintaining fiber with a birefringence of 8.5 × 10−4 is demonstrated. The birefringent property of the fiber is found to be highly insensitive to external environmental effects, such as pressure. PMID:28788693

  10. Water collection behavior and hanging ability of bioinspired fiber.

    Science.gov (United States)

    Hou, Yongping; Chen, Yuan; Xue, Yan; Zheng, Yongmei; Jiang, Lei

    2012-03-13

    Since the water-collecting ability of the wetted cribellate spider capture silk is the result of a unique fiber structure, bioinspired fibers have been researched significantly so as to expose a new water-acquiring route in fogging-collection projects. However, the design of the geometry of bioinspired fiber is related to the ability of hanging drops, which has not been investigated in depth so far. Here, we fabricate bioinspired fibers to investigate the water collection behavior and the influence of geometry (i.e., periodicity of spindle knot) on the hanging-drop ability. We especially discuss water collection related to the periodicity of geometry on the bioinspired fiber. We reveal the length of the three phase contact line (TCL) at threshold conditions in conjunction with the maximal volume of a hanging drop at different modes. The study demonstrates that the geometrical structure of bioinspired fiber induces much stronger water hanging ability than that of uniform fiber, attributed to such special geometry that offers effectively an increasing TCL length or limits the contact length to be shorted. In addition, the geometry also improves the fog-collection efficiency by controlling tiny water drops to be collected in the large water drops at a given location.

  11. Development of a distributed radiation detection system using optical fibers

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, F; Inouchi, Goro; Takada, Eiji; Takahashi, Hiroyuki; Iguchi, Tetsuo; Nakazawa, Masaharu [Tokyo Univ. (Japan). Faculty of Engineering; Kakuta, Tsunemi

    1996-07-01

    We have confirmed the importance of temperature and dose rate for the response of Ge-doped fibers to radiation. A phenomenological model have been found to account for temperature and dose rate effects. From this model it is possible to make dose predictions from attenuation measurements when the temperature and dose rate are known. Ge-doped fibers have been found to have a relatively low sensitivity to both neutron and gamma radiation. In addition, temperature and dose rate dependencies complicate the analysis. However we point out that these problems may all be solved if we use fibers, such as P-doped fibers, which contain color centers of long lifetime. This would remove both the temperature and dose rate dependencies that complicate the use of Ge-doped fibers, in addition the radiation sensitivity is increased. Finally OTDR has been investigated as a possible read-out method for distributed radiation measurements. For our system the minimum pulse length was 3ns, giving a spatial resolution in the meter range and a response length to radiation of about 10 m if accurate dose values where to be obtained. We found OTDR to be a suitable method for radiation induced attenuation measurements in optical fibers, especially for long fiber lengths and long time scales where questions of light source stability becomes important for other systems. (S.Y.)

  12. Production of Banana Fiber Yarns for Technical Textile Reinforced Composites

    Directory of Open Access Journals (Sweden)

    Zaida Ortega

    2016-05-01

    Full Text Available Natural fibers have been used as an alternative to synthetic ones for their greener character; banana fibers have the advantage of coming from an agricultural residue. Fibers have been extracted by mechanical means from banana tree pseudostems, as a strategy to valorize banana crops residues. To increase the mechanical properties of the composite, technical textiles can be used as reinforcement, instead of short fibers. To do so, fibers must be spun and woven. The aim of this paper is to show the viability of using banana fibers to obtain a yarn suitable to be woven, after an enzymatic treatment, which is more environmentally friendly. Extracted long fibers are cut to 50 mm length and then immersed into an enzymatic bath for their refining. Conditions of enzymatic treatment have been optimized to produce a textile grade of banana fibers, which have then been characterized. The optimum treating conditions were found with the use of Biopectinase K (100% related to fiber weight at 45 °C, pH 4.5 for 6 h, with bath renewal after three hours. The first spinning trials show that these fibers are suitable to be used for the production of yarns. The next step is the weaving process to obtain a technical fabric for composites production.

  13. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  14. The all-fiber cladding-pumped Yb-doped gain-switched laser.

    Science.gov (United States)

    Larsen, C; Hansen, K P; Mattsson, K E; Bang, O

    2014-01-27

    Gain-switching is an alternative pulsing technique of fiber lasers, which is power scalable and has a low complexity. From a linear stability analysis of rate equations the relaxation oscillation period is derived and from it, the pulse duration is defined. Good agreement between the measured pulse duration and the theoretical prediction is found over a wide range of parameters. In particular we investigate the influence of an often present length of passive fiber in the cavity and show that it introduces a finite minimum in the achievable pulse duration. This minimum pulse duration is shown to occur at longer active fibers length with increased passive length of fiber in the cavity. The peak power is observed to depend linearly on the absorbed pump power and be independent of the passive fiber length. Given these conclusions, the pulse energy, duration, and peak power can be estimated with good precision.

  15. High-fiber foods

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000193.htm High-fiber foods To use the sharing features on this page, ... Read food labels carefully to see how much fiber they have. Choose foods that have higher amounts of fiber, such as ...

  16. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  17. Fiber Singular Optics

    OpenAIRE

    A. V. Volyar

    2002-01-01

    The present review is devoted to the optical vortex behavior both in free space and optical fibers. The processes of the vortex transformations in perturbed optical fibers are analyzed on the base of the operator of the spin – orbit interaction in order to forecast the possible ways of manufacturing the vortex preserving fibers and their applications in supersensitive optical devices.

  18. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  19. Energy Absorption in Chopped Carbon Fiber Compression Molded Composites

    International Nuclear Information System (INIS)

    Starbuck, J.M.

    2001-01-01

    In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. The carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified

  20. Experimental study on mix proportion of fiber reinforced cementitious composites

    Science.gov (United States)

    Jia, Yi; Zhao, Renda; Liao, Ping; Li, Fuhai; Yuan, Yuan; Zhou, Shuang

    2017-10-01

    To study the mechanical property of fiber reinforced cementations composites influenced by the fiber length, quartz sand diameter, matrix of water cement ratio, volume fraction of fiber and magnesium acrylate solution. Several 40×40×160 mm standard test specimens, "8" specimens and long "8" specimens and 21 groups of fiber concrete specimens were fabricated. The flexural, compressive and uniaxial tensile strength were tested by using the bending resistance, compression resistance and electronic universal testing machine. The results show that flexural and compressive strength of fiber reinforced cementations composites increases along with the increase of quartz sand diameter, with the growth of the PVA fiber length increases; When the water-binder ratio is 0.25 and powder-binder ratio is 0.3, the PVA fiber content is 1.5% of the mass of cementations materials, there is a phenomenon of strain hardening; The addition of magnesium acrylate solution reduces the tensile strength of PVA fiber reinforced cementations composites, the tensile strength of the specimens in the curing age of 7d is decreased by about 21% and the specimens in curing age of 28d is decreased by more than 50%.

  1. Hole-assisted fiber based fiber fuse terminator supporting 22 W input

    Science.gov (United States)

    Tsujikawa, Kyozo; Kurokawa, Kenji; Hanzawa, Nobutomo; Nozoe, Saki; Matsui, Takashi; Nakajima, Kazuhide

    2018-05-01

    We investigated the air hole structure in hole-assisted fiber (HAF) with the aim of terminating fiber fuse propagation. We focused on two structural parameters c/MFD and S1/S2, which are related respectively to the position and area of the air holes, and mapped their appropriate values for terminating fiber fuse propagation. Here, MFD is the mode field diameter, c is the diameter of an inscribed circle linking the air holes, S1 is the total area of the air holes, and S2 is the area of a circumscribed circle linking the air holes. On the basis of these results, we successfully realized a compact fiber fuse terminator consisting of a 1.35 mm-long HAF, which can terminate fiber fuse propagation even with a 22 W input. In addition, we observed fiber fuse termination using a high-speed camera. We additionally confirmed that the HAF-based fiber fuse terminator is effective under various input power conditions. The penetration length of the optical discharge in the HAF was only less than 300 μm when the input power was from 2 to 22 W.

  2. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  3. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  4. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  5. Compressive failure model for fiber composites by kink band initiation from obliquely aligned, shear-dislocated fiber breaks

    Energy Technology Data Exchange (ETDEWEB)

    Bai, J.; Phoenix, S.L. [Cornell University, Ithaca, NY (United States). Dept. of Theoretical and Applied Mechanics

    2005-04-01

    Predicting compressive failure of a unidirectional fibrous composite is a longstanding and challenging problem that we study from a new perspective. Motivated by previous modelling of tensile failure as well as experimental observations on compressive failures in single carbon fibers, we develop a new micromechanical model for the compressive failure process in unidirectional, planar composites. As the compressive load is increased, random fiber failures are assumed to occur due to statistically distributed flaws, analogous to what occurs in tension. These breaks are often shear-mode failures with slanted surfaces that induce shear dislocations, especially when they occur in small groups aligned obliquely. Our model includes interactions of dislocated and neighboring intact fibers through a system of fourth-order, differential equations governing transverse deformation, and also allows for local matrix plastic yielding and debonding from the fiber near and within the dislocation arrays. Using the Discrete Fourier Transform method, we find a 'building-block' analytical solution form, which naturally embodies local length scales of fiber microbuckling and instability. Based on the influence function, superposition approach, a computationally efficient scheme is developed to model the evolution of fiber and matrix stresses. Under increasing compressive strain the simulations show that matrix yielding and debonding crucially lead to large increases in bending strains in fibers next to small groups of obliquely aligned, dislocated breaks. From the paired locations of maximum fiber bending in flanking fibers, the triggering of an unstable kink band becomes realistic. The geometric features of the kink band, such as the fragment lengths and orientation angles, will depend on the fiber and matrix mechanical and geometric properties. In carbon fiber-polymer matrix systems our model predicts a much lower compressive failure stress than obtained from Rosen

  6. Kerr ellipticity effect in a birefringent optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2004-09-01

    An intensity-dependent change in the ellipticity of an input light beam leads to a characteristic shift in polarization instability. Dichroism gives rise to a self-induced ellipticity effect in the polarization state of an intense input light oriented along the fast axis of a birefringent optical fiber. The critical power at which the fiber effective beat length becomes infinite is reduced considerably in the presence of dichroism. (author)

  7. Hierarchically Structured Electrospun Fibers

    Directory of Open Access Journals (Sweden)

    Nicole E. Zander

    2013-01-01

    Full Text Available Traditional electrospun nanofibers have a myriad of applications ranging from scaffolds for tissue engineering to components of biosensors and energy harvesting devices. The generally smooth one-dimensional structure of the fibers has stood as a limitation to several interesting novel applications. Control of fiber diameter, porosity and collector geometry will be briefly discussed, as will more traditional methods for controlling fiber morphology and fiber mat architecture. The remainder of the review will focus on new techniques to prepare hierarchically structured fibers. Fibers with hierarchical primary structures—including helical, buckled, and beads-on-a-string fibers, as well as fibers with secondary structures, such as nanopores, nanopillars, nanorods, and internally structured fibers and their applications—will be discussed. These new materials with helical/buckled morphology are expected to possess unique optical and mechanical properties with possible applications for negative refractive index materials, highly stretchable/high-tensile-strength materials, and components in microelectromechanical devices. Core-shell type fibers enable a much wider variety of materials to be electrospun and are expected to be widely applied in the sensing, drug delivery/controlled release fields, and in the encapsulation of live cells for biological applications. Materials with a hierarchical secondary structure are expected to provide new superhydrophobic and self-cleaning materials.

  8. Mechanical properties of recycled PET fibers in concrete

    Directory of Open Access Journals (Sweden)

    Fernando Pelisser

    2012-08-01

    Full Text Available Fiber-reinforced concrete represents the current tendency to apply more efficient crack-resistant concrete. For instance, polyethylene terephthalate (PET is a polyester polymer obtained from recyclable bottles; it has been widely used to produce fibers to obtain cement-based products with improved properties. Therefore, this paper reports on an experimental study of recycled-bottle-PET fiber-reinforced concrete. Fibers with lengths of 10, 15 and 20 mm and volume fractions of 0.05, 0.18 and 0.30% related to the volume of the concrete were used. Physical and mechanical characterization of the concrete was performed, including the determination of compressive strength, flexural strength, Young's modulus and fracture toughness as well as analysis using mercury intrusion porosimetry (MIP and scanning electron microscopy (SEM. Flexure and impact tests were performed after 28 and 150 days. No significant effect of the fiber addition on the compressive strength and modulus of elasticity was observed. However, the Young's modulus was observed to decrease as the fiber volume increased. At 28 days, the concrete flexural toughness and impact resistance increased with the presence of PET fibers, except for the 0.05 vol.% sample. However, at 150 days, this improvement was no longer present due to recycled-bottle-PET fiber degradation in the alkaline concrete environment, as visualized by SEM observations. An increase in porosity also has occurred at 365 days for the fiber-reinforced concrete, as determined by MIP.

  9. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  10. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  11. Relation between axial length and ocular parameters

    Directory of Open Access Journals (Sweden)

    Xue-Qiu Yang

    2013-09-01

    Full Text Available AIM: To investigatethe relation between axial length(AL, age and ocular parameters.METHODS: A total of 360 subjects(360 eyeswith emmetropia or myopia were recruited. Refraction, center corneal thickness(CCT, AL, intraocular pressure(IOPwere measured by automatic-refractor, Pachymeter, A-mode ultrasound and non-contact tonometer, respectively. Corneal curvature(CC, anterior chamber depth(ACDand white-to-white distance(WWDwere measured by Orbscan II. Three dimensional frequency domain coherent optical tomography(3D-OCTwas used to examine the retinal nerve fiber layer thickness(RNFLT. The Pearson correlation coefficient(rand multiple regression analysis were performed to evaluate the relationship between AL, age and ocular parameters.RESULTS: The average AL was 24.15±1.26mm. With elongation of the AL, spherical equivalent(SE(r=-0.742,Pr=-0.395, Pr=-0.374, Pr=0.411, Pr=0.099, P=0.060and WWD(r=0.061, P=0.252. There was also a significant correlation between AL and age(P=0.001, SE(PPPCONCLUSION: In longer eyes, there is a tendency toward myopia, a flatter cornea, a deeper ACD and a thinner RNFLT. Age is an influencing factor for the AL as well.

  12. Fine-grained hodoscopes based on scintillating optical fibers

    International Nuclear Information System (INIS)

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    In order to exploit the high event rates at ISABELLE, it will be necessary to have fast detection with fine spatial resolution. The authors are currently constructing a prototype fine-grained hodoscope, the elements of which are scintillating optical fibers. The fibers have been drawn from commercially available plastic scintillator which has been clad with a thin layer of silicone. So far it has been demonstrated with one mm diameter fibers, that with a photodetector at each end, the fibers are more than 99% efficient for lengths of about 60 cm. The readout will be accomplished either with small diameter photomultiplier tubes or avalanche photodiodes used either in the linear or Geiger mode. The program of fiber development and evaluation is described. The status of the APD as a readout element is discussed, and an optical encoding readout scheme is described for events of low multiplicity

  13. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2016-01-15

    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

  14. Photonic lantern with multimode fibers embedded

    Science.gov (United States)

    Yu, Hai-Jiao; Yan, Qi; Huang, Zong-Jun; Tian, He; Jiang, Yu; Liu, Yong-Jun; Zhang, Jian-Zhong; Sun, Wei-Min

    2014-08-01

    A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined.

  15. Photonic lantern with multimode fibers embedded

    International Nuclear Information System (INIS)

    Yu Hai-Jiao; Yan Qi; Huang Zong-Jun; Tian He; Jiang Yu; Liu Yong-Jun; Zhang Jian-Zhong; Sun Wei-Min

    2014-01-01

    A photonic lantern is studied which is formed by seven multimode fibers inserted into a pure silica capillary tube. The core of the tapered end has a uniform refractive index because the polymer claddings are removed before the fibers are inserted. Consequently, the light distribution is also uniform. Two theories describing a slowly varying waveguide and multimode coupling are used to analyze the photonic lantern. The transmission loss decreases as the length of the tapered part increases. For a device with a taper length of 3.4 cm, the loss is about 1.06 dB on average for light propagating through the taper from an inserted fiber to the tapered end and 0.99 dB in the reverse direction. For a device with a taper length of 0.7 cm, the two loss values are 2.63 dB and 2.53 dB, respectively. The results show that it is possible to achieve a uniform light distribution with the tapered end and a low-loss transmission in the device if parameters related to the lantern are reasonably defined. (research papers)

  16. Does length or neighborhood size cause the word length effect?

    Science.gov (United States)

    Jalbert, Annie; Neath, Ian; Surprenant, Aimée M

    2011-10-01

    Jalbert, Neath, Bireta, and Surprenant (2011) suggested that past demonstrations of the word length effect, the finding that words with fewer syllables are recalled better than words with more syllables, included a confound: The short words had more orthographic neighbors than the long words. The experiments reported here test two predictions that would follow if neighborhood size is a more important factor than word length. In Experiment 1, we found that concurrent articulation removed the effect of neighborhood size, just as it removes the effect of word length. Experiment 2 demonstrated that this pattern is also found with nonwords. For Experiment 3, we factorially manipulated length and neighborhood size, and found only effects of the latter. These results are problematic for any theory of memory that includes decay offset by rehearsal, but they are consistent with accounts that include a redintegrative stage that is susceptible to disruption by noise. The results also confirm the importance of lexical and linguistic factors on memory tasks thought to tap short-term memory.

  17. Narrow linewidth short cavity Brillouin random laser based on Bragg grating array fiber and dynamical population inversion gratings

    Science.gov (United States)

    Popov, S. M.; Butov, O. V.; Chamorovski, Y. K.; Isaev, V. A.; Mégret, P.; Korobko, D. A.; Zolotovskii, I. O.; Fotiadi, A. A.

    2018-06-01

    We report on random lasing observed with 100-m-long fiber comprising an array of weak FBGs inscribed in the fiber core and uniformly distributed over the fiber length. Extended fluctuation-free oscilloscope traces highlight power dynamics typical for lasing. An additional piece of Er-doped fiber included into the laser cavity enables a stable laser generation with a linewidth narrower than 10 kHz.

  18. All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure

    Science.gov (United States)

    Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz

    2017-10-01

    Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.

  19. Keeping disease at arm's length

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    2015-01-01

    active ageing change everyday life with chronic disease, and how do older people combine an active life with a range of chronic diseases? The participants in the study use activities to keep their diseases at arm’s length, and this distancing of disease at the same time enables them to engage in social...... and physical activities at the activity centre. In this way, keeping disease at arm’s length is analysed as an ambiguous health strategy. The article shows the importance of looking into how active ageing is practised, as active ageing seems to work well in the everyday life of the older people by not giving...... emphasis to disease. The article is based on ethnographic fieldwork and uses vignettes of four participants to show how they each keep diseases at arm’s length....

  20. Continuously variable focal length lens

    Science.gov (United States)

    Adams, Bernhard W; Chollet, Matthieu C

    2013-12-17

    A material preferably in crystal form having a low atomic number such as beryllium (Z=4) provides for the focusing of x-rays in a continuously variable manner. The material is provided with plural spaced curvilinear, optically matched slots and/or recesses through which an x-ray beam is directed. The focal length of the material may be decreased or increased by increasing or decreasing, respectively, the number of slots (or recesses) through which the x-ray beam is directed, while fine tuning of the focal length is accomplished by rotation of the material so as to change the path length of the x-ray beam through the aligned cylindrical slows. X-ray analysis of a fixed point in a solid material may be performed by scanning the energy of the x-ray beam while rotating the material to maintain the beam's focal point at a fixed point in the specimen undergoing analysis.

  1. CEBAF Upgrade Bunch Length Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Mahmoud [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Many accelerators use short electron bunches and measuring the bunch length is important for efficient operations. CEBAF needs a suitable bunch length because bunches that are too long will result in beam interruption to the halls due to excessive energy spread and beam loss. In this work, bunch length is measured by invasive and non-invasive techniques at different beam energies. Two new measurement techniques have been commissioned; a harmonic cavity showed good results compared to expectations from simulation, and a real time interferometer is commissioned and first checkouts were performed. Three other techniques were used for measurements and comparison purposes without modifying the old procedures. Two of them can be used when the beam is not compressed longitudinally while the other one, the synchrotron light monitor, can be used with compressed or uncompressed beam.

  2. Cerium-doped scintillating fused-silica fibers

    Science.gov (United States)

    Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P.; Faulkner, J.; Kunori, S.

    2018-04-01

    We report on a set of measurements made on (scintillating) cerium-doped fused-silica fibers using high-energy particle beams. These fibers were uniformly embedded in a copper absorber in order to utilize electromagnetic showers as a source of charged particles for generating signals. This new type of cerium-doped fiber potentially offers myriad new applications in calorimeters in high-energy physics, tracking systems, and beam monitoring detectors for future applications. The light yield, pulse shape, attenuation length, and light propagation speeds are given and discussed. Possible future applications are also explored.

  3. Optimum position of isolators within erbium-doped fibers

    DEFF Research Database (Denmark)

    Lumholt, Ole; Schüsler, Kim; Bjarklev, Anders Overgaard

    1992-01-01

    An isolator is used as an amplified spontaneous emission suppressing component within an erbium-doped fiber. The optimum isolator placement is both experimentally and theoretically determined and found to be slightly dependent upon pump power. Improvements of 4 dB in gain and 2 dB in noise figure...... are measured for the optimum isolator location at 25% of the fiber length when the fiber is pumped with 60 mW of pump power at 1.48 μm...

  4. Environmentally stable picosecond Yb fiber laser with low repetition rate

    Science.gov (United States)

    Baumgartl, M.; Abreu-Afonso, J.; Díez, A.; Rothhardt, M.; Limpert, J.; Tünnermann, A.

    2013-04-01

    A SESAM-mode-locked, all-polarization-maintaining Ytterbium fiber laser producing picosecond pulses with narrow spectral bandwidth is presented. A simple linear all-fiber cavity without dispersion compensation is realized using a uniform fiber Bragg grating (FBG). Different cavity lengths are investigated and repetition rates down to 0.7 MHz are obtained. Bandwidth and pulse duration of the output pulses are mainly determined by the choice of FBG. Pulses between 30 and 200 ps are generated employing different FBGs with bandwidths between 17 and 96 pm. The experimental results are in good agreement with numerical simulations. The laser holds great potential for simple amplification setups without pulse picking.

  5. Using variable homography to measure emergent fibers on textile fabrics

    Science.gov (United States)

    Xu, Jun; Cudel, Christophe; Kohler, Sophie; Fontaine, Stéphane; Haeberlé, Olivier; Klotz, Marie-Louise

    2011-07-01

    A fabric's smoothness is a key factor to determine the quality of textile finished products and has great influence on the functionality of industrial textiles and high-end textile products. With popularization of the 'zero defect' industrial concept, identifying and measuring defective material in the early stage of production is of great interest for the industry. In the current market, many systems are able to achieve automatic monitoring and control of fabric, paper, and nonwoven material during the entire production process, however online measurement of hairiness is still an open topic and highly desirable for industrial applications. In this paper we propose a computer vision approach, based on variable homography, which can be used to measure the emergent fiber's length on textile fabrics. The main challenges addressed in this paper are the application of variable homography to textile monitoring and measurement, as well as the accuracy of the estimated calculation. We propose that a fibrous structure can be considered as a two-layer structure and then show how variable homography can estimate the length of the fiber defects. Simulations are carried out to show the effectiveness of this method to measure the emergent fiber's length. The true lengths of selected fibers are measured precisely using a digital optical microscope, and then the same fibers are tested by our method. Our experimental results suggest that smoothness monitored by variable homography is an accurate and robust method for quality control of important industrially fabrics.

  6. Polymer fiber detectors for photoacoustic imaging

    Science.gov (United States)

    Grün, Hubert; Berer, Thomas; Pühringer, Karoline; Nuster, Robert; Paltauf, Günther; Burgholzer, Peter

    2010-02-01

    Photoacoustic imaging is a novel imaging method for medical and biological applications, combining the advantages of Diffuse Optical Imaging (high contrast) and Ultrasonic Imaging (high spatial resolution). A short laser pulse hits the sample. The absorbed energy causes a thermoelastic expansion and thereby launches a broadband ultrasonic wave (photoacoustic signal). The distribution of absorbed energy density is reconstructed from measurements of the photoacoustic signals around the sample. For collecting photoacoustic signals either point like or extended, integrating detectors can be used. The latter integrate the pressure at least in one dimension, e.g. along a line. Thereby, the three dimensional imaging problem is reduced to a two dimensional problem. For a tomography device consisting of a scanning line detector and a rotating sample, fiber-based detectors made of polymer have been recently introduced. Fiber-based detectors are easy to use and possess a constant, high spatial resolution over their entire active length. Polymer fibers provide a better impedance matching and a better handling compared with glass fibers which were our first approach. First measurement results using polymer fiber detectors and some approaches for improving the performance are presented.

  7. Stochastic phenomena in a fiber Raman amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnikov, Vladimir [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Institute of Photonics, Vienna University of Technology (Austria); Sergeyev, Sergey V. [Aston Institute of Photonic Technologies, Aston University, Birmingham (United Kingdom); Ania-Castanon, Juan Diego [Instituto de Optica CSIC, Madrid (Spain); Jacobsen, Gunnar [Acreo, Kista (Sweden); Popov, Sergei [Royal Institute of Technology (KTH), Stockholm (Sweden)

    2017-01-15

    The interplay of such cornerstones of modern nonlinear fiber optics as a nonlinearity, stochasticity and polarization leads to variety of the noise induced instabilities including polarization attraction and escape phenomena harnessing of which is a key to unlocking the fiber optic systems specifications required in high resolution spectroscopy, metrology, biomedicine and telecommunications. Here, by using direct stochastic modeling, the mapping of interplay of the Raman scattering-based nonlinearity, the random birefringence of a fiber, and the pump-to-signal intensity noise transfer has been done in terms of the fiber Raman amplifier parameters, namely polarization mode dispersion, the relative intensity noise of the pump laser, fiber length, and the signal power. The obtained results reveal conditions for emergence of the random birefringence-induced resonance-like enhancement of the gain fluctuations (stochastic anti-resonance) accompanied by pulse broadening and rare events in the form of low power output signals having probability heavily deviated from the Gaussian distribution. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Kondo length in bosonic lattices

    Science.gov (United States)

    Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea

    2017-09-01

    Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.

  9. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  10. Summary of neutron scattering lengths

    International Nuclear Information System (INIS)

    Koester, L.

    1981-12-01

    All available neutron-nuclei scattering lengths are collected together with their error bars in a uniform way. Bound scattering lengths are given for the elements, the isotopes, and the various spin-states. They are discussed in the sense of their use as basic parameters for many investigations in the field of nuclear and solid state physics. The data bank is available on magnetic tape, too. Recommended values and a map of these data serve for an uncomplicated use of these quantities. (orig.)

  11. Overview of bunch length measurements

    International Nuclear Information System (INIS)

    Lumpkin, A. H.

    1999-01-01

    An overview of particle and photon beam bunch length measurements is presented in the context of free-electron laser (FEL) challenges. Particle-beam peak current is a critical factor in obtaining adequate FEL gain for both oscillators and self-amplified spontaneous emission (SASE) devices. Since measurement of charge is a standard measurement, the bunch length becomes the key issue for ultrashort bunches. Both time-domain and frequency-domain techniques are presented in the context of using electromagnetic radiation over eight orders of magnitude in wavelength. In addition, the measurement of microbunching in a micropulse is addressed

  12. Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter

    Science.gov (United States)

    Azad, Saeed; Sadeghi, Ebrahim; Parvizi, Roghaieh; Mazaheri, Azardokht; Yousefi, M.

    2017-05-01

    In this work, the multimode optical fiber size effects on the performances of the clad-modified fiber with ZnO nanorods relative humidity (RH) sensor were experimentally investigated. Simple and controlled chemical etching method through on line monitoring was used to prepare different fiber waist diameter with long length of 15 mm. More precisely, the competition behavior of sensor performances with varying fiber waist diameter was studied to find appropriate size of maximizing evanescent fields. The obtained results revealed that evanescent wave absorption coefficient (γ) enhanced more than 10 times compare to bare fiber at the proposed optimum fiber diameter of 28 μm. Also, high linearity and fast recovery time about 7 s was obtained at the proposed fiber waist diameter. Applicable features of the proposed sensor allow this device to be used for humidity sensing applications, especially to be applied in remote sensing technologies.

  13. Equilibrium Configurations of a Fiber in a Flow

    Science.gov (United States)

    Guerron, Pamela; Berghout, Christopher; Nita, Bogdan; Vaidya, Ashwin

    2013-11-01

    The aim of this study is to understand the coupled dynamics of flexible fibers in a fluid flow. In particular, we examine the equilibrium configurations of the fiber with changing Reynolds numbers, orientations and lengths of the fiber. Our study is motivated by biological phenomena such as ciliary bending, flexing of plants and trees in winds etc. Our approach to resolving this problem has been threefold: experimental, numerical and theoretical. In our experiments we create physical models of variable length fibers inserted into a basal body structure, which is then suspended in a flow tank and positioned at different angles. The structure (fibers) are subjected to different velocities of water flow, ranging from 0m/s to 0.53 m/s in increments of 0.038 m/s. The results of the experiment were analyzed using Adobe Photoshop and the effect of the above mentioned parameters upon the shape of the fiber is analyzed. In addition, we also simulate this problem using the software Comsol and also create a simple, toy mathematical model incorporating the competing effects of tension and fluid drag on the fiber to obtain a closed form expression. Our various approaches point to consistent results.

  14. Fiber optics in SHIVA

    International Nuclear Information System (INIS)

    Severyn, J.; Parker, J.

    1978-01-01

    SHIVA is a twenty arm laser which is controlled with a network of fifty computers, interconnected with digital fiber optic links. Three different fiber optic systems employed on the Shiva laser will be described. Two of the systems are for digital communications, one at 9600 baud and the other at 1 megabaud. The third system uses fiber optics to distribute diagnostic triggers with subnanosecond jitter

  15. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Fareed, Ali [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States); Craig, Phillip A. [Honeywell Advanced Composites Inc. (HACI), Newark, DE (United States)

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  16. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    Science.gov (United States)

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  17. Investigating the real translucency of the endodontic fiber posts

    Science.gov (United States)

    Camilotti, Fernando; Bonardi, Cláudia; Somer, Aloisi; Novatski, Andressa; Szesz, Anna Luiza; Loguércio, Alessandro Dourado; Kniphoff da Cruz, Gerson

    2018-02-01

    Researchers have been investigating the light intensity scattered by a translucent fiber post with application in dentistry by different methods. In this work, we introduce a new system capable to record a light scattered profile, step-by-step, as a function of the length of the translucent fiber post. To support our studies, an extensive characterization of the system was carried out and this is presented and discussed here. The system was implemented using the phase sensitive detection. The equipment measures the light scattered without the need of any preparing parts and the fiber post is fixed directly in the fiber post holder becoming ready for measurement. Measures can be recorded with a spatial resolution smaller than 0.01 mm throughout the length of the fiber post being investigated. The system was implemented by using a photomultiplier tube that improves sensitivity for the optical detection. The recorded result is a signal directly proportional to the scattered light and it allows us to obtain a normalized profile that can be used as a map of the scattered light of the fiber post in study. Furthermore, we are able to demonstrate a low intensity of light in the tip region of the fiber post, along with the dependency of the light attenuation with the fiber post body volume and shape. This new system will certainly contribute to achieve better results in fiber post designing and in restoration of endodontic treated teeth because it provides a more well-founded choice of the fiber post to be used, and of the time of exposure to the curing light.

  18. Investigating the real translucency of the endodontic fiber posts

    Directory of Open Access Journals (Sweden)

    Fernando Camilotti

    2018-02-01

    Full Text Available Researchers have been investigating the light intensity scattered by a translucent fiber post with application in dentistry by different methods. In this work, we introduce a new system capable to record a light scattered profile, step-by-step, as a function of the length of the translucent fiber post. To support our studies, an extensive characterization of the system was carried out and this is presented and discussed here. The system was implemented using the phase sensitive detection. The equipment measures the light scattered without the need of any preparing parts and the fiber post is fixed directly in the fiber post holder becoming ready for measurement. Measures can be recorded with a spatial resolution smaller than 0.01 mm throughout the length of the fiber post being investigated. The system was implemented by using a photomultiplier tube that improves sensitivity for the optical detection. The recorded result is a signal directly proportional to the scattered light and it allows us to obtain a normalized profile that can be used as a map of the scattered light of the fiber post in study. Furthermore, we are able to demonstrate a low intensity of light in the tip region of the fiber post, along with the dependency of the light attenuation with the fiber post body volume and shape. This new system will certainly contribute to achieve better results in fiber post designing and in restoration of endodontic treated teeth because it provides a more well-founded choice of the fiber post to be used, and of the time of exposure to the curing light.

  19. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  20. Fiber-Optic Refractometer Based on an Etched High-Q ?-Phase-Shifted Fiber-Bragg-Grating

    OpenAIRE

    Zhang, Qi; Ianno, Natale J.; Han, Ming

    2013-01-01

    We present a compact and highly-sensitive fiber-optic refractometer based on a high-Q p-phase-shifted fiber-Bragg-grating (pFBG) that is chemically etched to the core of the fiber. Due to the p phase-shift, a strong pFBG forms a high-Q optical resonator and the reflection spectrum features an extremely narrow notch that can be used for highly sensitivity refractive index measurement. The etched pFBG demonstrated here has a diameter of ~9.3 μm and a length of only 7 mm, leading to a refractive...

  1. Micro Extrinsic Fiber-Optic Fabry-Perot Interferometric Sensor Based on Erbium- and Boron-Doped Fibers

    International Nuclear Information System (INIS)

    Yun-Jiang, Rao; Bing, Xu; Zeng-Ling, Ran; Yuan, Gong

    2010-01-01

    Micro extrinsic Fabry–Perot interferometers (MEFPIs), with cavity lengths of up to ∼ 9 μm and maximum fringe contrast of ∼ 19 dB, are fabricated by chemically etching Er- and B-doped optical fibers and then splicing the etched fiber to a single-mode fiber, for the first time to the best of our knowledge. The strain and temperature responses of the MEFPI sensors are investigated experimentally. Good linearity and high sensitivity are achieved. Such a type of MEFPI sensor is cost-effective and suitable for mass production, indicating its great potential for a wide range of applications. (fundamental areas of phenomenology(including applications))

  2. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    OpenAIRE

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong; Grattan, Kenneth T. V.; Schmidt, Jacob Wittrup; Täljsten, Björn

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating-based optical fiber sensors written into a very short length (60 mm) optical fiber network and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures and in tests were subjected to strain through a series of cycles of pulling tests, with applied forces of up to 30 kN. The results show that effective strain measurements can be obtained from the diffe...

  3. Design and Analysis of an all-fiber MZI Interleaver Based on Fiber Ring Resonator

    Directory of Open Access Journals (Sweden)

    Pu Huilan

    2015-01-01

    Full Text Available An all-fiber Mach-Zehnder interferometer (MZI interleaver using one planar 3×3 fiber coupler, one 2×2 fiber coupler and one 8-shaped fiber ring resonator is developed by the new configuration. Based on its structure, the output spectrum expression is established and described by using the principle of fiber transmission and the matrix transfer function. The results of numerical simulation indicate that when the length difference of interference arms and the coupling coefficients of the couplers are some certain values, it obtains a uniform flat-top passband and similar to rectangular output spectrum. Compared with the traditional MZI interleaver, the isolation in stopband and the rolloff in transition band are strengthen, the 25dB stopband bandwidth and 0.5dB passband bandwidth are simultaneously remarkably improved. Compared with the asymmetrical ring resonator MZI interleaver, the influence of transmission loss on extinction ratio can be effectively reduced. The device has a certain ability to resist the deviation, which reduces the difficulties in fabricating it. The experiment results agree with the theoretical analysis well. The interleaver designed by the proposed approach has favorable performance, which has the potential application value in optical fiber communication system.

  4. Mutation-specific effects on thin filament length in thin filament myopathy.

    Science.gov (United States)

    Winter, Josine M de; Joureau, Barbara; Lee, Eun-Jeong; Kiss, Balázs; Yuen, Michaela; Gupta, Vandana A; Pappas, Christopher T; Gregorio, Carol C; Stienen, Ger J M; Edvardson, Simon; Wallgren-Pettersson, Carina; Lehtokari, Vilma-Lotta; Pelin, Katarina; Malfatti, Edoardo; Romero, Norma B; Engelen, Baziel G van; Voermans, Nicol C; Donkervoort, Sandra; Bönnemann, C G; Clarke, Nigel F; Beggs, Alan H; Granzier, Henk; Ottenheijm, Coen A C

    2016-06-01

    Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969. © 2016 American Neurological Association.

  5. Diet, nutrition and telomere length.

    Science.gov (United States)

    Paul, Ligi

    2011-10-01

    The ends of human chromosomes are protected by DNA-protein complexes termed telomeres, which prevent the chromosomes from fusing with each other and from being recognized as a double-strand break by DNA repair proteins. Due to the incomplete replication of linear chromosomes by DNA polymerase, telomeric DNA shortens with repeated cell divisions until the telomeres reach a critical length, at which point the cells enter senescence. Telomere length is an indicator of biological aging, and dysfunction of telomeres is linked to age-related pathologies like cardiovascular disease, Parkinson disease, Alzheimer disease and cancer. Telomere length has been shown to be positively associated with nutritional status in human and animal studies. Various nutrients influence telomere length potentially through mechanisms that reflect their role in cellular functions including inflammation, oxidative stress, DNA integrity, DNA methylation and activity of telomerase, the enzyme that adds the telomeric repeats to the ends of the newly synthesized DNA. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Tube Length and Water Flow

    Directory of Open Access Journals (Sweden)

    Ben Ruktantichoke

    2011-06-01

    Full Text Available In this study water flowed through a straight horizontal plastic tube placed at the bottom of a large tank of water. The effect of changing the length of tubing on the velocity of flow was investigated. It was found that the Hagen-Poiseuille Equation is valid when the effect of water entering the tube is accounted for.

  7. Finite length Taylor Couette flow

    Science.gov (United States)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.

  8. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton.

    Science.gov (United States)

    Long, Qin; Yue, Fang; Liu, Ruochen; Song, Shuiqing; Li, Xianbi; Ding, Bo; Yan, Xingying; Pei, Yan

    2018-05-11

    Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.

  9. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  10. Mechanical Properties of Commercial Carbon Fibers Using a Single Filament Tensile Test

    International Nuclear Information System (INIS)

    Joh, Han-Ik; Song, Hae Kyung; Ku, Bon-Cheol; Lee, Sungho; Kim, Ki-Young; Kang, Phil-Hyun

    2013-01-01

    In this study, mechanical properties of commercial carbon fibers were evaluated using a single filament tensile test with various fiber gauge lengths. Tensile strength increased significantly with a decreasing length of the test specimens possibly due to small defect sites. The compliance method provided more accurate moduli of the carbon fibers, removing system errors during the single filament tensile test. The Weibull modulus revealed that shorter specimens had an inhomogeneous defect distribution, leading to a higher tensile strength and its standard deviation. X-ray diffractograms of carbon fibers showed a similar crystallinity and orientation in spite of significant differences in the fiber modulus and strength, indicating that crystalline structure of the commercial carbon fibers used in the study was not attributable to the difference in their tensile properties.

  11. New method for calculating the coupling coefficient in graded index optical fibers

    Science.gov (United States)

    Savović, Svetislav; Djordjevich, Alexandar

    2018-05-01

    A simple method is proposed for determining the mode coupling coefficient D in graded index multimode optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber length z as the Gaussian launching modal power distribution changes, with the Gaussian input light distribution centered along the graded index optical fiber axis (θ0 = 0) without radial offset (r0 = 0). A similar method we previously proposed for calculating the coupling coefficient D in a step-index multimode optical fibers where the output angular power distributions P(θ, z) for one fiber length z with the Gaussian input light distribution launched centrally along the step-index optical fiber axis (θ0 = 0) is needed to be known.

  12. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    International Nuclear Information System (INIS)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-01-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  13. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    Science.gov (United States)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  14. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    Energy Technology Data Exchange (ETDEWEB)

    Sosiati, H., E-mail: hsosiati@gmail.com [Nanomaterials Research Group, LPPT Universitas Gadjah Mada (Indonesia); Nahyudin, A., E-mail: ahmadnahyudin@yahoo.co.id; Fauzi, I., E-mail: ikhsannurfauzi@gmail.com; Wijayanti, D. A., E-mail: wijayantidwiastuti@gmail.com [Department of Physics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University (Indonesia); Triyana, K., E-mail: triyana@ugm.ac.id [Nanomaterials Research Group, LPPT Universitas Gadjah Mada (Indonesia); Department of Physics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University (Indonesia)

    2016-04-19

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  15. USDA Flax fiber utilization research

    Science.gov (United States)

    The United States is pursuing natural fibers as sustainable, environmentally friendly sources for a variety of industrial applications. Flax (Linum usitatissimum L.) fiber offers many possibilities towards this goal. Research on flax fiber production, processing, and standards development is urgen...

  16. Ultrafine PBI fibers and yarns

    Science.gov (United States)

    Leal, J. R.; Tan, M.

    1979-01-01

    Gentle precisely controlled process is used to draw polybenzimidazole (PBI) fibers to denier as low as 0.17 per fiber. Yarns of lightweight fibers could be useful in applications where lightweight textiles must withstand high temperatures, corrosion, or radiation.

  17. Fast Fiber-Coupled Imaging of X-rays Events, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — HyperV Technologies Corp. proposes to construct a long-record-length, fiber-coupled, fast imaging diagnostic for recording X-ray back-lit material flows and X-ray...

  18. Carbon fiber composite molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, T.D.; Rogers, M.R. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Monolithic adsorbents based on isotropic pitch fibers have been developed jointly by ORNL and the University of Kentucky, Center for Applied Energy Research. The monoliths are attractive for gas separation and storage applications because of their unique combination of physical properties and microporous structure. Currently at ORNL the monoliths are produced in billets that are 10 cm in diameter and 25 cm in length. The monolithic adsorbent material is being considered for guard bed applications on a natural gas (NG) powered device. In order for the material to be successful in this application, one must attain a uniform activation to modest micropore volumes throughout the large monoliths currently being produced. Here the authors report the results of a study directed toward attaining uniform activation in these billets.

  19. Method of producing superconducting fibers of bismuth strontium calcium copper oxide (Bi(2212) and Bi(2223))

    Science.gov (United States)

    Schwartzkopf, Louis A.

    1991-10-01

    Fibers of Bi(2212) have been produce by pendant drop melt extraction. This technique involves the end of a rod of Bi(2212) melted with a hydrogen-oxygen torch, followed by lowering onto the edge of a spinning wheel. The fibers are up to 15 cm in length with the usual lateral dimensions, ranging from 20 um to 30 um. The fibers require a heat treatment to make them superconducting.

  20. Optical bistability of optical fiber ring doped by Erbium and quantum dots

    International Nuclear Information System (INIS)

    Safari, S.; Tofighi, S.; Bahrampour, A.; Sajad, B.; Shahshahani, F.

    2012-01-01

    In this paper, theoretical analysis of the steady state behavior of the optical bistability in an optical fiber ring doped by Erbium and quantum dots is presented. The up and down switching power is calculated and the dependence of the switching power on different fiber ring parameters is investigated. The switching power for this type of optical bistability device is obtained much lower than the fiber ring which its half length is doped by Erbium ion.

  1. Electromagnetic wave absorption properties of composites with ultrafine hollow magnetic fibers

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Jin Woo [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Lee, Sang Bok; Kim, Jin Bong; Lee, Sang Kwan [Composites Research Center, Korea Institute of Materials Science, 66 Sang-nam-dong, Changwon, Gyeongnam (Korea, Republic of); Park, O Ok, E-mail: oopark@kaist.ac.kr [Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (BK21 Granted Program), 291 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 50-1, Sang-ri, Hyeongpung-myeon, Dalseong-gun, Daegu 711-873 (Korea, Republic of)

    2014-06-01

    Ultrafine hollow magnetic fibers were prepared by electroless plating using hydrolyzed polyester fiber as a sacrificial substrate. These hollow fibers can be served for lightweight and efficient electromagnetic (EM) absorbing materials. As observed from SEM and EDS analysis, hollow structures consisting of Ni inner layer and Fe or Fe–Co outer layer were obtained. By introducing Co onto Fe, oxidation of the Fe layer was successfully prevented making it possible to enhance the complex permeability compared to a case in which only Fe was used. Polymeric composites containing the hollow fibers with different weight fractions and fiber lengths were prepared by a simple mixing process. The electromagnetic wave properties of the composites were measured by a vector network analyzer and it was found that the hollow magnetic fibers show a clear resonance peak of the complex permittivity around the X-band range (8–12 GHz) and the resonance frequency strongly depends on the fiber concentration and length. A possible explanation for the unique resonance is that the hollow fibers possess relatively low electrical conductivity and a long mean free path due to their oxidized phase and hollow structure. The calculated EM wave absorption with the measured EM wave properties showed that the composite containing 30 wt% hollow Ni/Fe–Co (7:3) fibers in length of 180 μm exhibited multiple absorbance peaks resulting in a broad absorption bandwidth of 4.2 GHz. It is obvious that this multiple absorbance is attributed to the resonance characteristic of the composite. - Highlights: • The ultrafine hollow fibers consist of inner Ni layer (∼100 nm) and outer Fe or Fe–Co layer (500–700 nm). • Composites with the fibers show a high permittivity as well as permeability at low weight fractions (10–30 wt%). • The composites show a permittivity resonance and the resonance frequency can be controlled by fiber content and length. • The composite absorber exhibits a double

  2. Cost-Effective Magnetoencephalography Based on Time Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus

    Science.gov (United States)

    2016-09-01

    respectively. A length of dispersive fiber and a computer are used to first “decode” the optical interference signal into dispersed optical wave-packet...AWARD NUMBER: W81XWH-15-1-0008 TITLE: Cost-Effective Magnetoencephalography Based on Time-Encoded Optical Fiber Interferometry for Epilepsy...10 Dec 2014 - 9 Jun 2016 4. TITLE AND SUBTITLE 5a.16 CONTRACT NUMBER Encoded Optical Fiber Interferometry for Epilepsy and Tinnitus Diagnosis 5b

  3. Calculation of the mean differential group delay of periodically spun, randomly birefringent fibers

    Science.gov (United States)

    Galtarossa, Andrea; Griggio, Paola; Pizzinat, Anna; Palmieri, Luca

    2002-05-01

    Spinning is one of the most effective and well-known ways to reduce polarization mode dispersion of optical fibers. In spite of the popularity of spinning, a detailed theory of spin effects is still lacking. We report an analytical expression for the mean differential group delay of a randomly birefringent spun fiber. The result holds for any periodic spin function with a period shorter than the fiber's beat length.

  4. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  5. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  6. Developmental and hormonal regulation of fiber quality in two natural-colored cotton cultivars

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang; HU Da-peng; LI Yuan; CHEN Yuan; Eltayib H.M.A.Abidallha; DONG Zhao-di; CHEN De-hua; ZHANG Lei

    2017-01-01

    Cotton cultivars with brown (Xiangcaimian 2),green (Wanmian 39) and white (Sumian 9) fiber were investigated to study fiber developmental characteristics of natural-colored cotton and the effect of hormones on fiber quality at different stages after anthesis.Fiber lengths of both natural-colored cottons were lower than the white-fibered control,with brown-flbered cotton longer than green.Fiber strength,micronaire and maturation of natural-colored cotton were also lower than the control.The shorter fiber of the green cultivar was due to slower growth during 10 to 30 days post-anthesis (DPA).Likewise,the lower fiber strength,micronaire and maturation of natured-colored cotton were also due to slower growth during this pivotal stage.Indole-3-acetic acid (IAA) content at 10 DPA,and abscisic acid (ABA) content at 30 to 40 DPA were lower in the fibers of the natural-colored than that of the white-flbered cotton.After applying 20 mg L-1 gibberellic acid (GA3),the IAA content at 20 DPA in the brown and green-fibered cottons increased by 51.07 and 64.33%,fiber ABA content increased by 38.96 and 24.40%,and fiber length increased by 8.13 and 13.96%,respectively.Fiber strength,micronaire and maturation were also enhanced at boll opening stage.Those results suggest that the level of endogenous hormones affect fiber quality.Application of external hormones can increase hormone content in natural-colored cotton fiber,improving its quality.

  7. Multimode optical fiber

    Science.gov (United States)

    Bigot-Astruc, Marianne; Molin, Denis; Sillard, Pierre

    2014-11-04

    A depressed graded-index multimode optical fiber includes a central core, an inner depressed cladding, a depressed trench, an outer depressed cladding, and an outer cladding. The central core has an alpha-index profile. The depressed claddings limit the impact of leaky modes on optical-fiber performance characteristics (e.g., bandwidth, core size, and/or numerical aperture).

  8. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  9. Fiber Sensor Technology Today

    Science.gov (United States)

    Hotate, Kazuo

    2006-08-01

    Fiber sensor technologies are overviewed. Since the early 1970s, this field has been developed, on the basis of the same devices and photonic principles as fiber communication technologies. Besides simple configurations, in which the fiber acts only as a data transmission line, sophisticated configurations have also been developed, in which the fiber is used as a device to realize unique sensing mechanisms. The fiber optic gyroscope (FOG) is a good example, and has been developed as an absolute rotation sensor used, for example, for navigation and/or attitude control applications. Compared with traditional spinning-mass gyroscopes, the FOG has advantages, such as a short warming-up time, a light weight, and easy handling. A Japanese satellite, which was launched in August 2005 with a mission to observe the aurora, is controlled with a FOG. The FOG has also been used in consumer applications, such as the camera stabilizer, radio-controlled (RC) helicopter navigation, and the control of humanoid robots. Recently, distributed and multiplexed sensing schemes, in particular, have been studied and developed, in which a long fiber acts like a “nerve” for feeling the strain and/or the temperature distribution along the fiber. Performances of artificial nerve systems have markedly improved within the last couple of years, in spatial resolution and measurement speed. By embedding the “fiber-optic nerve system” in aircraft wings, bridges and tall buildings, these materials and structures can sense damage to prevent disasters.

  10. Ways to Boost Fiber

    Science.gov (United States)

    ... can help to lower cholesterol. Third, it helps prevent constipation and diverticulosis. And fourth, adequate fiber from food ... is similar to a new sponge; it needs water to plump up pass smoothly. If you ... or constipation. Before you reach for the fiber supplements, consider ...

  11. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  12. Deformation and three-dimensional displacement of fibers in isometrically contracting rat plantaris muscles

    NARCIS (Netherlands)

    Savelberg, Hans H.C.M.; Willems, Paul J.B.; Willems, P.; Baan, Guus C.; Huijing, P.A.J.B.M.

    2001-01-01

    In this study, the deformation of different fibers of the rat m. plantaris during isometric contractions at different muscle lengths was considered. Because the m. plantaris has an obviously inhomogeneous architecture, its fibers on the medial side of the muscle belly are judged to be shorter than

  13. Toward the next fiber optic revolution and decision making in the oil and gas industry

    NARCIS (Netherlands)

    Cheng, L.K.; Boering, M.; Braal, F.M.

    2013-01-01

    Fiber optic data transmission has caused revolutionary developments in the current information society. It was also an eye opener for the Oil & Gas industry when fiber optic-based Distributed Temperature Sensing was introduced in the nineties. Temperature profiles over the entire length of the

  14. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    Science.gov (United States)

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  15. High-density multicore fibers

    DEFF Research Database (Denmark)

    Takenaga, K.; Matsuo, S.; Saitoh, K.

    2016-01-01

    High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber.......High-density single-mode multicore fibers were designed and fabricated. A heterogeneous 30-core fiber realized a low crosstalk of −55 dB. A quasi-single-mode homogeneous 31-core fiber attained the highest core count as a single-mode multicore fiber....

  16. Engineering Properties of Treated Natural Hemp Fiber-Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Xiangming Zhou

    2017-06-01

    Full Text Available In recent years, the construction industry has seen a significant rise in the use of natural fibers, for producing building materials. Research has shown that treated hemp fiber-reinforced concrete (THFRC can provide a low-cost building material for residential and low-rise buildings, while achieving sustainable construction and meeting future environmental targets. This study involved enhancing the mechanical properties of hemp fiber-reinforced concrete through the Ca(OH2 solution pretreatment of fibers. Both untreated (UHFRC and treated (THFRC hemp fiber-reinforced concrete were tested containing 15-mm length fiber, at a volume fraction of 1%. From the mechanical strength tests, it was observed that the 28-day tensile and compressive strength of THFRC was 16.9 and 10% higher, respectively, than UHFRC. Based on the critical stress intensity factor (KICs and critical strain energy release rate (GICs, the fracture toughness of THFRC at 28 days was also found to be 7–13% higher than UHFRC. Additionally, based on the determined brittleness number (Q and modulus of elasticity, the THFRC was found to be 11% less brittle and 10.8% more ductile. Furthermore, qualitative analysis supported many of the mechanical strength findings through favorable surface roughness observed on treated fibers and resistance to fiber pull-out.

  17. Refractive index retrieving of polarization maintaining optical fibers

    Science.gov (United States)

    Ramadan, W. A.; Wahba, H. H.; Shams El-Din, M. A.; Abd El-Sadek, I. G.

    2018-01-01

    In this paper, the cross-section images, of two different types of polarization maintaining (PM) optical fibers, are employed to estimate the optical phase variation due to transverse optical rays passing through these optical fibers. An adaptive algorithm is proposed to recognize the different areas constituting the PM optical fibers cross-sections. These areas are scanned by a transverse beam to calculate the optical paths for given values of refractive indices. Consequently, the optical phases across the PM optical fibers could be recovered. PM optical fiber is immersed in a matching fluid and set in the object arm of Mach-Zehnder interferometer. The produced interferograms are analyzed to extract the optical phases caused by the PM optical fibers. The estimated optical phases could be optimized to be in good coincidence with experimentally extracted ones. This has been achieved through changing of the PM optical fibers refractive indices to retrieve the correct values. The correct refractive indices values are confirmed by getting the best fit between the estimated and the extracted optical phases. The presented approach is a promising one because it provides a quite direct and accurate information about refractive index, birefringence and beat length of PM optical fibers comparing with different techniques handle the same task.

  18. Flexural Cracking Behavior Of Steel Fiber Reinforced Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ashraf Abdalkader

    2017-08-01

    Full Text Available Steel fibers are added to concrete due to its ability to improve the tensile strength and control propagation of cracks in reinforced concrete members. Steel fiber reinforced concrete is made of cement fine water and coarse aggregate in addition to steel fibers. In this experimental work flexural cracking behavior of reinforced concrete beams contains different percentage of hooked-end steel fibers with length of 50 mm and equivalent diameter of 0.5 mm was studied. The beams were tested under third-point loading test at 28 days. First cracking load maximum crack width cracks number and load-deflection relations were investigated to evaluate the flexural cracking behavior of concrete beams with 34 MPa target mean strength. Workability wet density compressive and splitting tensile strength were also investigated. The results showed that the flexural crack width is significantly reduced with the addition of steel fibers. Fiber contents of 1.0 resulted in 81 reduction in maximum crack width compared to control concrete without fiber. The results also showed that the first cracking load and maximum load are increased with the addition of steel fibers.

  19. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  20. Raman fiber lasers

    CERN Document Server

    2017-01-01

    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  1. Birefringent hollow core fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    Hollow core photonic crystal fiber (HC-PCF), fabricated according to a nominally non-birefringent design, shows a degree of un-controlled birefringence or polarization mode dispersion far in excess of conventional non polarization maintaining fibers. This can degrade the output pulse in many...... applications, and places emphasis on the development of polarization maintaining (PM) HC-PCF. The polarization cross-coupling characteristics of PM HC-PCF are very different from those of conventional PM fibers. The former fibers have the advantage of suffering far less from stress-field fluctuations...... and an increased overlap between the polarization modes at the glass interfaces. The interplay between these effects leads to a wavelength for optimum polarization maintenance, lambda(PM), which is detuned from the wavelength of highest birefringence. By a suitable fiber design involving antiresonance of the core...

  2. Fiber optic hydrophone

    Science.gov (United States)

    Kuzmenko, Paul J.; Davis, Donald T.

    1994-01-01

    A miniature fiber optic hydrophone based on the principles of a Fabry-Perot interferometer. The hydrophone, in one embodiment, includes a body having a shaped flexible bladder at one end which defines a volume containing air or suitable gas, and including a membrane disposed adjacent a vent. An optic fiber extends into the body with one end terminating in spaced relation to the membrane. Acoustic waves in the water that impinge on the bladder cause the pressure of the volume therein to vary causing the membrane to deflect and modulate the reflectivity of the Fabry-Perot cavity formed by the membrane surface and the cleaved end of the optical fiber disposed adjacent to the membrane. When the light is transmitted down the optical fiber, the reflected signal is amplitude modulated by the incident acoustic wave. Another embodiment utilizes a fluid filled volume within which the fiber optic extends.

  3. Uniform Fiber Bragg Grating modeling and simulation used matrix transfer method

    OpenAIRE

    IKHLEF, Abdallah; HEDARA, Rachida; CHIKH-BLED, Mohamed

    2012-01-01

    This paper presents the modeling and simulation of an optical fiber Bragg grating for maximum reflectivity, minimum side lobe. Gating length represents as one of the critical parameters in contributing to a high performance fiber Bragg grating. The reflection spectra and side lobes strength were analyzed with different lengths .The side lobes have been suppressed using raised cosine apodization while maintaining the peak reflectivity. Such simulations are based on ...

  4. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  5. Use of Vegetable Fibers for PRB to Remove Heavy Metals from Contaminated Aquifers-Comparisons among Cabuya Fibers, Broom Fibers and ZVI.

    Science.gov (United States)

    Mayacela Rojas, Celia Margarita; Rivera Velásquez, María Fernanda; Tavolaro, Adalgisa; Molinari, Antonio; Fallico, Carmine

    2017-06-24

    The Zero Valent Iron (ZVI) is the material most commonly used for permeable reactive barriers (PRB). For technical and economic reasons, hoter reactive substances usable in alternative to ZVI are investigated. The present study takes into account a vegetable fibers, the cabuya, investigating its capacity to retain heavy metals. The capacity of the cabuya fibers to adsorb heavy metals was verified in laboratory, by batch and column tests. The batch tests were carried out with cabuya and ZVI, using copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb). The results obtained by the cabuya fibers showed a very high adsorption capacity of heavy metals and resulted very similar to those obtained for the broom fibers in a previous study. The high value of the absorption capacity of the cabuya fibers was also confirmed by the analogous comparison made with the results of the batch tests carried out with ZVI. Column tests, using copper, zinc and cadmium, allowed to determine for the cabuya fibers the maximum removal percentage of the heavy metals considered, the corresponding times and the time ranges of the release phase. For each metal considered, for a given length and three different times, the constant of degradation of cabuya fibers was determined, obtaining values very close to those reported for broom fibers. The scalar behavior of heavy metal removal percentage was verified. An electron microscope analysis allowed to compare, by SEM images, the characteristics of the cabuya and broom fibers. Finally, to investigate the chemical structure of cabuya and broom fibers, the FTIR technique was used, obtaining their respective infrared spectra.

  6. Minimal Length, Measurability and Gravity

    Directory of Open Access Journals (Sweden)

    Alexander Shalyt-Margolin

    2016-03-01

    Full Text Available The present work is a continuation of the previous papers written by the author on the subject. In terms of the measurability (or measurable quantities notion introduced in a minimal length theory, first the consideration is given to a quantum theory in the momentum representation. The same terms are used to consider the Markov gravity model that here illustrates the general approach to studies of gravity in terms of measurable quantities.

  7. πK-scattering lengths

    International Nuclear Information System (INIS)

    Volkov, M.K.; Osipov, A.A.

    1983-01-01

    The msub(π)asub(0)sup(1/2)=0.1, msub(π)asub(0)sup(3/2)=-0.1, msub(π)asub(0)sup((-))=0.07, msub(π)sup(3)asub(1)sup(1/2)=0.018, msub(π)sup(3)asub(1)aup(3/2)=0.002, msub(π)sup(3)asub(1)sup((-))=0.0044, msub(π)sup(5)asub(2)sup(1/2)=2.4x10sup(-4) and msub(π)sup(5)asub(2)sup(3/2)=-1.2x10sup(-4) scattering lengths are calculated in the framework of the composite meson model which is based on four-quark interaction. The decay form factors of (rho, epsilon, S*) → 2π, (K tilde, K*) → Kπ are used. The q 2 -terms of the quark box diagrams are taken into account. It is shown that the q 2 -terms of the box diagrams give the main contribution to the s-wave scattering lengths. The diagrams with the intermediate vector mesons begin to play the essential role at calculation of the p- and d-wave scattering lengths

  8. Method for the preparation of carbon fiber from polyolefin fiber precursor, and carbon fibers made thereby

    Science.gov (United States)

    Naskar, Amit Kumar; Hunt, Marcus Andrew; Saito, Tomonori

    2015-08-04

    Methods for the preparation of carbon fiber from polyolefin fiber precursor, wherein the polyolefin fiber precursor is partially sulfonated and then carbonized to produce carbon fiber. Methods for producing hollow carbon fibers, wherein the hollow core is circular- or complex-shaped, are also described. Methods for producing carbon fibers possessing a circular- or complex-shaped outer surface, which may be solid or hollow, are also described.

  9. Rheological properties of molten flax- and Tencel"®-polypropylene composites: Influence of fiber morphology and concentration

    International Nuclear Information System (INIS)

    Abdennadher, Ahmed; Vincent, Michel; Budtova, Tatiana

    2016-01-01

    The rheological properties of short fiber reinforced polypropylene were investigated. Flax and Tencel"® are two cellulose based fibers used in this study. Flax fibers are extracted from the bast of plants. They are composed of thin elementary fibers and rigid thick bundles made of elementary fibers “glued” together. Tencel"® is a man-made cellulosic fiber spun from cellulose solution, with a uniform diameter, thin, and flexible. First, fiber dimensions before and after compounding were analyzed. Both types of fibers were broken during compounding. Flax shows larger length and diameter than Tencel"®, but aspect ratio of flax is smaller. The reason is that after compounding flax remained in bundles. Dynamic viscosity, elastic and viscous moduli were studied as a function of fiber type, concentration (from 0 to 30 wt. %), and composite temperature (from 180 to 200 °C). All Tencel"®-based composites showed higher apparent yield stress, viscosity, and moduli compared to flax-based composites at the same fiber concentrations. The results are analyzed in terms of the influence of fiber type, aspect ratio, and flexibility. The importance of considering fiber morphology is demonstrated as far as it controls fiber flexibility and fiber-fiber interactions

  10. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  11. Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks

    Science.gov (United States)

    Zhou, Chao Hui

    Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good

  12. The research on the interfacial compatibility of polypropylene composite filled with surface treated carbon fiber

    International Nuclear Information System (INIS)

    Li, J.

    2009-01-01

    Dielectric barrier discharges (DBD) in ambient air are used on carbon fiber to improve the fiber surface activity. Carbon fibers with length of 75 μm are placed into the plasma configuration. The interaction between modified carbon fibers and polypropylene (PP) was studied by three-point bending (TPB) test. The chemical changes induced by the treatments on carbon fiber surface are examined using X-ray photoelectron spectroscopy (XPS). XPS results reveal that the carbon fiber modified with the DBD at atmospheric pressure show a significant increase in oxygen and nitrogen concentration. These results demonstrate that the surface of the carbon fiber is more active and hydrophilic after plasma treatments using a DBD operating in ambient air.

  13. Temperature measurement distributed on a building by fiber optic BOTDA sensor

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2002-01-01

    We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4 degrees C through one day.

  14. Fiber Pulling Apparatus

    Science.gov (United States)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1998-01-01

    The fiber optics industry has grown into a multi-billion marketplace that will continue to grow into the 21st century. Optical fiber communications is currently dominated by silica glass technology. Successful efforts to improve upon the low loss transmission characteristics of silica fibers have propelled the technology into the forefront of the communications industry. However, reaching the theoretical transmission capability of silica fiber through improved processing has still left a few application areas in which other fiber systems can provide an influential role due to specific characteristics of high theoretical transmission in the 2 - 3 micron wavelength region. One of the other major materials used for optical fibers is the systems based upon Heavy Metal Fluoride Glass (HMFG). Commercial interest is driven primarily by the potential for low loss repeaterless infrared fibers. An example of the major communications marketplace which would benefit from the long distance repeaterless capability of infrared fibers is the submarine cables which link the continents. When considering commercial interests, optical fiber systems provide a healthy industrial position which continues to expand. Major investments in the systems used for optical fiber communications have continued to increase each year and are predicted to continue well into the next century. Estimates of 8.5% compounded annually are predicted through 1999 for the North American market and 1 1 % worldwide. The growth for the optical fiber cable itself is expected to continue between 44 and 50 per cent of the optical fiber communications budget through 1999. The total budget in 1999 world-wide is expected to be in the neighborhood of $9 billion. Another survey predicts that long haul telecommunications represents 15% of a world-wide fiber optics market in 1998. The actual amount allotted to cable was not specified. However, another market research had predicted that the cable costs alone represents more

  15. Fiber Optic Microphone

    Science.gov (United States)

    Cho, Y. C.; George, Thomas; Norvig, Peter (Technical Monitor)

    1999-01-01

    Research into advanced pressure sensors using fiber-optic technology is aimed at developing compact size microphones. Fiber optic sensors are inherently immune to electromagnetic noise, and are very sensitive, light weight, and highly flexible. In FY 98, NASA researchers successfully designed and assembled a prototype fiber-optic microphone. The sensing technique employed was fiber optic Fabry-Perot interferometry. The sensing head is composed of an optical fiber terminated in a miniature ferrule with a thin, silicon-microfabricated diaphragm mounted on it. The optical fiber is a single mode fiber with a core diameter of 8 micron, with the cleaved end positioned 50 micron from the diaphragm surface. The diaphragm is made up of a 0.2 micron thick silicon nitride membrane whose inner surface is metallized with layers of 30 nm titanium, 30 nm platinum, and 0.2 micron gold for efficient reflection. The active sensing area is approximately 1.5 mm in diameter. The measured differential pressure tolerance of this diaphragm is more than 1 bar, yielding a dynamic range of more than 100 dB.

  16. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  17. PULLOUT BEHAVIOR OF OXYGEN PLASMA TREATED POLYMER FIBERS FROM CEMENT MATRIX

    Directory of Open Access Journals (Sweden)

    Jan Trejbal

    2017-11-01

    Full Text Available The aim of this work is to describe bonding properties between surface treated polymer fibers and a cement matrix. In order to increase an interaction between the matrix and fiber surfaces, two fiber types having approx. 0.5 mm in diameter were modified by mean of oxygen plasma treatment. Surface physical changes of treated fibers were examined using SEM morphology observation and interfacial adhesion mechanical tests. The principle of mechanical tests rested on a single fiber pulling out from the matrix (cement paste, CEM I 42.5 R, w/c 0.4. The embedded length was equal to 50 % of original fiber length (50 mm, where the fiber free-end displacement and force resisting to the displacement were monitored. It was pointed out that interfacial shear stress needed to break the bond between the modified fibers and the matrix increased almost by 15–65 % if compared to reference fibers. When the fiber free-end displacement reached to 3.5 mm, the shear strength increased almost twice.

  18. Optical fiber spectrophotometer

    International Nuclear Information System (INIS)

    Zhuang Weixin; Tian Guocheng; Ye Guoan; Zhou Zhihong; Cheng Weiwei; Huang Lifeng; Liu Suying; Tang Yanji; Hu Jingxin; Zhao Yonggang

    1998-12-01

    A method called 'Two Arm's Photo out and Electricity Send-back' is introduced. UV-365 UV/VIS/NIR spectrophotometer has been reequipped by this way with 5 meters long optical fiber. Another method called 'One Arm's Photo out and Photo Send-back' is also introduced. λ 19 UV/VIS/NIR spectrophotometer has been reequipped by this way with 10 meters long optical fiber. Optical fiber spectrophotometer can work as its main set. So it is particularly applicable to radio activity work

  19. Measurement of peak temperature along an optical fiber

    International Nuclear Information System (INIS)

    Fox, R.J.

    1983-01-01

    A multimode silica-clad optical fiber with a liquid silicone core was used as a distributed-line peak-temperature sensor over a temperature range from ambient to 190 0 C. The maximum error was 2 0 C and was essentially independent of the length or position of the hot zone

  20. High power supercontinuum generation in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    the concept of a group-acceleration mismatch, that for a given taper length, the downtapering section should be as long as possible to enhance the amount of blueshifted light. We also discuss the noise properties of supercontinuum in uniform and tapered fibers and we demonstrate that the amplitude noise...

  1. Generation and propagation of radially polarized beams in optical fibers

    DEFF Research Database (Denmark)

    Ramachandran, Siddharth; Kristensen, P; Yan, M F

    2009-01-01

    Beams with polarization singularities have attracted immense recent attention in a wide array of scientific and technological disciplines. We demonstrate a class of optical fibers in which these beams can be generated and propagated over long lengths with unprecedented stability, even...

  2. Energy resolution of a lead scintillating fiber electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.; Chirikov-Zorin, I.; Glagolev, V.

    1993-01-01

    A calorimeter module was fabricated using profiled lead plates and scintillating fibers with diameter 1 mm and attenuation length about 80 cm. The absorber-to-fiber volume ratio was 1.17 and the module average radiation length X 0 = 1.05 cm. The energy resolution of the module was investigated using the electron beams of U-70 at Serpukhov and of the SPS at CERN in the energy range 5-70 GeV. The energy resolution at θ = 3 0 (the angle between the fiber axis and the beam direction) may be expressed by the formula σ/E(%) = 13.1/√E ± 1.7. The energy resolution was also simulated by Monte Carlo and good agreement with the experiment has been achieved. 12 refs.; 13 figs.; 4 tabs

  3. Multimode-singlemode-multimode fiber sensor for alcohol sensing application

    Science.gov (United States)

    Rofi'ah, Iftihatur; Hatta, A. M.; Sekartedjo, Sekartedjo

    2016-11-01

    Alcohol is volatile and flammable liquid which is soluble substances both on polar and non polar substances that has been used in some industrial sectors. Alcohol detection method now widely used one of them is the optical fiber sensor. In this paper used fiber optic sensor based on Multimode-Single-mode-Multimode (MSM) to detect alcohol solution at a concentration range of 0-3%. The working principle of sensor utilizes the modal interference between the core modes and the cladding modes, thus make the sensor sensitive to environmental changes. The result showed that characteristic of the sensor not affect the length of the single-mode fiber (SMF). We obtain that the sensor with a length of 5 mm of single-mode can sensing the alcohol with a sensitivity of 0.107 dB/v%.

  4. A fiber optic synchronization system for LUX

    International Nuclear Information System (INIS)

    Wilcox, R.B.; Staples, J.W.; Doolittle, L.R.

    2004-01-01

    The LUX femtosecond light source concept would support pump-probe experiments that need to synchronize laser light pulses with electron-beam-generated X-ray pulses to less than 50 fs at the experimenter endstations. To synchronize multiple endstation lasers with the X-ray pulse, we are developing a fiber-distributed optical timing network. A high frequency clock signal is distributed via fiber to RF cavities (controlling X-ray probe pulse timing) and mode-locked lasers at endstations (controlling pump pulse timing). The superconducting cavities are actively locked to the optical clock phase. Most of the RF timing error is contained within a 10 kHz bandwidth, so these errors and any others affecting X-ray pulse timing (such as RF gun phase) can be detected and transmitted digitally to correct laser timing at the endstations. Time delay through the fibers will be stabilized by comparing a retro-reflected pulse from the experimenter endstation end with a reference pulse from the sending en d, and actively controlling the fiber length

  5. Recent Progress In Infrared Chalcogenide Glass Fibers

    Science.gov (United States)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  6. Capturing Structural Heterogeneity in Chromatin Fibers.

    Science.gov (United States)

    Ekundayo, Babatunde; Richmond, Timothy J; Schalch, Thomas

    2017-10-13

    Chromatin fiber organization is implicated in processes such as transcription, DNA repair and chromosome segregation, but how nucleosomes interact to form higher-order structure remains poorly understood. We solved two crystal structures of tetranucleosomes with approximately 11-bp DNA linker length at 5.8 and 6.7 Å resolution. Minimal intramolecular nucleosome-nucleosome interactions result in a fiber model resembling a flat ribbon that is compatible with a two-start helical architecture, and that exposes histone and DNA surfaces to the environment. The differences in the two structures combined with electron microscopy reveal heterogeneous structural states, and we used site-specific chemical crosslinking to assess the diversity of nucleosome-nucleosome interactions through identification of structure-sensitive crosslink sites that provide a means to characterize fibers in solution. The chromatin fiber architectures observed here provide a basis for understanding heterogeneous chromatin higher-order structures as they occur in a genomic context. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Chemistry Research of Optical Fibers.

    Science.gov (United States)

    1982-09-27

    BROADENING IN OPTICAL FIBERS Herbert B. Rosenstock* Naval Research Laboratory Washington, DC 20375 ABSTRACT A light pulse transmitted through a fiber...Marcatili, Marcuse , and Personick, "Dispersion Properties of Fibers" (Ch. 4 in "Optical Fiber Telecommunications," S. E. Miller and A. C. Chynoweth, eds

  8. Fiber-optical microphones and accelerometers based on polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Stefani, Alessio; Bang, Ole

    2010-01-01

    Polymer optical fibers (POFs) are ideal for applications as the sensing element in fiber-optical microphones and accelerometers based on fiber Bragg gratings (FBGs) due to their reduced Young’s Modulus of 3.2GPa, compared to 72GPa of Silica. To maximize the sensitivity and the dynamic range...... of the device the outer diameter and the length of the sensing fiber segment should be as small as possible. To this end we have fabricated 3mm FBGs in single-mode step-index POFs of diameter 115 micron, using 325nm UV writing and a phase-mask technique. 6mm POF sections with FBGs in the center have been glued...... to standard Silica SMF28 fibers. These POF FBGs have been characterized in terms of temperature and strain to find operating regimes with no hysteresis. Commercial fast wavelength interrogators (KHz) are shown to be able to track the thin POF FBGs and they are finally applied in a prototype accelerometer...

  9. Modeling fiber Bragg grating device networks in photomechanical polymer optical fibers

    Science.gov (United States)

    Lanska, Joseph T.; Kuzyk, Mark G.; Sullivan, Dennis M.

    2015-09-01

    We report on the modeling of fiber Bragg grating (FBG) networks in poly(methyl methacrylate) (PMMA) polymer fibers doped with azo dyes. Our target is the development of Photomechanical Optical Devices (PODs), comprised of two FBGs in series, separated by a Fabry-Perot cavity of photomechanical material. PODs exhibit photomechanical multi-stability, with the capacity to access multiple length states for a fixed input intensity when a mechanical shock is applied. Using finite-difference time-domain (FDTD) numerical methods, we modeled the photomechanical response of both Fabry-Perot and Bragg-type PODs in a single polymer optical fiber. The polymer fiber was modeled as an instantaneous Kerr-type nonlinear χ(3) material. Our model correctly predicts the essential optical features of FBGs as well as the photomechanical multi-stability of nonlinear Fabry-Perot cavity-based PODs. Networks of PODs may provide a framework for smart shape-shifting materials and fast optical computation where the decision process is distributed over the entire network. In addition, a POD can act as memory, and its response can depend on input history. Our models inform and will accelerate targeted development of novel Bragg grating-based polymer fiber device networks for a variety of applications in optical computing and smart materials.

  10. Fiber optic chemical sensors: The evolution of high- density fiber-optic DNA microarrays

    Science.gov (United States)

    Ferguson, Jane A.

    2001-06-01

    Sensors were developed for multianalyte monitoring, fermentation monitoring, lactate analysis, remote oxygen detection for use in bioremediation monitoring and in a fuel spill clean-up project, heavy metal analysis, and high density DNA microarrays. The major focus of this thesis involved creating and improving high-density DNA gene arrays. Fiber optic sensors are created using fluorescent indicators, polymeric supports, and optical fiber substrates. The fluorescent indicator is entrapped in a polymer layer and attached to the tip of the optical fiber. The tip of the fiber bearing the sensing layer (the distal end) is placed in the sample of interest while the other end of the fiber (the proximal end) is connected to an analysis system. Any length of fiber can be used without compromising the integrity or sensitivity of the system. A fiber optic oxygen sensor was designed incorporating an oxygen sensitive fluorescent dye and a gas permeable polymer attached to an optical fiber. The construction simplicity and ruggedness of the sensor enabled its deployment for in situ chemical oxidation and bioremediation studies. Optical fibers were also used as the substrate to detect biomolecules in solution. To monitor bioprocesses, the production of the analyte of interest must be coupled with a species that is optically measurable. For example, oxygen is consumed in many metabolic functions. The fiber optic oxygen sensor is equipped with an additional sensing layer. Upon contact with a specific biochemical in the sample, a reaction occurs in the additional sensing layer that either consumes or produces oxygen. This dual layer system was used to monitor the presence of lactate, an important metabolite for clinical and bioprocess analysis. In many biological and environmental systems, the generation of one species occurs coincidentally with the generation or consumption of another species. A multianalyte sensor was prepared that can monitor the simultaneous activity of pH, CO2

  11. Robust fiber clustering of cerebral fiber bundles in white matter

    Science.gov (United States)

    Yao, Xufeng; Wang, Yongxiong; Zhuang, Songlin

    2014-11-01

    Diffusion tensor imaging fiber tracking (DTI-FT) has been widely accepted in the diagnosis and treatment of brain diseases. During the rendering pipeline of specific fiber tracts, the image noise and low resolution of DTI would lead to false propagations. In this paper, we propose a robust fiber clustering (FC) approach to diminish false fibers from one fiber tract. Our algorithm consists of three steps. Firstly, the optimized fiber assignment continuous tracking (FACT) is implemented to reconstruct one fiber tract; and then each curved fiber in the fiber tract is mapped to a point by kernel principal component analysis (KPCA); finally, the point clouds of fiber tract are clustered by hierarchical clustering which could distinguish false fibers from true fibers in one tract. In our experiment, the corticospinal tract (CST) in one case of human data in vivo was used to validate our method. Our method showed reliable capability in decreasing the false fibers in one tract. In conclusion, our method could effectively optimize the visualization of fiber bundles and would help a lot in the field of fiber evaluation.

  12. Characterization of tapered polymer optical fibers under side illumination for fluorescence sensing applications

    Science.gov (United States)

    Pulido, C.; Esteban, Ó.

    2011-05-01

    In this work we present the fabrication and characterization of tapered polymer fibers used as fluorescence based sensors with a side-illumination arrangement. The fabrication method consists of a travelling-heater that gives a tight control of the tapered fibers parameters, namely the taper waist and the profile of the transition length between the unaltered fiber and the taper waist. Furthermore, a different approach for using fluorophores in fluorescence based sensors has been developed. With our method, we can locally introduce a fluorescent dye inside the taper region, which could lead to the generation of cuasi-distributed sensors for lengths of hundred of meters.

  13. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    Science.gov (United States)

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  14. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  15. Investigations on birefringence effects in polymer optical fiber Bragg gratings

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Saez-Rodriguez, D.; Bang, Ole

    2014-01-01

    Step-index polymer optical fiber Bragg gratings (POFBGs) and microstructured polymer optical fiber Bragg gratings (mPOFBGs) present several attractive features, especially for sensing purposes. In comparison to FBGs written in silica fibers, they are more sensitive to temperature and pressure...... because of the larger thermo-optic coefficient and smaller Young's modulus of polymer materials. (M)POFBGs are most often photowritten in poly(methylmethacrylate) (PMMA) materials using a continuous-wave 325 nm HeCd laser. For the first time to the best of our knowledge, we study photoinduced...... birefringence effects in (m)POFBGs. To achieve this, highly reflective gratings were inscribed with the phase mask technique. They were then monitored in transmission with polarized light. For this, (m)POF sections a few cm in length containing the gratings were glued to angled silica fibers. Polarization...

  16. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms.

    Science.gov (United States)

    Romero, Diego; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2010-02-02

    Bacillus subtilis forms biofilms whose constituent cells are held together by an extracellular matrix. Previous studies have shown that the protein TasA and an exopolysaccharide are the main components of the matrix. Given the importance of TasA in biofilm formation, we characterized the physicochemical properties of this protein. We report that purified TasA forms fibers of variable length and 10-15 nm in width. Biochemical analyses, in combination with the use of specific dyes and microscopic analyses, indicate that TasA forms amyloid fibers. Consistent with this hypothesis, TasA fibers required harsh treatments (e.g., formic acid) to be depolymerized. When added to a culture of a tasA mutant, purified TasA restored wild-type biofilm morphology, indicating that the purified protein retained biological activity. We propose that TasA forms amyloid fibers that bind cells together in the biofilm.

  17. Measurement of population inversions and gain in carbon fiber plasmas

    International Nuclear Information System (INIS)

    Milchberg, H.; Skinner, C.H.; Suckewer, S.; Voorhees, D.

    1985-10-01

    A CO 2 laser (approx.0.5 kJ energy, 70 nsec pulse width) was focussed onto the end of an axially oriented, thick (35 to 350 μ) carbon fiber with or without a magnetic field present along the laser-fiber axis. We present evidence for axial-to-transverse enhancement of the CVI 182A (n = 3 → 2) transition, which is correlated with the appearance of a population inversion between levels n = 3 and 2. For the B = 0 kG, zero field case, the maximum gain-length product of kl approx. =3 (k approx. =6 cm -1 ) was measured for a carbon fiber coated with a thin layer of aluminum (for additional radiation cooling). The results are interpreted in terms of fast recombination due mostly to thermal conduction from the plasma to the cold fiber core

  18. Interference Cancellation for Hollow-Core Fiber Reference Cells

    DEFF Research Database (Denmark)

    Seppä, Jeremias; Merimaa, Mikko; Merimaa, Mikko

    2015-01-01

    Doppler-free saturated absorption spectroscopy of gases in hollow-core fiber (HCF)-based cells can be used for realizing new compact, robust, and portable frequency standards. In this paper, methods for cancelling interferences resulting from the optical connections between standard fiber and HCF...... and other factors such as varying coupling to HCF modes are investigated. Laser power modulation with simultaneous detection of ac and dc signal is used to separate saturated absorption from interferences. In addition, a technique of two piezoelectric stack actuators stretching the fiber at different...... locations is described. The presented experimental results demonstrate that 99% interference attenuation is readily attainable with the techniques. Frequency comb-referenced measurement of saturated acetylene absorption features near 1.54 μm, with fiber length and power modulation, is presented...

  19. Fiber optics standard dictionary

    CERN Document Server

    Weik, Martin H

    1997-01-01

    Fiber Optics Vocabulary Development In 1979, the National Communications System published Technical InfonnationBulle­ tin TB 79-1, Vocabulary for Fiber Optics and Lightwave Communications, written by this author. Based on a draft prepared by this author, the National Communications System published Federal Standard FED-STD-1037, Glossary of Telecommunications Terms, in 1980 with no fiber optics tenns. In 1981, the first edition of this dictionary was published under the title Fiber Optics and Lightwave Communications Standard Dictionary. In 1982, the then National Bureau of Standards, now the National Institute of Standards and Technology, published NBS Handbook 140, Optical Waveguide Communications Glossary, which was also published by the General Services Admin­ istration as PB82-166257 under the same title. Also in 1982, Dynamic Systems, Inc. , Fiberoptic Sensor Technology Handbook, co-authored and edited by published the this author, with an extensive Fiberoptic Sensors Glossary. In 1989, the handbook w...

  20. Fiber Optics: No Illusion.

    Science.gov (United States)

    American School and University, 1983

    1983-01-01

    A campus computer center at Hofstra University (New York) that holds 70 terminals for student use was first a gymnasium, then a language laboratory. Strands of fiber optics are used for the necessary wiring. (MLF)

  1. Fiber optic gas sensor

    Science.gov (United States)

    Chen, Peng (Inventor); Buric, Michael P. (Inventor); Swinehart, Philip R. (Inventor); Maklad, Mokhtar S. (Inventor)

    2010-01-01

    A gas sensor includes an in-fiber resonant wavelength device provided in a fiber core at a first location. The fiber propagates a sensing light and a power light. A layer of a material is attached to the fiber at the first location. The material is able to absorb the gas at a temperature dependent gas absorption rate. The power light is used to heat the material and increases the gas absorption rate, thereby increasing sensor performance, especially at low temperatures. Further, a method is described of flash heating the gas sensor to absorb more of the gas, allowing the sensor to cool, thereby locking in the gas content of the sensor material, and taking the difference between the starting and ending resonant wavelengths as an indication of the concentration of the gas in the ambient atmosphere.

  2. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  3. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  4. Robust Fiber Coatings

    National Research Council Canada - National Science Library

    Goettler, Richard

    2002-01-01

    The highly desired ceramic matrix composite is the one in which the high strength and strain-to-failure is achieved through judicious selection of a fiber coating that can survive the high-temperature...

  5. Fiber Optic Bragg Gratings

    National Research Council Canada - National Science Library

    Battiato, James

    1998-01-01

    Coupled mode theory was used to model reflection fiber gratings. The effects of experimental parameters on grating characteristics were modeled for both uniform and non-uniform grating profiles using this approach...

  6. Fiber optics welder

    Science.gov (United States)

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  7. Magnetomechanically induced long period fiber gratings

    International Nuclear Information System (INIS)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-01-01

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs

  8. FIBER OPTIC LIGHTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Munir BATUR

    2013-01-01

    Full Text Available Recently there have been many important and valuable developments in the communication industry. The huge increase in the sound, data and visual communications has caused a parallel increase in the demand for systems with wider capacity, higher speed and higher quality. Communication systems that use light to transfer data are immensely increased. There have recently many systems in which glass or plastic fiber cables were developed for light wave to be transmitted from a source to a target place. Fiber optic systems, are nowadays widely used in energy transmission control systems, medicine, industry and lighting. The basics of the system is, movement of light from one point to another point in fiber cable with reflections. Fiber optic lighting systems are quite secure than other lighting systems and have flexibility for realizing many different designs. This situation makes fiber optics an alternative for other lighting systems. Fiber optic lighting systems usage is increasing day-by-day in our life. In this article, these systems are discussed in detail.

  9. Electrospun amplified fiber optics.

    Science.gov (United States)

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  10. Influence of polymer fibers on rheological properties of cement mortars

    Directory of Open Access Journals (Sweden)

    Malaszkiewicz Dorota

    2017-10-01

    Full Text Available The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12–50 mm and volume fraction in the range 0–4% on the rheological properties of fiber reinforced fresh mortar (FRFM and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value and h (plastic viscosity. Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  11. Influence of polymer fibers on rheological properties of cement mortars

    Science.gov (United States)

    Malaszkiewicz, Dorota

    2017-10-01

    The reinforcing effect of fibers in cement composites often results in the improvement of the brittle nature of cementitious materials. But the decrease in the workability of fresh concrete is often the disadvantage of fibers addition. Conventional single-point workability tests cannot characterize workability of concrete in terms of fundamental rheological parameters. To this end, this paper describes an investigation of the influence of synthetic fiber additions (fiber length in the range 12-50 mm and volume fraction in the range 0-4%) on the rheological properties of fiber reinforced fresh mortar (FRFM) and development of these properties over time. The rheometer Viskomat XL was used in this study. Within the limitations of the instrument and testing procedure it is shown that FRFMs conform to the Bingham model. Natural postglacial sand 0/4 mm was used as a fine aggregate and cement CEMI 42.5 R was used as a binder. Three commercial synthetic fibers were selected for these examinations. Rheological properties were expressed in terms of Bingham model parameters g (yield value ) and h (plastic viscosity). Based on the test results it was found out that the fiber type and volume fraction affected both the yield stress and plastic viscosity.

  12. Compound parabolic concentrator optical fiber tip for FRET-based fluorescent sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren

    2015-01-01

    The Compound Parabolic Concentrator (CPC) optical fiber tip shape has been proposed for intensity based fluorescent sensors working on the principle of FRET (Förster Resonance Energy Transfer). A simple numerical Zemax model has been used to optimize the CPC tip geometry for a step-index multimode...... polymer optical fiber for an excitation and emission wavelength of 550 nm and 650nm, respectively. The model suggests an increase of a factor of 1.6 to 4 in the collected fluorescent power for an ideal CPC tip, as compared to the plane-cut fiber tip for fiber lengths between 5 and 45mm...

  13. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides

    DEFF Research Database (Denmark)

    Rajasundaram, Dhivyaa; Runavot, Jean-Luc; Guo, Xiaoyuan

    2014-01-01

    cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from...... different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength...

  14. Agricultural residues based composites part II: Hydration characteristics of cement- cellulosic fibers composites

    International Nuclear Information System (INIS)

    Hekal, E.E.; Kishar, E.A.; Abd-El-Khader, A.H.; Ibrahim, A.A.; Mobarak, F.M.

    2005-01-01

    The aim of this study is the utilization of the local agricultural wastes, such as ice straw bagasse, cotton stalks and linen fibers, which cause a big environmental problem. Different cement-fiber composites were prepared using 1.5, 3, 4.5 and 6% fibers by weight of cement. The lengths of the fibers used were 0.5, 0.8, and 1.25 mm. Hydration of the different, composites was carried out at room temperature for various lime intervals namely, 1.3,7 .28 and 90 days. Combined water contents, compressive strength and phase composition of the different prepared composites were examined

  15. Neodymium-doped phosphate fiber lasers with an all-solid microstructured inner cladding.

    Science.gov (United States)

    Zhang, Guang; Zhou, Qinling; Yu, Chunlei; Hu, Lili; Chen, Danping

    2012-06-15

    We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.

  16. Information transmission via fiber optics in the shiva laser control system

    International Nuclear Information System (INIS)

    Parker, J.

    1978-01-01

    The Fiber Optic Serial Link package performs the functions of transmission and reception of signals over a pair of fiber optic cables and the I/O of serial data to a local device in EIA format. Present sysems requirements include fiber cable transmission length of up to 150 m and baud rates up to 9600, although the design criterium of transmission at 19.2 KB has been met. Fiber optic links are used between the central control area and each of the alignment control subsystems, in addition to sending timing signals over long distances between subsystems

  17. Effect of the refraction factor of a plastic fiber shell on the internal reflection coefficient

    International Nuclear Information System (INIS)

    Pkrksypkin, A.I.; Ponomarev, L.I.

    1992-01-01

    Results of pilot studies of the effect of refraction factor of plastic fiber shell on the coefficient of light internal reflection in the fiber are presented. It is pointed, that the shell does not absorb the light, but effects the surface layer of the fiber centre so, that dependence of the coefficient of internal reflection on refraction factor of the shell may be described using Fresnel formulae. It is shown, that coefficient of internal reflection decreases with the increase of refraction factor. Technique to determine volume length of scintillation light absorption in the fiber is suggested

  18. Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil

    OpenAIRE

    Gao, Lei; Hu, Guohui; Xu, Nan; Fu, Junyi; Xiang, Chao; Yang, Chen

    2015-01-01

    In order to study the mechanism and effect of basalt fiber reinforced clay soil, a series of unconfined compressive strength tests conducted on clay soil reinforced with basalt fiber have been performed under the condition of optimum water content and maximum dry density. Both the content and length of basalt fiber are considered in this paper. When the effect of content is studied, the 12 mm long fibers are dispersed into clay soil at different contents of 0.05%, 0.1%, 0.15%, 0.20%, 0.25%, 0...

  19. Solid-State Spun Fibers from 1 mm Long Carbon Nanotube Forests Synthesized by Water-Assisted Chemical Vapor Deposition

    Science.gov (United States)

    Zhang, Shanju; Zhu, Lingbo; Minus, Marilyn L.; Chae, han Gi; Jagannathan, Sudhakar; Wong, Ching-Ping; Kowalik, Janusz; Roberson, Luke B.; Kumar, Satish

    2007-01-01

    In this work, we report continuous carbon nanotube fibers dry-drawn directly from water-assisted CVD grown forests with millimeter scale length. As-drawn nanotube fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile liquid. Nanotube fibers are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman microscopy and wide-angle X-ray diffraction (WAXD). Mechanical behavior and electrical conductivity of the post-treated nanotube fibers are investigated.

  20. Eyewear-style three-dimensional endoscope derived from microstructured polymer fiber with the function of image transmission

    International Nuclear Information System (INIS)

    Kong De-Peng; Wang Li-Li; He Zheng-Quan; Ma Tian; Chu Jiu-Rong

    2013-01-01

    A method of fabricating multi-core polymer image fiber is proposed. Image fiber preform is fabricated by stacking thousands of polymer fibers each with a 0.25-mm diameter orderly in a die by only one step. The preform is heated and stretched into image fiber with an outer diameter of 2 mm. Then a portable eyewear-style three-dimensional (3D) endoscope system is designed, fabricated, and characterized. This endoscopic system is composed of two graded index lenses, two pieces of 0.35-m length image guide fibers, and a pair of oculars. It shows good flexibility and portability, and can provide the depth information accordingly. (general)

  1. Continuous Natural Fiber Reinforced Thermoplastic Composites by Fiber Surface Modification

    Directory of Open Access Journals (Sweden)

    Patcharat Wongsriraksa

    2013-01-01

    Full Text Available Continuous natural fiber reinforced thermoplastic materials are expected to replace inorganic fiber reinforced thermosetting materials. However, in the process of fabricating the composite, it is difficult to impregnate the thermoplastic resin into reinforcement fiber because of the high melt viscosity. Therefore, intermediate material, which allows high impregnation during molding, has been investigated for fabricating continuous fiber reinforced thermoplastic composite by aligning resin fiber alongside reinforcing fiber with braiding technique. This intermediate material has been called “microbraid yarn (MBY.” Moreover, it is well known that the interfacial properties between natural fiber and resin are low; therefore, surface treatment on continuous natural fiber was performed by using polyurethane (PU and flexible epoxy (FLEX to improve the interfacial properties. The effect of surface treatment on the mechanical properties of continuous natural fiber reinforced thermoplastic composites was examined. From these results, it was suggested that surface treatment by PU with low content could produce composites with better mechanical properties.

  2. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    Science.gov (United States)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  3. Novel configuration for an enhanced and compact all-fiber Faraday rotator with matched birefringence.

    Science.gov (United States)

    Asraf, Sagie; Sintov, Yoav; Zalevsky, Zeev

    2017-08-07

    We propose a novel configuration for an improved and compact all fiber Faraday rotator based on phase matching between the Faraday rotation and bend-induced birefringence. The device utilizes a coiled fiber within two electro-magnetic toroids, such that the fiber length required for getting the beat length is quite long and several rounds of fiber are needed. Analysis of the capabilities of the proposed device and its sensitivity to different parameters is presented. Faraday rotation of 13° was experimentally measured in six meters of single mode silica fiber, with a magnetic field of about 0.06T at a wavelength of 1064nm. We show that phase matching between the two phenomena significantly improves the polarization rotation by a factor of 4-10. In addition, we demonstrate the ability to achieve higher rotation by using Fabry Perot resonator in low terbium doped glass.

  4. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Søren

    2015-01-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile...... and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body...... a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization....

  5. Polymer optical fiber compound parabolic concentrator tip for enhanced coupling efficiency for fluorescence based glucose sensors.

    Science.gov (United States)

    Hassan, Hafeez Ul; Nielsen, Kristian; Aasmul, Soren; Bang, Ole

    2015-12-01

    We demonstrate that the light excitation and capturing efficiency of fluorescence based fiber-optical sensors can be significantly increased by using a CPC (Compound Parabolic Concentrator) tip instead of the standard plane-cut tip. We use Zemax modelling to find the optimum CPC tip profile and fiber length of a polymer optical fiber diabetes sensor for continuous monitoring of glucose levels. We experimentally verify the improved performance of the CPC tipped sensor and the predicted production tolerances. Due to physical size requirements when the sensor has to be inserted into the body a non-optimal fiber length of 35 mm is chosen. For this length an average improvement in efficiency of a factor of 1.7 is experimentally demonstrated and critically compared to the predicted ideal factor of 3 in terms of parameters that should be improved through production optimization.

  6. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  7. The Effect of Fiber Strength Stochastics and Local Fiber Volume Fraction on Multiscale Progressive Failure of Composites

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.

  8. Stress transfer around a broken fiber in unidirectional fiber-reinforced composites considering matrix damage evolution and interface slipping

    Science.gov (United States)

    Yang, Zhong; Zhang, BoMing; Zhao, Lin; Sun, XinYang

    2011-02-01

    A shear-lag model is applied to study the stress transfer around a broken fiber within unidirectional fiber-reinforced composites (FRC) subjected to uniaxial tensile loading along the fiber direction. The matrix damage and interfacial debonding, which are the main failure modes, are considered in the model. The maximum stress criterion with the linear damage evolution theory is used for the matrix. The slipping friction stress is considered in the interfacial debonding region using Coulomb friction theory, in which interfacial clamping stress comes from radial residual stress and mismatch of Poisson's ratios of constituents (fiber and matrix). The stress distributions in the fiber and matrix are obtained by the shear-lag theory added with boundary conditions, which includes force continuity and displacement compatibility constraints in the broken and neighboring intact fibers. The result gives axial stress distribution in fibers and shear stress in the interface and compares the theory reasonably well with the measurement by a polarized light microscope. The relation curves between damage, debonding and ineffective region lengths with external strain loading are obtained.

  9. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    Science.gov (United States)

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.

  10. In-Situ Three-Dimensional Shape Rendering from Strain Values Obtained Through Optical Fiber Sensors

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    A method and system for rendering the shape of a multi-core optical fiber or multi-fiber bundle in three-dimensional space in real time based on measured fiber strain data. Three optical fiber cores arc arranged in parallel at 120.degree. intervals about a central axis. A series of longitudinally co-located strain sensor triplets, typically fiber Bragg gratings, are positioned along the length of each fiber at known intervals. A tunable laser interrogates the sensors to detect strain on the fiber cores. Software determines the strain magnitude (.DELTA.L/L) for each fiber at a given triplet, but then applies beam theory to calculate curvature, beading angle and torsion of the fiber bundle, and from there it determines the shape of the fiber in s Cartesian coordinate system by solving a series of ordinary differential equations expanded from the Frenet-Serrat equations. This approach eliminates the need for computationally time-intensive curve-tilting and allows the three-dimensional shape of the optical fiber assembly to be displayed in real-time.

  11. Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength

    DEFF Research Database (Denmark)

    Thygesen, Anders; Madsen, Bo; Thomsen, Anne Belinda

    2011-01-01

    A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding, and cotto......A range of differently processed cellulosic fibers from flax and hemp plants were investigated to study the relation between processing of cellulosic fibers and fiber bundle strength. The studied processing methods are applied for yarn production and include retting, scutching, carding...

  12. Study on basalt fiber parameters affecting fiber-reinforced mortar

    Science.gov (United States)

    Orlov, A. A.; Chernykh, T. N.; Sashina, A. V.; Bogusevich, D. V.

    2015-01-01

    This article considers the effect of different dosages and diameters of basalt fibers on tensile strength increase during bending of fiberboard-reinforced mortar samples. The optimal dosages of fiber, providing maximum strength in bending are revealed. The durability of basalt fiber in an environment of cement, by means of microscopic analysis of samples of fibers and fiberboard-reinforced mortar long-term tests is examined. The article also compares the behavior of basalt fiber in the cement stone environment to a glass one and reveals that the basalt fiber is not subject to destruction.

  13. [Ecological regionalization of national cotton fiber quality in China using GGE biplot analysis method].

    Science.gov (United States)

    Xu, Nai Yin; Jin, Shi Qiao; Li, Jian

    2017-01-01

    The distinctive regional characteristics of cotton fiber quality in the major cotton-producing areas in China enhance the textile use efficiency of raw cotton yarn by improving fiber quality through ecological regionalization. The "environment vs. trait" GGE biplot analysis method was adopted to explore the interaction between conventional cotton sub-regions and cotton fiber quality traits based on the datasets collected from the national cotton regional trials from 2011 to 2015. The results showed that the major cotton-producing area in China were divided into four fiber quality ecological regions, namely, the "high fiber quality ecological region", the "low micronaire ecological region", the "high fiber strength and micronaire ecological region", and the "moderate fiber quality ecological region". The high fiber quality ecological region was characterized by harmonious development of cotton fiber length, strength, micronaire value and the highest spinning consistency index, and located in the conventional cotton regions in the upper and lower reaches of Yangtze River Valley. The low micronaire value ecological region composed of the northern and south Xinjiang cotton regions was characterized by low micronaire value, relatively lower fiber strength, and relatively high spinning consistency index performance. The high fiber strength and micronaire value ecological region covered the middle reaches of Yangtze River Valley, Nanxiang Basin and Huaibei Plain, and was prominently characterized by high strength and micronaire value, and moderate performance of other traits. The moderate fiber quality ecological region included North China Plain and Loess Plateau cotton growing regions in the Yellow River Valley, and was characterized by moderate or lower performances of all fiber quality traits. This study effectively applied "environment vs. trait" GGE biplot to regionalize cotton fiber quality, which provided a helpful reference for the regiona-lized cotton growing

  14. Response of cotton varieties to different environments: flowering behavior and fiber quality

    International Nuclear Information System (INIS)

    Jawdat, D.; Ayyoub, Z.; Elias, R.

    2012-01-01

    Flowering behavior and fiber quality traits were analyzed of six Gossypium hirsutum L. varieties and one G. barbadense variety that were cultivated in two environmentally different locations. Records of days after planting (DAP) at first floral bud emergence, DAP at first floral opening, plant height at first flower and nodes above white flower (NAWF) were analyzed statistically to study flowering behavior in both locations. Fiber traits were tested and records of micronaire, fiber length, strength, cohesion, elongation, ginning percentage, and weight of seed cotton were statistically analyzed to look for significant differences and correlations. Earliness and a decline in fiber strength, and fiber cohesion were obtained in varieties cultivated in Soujeh accompanied with an increase in ginning percentages. Uniquely, fiber elongation showed no significant differences in varieties between the two environments in both seasons. Our results indicated that stability in some fiber traits such as, micronaire, fiber length, strength and cohesion was a variety specific. Evidently, fiber elongation in our work was not affected by cultivation managements and environmental conditions which suggest the solid genetic bases that control this trait. (author)

  15. Response of cotton varieties to different environments flowering behavior and fiber quality

    International Nuclear Information System (INIS)

    Jawdat, D.; Ayyoubi, Z.; Al-Safadi, B.

    2015-01-01

    The flowering behavior and fiber quality traits were analyzed of six Gossypium hirsutum L. varieties and one G. barbadense variety that were cultivated in two environmentally different locations. Records of days after planting (DAP) at first floral bud emergence, DAP at first floral opening, plant height at first flower and nodes above white flower (NAWF) were analyzed statistically to study flowering behavior in both locations. Fiber traits were tested and records of micronaire, fiber length, strength, cohesion, elongation, ginning percentage, and weight of seed cotton were statistically analyzed to look for significant differences and correlations. Earliness and a decline in fiber strength, and fiber cohesion were obtained in varieties cultivated in Soujeh accompanied with an increase in ginning percentages. Uniquely, fiber elongation showed no significant differences in varieties between the two environments in both seasons. Our results indicated that stability in some fiber traits such as, micronaire, fiber length, strength and cohesion was a variety specific. Evidently, fiber elongation in our work was not affected by cultivation managements and environmental conditions which suggest the solid genetic bases that control this trait.(author)

  16. Experimental and Numerical Investigations on the Mechanical Characteristics of Carbon Fiber Sensors

    Directory of Open Access Journals (Sweden)

    Salem Bashmal

    2017-09-01

    Full Text Available Carbon fiber-based materials possess excellent mechanical properties and show linear piezoresistive behavior, which make them good candidate materials for strain measurements. They have the potential to be used as sensors for various applications such as damage detection, stress analysis and monitoring of manufacturing processes and quality. In this paper, carbon fiber sensors are prepared to perform reliable strain measurements. Both experimental and computational studies were carried out on commercially available carbon fibers in order to understand the response of the carbon fiber sensors due to changes in the axial strain. Effects of parameters such as diameter, length, and epoxy-hardener ratio are discussed. The developed numerical model was calibrated using laboratory-based experimental data. The results of the current study show that sensors with shorter lengths have relatively better sensitivity. This is due to the fact short fibers have low initial resistance, which will increase the change of resistance over initial resistance. Carbon fibers with low number of filaments exhibit linear behavior while nonlinear behavior due to transverse resistance is significant in fibers with large number of filaments. This study will allow researchers to predict the behavior of the carbon fiber sensor in real life and it will serve as a basis for designing carbon fiber sensors to be used in different applications.

  17. An applied investigation of kenaf-based fiber/polymer composites as potential lightweight materials for automotive components

    Science.gov (United States)

    Du, Yicheng

    Natural fibers have the potential to replace glass fibers in fiber-reinforced composite applications. However, the natural fibers' intrinsic properties cause these issues: (1) the mechanical property variation; (2) moisture uptake by natural fibers and their composites; (3) lack of sound, cost-effective, environment-friendly fiber-matrix compounding processes; (4) incompatibility between natural fibers and polymer matrices; and (5) low heat-resistance of natural fibers and their composites. This dissertation systematically studied the use of kenaf bast fiber bundles, obtained via a mechanical retting method, as a light-weight reinforcement material for fiber-reinforced thermoset polymer composites for automotive applications. Kenaf bast fiber bundle tensile properties were tested, and the effects of locations in the kenaf plant, loading rates, retting methods, and high temperature treatments and their durations on kenaf bast fiber bundle tensile properties were evaluated. A process has been developed for fabricating high fiber loading kenaf bast fiber bundle-reinforced unsaturated polyester composites. The generated composites possessed high elastic moduli and their tensile strengths were close to specification requirements for glass fiber-reinforced sheet molding compounds. Effects of fiber loadings and lengths on resultant composite's tensile properties were evaluated. Fiber loadings were very important for composite tensile modulus. Both fiber loadings and fiber lengths were important for composite tensile strengths. The distributions of composite tensile, flexural and impact strengths were analyzed. The 2-parameter Weibull model was found to be the most appropriate for describing the composite strength distributions and provided the most conservative design values. Kenaf-reinforced unsaturated polyester composites were also proved to be more cost-effective than glass fiber-reinforced SMCs at high fiber loadings. Kenaf bast fiber bundle-reinforced composite

  18. Natural Fiber Composites: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Matthew P.; Fifield, Leonard S.; Simmons, Kevin L.; Laddha, Sachin; Kafentzis, Tyler A.

    2010-03-07

    The need for renewable fiber reinforced composites has never been as prevalent as it currently is. Natural fibers offer both cost savings and a reduction in density when compared to glass fibers. Though the strength of natural fibers is not as great as glass, the specific properties are comparable. Currently natural fiber composites have two issues that need to be addressed: resin compatibility and water absorption. The following preliminary research has investigated the use of Kenaf, Hibiscus cannabinus, as a possible glass replacement in fiber reinforced composites.

  19. Enhanced radiation resistant fiber optics

    International Nuclear Information System (INIS)

    Lyons, P.B.; Looney, L.D.

    1993-01-01

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures

  20. Fiber-optic technology review

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1980-01-01

    A history of fiber technology is presented. The advantages of fiber optics are discussed (bandwidth, cost, weight and size, nonmetallic construction and isolation). Some aspects of the disadvantages of fiber systems briefly discussed are fiber and cable availability, fiber components, radiation effects, receivers and transmitters, and material dispersion. Particular emphasis over the next several years will involve development of fibers and systems optimized for use at wavelengths near 1.3 μm and development of wavelengths multiplexers for simultaneous system operation at several wavelengths

  1. Enhanced radiation resistant fiber optics

    Science.gov (United States)

    Lyons, P.B.; Looney, L.D.

    1993-11-30

    A process for producing an optical fiber having enhanced radiation resistance is provided, the process including maintaining an optical fiber within a hydrogen-containing atmosphere for sufficient time to yield a hydrogen-permeated optical fiber having an elevated internal hydrogen concentration, and irradiating the hydrogen-permeated optical fiber at a time while the optical fiber has an elevated internal hydrogen concentration with a source of ionizing radiation. The radiation source is typically a cobalt-60 source and the fiber is pre-irradiated with a dose level up to about 1000 kilorads of radiation. 4 figures.

  2. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  3. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    International Nuclear Information System (INIS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-01-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  4. Nanographene-Based Saturable Absorbers for Ultrafast Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Hsin-Hui Kuo

    2014-01-01

    Full Text Available The generation of femtosecond pulse laser in the erbium-doped fiber laser system is presented by integrating of the nanographene-based saturable absorbers (SAs. A simplified method of dispersed nanographene-based SAs side-polished fiber device with controllable polished length and depth was also developed. The dependence of geometry of a graphene-deposited side-polished fiber device on optical nonlinear characteristics and on the performance of the MLFL was screened. We found that the 10 mm polished length with 1.68 dB insertion loss had the highest modulation depth (MD of 1.2%. A stable MLFL with graphene-based SAs employing the optimized side-polished fiber device showed a pulse width, a 3 dB bandwidth, a time-bandwidth product (TBP, a repetition rate, and pulse energy of 523 fs, 5.4 nm, 0.347, 16.7 MHz, and 0.18 nJ, respectively, at fundamental soliton-like operation. The femtosecond pulse laser is achieved by evanescent field coupling through graphene-deposited side-polished fiber devices in the laser cavity. This study demonstrates that the polished depth is the key fabrication geometric parameter affecting the overall optical performance and better results exist within the certain polished range.

  5. All-fiber multimode interference micro-displacement sensor

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2013-01-01

    We report an all-fiber micro-displacement sensor based on multimode interference (MMI) effects. The micro-displacement sensor consists of a segment of No-Core multimode fiber (MMF) with one end spliced to a segment of single mode fiber (SMF) which acts as the input. The other end of the MMF and another SMF are inserted into a capillary ferrule filled with index matching liquid. Since the refractive index of the liquid is higher than that of the ferrule, a liquid MMF with a diameter of 125 µm is formed between the fibers inside the ferrule. When the fibers are separated this effectively increases the length of the MMF. Since the peak wavelength response of MMI devices is very sensitive to changes in the MMF's length, this can be used to detect micro-displacements. By measuring spectral changes we have obtained a sensing range of 3 mm with a sensitivity of 25 nm mm −1 and a resolution of 20 µm. The sensor can also be used to monitor small displacements by using a single wavelength to interrogate the transmission of the MMI device close to the resonance peak. Under this latter regime we were able to obtain a sensitivity of 7000 mV mm −1 and a sensing range of 100 µm, with a resolution up to 1 µm. The simplicity and versatility of the sensor make it very suitable for many diverse applications. (paper)

  6. Application of monodisperse fibers and discs to evaluation of the aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Hoover, M.D.; Lipowicz, P.J.; Hanson, R.W.; Yeh, H.C.; Casalnuovo, S.A.

    1988-01-01

    Monodisperse fibers, μm in width and lengths of 5, 10, 20, and 40 μm, as well as monodisperse discs, 2 4 8, or 12 μm in diameter, were prepared using an integrated circuit microchip fabrication technique. Particles were silicon dioxide with thickness of 1 μm. Examination of the particles using a scanning electron microscope showed that they were uniform in shape, with well-defined edges. The particles were suspended in distilled water and aerosolized with a Lovelace nebullizer. The monodisperse particles were used to evaluate the TSI Aerodynamic Particle Sizer (APS). Carbon fibers that were monodisperse in diameter (count median diameter 3.42 μm, geometric standard deviation 1.06) and polydisperse in length (count median length = 28 μm, geometric standard deviation 2.2) were also used. The APS was found to be insensitive to fiber length and only weakly sensitive to disc diameter. (author)

  7. Coating of carbon short fibers with thin ceramic layers by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hackl, Gerrit; Gerhard, Helmut; Popovska, Nadejda

    2006-01-01

    Carbon short fiber bundles with a length of 6 mm were uniformly coated using specially designed, continuous chemical vapor deposition (CVD) equipment. Thin layers of titanium nitride, silicon nitride (SiC) and pyrolytic carbon (pyC) were deposited onto several kilograms of short fibers in this large scale CVD reactor. Thermo-gravimetric analyses and scanning electron microscopy investigations revealed layer thicknesses between 20 and 100 nm on the fibers. Raman spectra of pyC coated fibers show a change of structural order depending on the CVD process parameters. For the fibers coated with SiC, Raman investigations showed a deposition of amorphous SiC. The coated carbon short fibers will be applied as reinforcing material in composites with ceramic and metallic matrices

  8. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    Science.gov (United States)

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  9. Novel thermal annealing methodology for permanent tuning polymer optical fiber Bragg gratings to longer wavelengths.

    Science.gov (United States)

    Pospori, A; Marques, C A F; Sagias, G; Lamela-Rivera, H; Webb, D J

    2018-01-22

    The Bragg wavelength of a polymer optical fiber Bragg grating can be permanently shifted by utilizing the thermal annealing method. In all the reported fiber annealing cases, the authors were able to tune the Bragg wavelength only to shorter wavelengths, since the polymer fiber shrinks in length during the annealing process. This article demonstrates a novel thermal annealing methodology for permanently tuning polymer optical fiber Bragg gratings to any desirable spectral position, including longer wavelengths. Stretching the polymer optical fiber during the annealing process, the period of Bragg grating, which is directly related with the Bragg wavelength, can become permanently longer. The methodology presented in this article can be used to multiplex polymer optical fiber Bragg gratings at any desirable spectral position utilizing only one phase-mask for their photo-inscription, reducing thus their fabrication cost in an industrial setting.

  10. Method and apparatus for shape and end position determination using an optical fiber

    Science.gov (United States)

    Moore, Jason P. (Inventor)

    2010-01-01

    A method of determining the shape of an unbound optical fiber includes collecting strain data along a length of the fiber, calculating curvature and bending direction data of the fiber using the strain data, curve-fitting the curvature and bending direction data to derive curvature and bending direction functions, calculating a torsion function using the bending direction function, and determining the 3D shape from the curvature, bending direction, and torsion functions. An apparatus for determining the 3D shape of the fiber includes a fiber optic cable unbound with respect to a protective sleeve, strain sensors positioned along the cable, and a controller in communication with the sensors. The controller has an algorithm for determining a 3D shape and end position of the fiber by calculating a set of curvature and bending direction data, deriving curvature, bending, and torsion functions, and solving Frenet-Serret equations using these functions.

  11. Modeling of Distributed Sensing of Elastic Waves by Fiber-Optic Interferometry

    Directory of Open Access Journals (Sweden)

    Just Agbodjan Prince

    2016-09-01

    Full Text Available This paper deals with the transduction of strain accompanying elastic waves in solids by firmly attached optical fibers. Stretching sections of optical fibers changes the time required by guided light to pass such sections. Exploiting interferometric techniques, highly sensitive fiber-optic strain transducers are feasible based on this fiber-intrinsic effect. The impact on the actual strain conversion of the fiber segment’s shape and size, as well as its inclination to the elastic wavefront is studied. FEM analyses show that severe distortions of the interferometric response occur when the attached fiber length spans a noticeable fraction of the elastic wavelength. Analytical models of strain transduction are presented for typical transducer shapes. They are used to compute input-output relationships for the transduction of narrow-band strain pulses as a function of the mechanical wavelength. The described approach applies to many transducers depending on the distributed interaction with the investigated object.

  12. Frequency-Shifted Interferometry — A Versatile Fiber-Optic Sensing Technique

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2014-06-01

    Full Text Available Fiber-optic sensing is a field that is developing at a fast pace. Novel fiber-optic sensor designs and sensing principles constantly open doors for new opportunities. In this paper, we review a fiber-optic sensing technique developed in our research group called frequency-shifted interferometry (FSI. This technique uses a continuous-wave light source, an optical frequency shifter, and a slow detector. We discuss the operation principles of several FSI implementations and show their applications in fiber length and dispersion measurement, locating weak reflections along a fiber link, fiber-optic sensor multiplexing, and high-sensitivity cavity ring-down measurement. Detailed analysis of FSI system parameters is also presented.

  13. System to continuously produce carbon fiber via microwave assisted plasma processing

    Science.gov (United States)

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  14. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  15. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  16. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    In optical Doppler measurements, the path length of the light is unknown. To facilitate quantitative measurements, we develop a phase-modulated Mach-Zehnder interferometer with separate fibers for illumination and detection. With this setup, path-length-resolved dynamic light scattering measurements

  17. Graphene fiber: a new trend in carbon fibers

    OpenAIRE

    Zhen Xu; Chao Gao

    2015-01-01

    New fibers with increased strength and rich functionalities have been untiringly pursued by materials researchers. In recent years, graphene fiber has arisen as a new carbonaceous fiber with high expectations in terms of mechanical and functional performance. In this review, we elucidated the concept of sprouted graphene fibers, including strategies for their fabrication and their basic structural attributes. We examine the rapid advances in the promotion of mechanical/functional properties o...

  18. Optical fiber switch

    Science.gov (United States)

    Early, James W.; Lester, Charles S.

    2002-01-01

    Optical fiber switches operated by electrical activation of at least one laser light modulator through which laser light is directed into at least one polarizer are used for the sequential transport of laser light from a single laser into a plurality of optical fibers. In one embodiment of the invention, laser light from a single excitation laser is sequentially transported to a plurality of optical fibers which in turn transport the laser light to separate individual remotely located laser fuel ignitors. The invention can be operated electro-optically with no need for any mechanical or moving parts, or, alternatively, can be operated electro-mechanically. The invention can be used to switch either pulsed or continuous wave laser light.

  19. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov

    2009-01-01

    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  20. Vapor Grown Carbon Fiber/Polydicyclopentadiene Composites: Shapeable Pastes to Make Composite Tooling and Plasma Erosion-Resistant Parts

    National Research Council Canada - National Science Library

    Pittman, Charles

    2002-01-01

    Vapor grown carbon nanofibers (VGCF) with 60-250nm diameters and 10 to 80 micrometers lengths were blended with the nonpolar organic monomer, dicyclopentadiene, to create liquid dispersions or pastes (based on the wt% fiber used...

  1. Response of fiber Bragg gratings to longitudinal ultrasonic waves.

    Science.gov (United States)

    Minardo, Aldo; Cusano, Andrea; Bernini, Romeo; Zeni, Luigi; Giordano, Michele

    2005-02-01

    In the last years, fiber optic sensors have been widely exploited for several sensing applications, including static and dynamic strain measurements up to acoustic detection. Among these, fiber Bragg grating sensors have been indicated as the ideal candidate for practical structural health monitoring in light of their unique advantages over conventional sensing devices. Although this class of sensors has been successfully tested for static and low-frequency measurements, the identification of sensor performances for high-frequency detection, including acoustic emission and ultrasonic investigations, is required. To this aim, the analysis of feasibilty on the use of fiber Bragg grating sensors as ultrasonic detectors has been carried out. In particular, the response of fiber Bragg gratings subjected to the longitudinal ultrasonic (US) field has been theoretically and numerically investigated. Ultrasonic field interaction has been modeled, taking into account the direct deformation of the grating pitch combined with changes in local refractive index due to the elasto-optic effect. Numerical results, obtained for both uniform and Gaussian-apodized fiber Bragg gratings, show that the grating spectrum is strongly influenced by the US field in terms of shape and central wavelength. In particular, a key parameter affecting the grating response is the ratio between the US wavelength and the grating length. Normal operation characterized by changes in wavelength of undistorted Bragg peak is possible only for US wavelengths longer than the grating length. For US wavelengths approaching the grating length, the wavelength change is accompanied by subpeaks formation and main peak amplitude modulation. This effect can be attributed to the nonuniformity of the US perturbation along the grating length. At very high US frequencies, the grating is not sensitive any longer. The results of this analysis provide useful tools for the design of grating-based ultrasound sensors for

  2. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  3. K3-fibered Calabi-Yau threefolds II, singular fibers

    OpenAIRE

    Hunt, Bruce

    1999-01-01

    In part I of this paper we constructed certain fibered Calabi-Yaus by a quotient construction in the context of weighted hypersurfaces. In this paper look at the case of K3 fibrations more closely and study the singular fibers which occur. This differs from previous work since the fibrations we discuss have constant modulus, and the singular fibers have torsion monodromy.

  4. Single fiber pullout from hybrid fiber reinforced concrete

    NARCIS (Netherlands)

    Markovich, I.; Van Mier, J.G.M.; Walraven, J.C.

    2001-01-01

    Hybrid fiber reinforcement can be very efficient for improving the tensile response of the composite. In such materials, fibers of different geometries can act as bridging mechanisms over cracks of different widths. The fiber bridging efficiency depends on the interface properties, which makes

  5. Chiral recognition in amyloid fiber growth.

    Science.gov (United States)

    Torbeev, Vladimir; Grogg, Marcel; Ruiz, Jérémy; Boehringer, Régis; Schirer, Alicia; Hellwig, Petra; Jeschke, Gunnar; Hilvert, Donald

    2016-05-01

    Insoluble amyloid fibers represent a pathological signature of many human diseases. To treat such diseases, inhibition of amyloid formation has been proposed as a possible therapeutic strategy. d-Peptides, which possess high proteolytic stability and lessened immunogenicity, are attractive candidates in this context. However, a molecular understanding of chiral recognition phenomena for d-peptides and l-amyloids is currently incomplete. Here we report experiments on amyloid growth of individual enantiomers and their mixtures for two distinct polypeptide systems of different length and structural organization: a 44-residue covalently-linked dimer derived from a peptide corresponding to the [20-41]-fragment of human β2-microglobulin (β2m) and the 99-residue full-length protein. For the dimeric [20-41]β2m construct, a combination of electron paramagnetic resonance of nitroxide-labeled constructs and (13) C-isotope edited FT-IR spectroscopy of (13) C-labeled preparations was used to show that racemic mixtures precipitate as intact homochiral fibers, i.e. undergo spontaneous Pasteur-like resolution into a mixture of left- and right-handed amyloids. In the case of full-length β2m, the presence of the mirror-image d-protein affords morphologically distinct amyloids that are composed largely of enantiopure domains. Removal of the l-component from hybrid amyloids by proteolytic digestion results in their rapid transformation into characteristic long straight d-β2m amyloids. Furthermore, the full-length d-enantiomer of β2m was found to be an efficient inhibitor of l-β2m amyloid growth. This observation highlights the potential of longer d-polypeptides for future development into inhibitors of amyloid propagation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  6. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  7. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  8. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    International Nuclear Information System (INIS)

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-01-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter

  9. Nonlinear polarization effects in a birefringent single mode optical fiber

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.

    2001-04-01

    The nonlinear polarization effects in a birefringent single mode optical fiber is studied using Jacobi elliptic functions. We find that the polarization state of the propagating beam depends on the initial polarization as well as the intensity of the input light in a complicated way. The Stokes polarization parameters are either periodic or aperiodic depending on the value of the Jacobian modulus. Our calculations suggest that the effective beat length of the fiber can become infinite at a higher critical value of the input power when polarization dependent losses are considered. (author)

  10. An Investigation of Interfacial Fatigue in Fiber Reinforced Composites

    Science.gov (United States)

    Yanhua, Chen; Zhifei, Shi

    2005-09-01

    Based on the shear-lag model and the modified degradation formula for coefficient of friction, the interfacial fatigue and debonding for fiber reinforced composites under cyclic loading are studied. The loading condition is chosen as the kind that is the most frequently used in fiber-pull-out experiments. The stress components in the debonded and bonded regions are obtained according to the maximum and minimum applied loading. By the aid of theory of fracture mechanics and Paris formula, the governing equation is solved numerically and the interfacial debonding is simulated. The relationships between the parameters (such as the debond rate, debond length, debond force) and the number of cycles are obtained.

  11. Infiltration liquid crystal in microstructured polymer optical fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wei, Lei; Bang, Ole

    2009-01-01

    7 is then infiltrated into about 6 cm of the length of mPOF by using capillary forces with the duration of 45 minutes. The transmission spectrum is measured by an optical spectrum analyzer with 1 nm resolution, and normalized to that of the unfilled fiber as shown by the solid line. The difference......POF is butt-coupled to a conventional single mode fiber (SMF) with the broadband light from a supercontinuum source. It is clear to see the colour of the guided modes is red, since some wavelengths are attenuated by the material loss of PMMA in visible region. A positive dielectric anisotropy liquid crystal E...

  12. Silicon photonics for multicore fiber communication

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices.......We review our recent work on silicon photonics for multicore fiber communication, including multicore fiber fan-in/fan-out, multicore fiber switches towards reconfigurable optical add/drop multiplexers. We also present multicore fiber based quantum communication using silicon devices....

  13. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  14. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    International Nuclear Information System (INIS)

    Méjean, Chloé; Pometcu, Laura; Benzerga, Ratiba; Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu; Pouliguen, Philippe

    2017-01-01

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S 11 coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S 11 of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  15. Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application

    Energy Technology Data Exchange (ETDEWEB)

    Méjean, Chloé; Pometcu, Laura [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Sharaiha, Ala; Le Paven-Thivet, Claire; Badard, Mathieu [Institut d’Electronique et de Télécommunications de Rennes, 18 rue Henri Wallon, 22000 Saint-Brieuc (France); Pouliguen, Philippe [Département Recherche et Innovation Scientifique de la Direction Générale de l’Armement, 7-9 rue des Mathurins, 92221 Bagneux (France)

    2017-06-15

    Highlights: • Carbon fibers loaded epoxy foam composites are proposed as microwave absorbers. • Dielectric properties (ε′, tanδ) of composites increase with carbon fibers content and length. • S{sub 11} coefficient of a pyramidal prototype was characterized in anechoic chamber. • Epoxy prototype shows better absorption performance than commercial absorber. • S{sub 11} of the prototype is lower than −30 dB (4–18 GHz) at normal and oblique incidences. - Abstract: This paper presents a new electromagnetic absorbing material developed from carbon fibers loaded epoxy foam for an application in anechoic chamber. The composite was developed in order to replace the currently used pyramidal absorbers made of carbon particles loaded polyurethane foam. Epoxy-composites filled with different weight percentages (from 0 wt.% to 4 wt.%) and length (1 and 3 mm) of carbon fibers were achieved. After an optimization of the dispersion of carbon fibers in composite materials, the dielectric properties of the composites were measured using a coaxial-probe in the frequency range 4–18 GHz. Results have shown that the complex permittivity of the composites increases with the amount of charge and also with the length of the carbon fibers. Absorption performance of a prototype prepared with a low concentration (0.5 wt.%) of carbon fibers was measured in an anechoic chamber: it shows a mean gain of 10 dB compared to a commercial absorber.

  16. Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhang, Yu; Wu, Hua; Zhang, Tieqiang; Gu, Pengfei; Chu, Hairong; Cui, Tian; Wang, Yiding; Zhang, Hanzhuang; Zhao, Jun; Yu, William W.

    2013-01-01

    A theoretical model was established in this paper to analyze the properties of 3.50 and 4.39 nm PbSe quantum dot-doped liquid-core multi-mode fiber. This model was applicable to both single- and multi-mode fiber. The three-level system-based light-propagation equations and rate equations were used to calculate the guided spontaneous emission spectra. Considering the multi-mode in the fiber, the normalized intensity distribution of transversal model was improved and simplified. The detailed calculating results were thus obtained and explained using the above-mentioned model. The redshift of the peak position and the evolution of the emission power were observed and analyzed considering the influence of the fiber length, fiber diameter, doping concentration, and the pump power. The redshift increased with the increases of fiber length, fiber diameter, and doping concentration. The optimal fiber length, fiber diameter, and doping concentration were analyzed and confirmed, and the related spontaneous emission power was obtained. Besides, the normalized emission intensity increased with the increase of pump power in a nearly linear way. The calculating results fitted well to the experimental data

  17. Role of Inelastic Transverse Compressive Behavior and Multiaxial Loading on the Transverse Impact of Kevlar KM2 Single Fiber

    Directory of Open Access Journals (Sweden)

    Subramani Sockalingam

    2017-02-01

    Full Text Available High-velocity transverse impact of ballistic fabrics and yarns by projectiles subject individual fibers to multi-axial dynamic loading. Single-fiber transverse impact experiments with the current state-of-the-art experimental capabilities are challenging due to the associated micron length-scale. Kevlar® KM2 fibers exhibit a nonlinear inelastic behavior in transverse compression with an elastic limit less than 1.5% strain. The effect of this transverse behavior on a single KM2 fiber subjected to a cylindrical and a fragment-simulating projectile (FSP transverse impact is studied with a 3D finite element model. The inelastic behavior results in a significant reduction of fiber bounce velocity and projectile-fiber contact forces up to 38% compared to an elastic impact response. The multiaxial stress states during impact including transverse compression, axial tension, axial compression and interlaminar shear are presented at the location of failure. In addition, the models show a strain concentration over a small length in the fiber under the projectile-fiber contact. A failure criterion, based on maximum axial tensile strain accounting for the gage length, strain rate and multiaxial loading degradation effects are applied to predict the single-fiber breaking speed. Results are compared to the elastic response to assess the importance of inelastic material behavior on failure during a transverse impact.

  18. Thermal Stress-Induced Depolarization Loss in Conventional and Panda-Shaped Photonic Crystal Fiber Lasers

    Science.gov (United States)

    Mousavi, Seyedeh Laleh; Sabaeian, Mohammad

    2016-10-01

    We report on the modeling of the depolarization loss in the conventional and panda-shaped photonic crystal fiber lasers (PCFLs) due to the self-heating of the fiber, which we call it thermal stress-induced depolarization loss (TSIDL). We first calculated the temperature distribution over the fiber cross sections and then calculated the thermal stresses/strains as a function of heat load per meter. Thermal stress-induced birefringence (TSIB), which is defined as | n x - n y |, in the core and cladding regions was calculated. Finally, TSIDL was calculated for the conventional and panda-shaped PCFLs as a function of fiber length and, respectively, saturated values of 22 and 25 % were obtained which were independent of heat load per meter. For panda-shaped PCFLs, prior to being saturated, an oscillating and damping behavior against the fiber length was seen where in some lengths reached 35 %. The results are close to an experimental value of 30 % reported for a pulsed PCFL (Limpert et al., Opt Express 12:1313-1319, 2004) where the authors reported a degree of polarization of 70 % (i.e., a depolarization of 30 %). The most important result of this work is a saturation behavior of TSIDL at long-enough lengths of the fiber laser which is independent of heat load per meter. To our knowledge, this the first report of TSIBL for PCFLs.

  19. A Special Fiber Optic Sensor for Measuring Wheel Loads of Vehicles on Highways

    Directory of Open Access Journals (Sweden)

    Norman W. Garrick

    2008-04-01

    Full Text Available This paper presents results from an investigation on a special optical fiber as a load sensor for application in Weigh-in-Motion (WIM systems to measure wheel loads of vehicles traveling at normal speed on highways. The fiber used has a unique design with two concentric light guiding regions of different effective optical path lengths, which has the potential to enable direct measurement of magnitudes as well as locations of forces acting at multiple points along a single fiber. The optical characteristic of the fiber for intended sensing purpose was first assessed by a simple fiber bending experiment and by correlating the bend radii with the output light signal intensities. A simple laboratory load transmitting/fiber bending device was then designed and fabricated to appropriately bend the optical fiber under applied loads in order to make the fiber work as load sensor. The device with the optical fiber was tested under a universal loading machine and an actual vehicle wheel in the laboratory. The test results showed a good relationship between the magnitude of the applied load and the output optical signal changes. The results also showed a good correlation between the time delay between the inner and outer core light pulses and the distance of the applied load as measured from the output end of the fiber.

  20. Water-equivalent one-dimensional scintillating fiber-optic dosimeter for measuring therapeutic photon beam

    International Nuclear Information System (INIS)

    Moon, Jinsoo; Won Jang, Kyoung; Jae Yoo, Wook; Han, Ki-Tek; Park, Jang-Yeon; Lee, Bongsoo

    2012-01-01

    In this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters. To construct a dosimeter system, a 1-D scintillating fiber-optic dosimeter and a CMOS image sensor were combined with 20 m-length plastic optical fibers. Using the dosimeter system, we measured surface and percentage depth doses of 6 and 15 MV photon beams and compared the results with those of EBT films and an ionization chamber. - Highlights: ► Fabrication of a one-dimensional scintillating fiber-optic dosimeter. ► The one-dimensional scintillating fiber-optic dosimeter has 9 scintillating fiber-optic dosimeters. ► Measurements of surface and percentage depth doses of a therapeutic photon beam. ► The results were compared with those of EBT films and an ionization chamber.

  1. Development of a TiO2-coated optical fiber reactor for water decontamination

    International Nuclear Information System (INIS)

    Danion, A.

    2004-09-01

    The objective of this study was to built and to study a photo-reactor composed by TiO 2 -coated optical fibers for water decontamination. The physico-chemical characteristics and the optical properties of the TiO 2 coating were first studied. Then, the influences of different parameters as the coating thickness, the coating length and the coating volume were investigated both on the light transmission in the TiO 2 - coated fiber and on the photo-catalytic activity of the fiber for a model compound (malic acid). The photo-catalytic degradation of malic acid was optimized using the experimental design methodology allowing to build a multi-fiber reactor comprising 57 optical fibers. The photo-degradation of malic acid was conducted in the multi-fiber reactor and it was demonstrated that the multi-fiber reactor was more efficient than the single-fiber reactor at the same fibers density. Finally, the multi-fiber reactor was applied to the photo-degradation of a fungicide, called fenamidone, and a degradation pathway was proposed. (author)

  2. Fabrication and evaluation of hybrid silica/polymer optical fiber sensors for large strain measurement

    Science.gov (United States)

    Huang, Haiying

    2007-04-01

    Silica-based optical fiber sensors are widely used in structural health monitoring systems for strain and deflection measurement. One drawback of silica-based optical fiber sensors is their low strain toughness. In general, silica-based optical fiber sensors can only reliably measure strains up to 2%. Recently, polymer optical fiber sensors have been employed to measure large strain and deflection. Due to their high optical losses, the length of the polymer optical fibers is limited to 100 meters. In this paper, we present a novel economical technique to fabricate hybrid silica/polymer optical fiber strain sensors for large strain measurement. First, stress analysis of a surface-mounted optical fiber sensor is performed to understand the load distribution between the host structure and the optical fiber in relation to their mechanical properties. Next, the procedure of fabricating a polymer sensing element between two optical fibers is explained. The experimental set-up and the components used in the fabrication process are described in details. Mechanical testing results of the fabricated silica/polymer optical fiber strain sensor are presented.

  3. Polarization dynamics in nonlinear anisotropic fibers

    International Nuclear Information System (INIS)

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-01-01

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  4. In-fiber integrated Michelson interferometer.

    Science.gov (United States)

    Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing

    2006-09-15

    A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.

  5. Effect of various refining processes for Kenaf Bast non-wood pulp fibers suspensions on heat transfer coefficient in circular pipe heat exchanger

    Science.gov (United States)

    Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan

    2018-03-01

    Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.

  6. Transient attenuation in optical fibers

    International Nuclear Information System (INIS)

    Hopkins, A.A.; Kelly, R.E.; Looney, L.D.; Lyons, P.B.

    1984-01-01

    Low and high energy pulsed electron beams were used to generate radiation-induced transient attenuation in high-OH, Suprasil core, PCS fibers, demonstrating the energy dependence of the radiation damage and recovery mechanisms. A radiation resistant low-OH fiber was studied and its performance contrasted to that of high-OH materials. Several fibers with differing core compositions were also studied

  7. Fiber Optics and Library Technology.

    Science.gov (United States)

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  8. Water-core Fresnel fiber

    NARCIS (Netherlands)

    Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N.

    2005-01-01

    A water core photonic crystal Fresnel fiber exploiting a hole distribution on zone plates of a cylindrical waveguide was developed and characterized. This fiber has similar guiding properties as the pristine air-hole guiding fiber although a large loss edge ~900nm is observed indicating that the

  9. Optical fibers for FTTH application

    Science.gov (United States)

    Guzowski, Bartlomiej; Tosik, Grzegorz; Lisik, Zbigniew; Bedyk, Michal; Kubiak, Andrzej

    2013-07-01

    In this paper the specifics of FTTH (Fiber To The Home) networks in terms of requirements for optical fibers has been presented. Optical fiber samples used in FTTH applications acquired from the worldwide leading manufacturers were subjected to small diameter mandrel wraps tests. The detailed procedures of performed tests and the measurement results has been presented.

  10. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  11. Thermal properties of Fiber ropes

    DEFF Research Database (Denmark)

    Bossolini, Elena; Nielsen, Ole Wennerberg; Oland, Espen

    There is a trend within the oil and gas market to shift from steel wire ropes to fiber ropes for lifting, hoisting and mooring applications. The cost of fiber ropes is about 2-3 times that of steel wire ropes, but the natural buoyancy of fiber ropes reduces the overall weight resulting in smaller...

  12. Shedding Light on Fiber Optics.

    Science.gov (United States)

    Bunch, Robert M.

    1994-01-01

    Explains the principles of fiber optics as a medium for light-wave communication. Current uses of fiber systems on college campuses include voice, video, and local area network applications. A group of seven school districts in Minnesota are linked via fiber-optic cables. Other uses are discussed. (MLF)

  13. Fabrication of Optical Fiber Devices

    Science.gov (United States)

    Andres, Miguel V.

    In this paper we present the main research activities of the Laboratorio de Fibras Opticas del Instituto de Ciencia de los Materiales de la Universidad de Valencia. We show some of the main results obtained for devices based on tapered fibers, fiber Bragg gratings, acousto-optic effects and photonic crystal fibers.

  14. Microstructured Fibers: Design and Applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes

    2006-01-01

    Holey fibers, in which airholes are introduced in the cladding region and extended in the axial direction of the fiber, have been known since the early days of silica waveguide research. Early work demonstrated the first low-loss fibers, which featured very small silica cores held in air by thin...

  15. Illustrative white matter fiber bundles

    NARCIS (Netherlands)

    Otten, R.J.G.; Vilanova, A.; Wetering, van de H.M.M.

    2010-01-01

    Diffusion Tensor Imaging (DTI) has made feasible the visualization of the fibrous structure of the brain whitematter. In the last decades, several fiber-tracking methods have been developed to reconstruct the fiber tracts fromDTI data. Usually these fiber tracts are shown individually based on some

  16. Radiation distribution sensing with normal optical fiber

    CERN Document Server

    Kawarabayashi, J; Naka, R; Uritani, A; Watanabe, K I; Iguchi, T; Tsujimura, N

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( sup 9 sup 0 Sr sup - sup 9 sup 0 Y), gamma rays ( sup 1 sup 3 sup 7 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 sup - sup 5 % and 5.4x10 sup - sup 4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that t...

  17. Radiation distribution sensing with normal optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ({sup 90}Sr{sup -90}Y), gamma rays ({sup 137}Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10{sup -5}% and 5.4x10{sup -4}%, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  18. Radiation distribution sensing with normal optical fiber

    International Nuclear Information System (INIS)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo; Tsujimura, Norio

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( 90 Sr -90 Y), gamma rays ( 137 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 -5 % and 5.4x10 -4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  19. Bluebonnet Fiber Collages

    Science.gov (United States)

    Sterling, Joan

    2009-01-01

    This article presents a lesson that uses stitching and applique techniques to create a fiber collage in which every child is successful with high-quality work. This lesson was inspired by Tomie dePaola's "The Legend of the Bluebonnet." The back cover had a lovely illustration of the bluebonnet flower the author thought would translate easily to a…

  20. The dentate mossy fibers

    DEFF Research Database (Denmark)

    Blaabjerg, Morten; Zimmer, Jens

    2007-01-01

    Hippocampal mossy fibers are the axons of the dentate granule cells and project to hippocampal CA3 pyramidal cells and mossy cells of the dentate hilus (CA4) as well as a number of interneurons in the two areas. Besides their role in hippocampal function, studies of which are still evolving...

  1. Optical Fiber Protection

    Science.gov (United States)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  2. Optical Fiber Spectroscopy

    Science.gov (United States)

    Buoncristiani, A. M.

    1999-01-01

    This is the final report of work done on NASA Grant NAG-1-443. The work covers the period from July 1, 1992 to December 1, 1998. During this period several distinct but related research studies and work tasks were undertaken. These different subjects are enumerated below with a description of the work done on each of them. The focus of the research was the development of optical fibers for use as distributed temperature and stress sensors. The initial concept was to utilize the utilize the temperature and stress dependence of emission from rare earth and transition metal ions substitutionally doped into crystalline or glass fibers. During the course of investigating this it became clear that fiber Bragg gratings provided a alternative for making the desired measurements and there was a shift of research focus on to include the photo-refractive properties of germano-silicate glasses used for most gratings and to the possibility of developing fiber laser sources for an integrated optical sensor in the research effort. During the course of this work several students from Christopher Newport University and other universities participated in this effort. Their names are listed below. Their participation was an important part of their education.

  3. Fiber and Your Child

    Science.gov (United States)

    ... meals instead of white rice. Add beans (kidney, black, navy, and pinto) to rice dishes for even more fiber. Spice up salads with berries and almonds, chickpeas, artichoke hearts, and beans (kidney, black, navy, or pinto). Use whole-grain (corn or ...

  4. Cholinergic axon length reduced by 300 meters in the brain of an Alzheimer mouse model

    DEFF Research Database (Denmark)

    Nikolajsen, Gitte; Jensen, Morten Skovgaard; West, Mark J.

    2011-01-01

    Modern stereological techniques have been used to show that the total length of the cholinergic fibers in the cerebral cortex of the APPswe/PS1deltaE9 mouse is reduced by almost 300 meters at 18 months of age and has a nonlinear relationship to the amount of transgenetically-induced amyloidosis. ....... These data provide rigorous quantitative morphological evidence that Alzheimer's-like amyloidosis affects the axons of the cholinergic enervation of the cerebral cortex....

  5. Applications research in ultrasonic testing of carbon fiber composite based on an optical fiber F-p sensor

    Science.gov (United States)

    Shan, Ning

    2016-10-01

    Carbon fiber composite is widely applied to the field of aerospace engineering because of its excellent performance. But it will be able to form more defects in the process of manufacturing inevitably on account of unique manufacturing process. Meanwhile it has sophisticated structure and services in the bad environment long time. The existence of defects will be able to cause the sharp decline in component's performance when the defect accumulates to a certain degree. So the reliability and safety test demand of carbon fiber composite is higher and higher. Ultrasonic testing technology is the important means used for characteristics of component inspection of composite materials. Ultrasonic information detection uses acoustic transducer generally. It need coupling agent and is higher demand for the surface of sample. It has narrow frequency band and low test precision. The extrinsic type optical fiber F-P interference cavity structure is designed to this problem. Its optical interference model is studied. The initial length of F-P cavity is designed. The realtime online detection system of carbon fiber composite is established based on optical fiber F-P Ultrasound sensing technology. Finally, the testing experiment study is conducted. The results show that the system can realize real-time online detection of carbon fiber composite's defect effectively. It operates simply and realizes easily. It has low cost and is easy to practical engineering.

  6. Effect of Chemical Treatment on Physical, Mechanical and Thermal Properties of Ladies Finger Natural Fiber

    Directory of Open Access Journals (Sweden)

    S. I. Hossain

    2013-01-01

    Full Text Available In present research, natural fiber obtained from ladies finger plant was chemically treated separately using alkali (2% NaOH, chromium sulfate (4% , and chromium sulfate and sodium bicarbonate (4% . Both raw and chemically treated fibers were subsequently characterized using mechanical (tensile, structural (Fourier transform infrared spectroscopy and scanning electron microscopy, and thermal (thermogravimetric analysis. Fourier analysis showed the presence of (−OH group in the ladies plant fiber. Scanning electron micrographs revealed rougher surface in case of alkali treated fiber, while thin coating layer was formed on the fiber surface during other two treatments. Tensile test on ladies finger single fiber was carried out by varying span length. The tensile strength and Young's modulus values were found to be increased after chemical treatment. For both raw and chemically treated fibers, Young's modulus increased and tensile strength decreased with increase in span length. Thermogravimetric analysis indicated the same level of thermal stability for both raw and treated ladies finger fibers.

  7. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  8. Controllable parabolic lensed liquid-core optical fiber by using electrostatic force.

    Science.gov (United States)

    Tang, Chun Yin; Zhang, Xuming; Chai, Yang; Hui, Long; Tao, Lili; Tsang, Yuen H

    2014-08-25

    For typical optical fiber system, an external lens accessory set is required to adjust the optical path of output light, which however is limited by the fixed parameter of the lens accessory setup. Considering spherical aberration in the imaging process and its small focusable spot size, a complicated lens combination is required to compensate the aberration. This paper has demonstrated a unique method to fabricate liquid-core lensed fibers by filling water and NOA61 respectively into hollow Teflon AF fibers and silicate fiber, the radius of curvature of the liquid lens can be controlled by adjusting the applied voltage on the core liquid and even parabolic shape lens can be produced with enough applied voltage. The experiment has successfully demonstrated a variation of focal length from 0.628 mm to 0.111 mm responding to the change of applied voltage from 0V to 3.2KV (L = 2mm) for the Teflon AF fiber, as well as a variation of focal length from 0.274 mm to 0.08 mm responding to the change of applied voltage from 0V to 3KV (L = 2mm) for the silicate fiber. Further simulation shows that the focused spot size can be reduced to 2 µm by adjusting the refractive index and fiber geometry. Solid state parabolic lensed fiber can be produced after NOA61 is solidified by the UV curing.

  9. "Green" composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites.

    Science.gov (United States)

    Liu, Zengshe; Erhan, Sevim Z; Akin, Danny E; Barton, Franklin E

    2006-03-22

    In recent years there has been considerable interest in using natural plant fibers as reinforcements for plastics. The motivation includes cost, performance enhancement, weight reduction, and environment concerns. High performance flax fiber could potentially substitute for glass or carbon fibers as reinforcements for plastics. This study reports the "green" composites obtained from a mixture of epoxidized soybean oil and epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl ether (THPE-GE), reinforced with flax fiber. The compression molding method is used for making the composites. Curing agents triethylenetetramine and diethylenetriamine provide better physical properties of the composites than Jeffamine agents D-230 and EDR-148. Both the flexural modulus and the tensile modulus of the composites increase as the amount of THPE-GE increases. The flexural modulus increased at a fiber content of fiber content until a maximum at 13.5 wt %, and then it decreases. The flax fiber length affected the mechanical properties of the composites: the longer the fiber length, the better are the mechanical properties observed.

  10. Polymer-Derived Ceramic Fibers

    Science.gov (United States)

    Ichikawa, Hiroshi

    2016-07-01

    SiC-based ceramic fibers are derived from polycarbosilane or polymetallocarbosilane precursors and are classified into three groups according to their chemical composition, oxygen content, and C/Si atomic ratio. The first-generation fibers are Si-C-O (Nicalon) fibers and Si-Ti-C-O (Tyranno Lox M) fibers. Both fibers contain more than 10-wt% oxygen owing to oxidation during curing and lead to degradation in strength at temperatures exceeding 1,300°C. The maximum use temperature is 1,100°C. The second-generation fibers are SiC (Hi-Nicalon) fibers and Si-Zr-C-O (Tyranno ZMI) fibers. The oxygen content of these fibers is reduced to less than 1 wt% by electron beam irradiation curing in He. The thermal stability of these fibers is improved (they are stable up to 1,500°C), but their creep resistance is limited to a maximum of 1,150°C because their C/Si atomic ratio results in excess carbon. The third-generation fibers are stoichiometric SiC fibers, i.e., Hi-Nicalon Type S (hereafter Type S), Tyranno SA, and Sylramic™ fibers. They exhibit improved thermal stability and creep resistance up to 1,400°C. Stoichiometric SiC fibers meet many of the requirements for the use of ceramic matrix composites for high-temperature structural application. SiBN3C fibers derived from polyborosilazane also show promise for structural applications, remain in the amorphous state up to 1,800°C, and have good high-temperature creep resistance.

  11. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    Science.gov (United States)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  12. Improved Optical Fiber Chemical Sensors

    Science.gov (United States)

    Egalon, Claudio O.; Rogowski, Robert S.

    1994-01-01

    Calculations, based on exact theory of optical fiber, have shown how to increase optical efficiency sensitivity of active-core, step-index-profile optical-fiber fluorosensor. Calculations result of efforts to improve efficiency of optical-fiber chemical sensor of previous concept described in "Making Optical-Fiber Chemical Sensors More Sensitive" (LAR-14525). Optical fiber chemical detector of enhanced sensitivity made in several configurations. Portion of fluorescence or chemiluminescence generated in core, and launched directly into bound electromagnetic modes that propagate along core to photodetector.

  13. Solid fiber Z-pinches

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1989-01-01

    One- and two-dimensional magnetohydrodynamic computations have been performed to study the behavior of solid deuterium fiber Z-pinch experiments performed at Los Alamos and the Naval Research Laboratory. The computations use a tabulated atomic data base and ''cold-start'' initial conditions. The computations predict that the solid fiber persists longer in existing experiments than previously expected and that the discharge actually consists of a relatively low-density, hot plasma which has been ablated from the fiber. The computations exhibit m = 0 behavior in the hot, exterior plasma prior to complete ablation of the solid fiber. The m = 0 behavior enhances the fiber ablation rate. 10 refs., 5 figs

  14. Introduction to optical fiber sensors

    International Nuclear Information System (INIS)

    Moukdad, S.

    1991-01-01

    Optical fiber sensors have many advantages over other types of sensors, for example: Low weight, immunity from EMI, electrical isolation, chemical passivity, and high sensitivity. In this seminar, a brief explanation of the optical fiber sensors, their use, and their advantages will be given. After, a description of the main optical fiber sensor components will be presented. Principles of some kinds of optical fiber sensors will be presented, and the principle of the fiber-optic rotation sensor and its realization will be discussed in some details, as well as its main applications. (author). 5 refs, 8 figs, 2 tabs

  15. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  16. Bonding Properties of Basalt Fiber and Strength Reduction According to Fiber Orientation

    OpenAIRE

    Choi, Jeong-Il; Lee, Bang

    2015-01-01

    The basalt fiber is a promising reinforcing fiber because it has a relatively higher tensile strength and a density similar to that of a concrete matrix as well as no corrosion possibility. This study investigated experimentally the bonding properties of basalt fiber with cementitious material as well as the effect of fiber orientation on the tensile strength of basalt fiber for evaluating basalt fiber?s suitability as a reinforcing fiber. Single fiber pullout tests were performed and then th...

  17. Fiber optics: A brief introduction

    International Nuclear Information System (INIS)

    Gruchalla, M.E.

    1989-01-01

    A basic introduction into the principles of fiber optics is presented. A review of both the underlying physical principles and the individual elements of typical fiber-optic systems are presented. The optical phenomenon of total internal reflection is reviewed. The basic construction of the optical fiber is presented. Both step-index and graded-index fiber designs are reviewed. Multimode and single-mode fiber constructions are considered and typical performance parameters given. Typical optical-fiber bandwidth and loss characteristics are compared to various common coaxial cables, waveguides, and air transmission. The constructions of optical-fiber cables are reviewed. Both loose-tube and tightly-buffered designs are considered. Several optical connection approaches are presented. Photographs of several representative optical connectors are included. Light Emitting Diode and Laser Diode emitters for fiber-optic applications are reviewed, and some advantages and shortcomings of each are considered. The phenomenon of modal noise is briefly explained. Both PIN and Avalanche photodetectors are reviewed and their performance parameters compared. Methods of data transmission over optical fiber are introduced. Principles of Wavelength, Frequency, and Time Division Multiplexing are briefly presented. The technology of fiber-optic sensors is briefly reviewed with basic principles introduced. The performance of a fiber-optic strain sensor is included as a practical example. 7 refs., 10 figs

  18. All-Fiber Raman Probe

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara

    by means of fiber components. Assuming the possibility to use a fiber laser with a fundamental radiation at 1064nm, in-fiber efficient second harmonic generation is achieved by optically poling the core of the waveguide delivering the excitation light to the sample. In this way, Raman spectroscopy...... in the visible range can be performed. The simultaneous delivery of the excitation light and collection of the Raman signal from the sample are achieved by means of a doubleclad fiber, whose core and inner cladding act as \\independent" transmission channels. A double-clad fiber coupler allows for the recovery...... of the collected Raman scattering from the inner-cladding region of the double-clad fiber, thus replacing the bulk dichroic component normally used to demultiplex the pump and Raman signal. A tunable Rayleigh-rejection filter based on a liquid filled-photonic bandgap fiber is also demonstrated in this work...

  19. Short Rayleigh Length Free Electron Lasers

    CERN Document Server

    Crooker, P P; Armstead, R L; Blau, J

    2004-01-01

    Conventional free electron laser (FEL) oscillators minimize the optical mode volume around the electron beam in the undulator by making the resonator Rayleigh length about one third of the undulator length. This maximizes gain and beam-mode coupling. In compact configurations of high-power infrared FELs or moderate power UV FELs, the resulting optical intensity can damage the resonator mirrors. To increase the spot size and thereby reduce the optical intensity at the mirrors below the damage threshold, a shorter Rayleigh length can be used, but the FEL interaction is significantly altered. A new FEL interaction is described and analyzed with a Rayleigh length that is only one tenth the undulator length, or less. The effect of mirror vibration and positioning are more critical in the short Rayleigh length design, but we find that they are still within normal design tolerances.

  20. Length dependent properties of SNS microbridges

    International Nuclear Information System (INIS)

    Sauvageau, J.E.; Jain, R.K.; Li, K.; Lukens, J.E.; Ono, R.H.

    1985-01-01

    Using an in-situ, self-aligned deposition scheme, arrays of variable length SNS junctions in the range of 0.05 μm to 1 μm have been fabricated. Arrays of SNS microbridges of lead-copper and niobium-copper fabricated using this technique have been used to study the length dependence, at constant temperature, of the critical current I and bridge resistance R /SUB d/ . For bridges with lengths pounds greater than the normal metal coherence length xi /SUB n/ (T), the dependence of I /SUB c/ on L is consistent with an exponential dependence on the reduced length l=L/xi /SUB n/ (T). For shorter bridges, deviations from this behavior is seen. It was also found that the bridge resistance R /SUB d/ does not vary linearly with the geometric bridge length but appears to approach a finite value as L→O

  1. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    Science.gov (United States)

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  2. Measuring Crack Length in Coarse Grain Ceramics

    Science.gov (United States)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  3. Dither Cavity Length Controller with Iodine Locking

    Directory of Open Access Journals (Sweden)

    Lawson Marty

    2016-01-01

    Full Text Available A cavity length controller for a seeded Q-switched frequency doubled Nd:YAG laser is constructed. The cavity length controller uses a piezo-mirror dither voltage to find the optimum length for the seeded cavity. The piezo-mirror dither also dithers the optical frequency of the output pulse. [1]. This dither in optical frequency is then used to lock to an Iodine absorption line.

  4. Collider Physics: SDC/SSC liquified fiber calorimetry

    International Nuclear Information System (INIS)

    White, J.T.; Huson, F.R.

    1992-01-01

    Most effort was directed toward the D-Zero experiment at Fermilab. Over 3 pb -1 of high-quality physics data have been obtained. Analysis of the results (wino-zino physics, squark physics), D-zero data acquisition systems efforts, and level-1 and level-2 trigger work are described. Other work concerned detector development for use at the SSC. This technology consists of using liquid scintillator-filled tubes as scintillating fibers for a ''calorimeter.'' The key issues were to demonstrate that the liquid fibers were sufficiently rad-hard and to demonstrate that fibers with sufficiently long attenuation length could be found to satisfy the resolution requirements; both constraints could be satisfied

  5. Solution-mediated cladding doping of commercial polymer optical fibers

    Science.gov (United States)

    Stajanca, Pavol; Topolniak, Ievgeniia; Pötschke, Samuel; Krebber, Katerina

    2018-03-01

    Solution doping of commercial polymethyl methacrylate (PMMA) polymer optical fibers (POFs) is presented as a novel approach for preparation of custom cladding-doped POFs (CD-POFs). The presented method is based on a solution-mediated diffusion of dopant molecules into the fiber cladding upon soaking of POFs in a methanol-dopant solution. The method was tested on three different commercial POFs using Rhodamine B as a fluorescent dopant. The dynamics of the diffusion process was studied in order to optimize the doping procedure in terms of selection of the most suitable POF, doping time and conditions. Using the optimized procedure, longer segment of fluorescent CD-POF was prepared and its performance was characterized. Fiber's potential for sensing and illumination applications was demonstrated and discussed. The proposed method represents a simple and cheap way for fabrication of custom, short to medium length CD-POFs with various dopants.

  6. Stabilization of Phase of a Sinusoidal Signal Transmitted Over Optical Fiber

    Science.gov (United States)

    DAddario, Larry R.; Trink, Joseph T.

    2010-01-01

    In the process of connecting widely distributed antennas into a coherent array, it is necessary to synchronize the timing of signals at the various locations. This can be accomplished by distributing a common reference signal from a central source, usually over optical fiber. A high-frequency (RF or microwave) tone is a good choice for the reference. One difficulty is that the effective length of the optical fiber changes with temperature and mechanical stress, leading to phase instability in the received tone. This innovation provides a new way to stabilize the phase of the received tone, in spite of variations in the electrical length of the fiber. Stabilization is accomplished by two-way transmission in which part of the received signal is returned to the transmitting end over an identical fiber. The returned signal is detected and used to close an electrical servo loop whose effect is to keep constant the phase of the tone at the receiving end.

  7. Optimal design of similariton fiber lasers without gain-bandwidth limitation.

    Science.gov (United States)

    Li, Xingliang; Zhang, Shumin; Yang, Zhenjun

    2017-07-24

    We have numerically investigated broadband high-energy similariton fiber lasers, demonstrated that the self-similar evolution of pulses can locate in a segment of photonic crystal fiber without gain-bandwidth limitation. The effects of various parameters, including the cavity length, the spectral filter bandwidth, the pump power, the length of the photonic crystal fiber and the output coupling ratio have also been studied in detail. Using the optimal parameters, a single pulse with spectral width of 186.6 nm, pulse energy of 23.8 nJ, dechirped pulse duration of 22.5 fs and dechirped pulse peak power of 1.26 MW was obtained. We believe that this detailed analysis of the behaviour of pulses in the similariton regime may have major implications in the development of broadband high-energy fiber lasers.

  8. Information, polarization and term length in democracy

    DEFF Research Database (Denmark)

    Schultz, Christian

    2008-01-01

    This paper considers term lengths in a representative democracy where the political issue divides the population on the left-right scale. Parties are ideologically different and better informed about the consequences of policies than voters are. A short term length makes the government more...... accountable, but the re-election incentive leads to policy-distortion as the government seeks to manipulate swing voters' beliefs to make its ideology more popular. This creates a trade-off: A short term length improves accountability but gives distortions. A short term length is best for swing voters when...

  9. SWNT Composite Fibers (SCF)

    National Research Council Canada - National Science Library

    Tour, James M; Kobashi, Kazufumi; Chen, Zheyi; Lomeda, Jay; Rauwald, Urs; Azad, Samina; Hwang, Wen-Fang

    2008-01-01

    .... Copolymerization of short (avg. length 60 nm) carboxylic acid functionalized SWNTs with PBO oligomers was successfully carried out in a mixed solvent of polyphosphoric acid and methanesulfonic acid (MSA...

  10. Chemically modified carbon fibers and their applications

    International Nuclear Information System (INIS)

    Ermolenko, I.N.; Lyubliner, I.P.; Gulko, N.V.

    1990-01-01

    This book gives a comprehensive review about chemically modified carbon fibers (e.g. by incorporation of other elements) and is structured as follows: 1. Types of carbon fibers, 2. Structure of carbon fibers, 3. Properties of carbon fibers, 4. The cellulose carbonization process, 5. Formation of element-carbon fiber materials, 6. Surface modification of carbon fibers, and 7. Applications of carbon fibers (e.g. adsorbents, catalysts, constituents of composites). (MM)

  11. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  12. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  13. Fiber optic fluid detector

    Science.gov (United States)

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  14. Optical fiber communications

    CERN Document Server

    Keiser, Gerd

    2008-01-01

    The fourth edition of this popular text and reference book presents the fundamental principles for understanding and applying optical fiber technology to sophisticated modern telecommunication systems. Optical-fiber-based telecommunication networks have become a major information-transmission-system, with high capacity links encircling the globe in both terrestrial and undersea installations. Numerous passive and active optical devices within these links perform complex transmission and networking functions in the optical domain, such as signal amplification, restoration, routing, and switching. Along with the need to understand the functions of these devices comes the necessity to measure both component and network performance, and to model and stimulate the complex behavior of reliable high-capacity networks.

  15. Noncontact measurement of high temperature using optical fiber sensors

    Science.gov (United States)

    Claus, R. O.

    1990-01-01

    The primary goal of this research program was the investigation and application of noncontact temperature measurement techniques using optical techniques and optical fiber methods. In particular, a pyrometer utilizing an infrared optical light pipe and a multiwavelength filtering approach was designed, revised, and tested. This work was motivated by the need to measure the temperatures of small metallic pellets (approximately 3 mm diameter) in free fall at the Microgravity Materials Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this program investigated the adaptation of holography technology to optical fiber sensors, and also examined the use of rare-earth dopants in optical fibers for use in measuring temperature. The pyrometer development effort involved both theoretical analysis and experimental tests. For the analysis, a mathematical model based on radiative transfer principles was derived. Key parameter values representative of the drop tube system, such as particle size, tube diameter and length, and particle temperature, were used to determine an estimate of the radiant flux that will be incident on the face of an optical fiber or light pipe used to collect radiation from the incandescent falling particle. An extension of this work examined the advantage of inclining or tilting the collecting fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results indicate that increases in total power collected of about 15 percent may be realized by tilting the fiber. In order to determine the suitability of alternative light pipes and optical fibers, and experimental set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core fiber of varying diameters were tested. A prototype two-color pyrometer was assembled and tested at Virginia Tech, and then

  16. Stable fiber interferometer

    International Nuclear Information System (INIS)

    Izmajlov, G.N.; Nikolaev, F.A.; Ozolin, V.V.; Grigor'yants, V.V.; Chamorovskij, Yu.K.

    1989-01-01

    The problem of construction the long-base Michelson interferometer for gravitational wave detection is discussed. Possible sources of noise and instability are considered. It is shown that evacuation of fiber interferometer, the winding of its arms on the glass ceramic bases, stabilization of radiation source frequency and seismic isolation of the base allow one to reduce its instability to the level, typical of mirror interferometer with the comparable optical base. 10 refs.; 2 figs

  17. Characterization of Chromatic Dispersion and Refractive Index of Polymer Optical Fibers

    Directory of Open Access Journals (Sweden)

    Igor Ayesta

    2017-12-01

    Full Text Available The chromatic dispersion and the refractive index of poly(methyl methacrylate polymer optical fibers (POFs have been characterized in this work by using a tunable femtosecond laser and a Streak Camera. The characterization technique is based on the measurement of the time delays of light pulses propagating along POFs at different wavelengths. Polymer fibers of three different lengths made by two manufacturers have been employed for that purpose, and discrepancies lower than 3% have been obtained in all cases.

  18. Pemodelan Tapis Fabry-perot pada Serat Optik dengan Menggunakan Fiber Bragg Grating

    OpenAIRE

    Pramuliawati, Septi; ', Saktioto; ', Defrianto

    2015-01-01

    Fabry-perot filter was successfully developed by a uniform Fiber Bragg Grating in fiber optic. A characterization of Bragg Grating was analyzed by using computational model with second-order of Transfer Matrix Method based on Coupled Mode Theory. The reflectivity, length of grating, and bandwidth were parametrics to determine the performance of single Bragg Grating. The transmission spectrum showed the longer grating is designed, the larger the reflectivity was produced, so that the transmiss...

  19. Fiber-linked telescope array: description and laboratory tests of a two-channel prototype

    Science.gov (United States)

    Alleman, J. J.; Reynaud, F.; Connes, P.

    1995-05-01

    We present a complete two-telescope version of a fiber-linked coherent array that is meant to be used for mounting on the dish of a radio telescope. This was built with 20-cm amateur telescopes and includes three different servo subsystems for guiding, nulling of the air path difference, and fiber length control. Laboratory tests of the fully integrated system in front of a star simulator are described.

  20. Deriving muscle fiber diameter from recorded single fiber potential.

    Science.gov (United States)

    Zalewska, Ewa

    2017-12-01

    The aim of the study was to estimate muscle fiber diameters through analysis of single muscle fiber potentials (SFPs) recorded in the frontalis muscle of a healthy subject. Our previously developed analytical and graphic method to derive fiber diameter from the analysis of the negative peak duration and the amplitude of SFP, was applied to a sample of ten SFPs recorded in vivo. Muscle fiber diameters derived from the simulation method for the sample of frontalis muscle SFPs are consistent with anatomical data for this muscle. The results confirm the utility of proposed simulation method. Outlying data could be considered as the result of a contribution of other fibers to the potential recorded using an SFEMG electrode. Our graphic tool provides a rapid estimation of muscle fiber diameter. Copyright © 2017 Elsevier Masson SAS. All rights reserved.